Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 1900 → Rev 1901

/programs/develop/libraries/Mesa/src/mesa/main/mipmap.c
0,0 → 1,1966
/*
* Mesa 3-D graphics library
* Version: 7.1
*
* Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
 
 
/**
* \file mipmap.c mipmap generation and teximage resizing functions.
*/
 
#include "imports.h"
#include "formats.h"
#include "mipmap.h"
#include "teximage.h"
#include "texstore.h"
#include "image.h"
 
 
 
static GLint
bytes_per_pixel(GLenum datatype, GLuint comps)
{
GLint b = _mesa_sizeof_packed_type(datatype);
assert(b >= 0);
 
if (_mesa_type_is_packed(datatype))
return b;
else
return b * comps;
}
 
 
/**
* \name Support macros for do_row and do_row_3d
*
* The macro madness is here for two reasons. First, it compacts the code
* slightly. Second, it makes it much easier to adjust the specifics of the
* filter to tune the rounding characteristics.
*/
/*@{*/
#define DECLARE_ROW_POINTERS(t, e) \
const t(*rowA)[e] = (const t(*)[e]) srcRowA; \
const t(*rowB)[e] = (const t(*)[e]) srcRowB; \
const t(*rowC)[e] = (const t(*)[e]) srcRowC; \
const t(*rowD)[e] = (const t(*)[e]) srcRowD; \
t(*dst)[e] = (t(*)[e]) dstRow
 
#define DECLARE_ROW_POINTERS0(t) \
const t *rowA = (const t *) srcRowA; \
const t *rowB = (const t *) srcRowB; \
const t *rowC = (const t *) srcRowC; \
const t *rowD = (const t *) srcRowD; \
t *dst = (t *) dstRow
 
#define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
((unsigned) Aj + (unsigned) Ak \
+ (unsigned) Bj + (unsigned) Bk \
+ (unsigned) Cj + (unsigned) Ck \
+ (unsigned) Dj + (unsigned) Dk \
+ 4) >> 3
 
#define FILTER_3D(e) \
do { \
dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \
rowB[j][e], rowB[k][e], \
rowC[j][e], rowC[k][e], \
rowD[j][e], rowD[k][e]); \
} while(0)
 
#define FILTER_SUM_3D_SIGNED(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
(Aj + Ak \
+ Bj + Bk \
+ Cj + Ck \
+ Dj + Dk \
+ 4) / 8
 
#define FILTER_3D_SIGNED(e) \
do { \
dst[i][e] = FILTER_SUM_3D_SIGNED(rowA[j][e], rowA[k][e], \
rowB[j][e], rowB[k][e], \
rowC[j][e], rowC[k][e], \
rowD[j][e], rowD[k][e]); \
} while(0)
 
#define FILTER_F_3D(e) \
do { \
dst[i][e] = (rowA[j][e] + rowA[k][e] \
+ rowB[j][e] + rowB[k][e] \
+ rowC[j][e] + rowC[k][e] \
+ rowD[j][e] + rowD[k][e]) * 0.125F; \
} while(0)
 
#define FILTER_HF_3D(e) \
do { \
const GLfloat aj = _mesa_half_to_float(rowA[j][e]); \
const GLfloat ak = _mesa_half_to_float(rowA[k][e]); \
const GLfloat bj = _mesa_half_to_float(rowB[j][e]); \
const GLfloat bk = _mesa_half_to_float(rowB[k][e]); \
const GLfloat cj = _mesa_half_to_float(rowC[j][e]); \
const GLfloat ck = _mesa_half_to_float(rowC[k][e]); \
const GLfloat dj = _mesa_half_to_float(rowD[j][e]); \
const GLfloat dk = _mesa_half_to_float(rowD[k][e]); \
dst[i][e] = _mesa_float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \
* 0.125F); \
} while(0)
/*@}*/
 
 
/**
* Average together two rows of a source image to produce a single new
* row in the dest image. It's legal for the two source rows to point
* to the same data. The source width must be equal to either the
* dest width or two times the dest width.
* \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
* \param comps number of components per pixel (1..4)
*/
static void
do_row(GLenum datatype, GLuint comps, GLint srcWidth,
const GLvoid *srcRowA, const GLvoid *srcRowB,
GLint dstWidth, GLvoid *dstRow)
{
const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
 
ASSERT(comps >= 1);
ASSERT(comps <= 4);
 
/* This assertion is no longer valid with non-power-of-2 textures
assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
*/
 
if (datatype == GL_UNSIGNED_BYTE && comps == 4) {
GLuint i, j, k;
const GLubyte(*rowA)[4] = (const GLubyte(*)[4]) srcRowA;
const GLubyte(*rowB)[4] = (const GLubyte(*)[4]) srcRowB;
GLubyte(*dst)[4] = (GLubyte(*)[4]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
}
}
else if (datatype == GL_UNSIGNED_BYTE && comps == 3) {
GLuint i, j, k;
const GLubyte(*rowA)[3] = (const GLubyte(*)[3]) srcRowA;
const GLubyte(*rowB)[3] = (const GLubyte(*)[3]) srcRowB;
GLubyte(*dst)[3] = (GLubyte(*)[3]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
}
}
else if (datatype == GL_UNSIGNED_BYTE && comps == 2) {
GLuint i, j, k;
const GLubyte(*rowA)[2] = (const GLubyte(*)[2]) srcRowA;
const GLubyte(*rowB)[2] = (const GLubyte(*)[2]) srcRowB;
GLubyte(*dst)[2] = (GLubyte(*)[2]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
}
}
else if (datatype == GL_UNSIGNED_BYTE && comps == 1) {
GLuint i, j, k;
const GLubyte *rowA = (const GLubyte *) srcRowA;
const GLubyte *rowB = (const GLubyte *) srcRowB;
GLubyte *dst = (GLubyte *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
}
}
 
else if (datatype == GL_BYTE && comps == 4) {
GLuint i, j, k;
const GLbyte(*rowA)[4] = (const GLbyte(*)[4]) srcRowA;
const GLbyte(*rowB)[4] = (const GLbyte(*)[4]) srcRowB;
GLbyte(*dst)[4] = (GLbyte(*)[4]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
}
}
else if (datatype == GL_BYTE && comps == 3) {
GLuint i, j, k;
const GLbyte(*rowA)[3] = (const GLbyte(*)[3]) srcRowA;
const GLbyte(*rowB)[3] = (const GLbyte(*)[3]) srcRowB;
GLbyte(*dst)[3] = (GLbyte(*)[3]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
}
}
else if (datatype == GL_BYTE && comps == 2) {
GLuint i, j, k;
const GLbyte(*rowA)[2] = (const GLbyte(*)[2]) srcRowA;
const GLbyte(*rowB)[2] = (const GLbyte(*)[2]) srcRowB;
GLbyte(*dst)[2] = (GLbyte(*)[2]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
}
}
else if (datatype == GL_BYTE && comps == 1) {
GLuint i, j, k;
const GLbyte *rowA = (const GLbyte *) srcRowA;
const GLbyte *rowB = (const GLbyte *) srcRowB;
GLbyte *dst = (GLbyte *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
}
}
 
else if (datatype == GL_UNSIGNED_SHORT && comps == 4) {
GLuint i, j, k;
const GLushort(*rowA)[4] = (const GLushort(*)[4]) srcRowA;
const GLushort(*rowB)[4] = (const GLushort(*)[4]) srcRowB;
GLushort(*dst)[4] = (GLushort(*)[4]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
}
}
else if (datatype == GL_UNSIGNED_SHORT && comps == 3) {
GLuint i, j, k;
const GLushort(*rowA)[3] = (const GLushort(*)[3]) srcRowA;
const GLushort(*rowB)[3] = (const GLushort(*)[3]) srcRowB;
GLushort(*dst)[3] = (GLushort(*)[3]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
}
}
else if (datatype == GL_UNSIGNED_SHORT && comps == 2) {
GLuint i, j, k;
const GLushort(*rowA)[2] = (const GLushort(*)[2]) srcRowA;
const GLushort(*rowB)[2] = (const GLushort(*)[2]) srcRowB;
GLushort(*dst)[2] = (GLushort(*)[2]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
}
}
else if (datatype == GL_UNSIGNED_SHORT && comps == 1) {
GLuint i, j, k;
const GLushort *rowA = (const GLushort *) srcRowA;
const GLushort *rowB = (const GLushort *) srcRowB;
GLushort *dst = (GLushort *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
}
}
 
else if (datatype == GL_SHORT && comps == 4) {
GLuint i, j, k;
const GLshort(*rowA)[4] = (const GLshort(*)[4]) srcRowA;
const GLshort(*rowB)[4] = (const GLshort(*)[4]) srcRowB;
GLshort(*dst)[4] = (GLshort(*)[4]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
}
}
else if (datatype == GL_SHORT && comps == 3) {
GLuint i, j, k;
const GLshort(*rowA)[3] = (const GLshort(*)[3]) srcRowA;
const GLshort(*rowB)[3] = (const GLshort(*)[3]) srcRowB;
GLshort(*dst)[3] = (GLshort(*)[3]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
}
}
else if (datatype == GL_SHORT && comps == 2) {
GLuint i, j, k;
const GLshort(*rowA)[2] = (const GLshort(*)[2]) srcRowA;
const GLshort(*rowB)[2] = (const GLshort(*)[2]) srcRowB;
GLshort(*dst)[2] = (GLshort(*)[2]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
}
}
else if (datatype == GL_SHORT && comps == 1) {
GLuint i, j, k;
const GLshort *rowA = (const GLshort *) srcRowA;
const GLshort *rowB = (const GLshort *) srcRowB;
GLshort *dst = (GLshort *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
}
}
 
else if (datatype == GL_FLOAT && comps == 4) {
GLuint i, j, k;
const GLfloat(*rowA)[4] = (const GLfloat(*)[4]) srcRowA;
const GLfloat(*rowB)[4] = (const GLfloat(*)[4]) srcRowB;
GLfloat(*dst)[4] = (GLfloat(*)[4]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] +
rowB[j][0] + rowB[k][0]) * 0.25F;
dst[i][1] = (rowA[j][1] + rowA[k][1] +
rowB[j][1] + rowB[k][1]) * 0.25F;
dst[i][2] = (rowA[j][2] + rowA[k][2] +
rowB[j][2] + rowB[k][2]) * 0.25F;
dst[i][3] = (rowA[j][3] + rowA[k][3] +
rowB[j][3] + rowB[k][3]) * 0.25F;
}
}
else if (datatype == GL_FLOAT && comps == 3) {
GLuint i, j, k;
const GLfloat(*rowA)[3] = (const GLfloat(*)[3]) srcRowA;
const GLfloat(*rowB)[3] = (const GLfloat(*)[3]) srcRowB;
GLfloat(*dst)[3] = (GLfloat(*)[3]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] +
rowB[j][0] + rowB[k][0]) * 0.25F;
dst[i][1] = (rowA[j][1] + rowA[k][1] +
rowB[j][1] + rowB[k][1]) * 0.25F;
dst[i][2] = (rowA[j][2] + rowA[k][2] +
rowB[j][2] + rowB[k][2]) * 0.25F;
}
}
else if (datatype == GL_FLOAT && comps == 2) {
GLuint i, j, k;
const GLfloat(*rowA)[2] = (const GLfloat(*)[2]) srcRowA;
const GLfloat(*rowB)[2] = (const GLfloat(*)[2]) srcRowB;
GLfloat(*dst)[2] = (GLfloat(*)[2]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] +
rowB[j][0] + rowB[k][0]) * 0.25F;
dst[i][1] = (rowA[j][1] + rowA[k][1] +
rowB[j][1] + rowB[k][1]) * 0.25F;
}
}
else if (datatype == GL_FLOAT && comps == 1) {
GLuint i, j, k;
const GLfloat *rowA = (const GLfloat *) srcRowA;
const GLfloat *rowB = (const GLfloat *) srcRowB;
GLfloat *dst = (GLfloat *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
}
}
 
else if (datatype == GL_HALF_FLOAT_ARB && comps == 4) {
GLuint i, j, k, comp;
const GLhalfARB(*rowA)[4] = (const GLhalfARB(*)[4]) srcRowA;
const GLhalfARB(*rowB)[4] = (const GLhalfARB(*)[4]) srcRowB;
GLhalfARB(*dst)[4] = (GLhalfARB(*)[4]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
for (comp = 0; comp < 4; comp++) {
GLfloat aj, ak, bj, bk;
aj = _mesa_half_to_float(rowA[j][comp]);
ak = _mesa_half_to_float(rowA[k][comp]);
bj = _mesa_half_to_float(rowB[j][comp]);
bk = _mesa_half_to_float(rowB[k][comp]);
dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
}
}
}
else if (datatype == GL_HALF_FLOAT_ARB && comps == 3) {
GLuint i, j, k, comp;
const GLhalfARB(*rowA)[3] = (const GLhalfARB(*)[3]) srcRowA;
const GLhalfARB(*rowB)[3] = (const GLhalfARB(*)[3]) srcRowB;
GLhalfARB(*dst)[3] = (GLhalfARB(*)[3]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
for (comp = 0; comp < 3; comp++) {
GLfloat aj, ak, bj, bk;
aj = _mesa_half_to_float(rowA[j][comp]);
ak = _mesa_half_to_float(rowA[k][comp]);
bj = _mesa_half_to_float(rowB[j][comp]);
bk = _mesa_half_to_float(rowB[k][comp]);
dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
}
}
}
else if (datatype == GL_HALF_FLOAT_ARB && comps == 2) {
GLuint i, j, k, comp;
const GLhalfARB(*rowA)[2] = (const GLhalfARB(*)[2]) srcRowA;
const GLhalfARB(*rowB)[2] = (const GLhalfARB(*)[2]) srcRowB;
GLhalfARB(*dst)[2] = (GLhalfARB(*)[2]) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
for (comp = 0; comp < 2; comp++) {
GLfloat aj, ak, bj, bk;
aj = _mesa_half_to_float(rowA[j][comp]);
ak = _mesa_half_to_float(rowA[k][comp]);
bj = _mesa_half_to_float(rowB[j][comp]);
bk = _mesa_half_to_float(rowB[k][comp]);
dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
}
}
}
else if (datatype == GL_HALF_FLOAT_ARB && comps == 1) {
GLuint i, j, k;
const GLhalfARB *rowA = (const GLhalfARB *) srcRowA;
const GLhalfARB *rowB = (const GLhalfARB *) srcRowB;
GLhalfARB *dst = (GLhalfARB *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
GLfloat aj, ak, bj, bk;
aj = _mesa_half_to_float(rowA[j]);
ak = _mesa_half_to_float(rowA[k]);
bj = _mesa_half_to_float(rowB[j]);
bk = _mesa_half_to_float(rowB[k]);
dst[i] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
}
}
 
else if (datatype == GL_UNSIGNED_INT && comps == 1) {
GLuint i, j, k;
const GLuint *rowA = (const GLuint *) srcRowA;
const GLuint *rowB = (const GLuint *) srcRowB;
GLuint *dst = (GLuint *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i] = (GLfloat)(rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4);
}
}
 
else if (datatype == GL_UNSIGNED_SHORT_5_6_5 && comps == 3) {
GLuint i, j, k;
const GLushort *rowA = (const GLushort *) srcRowA;
const GLushort *rowB = (const GLushort *) srcRowB;
GLushort *dst = (GLushort *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0x1f;
const GLint rowAr1 = rowA[k] & 0x1f;
const GLint rowBr0 = rowB[j] & 0x1f;
const GLint rowBr1 = rowB[k] & 0x1f;
const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
dst[i] = (blue << 11) | (green << 5) | red;
}
}
else if (datatype == GL_UNSIGNED_SHORT_4_4_4_4 && comps == 4) {
GLuint i, j, k;
const GLushort *rowA = (const GLushort *) srcRowA;
const GLushort *rowB = (const GLushort *) srcRowB;
GLushort *dst = (GLushort *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0xf;
const GLint rowAr1 = rowA[k] & 0xf;
const GLint rowBr0 = rowB[j] & 0xf;
const GLint rowBr1 = rowB[k] & 0xf;
const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
}
}
else if (datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV && comps == 4) {
GLuint i, j, k;
const GLushort *rowA = (const GLushort *) srcRowA;
const GLushort *rowB = (const GLushort *) srcRowB;
GLushort *dst = (GLushort *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0x1f;
const GLint rowAr1 = rowA[k] & 0x1f;
const GLint rowBr0 = rowB[j] & 0x1f;
const GLint rowBr1 = rowB[k] & 0x1f;
const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
}
}
else if (datatype == GL_UNSIGNED_SHORT_5_5_5_1 && comps == 4) {
GLuint i, j, k;
const GLushort *rowA = (const GLushort *) srcRowA;
const GLushort *rowB = (const GLushort *) srcRowB;
GLushort *dst = (GLushort *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = (rowA[j] >> 11) & 0x1f;
const GLint rowAr1 = (rowA[k] >> 11) & 0x1f;
const GLint rowBr0 = (rowB[j] >> 11) & 0x1f;
const GLint rowBr1 = (rowB[k] >> 11) & 0x1f;
const GLint rowAg0 = (rowA[j] >> 6) & 0x1f;
const GLint rowAg1 = (rowA[k] >> 6) & 0x1f;
const GLint rowBg0 = (rowB[j] >> 6) & 0x1f;
const GLint rowBg1 = (rowB[k] >> 6) & 0x1f;
const GLint rowAb0 = (rowA[j] >> 1) & 0x1f;
const GLint rowAb1 = (rowA[k] >> 1) & 0x1f;
const GLint rowBb0 = (rowB[j] >> 1) & 0x1f;
const GLint rowBb1 = (rowB[k] >> 1) & 0x1f;
const GLint rowAa0 = (rowA[j] & 0x1);
const GLint rowAa1 = (rowA[k] & 0x1);
const GLint rowBa0 = (rowB[j] & 0x1);
const GLint rowBa1 = (rowB[k] & 0x1);
const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
dst[i] = (red << 11) | (green << 6) | (blue << 1) | alpha;
}
}
 
else if (datatype == GL_UNSIGNED_BYTE_3_3_2 && comps == 3) {
GLuint i, j, k;
const GLubyte *rowA = (const GLubyte *) srcRowA;
const GLubyte *rowB = (const GLubyte *) srcRowB;
GLubyte *dst = (GLubyte *) dstRow;
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0x3;
const GLint rowAr1 = rowA[k] & 0x3;
const GLint rowBr0 = rowB[j] & 0x3;
const GLint rowBr1 = rowB[k] & 0x3;
const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
dst[i] = (blue << 5) | (green << 2) | red;
}
}
else {
_mesa_problem(NULL, "bad format in do_row()");
}
}
 
 
/**
* Average together four rows of a source image to produce a single new
* row in the dest image. It's legal for the two source rows to point
* to the same data. The source width must be equal to either the
* dest width or two times the dest width.
*
* \param datatype GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT,
* \c GL_FLOAT, etc.
* \param comps number of components per pixel (1..4)
* \param srcWidth Width of a row in the source data
* \param srcRowA Pointer to one of the rows of source data
* \param srcRowB Pointer to one of the rows of source data
* \param srcRowC Pointer to one of the rows of source data
* \param srcRowD Pointer to one of the rows of source data
* \param dstWidth Width of a row in the destination data
* \param srcRowA Pointer to the row of destination data
*/
static void
do_row_3D(GLenum datatype, GLuint comps, GLint srcWidth,
const GLvoid *srcRowA, const GLvoid *srcRowB,
const GLvoid *srcRowC, const GLvoid *srcRowD,
GLint dstWidth, GLvoid *dstRow)
{
const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
GLuint i, j, k;
 
ASSERT(comps >= 1);
ASSERT(comps <= 4);
 
if ((datatype == GL_UNSIGNED_BYTE) && (comps == 4)) {
DECLARE_ROW_POINTERS(GLubyte, 4);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
FILTER_3D(2);
FILTER_3D(3);
}
}
else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 3)) {
DECLARE_ROW_POINTERS(GLubyte, 3);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
FILTER_3D(2);
}
}
else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 2)) {
DECLARE_ROW_POINTERS(GLubyte, 2);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
}
}
else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 1)) {
DECLARE_ROW_POINTERS(GLubyte, 1);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
}
}
else if ((datatype == GL_BYTE) && (comps == 4)) {
DECLARE_ROW_POINTERS(GLbyte, 4);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D_SIGNED(0);
FILTER_3D_SIGNED(1);
FILTER_3D_SIGNED(2);
FILTER_3D_SIGNED(3);
}
}
else if ((datatype == GL_BYTE) && (comps == 3)) {
DECLARE_ROW_POINTERS(GLbyte, 3);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D_SIGNED(0);
FILTER_3D_SIGNED(1);
FILTER_3D_SIGNED(2);
}
}
else if ((datatype == GL_BYTE) && (comps == 2)) {
DECLARE_ROW_POINTERS(GLbyte, 2);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D_SIGNED(0);
FILTER_3D_SIGNED(1);
}
}
else if ((datatype == GL_BYTE) && (comps == 1)) {
DECLARE_ROW_POINTERS(GLbyte, 1);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D_SIGNED(0);
}
}
else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 4)) {
DECLARE_ROW_POINTERS(GLushort, 4);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
FILTER_3D(2);
FILTER_3D(3);
}
}
else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 3)) {
DECLARE_ROW_POINTERS(GLushort, 3);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
FILTER_3D(2);
}
}
else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 2)) {
DECLARE_ROW_POINTERS(GLushort, 2);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
}
}
else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 1)) {
DECLARE_ROW_POINTERS(GLushort, 1);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
}
}
else if ((datatype == GL_SHORT) && (comps == 4)) {
DECLARE_ROW_POINTERS(GLshort, 4);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
FILTER_3D(2);
FILTER_3D(3);
}
}
else if ((datatype == GL_SHORT) && (comps == 3)) {
DECLARE_ROW_POINTERS(GLshort, 3);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
FILTER_3D(2);
}
}
else if ((datatype == GL_SHORT) && (comps == 2)) {
DECLARE_ROW_POINTERS(GLshort, 2);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
}
}
else if ((datatype == GL_SHORT) && (comps == 1)) {
DECLARE_ROW_POINTERS(GLshort, 1);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
}
}
else if ((datatype == GL_FLOAT) && (comps == 4)) {
DECLARE_ROW_POINTERS(GLfloat, 4);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_F_3D(0);
FILTER_F_3D(1);
FILTER_F_3D(2);
FILTER_F_3D(3);
}
}
else if ((datatype == GL_FLOAT) && (comps == 3)) {
DECLARE_ROW_POINTERS(GLfloat, 3);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_F_3D(0);
FILTER_F_3D(1);
FILTER_F_3D(2);
}
}
else if ((datatype == GL_FLOAT) && (comps == 2)) {
DECLARE_ROW_POINTERS(GLfloat, 2);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_F_3D(0);
FILTER_F_3D(1);
}
}
else if ((datatype == GL_FLOAT) && (comps == 1)) {
DECLARE_ROW_POINTERS(GLfloat, 1);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_F_3D(0);
}
}
else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 4)) {
DECLARE_ROW_POINTERS(GLhalfARB, 4);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_HF_3D(0);
FILTER_HF_3D(1);
FILTER_HF_3D(2);
FILTER_HF_3D(3);
}
}
else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 3)) {
DECLARE_ROW_POINTERS(GLhalfARB, 4);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_HF_3D(0);
FILTER_HF_3D(1);
FILTER_HF_3D(2);
}
}
else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 2)) {
DECLARE_ROW_POINTERS(GLhalfARB, 4);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_HF_3D(0);
FILTER_HF_3D(1);
}
}
else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 1)) {
DECLARE_ROW_POINTERS(GLhalfARB, 4);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_HF_3D(0);
}
}
else if ((datatype == GL_UNSIGNED_INT) && (comps == 1)) {
const GLuint *rowA = (const GLuint *) srcRowA;
const GLuint *rowB = (const GLuint *) srcRowB;
const GLuint *rowC = (const GLuint *) srcRowC;
const GLuint *rowD = (const GLuint *) srcRowD;
GLfloat *dst = (GLfloat *) dstRow;
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k])
+ ((uint64_t) rowB[j] + (uint64_t) rowB[k])
+ ((uint64_t) rowC[j] + (uint64_t) rowC[k])
+ ((uint64_t) rowD[j] + (uint64_t) rowD[k]));
dst[i] = (GLfloat)((double) tmp * 0.125);
}
}
else if ((datatype == GL_UNSIGNED_SHORT_5_6_5) && (comps == 3)) {
DECLARE_ROW_POINTERS0(GLushort);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0x1f;
const GLint rowAr1 = rowA[k] & 0x1f;
const GLint rowBr0 = rowB[j] & 0x1f;
const GLint rowBr1 = rowB[k] & 0x1f;
const GLint rowCr0 = rowC[j] & 0x1f;
const GLint rowCr1 = rowC[k] & 0x1f;
const GLint rowDr0 = rowD[j] & 0x1f;
const GLint rowDr1 = rowD[k] & 0x1f;
const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
const GLint rowCg0 = (rowC[j] >> 5) & 0x3f;
const GLint rowCg1 = (rowC[k] >> 5) & 0x3f;
const GLint rowDg0 = (rowD[j] >> 5) & 0x3f;
const GLint rowDg1 = (rowD[k] >> 5) & 0x3f;
const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
const GLint rowCb0 = (rowC[j] >> 11) & 0x1f;
const GLint rowCb1 = (rowC[k] >> 11) & 0x1f;
const GLint rowDb0 = (rowD[j] >> 11) & 0x1f;
const GLint rowDb1 = (rowD[k] >> 11) & 0x1f;
const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
rowCr0, rowCr1, rowDr0, rowDr1);
const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
rowCg0, rowCg1, rowDg0, rowDg1);
const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
rowCb0, rowCb1, rowDb0, rowDb1);
dst[i] = (b << 11) | (g << 5) | r;
}
}
else if ((datatype == GL_UNSIGNED_SHORT_4_4_4_4) && (comps == 4)) {
DECLARE_ROW_POINTERS0(GLushort);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0xf;
const GLint rowAr1 = rowA[k] & 0xf;
const GLint rowBr0 = rowB[j] & 0xf;
const GLint rowBr1 = rowB[k] & 0xf;
const GLint rowCr0 = rowC[j] & 0xf;
const GLint rowCr1 = rowC[k] & 0xf;
const GLint rowDr0 = rowD[j] & 0xf;
const GLint rowDr1 = rowD[k] & 0xf;
const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
const GLint rowCg0 = (rowC[j] >> 4) & 0xf;
const GLint rowCg1 = (rowC[k] >> 4) & 0xf;
const GLint rowDg0 = (rowD[j] >> 4) & 0xf;
const GLint rowDg1 = (rowD[k] >> 4) & 0xf;
const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
const GLint rowCb0 = (rowC[j] >> 8) & 0xf;
const GLint rowCb1 = (rowC[k] >> 8) & 0xf;
const GLint rowDb0 = (rowD[j] >> 8) & 0xf;
const GLint rowDb1 = (rowD[k] >> 8) & 0xf;
const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
const GLint rowCa0 = (rowC[j] >> 12) & 0xf;
const GLint rowCa1 = (rowC[k] >> 12) & 0xf;
const GLint rowDa0 = (rowD[j] >> 12) & 0xf;
const GLint rowDa1 = (rowD[k] >> 12) & 0xf;
const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
rowCr0, rowCr1, rowDr0, rowDr1);
const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
rowCg0, rowCg1, rowDg0, rowDg1);
const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
rowCb0, rowCb1, rowDb0, rowDb1);
const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
rowCa0, rowCa1, rowDa0, rowDa1);
 
dst[i] = (a << 12) | (b << 8) | (g << 4) | r;
}
}
else if ((datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV) && (comps == 4)) {
DECLARE_ROW_POINTERS0(GLushort);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0x1f;
const GLint rowAr1 = rowA[k] & 0x1f;
const GLint rowBr0 = rowB[j] & 0x1f;
const GLint rowBr1 = rowB[k] & 0x1f;
const GLint rowCr0 = rowC[j] & 0x1f;
const GLint rowCr1 = rowC[k] & 0x1f;
const GLint rowDr0 = rowD[j] & 0x1f;
const GLint rowDr1 = rowD[k] & 0x1f;
const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
const GLint rowCg0 = (rowC[j] >> 5) & 0x1f;
const GLint rowCg1 = (rowC[k] >> 5) & 0x1f;
const GLint rowDg0 = (rowD[j] >> 5) & 0x1f;
const GLint rowDg1 = (rowD[k] >> 5) & 0x1f;
const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
const GLint rowCb0 = (rowC[j] >> 10) & 0x1f;
const GLint rowCb1 = (rowC[k] >> 10) & 0x1f;
const GLint rowDb0 = (rowD[j] >> 10) & 0x1f;
const GLint rowDb1 = (rowD[k] >> 10) & 0x1f;
const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
const GLint rowCa0 = (rowC[j] >> 15) & 0x1;
const GLint rowCa1 = (rowC[k] >> 15) & 0x1;
const GLint rowDa0 = (rowD[j] >> 15) & 0x1;
const GLint rowDa1 = (rowD[k] >> 15) & 0x1;
const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
rowCr0, rowCr1, rowDr0, rowDr1);
const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
rowCg0, rowCg1, rowDg0, rowDg1);
const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
rowCb0, rowCb1, rowDb0, rowDb1);
const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
rowCa0, rowCa1, rowDa0, rowDa1);
 
dst[i] = (a << 15) | (b << 10) | (g << 5) | r;
}
}
else if ((datatype == GL_UNSIGNED_SHORT_5_5_5_1) && (comps == 4)) {
DECLARE_ROW_POINTERS0(GLushort);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = (rowA[j] >> 11) & 0x1f;
const GLint rowAr1 = (rowA[k] >> 11) & 0x1f;
const GLint rowBr0 = (rowB[j] >> 11) & 0x1f;
const GLint rowBr1 = (rowB[k] >> 11) & 0x1f;
const GLint rowCr0 = (rowC[j] >> 11) & 0x1f;
const GLint rowCr1 = (rowC[k] >> 11) & 0x1f;
const GLint rowDr0 = (rowD[j] >> 11) & 0x1f;
const GLint rowDr1 = (rowD[k] >> 11) & 0x1f;
const GLint rowAg0 = (rowA[j] >> 6) & 0x1f;
const GLint rowAg1 = (rowA[k] >> 6) & 0x1f;
const GLint rowBg0 = (rowB[j] >> 6) & 0x1f;
const GLint rowBg1 = (rowB[k] >> 6) & 0x1f;
const GLint rowCg0 = (rowC[j] >> 6) & 0x1f;
const GLint rowCg1 = (rowC[k] >> 6) & 0x1f;
const GLint rowDg0 = (rowD[j] >> 6) & 0x1f;
const GLint rowDg1 = (rowD[k] >> 6) & 0x1f;
const GLint rowAb0 = (rowA[j] >> 1) & 0x1f;
const GLint rowAb1 = (rowA[k] >> 1) & 0x1f;
const GLint rowBb0 = (rowB[j] >> 1) & 0x1f;
const GLint rowBb1 = (rowB[k] >> 1) & 0x1f;
const GLint rowCb0 = (rowC[j] >> 1) & 0x1f;
const GLint rowCb1 = (rowC[k] >> 1) & 0x1f;
const GLint rowDb0 = (rowD[j] >> 1) & 0x1f;
const GLint rowDb1 = (rowD[k] >> 1) & 0x1f;
const GLint rowAa0 = (rowA[j] & 0x1);
const GLint rowAa1 = (rowA[k] & 0x1);
const GLint rowBa0 = (rowB[j] & 0x1);
const GLint rowBa1 = (rowB[k] & 0x1);
const GLint rowCa0 = (rowC[j] & 0x1);
const GLint rowCa1 = (rowC[k] & 0x1);
const GLint rowDa0 = (rowD[j] & 0x1);
const GLint rowDa1 = (rowD[k] & 0x1);
const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
rowCr0, rowCr1, rowDr0, rowDr1);
const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
rowCg0, rowCg1, rowDg0, rowDg1);
const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
rowCb0, rowCb1, rowDb0, rowDb1);
const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
rowCa0, rowCa1, rowDa0, rowDa1);
 
dst[i] = (r << 11) | (g << 6) | (b << 1) | a;
}
}
else if ((datatype == GL_UNSIGNED_BYTE_3_3_2) && (comps == 3)) {
DECLARE_ROW_POINTERS0(GLubyte);
 
for (i = j = 0, k = k0; i < (GLuint) dstWidth;
i++, j += colStride, k += colStride) {
const GLint rowAr0 = rowA[j] & 0x3;
const GLint rowAr1 = rowA[k] & 0x3;
const GLint rowBr0 = rowB[j] & 0x3;
const GLint rowBr1 = rowB[k] & 0x3;
const GLint rowCr0 = rowC[j] & 0x3;
const GLint rowCr1 = rowC[k] & 0x3;
const GLint rowDr0 = rowD[j] & 0x3;
const GLint rowDr1 = rowD[k] & 0x3;
const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
const GLint rowCg0 = (rowC[j] >> 2) & 0x7;
const GLint rowCg1 = (rowC[k] >> 2) & 0x7;
const GLint rowDg0 = (rowD[j] >> 2) & 0x7;
const GLint rowDg1 = (rowD[k] >> 2) & 0x7;
const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
const GLint rowCb0 = (rowC[j] >> 5) & 0x7;
const GLint rowCb1 = (rowC[k] >> 5) & 0x7;
const GLint rowDb0 = (rowD[j] >> 5) & 0x7;
const GLint rowDb1 = (rowD[k] >> 5) & 0x7;
const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
rowCr0, rowCr1, rowDr0, rowDr1);
const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
rowCg0, rowCg1, rowDg0, rowDg1);
const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
rowCb0, rowCb1, rowDb0, rowDb1);
dst[i] = (b << 5) | (g << 2) | r;
}
}
else {
_mesa_problem(NULL, "bad format in do_row()");
}
}
 
 
/*
* These functions generate a 1/2-size mipmap image from a source image.
* Texture borders are handled by copying or averaging the source image's
* border texels, depending on the scale-down factor.
*/
 
static void
make_1d_mipmap(GLenum datatype, GLuint comps, GLint border,
GLint srcWidth, const GLubyte *srcPtr,
GLint dstWidth, GLubyte *dstPtr)
{
const GLint bpt = bytes_per_pixel(datatype, comps);
const GLubyte *src;
GLubyte *dst;
 
/* skip the border pixel, if any */
src = srcPtr + border * bpt;
dst = dstPtr + border * bpt;
 
/* we just duplicate the input row, kind of hack, saves code */
do_row(datatype, comps, srcWidth - 2 * border, src, src,
dstWidth - 2 * border, dst);
 
if (border) {
/* copy left-most pixel from source */
assert(dstPtr);
assert(srcPtr);
memcpy(dstPtr, srcPtr, bpt);
/* copy right-most pixel from source */
memcpy(dstPtr + (dstWidth - 1) * bpt,
srcPtr + (srcWidth - 1) * bpt,
bpt);
}
}
 
 
static void
make_2d_mipmap(GLenum datatype, GLuint comps, GLint border,
GLint srcWidth, GLint srcHeight,
const GLubyte *srcPtr, GLint srcRowStride,
GLint dstWidth, GLint dstHeight,
GLubyte *dstPtr, GLint dstRowStride)
{
const GLint bpt = bytes_per_pixel(datatype, comps);
const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
const GLint dstWidthNB = dstWidth - 2 * border;
const GLint dstHeightNB = dstHeight - 2 * border;
const GLint srcRowBytes = bpt * srcRowStride;
const GLint dstRowBytes = bpt * dstRowStride;
const GLubyte *srcA, *srcB;
GLubyte *dst;
GLint row, srcRowStep;
 
/* Compute src and dst pointers, skipping any border */
srcA = srcPtr + border * ((srcWidth + 1) * bpt);
if (srcHeight > 1 && srcHeight > dstHeight) {
/* sample from two source rows */
srcB = srcA + srcRowBytes;
srcRowStep = 2;
}
else {
/* sample from one source row */
srcB = srcA;
srcRowStep = 1;
}
 
dst = dstPtr + border * ((dstWidth + 1) * bpt);
 
for (row = 0; row < dstHeightNB; row++) {
do_row(datatype, comps, srcWidthNB, srcA, srcB,
dstWidthNB, dst);
srcA += srcRowStep * srcRowBytes;
srcB += srcRowStep * srcRowBytes;
dst += dstRowBytes;
}
 
/* This is ugly but probably won't be used much */
if (border > 0) {
/* fill in dest border */
/* lower-left border pixel */
assert(dstPtr);
assert(srcPtr);
memcpy(dstPtr, srcPtr, bpt);
/* lower-right border pixel */
memcpy(dstPtr + (dstWidth - 1) * bpt,
srcPtr + (srcWidth - 1) * bpt, bpt);
/* upper-left border pixel */
memcpy(dstPtr + dstWidth * (dstHeight - 1) * bpt,
srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
/* upper-right border pixel */
memcpy(dstPtr + (dstWidth * dstHeight - 1) * bpt,
srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
/* lower border */
do_row(datatype, comps, srcWidthNB,
srcPtr + bpt,
srcPtr + bpt,
dstWidthNB, dstPtr + bpt);
/* upper border */
do_row(datatype, comps, srcWidthNB,
srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
dstWidthNB,
dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
/* left and right borders */
if (srcHeight == dstHeight) {
/* copy border pixel from src to dst */
for (row = 1; row < srcHeight; row++) {
memcpy(dstPtr + dstWidth * row * bpt,
srcPtr + srcWidth * row * bpt, bpt);
memcpy(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
}
}
else {
/* average two src pixels each dest pixel */
for (row = 0; row < dstHeightNB; row += 2) {
do_row(datatype, comps, 1,
srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
1, dstPtr + (dstWidth * row + 1) * bpt);
do_row(datatype, comps, 1,
srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
}
}
}
}
 
 
static void
make_3d_mipmap(GLenum datatype, GLuint comps, GLint border,
GLint srcWidth, GLint srcHeight, GLint srcDepth,
const GLubyte *srcPtr, GLint srcRowStride,
GLint dstWidth, GLint dstHeight, GLint dstDepth,
GLubyte *dstPtr, GLint dstRowStride)
{
const GLint bpt = bytes_per_pixel(datatype, comps);
const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
const GLint srcDepthNB = srcDepth - 2 * border;
const GLint dstWidthNB = dstWidth - 2 * border;
const GLint dstHeightNB = dstHeight - 2 * border;
const GLint dstDepthNB = dstDepth - 2 * border;
GLint img, row;
GLint bytesPerSrcImage, bytesPerDstImage;
GLint bytesPerSrcRow, bytesPerDstRow;
GLint srcImageOffset, srcRowOffset;
 
(void) srcDepthNB; /* silence warnings */
 
 
bytesPerSrcImage = srcWidth * srcHeight * bpt;
bytesPerDstImage = dstWidth * dstHeight * bpt;
 
bytesPerSrcRow = srcWidth * bpt;
bytesPerDstRow = dstWidth * bpt;
 
/* Offset between adjacent src images to be averaged together */
srcImageOffset = (srcDepth == dstDepth) ? 0 : bytesPerSrcImage;
 
/* Offset between adjacent src rows to be averaged together */
srcRowOffset = (srcHeight == dstHeight) ? 0 : srcWidth * bpt;
 
/*
* Need to average together up to 8 src pixels for each dest pixel.
* Break that down into 3 operations:
* 1. take two rows from source image and average them together.
* 2. take two rows from next source image and average them together.
* 3. take the two averaged rows and average them for the final dst row.
*/
 
/*
printf("mip3d %d x %d x %d -> %d x %d x %d\n",
srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
*/
 
for (img = 0; img < dstDepthNB; img++) {
/* first source image pointer, skipping border */
const GLubyte *imgSrcA = srcPtr
+ (bytesPerSrcImage + bytesPerSrcRow + border) * bpt * border
+ img * (bytesPerSrcImage + srcImageOffset);
/* second source image pointer, skipping border */
const GLubyte *imgSrcB = imgSrcA + srcImageOffset;
/* address of the dest image, skipping border */
GLubyte *imgDst = dstPtr
+ (bytesPerDstImage + bytesPerDstRow + border) * bpt * border
+ img * bytesPerDstImage;
 
/* setup the four source row pointers and the dest row pointer */
const GLubyte *srcImgARowA = imgSrcA;
const GLubyte *srcImgARowB = imgSrcA + srcRowOffset;
const GLubyte *srcImgBRowA = imgSrcB;
const GLubyte *srcImgBRowB = imgSrcB + srcRowOffset;
GLubyte *dstImgRow = imgDst;
 
for (row = 0; row < dstHeightNB; row++) {
do_row_3D(datatype, comps, srcWidthNB,
srcImgARowA, srcImgARowB,
srcImgBRowA, srcImgBRowB,
dstWidthNB, dstImgRow);
 
/* advance to next rows */
srcImgARowA += bytesPerSrcRow + srcRowOffset;
srcImgARowB += bytesPerSrcRow + srcRowOffset;
srcImgBRowA += bytesPerSrcRow + srcRowOffset;
srcImgBRowB += bytesPerSrcRow + srcRowOffset;
dstImgRow += bytesPerDstRow;
}
}
 
 
/* Luckily we can leverage the make_2d_mipmap() function here! */
if (border > 0) {
/* do front border image */
make_2d_mipmap(datatype, comps, 1, srcWidth, srcHeight, srcPtr, srcRowStride,
dstWidth, dstHeight, dstPtr, dstRowStride);
/* do back border image */
make_2d_mipmap(datatype, comps, 1, srcWidth, srcHeight,
srcPtr + bytesPerSrcImage * (srcDepth - 1), srcRowStride,
dstWidth, dstHeight,
dstPtr + bytesPerDstImage * (dstDepth - 1), dstRowStride);
/* do four remaining border edges that span the image slices */
if (srcDepth == dstDepth) {
/* just copy border pixels from src to dst */
for (img = 0; img < dstDepthNB; img++) {
const GLubyte *src;
GLubyte *dst;
 
/* do border along [img][row=0][col=0] */
src = srcPtr + (img + 1) * bytesPerSrcImage;
dst = dstPtr + (img + 1) * bytesPerDstImage;
memcpy(dst, src, bpt);
 
/* do border along [img][row=dstHeight-1][col=0] */
src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
+ (srcHeight - 1) * bytesPerSrcRow;
dst = dstPtr + (img + 1) * bytesPerDstImage
+ (dstHeight - 1) * bytesPerDstRow;
memcpy(dst, src, bpt);
 
/* do border along [img][row=0][col=dstWidth-1] */
src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
+ (srcWidth - 1) * bpt;
dst = dstPtr + (img + 1) * bytesPerDstImage
+ (dstWidth - 1) * bpt;
memcpy(dst, src, bpt);
 
/* do border along [img][row=dstHeight-1][col=dstWidth-1] */
src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
+ (bytesPerSrcImage - bpt);
dst = dstPtr + (img + 1) * bytesPerDstImage
+ (bytesPerDstImage - bpt);
memcpy(dst, src, bpt);
}
}
else {
/* average border pixels from adjacent src image pairs */
ASSERT(srcDepthNB == 2 * dstDepthNB);
for (img = 0; img < dstDepthNB; img++) {
const GLubyte *src;
GLubyte *dst;
 
/* do border along [img][row=0][col=0] */
src = srcPtr + (img * 2 + 1) * bytesPerSrcImage;
dst = dstPtr + (img + 1) * bytesPerDstImage;
do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
 
/* do border along [img][row=dstHeight-1][col=0] */
src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
+ (srcHeight - 1) * bytesPerSrcRow;
dst = dstPtr + (img + 1) * bytesPerDstImage
+ (dstHeight - 1) * bytesPerDstRow;
do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
 
/* do border along [img][row=0][col=dstWidth-1] */
src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
+ (srcWidth - 1) * bpt;
dst = dstPtr + (img + 1) * bytesPerDstImage
+ (dstWidth - 1) * bpt;
do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
 
/* do border along [img][row=dstHeight-1][col=dstWidth-1] */
src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
+ (bytesPerSrcImage - bpt);
dst = dstPtr + (img + 1) * bytesPerDstImage
+ (bytesPerDstImage - bpt);
do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
}
}
}
}
 
 
static void
make_1d_stack_mipmap(GLenum datatype, GLuint comps, GLint border,
GLint srcWidth, const GLubyte *srcPtr, GLuint srcRowStride,
GLint dstWidth, GLint dstHeight,
GLubyte *dstPtr, GLuint dstRowStride )
{
const GLint bpt = bytes_per_pixel(datatype, comps);
const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
const GLint dstWidthNB = dstWidth - 2 * border;
const GLint dstHeightNB = dstHeight - 2 * border;
const GLint srcRowBytes = bpt * srcRowStride;
const GLint dstRowBytes = bpt * dstRowStride;
const GLubyte *src;
GLubyte *dst;
GLint row;
 
/* Compute src and dst pointers, skipping any border */
src = srcPtr + border * ((srcWidth + 1) * bpt);
dst = dstPtr + border * ((dstWidth + 1) * bpt);
 
for (row = 0; row < dstHeightNB; row++) {
do_row(datatype, comps, srcWidthNB, src, src,
dstWidthNB, dst);
src += srcRowBytes;
dst += dstRowBytes;
}
 
if (border) {
/* copy left-most pixel from source */
assert(dstPtr);
assert(srcPtr);
memcpy(dstPtr, srcPtr, bpt);
/* copy right-most pixel from source */
memcpy(dstPtr + (dstWidth - 1) * bpt,
srcPtr + (srcWidth - 1) * bpt,
bpt);
}
}
 
 
/**
* \bug
* There is quite a bit of refactoring that could be done with this function
* and \c make_2d_mipmap.
*/
static void
make_2d_stack_mipmap(GLenum datatype, GLuint comps, GLint border,
GLint srcWidth, GLint srcHeight,
const GLubyte *srcPtr, GLint srcRowStride,
GLint dstWidth, GLint dstHeight, GLint dstDepth,
GLubyte *dstPtr, GLint dstRowStride)
{
const GLint bpt = bytes_per_pixel(datatype, comps);
const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
const GLint dstWidthNB = dstWidth - 2 * border;
const GLint dstHeightNB = dstHeight - 2 * border;
const GLint dstDepthNB = dstDepth - 2 * border;
const GLint srcRowBytes = bpt * srcRowStride;
const GLint dstRowBytes = bpt * dstRowStride;
const GLubyte *srcA, *srcB;
GLubyte *dst;
GLint layer;
GLint row;
 
/* Compute src and dst pointers, skipping any border */
srcA = srcPtr + border * ((srcWidth + 1) * bpt);
if (srcHeight > 1)
srcB = srcA + srcRowBytes;
else
srcB = srcA;
dst = dstPtr + border * ((dstWidth + 1) * bpt);
 
for (layer = 0; layer < dstDepthNB; layer++) {
for (row = 0; row < dstHeightNB; row++) {
do_row(datatype, comps, srcWidthNB, srcA, srcB,
dstWidthNB, dst);
srcA += 2 * srcRowBytes;
srcB += 2 * srcRowBytes;
dst += dstRowBytes;
}
 
/* This is ugly but probably won't be used much */
if (border > 0) {
/* fill in dest border */
/* lower-left border pixel */
assert(dstPtr);
assert(srcPtr);
memcpy(dstPtr, srcPtr, bpt);
/* lower-right border pixel */
memcpy(dstPtr + (dstWidth - 1) * bpt,
srcPtr + (srcWidth - 1) * bpt, bpt);
/* upper-left border pixel */
memcpy(dstPtr + dstWidth * (dstHeight - 1) * bpt,
srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
/* upper-right border pixel */
memcpy(dstPtr + (dstWidth * dstHeight - 1) * bpt,
srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
/* lower border */
do_row(datatype, comps, srcWidthNB,
srcPtr + bpt,
srcPtr + bpt,
dstWidthNB, dstPtr + bpt);
/* upper border */
do_row(datatype, comps, srcWidthNB,
srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
dstWidthNB,
dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
/* left and right borders */
if (srcHeight == dstHeight) {
/* copy border pixel from src to dst */
for (row = 1; row < srcHeight; row++) {
memcpy(dstPtr + dstWidth * row * bpt,
srcPtr + srcWidth * row * bpt, bpt);
memcpy(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
}
}
else {
/* average two src pixels each dest pixel */
for (row = 0; row < dstHeightNB; row += 2) {
do_row(datatype, comps, 1,
srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
1, dstPtr + (dstWidth * row + 1) * bpt);
do_row(datatype, comps, 1,
srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
}
}
}
}
}
 
 
/**
* Down-sample a texture image to produce the next lower mipmap level.
* \param comps components per texel (1, 2, 3 or 4)
* \param srcRowStride stride between source rows, in texels
* \param dstRowStride stride between destination rows, in texels
*/
void
_mesa_generate_mipmap_level(GLenum target,
GLenum datatype, GLuint comps,
GLint border,
GLint srcWidth, GLint srcHeight, GLint srcDepth,
const GLubyte *srcData,
GLint srcRowStride,
GLint dstWidth, GLint dstHeight, GLint dstDepth,
GLubyte *dstData,
GLint dstRowStride)
{
/*
* We use simple 2x2 averaging to compute the next mipmap level.
*/
switch (target) {
case GL_TEXTURE_1D:
make_1d_mipmap(datatype, comps, border,
srcWidth, srcData,
dstWidth, dstData);
break;
case GL_TEXTURE_2D:
case GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB:
make_2d_mipmap(datatype, comps, border,
srcWidth, srcHeight, srcData, srcRowStride,
dstWidth, dstHeight, dstData, dstRowStride);
break;
case GL_TEXTURE_3D:
make_3d_mipmap(datatype, comps, border,
srcWidth, srcHeight, srcDepth,
srcData, srcRowStride,
dstWidth, dstHeight, dstDepth,
dstData, dstRowStride);
break;
case GL_TEXTURE_1D_ARRAY_EXT:
make_1d_stack_mipmap(datatype, comps, border,
srcWidth, srcData, srcRowStride,
dstWidth, dstHeight,
dstData, dstRowStride);
break;
case GL_TEXTURE_2D_ARRAY_EXT:
make_2d_stack_mipmap(datatype, comps, border,
srcWidth, srcHeight,
srcData, srcRowStride,
dstWidth, dstHeight,
dstDepth, dstData, dstRowStride);
break;
case GL_TEXTURE_RECTANGLE_NV:
/* no mipmaps, do nothing */
break;
default:
_mesa_problem(NULL, "bad dimensions in _mesa_generate_mipmaps");
return;
}
}
 
 
/**
* compute next (level+1) image size
* \return GL_FALSE if no smaller size can be generated (eg. src is 1x1x1 size)
*/
static GLboolean
next_mipmap_level_size(GLenum target, GLint border,
GLint srcWidth, GLint srcHeight, GLint srcDepth,
GLint *dstWidth, GLint *dstHeight, GLint *dstDepth)
{
if (srcWidth - 2 * border > 1) {
*dstWidth = (srcWidth - 2 * border) / 2 + 2 * border;
}
else {
*dstWidth = srcWidth; /* can't go smaller */
}
 
if ((srcHeight - 2 * border > 1) &&
(target != GL_TEXTURE_1D_ARRAY_EXT)) {
*dstHeight = (srcHeight - 2 * border) / 2 + 2 * border;
}
else {
*dstHeight = srcHeight; /* can't go smaller */
}
 
if ((srcDepth - 2 * border > 1) &&
(target != GL_TEXTURE_2D_ARRAY_EXT)) {
*dstDepth = (srcDepth - 2 * border) / 2 + 2 * border;
}
else {
*dstDepth = srcDepth; /* can't go smaller */
}
 
if (*dstWidth == srcWidth &&
*dstHeight == srcHeight &&
*dstDepth == srcDepth) {
return GL_FALSE;
}
else {
return GL_TRUE;
}
}
 
 
 
 
/**
* Automatic mipmap generation.
* This is the fallback/default function for ctx->Driver.GenerateMipmap().
* Generate a complete set of mipmaps from texObj's BaseLevel image.
* Stop at texObj's MaxLevel or when we get to the 1x1 texture.
* For cube maps, target will be one of
* GL_TEXTURE_CUBE_MAP_POSITIVE/NEGATIVE_X/Y/Z; never GL_TEXTURE_CUBE_MAP.
*/
void
_mesa_generate_mipmap(struct gl_context *ctx, GLenum target,
struct gl_texture_object *texObj)
{
const struct gl_texture_image *srcImage;
gl_format convertFormat;
const GLubyte *srcData = NULL;
GLubyte *dstData = NULL;
GLint level, maxLevels;
GLenum datatype;
GLuint comps;
 
ASSERT(texObj);
srcImage = _mesa_select_tex_image(ctx, texObj, target, texObj->BaseLevel);
ASSERT(srcImage);
 
maxLevels = _mesa_max_texture_levels(ctx, texObj->Target);
ASSERT(maxLevels > 0); /* bad target */
 
/* Find convertFormat - the format that do_row() will process */
 
if (_mesa_is_format_compressed(srcImage->TexFormat)) {
/* setup for compressed textures - need to allocate temporary
* image buffers to hold uncompressed images.
*/
GLuint row;
GLint components, size;
GLchan *dst;
 
assert(texObj->Target == GL_TEXTURE_2D ||
texObj->Target == GL_TEXTURE_CUBE_MAP_ARB);
 
if (srcImage->_BaseFormat == GL_RGB) {
convertFormat = MESA_FORMAT_RGB888;
components = 3;
}
else if (srcImage->_BaseFormat == GL_RGBA) {
convertFormat = MESA_FORMAT_RGBA8888;
components = 4;
}
else {
_mesa_problem(ctx, "bad srcImage->_BaseFormat in _mesa_generate_mipmaps");
return;
}
 
/* allocate storage for uncompressed GL_RGB or GL_RGBA images */
size = _mesa_bytes_per_pixel(srcImage->_BaseFormat, CHAN_TYPE)
* srcImage->Width * srcImage->Height * srcImage->Depth + 20;
/* 20 extra bytes, just be safe when calling last FetchTexel */
srcData = (GLubyte *) malloc(size);
if (!srcData) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
return;
}
dstData = (GLubyte *) malloc(size / 2); /* 1/4 would probably be OK */
if (!dstData) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
free((void *) srcData);
return;
}
 
/* decompress base image here */
dst = (GLchan *) srcData;
for (row = 0; row < srcImage->Height; row++) {
GLuint col;
for (col = 0; col < srcImage->Width; col++) {
srcImage->FetchTexelc(srcImage, col, row, 0, dst);
dst += components;
}
}
}
else {
/* uncompressed */
convertFormat = srcImage->TexFormat;
}
 
_mesa_format_to_type_and_comps(convertFormat, &datatype, &comps);
 
for (level = texObj->BaseLevel; level < texObj->MaxLevel
&& level < maxLevels - 1; level++) {
/* generate image[level+1] from image[level] */
const struct gl_texture_image *srcImage;
struct gl_texture_image *dstImage;
GLint srcWidth, srcHeight, srcDepth;
GLint dstWidth, dstHeight, dstDepth;
GLint border;
GLboolean nextLevel;
 
/* get src image parameters */
srcImage = _mesa_select_tex_image(ctx, texObj, target, level);
ASSERT(srcImage);
srcWidth = srcImage->Width;
srcHeight = srcImage->Height;
srcDepth = srcImage->Depth;
border = srcImage->Border;
 
nextLevel = next_mipmap_level_size(target, border,
srcWidth, srcHeight, srcDepth,
&dstWidth, &dstHeight, &dstDepth);
if (!nextLevel) {
/* all done */
if (_mesa_is_format_compressed(srcImage->TexFormat)) {
free((void *) srcData);
free(dstData);
}
return;
}
 
/* get dest gl_texture_image */
dstImage = _mesa_get_tex_image(ctx, texObj, target, level + 1);
if (!dstImage) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
return;
}
 
/* Free old image data */
if (dstImage->Data)
ctx->Driver.FreeTexImageData(ctx, dstImage);
 
/* initialize new image */
_mesa_init_teximage_fields(ctx, target, dstImage, dstWidth, dstHeight,
dstDepth, border, srcImage->InternalFormat,
srcImage->TexFormat);
dstImage->DriverData = NULL;
dstImage->FetchTexelc = srcImage->FetchTexelc;
dstImage->FetchTexelf = srcImage->FetchTexelf;
 
/* Alloc new teximage data buffer */
{
GLuint size = _mesa_format_image_size(dstImage->TexFormat,
dstWidth, dstHeight, dstDepth);
dstImage->Data = _mesa_alloc_texmemory(size);
if (!dstImage->Data) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
return;
}
}
 
/* Setup src and dest data pointers */
if (_mesa_is_format_compressed(dstImage->TexFormat)) {
/* srcData and dstData are already set */
ASSERT(srcData);
ASSERT(dstData);
}
else {
srcData = (const GLubyte *) srcImage->Data;
dstData = (GLubyte *) dstImage->Data;
}
 
ASSERT(dstImage->TexFormat);
ASSERT(dstImage->FetchTexelc);
ASSERT(dstImage->FetchTexelf);
 
_mesa_generate_mipmap_level(target, datatype, comps, border,
srcWidth, srcHeight, srcDepth,
srcData, srcImage->RowStride,
dstWidth, dstHeight, dstDepth,
dstData, dstImage->RowStride);
 
 
if (_mesa_is_format_compressed(dstImage->TexFormat)) {
GLubyte *temp;
/* compress image from dstData into dstImage->Data */
const GLenum srcFormat = _mesa_get_format_base_format(convertFormat);
GLint dstRowStride
= _mesa_format_row_stride(dstImage->TexFormat, dstWidth);
ASSERT(srcFormat == GL_RGB || srcFormat == GL_RGBA);
 
_mesa_texstore(ctx, 2, dstImage->_BaseFormat,
dstImage->TexFormat,
dstImage->Data,
0, 0, 0, /* dstX/Y/Zoffset */
dstRowStride, 0, /* strides */
dstWidth, dstHeight, 1, /* size */
srcFormat, CHAN_TYPE,
dstData, /* src data, actually */
&ctx->DefaultPacking);
 
/* swap src and dest pointers */
temp = (GLubyte *) srcData;
srcData = dstData;
dstData = temp;
}
 
} /* loop over mipmap levels */
}
 
 
/**
* Helper function for drivers which need to rescale texture images to
* certain aspect ratios.
* Nearest filtering only (for broken hardware that can't support
* all aspect ratios). This can be made a lot faster, but I don't
* really care enough...
*/
void
_mesa_rescale_teximage2d(GLuint bytesPerPixel,
GLuint srcStrideInPixels,
GLuint dstRowStride,
GLint srcWidth, GLint srcHeight,
GLint dstWidth, GLint dstHeight,
const GLvoid *srcImage, GLvoid *dstImage)
{
GLint row, col;
 
#define INNER_LOOP( TYPE, HOP, WOP ) \
for ( row = 0 ; row < dstHeight ; row++ ) { \
GLint srcRow = row HOP hScale; \
for ( col = 0 ; col < dstWidth ; col++ ) { \
GLint srcCol = col WOP wScale; \
dst[col] = src[srcRow * srcStrideInPixels + srcCol]; \
} \
dst = (TYPE *) ((GLubyte *) dst + dstRowStride); \
} \
 
#define RESCALE_IMAGE( TYPE ) \
do { \
const TYPE *src = (const TYPE *)srcImage; \
TYPE *dst = (TYPE *)dstImage; \
\
if ( srcHeight < dstHeight ) { \
const GLint hScale = dstHeight / srcHeight; \
if ( srcWidth < dstWidth ) { \
const GLint wScale = dstWidth / srcWidth; \
INNER_LOOP( TYPE, /, / ); \
} \
else { \
const GLint wScale = srcWidth / dstWidth; \
INNER_LOOP( TYPE, /, * ); \
} \
} \
else { \
const GLint hScale = srcHeight / dstHeight; \
if ( srcWidth < dstWidth ) { \
const GLint wScale = dstWidth / srcWidth; \
INNER_LOOP( TYPE, *, / ); \
} \
else { \
const GLint wScale = srcWidth / dstWidth; \
INNER_LOOP( TYPE, *, * ); \
} \
} \
} while (0)
 
switch ( bytesPerPixel ) {
case 4:
RESCALE_IMAGE( GLuint );
break;
 
case 2:
RESCALE_IMAGE( GLushort );
break;
 
case 1:
RESCALE_IMAGE( GLubyte );
break;
default:
_mesa_problem(NULL,"unexpected bytes/pixel in _mesa_rescale_teximage2d");
}
}
 
 
/**
* Upscale an image by replication, not (typical) stretching.
* We use this when the image width or height is less than a
* certain size (4, 8) and we need to upscale an image.
*/
void
_mesa_upscale_teximage2d(GLsizei inWidth, GLsizei inHeight,
GLsizei outWidth, GLsizei outHeight,
GLint comps, const GLchan *src, GLint srcRowStride,
GLchan *dest )
{
GLint i, j, k;
 
ASSERT(outWidth >= inWidth);
ASSERT(outHeight >= inHeight);
#if 0
ASSERT(inWidth == 1 || inWidth == 2 || inHeight == 1 || inHeight == 2);
ASSERT((outWidth & 3) == 0);
ASSERT((outHeight & 3) == 0);
#endif
 
for (i = 0; i < outHeight; i++) {
const GLint ii = i % inHeight;
for (j = 0; j < outWidth; j++) {
const GLint jj = j % inWidth;
for (k = 0; k < comps; k++) {
dest[(i * outWidth + j) * comps + k]
= src[ii * srcRowStride + jj * comps + k];
}
}
}
}