Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 6081 → Rev 6082

/drivers/ddk/stdio/vsprintf.c
23,6 → 23,7
#include <linux/ctype.h>
#include <linux/kernel.h>
 
#include <linux/math64.h>
#include <linux/ioport.h>
#include <linux/export.h>
 
29,20 → 30,6
#include <asm/div64.h>
#include <asm/page.h> /* for PAGE_SIZE */
 
 
static inline u64 div_u64(u64 dividend, u32 divisor)
{
u32 remainder;
return div_u64_rem(dividend, divisor, &remainder);
}
 
static inline s64 div_s64(s64 dividend, s32 divisor)
{
s32 remainder;
return div_s64_rem(dividend, divisor, &remainder);
}
 
 
#define ZERO_SIZE_PTR ((void *)16)
 
#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
55,6 → 42,7
#define KSTRTOX_OVERFLOW (1U << 31)
 
const char hex_asc[] = "0123456789abcdef";
const char hex_asc_upper[] = "0123456789ABCDEF";
 
/* Works only for digits and letters, but small and fast */
#define TOLOWER(x) ((x) | 0x20)
210,148 → 198,152
{
int i = 0;
 
while (isdigit(**s))
do {
i = i*10 + *((*s)++) - '0';
} while (isdigit(**s));
 
return i;
}
 
/* Decimal conversion is by far the most typical, and is used
* for /proc and /sys data. This directly impacts e.g. top performance
* with many processes running. We optimize it for speed
* using ideas described at <http://www.cs.uiowa.edu/~jones/bcd/divide.html>
* (with permission from the author, Douglas W. Jones).
/*
* Decimal conversion is by far the most typical, and is used for
* /proc and /sys data. This directly impacts e.g. top performance
* with many processes running. We optimize it for speed by emitting
* two characters at a time, using a 200 byte lookup table. This
* roughly halves the number of multiplications compared to computing
* the digits one at a time. Implementation strongly inspired by the
* previous version, which in turn used ideas described at
* <http://www.cs.uiowa.edu/~jones/bcd/divide.html> (with permission
* from the author, Douglas W. Jones).
*
* It turns out there is precisely one 26 bit fixed-point
* approximation a of 64/100 for which x/100 == (x * (u64)a) >> 32
* holds for all x in [0, 10^8-1], namely a = 0x28f5c29. The actual
* range happens to be somewhat larger (x <= 1073741898), but that's
* irrelevant for our purpose.
*
* For dividing a number in the range [10^4, 10^6-1] by 100, we still
* need a 32x32->64 bit multiply, so we simply use the same constant.
*
* For dividing a number in the range [100, 10^4-1] by 100, there are
* several options. The simplest is (x * 0x147b) >> 19, which is valid
* for all x <= 43698.
*/
 
#if BITS_PER_LONG != 32 || BITS_PER_LONG_LONG != 64
/* Formats correctly any integer in [0, 999999999] */
static noinline_for_stack
char *put_dec_full9(char *buf, unsigned q)
{
unsigned r;
static const u16 decpair[100] = {
#define _(x) (__force u16) cpu_to_le16(((x % 10) | ((x / 10) << 8)) + 0x3030)
_( 0), _( 1), _( 2), _( 3), _( 4), _( 5), _( 6), _( 7), _( 8), _( 9),
_(10), _(11), _(12), _(13), _(14), _(15), _(16), _(17), _(18), _(19),
_(20), _(21), _(22), _(23), _(24), _(25), _(26), _(27), _(28), _(29),
_(30), _(31), _(32), _(33), _(34), _(35), _(36), _(37), _(38), _(39),
_(40), _(41), _(42), _(43), _(44), _(45), _(46), _(47), _(48), _(49),
_(50), _(51), _(52), _(53), _(54), _(55), _(56), _(57), _(58), _(59),
_(60), _(61), _(62), _(63), _(64), _(65), _(66), _(67), _(68), _(69),
_(70), _(71), _(72), _(73), _(74), _(75), _(76), _(77), _(78), _(79),
_(80), _(81), _(82), _(83), _(84), _(85), _(86), _(87), _(88), _(89),
_(90), _(91), _(92), _(93), _(94), _(95), _(96), _(97), _(98), _(99),
#undef _
};
 
/*
* Possible ways to approx. divide by 10
* (x * 0x1999999a) >> 32 x < 1073741829 (multiply must be 64-bit)
* (x * 0xcccd) >> 19 x < 81920 (x < 262149 when 64-bit mul)
* (x * 0x6667) >> 18 x < 43699
* (x * 0x3334) >> 17 x < 16389
* (x * 0x199a) >> 16 x < 16389
* (x * 0x0ccd) >> 15 x < 16389
* (x * 0x0667) >> 14 x < 2739
* (x * 0x0334) >> 13 x < 1029
* (x * 0x019a) >> 12 x < 1029
* (x * 0x00cd) >> 11 x < 1029 shorter code than * 0x67 (on i386)
* (x * 0x0067) >> 10 x < 179
* (x * 0x0034) >> 9 x < 69 same
* (x * 0x001a) >> 8 x < 69 same
* (x * 0x000d) >> 7 x < 69 same, shortest code (on i386)
* (x * 0x0007) >> 6 x < 19
* See <http://www.cs.uiowa.edu/~jones/bcd/divide.html>
* This will print a single '0' even if r == 0, since we would
* immediately jump to out_r where two 0s would be written but only
* one of them accounted for in buf. This is needed by ip4_string
* below. All other callers pass a non-zero value of r.
*/
r = (q * (uint64_t)0x1999999a) >> 32;
*buf++ = (q - 10 * r) + '0'; /* 1 */
q = (r * (uint64_t)0x1999999a) >> 32;
*buf++ = (r - 10 * q) + '0'; /* 2 */
r = (q * (uint64_t)0x1999999a) >> 32;
*buf++ = (q - 10 * r) + '0'; /* 3 */
q = (r * (uint64_t)0x1999999a) >> 32;
*buf++ = (r - 10 * q) + '0'; /* 4 */
r = (q * (uint64_t)0x1999999a) >> 32;
*buf++ = (q - 10 * r) + '0'; /* 5 */
/* Now value is under 10000, can avoid 64-bit multiply */
q = (r * 0x199a) >> 16;
*buf++ = (r - 10 * q) + '0'; /* 6 */
r = (q * 0xcd) >> 11;
*buf++ = (q - 10 * r) + '0'; /* 7 */
q = (r * 0xcd) >> 11;
*buf++ = (r - 10 * q) + '0'; /* 8 */
*buf++ = q + '0'; /* 9 */
return buf;
}
#endif
 
/* Similar to above but do not pad with zeros.
* Code can be easily arranged to print 9 digits too, but our callers
* always call put_dec_full9() instead when the number has 9 decimal digits.
*/
static noinline_for_stack
char *put_dec_trunc8(char *buf, unsigned r)
{
unsigned q;
 
/* Copy of previous function's body with added early returns */
while (r >= 10000) {
q = r + '0';
r = (r * (uint64_t)0x1999999a) >> 32;
*buf++ = q - 10*r;
}
/* 1 <= r < 10^8 */
if (r < 100)
goto out_r;
 
q = (r * 0x199a) >> 16; /* r <= 9999 */
*buf++ = (r - 10 * q) + '0';
if (q == 0)
/* 100 <= r < 10^8 */
q = (r * (u64)0x28f5c29) >> 32;
*((u16 *)buf) = decpair[r - 100*q];
buf += 2;
 
/* 1 <= q < 10^6 */
if (q < 100)
goto out_q;
 
/* 100 <= q < 10^6 */
r = (q * (u64)0x28f5c29) >> 32;
*((u16 *)buf) = decpair[q - 100*r];
buf += 2;
 
/* 1 <= r < 10^4 */
if (r < 100)
goto out_r;
 
/* 100 <= r < 10^4 */
q = (r * 0x147b) >> 19;
*((u16 *)buf) = decpair[r - 100*q];
buf += 2;
out_q:
/* 1 <= q < 100 */
r = q;
out_r:
/* 1 <= r < 100 */
*((u16 *)buf) = decpair[r];
buf += r < 10 ? 1 : 2;
return buf;
r = (q * 0xcd) >> 11; /* q <= 999 */
*buf++ = (q - 10 * r) + '0';
if (r == 0)
return buf;
q = (r * 0xcd) >> 11; /* r <= 99 */
*buf++ = (r - 10 * q) + '0';
if (q == 0)
return buf;
*buf++ = q + '0'; /* q <= 9 */
return buf;
}
 
/* There are two algorithms to print larger numbers.
* One is generic: divide by 1000000000 and repeatedly print
* groups of (up to) 9 digits. It's conceptually simple,
* but requires a (unsigned long long) / 1000000000 division.
*
* Second algorithm splits 64-bit unsigned long long into 16-bit chunks,
* manipulates them cleverly and generates groups of 4 decimal digits.
* It so happens that it does NOT require long long division.
*
* If long is > 32 bits, division of 64-bit values is relatively easy,
* and we will use the first algorithm.
* If long long is > 64 bits (strange architecture with VERY large long long),
* second algorithm can't be used, and we again use the first one.
*
* Else (if long is 32 bits and long long is 64 bits) we use second one.
*/
#if BITS_PER_LONG == 64 && BITS_PER_LONG_LONG == 64
static noinline_for_stack
char *put_dec_full8(char *buf, unsigned r)
{
unsigned q;
 
#if BITS_PER_LONG != 32 || BITS_PER_LONG_LONG != 64
/* 0 <= r < 10^8 */
q = (r * (u64)0x28f5c29) >> 32;
*((u16 *)buf) = decpair[r - 100*q];
buf += 2;
 
/* First algorithm: generic */
/* 0 <= q < 10^6 */
r = (q * (u64)0x28f5c29) >> 32;
*((u16 *)buf) = decpair[q - 100*r];
buf += 2;
 
static
/* 0 <= r < 10^4 */
q = (r * 0x147b) >> 19;
*((u16 *)buf) = decpair[r - 100*q];
buf += 2;
 
/* 0 <= q < 100 */
*((u16 *)buf) = decpair[q];
buf += 2;
return buf;
}
 
static noinline_for_stack
char *put_dec(char *buf, unsigned long long n)
{
if (n >= 100*1000*1000) {
while (n >= 1000*1000*1000)
buf = put_dec_full9(buf, do_div(n, 1000*1000*1000));
if (n >= 100*1000*1000)
return put_dec_full9(buf, n);
}
buf = put_dec_full8(buf, do_div(n, 100*1000*1000));
/* 1 <= n <= 1.6e11 */
if (n >= 100*1000*1000)
buf = put_dec_full8(buf, do_div(n, 100*1000*1000));
/* 1 <= n < 1e8 */
return put_dec_trunc8(buf, n);
}
 
#else
#elif BITS_PER_LONG == 32 && BITS_PER_LONG_LONG == 64
 
/* Second algorithm: valid only for 64-bit long longs */
static void
put_dec_full4(char *buf, unsigned r)
{
unsigned q;
 
/* See comment in put_dec_full9 for choice of constants */
static noinline_for_stack
void put_dec_full4(char *buf, unsigned q)
{
unsigned r;
r = (q * 0xccd) >> 15;
buf[0] = (q - 10 * r) + '0';
q = (r * 0xcd) >> 11;
buf[1] = (r - 10 * q) + '0';
r = (q * 0xcd) >> 11;
buf[2] = (q - 10 * r) + '0';
buf[3] = r + '0';
/* 0 <= r < 10^4 */
q = (r * 0x147b) >> 19;
*((u16 *)buf) = decpair[r - 100*q];
buf += 2;
/* 0 <= q < 100 */
*((u16 *)buf) = decpair[q];
}
 
/*
359,9 → 351,9
* The approximation x/10000 == (x * 0x346DC5D7) >> 43
* holds for all x < 1,128,869,999. The largest value this
* helper will ever be asked to convert is 1,125,520,955.
* (d1 in the put_dec code, assuming n is all-ones).
* (second call in the put_dec code, assuming n is all-ones).
*/
static
static noinline_for_stack
unsigned put_dec_helper4(char *buf, unsigned x)
{
uint32_t q = (x * (uint64_t)0x346DC5D7) >> 43;
388,6 → 380,8
d2 = (h ) & 0xffff;
d3 = (h >> 16); /* implicit "& 0xffff" */
 
/* n = 2^48 d3 + 2^32 d2 + 2^16 d1 + d0
= 281_4749_7671_0656 d3 + 42_9496_7296 d2 + 6_5536 d1 + d0 */
q = 656 * d3 + 7296 * d2 + 5536 * d1 + ((uint32_t)n & 0xffff);
q = put_dec_helper4(buf, q);
 
417,7 → 411,8
*/
int num_to_str(char *buf, int size, unsigned long long num)
{
char tmp[sizeof(num) * 3];
/* put_dec requires 2-byte alignment of the buffer. */
char tmp[sizeof(num) * 3] __aligned(2);
int idx, len;
 
/* put_dec() may work incorrectly for num = 0 (generate "", not "0") */
435,11 → 430,11
return len;
}
 
#define ZEROPAD 1 /* pad with zero */
#define SIGN 2 /* unsigned/signed long */
#define SIGN 1 /* unsigned/signed, must be 1 */
#define LEFT 2 /* left justified */
#define PLUS 4 /* show plus */
#define SPACE 8 /* space if plus */
#define LEFT 16 /* left justified */
#define ZEROPAD 16 /* pad with zero, must be 16 == '0' - ' ' */
#define SMALL 32 /* use lowercase in hex (must be 32 == 0x20) */
#define SPECIAL 64 /* prefix hex with "0x", octal with "0" */
 
478,10 → 473,8
char *number(char *buf, char *end, unsigned long long num,
struct printf_spec spec)
{
/* we are called with base 8, 10 or 16, only, thus don't need "G..." */
static const char digits[16] = "0123456789ABCDEF"; /* "GHIJKLMNOPQRSTUVWXYZ"; */
 
char tmp[66];
/* put_dec requires 2-byte alignment of the buffer. */
char tmp[3 * sizeof(num)] __aligned(2);
char sign;
char locase;
int need_pfx = ((spec.flags & SPECIAL) && spec.base != 10);
517,12 → 510,7
/* generate full string in tmp[], in reverse order */
i = 0;
if (num < spec.base)
tmp[i++] = digits[num] | locase;
/* Generic code, for any base:
else do {
tmp[i++] = (digits[do_div(num,base)] | locase);
} while (num != 0);
*/
tmp[i++] = hex_asc_upper[num] | locase;
else if (spec.base != 10) { /* 8 or 16 */
int mask = spec.base - 1;
int shift = 3;
530,7 → 518,7
if (spec.base == 16)
shift = 4;
do {
tmp[i++] = (digits[((unsigned char)num) & mask] | locase);
tmp[i++] = (hex_asc_upper[((unsigned char)num) & mask] | locase);
num >>= shift;
} while (num);
} else { /* base 10 */
542,7 → 530,7
spec.precision = i;
/* leading space padding */
spec.field_width -= spec.precision;
if (!(spec.flags & (ZEROPAD+LEFT))) {
if (!(spec.flags & (ZEROPAD | LEFT))) {
while (--spec.field_width >= 0) {
if (buf < end)
*buf = ' ';
570,7 → 558,8
}
/* zero or space padding */
if (!(spec.flags & LEFT)) {
char c = (spec.flags & ZEROPAD) ? '0' : ' ';
char c = ' ' + (spec.flags & ZEROPAD);
BUILD_BUG_ON(' ' + ZEROPAD != '0');
while (--spec.field_width >= 0) {
if (buf < end)
*buf = c;
712,8 → 701,6
#define FLAG_BUF_SIZE (2 * sizeof(res->flags))
#define DECODED_BUF_SIZE sizeof("[mem - 64bit pref window disabled]")
#define RAW_BUF_SIZE sizeof("[mem - flags 0x]")
#undef max
#define max(a,b) ((a) > (b) ? (a) : (b))
char sym[max(2*RSRC_BUF_SIZE + DECODED_BUF_SIZE,
2*RSRC_BUF_SIZE + FLAG_BUF_SIZE + RAW_BUF_SIZE)];
 
742,11 → 729,16
specp = &mem_spec;
decode = 0;
}
if (decode && res->flags & IORESOURCE_UNSET) {
p = string(p, pend, "size ", str_spec);
p = number(p, pend, resource_size(res), *specp);
} else {
p = number(p, pend, res->start, *specp);
if (res->start != res->end) {
*p++ = '-';
p = number(p, pend, res->end, *specp);
}
}
if (decode) {
if (res->flags & IORESOURCE_MEM_64)
p = string(p, pend, " 64bit", str_spec);
800,17 → 792,106
if (spec.field_width > 0)
len = min_t(int, spec.field_width, 64);
 
for (i = 0; i < len && buf < end - 1; i++) {
buf = hex_byte_pack(buf, addr[i]);
for (i = 0; i < len; ++i) {
if (buf < end)
*buf = hex_asc_hi(addr[i]);
++buf;
if (buf < end)
*buf = hex_asc_lo(addr[i]);
++buf;
 
if (buf < end && separator && i != len - 1)
*buf++ = separator;
if (separator && i != len - 1) {
if (buf < end)
*buf = separator;
++buf;
}
}
 
return buf;
}
 
static noinline_for_stack
char *bitmap_string(char *buf, char *end, unsigned long *bitmap,
struct printf_spec spec, const char *fmt)
{
const int CHUNKSZ = 32;
int nr_bits = max_t(int, spec.field_width, 0);
int i, chunksz;
bool first = true;
 
/* reused to print numbers */
spec = (struct printf_spec){ .flags = SMALL | ZEROPAD, .base = 16 };
 
chunksz = nr_bits & (CHUNKSZ - 1);
if (chunksz == 0)
chunksz = CHUNKSZ;
 
i = ALIGN(nr_bits, CHUNKSZ) - CHUNKSZ;
for (; i >= 0; i -= CHUNKSZ) {
u32 chunkmask, val;
int word, bit;
 
chunkmask = ((1ULL << chunksz) - 1);
word = i / BITS_PER_LONG;
bit = i % BITS_PER_LONG;
val = (bitmap[word] >> bit) & chunkmask;
 
if (!first) {
if (buf < end)
*buf = ',';
buf++;
}
first = false;
 
spec.field_width = DIV_ROUND_UP(chunksz, 4);
buf = number(buf, end, val, spec);
 
chunksz = CHUNKSZ;
}
return buf;
}
 
static noinline_for_stack
char *bitmap_list_string(char *buf, char *end, unsigned long *bitmap,
struct printf_spec spec, const char *fmt)
{
int nr_bits = max_t(int, spec.field_width, 0);
/* current bit is 'cur', most recently seen range is [rbot, rtop] */
int cur, rbot, rtop;
bool first = true;
 
/* reused to print numbers */
spec = (struct printf_spec){ .base = 10 };
 
rbot = cur = find_first_bit(bitmap, nr_bits);
while (cur < nr_bits) {
rtop = cur;
cur = find_next_bit(bitmap, nr_bits, cur + 1);
if (cur < nr_bits && cur <= rtop + 1)
continue;
 
if (!first) {
if (buf < end)
*buf = ',';
buf++;
}
first = false;
 
buf = number(buf, end, rbot, spec);
if (rbot < rtop) {
if (buf < end)
*buf = '-';
buf++;
 
buf = number(buf, end, rtop, spec);
}
 
rbot = cur;
}
return buf;
}
 
static noinline_for_stack
char *mac_address_string(char *buf, char *end, u8 *addr,
struct printf_spec spec, const char *fmt)
{
878,7 → 959,7
break;
}
for (i = 0; i < 4; i++) {
char temp[3]; /* hold each IP quad in reverse order */
char temp[4] __aligned(2); /* hold each IP quad in reverse order */
int digits = put_dec_trunc8(temp, addr[index]) - temp;
if (leading_zeros) {
if (digits < 3)
928,6 → 1009,10
* - 'B' For backtraced symbolic direct pointers with offset
* - 'R' For decoded struct resource, e.g., [mem 0x0-0x1f 64bit pref]
* - 'r' For raw struct resource, e.g., [mem 0x0-0x1f flags 0x201]
* - 'b[l]' For a bitmap, the number of bits is determined by the field
* width which must be explicitly specified either as part of the
* format string '%32b[l]' or through '%*b[l]', [l] selects
* range-list format instead of hex format
* - 'M' For a 6-byte MAC address, it prints the address in the
* usual colon-separated hex notation
* - 'm' For a 6-byte MAC address, it prints the hex address without colons
949,6 → 1034,17
* - '[Ii][4S][hnbl]' IPv4 addresses in host, network, big or little endian order
* - 'I[6S]c' for IPv6 addresses printed as specified by
* http://tools.ietf.org/html/rfc5952
* - 'E[achnops]' For an escaped buffer, where rules are defined by combination
* of the following flags (see string_escape_mem() for the
* details):
* a - ESCAPE_ANY
* c - ESCAPE_SPECIAL
* h - ESCAPE_HEX
* n - ESCAPE_NULL
* o - ESCAPE_OCTAL
* p - ESCAPE_NP
* s - ESCAPE_SPACE
* By default ESCAPE_ANY_NP is used.
* - 'U' For a 16 byte UUID/GUID, it prints the UUID/GUID in the form
* "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
* Options for %pU are:
978,6 → 1074,11
* (default assumed to be phys_addr_t, passed by reference)
* - 'd[234]' For a dentry name (optionally 2-4 last components)
* - 'D[234]' Same as 'd' but for a struct file
* - 'C' For a clock, it prints the name (Common Clock Framework) or address
* (legacy clock framework) of the clock
* - 'Cn' For a clock, it prints the name (Common Clock Framework) or address
* (legacy clock framework) of the clock
* - 'Cr' For a clock, it prints the current rate of the clock
*
* Note: The difference between 'S' and 'F' is that on ia64 and ppc64
* function pointers are really function descriptors, which contain a
1188,8 → 1289,7
 
case 'p':
spec->type = FORMAT_TYPE_PTR;
return fmt - start;
/* skip alnum */
return ++fmt - start;
 
case '%':
spec->type = FORMAT_TYPE_PERCENT_CHAR;
1230,29 → 1330,21
if (spec->qualifier == 'L')
spec->type = FORMAT_TYPE_LONG_LONG;
else if (spec->qualifier == 'l') {
if (spec->flags & SIGN)
spec->type = FORMAT_TYPE_LONG;
else
spec->type = FORMAT_TYPE_ULONG;
BUILD_BUG_ON(FORMAT_TYPE_ULONG + SIGN != FORMAT_TYPE_LONG);
spec->type = FORMAT_TYPE_ULONG + (spec->flags & SIGN);
} else if (_tolower(spec->qualifier) == 'z') {
spec->type = FORMAT_TYPE_SIZE_T;
} else if (spec->qualifier == 't') {
spec->type = FORMAT_TYPE_PTRDIFF;
} else if (spec->qualifier == 'H') {
if (spec->flags & SIGN)
spec->type = FORMAT_TYPE_BYTE;
else
spec->type = FORMAT_TYPE_UBYTE;
BUILD_BUG_ON(FORMAT_TYPE_UBYTE + SIGN != FORMAT_TYPE_BYTE);
spec->type = FORMAT_TYPE_UBYTE + (spec->flags & SIGN);
} else if (spec->qualifier == 'h') {
if (spec->flags & SIGN)
spec->type = FORMAT_TYPE_SHORT;
else
spec->type = FORMAT_TYPE_USHORT;
BUILD_BUG_ON(FORMAT_TYPE_USHORT + SIGN != FORMAT_TYPE_SHORT);
spec->type = FORMAT_TYPE_USHORT + (spec->flags & SIGN);
} else {
if (spec->flags & SIGN)
spec->type = FORMAT_TYPE_INT;
else
spec->type = FORMAT_TYPE_UINT;
BUILD_BUG_ON(FORMAT_TYPE_UINT + SIGN != FORMAT_TYPE_INT);
spec->type = FORMAT_TYPE_UINT + (spec->flags & SIGN);
}
 
return ++fmt - start;
1273,6 → 1365,8
* %pB output the name of a backtrace symbol with its offset
* %pR output the address range in a struct resource with decoded flags
* %pr output the address range in a struct resource with raw flags
* %pb output the bitmap with field width as the number of bits
* %pbl output the bitmap as range list with field width as the number of bits
* %pM output a 6-byte MAC address with colons
* %pMR output a 6-byte MAC address with colons in reversed order
* %pMF output a 6-byte MAC address with dashes
1290,6 → 1384,11
* %*pE[achnops] print an escaped buffer
* %*ph[CDN] a variable-length hex string with a separator (supports up to 64
* bytes of the input)
* %pC output the name (Common Clock Framework) or address (legacy clock
* framework) of a clock
* %pCn output the name (Common Clock Framework) or address (legacy clock
* framework) of a clock
* %pCr output the current rate of a clock
* %n is ignored
*
* ** Please update Documentation/printk-formats.txt when making changes **
1312,7 → 1411,7
 
/* Reject out-of-range values early. Large positive sizes are
used for unknown buffer sizes. */
if ((int) size < 0)
if (WARN_ON_ONCE(size > INT_MAX))
return 0;
 
str = buf;
1378,7 → 1477,7
break;
 
case FORMAT_TYPE_PTR:
str = pointer(fmt+1, str, end, va_arg(args, void *),
str = pointer(fmt, str, end, va_arg(args, void *),
spec);
while (isalnum(*fmt))
fmt++;