Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 1626 → Rev 1627

/drivers/devman/Makefile
24,7 → 24,10
 
NAME= acpi
 
NAME_SRCS= acpi.c
NAME_SRCS= acpi.c \
scan.c \
pci_irq.c \
pci/pci.c
 
 
all: $(NAME).dll
/drivers/devman/acpi.c
6,7 → 6,10
#include <syscall.h>
 
#include "acpi.h"
#include "acpi_bus.h"
 
#define PREFIX "ACPI: "
 
#define ACPI_BUS_CLASS "system_bus"
#define ACPI_BUS_HID "KLBSYBUS"
#define ACPI_BUS_DEVICE_NAME "System Bus"
16,8 → 19,8
 
static LIST_HEAD(acpi_device_list);
static LIST_HEAD(acpi_bus_id_list);
DEFINE_MUTEX(acpi_device_lock);
 
 
struct acpi_device_bus_id
{
char bus_id[15];
44,40 → 47,7
ACPI_BUS_REMOVAL_TYPE_COUNT
};
 
enum acpi_bus_device_type {
ACPI_BUS_TYPE_DEVICE = 0,
ACPI_BUS_TYPE_POWER,
ACPI_BUS_TYPE_PROCESSOR,
ACPI_BUS_TYPE_THERMAL,
ACPI_BUS_TYPE_POWER_BUTTON,
ACPI_BUS_TYPE_SLEEP_BUTTON,
ACPI_BUS_DEVICE_TYPE_COUNT
};
 
/*
* _HID definitions
* HIDs must conform to ACPI spec(6.1.4)
* KolibriOS specific HIDs do not apply to this and begin with KOS:
*/
 
#define ACPI_POWER_HID "KLBPOWER"
#define ACPI_PROCESSOR_OBJECT_HID "KLBCPU"
#define ACPI_SYSTEM_HID "KLBSYSTM"
#define ACPI_THERMAL_HID "KLBTHERM"
#define ACPI_BUTTON_HID_POWERF "KLBPWRBN"
#define ACPI_BUTTON_HID_SLEEPF "KLBSLPBN"
#define ACPI_VIDEO_HID "KLBVIDEO"
#define ACPI_BAY_HID "KLBIOBAY"
#define ACPI_DOCK_HID "KLBDOCK"
/* Quirk for broken IBM BIOSes */
#define ACPI_SMBUS_IBM_HID "SMBUSIBM"
 
 
#define STRUCT_TO_INT(s) (*((int*)&s))
 
#define ACPI_STA_DEFAULT (ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_ENABLED | \
ACPI_STA_DEVICE_UI | ACPI_STA_DEVICE_FUNCTIONING)
 
#define PCI_MAX_DEVICES 32
#define PCI_MAX_PINS 4
 
96,850 → 66,521
#define acpi_remap( addr ) MapIoMem((void*)(addr),4096, 0x01)
 
 
struct acpi_bus_ops
{
u32_t acpi_op_add:1;
u32_t acpi_op_start:1;
};
struct acpi_device *acpi_root;
 
struct acpi_device_flags {
u32 dynamic_status:1;
u32 bus_address:1;
u32 removable:1;
u32 ejectable:1;
u32 lockable:1;
u32 suprise_removal_ok:1;
u32 power_manageable:1;
u32 performance_manageable:1;
u32 wake_capable:1; /* Wakeup(_PRW) supported? */
u32 force_power_state:1;
u32 reserved:22;
};
extern struct resource iomem_resource;
extern struct resource ioport_resource;
 
struct acpi_device_status {
u32 present:1;
u32 enabled:1;
u32 show_in_ui:1;
u32 functional:1;
u32 battery_present:1;
u32 reserved:27;
enum pic_mode
{
IO_PIC = 0,
IO_APIC
};
 
static void set_pic_mode(enum pic_mode mode)
{
ACPI_OBJECT arg1;
ACPI_OBJECT_LIST args;
ACPI_STATUS as;
 
typedef char acpi_bus_id[8];
typedef unsigned long acpi_bus_address;
typedef char acpi_device_name[40];
typedef char acpi_device_class[20];
arg1.Type = ACPI_TYPE_INTEGER;
arg1.Integer.Value = mode;
args.Count = 1;
args.Pointer = &arg1;
 
struct acpi_hardware_id {
struct list_head list;
char *id;
};
as = AcpiEvaluateObject(ACPI_ROOT_OBJECT, "_PIC", &args, NULL);
/*
* We can silently ignore failure as it may not be implemented, ACPI should
* provide us with correct information anyway
*/
if (ACPI_SUCCESS(as))
dbgprintf(PREFIX "machine set to %s mode\n", mode ? "APIC" : "PIC");
}
 
struct acpi_device_pnp
void print_device_tree(struct acpi_device *device)
{
acpi_bus_id bus_id; /* Object name */
acpi_bus_address bus_address; /* _ADR */
char *unique_id; /* _UID */
struct list_head ids; /* _HID and _CIDs */
acpi_device_name device_name; /* Driver-determined */
acpi_device_class device_class; /* " */
};
struct acpi_device *child;
 
dbgprintf("%s\n", device->pnp.bus_id);
 
struct acpi_device
list_for_each_entry(child, &device->children, node)
{
int device_type;
ACPI_HANDLE handle; /* no handle for fixed hardware */
struct acpi_device *parent;
struct list_head children;
struct list_head node;
// struct list_head wakeup_list;
struct acpi_device_status status;
struct acpi_device_flags flags;
struct acpi_device_pnp pnp;
// struct acpi_device_power power;
// struct acpi_device_wakeup wakeup;
// struct acpi_device_perf performance;
// struct acpi_device_dir dir;
// struct acpi_device_ops ops;
// struct acpi_driver *driver;
void *driver_data;
// struct device dev;
struct acpi_bus_ops bus_ops; /* workaround for different code path for hotplug */
// enum acpi_bus_removal_type removal_type; /* indicate for different removal type */
print_device_tree(child);
};
};
 
struct acpi_device *acpi_root;
 
 
static void
acpi_util_eval_error(ACPI_HANDLE h, ACPI_STRING p, ACPI_STATUS s)
/*
int acpi_pci_bind_root(struct acpi_device *device)
{
#ifdef ACPI_DEBUG_OUTPUT
char prefix[80] = {'\0'};
ACPI_BUFFER buffer = {sizeof(prefix), prefix};
AcpiGetName(h, ACPI_FULL_PATHNAME, &buffer);
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Evaluate [%s.%s]: %s\n",
(char *) prefix, p, AcpiFormatException(s)));
#else
return;
#endif
}
device->ops.bind = acpi_pci_bind;
device->ops.unbind = acpi_pci_unbind;
 
ACPI_STATUS
acpi_evaluate_integer(ACPI_HANDLE handle, ACPI_STRING pathname,
ACPI_OBJECT_LIST *arguments, unsigned long long *data)
{
ACPI_STATUS status = AE_OK;
ACPI_OBJECT element;
ACPI_BUFFER buffer = { 0, NULL };
 
if (!data)
return AE_BAD_PARAMETER;
 
buffer.Length = sizeof(ACPI_OBJECT);
buffer.Pointer = &element;
status = AcpiEvaluateObject(handle, pathname, arguments, &buffer);
if (ACPI_FAILURE(status)) {
acpi_util_eval_error(handle, pathname, status);
return status;
return 0;
}
*/
 
if (element.Type != ACPI_TYPE_INTEGER) {
acpi_util_eval_error(handle, pathname, AE_BAD_DATA);
return AE_BAD_DATA;
}
static bool pci_use_crs = false;
 
*data = element.Integer.Value;
#define IORESOURCE_BUS 0x00001000
 
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Return value [%llu]\n", *data));
struct acpi_pci_root {
struct list_head node;
struct acpi_device * device;
struct acpi_pci_id id;
struct pci_bus *bus;
u16 segment;
struct resource secondary; /* downstream bus range */
 
return AE_OK;
}
};
 
void acpi_bus_data_handler(ACPI_HANDLE handle, void *context)
{
static LIST_HEAD(acpi_pci_roots);
 
/* TBD */
#define ACPI_PCI_ROOT_CLASS "pci_bridge"
#define ACPI_PCI_ROOT_DEVICE_NAME "PCI Root Bridge"
 
return;
}
 
 
int acpi_bus_get_device(ACPI_HANDLE handle, struct acpi_device **device)
static ACPI_STATUS
get_root_bridge_busnr_callback(ACPI_RESOURCE *resource, void *data)
{
ACPI_STATUS status = AE_OK;
struct resource *res = data;
ACPI_RESOURCE_ADDRESS64 address;
 
if (!device)
{
return -EINVAL;
};
if (resource->Type != ACPI_RESOURCE_TYPE_ADDRESS16 &&
resource->Type != ACPI_RESOURCE_TYPE_ADDRESS32 &&
resource->Type != ACPI_RESOURCE_TYPE_ADDRESS64)
return AE_OK;
 
/* TBD: Support fixed-feature devices */
 
status = AcpiGetData(handle, acpi_bus_data_handler, (void **)device);
if (ACPI_FAILURE(status) || !*device) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No context for object [%p]\n",
handle));
return -ENODEV;
AcpiResourceToAddress64(resource, &address);
if ((address.AddressLength > 0) &&
(address.ResourceType == ACPI_BUS_NUMBER_RANGE)) {
res->start = address.Minimum;
res->end = address.Minimum + address.AddressLength - 1;
}
return 0;
}
 
 
ACPI_STATUS acpi_bus_get_status_handle(ACPI_HANDLE handle,
unsigned long long *sta)
{
ACPI_STATUS status;
 
status = acpi_evaluate_integer(handle, "_STA", NULL, sta);
if (ACPI_SUCCESS(status))
{
return AE_OK;
};
 
if (status == AE_NOT_FOUND)
{
*sta = ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_ENABLED |
ACPI_STA_DEVICE_UI | ACPI_STA_DEVICE_FUNCTIONING;
return AE_OK;
}
return status;
}
 
 
 
static int acpi_bus_type_and_status(ACPI_HANDLE handle, int *type,
unsigned long long *sta)
static ACPI_STATUS try_get_root_bridge_busnr(ACPI_HANDLE handle,
struct resource *res)
{
ACPI_STATUS status;
ACPI_OBJECT_TYPE acpi_type;
 
status = AcpiGetType(handle, &acpi_type);
res->start = -1;
status =
AcpiWalkResources(handle, METHOD_NAME__CRS,
get_root_bridge_busnr_callback, res);
if (ACPI_FAILURE(status))
{
return -ENODEV;
};
return status;
if (res->start == -1)
return AE_ERROR;
return AE_OK;
}
 
switch (acpi_type)
{
case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
case ACPI_TYPE_DEVICE:
*type = ACPI_BUS_TYPE_DEVICE;
status = acpi_bus_get_status_handle(handle, sta);
if (ACPI_FAILURE(status))
{
return -ENODEV;
};
break;
 
case ACPI_TYPE_PROCESSOR:
*type = ACPI_BUS_TYPE_PROCESSOR;
status = acpi_bus_get_status_handle(handle, sta);
if (ACPI_FAILURE(status))
struct pci_root_info
{
return -ENODEV;
struct acpi_device *bridge;
char *name;
unsigned int res_num;
struct resource *res;
struct pci_bus *bus;
int busnum;
};
break;
case ACPI_TYPE_THERMAL:
*type = ACPI_BUS_TYPE_THERMAL;
*sta = ACPI_STA_DEFAULT;
break;
case ACPI_TYPE_POWER:
*type = ACPI_BUS_TYPE_POWER;
*sta = ACPI_STA_DEFAULT;
break;
default:
return -ENODEV;
}
 
return 0;
}
 
static struct acpi_device *acpi_bus_get_parent(ACPI_HANDLE handle)
static ACPI_STATUS
resource_to_addr(ACPI_RESOURCE *resource, ACPI_RESOURCE_ADDRESS64 *addr)
{
ACPI_STATUS status;
struct acpi_device *device;
int ret;
struct acpi_resource_memory24 *memory24;
struct acpi_resource_memory32 *memory32;
struct acpi_resource_fixed_memory32 *fixed_memory32;
 
/*
* Fixed hardware devices do not appear in the namespace and do not
* have handles, but we fabricate acpi_devices for them, so we have
* to deal with them specially.
*/
if (handle == NULL)
{
return acpi_root;
};
 
do
{
status = AcpiGetParent(handle, &handle);
if (status == AE_NULL_ENTRY)
{
return NULL;
};
if (ACPI_FAILURE(status))
{
return acpi_root;
};
 
ret = acpi_bus_get_device(handle, &device);
if (ret == 0)
{
return device;
};
} while (1);
memset(addr, 0, sizeof(*addr));
switch (resource->Type) {
case ACPI_RESOURCE_TYPE_MEMORY24:
memory24 = &resource->Data.Memory24;
addr->ResourceType = ACPI_MEMORY_RANGE;
addr->Minimum = memory24->Minimum;
addr->AddressLength = memory24->AddressLength;
addr->Maximum = addr->Minimum + addr->AddressLength - 1;
return AE_OK;
case ACPI_RESOURCE_TYPE_MEMORY32:
memory32 = &resource->Data.Memory32;
addr->ResourceType = ACPI_MEMORY_RANGE;
addr->Minimum = memory32->Minimum;
addr->AddressLength = memory32->AddressLength;
addr->Maximum = addr->Minimum + addr->AddressLength - 1;
return AE_OK;
case ACPI_RESOURCE_TYPE_FIXED_MEMORY32:
fixed_memory32 = &resource->Data.FixedMemory32;
addr->ResourceType = ACPI_MEMORY_RANGE;
addr->Minimum = fixed_memory32->Address;
addr->AddressLength = fixed_memory32->AddressLength;
addr->Maximum = addr->Minimum + addr->AddressLength - 1;
return AE_OK;
case ACPI_RESOURCE_TYPE_ADDRESS16:
case ACPI_RESOURCE_TYPE_ADDRESS32:
case ACPI_RESOURCE_TYPE_ADDRESS64:
status = AcpiResourceToAddress64(resource, addr);
if (ACPI_SUCCESS(status) &&
(addr->ResourceType == ACPI_MEMORY_RANGE ||
addr->ResourceType == ACPI_IO_RANGE) &&
addr->AddressLength > 0) {
return AE_OK;
}
 
 
static void acpi_device_get_busid(struct acpi_device *device)
{
char bus_id[5] = { '?', 0 };
struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
int i = 0;
 
/*
* Bus ID
* ------
* The device's Bus ID is simply the object name.
* TBD: Shouldn't this value be unique (within the ACPI namespace)?
*/
if (ACPI_IS_ROOT_DEVICE(device)) {
strcpy(device->pnp.bus_id, "ACPI");
return;
}
 
switch (device->device_type)
{
case ACPI_BUS_TYPE_POWER_BUTTON:
strcpy(device->pnp.bus_id, "PWRF");
break;
case ACPI_BUS_TYPE_SLEEP_BUTTON:
strcpy(device->pnp.bus_id, "SLPF");
break;
default:
AcpiGetName(device->handle, ACPI_SINGLE_NAME, &buffer);
/* Clean up trailing underscores (if any) */
for (i = 3; i > 1; i--)
{
if (bus_id[i] == '_')
bus_id[i] = '\0';
else
break;
}
strcpy(device->pnp.bus_id, bus_id);
break;
return AE_ERROR;
}
}
 
 
static int acpi_bus_get_flags(struct acpi_device *device)
static ACPI_STATUS
count_resource(ACPI_RESOURCE *acpi_res, void *data)
{
ACPI_STATUS status = AE_OK;
ACPI_HANDLE temp = NULL;
struct pci_root_info *info = data;
ACPI_RESOURCE_ADDRESS64 addr;
ACPI_STATUS status;
 
/* Presence of _STA indicates 'dynamic_status' */
status = AcpiGetHandle(device->handle, "_STA", &temp);
status = resource_to_addr(acpi_res, &addr);
if (ACPI_SUCCESS(status))
device->flags.dynamic_status = 1;
 
/* Presence of _RMV indicates 'removable' */
status = AcpiGetHandle(device->handle, "_RMV", &temp);
if (ACPI_SUCCESS(status))
device->flags.removable = 1;
 
/* Presence of _EJD|_EJ0 indicates 'ejectable' */
status = AcpiGetHandle(device->handle, "_EJD", &temp);
if (ACPI_SUCCESS(status))
device->flags.ejectable = 1;
else {
status = AcpiGetHandle(device->handle, "_EJ0", &temp);
if (ACPI_SUCCESS(status))
device->flags.ejectable = 1;
info->res_num++;
return AE_OK;
}
 
/* Presence of _LCK indicates 'lockable' */
status = AcpiGetHandle(device->handle, "_LCK", &temp);
if (ACPI_SUCCESS(status))
device->flags.lockable = 1;
 
/* Presence of _PS0|_PR0 indicates 'power manageable' */
status = AcpiGetHandle(device->handle, "_PS0", &temp);
if (ACPI_FAILURE(status))
status = AcpiGetHandle(device->handle, "_PR0", &temp);
if (ACPI_SUCCESS(status))
device->flags.power_manageable = 1;
static ACPI_STATUS setup_resource(ACPI_RESOURCE *acpi_res, void *data)
{
struct pci_root_info *info = data;
struct resource *res;
struct acpi_resource_address64 addr;
ACPI_STATUS status;
unsigned long flags;
struct resource *root, *conflict;
u64 start, end;
 
/* Presence of _PRW indicates wake capable */
status = AcpiGetHandle(device->handle, "_PRW", &temp);
if (ACPI_SUCCESS(status))
device->flags.wake_capable = 1;
status = resource_to_addr(acpi_res, &addr);
if (!ACPI_SUCCESS(status))
return AE_OK;
 
/* TBD: Performance management */
 
return 0;
if (addr.ResourceType == ACPI_MEMORY_RANGE)
{
root = &iomem_resource;
flags = IORESOURCE_MEM;
if (addr.Info.Mem.Caching == ACPI_PREFETCHABLE_MEMORY)
flags |= IORESOURCE_PREFETCH;
}
else if (addr.ResourceType == ACPI_IO_RANGE)
{
root = &ioport_resource;
flags = IORESOURCE_IO;
} else
return AE_OK;
 
/*
* acpi_bay_match - see if a device is an ejectable driver bay
*
* If an acpi object is ejectable and has one of the ACPI ATA methods defined,
* then we can safely call it an ejectable drive bay
*/
static int acpi_bay_match(struct acpi_device *device){
ACPI_STATUS status;
ACPI_HANDLE handle;
ACPI_HANDLE tmp;
ACPI_HANDLE phandle;
start = addr.Minimum + addr.TranslationOffset;
end = addr.Maximum + addr.TranslationOffset;
 
handle = device->handle;
res = &info->res[info->res_num];
res->name = info->name;
res->flags = flags;
res->start = start;
res->end = end;
res->child = NULL;
 
status = AcpiGetHandle(handle, "_EJ0", &tmp);
if (ACPI_FAILURE(status))
return -ENODEV;
 
if ((ACPI_SUCCESS(AcpiGetHandle(handle, "_GTF", &tmp))) ||
(ACPI_SUCCESS(AcpiGetHandle(handle, "_GTM", &tmp))) ||
(ACPI_SUCCESS(AcpiGetHandle(handle, "_STM", &tmp))) ||
(ACPI_SUCCESS(AcpiGetHandle(handle, "_SDD", &tmp))))
return 0;
 
if (AcpiGetParent(handle, &phandle))
return -ENODEV;
 
if ((ACPI_SUCCESS(AcpiGetHandle(phandle, "_GTF", &tmp))) ||
(ACPI_SUCCESS(AcpiGetHandle(phandle, "_GTM", &tmp))) ||
(ACPI_SUCCESS(AcpiGetHandle(phandle, "_STM", &tmp))) ||
(ACPI_SUCCESS(AcpiGetHandle(phandle, "_SDD", &tmp))))
return 0;
 
return -ENODEV;
if (!pci_use_crs) {
printk("host bridge window %pR (ignored)\n", res);
return AE_OK;
}
 
/*
* acpi_dock_match - see if a device has a _DCK method
*/
static int acpi_dock_match(struct acpi_device *device)
{
ACPI_HANDLE tmp;
return AcpiGetHandle(device->handle, "_DCK", &tmp);
#if 0
conflict = insert_resource_conflict(root, res);
if (conflict) {
dev_err(&info->bridge->dev,
"address space collision: host bridge window %pR "
"conflicts with %s %pR\n",
res, conflict->name, conflict);
} else {
pci_bus_add_resource(info->bus, res, 0);
info->res_num++;
if (addr.translation_offset)
dev_info(&info->bridge->dev, "host bridge window %pR "
"(PCI address [%#llx-%#llx])\n",
res, res->start - addr.translation_offset,
res->end - addr.translation_offset);
else
dev_info(&info->bridge->dev,
"host bridge window %pR\n", res);
}
 
char *acpi_device_hid(struct acpi_device *device)
{
struct acpi_hardware_id *hid;
 
hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
return hid->id;
return AE_OK;
#endif
}
 
 
 
static void acpi_add_id(struct acpi_device *device, const char *dev_id)
static void
get_current_resources(struct acpi_device *device, int busnum,
int domain, struct pci_bus *bus)
{
struct acpi_hardware_id *id;
struct pci_root_info info;
size_t size;
 
id = kmalloc(sizeof(*id), GFP_KERNEL);
if (!id)
{
return;
};
char buf[64];
 
INIT_LIST_HEAD(&id->list);
// if (pci_use_crs)
// pci_bus_remove_resources(bus);
 
id->id = kmalloc(strlen(dev_id) + 1, GFP_KERNEL);
if (!id->id) {
kfree(id);
info.bridge = device;
info.bus = bus;
info.res_num = 0;
AcpiWalkResources(device->handle, METHOD_NAME__CRS, count_resource,
&info);
if (!info.res_num)
return;
}
 
strcpy(id->id, dev_id);
size = sizeof(*info.res) * info.res_num;
info.res = kmalloc(size, GFP_KERNEL);
if (!info.res)
goto res_alloc_fail;
 
list_add_tail(&id->list, &device->pnp.ids);
}
vsprintf(buf,"PCI Bus %04x:%02x", domain, busnum);
info.name = strdup(buf);
 
#define ACPI_VIDEO_OUTPUT_SWITCHING 0x0001
#define ACPI_VIDEO_DEVICE_POSTING 0x0002
#define ACPI_VIDEO_ROM_AVAILABLE 0x0004
#define ACPI_VIDEO_BACKLIGHT 0x0008
#define ACPI_VIDEO_BACKLIGHT_FORCE_VENDOR 0x0010
#define ACPI_VIDEO_BACKLIGHT_FORCE_VIDEO 0x0020
#define ACPI_VIDEO_OUTPUT_SWITCHING_FORCE_VENDOR 0x0040
#define ACPI_VIDEO_OUTPUT_SWITCHING_FORCE_VIDEO 0x0080
#define ACPI_VIDEO_BACKLIGHT_DMI_VENDOR 0x0100
#define ACPI_VIDEO_BACKLIGHT_DMI_VIDEO 0x0200
#define ACPI_VIDEO_OUTPUT_SWITCHING_DMI_VENDOR 0x0400
#define ACPI_VIDEO_OUTPUT_SWITCHING_DMI_VIDEO 0x0800
if (!info.name)
goto name_alloc_fail;
 
info.res_num = 0;
AcpiWalkResources(device->handle, METHOD_NAME__CRS, setup_resource,
&info);
 
long acpi_is_video_device(struct acpi_device *device)
{
ACPI_HANDLE h_dummy;
long video_caps = 0;
return;
 
if (!device)
return 0;
name_alloc_fail:
kfree(info.res);
res_alloc_fail:
return;
}
 
/* Is this device able to support video switching ? */
if (ACPI_SUCCESS(AcpiGetHandle(device->handle, "_DOD", &h_dummy)) ||
ACPI_SUCCESS(AcpiGetHandle(device->handle, "_DOS", &h_dummy)))
video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
 
/* Is this device able to retrieve a video ROM ? */
if (ACPI_SUCCESS(AcpiGetHandle(device->handle, "_ROM", &h_dummy)))
video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
 
/* Is this device able to configure which video head to be POSTed ? */
if (ACPI_SUCCESS(AcpiGetHandle(device->handle, "_VPO", &h_dummy)) &&
ACPI_SUCCESS(AcpiGetHandle(device->handle, "_GPD", &h_dummy)) &&
ACPI_SUCCESS(AcpiGetHandle(device->handle, "_SPD", &h_dummy)))
video_caps |= ACPI_VIDEO_DEVICE_POSTING;
 
return video_caps;
}
struct pci_ops pci_root_ops = {
.read = NULL,
.write = NULL,
};
 
 
static void acpi_device_set_id(struct acpi_device *device)
struct pci_bus* pci_acpi_scan_root(struct acpi_pci_root *root)
{
ACPI_STATUS status;
ACPI_DEVICE_INFO *info;
ACPI_DEVICE_ID_LIST *cid_list;
int i;
struct acpi_device *device = root->device;
int domain = root->segment;
int busnum = root->secondary.start;
struct pci_bus *bus;
struct pci_sysdata *sd;
int node = 0;
 
switch (device->device_type)
{
case ACPI_BUS_TYPE_DEVICE:
if (ACPI_IS_ROOT_DEVICE(device))
{
acpi_add_id(device, ACPI_SYSTEM_HID);
break;
if (domain ) {
printk(KERN_WARNING "pci_bus %04x:%02x: "
"ignored (multiple domains not supported)\n",
domain, busnum);
return NULL;
}
 
status = AcpiGetObjectInfo(device->handle, &info);
if (ACPI_FAILURE(status)) {
printk(KERN_ERR "%s: Error reading device info\n", __func__);
return;
/* Allocate per-root-bus (not per bus) arch-specific data.
* TODO: leak; this memory is never freed.
* It's arguable whether it's worth the trouble to care.
*/
sd = kzalloc(sizeof(*sd), GFP_KERNEL);
if (!sd) {
printk(KERN_WARNING "pci_bus %04x:%02x: "
"ignored (out of memory)\n", domain, busnum);
return NULL;
}
 
if (info->Valid & ACPI_VALID_HID)
acpi_add_id(device, info->HardwareId.String);
if (info->Valid & ACPI_VALID_CID)
{
cid_list = &info->CompatibleIdList;
for (i = 0; i < cid_list->Count; i++)
acpi_add_id(device, cid_list->Ids[i].String);
sd->domain = domain;
sd->node = node;
/*
* Maybe the desired pci bus has been already scanned. In such case
* it is unnecessary to scan the pci bus with the given domain,busnum.
*/
bus = pci_find_bus(domain, busnum);
if (bus) {
/*
* If the desired bus exits, the content of bus->sysdata will
* be replaced by sd.
*/
memcpy(bus->sysdata, sd, sizeof(*sd));
kfree(sd);
} else {
bus = pci_create_bus(busnum, &pci_root_ops, sd);
if (bus) {
get_current_resources(device, busnum, domain, bus);
// bus->subordinate = pci_scan_child_bus(bus);
}
if (info->Valid & ACPI_VALID_ADR) {
device->pnp.bus_address = info->Address;
device->flags.bus_address = 1;
}
 
kfree(info);
if (!bus)
kfree(sd);
 
/*
* Some devices don't reliably have _HIDs & _CIDs, so add
* synthetic HIDs to make sure drivers can find them.
*/
if (acpi_is_video_device(device))
acpi_add_id(device, ACPI_VIDEO_HID);
else if (ACPI_SUCCESS(acpi_bay_match(device)))
acpi_add_id(device, ACPI_BAY_HID);
else if (ACPI_SUCCESS(acpi_dock_match(device)))
acpi_add_id(device, ACPI_DOCK_HID);
else if (!acpi_device_hid(device) &&
ACPI_IS_ROOT_DEVICE(device->parent)) {
acpi_add_id(device, ACPI_BUS_HID); /* \_SB, LNXSYBUS */
strcpy(device->pnp.device_name, ACPI_BUS_DEVICE_NAME);
strcpy(device->pnp.device_class, ACPI_BUS_CLASS);
if (bus && node != -1) {
printk("on NUMA node %d\n", node);
}
 
break;
case ACPI_BUS_TYPE_POWER:
acpi_add_id(device, ACPI_POWER_HID);
break;
case ACPI_BUS_TYPE_PROCESSOR:
acpi_add_id(device, ACPI_PROCESSOR_OBJECT_HID);
break;
case ACPI_BUS_TYPE_THERMAL:
acpi_add_id(device, ACPI_THERMAL_HID);
break;
case ACPI_BUS_TYPE_POWER_BUTTON:
acpi_add_id(device, ACPI_BUTTON_HID_POWERF);
break;
case ACPI_BUS_TYPE_SLEEP_BUTTON:
acpi_add_id(device, ACPI_BUTTON_HID_SLEEPF);
break;
return bus;
}
 
/*
* We build acpi_devices for some objects that don't have _HID or _CID,
* e.g., PCI bridges and slots. Drivers can't bind to these objects,
* but we do use them indirectly by traversing the acpi_device tree.
* This generic ID isn't useful for driver binding, but it provides
* the useful property that "every acpi_device has an ID."
*/
if (list_empty(&device->pnp.ids))
acpi_add_id(device, "device");
}
 
 
static int acpi_device_set_context(struct acpi_device *device)
static int acpi_pci_root_add(struct acpi_device *device)
{
unsigned long long segment, bus;
ACPI_STATUS status;
int result;
struct acpi_pci_root *root;
ACPI_HANDLE handle;
struct acpi_device *child;
u32 flags, base_flags;
 
/*
* Context
* -------
* Attach this 'struct acpi_device' to the ACPI object. This makes
* resolutions from handle->device very efficient. Fixed hardware
* devices have no handles, so we skip them.
*/
if (!device->handle)
return 0;
root = kzalloc(sizeof(struct acpi_pci_root), GFP_KERNEL);
if (!root)
return -ENOMEM;
 
status = AcpiAttachData(device->handle,
acpi_bus_data_handler, device);
if (ACPI_SUCCESS(status))
return 0;
 
dbgprintf(KERN_ERR "Error attaching device data\n");
return -ENODEV;
segment = 0;
status = acpi_evaluate_integer(device->handle, METHOD_NAME__SEG, NULL,
&segment);
if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) {
printk(KERN_ERR PREFIX "can't evaluate _SEG\n");
result = -ENODEV;
goto end;
}
 
 
static int acpi_device_register(struct acpi_device *device)
/* Check _CRS first, then _BBN. If no _BBN, default to zero. */
root->secondary.flags = IORESOURCE_BUS;
status = try_get_root_bridge_busnr(device->handle, &root->secondary);
if (ACPI_FAILURE(status))
{
int result;
struct acpi_device_bus_id *acpi_device_bus_id, *new_bus_id;
int found = 0;
 
/*
* Linkage
* -------
* Link this device to its parent and siblings.
* We need both the start and end of the downstream bus range
* to interpret _CBA (MMCONFIG base address), so it really is
* supposed to be in _CRS. If we don't find it there, all we
* can do is assume [_BBN-0xFF] or [0-0xFF].
*/
INIT_LIST_HEAD(&device->children);
INIT_LIST_HEAD(&device->node);
 
new_bus_id = kzalloc(sizeof(struct acpi_device_bus_id), GFP_KERNEL);
if (!new_bus_id) {
dbgprintf(KERN_ERR "Memory allocation error\n");
return -ENOMEM;
root->secondary.end = 0xFF;
printk(KERN_WARNING PREFIX
"no secondary bus range in _CRS\n");
status = acpi_evaluate_integer(device->handle, METHOD_NAME__BBN, NULL, &bus);
if (ACPI_SUCCESS(status))
root->secondary.start = bus;
else if (status == AE_NOT_FOUND)
root->secondary.start = 0;
else {
printk(KERN_ERR PREFIX "can't evaluate _BBN\n");
result = -ENODEV;
goto end;
}
 
mutex_lock(&acpi_device_lock);
/*
* Find suitable bus_id and instance number in acpi_bus_id_list
* If failed, create one and link it into acpi_bus_id_list
*/
list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
{
if (!strcmp(acpi_device_bus_id->bus_id, acpi_device_hid(device)))
{
acpi_device_bus_id->instance_no++;
found = 1;
kfree(new_bus_id);
break;
}
}
if (!found)
{
acpi_device_bus_id = new_bus_id;
strcpy(acpi_device_bus_id->bus_id, acpi_device_hid(device));
acpi_device_bus_id->instance_no = 0;
list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
}
 
// dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, acpi_device_bus_id->instance_no);
INIT_LIST_HEAD(&root->node);
root->device = device;
root->segment = segment & 0xFFFF;
strcpy(acpi_device_name(device), ACPI_PCI_ROOT_DEVICE_NAME);
strcpy(acpi_device_class(device), ACPI_PCI_ROOT_CLASS);
device->driver_data = root;
 
if (device->parent)
list_add_tail(&device->node, &device->parent->children);
 
mutex_unlock(&acpi_device_lock);
 
// device->dev.bus = &acpi_bus_type;
// device->dev.release = &acpi_device_release;
// result = device_register(&device->dev);
// if (result) {
// dev_err(&device->dev, "Error registering device\n");
// goto end;
// }
 
 
// device->removal_type = ACPI_BUS_REMOVAL_NORMAL;
return 0;
end:
mutex_lock(&acpi_device_lock);
if (device->parent)
list_del(&device->node);
mutex_unlock(&acpi_device_lock);
return result;
}
 
 
 
static int acpi_add_single_object(struct acpi_device **child,
ACPI_HANDLE handle, int type,
unsigned long long sta,
struct acpi_bus_ops *ops)
{
int result;
struct acpi_device *device;
ACPI_BUFFER buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 
device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
if (!device) {
dbgprintf("%s: Memory allocation error\n", __FUNCTION__);
return -ENOMEM;
}
 
INIT_LIST_HEAD(&device->pnp.ids);
device->device_type = type;
device->handle = handle;
device->parent = acpi_bus_get_parent(handle);
device->bus_ops = *ops; /* workround for not call .start */
STRUCT_TO_INT(device->status) = sta;
 
acpi_device_get_busid(device);
 
/*
* Flags
* -----
* Note that we only look for object handles -- cannot evaluate objects
* until we know the device is present and properly initialized.
* All supported architectures that use ACPI have support for
* PCI domains, so we indicate this in _OSC support capabilities.
*/
result = acpi_bus_get_flags(device);
if (result)
goto end;
// flags = base_flags = OSC_PCI_SEGMENT_GROUPS_SUPPORT;
// acpi_pci_osc_support(root, flags);
 
/*
* Initialize Device
* -----------------
* TBD: Synch with Core's enumeration/initialization process.
* TBD: Need PCI interface for enumeration/configuration of roots.
*/
acpi_device_set_id(device);
 
/* TBD: Locking */
list_add_tail(&root->node, &acpi_pci_roots);
 
if ((result = acpi_device_set_context(device)))
goto end;
printk(KERN_INFO PREFIX "%s [%s] (domain %04x %pR)\n",
acpi_device_name(device), acpi_device_bid(device),
root->segment, &root->secondary);
 
result = acpi_device_register(device);
 
/*
* Bind _ADR-Based Devices when hot add
* Scan the Root Bridge
* --------------------
* Must do this prior to any attempt to bind the root device, as the
* PCI namespace does not get created until this call is made (and
* thus the root bridge's pci_dev does not exist).
*/
// if (device->flags.bus_address) {
// if (device->parent && device->parent->ops.bind)
// device->parent->ops.bind(device);
// }
 
end:
if (!result) {
AcpiGetName(handle, ACPI_FULL_PATHNAME, &buffer);
dbgprintf("Adding [%s]\n", (char *)buffer.Pointer);
kfree(buffer.Pointer);
*child = device;
};
return result;
root->bus = pci_acpi_scan_root(root);
if (!root->bus) {
printk(KERN_ERR PREFIX
"Bus %04x:%02x not present in PCI namespace\n",
root->segment, (unsigned int)root->secondary.start);
result = -ENODEV;
goto end;
}
 
 
 
 
static ACPI_STATUS acpi_bus_check_add(ACPI_HANDLE handle, u32 lvl,
void *context, void **return_value)
{
struct acpi_bus_ops *ops = context;
int type;
unsigned long long sta;
struct acpi_device *device;
ACPI_STATUS status;
int result;
 
result = acpi_bus_type_and_status(handle, &type, &sta);
 
if (result)
{
return AE_OK;
};
 
if (!(sta & ACPI_STA_DEVICE_PRESENT) &&
!(sta & ACPI_STA_DEVICE_FUNCTIONING))
{
return AE_CTRL_DEPTH;
};
 
/*
* We may already have an acpi_device from a previous enumeration. If
* so, we needn't add it again, but we may still have to start it.
* Attach ACPI-PCI Context
* -----------------------
* Thus binding the ACPI and PCI devices.
*/
device = NULL;
acpi_bus_get_device(handle, &device);
if (ops->acpi_op_add && !device)
acpi_add_single_object(&device, handle, type, sta, ops);
// result = acpi_pci_bind_root(device);
// if (result)
// goto end;
 
if (!device)
{
return AE_CTRL_DEPTH;
};
/*
if (ops->acpi_op_start && !(ops->acpi_op_add)) {
status = acpi_start_single_object(device);
if (ACPI_FAILURE(status))
return AE_CTRL_DEPTH;
}
* PCI Routing Table
* -----------------
* Evaluate and parse _PRT, if exists.
*/
 
if (!*return_value)
*return_value = device;
 
return AE_OK;
}
 
 
 
static int acpi_bus_scan(ACPI_HANDLE handle, struct acpi_bus_ops *ops,
struct acpi_device **child)
{
ACPI_STATUS status;
void *device = NULL;
 
ENTER();
 
status = acpi_bus_check_add(handle, 0, ops, &device);
 
status = AcpiGetHandle(device->handle, METHOD_NAME__PRT, &handle);
if (ACPI_SUCCESS(status))
AcpiWalkNamespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
acpi_bus_check_add, NULL, ops, &device);
result = acpi_pci_irq_add_prt(device->handle, root->bus);
 
if (child)
*child = device;
/*
* Scan and bind all _ADR-Based Devices
*/
// list_for_each_entry(child, &device->children, node)
// acpi_pci_bridge_scan(child);
 
LEAVE();
return 0;
 
if (device)
return 0;
else
return -ENODEV;
end:
if (!list_empty(&root->node))
list_del(&root->node);
kfree(root);
return result;
}
 
 
 
int acpi_scan()
static const struct acpi_device_ids root_device_ids[] =
{
int err;
struct acpi_bus_ops ops;
 
memset(&ops, 0, sizeof(ops));
ops.acpi_op_add = 1;
ops.acpi_op_start = 1;
 
err = acpi_bus_scan(ACPI_ROOT_OBJECT, &ops, &acpi_root);
 
return err;
{"PNP0A03", 0},
{"", 0},
};
 
void acpi_init_pci(struct acpi_device *device)
{
struct acpi_device *child;
 
enum pic_mode
if ( !acpi_match_device_ids(device, root_device_ids) )
{
IO_PIC = 0,
IO_APIC
dbgprintf(PREFIX "PCI root %s\n", device->pnp.bus_id);
acpi_pci_root_add(device);
};
 
static void set_pic_mode(enum pic_mode mode)
{
ACPI_OBJECT arg1;
ACPI_OBJECT_LIST args;
ACPI_STATUS as;
 
arg1.Type = ACPI_TYPE_INTEGER;
arg1.Integer.Value = mode;
args.Count = 1;
args.Pointer = &arg1;
 
as = AcpiEvaluateObject(ACPI_ROOT_OBJECT, "_PIC", &args, NULL);
/*
* We can silently ignore failure as it may not be implemented, ACPI should
* provide us with correct information anyway
*/
if (ACPI_SUCCESS(as))
dbgprintf("ACPI: machine set to %s mode\n", mode ? "APIC" : "PIC");
}
 
void print_device_tree(struct acpi_device *device)
{
struct acpi_device *child;
 
dbgprintf("%s\n", device->pnp.bus_id);
 
list_for_each_entry(child, &device->children, node)
{
print_device_tree(child);
acpi_init_pci(child);
};
 
};
 
 
u32_t drvEntry(int action, char *cmdline)
{
u32_t retval;
1004,74 → 645,12
 
set_pic_mode(IO_APIC);
 
#if 0
scan_devices();
acpi_scan();
 
{
bool retval = false;
u32_t bus, last_bus;
// print_device_tree(acpi_root);
 
if( (last_bus = PciApi(1))==-1)
return retval;
acpi_init_pci(acpi_root);
 
dbgprintf("last bus %x\n", last_bus);
 
for(bus=0; bus <= last_bus; bus++)
{
u32_t dev;
 
for(dev = 0; dev < 32; dev++)
{
u32_t fn;
 
for(fn = 0; fn < 8; fn++)
{
 
u32_t id;
u32_t irq_bios, irq_acpi;
u32_t irq_pin;
u16_t pcicmd;
u32_t tmp;
 
u32_t devfn = (dev<<3 )|fn;
 
id = PciRead32(bus,devfn, PCI_VENDOR_ID);
 
/* some broken boards return 0 or ~0 if a slot is empty: */
if (id == 0xffffffff || id == 0x00000000 ||
id == 0x0000ffff || id == 0xffff0000)
continue;
 
pcicmd = PciRead16(bus,devfn, PCI_COMMAND);
if (! pcicmd & PCI_COMMAND_IO)
continue;
 
tmp = PciRead32(bus,devfn, 0x3C);
 
irq_bios = tmp & 0xFF;
irq_pin = (tmp >> 8) & 0xFF;
 
int slot = (fn >> 3) & 0x1f;
 
irq_acpi = irqtable[ dev * PCI_MAX_PINS +(irq_pin-1) ];
 
if( irq_acpi < 0)
dbgprintf("PCI: no ACPI IRQ routing for "
"device %d.%d.%d INT%c\n",bus,dev,fn,'A'+irq_pin-1);
 
dbgprintf("pci device %x_%x bus %d dev %d fn %d,"
"IRQ PIN %d BIOS IRQ %d ACPI IRQ %d\n",
id & 0xFFFF, id>>16, bus, dev, fn, irq_pin, irq_bios, irq_acpi);
};
}
};
};
#endif
 
acpi_scan();
 
print_device_tree(acpi_root);
 
/*
ACPI_HANDLE bus_handle;
ACPI_HANDLE pci_root;
1182,7 → 761,71
 
};
 
#if 0
scan_devices();
 
{
bool retval = false;
u32_t bus, last_bus;
 
if( (last_bus = PciApi(1))==-1)
return retval;
 
dbgprintf("last bus %x\n", last_bus);
 
for(bus=0; bus <= last_bus; bus++)
{
u32_t dev;
 
for(dev = 0; dev < 32; dev++)
{
u32_t fn;
 
for(fn = 0; fn < 8; fn++)
{
 
u32_t id;
u32_t irq_bios, irq_acpi;
u32_t irq_pin;
u16_t pcicmd;
u32_t tmp;
 
u32_t devfn = (dev<<3 )|fn;
 
id = PciRead32(bus,devfn, PCI_VENDOR_ID);
 
/* some broken boards return 0 or ~0 if a slot is empty: */
if (id == 0xffffffff || id == 0x00000000 ||
id == 0x0000ffff || id == 0xffff0000)
continue;
 
pcicmd = PciRead16(bus,devfn, PCI_COMMAND);
if (! pcicmd & PCI_COMMAND_IO)
continue;
 
tmp = PciRead32(bus,devfn, 0x3C);
 
irq_bios = tmp & 0xFF;
irq_pin = (tmp >> 8) & 0xFF;
 
int slot = (fn >> 3) & 0x1f;
 
irq_acpi = irqtable[ dev * PCI_MAX_PINS +(irq_pin-1) ];
 
if( irq_acpi < 0)
dbgprintf("PCI: no ACPI IRQ routing for "
"device %d.%d.%d INT%c\n",bus,dev,fn,'A'+irq_pin-1);
 
dbgprintf("pci device %x_%x bus %d dev %d fn %d,"
"IRQ PIN %d BIOS IRQ %d ACPI IRQ %d\n",
id & 0xFFFF, id>>16, bus, dev, fn, irq_pin, irq_bios, irq_acpi);
};
}
};
};
#endif
 
 
#if 0
 
ACPI_STATUS
1379,3 → 1022,15
}
 
#endif
 
char* strdup(const char *str)
{
size_t len = strlen (str) + 1;
char *copy = malloc(len);
if (copy)
{
memcpy (copy, str, len);
}
return copy;
}
 
/drivers/devman/acpi_bus.h
0,0 → 1,128
 
 
struct resource_list {
struct resource_list *next;
struct resource *res;
// struct pci_dev *dev;
};
 
enum acpi_bus_device_type {
ACPI_BUS_TYPE_DEVICE = 0,
ACPI_BUS_TYPE_POWER,
ACPI_BUS_TYPE_PROCESSOR,
ACPI_BUS_TYPE_THERMAL,
ACPI_BUS_TYPE_POWER_BUTTON,
ACPI_BUS_TYPE_SLEEP_BUTTON,
ACPI_BUS_DEVICE_TYPE_COUNT
};
 
/*
* _HID definitions
* HIDs must conform to ACPI spec(6.1.4)
* KolibriOS specific HIDs do not apply to this and begin with KOS:
*/
 
 
#define ACPI_POWER_HID "KLBPOWER"
#define ACPI_PROCESSOR_OBJECT_HID "KLBCPU"
#define ACPI_SYSTEM_HID "KLBSYSTM"
#define ACPI_THERMAL_HID "KLBTHERM"
#define ACPI_BUTTON_HID_POWERF "KLBPWRBN"
#define ACPI_BUTTON_HID_SLEEPF "KLBSLPBN"
#define ACPI_VIDEO_HID "KLBVIDEO"
#define ACPI_BAY_HID "KLBIOBAY"
#define ACPI_DOCK_HID "KLBDOCK"
/* Quirk for broken IBM BIOSes */
#define ACPI_SMBUS_IBM_HID "SMBUSIBM"
 
 
struct acpi_bus_ops
{
u32_t acpi_op_add:1;
u32_t acpi_op_start:1;
};
 
 
#define ACPI_ID_LEN 16 /* only 9 bytes needed here, 16 bytes are used */
/* to workaround crosscompile issues */
 
struct acpi_device_ids
{
u8 id[ACPI_ID_LEN];
u32 driver_data;
};
 
struct acpi_device_flags {
u32 dynamic_status:1;
u32 bus_address:1;
u32 removable:1;
u32 ejectable:1;
u32 lockable:1;
u32 suprise_removal_ok:1;
u32 power_manageable:1;
u32 performance_manageable:1;
u32 wake_capable:1; /* Wakeup(_PRW) supported? */
u32 force_power_state:1;
u32 reserved:22;
};
 
struct acpi_device_status {
u32 present:1;
u32 enabled:1;
u32 show_in_ui:1;
u32 functional:1;
u32 battery_present:1;
u32 reserved:27;
};
typedef char acpi_bus_id[8];
typedef unsigned long acpi_bus_address;
typedef char acpi_device_name[40];
typedef char acpi_device_class[20];
 
 
struct acpi_device_pnp
{
acpi_bus_id bus_id; /* Object name */
acpi_bus_address bus_address; /* _ADR */
char *unique_id; /* _UID */
struct list_head ids; /* _HID and _CIDs */
acpi_device_name device_name; /* Driver-determined */
acpi_device_class device_class; /* " */
};
 
 
struct acpi_device
{
int device_type;
ACPI_HANDLE handle; /* no handle for fixed hardware */
struct acpi_device *parent;
struct list_head children;
struct list_head node;
// struct list_head wakeup_list;
struct acpi_device_status status;
struct acpi_device_flags flags;
struct acpi_device_pnp pnp;
// struct acpi_device_power power;
// struct acpi_device_wakeup wakeup;
// struct acpi_device_perf performance;
// struct acpi_device_dir dir;
// struct acpi_device_ops ops;
// struct acpi_driver *driver;
void *driver_data;
// struct device dev;
struct acpi_bus_ops bus_ops; /* workaround for different code path for hotplug */
// enum acpi_bus_removal_type removal_type; /* indicate for different removal type */
};
 
 
 
#define acpi_device_bid(d) ((d)->pnp.bus_id)
#define acpi_device_adr(d) ((d)->pnp.bus_address)
char *acpi_device_hid(struct acpi_device *device);
#define acpi_device_name(d) ((d)->pnp.device_name)
#define acpi_device_class(d) ((d)->pnp.device_class)
 
int acpi_match_device_ids(struct acpi_device *device,
const struct acpi_device_ids *ids);
 
int acpi_pci_irq_add_prt(ACPI_HANDLE handle, struct pci_bus *bus);
/drivers/devman/pci/pci.c
0,0 → 1,151
 
#include <ddk.h>
#include <linux/errno.h>
#include <mutex.h>
#include <pci.h>
#include <syscall.h>
 
LIST_HEAD(pci_root_buses);
 
#define IO_SPACE_LIMIT 0xffff
 
struct resource ioport_resource = {
.name = "PCI IO",
.start = 0,
.end = IO_SPACE_LIMIT,
.flags = IORESOURCE_IO,
};
 
struct resource iomem_resource = {
.name = "PCI mem",
.start = 0,
.end = -1,
.flags = IORESOURCE_MEM,
};
 
 
static inline int pci_domain_nr(struct pci_bus *bus)
{
struct pci_sysdata *sd = bus->sysdata;
return sd->domain;
}
 
static struct pci_bus * pci_alloc_bus(void)
{
struct pci_bus *b;
 
b = kzalloc(sizeof(*b), GFP_KERNEL);
if (b) {
INIT_LIST_HEAD(&b->node);
INIT_LIST_HEAD(&b->children);
INIT_LIST_HEAD(&b->devices);
INIT_LIST_HEAD(&b->slots);
INIT_LIST_HEAD(&b->resources);
}
return b;
}
 
struct pci_bus * pci_create_bus(int bus, struct pci_ops *ops, void *sysdata)
{
int error;
struct pci_bus *b, *b2;
 
b = pci_alloc_bus();
if (!b)
return NULL;
 
b->sysdata = sysdata;
b->ops = ops;
 
b2 = pci_find_bus(pci_domain_nr(b), bus);
if (b2) {
/* If we already got to this bus through a different bridge, ignore it */
dbgprintf("bus already known\n");
goto err_out;
}
 
// down_write(&pci_bus_sem);
list_add_tail(&b->node, &pci_root_buses);
// up_write(&pci_bus_sem);
 
b->number = b->secondary = bus;
b->resource[0] = &ioport_resource;
b->resource[1] = &iomem_resource;
 
return b;
 
err_out:
kfree(b);
return NULL;
}
 
 
 
 
 
static struct pci_bus *pci_do_find_bus(struct pci_bus *bus, unsigned char busnr)
{
struct pci_bus* child;
struct list_head *tmp;
 
if(bus->number == busnr)
return bus;
 
list_for_each(tmp, &bus->children) {
child = pci_do_find_bus(pci_bus_b(tmp), busnr);
if(child)
return child;
}
return NULL;
}
 
 
/**
* pci_find_bus - locate PCI bus from a given domain and bus number
* @domain: number of PCI domain to search
* @busnr: number of desired PCI bus
*
* Given a PCI bus number and domain number, the desired PCI bus is located
* in the global list of PCI buses. If the bus is found, a pointer to its
* data structure is returned. If no bus is found, %NULL is returned.
*/
struct pci_bus * pci_find_bus(int domain, int busnr)
{
struct pci_bus *bus = NULL;
struct pci_bus *tmp_bus;
 
while ((bus = pci_find_next_bus(bus)) != NULL) {
if (pci_domain_nr(bus) != domain)
continue;
tmp_bus = pci_do_find_bus(bus, busnr);
if (tmp_bus)
return tmp_bus;
}
return NULL;
}
 
/**
* pci_find_next_bus - begin or continue searching for a PCI bus
* @from: Previous PCI bus found, or %NULL for new search.
*
* Iterates through the list of known PCI busses. A new search is
* initiated by passing %NULL as the @from argument. Otherwise if
* @from is not %NULL, searches continue from next device on the
* global list.
*/
struct pci_bus *
pci_find_next_bus(const struct pci_bus *from)
{
struct list_head *n;
struct pci_bus *b = NULL;
 
// WARN_ON(in_interrupt());
// down_read(&pci_bus_sem);
n = from ? from->node.next : pci_root_buses.next;
if (n != &pci_root_buses)
b = pci_bus_b(n);
// up_read(&pci_bus_sem);
return b;
}
 
 
/drivers/devman/pci_irq.c
0,0 → 1,131
 
#include <ddk.h>
#include <linux/errno.h>
#include <mutex.h>
#include <linux/spinlock.h>
#include <pci.h>
#include <syscall.h>
 
#include "acpi.h"
#include "acpi_bus.h"
 
#define PREFIX "ACPI: "
 
struct acpi_prt_entry
{
struct list_head list;
ACPI_PCI_ID id;
u8 pin;
ACPI_HANDLE link;
u32 index; /* GSI, or link _CRS index */
};
 
static LIST_HEAD(acpi_prt_list);
static DEFINE_SPINLOCK(acpi_prt_lock);
 
static inline char pin_name(int pin)
{
return 'A' + pin - 1;
}
 
 
static int acpi_pci_irq_add_entry(ACPI_HANDLE handle, struct pci_bus *bus,
struct acpi_pci_routing_table *prt)
{
struct acpi_prt_entry *entry;
 
entry = kzalloc(sizeof(struct acpi_prt_entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
 
/*
* Note that the _PRT uses 0=INTA, 1=INTB, etc, while PCI uses
* 1=INTA, 2=INTB. We use the PCI encoding throughout, so convert
* it here.
*/
entry->id.Segment = pci_domain_nr(bus);
entry->id.Bus = bus->number;
entry->id.Device = (prt->Address >> 16) & 0xFFFF;
entry->pin = prt->Pin + 1;
 
// do_prt_fixups(entry, prt);
 
entry->index = prt->SourceIndex;
 
/*
* Type 1: Dynamic
* ---------------
* The 'source' field specifies the PCI interrupt link device used to
* configure the IRQ assigned to this slot|dev|pin. The 'source_index'
* indicates which resource descriptor in the resource template (of
* the link device) this interrupt is allocated from.
*
* NOTE: Don't query the Link Device for IRQ information at this time
* because Link Device enumeration may not have occurred yet
* (e.g. exists somewhere 'below' this _PRT entry in the ACPI
* namespace).
*/
if (prt->Source[0])
AcpiGetHandle(handle, prt->Source, &entry->link);
 
/*
* Type 2: Static
* --------------
* The 'source' field is NULL, and the 'source_index' field specifies
* the IRQ value, which is hardwired to specific interrupt inputs on
* the interrupt controller.
*/
 
dbgprintf(PREFIX " %04x:%02x:%02x[%c] -> %s[%d]\n",
entry->id.Segment, entry->id.Bus,
entry->id.Device, pin_name(entry->pin),
prt->Source, entry->index);
 
spin_lock(&acpi_prt_lock);
list_add_tail(&entry->list, &acpi_prt_list);
spin_unlock(&acpi_prt_lock);
 
return 0;
}
 
 
 
int acpi_pci_irq_add_prt(ACPI_HANDLE handle, struct pci_bus *bus)
{
ACPI_STATUS status;
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
struct acpi_pci_routing_table *entry;
 
/* 'handle' is the _PRT's parent (root bridge or PCI-PCI bridge) */
status = AcpiGetName(handle, ACPI_FULL_PATHNAME, &buffer);
if (ACPI_FAILURE(status))
return -ENODEV;
 
printk(KERN_DEBUG "ACPI: PCI Interrupt Routing Table [%s._PRT]\n",
(char *) buffer.Pointer);
 
kfree(buffer.Pointer);
 
buffer.Length = ACPI_ALLOCATE_BUFFER;
buffer.Pointer = NULL;
 
status = AcpiGetIrqRoutingTable(handle, &buffer);
if (ACPI_FAILURE(status))
{
dbgprintf("AcpiGetIrqRoutingTable failed "
"evaluating _PRT [%s]\n",AcpiFormatException(status));
kfree(buffer.Pointer);
return -ENODEV;
}
 
entry = buffer.Pointer;
while (entry && (entry->Length > 0)) {
acpi_pci_irq_add_entry(handle, bus, entry);
entry = (struct acpi_pci_routing_table *)
((unsigned long)entry + entry->Length);
}
 
kfree(buffer.Pointer);
return 0;
}
 
/drivers/devman/scan.c
0,0 → 1,766
 
 
#include <ddk.h>
#include <linux/errno.h>
#include <mutex.h>
#include <pci.h>
#include <syscall.h>
 
#include "acpi.h"
#include "acpi_bus.h"
 
 
#define PREFIX "ACPI: "
 
#define ACPI_BUS_CLASS "system_bus"
#define ACPI_BUS_HID "KLBSYBUS"
#define ACPI_BUS_DEVICE_NAME "System Bus"
 
 
#define ACPI_IS_ROOT_DEVICE(device) (!(device)->parent)
 
#define STRUCT_TO_INT(s) (*((int*)&s))
 
 
extern struct acpi_device *acpi_root;
 
static LIST_HEAD(acpi_device_list);
static LIST_HEAD(acpi_bus_id_list);
DEFINE_MUTEX(acpi_device_lock);
 
 
struct acpi_device_bus_id{
char bus_id[15];
unsigned int instance_no;
struct list_head node;
};
 
 
struct acpi_hardware_id {
struct list_head list;
char *id;
};
 
#define acpi_device_name(d) ((d)->pnp.device_name)
#define acpi_device_class(d) ((d)->pnp.device_class)
 
 
static void
acpi_util_eval_error(ACPI_HANDLE h, ACPI_STRING p, ACPI_STATUS s)
{
#ifdef ACPI_DEBUG_OUTPUT
char prefix[80] = {'\0'};
ACPI_BUFFER buffer = {sizeof(prefix), prefix};
AcpiGetName(h, ACPI_FULL_PATHNAME, &buffer);
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Evaluate [%s.%s]: %s\n",
(char *) prefix, p, AcpiFormatException(s)));
#else
return;
#endif
}
 
ACPI_STATUS
acpi_evaluate_integer(ACPI_HANDLE handle, ACPI_STRING pathname,
ACPI_OBJECT_LIST *arguments, unsigned long long *data)
{
ACPI_STATUS status = AE_OK;
ACPI_OBJECT element;
ACPI_BUFFER buffer = { 0, NULL };
 
if (!data)
return AE_BAD_PARAMETER;
 
buffer.Length = sizeof(ACPI_OBJECT);
buffer.Pointer = &element;
status = AcpiEvaluateObject(handle, pathname, arguments, &buffer);
if (ACPI_FAILURE(status)) {
acpi_util_eval_error(handle, pathname, status);
return status;
}
 
if (element.Type != ACPI_TYPE_INTEGER) {
acpi_util_eval_error(handle, pathname, AE_BAD_DATA);
return AE_BAD_DATA;
}
 
*data = element.Integer.Value;
 
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Return value [%llu]\n", *data));
 
return AE_OK;
}
 
 
void acpi_bus_data_handler(ACPI_HANDLE handle, void *context)
{
 
/* TBD */
 
return;
}
 
int acpi_bus_get_device(ACPI_HANDLE handle, struct acpi_device **device)
{
ACPI_STATUS status = AE_OK;
 
if (!device)
{
return -EINVAL;
};
 
/* TBD: Support fixed-feature devices */
 
status = AcpiGetData(handle, acpi_bus_data_handler, (void **)device);
if (ACPI_FAILURE(status) || !*device) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No context for object [%p]\n",
handle));
return -ENODEV;
}
return 0;
}
 
 
ACPI_STATUS acpi_bus_get_status_handle(ACPI_HANDLE handle,
unsigned long long *sta)
{
ACPI_STATUS status;
 
status = acpi_evaluate_integer(handle, "_STA", NULL, sta);
if (ACPI_SUCCESS(status))
{
return AE_OK;
};
 
if (status == AE_NOT_FOUND)
{
*sta = ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_ENABLED |
ACPI_STA_DEVICE_UI | ACPI_STA_DEVICE_FUNCTIONING;
return AE_OK;
}
return status;
}
 
 
 
/* --------------------------------------------------------------------------
ACPI Bus operations
-------------------------------------------------------------------------- */
 
int acpi_match_device_ids(struct acpi_device *device,
const struct acpi_device_ids *ids)
{
const struct acpi_device_ids *id;
struct acpi_hardware_id *hwid;
 
/*
* If the device is not present, it is unnecessary to load device
* driver for it.
*/
// if (!device->status.present)
// return -ENODEV;
 
for (id = ids; id->id[0]; id++)
list_for_each_entry(hwid, &device->pnp.ids, list)
if (!strcmp((char *) id->id, hwid->id))
return 0;
 
return -ENOENT;
}
 
 
static int acpi_device_register(struct acpi_device *device)
{
int result;
struct acpi_device_bus_id *acpi_device_bus_id, *new_bus_id;
int found = 0;
 
/*
* Linkage
* -------
* Link this device to its parent and siblings.
*/
INIT_LIST_HEAD(&device->children);
INIT_LIST_HEAD(&device->node);
 
new_bus_id = kzalloc(sizeof(struct acpi_device_bus_id), GFP_KERNEL);
if (!new_bus_id) {
printk(KERN_ERR PREFIX "Memory allocation error\n");
return -ENOMEM;
}
 
mutex_lock(&acpi_device_lock);
/*
* Find suitable bus_id and instance number in acpi_bus_id_list
* If failed, create one and link it into acpi_bus_id_list
*/
list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
{
if (!strcmp(acpi_device_bus_id->bus_id,
acpi_device_hid(device)))
{
acpi_device_bus_id->instance_no++;
found = 1;
kfree(new_bus_id);
break;
}
};
 
if (!found)
{
acpi_device_bus_id = new_bus_id;
strcpy(acpi_device_bus_id->bus_id, acpi_device_hid(device));
acpi_device_bus_id->instance_no = 0;
list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
}
 
// dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, acpi_device_bus_id->instance_no);
 
if (device->parent)
list_add_tail(&device->node, &device->parent->children);
 
mutex_unlock(&acpi_device_lock);
 
// device->dev.bus = &acpi_bus_type;
// device->dev.release = &acpi_device_release;
// result = device_register(&device->dev);
// if (result) {
// dev_err(&device->dev, "Error registering device\n");
// goto end;
// }
 
 
// device->removal_type = ACPI_BUS_REMOVAL_NORMAL;
return 0;
end:
mutex_lock(&acpi_device_lock);
if (device->parent)
list_del(&device->node);
mutex_unlock(&acpi_device_lock);
return result;
}
 
 
static struct acpi_device *acpi_bus_get_parent(ACPI_HANDLE handle)
{
ACPI_STATUS status;
struct acpi_device *device;
int ret;
 
/*
* Fixed hardware devices do not appear in the namespace and do not
* have handles, but we fabricate acpi_devices for them, so we have
* to deal with them specially.
*/
if (handle == NULL)
return acpi_root;
 
do {
status = AcpiGetParent(handle, &handle);
if (status == AE_NULL_ENTRY)
return NULL;
if (ACPI_FAILURE(status))
return acpi_root;
 
ret = acpi_bus_get_device(handle, &device);
if (ret == 0)
return device;
} while (1);
}
 
 
static int acpi_bus_get_flags(struct acpi_device *device)
{
ACPI_STATUS status = AE_OK;
ACPI_HANDLE temp = NULL;
 
/* Presence of _STA indicates 'dynamic_status' */
status = AcpiGetHandle(device->handle, "_STA", &temp);
if (ACPI_SUCCESS(status))
device->flags.dynamic_status = 1;
 
/* Presence of _RMV indicates 'removable' */
status = AcpiGetHandle(device->handle, "_RMV", &temp);
if (ACPI_SUCCESS(status))
device->flags.removable = 1;
 
/* Presence of _EJD|_EJ0 indicates 'ejectable' */
status = AcpiGetHandle(device->handle, "_EJD", &temp);
if (ACPI_SUCCESS(status))
device->flags.ejectable = 1;
else {
status = AcpiGetHandle(device->handle, "_EJ0", &temp);
if (ACPI_SUCCESS(status))
device->flags.ejectable = 1;
}
 
/* Presence of _LCK indicates 'lockable' */
status = AcpiGetHandle(device->handle, "_LCK", &temp);
if (ACPI_SUCCESS(status))
device->flags.lockable = 1;
 
/* Presence of _PS0|_PR0 indicates 'power manageable' */
status = AcpiGetHandle(device->handle, "_PS0", &temp);
if (ACPI_FAILURE(status))
status = AcpiGetHandle(device->handle, "_PR0", &temp);
if (ACPI_SUCCESS(status))
device->flags.power_manageable = 1;
 
/* Presence of _PRW indicates wake capable */
status = AcpiGetHandle(device->handle, "_PRW", &temp);
if (ACPI_SUCCESS(status))
device->flags.wake_capable = 1;
 
/* TBD: Performance management */
 
return 0;
}
 
static void acpi_device_get_busid(struct acpi_device *device)
{
char bus_id[5] = { '?', 0 };
struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
int i = 0;
 
/*
* Bus ID
* ------
* The device's Bus ID is simply the object name.
* TBD: Shouldn't this value be unique (within the ACPI namespace)?
*/
if (ACPI_IS_ROOT_DEVICE(device)) {
strcpy(device->pnp.bus_id, "ACPI");
return;
}
 
switch (device->device_type)
{
case ACPI_BUS_TYPE_POWER_BUTTON:
strcpy(device->pnp.bus_id, "PWRF");
break;
case ACPI_BUS_TYPE_SLEEP_BUTTON:
strcpy(device->pnp.bus_id, "SLPF");
break;
default:
AcpiGetName(device->handle, ACPI_SINGLE_NAME, &buffer);
/* Clean up trailing underscores (if any) */
for (i = 3; i > 1; i--) {
if (bus_id[i] == '_')
bus_id[i] = '\0';
else
break;
}
strcpy(device->pnp.bus_id, bus_id);
break;
}
}
 
 
#define ACPI_VIDEO_OUTPUT_SWITCHING 0x0001
#define ACPI_VIDEO_DEVICE_POSTING 0x0002
#define ACPI_VIDEO_ROM_AVAILABLE 0x0004
#define ACPI_VIDEO_BACKLIGHT 0x0008
#define ACPI_VIDEO_BACKLIGHT_FORCE_VENDOR 0x0010
#define ACPI_VIDEO_BACKLIGHT_FORCE_VIDEO 0x0020
#define ACPI_VIDEO_OUTPUT_SWITCHING_FORCE_VENDOR 0x0040
#define ACPI_VIDEO_OUTPUT_SWITCHING_FORCE_VIDEO 0x0080
#define ACPI_VIDEO_BACKLIGHT_DMI_VENDOR 0x0100
#define ACPI_VIDEO_BACKLIGHT_DMI_VIDEO 0x0200
#define ACPI_VIDEO_OUTPUT_SWITCHING_DMI_VENDOR 0x0400
#define ACPI_VIDEO_OUTPUT_SWITCHING_DMI_VIDEO 0x0800
 
 
long acpi_is_video_device(struct acpi_device *device)
{
ACPI_HANDLE h_dummy;
long video_caps = 0;
 
if (!device)
return 0;
 
/* Is this device able to support video switching ? */
if (ACPI_SUCCESS(AcpiGetHandle(device->handle, "_DOD", &h_dummy)) ||
ACPI_SUCCESS(AcpiGetHandle(device->handle, "_DOS", &h_dummy)))
video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
 
/* Is this device able to retrieve a video ROM ? */
if (ACPI_SUCCESS(AcpiGetHandle(device->handle, "_ROM", &h_dummy)))
video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
 
/* Is this device able to configure which video head to be POSTed ? */
if (ACPI_SUCCESS(AcpiGetHandle(device->handle, "_VPO", &h_dummy)) &&
ACPI_SUCCESS(AcpiGetHandle(device->handle, "_GPD", &h_dummy)) &&
ACPI_SUCCESS(AcpiGetHandle(device->handle, "_SPD", &h_dummy)))
video_caps |= ACPI_VIDEO_DEVICE_POSTING;
 
return video_caps;
}
 
/*
* acpi_bay_match - see if a device is an ejectable driver bay
*
* If an acpi object is ejectable and has one of the ACPI ATA methods defined,
* then we can safely call it an ejectable drive bay
*/
static int acpi_bay_match(struct acpi_device *device){
ACPI_STATUS status;
ACPI_HANDLE handle;
ACPI_HANDLE tmp;
ACPI_HANDLE phandle;
 
handle = device->handle;
 
status = AcpiGetHandle(handle, "_EJ0", &tmp);
if (ACPI_FAILURE(status))
return -ENODEV;
 
if ((ACPI_SUCCESS(AcpiGetHandle(handle, "_GTF", &tmp))) ||
(ACPI_SUCCESS(AcpiGetHandle(handle, "_GTM", &tmp))) ||
(ACPI_SUCCESS(AcpiGetHandle(handle, "_STM", &tmp))) ||
(ACPI_SUCCESS(AcpiGetHandle(handle, "_SDD", &tmp))))
return 0;
 
if (AcpiGetParent(handle, &phandle))
return -ENODEV;
 
if ((ACPI_SUCCESS(AcpiGetHandle(phandle, "_GTF", &tmp))) ||
(ACPI_SUCCESS(AcpiGetHandle(phandle, "_GTM", &tmp))) ||
(ACPI_SUCCESS(AcpiGetHandle(phandle, "_STM", &tmp))) ||
(ACPI_SUCCESS(AcpiGetHandle(phandle, "_SDD", &tmp))))
return 0;
 
return -ENODEV;
}
 
/*
* acpi_dock_match - see if a device has a _DCK method
*/
static int acpi_dock_match(struct acpi_device *device)
{
ACPI_HANDLE tmp;
return AcpiGetHandle(device->handle, "_DCK", &tmp);
}
 
char *acpi_device_hid(struct acpi_device *device)
{
struct acpi_hardware_id *hid;
 
hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
return hid->id;
}
 
static void acpi_add_id(struct acpi_device *device, const char *dev_id)
{
struct acpi_hardware_id *id;
 
id = kmalloc(sizeof(*id), GFP_KERNEL);
if (!id)
return;
 
INIT_LIST_HEAD(&id->list);
 
id->id = kmalloc(strlen(dev_id) + 1, GFP_KERNEL);
if (!id->id) {
kfree(id);
return;
}
 
strcpy(id->id, dev_id);
list_add_tail(&id->list, &device->pnp.ids);
}
 
 
 
static void acpi_device_set_id(struct acpi_device *device)
{
ACPI_STATUS status;
ACPI_DEVICE_INFO *info;
ACPI_DEVICE_ID_LIST *cid_list;
int i;
 
switch (device->device_type)
{
case ACPI_BUS_TYPE_DEVICE:
if (ACPI_IS_ROOT_DEVICE(device)) {
acpi_add_id(device, ACPI_SYSTEM_HID);
break;
}
 
status = AcpiGetObjectInfo(device->handle, &info);
if (ACPI_FAILURE(status)) {
printk(KERN_ERR PREFIX "%s: Error reading device info\n", __func__);
return;
}
 
if (info->Valid & ACPI_VALID_HID)
acpi_add_id(device, info->HardwareId.String);
if (info->Valid & ACPI_VALID_CID)
{
cid_list = &info->CompatibleIdList;
for (i = 0; i < cid_list->Count; i++)
acpi_add_id(device, cid_list->Ids[i].String);
}
if (info->Valid & ACPI_VALID_ADR) {
device->pnp.bus_address = info->Address;
device->flags.bus_address = 1;
}
 
kfree(info);
 
/*
* Some devices don't reliably have _HIDs & _CIDs, so add
* synthetic HIDs to make sure drivers can find them.
*/
if (acpi_is_video_device(device))
acpi_add_id(device, ACPI_VIDEO_HID);
else if (ACPI_SUCCESS(acpi_bay_match(device)))
acpi_add_id(device, ACPI_BAY_HID);
else if (ACPI_SUCCESS(acpi_dock_match(device)))
acpi_add_id(device, ACPI_DOCK_HID);
else if (!acpi_device_hid(device) &&
ACPI_IS_ROOT_DEVICE(device->parent)) {
acpi_add_id(device, ACPI_BUS_HID); /* \_SB, LNXSYBUS */
strcpy(device->pnp.device_name, ACPI_BUS_DEVICE_NAME);
strcpy(device->pnp.device_class, ACPI_BUS_CLASS);
}
 
break;
case ACPI_BUS_TYPE_POWER:
acpi_add_id(device, ACPI_POWER_HID);
break;
case ACPI_BUS_TYPE_PROCESSOR:
acpi_add_id(device, ACPI_PROCESSOR_OBJECT_HID);
break;
case ACPI_BUS_TYPE_THERMAL:
acpi_add_id(device, ACPI_THERMAL_HID);
break;
case ACPI_BUS_TYPE_POWER_BUTTON:
acpi_add_id(device, ACPI_BUTTON_HID_POWERF);
break;
case ACPI_BUS_TYPE_SLEEP_BUTTON:
acpi_add_id(device, ACPI_BUTTON_HID_SLEEPF);
break;
}
 
/*
* We build acpi_devices for some objects that don't have _HID or _CID,
* e.g., PCI bridges and slots. Drivers can't bind to these objects,
* but we do use them indirectly by traversing the acpi_device tree.
* This generic ID isn't useful for driver binding, but it provides
* the useful property that "every acpi_device has an ID."
*/
if (list_empty(&device->pnp.ids))
acpi_add_id(device, "device");
}
 
static int acpi_device_set_context(struct acpi_device *device)
{
ACPI_STATUS status;
 
/*
* Context
* -------
* Attach this 'struct acpi_device' to the ACPI object. This makes
* resolutions from handle->device very efficient. Fixed hardware
* devices have no handles, so we skip them.
*/
if (!device->handle)
return 0;
 
status = AcpiAttachData(device->handle,
acpi_bus_data_handler, device);
if (ACPI_SUCCESS(status))
return 0;
 
printk(KERN_ERR PREFIX "Error attaching device data\n");
return -ENODEV;
}
 
 
static int acpi_add_single_object(struct acpi_device **child,
ACPI_HANDLE handle, int type,
unsigned long long sta,
struct acpi_bus_ops *ops)
{
int result;
struct acpi_device *device;
ACPI_BUFFER buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 
device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
if (!device) {
printk(KERN_ERR PREFIX "Memory allocation error\n");
return -ENOMEM;
}
 
INIT_LIST_HEAD(&device->pnp.ids);
device->device_type = type;
device->handle = handle;
device->parent = acpi_bus_get_parent(handle);
device->bus_ops = *ops; /* workround for not call .start */
STRUCT_TO_INT(device->status) = sta;
 
acpi_device_get_busid(device);
 
/*
* Flags
* -----
* Note that we only look for object handles -- cannot evaluate objects
* until we know the device is present and properly initialized.
*/
result = acpi_bus_get_flags(device);
if (result)
goto end;
 
/*
* Initialize Device
* -----------------
* TBD: Synch with Core's enumeration/initialization process.
*/
acpi_device_set_id(device);
 
 
if ((result = acpi_device_set_context(device)))
goto end;
 
result = acpi_device_register(device);
 
/*
* Bind _ADR-Based Devices when hot add
*/
// if (device->flags.bus_address) {
// if (device->parent && device->parent->ops.bind)
// device->parent->ops.bind(device);
// }
 
end:
if (!result) {
AcpiGetName(handle, ACPI_FULL_PATHNAME, &buffer);
dbgprintf(PREFIX "Adding [%s]\n", (char *)buffer.Pointer);
kfree(buffer.Pointer);
*child = device;
};
return result;
}
 
#define ACPI_STA_DEFAULT (ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_ENABLED | \
ACPI_STA_DEVICE_UI | ACPI_STA_DEVICE_FUNCTIONING)
 
static int acpi_bus_type_and_status(ACPI_HANDLE handle, int *type,
unsigned long long *sta)
{
ACPI_STATUS status;
ACPI_OBJECT_TYPE acpi_type;
 
status = AcpiGetType(handle, &acpi_type);
if (ACPI_FAILURE(status))
return -ENODEV;
 
switch (acpi_type)
{
case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
case ACPI_TYPE_DEVICE:
*type = ACPI_BUS_TYPE_DEVICE;
status = acpi_bus_get_status_handle(handle, sta);
if (ACPI_FAILURE(status))
return -ENODEV;
break;
case ACPI_TYPE_PROCESSOR:
*type = ACPI_BUS_TYPE_PROCESSOR;
status = acpi_bus_get_status_handle(handle, sta);
if (ACPI_FAILURE(status))
return -ENODEV;
break;
case ACPI_TYPE_THERMAL:
*type = ACPI_BUS_TYPE_THERMAL;
*sta = ACPI_STA_DEFAULT;
break;
case ACPI_TYPE_POWER:
*type = ACPI_BUS_TYPE_POWER;
*sta = ACPI_STA_DEFAULT;
break;
default:
return -ENODEV;
}
 
return 0;
}
 
 
static ACPI_STATUS acpi_bus_check_add(ACPI_HANDLE handle, u32 lvl,
void *context, void **return_value)
{
struct acpi_bus_ops *ops = context;
int type;
unsigned long long sta;
struct acpi_device *device;
ACPI_STATUS status;
int result;
 
result = acpi_bus_type_and_status(handle, &type, &sta);
if (result)
return AE_OK;
 
if (!(sta & ACPI_STA_DEVICE_PRESENT) &&
!(sta & ACPI_STA_DEVICE_FUNCTIONING))
return AE_CTRL_DEPTH;
 
/*
* We may already have an acpi_device from a previous enumeration. If
* so, we needn't add it again, but we may still have to start it.
*/
device = NULL;
acpi_bus_get_device(handle, &device);
if (ops->acpi_op_add && !device)
acpi_add_single_object(&device, handle, type, sta, ops);
 
if (!device)
return AE_CTRL_DEPTH;
 
/*
if (ops->acpi_op_start && !(ops->acpi_op_add)) {
status = acpi_start_single_object(device);
if (ACPI_FAILURE(status))
return AE_CTRL_DEPTH;
}
*/
 
if (!*return_value)
*return_value = device;
return AE_OK;
}
 
 
static int acpi_bus_scan(ACPI_HANDLE handle, struct acpi_bus_ops *ops,
struct acpi_device **child)
{
ACPI_STATUS status;
void *device = NULL;
 
status = acpi_bus_check_add(handle, 0, ops, &device);
if (ACPI_SUCCESS(status))
AcpiWalkNamespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
acpi_bus_check_add, NULL, ops, &device);
 
if (child)
*child = device;
 
if (device)
return 0;
else
return -ENODEV;
}
 
 
int acpi_scan()
{
int err;
struct acpi_bus_ops ops;
 
memset(&ops, 0, sizeof(ops));
ops.acpi_op_add = 1;
ops.acpi_op_start = 1;
 
err = acpi_bus_scan(ACPI_ROOT_OBJECT, &ops, &acpi_root);
 
return err;
};