Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 3297 → Rev 3391

/drivers/ddk/Makefile
22,6 → 22,7
io/finfo.c \
io/ssize.c \
io/write.c \
linux/bitmap.c \
linux/idr.c \
linux/firmware.c \
linux/kref.c \
/drivers/ddk/core.S
65,6 → 65,7
.global _UserFree
 
.global _WaitEvent
.global _WaitEventTimeout
 
 
.def _AllocKernelSpace; .scl 2; .type 32; .endef
127,6 → 128,7
.def _UserFree; .scl 2; .type 32; .endef
 
.def _WaitEvent; .scl 2; .type 32; .endef
.def _WaitEventTimeout; .scl 2; .type 32; .endef
 
 
_AllocKernelSpace:
189,6 → 191,7
_UserAlloc:
_UserFree:
_WaitEvent:
_WaitEventTimeout:
 
ret
 
258,4 → 261,5
.ascii " -export:UserFree" # stdcall
 
.ascii " -export:WaitEvent" # stdcall
.ascii " -export:WaitEventTimeout" # stdcall
 
/drivers/ddk/linux/bitmap.c
0,0 → 1,848
/*
* lib/bitmap.c
* Helper functions for bitmap.h.
*
* Tlhis source code is licensed under the GNU General Public License,
* Version 2. See the file COPYING for more details.
*/
#include <syscall.h>
#include <linux/export.h>
//#include <linux/thread_info.h>
#include <linux/ctype.h>
#include <linux/errno.h>
#include <linux/bitmap.h>
#include <linux/bitops.h>
#include <linux/bug.h>
//#include <asm/uaccess.h>
 
/*
* bitmaps provide an array of bits, implemented using an an
* array of unsigned longs. The number of valid bits in a
* given bitmap does _not_ need to be an exact multiple of
* BITS_PER_LONG.
*
* The possible unused bits in the last, partially used word
* of a bitmap are 'don't care'. The implementation makes
* no particular effort to keep them zero. It ensures that
* their value will not affect the results of any operation.
* The bitmap operations that return Boolean (bitmap_empty,
* for example) or scalar (bitmap_weight, for example) results
* carefully filter out these unused bits from impacting their
* results.
*
* These operations actually hold to a slightly stronger rule:
* if you don't input any bitmaps to these ops that have some
* unused bits set, then they won't output any set unused bits
* in output bitmaps.
*
* The byte ordering of bitmaps is more natural on little
* endian architectures. See the big-endian headers
* include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
* for the best explanations of this ordering.
*/
 
int __bitmap_empty(const unsigned long *bitmap, int bits)
{
int k, lim = bits/BITS_PER_LONG;
for (k = 0; k < lim; ++k)
if (bitmap[k])
return 0;
 
if (bits % BITS_PER_LONG)
if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
return 0;
 
return 1;
}
EXPORT_SYMBOL(__bitmap_empty);
 
int __bitmap_full(const unsigned long *bitmap, int bits)
{
int k, lim = bits/BITS_PER_LONG;
for (k = 0; k < lim; ++k)
if (~bitmap[k])
return 0;
 
if (bits % BITS_PER_LONG)
if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
return 0;
 
return 1;
}
EXPORT_SYMBOL(__bitmap_full);
 
int __bitmap_equal(const unsigned long *bitmap1,
const unsigned long *bitmap2, int bits)
{
int k, lim = bits/BITS_PER_LONG;
for (k = 0; k < lim; ++k)
if (bitmap1[k] != bitmap2[k])
return 0;
 
if (bits % BITS_PER_LONG)
if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
return 0;
 
return 1;
}
EXPORT_SYMBOL(__bitmap_equal);
 
void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
{
int k, lim = bits/BITS_PER_LONG;
for (k = 0; k < lim; ++k)
dst[k] = ~src[k];
 
if (bits % BITS_PER_LONG)
dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
}
EXPORT_SYMBOL(__bitmap_complement);
 
/**
* __bitmap_shift_right - logical right shift of the bits in a bitmap
* @dst : destination bitmap
* @src : source bitmap
* @shift : shift by this many bits
* @bits : bitmap size, in bits
*
* Shifting right (dividing) means moving bits in the MS -> LS bit
* direction. Zeros are fed into the vacated MS positions and the
* LS bits shifted off the bottom are lost.
*/
void __bitmap_shift_right(unsigned long *dst,
const unsigned long *src, int shift, int bits)
{
int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
unsigned long mask = (1UL << left) - 1;
for (k = 0; off + k < lim; ++k) {
unsigned long upper, lower;
 
/*
* If shift is not word aligned, take lower rem bits of
* word above and make them the top rem bits of result.
*/
if (!rem || off + k + 1 >= lim)
upper = 0;
else {
upper = src[off + k + 1];
if (off + k + 1 == lim - 1 && left)
upper &= mask;
}
lower = src[off + k];
if (left && off + k == lim - 1)
lower &= mask;
dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
if (left && k == lim - 1)
dst[k] &= mask;
}
if (off)
memset(&dst[lim - off], 0, off*sizeof(unsigned long));
}
EXPORT_SYMBOL(__bitmap_shift_right);
 
 
/**
* __bitmap_shift_left - logical left shift of the bits in a bitmap
* @dst : destination bitmap
* @src : source bitmap
* @shift : shift by this many bits
* @bits : bitmap size, in bits
*
* Shifting left (multiplying) means moving bits in the LS -> MS
* direction. Zeros are fed into the vacated LS bit positions
* and those MS bits shifted off the top are lost.
*/
 
void __bitmap_shift_left(unsigned long *dst,
const unsigned long *src, int shift, int bits)
{
int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
for (k = lim - off - 1; k >= 0; --k) {
unsigned long upper, lower;
 
/*
* If shift is not word aligned, take upper rem bits of
* word below and make them the bottom rem bits of result.
*/
if (rem && k > 0)
lower = src[k - 1];
else
lower = 0;
upper = src[k];
if (left && k == lim - 1)
upper &= (1UL << left) - 1;
dst[k + off] = lower >> (BITS_PER_LONG - rem) | upper << rem;
if (left && k + off == lim - 1)
dst[k + off] &= (1UL << left) - 1;
}
if (off)
memset(dst, 0, off*sizeof(unsigned long));
}
EXPORT_SYMBOL(__bitmap_shift_left);
 
int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, int bits)
{
int k;
int nr = BITS_TO_LONGS(bits);
unsigned long result = 0;
 
for (k = 0; k < nr; k++)
result |= (dst[k] = bitmap1[k] & bitmap2[k]);
return result != 0;
}
EXPORT_SYMBOL(__bitmap_and);
 
void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, int bits)
{
int k;
int nr = BITS_TO_LONGS(bits);
 
for (k = 0; k < nr; k++)
dst[k] = bitmap1[k] | bitmap2[k];
}
EXPORT_SYMBOL(__bitmap_or);
 
void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, int bits)
{
int k;
int nr = BITS_TO_LONGS(bits);
 
for (k = 0; k < nr; k++)
dst[k] = bitmap1[k] ^ bitmap2[k];
}
EXPORT_SYMBOL(__bitmap_xor);
 
int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, int bits)
{
int k;
int nr = BITS_TO_LONGS(bits);
unsigned long result = 0;
 
for (k = 0; k < nr; k++)
result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
return result != 0;
}
EXPORT_SYMBOL(__bitmap_andnot);
 
int __bitmap_intersects(const unsigned long *bitmap1,
const unsigned long *bitmap2, int bits)
{
int k, lim = bits/BITS_PER_LONG;
for (k = 0; k < lim; ++k)
if (bitmap1[k] & bitmap2[k])
return 1;
 
if (bits % BITS_PER_LONG)
if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
return 1;
return 0;
}
EXPORT_SYMBOL(__bitmap_intersects);
 
int __bitmap_subset(const unsigned long *bitmap1,
const unsigned long *bitmap2, int bits)
{
int k, lim = bits/BITS_PER_LONG;
for (k = 0; k < lim; ++k)
if (bitmap1[k] & ~bitmap2[k])
return 0;
 
if (bits % BITS_PER_LONG)
if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
return 0;
return 1;
}
EXPORT_SYMBOL(__bitmap_subset);
 
int __bitmap_weight(const unsigned long *bitmap, int bits)
{
int k, w = 0, lim = bits/BITS_PER_LONG;
 
for (k = 0; k < lim; k++)
w += hweight_long(bitmap[k]);
 
if (bits % BITS_PER_LONG)
w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
 
return w;
}
EXPORT_SYMBOL(__bitmap_weight);
 
void bitmap_set(unsigned long *map, int start, int nr)
{
unsigned long *p = map + BIT_WORD(start);
const int size = start + nr;
int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
 
while (nr - bits_to_set >= 0) {
*p |= mask_to_set;
nr -= bits_to_set;
bits_to_set = BITS_PER_LONG;
mask_to_set = ~0UL;
p++;
}
if (nr) {
mask_to_set &= BITMAP_LAST_WORD_MASK(size);
*p |= mask_to_set;
}
}
EXPORT_SYMBOL(bitmap_set);
 
void bitmap_clear(unsigned long *map, int start, int nr)
{
unsigned long *p = map + BIT_WORD(start);
const int size = start + nr;
int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
 
while (nr - bits_to_clear >= 0) {
*p &= ~mask_to_clear;
nr -= bits_to_clear;
bits_to_clear = BITS_PER_LONG;
mask_to_clear = ~0UL;
p++;
}
if (nr) {
mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
*p &= ~mask_to_clear;
}
}
EXPORT_SYMBOL(bitmap_clear);
 
/*
* bitmap_find_next_zero_area - find a contiguous aligned zero area
* @map: The address to base the search on
* @size: The bitmap size in bits
* @start: The bitnumber to start searching at
* @nr: The number of zeroed bits we're looking for
* @align_mask: Alignment mask for zero area
*
* The @align_mask should be one less than a power of 2; the effect is that
* the bit offset of all zero areas this function finds is multiples of that
* power of 2. A @align_mask of 0 means no alignment is required.
*/
unsigned long bitmap_find_next_zero_area(unsigned long *map,
unsigned long size,
unsigned long start,
unsigned int nr,
unsigned long align_mask)
{
unsigned long index, end, i;
again:
index = find_next_zero_bit(map, size, start);
 
/* Align allocation */
index = __ALIGN_MASK(index, align_mask);
 
end = index + nr;
if (end > size)
return end;
i = find_next_bit(map, end, index);
if (i < end) {
start = i + 1;
goto again;
}
return index;
}
EXPORT_SYMBOL(bitmap_find_next_zero_area);
 
/*
* Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
* second version by Paul Jackson, third by Joe Korty.
*/
 
#define CHUNKSZ 32
#define nbits_to_hold_value(val) fls(val)
#define BASEDEC 10 /* fancier cpuset lists input in decimal */
 
 
 
 
 
/**
* bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
* @buf: pointer to a bitmap
* @pos: a bit position in @buf (0 <= @pos < @bits)
* @bits: number of valid bit positions in @buf
*
* Map the bit at position @pos in @buf (of length @bits) to the
* ordinal of which set bit it is. If it is not set or if @pos
* is not a valid bit position, map to -1.
*
* If for example, just bits 4 through 7 are set in @buf, then @pos
* values 4 through 7 will get mapped to 0 through 3, respectively,
* and other @pos values will get mapped to 0. When @pos value 7
* gets mapped to (returns) @ord value 3 in this example, that means
* that bit 7 is the 3rd (starting with 0th) set bit in @buf.
*
* The bit positions 0 through @bits are valid positions in @buf.
*/
static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
{
int i, ord;
 
if (pos < 0 || pos >= bits || !test_bit(pos, buf))
return -1;
 
i = find_first_bit(buf, bits);
ord = 0;
while (i < pos) {
i = find_next_bit(buf, bits, i + 1);
ord++;
}
BUG_ON(i != pos);
 
return ord;
}
 
/**
* bitmap_ord_to_pos - find position of n-th set bit in bitmap
* @buf: pointer to bitmap
* @ord: ordinal bit position (n-th set bit, n >= 0)
* @bits: number of valid bit positions in @buf
*
* Map the ordinal offset of bit @ord in @buf to its position in @buf.
* Value of @ord should be in range 0 <= @ord < weight(buf), else
* results are undefined.
*
* If for example, just bits 4 through 7 are set in @buf, then @ord
* values 0 through 3 will get mapped to 4 through 7, respectively,
* and all other @ord values return undefined values. When @ord value 3
* gets mapped to (returns) @pos value 7 in this example, that means
* that the 3rd set bit (starting with 0th) is at position 7 in @buf.
*
* The bit positions 0 through @bits are valid positions in @buf.
*/
int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
{
int pos = 0;
 
if (ord >= 0 && ord < bits) {
int i;
 
for (i = find_first_bit(buf, bits);
i < bits && ord > 0;
i = find_next_bit(buf, bits, i + 1))
ord--;
if (i < bits && ord == 0)
pos = i;
}
 
return pos;
}
 
/**
* bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
* @dst: remapped result
* @src: subset to be remapped
* @old: defines domain of map
* @new: defines range of map
* @bits: number of bits in each of these bitmaps
*
* Let @old and @new define a mapping of bit positions, such that
* whatever position is held by the n-th set bit in @old is mapped
* to the n-th set bit in @new. In the more general case, allowing
* for the possibility that the weight 'w' of @new is less than the
* weight of @old, map the position of the n-th set bit in @old to
* the position of the m-th set bit in @new, where m == n % w.
*
* If either of the @old and @new bitmaps are empty, or if @src and
* @dst point to the same location, then this routine copies @src
* to @dst.
*
* The positions of unset bits in @old are mapped to themselves
* (the identify map).
*
* Apply the above specified mapping to @src, placing the result in
* @dst, clearing any bits previously set in @dst.
*
* For example, lets say that @old has bits 4 through 7 set, and
* @new has bits 12 through 15 set. This defines the mapping of bit
* position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
* bit positions unchanged. So if say @src comes into this routine
* with bits 1, 5 and 7 set, then @dst should leave with bits 1,
* 13 and 15 set.
*/
void bitmap_remap(unsigned long *dst, const unsigned long *src,
const unsigned long *old, const unsigned long *new,
int bits)
{
int oldbit, w;
 
if (dst == src) /* following doesn't handle inplace remaps */
return;
bitmap_zero(dst, bits);
 
w = bitmap_weight(new, bits);
for_each_set_bit(oldbit, src, bits) {
int n = bitmap_pos_to_ord(old, oldbit, bits);
 
if (n < 0 || w == 0)
set_bit(oldbit, dst); /* identity map */
else
set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
}
}
EXPORT_SYMBOL(bitmap_remap);
 
/**
* bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
* @oldbit: bit position to be mapped
* @old: defines domain of map
* @new: defines range of map
* @bits: number of bits in each of these bitmaps
*
* Let @old and @new define a mapping of bit positions, such that
* whatever position is held by the n-th set bit in @old is mapped
* to the n-th set bit in @new. In the more general case, allowing
* for the possibility that the weight 'w' of @new is less than the
* weight of @old, map the position of the n-th set bit in @old to
* the position of the m-th set bit in @new, where m == n % w.
*
* The positions of unset bits in @old are mapped to themselves
* (the identify map).
*
* Apply the above specified mapping to bit position @oldbit, returning
* the new bit position.
*
* For example, lets say that @old has bits 4 through 7 set, and
* @new has bits 12 through 15 set. This defines the mapping of bit
* position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
* bit positions unchanged. So if say @oldbit is 5, then this routine
* returns 13.
*/
int bitmap_bitremap(int oldbit, const unsigned long *old,
const unsigned long *new, int bits)
{
int w = bitmap_weight(new, bits);
int n = bitmap_pos_to_ord(old, oldbit, bits);
if (n < 0 || w == 0)
return oldbit;
else
return bitmap_ord_to_pos(new, n % w, bits);
}
EXPORT_SYMBOL(bitmap_bitremap);
 
/**
* bitmap_onto - translate one bitmap relative to another
* @dst: resulting translated bitmap
* @orig: original untranslated bitmap
* @relmap: bitmap relative to which translated
* @bits: number of bits in each of these bitmaps
*
* Set the n-th bit of @dst iff there exists some m such that the
* n-th bit of @relmap is set, the m-th bit of @orig is set, and
* the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
* (If you understood the previous sentence the first time your
* read it, you're overqualified for your current job.)
*
* In other words, @orig is mapped onto (surjectively) @dst,
* using the the map { <n, m> | the n-th bit of @relmap is the
* m-th set bit of @relmap }.
*
* Any set bits in @orig above bit number W, where W is the
* weight of (number of set bits in) @relmap are mapped nowhere.
* In particular, if for all bits m set in @orig, m >= W, then
* @dst will end up empty. In situations where the possibility
* of such an empty result is not desired, one way to avoid it is
* to use the bitmap_fold() operator, below, to first fold the
* @orig bitmap over itself so that all its set bits x are in the
* range 0 <= x < W. The bitmap_fold() operator does this by
* setting the bit (m % W) in @dst, for each bit (m) set in @orig.
*
* Example [1] for bitmap_onto():
* Let's say @relmap has bits 30-39 set, and @orig has bits
* 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
* @dst will have bits 31, 33, 35, 37 and 39 set.
*
* When bit 0 is set in @orig, it means turn on the bit in
* @dst corresponding to whatever is the first bit (if any)
* that is turned on in @relmap. Since bit 0 was off in the
* above example, we leave off that bit (bit 30) in @dst.
*
* When bit 1 is set in @orig (as in the above example), it
* means turn on the bit in @dst corresponding to whatever
* is the second bit that is turned on in @relmap. The second
* bit in @relmap that was turned on in the above example was
* bit 31, so we turned on bit 31 in @dst.
*
* Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
* because they were the 4th, 6th, 8th and 10th set bits
* set in @relmap, and the 4th, 6th, 8th and 10th bits of
* @orig (i.e. bits 3, 5, 7 and 9) were also set.
*
* When bit 11 is set in @orig, it means turn on the bit in
* @dst corresponding to whatever is the twelfth bit that is
* turned on in @relmap. In the above example, there were
* only ten bits turned on in @relmap (30..39), so that bit
* 11 was set in @orig had no affect on @dst.
*
* Example [2] for bitmap_fold() + bitmap_onto():
* Let's say @relmap has these ten bits set:
* 40 41 42 43 45 48 53 61 74 95
* (for the curious, that's 40 plus the first ten terms of the
* Fibonacci sequence.)
*
* Further lets say we use the following code, invoking
* bitmap_fold() then bitmap_onto, as suggested above to
* avoid the possitility of an empty @dst result:
*
* unsigned long *tmp; // a temporary bitmap's bits
*
* bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
* bitmap_onto(dst, tmp, relmap, bits);
*
* Then this table shows what various values of @dst would be, for
* various @orig's. I list the zero-based positions of each set bit.
* The tmp column shows the intermediate result, as computed by
* using bitmap_fold() to fold the @orig bitmap modulo ten
* (the weight of @relmap).
*
* @orig tmp @dst
* 0 0 40
* 1 1 41
* 9 9 95
* 10 0 40 (*)
* 1 3 5 7 1 3 5 7 41 43 48 61
* 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
* 0 9 18 27 0 9 8 7 40 61 74 95
* 0 10 20 30 0 40
* 0 11 22 33 0 1 2 3 40 41 42 43
* 0 12 24 36 0 2 4 6 40 42 45 53
* 78 102 211 1 2 8 41 42 74 (*)
*
* (*) For these marked lines, if we hadn't first done bitmap_fold()
* into tmp, then the @dst result would have been empty.
*
* If either of @orig or @relmap is empty (no set bits), then @dst
* will be returned empty.
*
* If (as explained above) the only set bits in @orig are in positions
* m where m >= W, (where W is the weight of @relmap) then @dst will
* once again be returned empty.
*
* All bits in @dst not set by the above rule are cleared.
*/
void bitmap_onto(unsigned long *dst, const unsigned long *orig,
const unsigned long *relmap, int bits)
{
int n, m; /* same meaning as in above comment */
 
if (dst == orig) /* following doesn't handle inplace mappings */
return;
bitmap_zero(dst, bits);
 
/*
* The following code is a more efficient, but less
* obvious, equivalent to the loop:
* for (m = 0; m < bitmap_weight(relmap, bits); m++) {
* n = bitmap_ord_to_pos(orig, m, bits);
* if (test_bit(m, orig))
* set_bit(n, dst);
* }
*/
 
m = 0;
for_each_set_bit(n, relmap, bits) {
/* m == bitmap_pos_to_ord(relmap, n, bits) */
if (test_bit(m, orig))
set_bit(n, dst);
m++;
}
}
EXPORT_SYMBOL(bitmap_onto);
 
/**
* bitmap_fold - fold larger bitmap into smaller, modulo specified size
* @dst: resulting smaller bitmap
* @orig: original larger bitmap
* @sz: specified size
* @bits: number of bits in each of these bitmaps
*
* For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
* Clear all other bits in @dst. See further the comment and
* Example [2] for bitmap_onto() for why and how to use this.
*/
void bitmap_fold(unsigned long *dst, const unsigned long *orig,
int sz, int bits)
{
int oldbit;
 
if (dst == orig) /* following doesn't handle inplace mappings */
return;
bitmap_zero(dst, bits);
 
for_each_set_bit(oldbit, orig, bits)
set_bit(oldbit % sz, dst);
}
EXPORT_SYMBOL(bitmap_fold);
 
/*
* Common code for bitmap_*_region() routines.
* bitmap: array of unsigned longs corresponding to the bitmap
* pos: the beginning of the region
* order: region size (log base 2 of number of bits)
* reg_op: operation(s) to perform on that region of bitmap
*
* Can set, verify and/or release a region of bits in a bitmap,
* depending on which combination of REG_OP_* flag bits is set.
*
* A region of a bitmap is a sequence of bits in the bitmap, of
* some size '1 << order' (a power of two), aligned to that same
* '1 << order' power of two.
*
* Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
* Returns 0 in all other cases and reg_ops.
*/
 
enum {
REG_OP_ISFREE, /* true if region is all zero bits */
REG_OP_ALLOC, /* set all bits in region */
REG_OP_RELEASE, /* clear all bits in region */
};
 
static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
{
int nbits_reg; /* number of bits in region */
int index; /* index first long of region in bitmap */
int offset; /* bit offset region in bitmap[index] */
int nlongs_reg; /* num longs spanned by region in bitmap */
int nbitsinlong; /* num bits of region in each spanned long */
unsigned long mask; /* bitmask for one long of region */
int i; /* scans bitmap by longs */
int ret = 0; /* return value */
 
/*
* Either nlongs_reg == 1 (for small orders that fit in one long)
* or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
*/
nbits_reg = 1 << order;
index = pos / BITS_PER_LONG;
offset = pos - (index * BITS_PER_LONG);
nlongs_reg = BITS_TO_LONGS(nbits_reg);
nbitsinlong = min(nbits_reg, BITS_PER_LONG);
 
/*
* Can't do "mask = (1UL << nbitsinlong) - 1", as that
* overflows if nbitsinlong == BITS_PER_LONG.
*/
mask = (1UL << (nbitsinlong - 1));
mask += mask - 1;
mask <<= offset;
 
switch (reg_op) {
case REG_OP_ISFREE:
for (i = 0; i < nlongs_reg; i++) {
if (bitmap[index + i] & mask)
goto done;
}
ret = 1; /* all bits in region free (zero) */
break;
 
case REG_OP_ALLOC:
for (i = 0; i < nlongs_reg; i++)
bitmap[index + i] |= mask;
break;
 
case REG_OP_RELEASE:
for (i = 0; i < nlongs_reg; i++)
bitmap[index + i] &= ~mask;
break;
}
done:
return ret;
}
 
/**
* bitmap_find_free_region - find a contiguous aligned mem region
* @bitmap: array of unsigned longs corresponding to the bitmap
* @bits: number of bits in the bitmap
* @order: region size (log base 2 of number of bits) to find
*
* Find a region of free (zero) bits in a @bitmap of @bits bits and
* allocate them (set them to one). Only consider regions of length
* a power (@order) of two, aligned to that power of two, which
* makes the search algorithm much faster.
*
* Return the bit offset in bitmap of the allocated region,
* or -errno on failure.
*/
int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
{
int pos, end; /* scans bitmap by regions of size order */
 
for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) {
if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
continue;
__reg_op(bitmap, pos, order, REG_OP_ALLOC);
return pos;
}
return -ENOMEM;
}
EXPORT_SYMBOL(bitmap_find_free_region);
 
/**
* bitmap_release_region - release allocated bitmap region
* @bitmap: array of unsigned longs corresponding to the bitmap
* @pos: beginning of bit region to release
* @order: region size (log base 2 of number of bits) to release
*
* This is the complement to __bitmap_find_free_region() and releases
* the found region (by clearing it in the bitmap).
*
* No return value.
*/
void bitmap_release_region(unsigned long *bitmap, int pos, int order)
{
__reg_op(bitmap, pos, order, REG_OP_RELEASE);
}
EXPORT_SYMBOL(bitmap_release_region);
 
/**
* bitmap_allocate_region - allocate bitmap region
* @bitmap: array of unsigned longs corresponding to the bitmap
* @pos: beginning of bit region to allocate
* @order: region size (log base 2 of number of bits) to allocate
*
* Allocate (set bits in) a specified region of a bitmap.
*
* Return 0 on success, or %-EBUSY if specified region wasn't
* free (not all bits were zero).
*/
int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
{
if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
return -EBUSY;
__reg_op(bitmap, pos, order, REG_OP_ALLOC);
return 0;
}
EXPORT_SYMBOL(bitmap_allocate_region);
 
/**
* bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
* @dst: destination buffer
* @src: bitmap to copy
* @nbits: number of bits in the bitmap
*
* Require nbits % BITS_PER_LONG == 0.
*/
void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
{
unsigned long *d = dst;
int i;
 
for (i = 0; i < nbits/BITS_PER_LONG; i++) {
if (BITS_PER_LONG == 64)
d[i] = cpu_to_le64(src[i]);
else
d[i] = cpu_to_le32(src[i]);
}
}
EXPORT_SYMBOL(bitmap_copy_le);
/drivers/ddk/linux/idr.c
20,7 → 20,7
* that id to this code and it returns your pointer.
 
* You can release ids at any time. When all ids are released, most of
* the memory is returned (we keep IDR_FREE_MAX) in a local pool so we
* the memory is returned (we keep MAX_IDR_FREE) in a local pool so we
* don't need to go to the memory "store" during an id allocate, just
* so you don't need to be too concerned about locking and conflicts
* with the slab allocator.
27,96 → 27,99
*/
 
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/string.h>
#include <linux/bitops.h>
#include <linux/idr.h>
//#include <stdlib.h>
 
unsigned long find_first_bit(const unsigned long *addr, unsigned long size)
{
const unsigned long *p = addr;
unsigned long result = 0;
unsigned long tmp;
unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size,
unsigned long offset);
 
while (size & ~(BITS_PER_LONG-1)) {
if ((tmp = *(p++)))
goto found;
result += BITS_PER_LONG;
size -= BITS_PER_LONG;
}
if (!size)
return result;
 
tmp = (*p) & (~0UL >> (BITS_PER_LONG - size));
if (tmp == 0UL) /* Are any bits set? */
return result + size; /* Nope. */
found:
return result + __ffs(tmp);
}
#define MAX_IDR_SHIFT (sizeof(int) * 8 - 1)
#define MAX_IDR_BIT (1U << MAX_IDR_SHIFT)
 
int find_next_bit(const unsigned long *addr, int size, int offset)
/* Leave the possibility of an incomplete final layer */
#define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
 
/* Number of id_layer structs to leave in free list */
#define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
 
static struct idr_layer *idr_preload_head;
static int idr_preload_cnt;
 
 
/* the maximum ID which can be allocated given idr->layers */
static int idr_max(int layers)
{
const unsigned long *p = addr + (offset >> 5);
int set = 0, bit = offset & 31, res;
int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
 
if (bit)
{
/*
* Look for nonzero in the first 32 bits:
*/
__asm__("bsfl %1,%0\n\t"
"jne 1f\n\t"
"movl $32, %0\n"
"1:"
: "=r" (set)
: "r" (*p >> bit));
if (set < (32 - bit))
return set + offset;
set = 32 - bit;
p++;
return (1 << bits) - 1;
}
 
/*
* No set bit yet, search remaining full words for a bit
* Prefix mask for an idr_layer at @layer. For layer 0, the prefix mask is
* all bits except for the lower IDR_BITS. For layer 1, 2 * IDR_BITS, and
* so on.
*/
res = find_first_bit (p, size - 32 * (p - addr));
return (offset + set + res);
static int idr_layer_prefix_mask(int layer)
{
return ~idr_max(layer + 1);
}
 
#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
 
#define rcu_dereference(p) ({ \
typeof(p) _________p1 = ACCESS_ONCE(p); \
(_________p1); \
})
 
#define rcu_assign_pointer(p, v) \
({ \
if (!__builtin_constant_p(v) || \
((v) != NULL)) \
(p) = (v); \
})
 
//static struct kmem_cache *idr_layer_cache;
 
 
 
 
 
static struct idr_layer *get_from_free_list(struct idr *idp)
{
struct idr_layer *p;
unsigned long flags;
 
// spin_lock_irqsave(&idp->lock, flags);
spin_lock_irqsave(&idp->lock, flags);
if ((p = idp->id_free)) {
idp->id_free = p->ary[0];
idp->id_free_cnt--;
p->ary[0] = NULL;
}
// spin_unlock_irqrestore(&idp->lock, flags);
spin_unlock_irqrestore(&idp->lock, flags);
return(p);
}
 
/**
* idr_layer_alloc - allocate a new idr_layer
* @gfp_mask: allocation mask
* @layer_idr: optional idr to allocate from
*
* If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
* one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch
* an idr_layer from @idr->id_free.
*
* @layer_idr is to maintain backward compatibility with the old alloc
* interface - idr_pre_get() and idr_get_new*() - and will be removed
* together with per-pool preload buffer.
*/
static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
{
struct idr_layer *new;
 
/* this is the old path, bypass to get_from_free_list() */
if (layer_idr)
return get_from_free_list(layer_idr);
 
/* try to allocate directly from kmem_cache */
new = kzalloc(sizeof(struct idr_layer), gfp_mask);
if (new)
return new;
 
 
new = idr_preload_head;
if (new) {
idr_preload_head = new->ary[0];
idr_preload_cnt--;
new->ary[0] = NULL;
}
preempt_enable();
return new;
}
 
static void idr_layer_rcu_free(struct rcu_head *head)
{
struct idr_layer *layer;
125,9 → 128,11
kfree(layer);
}
 
static inline void free_layer(struct idr_layer *p)
static inline void free_layer(struct idr *idr, struct idr_layer *p)
{
kfree(p);
if (idr->hint && idr->hint == p)
RCU_INIT_POINTER(idr->hint, NULL);
idr_layer_rcu_free(&p->rcu_head);
}
 
/* only called when idp->lock is held */
145,9 → 150,9
/*
* Depends on the return element being zeroed.
*/
// spin_lock_irqsave(&idp->lock, flags);
spin_lock_irqsave(&idp->lock, flags);
__move_to_free_list(idp, p);
// spin_unlock_irqrestore(&idp->lock, flags);
spin_unlock_irqrestore(&idp->lock, flags);
}
 
static void idr_mark_full(struct idr_layer **pa, int id)
155,7 → 160,7
struct idr_layer *p = pa[0];
int l = 0;
 
__set_bit(id & IDR_MASK, &p->bitmap);
__set_bit(id & IDR_MASK, p->bitmap);
/*
* If this layer is full mark the bit in the layer above to
* show that this part of the radix tree is full. This may
162,11 → 167,11
* complete the layer above and require walking up the radix
* tree.
*/
while (p->bitmap == IDR_FULL) {
while (bitmap_full(p->bitmap, IDR_SIZE)) {
if (!(p = pa[++l]))
break;
id = id >> IDR_BITS;
__set_bit((id & IDR_MASK), &p->bitmap);
__set_bit((id & IDR_MASK), p->bitmap);
}
}
 
185,7 → 190,7
*/
int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
{
while (idp->id_free_cnt < IDR_FREE_MAX) {
while (idp->id_free_cnt < MAX_IDR_FREE) {
struct idr_layer *new;
new = kzalloc(sizeof(struct idr_layer), gfp_mask);
if (new == NULL)
194,13 → 199,31
}
return 1;
}
EXPORT_SYMBOL(idr_pre_get);
 
static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa)
/**
* sub_alloc - try to allocate an id without growing the tree depth
* @idp: idr handle
* @starting_id: id to start search at
* @id: pointer to the allocated handle
* @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
* @gfp_mask: allocation mask for idr_layer_alloc()
* @layer_idr: optional idr passed to idr_layer_alloc()
*
* Allocate an id in range [@starting_id, INT_MAX] from @idp without
* growing its depth. Returns
*
* the allocated id >= 0 if successful,
* -EAGAIN if the tree needs to grow for allocation to succeed,
* -ENOSPC if the id space is exhausted,
* -ENOMEM if more idr_layers need to be allocated.
*/
static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
gfp_t gfp_mask, struct idr *layer_idr)
{
int n, m, sh;
struct idr_layer *p, *new;
int l, id, oid;
unsigned long bm;
 
id = *starting_id;
restart:
212,8 → 235,7
* We run around this while until we reach the leaf node...
*/
n = (id >> (IDR_BITS*l)) & IDR_MASK;
bm = ~p->bitmap;
m = find_next_bit(&bm, IDR_SIZE, n);
m = find_next_zero_bit(p->bitmap, IDR_SIZE, n);
if (m == IDR_SIZE) {
/* no space available go back to previous layer. */
l++;
221,10 → 243,12
id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
 
/* if already at the top layer, we need to grow */
if (!(p = pa[l])) {
if (id >= 1 << (idp->layers * IDR_BITS)) {
*starting_id = id;
return IDR_NEED_TO_GROW;
return -EAGAIN;
}
p = pa[l];
BUG_ON(!p);
 
/* If we need to go up one layer, continue the
* loop; otherwise, restart from the top.
239,8 → 263,8
sh = IDR_BITS*l;
id = ((id >> sh) ^ n ^ m) << sh;
}
if ((id >= MAX_ID_BIT) || (id < 0))
return IDR_NOMORE_SPACE;
if ((id >= MAX_IDR_BIT) || (id < 0))
return -ENOSPC;
if (l == 0)
break;
/*
247,10 → 271,11
* Create the layer below if it is missing.
*/
if (!p->ary[m]) {
new = get_from_free_list(idp);
new = idr_layer_alloc(gfp_mask, layer_idr);
if (!new)
return -1;
return -ENOMEM;
new->layer = l-1;
new->prefix = id & idr_layer_prefix_mask(new->layer);
rcu_assign_pointer(p->ary[m], new);
p->count++;
}
263,7 → 288,8
}
 
static int idr_get_empty_slot(struct idr *idp, int starting_id,
struct idr_layer **pa)
struct idr_layer **pa, gfp_t gfp_mask,
struct idr *layer_idr)
{
struct idr_layer *p, *new;
int layers, v, id;
274,8 → 300,8
p = idp->top;
layers = idp->layers;
if (unlikely(!p)) {
if (!(p = get_from_free_list(idp)))
return -1;
if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
return -ENOMEM;
p->layer = 0;
layers = 1;
}
283,7 → 309,7
* Add a new layer to the top of the tree if the requested
* id is larger than the currently allocated space.
*/
while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) {
while (id > idr_max(layers)) {
layers++;
if (!p->count) {
/* special case: if the tree is currently empty,
291,58 → 317,56
* upwards.
*/
p->layer++;
WARN_ON_ONCE(p->prefix);
continue;
}
if (!(new = get_from_free_list(idp))) {
if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
/*
* The allocation failed. If we built part of
* the structure tear it down.
*/
// spin_lock_irqsave(&idp->lock, flags);
spin_lock_irqsave(&idp->lock, flags);
for (new = p; p && p != idp->top; new = p) {
p = p->ary[0];
new->ary[0] = NULL;
new->bitmap = new->count = 0;
new->count = 0;
bitmap_clear(new->bitmap, 0, IDR_SIZE);
__move_to_free_list(idp, new);
}
// spin_unlock_irqrestore(&idp->lock, flags);
return -1;
spin_unlock_irqrestore(&idp->lock, flags);
return -ENOMEM;
}
new->ary[0] = p;
new->count = 1;
new->layer = layers-1;
if (p->bitmap == IDR_FULL)
__set_bit(0, &new->bitmap);
new->prefix = id & idr_layer_prefix_mask(new->layer);
if (bitmap_full(p->bitmap, IDR_SIZE))
__set_bit(0, new->bitmap);
p = new;
}
rcu_assign_pointer(idp->top, p);
idp->layers = layers;
v = sub_alloc(idp, &id, pa);
if (v == IDR_NEED_TO_GROW)
v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
if (v == -EAGAIN)
goto build_up;
return(v);
}
 
static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id)
/*
* @id and @pa are from a successful allocation from idr_get_empty_slot().
* Install the user pointer @ptr and mark the slot full.
*/
static void idr_fill_slot(struct idr *idr, void *ptr, int id,
struct idr_layer **pa)
{
struct idr_layer *pa[MAX_LEVEL];
int id;
/* update hint used for lookup, cleared from free_layer() */
rcu_assign_pointer(idr->hint, pa[0]);
 
id = idr_get_empty_slot(idp, starting_id, pa);
if (id >= 0) {
/*
* Successfully found an empty slot. Install the user
* pointer and mark the slot full.
*/
rcu_assign_pointer(pa[0]->ary[id & IDR_MASK],
(struct idr_layer *)ptr);
rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
pa[0]->count++;
idr_mark_full(pa, id);
}
 
return id;
}
 
/**
* idr_get_new_above - allocate new idr entry above or equal to a start id
* @idp: idr handle
363,51 → 387,113
*/
int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
{
struct idr_layer *pa[MAX_IDR_LEVEL + 1];
int rv;
 
rv = idr_get_new_above_int(idp, ptr, starting_id);
/*
* This is a cheap hack until the IDR code can be fixed to
* return proper error values.
*/
rv = idr_get_empty_slot(idp, starting_id, pa, 0, idp);
if (rv < 0)
{
dbgprintf("fail\n");
return _idr_rc_to_errno(rv);
};
return rv == -ENOMEM ? -EAGAIN : rv;
 
idr_fill_slot(idp, ptr, rv, pa);
*id = rv;
return 0;
}
EXPORT_SYMBOL(idr_get_new_above);
 
/**
* idr_get_new - allocate new idr entry
* @idp: idr handle
* @ptr: pointer you want associated with the id
* @id: pointer to the allocated handle
* idr_preload - preload for idr_alloc()
* @gfp_mask: allocation mask to use for preloading
*
* If allocation from IDR's private freelist fails, idr_get_new_above() will
* return %-EAGAIN. The caller should retry the idr_pre_get() call to refill
* IDR's preallocation and then retry the idr_get_new_above() call.
* Preload per-cpu layer buffer for idr_alloc(). Can only be used from
* process context and each idr_preload() invocation should be matched with
* idr_preload_end(). Note that preemption is disabled while preloaded.
*
* If the idr is full idr_get_new_above() will return %-ENOSPC.
* The first idr_alloc() in the preloaded section can be treated as if it
* were invoked with @gfp_mask used for preloading. This allows using more
* permissive allocation masks for idrs protected by spinlocks.
*
* @id returns a value in the range %0 ... %0x7fffffff
* For example, if idr_alloc() below fails, the failure can be treated as
* if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
*
* idr_preload(GFP_KERNEL);
* spin_lock(lock);
*
* id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
*
* spin_unlock(lock);
* idr_preload_end();
* if (id < 0)
* error;
*/
int idr_get_new(struct idr *idp, void *ptr, int *id)
void idr_preload(gfp_t gfp_mask)
{
int rv;
 
rv = idr_get_new_above_int(idp, ptr, 0);
/*
* This is a cheap hack until the IDR code can be fixed to
* return proper error values.
* idr_alloc() is likely to succeed w/o full idr_layer buffer and
* return value from idr_alloc() needs to be checked for failure
* anyway. Silently give up if allocation fails. The caller can
* treat failures from idr_alloc() as if idr_alloc() were called
* with @gfp_mask which should be enough.
*/
if (rv < 0)
return _idr_rc_to_errno(rv);
*id = rv;
return 0;
while (idr_preload_cnt < MAX_IDR_FREE) {
struct idr_layer *new;
 
new = kzalloc(sizeof(struct idr_layer), gfp_mask);
if (!new)
break;
 
/* link the new one to per-cpu preload list */
new->ary[0] = idr_preload_head;
idr_preload_head = new;
idr_preload_cnt++;
}
}
EXPORT_SYMBOL(idr_preload);
 
/**
* idr_alloc - allocate new idr entry
* @idr: the (initialized) idr
* @ptr: pointer to be associated with the new id
* @start: the minimum id (inclusive)
* @end: the maximum id (exclusive, <= 0 for max)
* @gfp_mask: memory allocation flags
*
* Allocate an id in [start, end) and associate it with @ptr. If no ID is
* available in the specified range, returns -ENOSPC. On memory allocation
* failure, returns -ENOMEM.
*
* Note that @end is treated as max when <= 0. This is to always allow
* using @start + N as @end as long as N is inside integer range.
*
* The user is responsible for exclusively synchronizing all operations
* which may modify @idr. However, read-only accesses such as idr_find()
* or iteration can be performed under RCU read lock provided the user
* destroys @ptr in RCU-safe way after removal from idr.
*/
int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
{
int max = end > 0 ? end - 1 : INT_MAX; /* inclusive upper limit */
struct idr_layer *pa[MAX_IDR_LEVEL + 1];
int id;
 
/* sanity checks */
if (WARN_ON_ONCE(start < 0))
return -EINVAL;
if (unlikely(max < start))
return -ENOSPC;
 
/* allocate id */
id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
if (unlikely(id < 0))
return id;
if (unlikely(id > max))
return -ENOSPC;
 
idr_fill_slot(idr, ptr, id, pa);
return id;
}
EXPORT_SYMBOL_GPL(idr_alloc);
 
static void idr_remove_warning(int id)
{
printk(KERN_WARNING
418,7 → 504,7
static void sub_remove(struct idr *idp, int shift, int id)
{
struct idr_layer *p = idp->top;
struct idr_layer **pa[MAX_LEVEL];
struct idr_layer **pa[MAX_IDR_LEVEL + 1];
struct idr_layer ***paa = &pa[0];
struct idr_layer *to_free;
int n;
428,19 → 514,19
 
while ((shift > 0) && p) {
n = (id >> shift) & IDR_MASK;
__clear_bit(n, &p->bitmap);
__clear_bit(n, p->bitmap);
*++paa = &p->ary[n];
p = p->ary[n];
shift -= IDR_BITS;
}
n = id & IDR_MASK;
if (likely(p != NULL && test_bit(n, &p->bitmap))){
__clear_bit(n, &p->bitmap);
if (likely(p != NULL && test_bit(n, p->bitmap))) {
__clear_bit(n, p->bitmap);
rcu_assign_pointer(p->ary[n], NULL);
to_free = NULL;
while(*paa && ! --((**paa)->count)){
if (to_free)
free_layer(to_free);
free_layer(idp, to_free);
to_free = **paa;
**paa-- = NULL;
}
447,7 → 533,7
if (!*paa)
idp->layers = 0;
if (to_free)
free_layer(to_free);
free_layer(idp, to_free);
} else
idr_remove_warning(id);
}
462,8 → 548,9
struct idr_layer *p;
struct idr_layer *to_free;
 
/* Mask off upper bits we don't use for the search. */
id &= MAX_ID_MASK;
/* see comment in idr_find_slowpath() */
if (WARN_ON_ONCE(id < 0))
return;
 
sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
478,10 → 565,11
p = idp->top->ary[0];
rcu_assign_pointer(idp->top, p);
--idp->layers;
to_free->bitmap = to_free->count = 0;
free_layer(to_free);
to_free->count = 0;
bitmap_clear(to_free->bitmap, 0, IDR_SIZE);
free_layer(idp, to_free);
}
while (idp->id_free_cnt >= IDR_FREE_MAX) {
while (idp->id_free_cnt >= MAX_IDR_FREE) {
p = get_from_free_list(idp);
/*
* Note: we don't call the rcu callback here, since the only
492,36 → 580,23
}
return;
}
EXPORT_SYMBOL(idr_remove);
 
 
/**
* idr_remove_all - remove all ids from the given idr tree
* @idp: idr handle
*
* idr_destroy() only frees up unused, cached idp_layers, but this
* function will remove all id mappings and leave all idp_layers
* unused.
*
* A typical clean-up sequence for objects stored in an idr tree will
* use idr_for_each() to free all objects, if necessay, then
* idr_remove_all() to remove all ids, and idr_destroy() to free
* up the cached idr_layers.
*/
void idr_remove_all(struct idr *idp)
void __idr_remove_all(struct idr *idp)
{
int n, id, max;
int bt_mask;
struct idr_layer *p;
struct idr_layer *pa[MAX_LEVEL];
struct idr_layer *pa[MAX_IDR_LEVEL + 1];
struct idr_layer **paa = &pa[0];
 
n = idp->layers * IDR_BITS;
p = idp->top;
rcu_assign_pointer(idp->top, NULL);
max = 1 << n;
max = idr_max(idp->layers);
 
id = 0;
while (id < max) {
while (id >= 0 && id <= max) {
while (n > IDR_BITS && p) {
n -= IDR_BITS;
*paa++ = p;
533,7 → 608,7
/* Get the highest bit that the above add changed from 0->1. */
while (n < fls(id ^ bt_mask)) {
if (p)
free_layer(p);
free_layer(idp, p);
n += IDR_BITS;
p = *--paa;
}
540,46 → 615,54
}
idp->layers = 0;
}
EXPORT_SYMBOL(__idr_remove_all);
 
/**
* idr_destroy - release all cached layers within an idr tree
* @idp: idr handle
*
* Free all id mappings and all idp_layers. After this function, @idp is
* completely unused and can be freed / recycled. The caller is
* responsible for ensuring that no one else accesses @idp during or after
* idr_destroy().
*
* A typical clean-up sequence for objects stored in an idr tree will use
* idr_for_each() to free all objects, if necessay, then idr_destroy() to
* free up the id mappings and cached idr_layers.
*/
void idr_destroy(struct idr *idp)
{
__idr_remove_all(idp);
 
while (idp->id_free_cnt) {
struct idr_layer *p = get_from_free_list(idp);
kfree(p);
}
}
EXPORT_SYMBOL(idr_destroy);
 
 
/**
* idr_find - return pointer for given id
* @idp: idr handle
* @id: lookup key
*
* Return the pointer given the id it has been registered with. A %NULL
* return indicates that @id is not valid or you passed %NULL in
* idr_get_new().
*
* This function can be called under rcu_read_lock(), given that the leaf
* pointers lifetimes are correctly managed.
*/
void *idr_find(struct idr *idp, int id)
void *idr_find_slowpath(struct idr *idp, int id)
{
int n;
struct idr_layer *p;
 
p = rcu_dereference(idp->top);
/*
* If @id is negative, idr_find() used to ignore the sign bit and
* performed lookup with the rest of bits, which is weird and can
* lead to very obscure bugs. We're now returning NULL for all
* negative IDs but just in case somebody was depending on the sign
* bit being ignored, let's trigger WARN_ON_ONCE() so that they can
* be detected and fixed. WARN_ON_ONCE() can later be removed.
*/
if (WARN_ON_ONCE(id < 0))
return NULL;
 
p = rcu_dereference_raw(idp->top);
if (!p)
return NULL;
n = (p->layer+1) * IDR_BITS;
 
/* Mask off upper bits we don't use for the search. */
id &= MAX_ID_MASK;
 
if (id >= (1 << n))
if (id > idr_max(p->layer + 1))
return NULL;
BUG_ON(n == 0);
 
586,10 → 669,11
while (n > 0 && p) {
n -= IDR_BITS;
BUG_ON(n != p->layer*IDR_BITS);
p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
}
return((void *)p);
}
EXPORT_SYMBOL(idr_find_slowpath);
 
#if 0
/**
615,19 → 699,19
{
int n, id, max, error = 0;
struct idr_layer *p;
struct idr_layer *pa[MAX_LEVEL];
struct idr_layer *pa[MAX_IDR_LEVEL + 1];
struct idr_layer **paa = &pa[0];
 
n = idp->layers * IDR_BITS;
p = rcu_dereference(idp->top);
max = 1 << n;
p = rcu_dereference_raw(idp->top);
max = idr_max(idp->layers);
 
id = 0;
while (id < max) {
while (id >= 0 && id <= max) {
while (n > 0 && p) {
n -= IDR_BITS;
*paa++ = p;
p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
}
 
if (p) {
655,27 → 739,29
* Returns pointer to registered object with id, which is next number to
* given id. After being looked up, *@nextidp will be updated for the next
* iteration.
*
* This function can be called under rcu_read_lock(), given that the leaf
* pointers lifetimes are correctly managed.
*/
 
void *idr_get_next(struct idr *idp, int *nextidp)
{
struct idr_layer *p, *pa[MAX_LEVEL];
struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
struct idr_layer **paa = &pa[0];
int id = *nextidp;
int n, max;
 
/* find first ent */
n = idp->layers * IDR_BITS;
max = 1 << n;
p = rcu_dereference(idp->top);
p = rcu_dereference_raw(idp->top);
if (!p)
return NULL;
n = (p->layer + 1) * IDR_BITS;
max = idr_max(p->layer + 1);
 
while (id < max) {
while (id >= 0 && id <= max) {
while (n > 0 && p) {
n -= IDR_BITS;
*paa++ = p;
p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
}
 
if (p) {
683,7 → 769,14
return p;
}
 
id += 1 << n;
/*
* Proceed to the next layer at the current level. Unlike
* idr_for_each(), @id isn't guaranteed to be aligned to
* layer boundary at this point and adding 1 << n may
* incorrectly skip IDs. Make sure we jump to the
* beginning of the next layer using round_up().
*/
id = round_up(id + 1, 1 << n);
while (n < fls(id)) {
n += IDR_BITS;
p = *--paa;
691,9 → 784,9
}
return NULL;
}
EXPORT_SYMBOL(idr_get_next);
 
 
 
/**
* idr_replace - replace pointer for given id
* @idp: idr handle
711,6 → 804,10
int n;
struct idr_layer *p, *old_p;
 
/* see comment in idr_find_slowpath() */
if (WARN_ON_ONCE(id < 0))
return ERR_PTR(-EINVAL);
 
p = idp->top;
if (!p)
return ERR_PTR(-EINVAL);
717,8 → 814,6
 
n = (p->layer+1) * IDR_BITS;
 
id &= MAX_ID_MASK;
 
if (id >= (1 << n))
return ERR_PTR(-EINVAL);
 
729,7 → 824,7
}
 
n = id & IDR_MASK;
if (unlikely(p == NULL || !test_bit(n, &p->bitmap)))
if (unlikely(p == NULL || !test_bit(n, p->bitmap)))
return ERR_PTR(-ENOENT);
 
old_p = p->ary[n];
759,12 → 854,14
void idr_init(struct idr *idp)
{
memset(idp, 0, sizeof(struct idr));
// spin_lock_init(&idp->lock);
spin_lock_init(&idp->lock);
}
EXPORT_SYMBOL(idr_init);
 
#if 0
 
/*
/**
* DOC: IDA description
* IDA - IDR based ID allocator
*
* This is id allocator without id -> pointer translation. Memory
813,7 → 910,7
if (!ida->free_bitmap) {
struct ida_bitmap *bitmap;
 
bitmap = kzalloc(sizeof(struct ida_bitmap), gfp_mask);
bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
if (!bitmap)
return 0;
 
841,7 → 938,7
*/
int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
{
struct idr_layer *pa[MAX_LEVEL];
struct idr_layer *pa[MAX_IDR_LEVEL + 1];
struct ida_bitmap *bitmap;
unsigned long flags;
int idr_id = starting_id / IDA_BITMAP_BITS;
850,11 → 947,11
 
restart:
/* get vacant slot */
t = idr_get_empty_slot(&ida->idr, idr_id, pa);
t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
if (t < 0)
return _idr_rc_to_errno(t);
return t == -ENOMEM ? -EAGAIN : t;
 
if (t * IDA_BITMAP_BITS >= MAX_ID_BIT)
if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
return -ENOSPC;
 
if (t != idr_id)
888,7 → 985,7
}
 
id = idr_id * IDA_BITMAP_BITS + t;
if (id >= MAX_ID_BIT)
if (id >= MAX_IDR_BIT)
return -ENOSPC;
 
__set_bit(t, bitmap->bitmap);
913,25 → 1010,6
EXPORT_SYMBOL(ida_get_new_above);
 
/**
* ida_get_new - allocate new ID
* @ida: idr handle
* @p_id: pointer to the allocated handle
*
* Allocate new ID. It should be called with any required locks.
*
* If memory is required, it will return %-EAGAIN, you should unlock
* and go back to the idr_pre_get() call. If the idr is full, it will
* return %-ENOSPC.
*
* @p_id returns a value in the range %0 ... %0x7fffffff.
*/
int ida_get_new(struct ida *ida, int *p_id)
{
return ida_get_new_above(ida, 0, p_id);
}
EXPORT_SYMBOL(ida_get_new);
 
/**
* ida_remove - remove the given ID
* @ida: ida handle
* @id: ID to free
948,7 → 1026,7
/* clear full bits while looking up the leaf idr_layer */
while ((shift > 0) && p) {
n = (idr_id >> shift) & IDR_MASK;
__clear_bit(n, &p->bitmap);
__clear_bit(n, p->bitmap);
p = p->ary[n];
shift -= IDR_BITS;
}
957,7 → 1035,7
goto err;
 
n = idr_id & IDR_MASK;
__clear_bit(n, &p->bitmap);
__clear_bit(n, p->bitmap);
 
bitmap = (void *)p->ary[n];
if (!test_bit(offset, bitmap->bitmap))
966,7 → 1044,7
/* update bitmap and remove it if empty */
__clear_bit(offset, bitmap->bitmap);
if (--bitmap->nr_busy == 0) {
__set_bit(n, &p->bitmap); /* to please idr_remove() */
__set_bit(n, p->bitmap); /* to please idr_remove() */
idr_remove(&ida->idr, idr_id);
free_bitmap(ida, bitmap);
}
1007,3 → 1085,114
 
 
#endif
 
 
unsigned long find_first_bit(const unsigned long *addr, unsigned long size)
{
const unsigned long *p = addr;
unsigned long result = 0;
unsigned long tmp;
 
while (size & ~(BITS_PER_LONG-1)) {
if ((tmp = *(p++)))
goto found;
result += BITS_PER_LONG;
size -= BITS_PER_LONG;
}
if (!size)
return result;
 
tmp = (*p) & (~0UL >> (BITS_PER_LONG - size));
if (tmp == 0UL) /* Are any bits set? */
return result + size; /* Nope. */
found:
return result + __ffs(tmp);
}
 
unsigned long find_next_bit(const unsigned long *addr, unsigned long size,
unsigned long offset)
{
const unsigned long *p = addr + BITOP_WORD(offset);
unsigned long result = offset & ~(BITS_PER_LONG-1);
unsigned long tmp;
 
if (offset >= size)
return size;
size -= result;
offset %= BITS_PER_LONG;
if (offset) {
tmp = *(p++);
tmp &= (~0UL << offset);
if (size < BITS_PER_LONG)
goto found_first;
if (tmp)
goto found_middle;
size -= BITS_PER_LONG;
result += BITS_PER_LONG;
}
while (size & ~(BITS_PER_LONG-1)) {
if ((tmp = *(p++)))
goto found_middle;
result += BITS_PER_LONG;
size -= BITS_PER_LONG;
}
if (!size)
return result;
tmp = *p;
 
found_first:
tmp &= (~0UL >> (BITS_PER_LONG - size));
if (tmp == 0UL) /* Are any bits set? */
return result + size; /* Nope. */
found_middle:
return result + __ffs(tmp);
}
 
unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size,
unsigned long offset)
{
const unsigned long *p = addr + BITOP_WORD(offset);
unsigned long result = offset & ~(BITS_PER_LONG-1);
unsigned long tmp;
 
if (offset >= size)
return size;
size -= result;
offset %= BITS_PER_LONG;
if (offset) {
tmp = *(p++);
tmp |= ~0UL >> (BITS_PER_LONG - offset);
if (size < BITS_PER_LONG)
goto found_first;
if (~tmp)
goto found_middle;
size -= BITS_PER_LONG;
result += BITS_PER_LONG;
}
while (size & ~(BITS_PER_LONG-1)) {
if (~(tmp = *(p++)))
goto found_middle;
result += BITS_PER_LONG;
size -= BITS_PER_LONG;
}
if (!size)
return result;
tmp = *p;
 
found_first:
tmp |= ~0UL << size;
if (tmp == ~0UL) /* Are any bits zero? */
return result + size; /* Nope. */
found_middle:
return result + ffz(tmp);
}
 
unsigned int hweight32(unsigned int w)
{
unsigned int res = w - ((w >> 1) & 0x55555555);
res = (res & 0x33333333) + ((res >> 2) & 0x33333333);
res = (res + (res >> 4)) & 0x0F0F0F0F;
res = res + (res >> 8);
return (res + (res >> 16)) & 0x000000FF;
}
 
/drivers/ddk/malloc/malloc.c
2215,7 → 2215,22
else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
 
 
/* Relays to internal calls to malloc/free from realloc, memalign etc */
 
#if ONLY_MSPACES
#define internal_malloc(m, b) mspace_malloc(m, b)
#define internal_free(m, mem) mspace_free(m,mem);
#else /* ONLY_MSPACES */
#if MSPACES
#define internal_malloc(m, b)\
((m == gm)? dlmalloc(b) : mspace_malloc(m, b))
#define internal_free(m, mem)\
if (m == gm) dlfree(mem); else mspace_free(m,mem);
#else /* MSPACES */
#define internal_malloc(m, b) malloc(b)
#define internal_free(m, mem) free(mem)
#endif /* MSPACES */
#endif /* ONLY_MSPACES */
 
 
static inline void* os_mmap(size_t size)
2231,7 → 2246,6
}
 
 
 
#define MMAP_DEFAULT(s) os_mmap(s)
#define MUNMAP_DEFAULT(a, s) os_munmap((a), (s))
#define DIRECT_MMAP_DEFAULT(s) os_mmap(s)
3090,8 → 3104,7
 
/* ---------------------------- free --------------------------- */
 
void free(void* mem)
{
void free(void* mem){
/*
Consolidate freed chunks with preceeding or succeeding bordering
free chunks, if they exist, and then place in a bin. Intermixed
3206,4 → 3219,149
#endif /* FOOTERS */
}
 
void* calloc(size_t n_elements, size_t elem_size) {
void* mem;
size_t req = 0;
if (n_elements != 0) {
req = n_elements * elem_size;
if (((n_elements | elem_size) & ~(size_t)0xffff) &&
(req / n_elements != elem_size))
req = MAX_SIZE_T; /* force downstream failure on overflow */
}
mem = malloc(req);
if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
memset(mem, 0, req);
return mem;
}
 
/* ------------ Internal support for realloc, memalign, etc -------------- */
 
/* Try to realloc; only in-place unless can_move true */
static mchunkptr try_realloc_chunk(mstate m, mchunkptr p, size_t nb,
int can_move) {
mchunkptr newp = 0;
size_t oldsize = chunksize(p);
mchunkptr next = chunk_plus_offset(p, oldsize);
if (RTCHECK(ok_address(m, p) && ok_inuse(p) &&
ok_next(p, next) && ok_pinuse(next))) {
if (is_mmapped(p)) {
newp = mmap_resize(m, p, nb, can_move);
}
else if (oldsize >= nb) { /* already big enough */
size_t rsize = oldsize - nb;
if (rsize >= MIN_CHUNK_SIZE) { /* split off remainder */
mchunkptr r = chunk_plus_offset(p, nb);
set_inuse(m, p, nb);
set_inuse(m, r, rsize);
dispose_chunk(m, r, rsize);
}
newp = p;
}
else if (next == m->top) { /* extend into top */
if (oldsize + m->topsize > nb) {
size_t newsize = oldsize + m->topsize;
size_t newtopsize = newsize - nb;
mchunkptr newtop = chunk_plus_offset(p, nb);
set_inuse(m, p, nb);
newtop->head = newtopsize |PINUSE_BIT;
m->top = newtop;
m->topsize = newtopsize;
newp = p;
}
}
else if (next == m->dv) { /* extend into dv */
size_t dvs = m->dvsize;
if (oldsize + dvs >= nb) {
size_t dsize = oldsize + dvs - nb;
if (dsize >= MIN_CHUNK_SIZE) {
mchunkptr r = chunk_plus_offset(p, nb);
mchunkptr n = chunk_plus_offset(r, dsize);
set_inuse(m, p, nb);
set_size_and_pinuse_of_free_chunk(r, dsize);
clear_pinuse(n);
m->dvsize = dsize;
m->dv = r;
}
else { /* exhaust dv */
size_t newsize = oldsize + dvs;
set_inuse(m, p, newsize);
m->dvsize = 0;
m->dv = 0;
}
newp = p;
}
}
else if (!cinuse(next)) { /* extend into next free chunk */
size_t nextsize = chunksize(next);
if (oldsize + nextsize >= nb) {
size_t rsize = oldsize + nextsize - nb;
unlink_chunk(m, next, nextsize);
if (rsize < MIN_CHUNK_SIZE) {
size_t newsize = oldsize + nextsize;
set_inuse(m, p, newsize);
}
else {
mchunkptr r = chunk_plus_offset(p, nb);
set_inuse(m, p, nb);
set_inuse(m, r, rsize);
dispose_chunk(m, r, rsize);
}
newp = p;
}
}
}
else {
USAGE_ERROR_ACTION(m, chunk2mem(p));
}
return newp;
}
 
 
void* realloc(void* oldmem, size_t bytes) {
void* mem = 0;
if (oldmem == 0) {
mem = malloc(bytes);
}
else if (bytes >= MAX_REQUEST) {
// MALLOC_FAILURE_ACTION;
}
#ifdef REALLOC_ZERO_BYTES_FREES
else if (bytes == 0) {
free(oldmem);
}
#endif /* REALLOC_ZERO_BYTES_FREES */
else {
size_t nb = request2size(bytes);
mchunkptr oldp = mem2chunk(oldmem);
#if ! FOOTERS
mstate m = gm;
#else /* FOOTERS */
mstate m = get_mstate_for(oldp);
if (!ok_magic(m)) {
USAGE_ERROR_ACTION(m, oldmem);
return 0;
}
#endif /* FOOTERS */
PREACTION(m); {
mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1);
POSTACTION(m);
if (newp != 0) {
check_inuse_chunk(m, newp);
mem = chunk2mem(newp);
}
else {
mem = internal_malloc(m, bytes);
if (mem != 0) {
size_t oc = chunksize(oldp) - overhead_for(oldp);
memcpy(mem, oldmem, (oc < bytes)? oc : bytes);
internal_free(m, oldmem);
}
}
}
}
return mem;
}