Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 8027 → Rev 8028

/contrib/media/minimp3/LICENSE
0,0 → 1,117
CC0 1.0 Universal
 
Statement of Purpose
 
The laws of most jurisdictions throughout the world automatically confer
exclusive Copyright and Related Rights (defined below) upon the creator and
subsequent owner(s) (each and all, an "owner") of an original work of
authorship and/or a database (each, a "Work").
 
Certain owners wish to permanently relinquish those rights to a Work for the
purpose of contributing to a commons of creative, cultural and scientific
works ("Commons") that the public can reliably and without fear of later
claims of infringement build upon, modify, incorporate in other works, reuse
and redistribute as freely as possible in any form whatsoever and for any
purposes, including without limitation commercial purposes. These owners may
contribute to the Commons to promote the ideal of a free culture and the
further production of creative, cultural and scientific works, or to gain
reputation or greater distribution for their Work in part through the use and
efforts of others.
 
For these and/or other purposes and motivations, and without any expectation
of additional consideration or compensation, the person associating CC0 with a
Work (the "Affirmer"), to the extent that he or she is an owner of Copyright
and Related Rights in the Work, voluntarily elects to apply CC0 to the Work
and publicly distribute the Work under its terms, with knowledge of his or her
Copyright and Related Rights in the Work and the meaning and intended legal
effect of CC0 on those rights.
 
1. Copyright and Related Rights. A Work made available under CC0 may be
protected by copyright and related or neighboring rights ("Copyright and
Related Rights"). Copyright and Related Rights include, but are not limited
to, the following:
 
i. the right to reproduce, adapt, distribute, perform, display, communicate,
and translate a Work;
 
ii. moral rights retained by the original author(s) and/or performer(s);
 
iii. publicity and privacy rights pertaining to a person's image or likeness
depicted in a Work;
 
iv. rights protecting against unfair competition in regards to a Work,
subject to the limitations in paragraph 4(a), below;
 
v. rights protecting the extraction, dissemination, use and reuse of data in
a Work;
 
vi. database rights (such as those arising under Directive 96/9/EC of the
European Parliament and of the Council of 11 March 1996 on the legal
protection of databases, and under any national implementation thereof,
including any amended or successor version of such directive); and
 
vii. other similar, equivalent or corresponding rights throughout the world
based on applicable law or treaty, and any national implementations thereof.
 
2. Waiver. To the greatest extent permitted by, but not in contravention of,
applicable law, Affirmer hereby overtly, fully, permanently, irrevocably and
unconditionally waives, abandons, and surrenders all of Affirmer's Copyright
and Related Rights and associated claims and causes of action, whether now
known or unknown (including existing as well as future claims and causes of
action), in the Work (i) in all territories worldwide, (ii) for the maximum
duration provided by applicable law or treaty (including future time
extensions), (iii) in any current or future medium and for any number of
copies, and (iv) for any purpose whatsoever, including without limitation
commercial, advertising or promotional purposes (the "Waiver"). Affirmer makes
the Waiver for the benefit of each member of the public at large and to the
detriment of Affirmer's heirs and successors, fully intending that such Waiver
shall not be subject to revocation, rescission, cancellation, termination, or
any other legal or equitable action to disrupt the quiet enjoyment of the Work
by the public as contemplated by Affirmer's express Statement of Purpose.
 
3. Public License Fallback. Should any part of the Waiver for any reason be
judged legally invalid or ineffective under applicable law, then the Waiver
shall be preserved to the maximum extent permitted taking into account
Affirmer's express Statement of Purpose. In addition, to the extent the Waiver
is so judged Affirmer hereby grants to each affected person a royalty-free,
non transferable, non sublicensable, non exclusive, irrevocable and
unconditional license to exercise Affirmer's Copyright and Related Rights in
the Work (i) in all territories worldwide, (ii) for the maximum duration
provided by applicable law or treaty (including future time extensions), (iii)
in any current or future medium and for any number of copies, and (iv) for any
purpose whatsoever, including without limitation commercial, advertising or
promotional purposes (the "License"). The License shall be deemed effective as
of the date CC0 was applied by Affirmer to the Work. Should any part of the
License for any reason be judged legally invalid or ineffective under
applicable law, such partial invalidity or ineffectiveness shall not
invalidate the remainder of the License, and in such case Affirmer hereby
affirms that he or she will not (i) exercise any of his or her remaining
Copyright and Related Rights in the Work or (ii) assert any associated claims
and causes of action with respect to the Work, in either case contrary to
Affirmer's express Statement of Purpose.
 
4. Limitations and Disclaimers.
 
a. No trademark or patent rights held by Affirmer are waived, abandoned,
surrendered, licensed or otherwise affected by this document.
 
b. Affirmer offers the Work as-is and makes no representations or warranties
of any kind concerning the Work, express, implied, statutory or otherwise,
including without limitation warranties of title, merchantability, fitness
for a particular purpose, non infringement, or the absence of latent or
other defects, accuracy, or the present or absence of errors, whether or not
discoverable, all to the greatest extent permissible under applicable law.
 
c. Affirmer disclaims responsibility for clearing rights of other persons
that may apply to the Work or any use thereof, including without limitation
any person's Copyright and Related Rights in the Work. Further, Affirmer
disclaims responsibility for obtaining any necessary consents, permissions
or other rights required for any use of the Work.
 
d. Affirmer understands and acknowledges that Creative Commons is not a
party to this document and has no duty or obligation with respect to this
CC0 or use of the Work.
 
For more information, please see
<http://creativecommons.org/publicdomain/zero/1.0/>
 
/contrib/media/minimp3/README.md
0,0 → 1,301
minimp3
==========
 
[![Build Status](https://travis-ci.org/lieff/minimp3.svg)](https://travis-ci.org/lieff/minimp3)
<a href="https://scan.coverity.com/projects/lieff-minimp3">
<img alt="Coverity Scan Build Status"
src="https://scan.coverity.com/projects/14844/badge.svg"/>
</a>
[![codecov](https://codecov.io/gh/lieff/minimp3/branch/master/graph/badge.svg)](https://codecov.io/gh/lieff/minimp3)
 
Minimalistic, single-header library for decoding MP3. minimp3 is designed to be
small, fast (with SSE and NEON support), and accurate (ISO conformant). You can
find a rough benchmark below, measured using ``perf`` on an i7-6700K, IO
included, no CPU heat to address speedstep:
 
| Vector | Hz | Samples| Sec | Clockticks | Clockticks per second | PSNR | Max diff |
| ----------- | ----- | ------ | ------ | --------- | ------ | ------ | - |
|compl.bit | 48000 | 248832 | 5.184 | 14306684 | 2.759M | 124.22 | 1 |
|he_32khz.bit | 32000 | 172800 | 5.4 | 8426158 | 1.560M | 139.67 | 1 |
|he_44khz.bit | 44100 | 472320 | 10.710 | 21296300 | 1.988M | 144.04 | 1 |
|he_48khz.bit | 48000 | 172800 | 3.6 | 8453846 | 2.348M | 139.67 | 1 |
|hecommon.bit | 44100 | 69120 | 1.567 | 3169715 | 2.022M | 133.93 | 1 |
|he_free.bit | 44100 | 156672 | 3.552 | 5798418 | 1.632M | 137.48 | 1 |
|he_mode.bit | 44100 | 262656 | 5.955 | 9882314 | 1.659M | 118.00 | 1 |
|si.bit | 44100 | 135936 | 3.082 | 7170520 | 2.326M | 120.30 | 1 |
|si_block.bit | 44100 | 73728 | 1.671 | 4233136 | 2.533M | 125.18 | 1 |
|si_huff.bit | 44100 | 86400 | 1.959 | 4785322 | 2.442M | 107.98 | 1 |
|sin1k0db.bit | 44100 | 725760 | 16.457 | 24842977 | 1.509M | 111.03 | 1 |
 
Conformance test passed on all vectors (PSNR > 96db).
 
## Comparison with keyj's [minimp3](http://keyj.emphy.de/minimp3/)
 
Comparison by features:
 
| Keyj minimp3 | Current |
| ------------ | ------- |
| Fixed point | Floating point |
| source: 84kb | 70kb |
| binary: 34kb (20kb compressed) | 30kb (20kb) |
| no vector opts | SSE/NEON intrinsics |
| no free format | free format support |
 
Below, you can find the benchmark and conformance test for keyj's minimp3:
 
 
| Vector | Hz | Samples| Sec | Clockticks | Clockticks per second | PSNR | Max diff |
| ----------- | ----- | ------ | ------ | --------- | ------ | ----- | - |
|compl.bit | 48000 | 248832 | 5.184 | 31849373 | 6.143M | 71.50 | 41 |
|he_32khz.bit | 32000 | 172800 | 5.4 | 26302319 | 4.870M | 71.63 | 24 |
|he_44khz.bit | 44100 | 472320 | 10.710 | 41628861 | 3.886M | 71.63 | 24 |
|he_48khz.bit | 48000 | 172800 | 3.6 | 25899527 | 7.194M | 71.63 | 24 |
|hecommon.bit | 44100 | 69120 | 1.567 | 20437779 | 13.039M | 71.58 | 25 |
|he_free.bit | 44100 | 0 | 0 | - | - | - | - |
|he_mode.bit | 44100 | 262656 | 5.955 | 30988984 | 5.203M | 71.78 | 27 |
|si.bit | 44100 | 135936 | 3.082 | 24096223 | 7.817M | 72.35 | 36 |
|si_block.bit | 44100 | 73728 | 1.671 | 20722017 | 12.394M | 71.84 | 26 |
|si_huff.bit | 44100 | 86400 | 1.959 | 21121376 | 10.780M | 27.80 | 65535 |
|sin1k0db.bit | 44100 | 730368 | 16.561 | 55569636 | 3.355M | 0.15 | 58814 |
 
Keyj minimp3 conformance test fails on all vectors (PSNR < 96db), and free
format is unsupported. This caused some problems when it was used
[here](https://github.com/lieff/lvg), and was the main motivation for this work.
 
## Usage
 
First, we need to initialize the decoder structure:
 
```c
//#define MINIMP3_ONLY_MP3
//#define MINIMP3_ONLY_SIMD
//#define MINIMP3_NO_SIMD
//#define MINIMP3_NONSTANDARD_BUT_LOGICAL
//#define MINIMP3_FLOAT_OUTPUT
#define MINIMP3_IMPLEMENTATION
#include "minimp3.h"
...
static mp3dec_t mp3d;
mp3dec_init(&mp3d);
```
 
Note that you must define ``MINIMP3_IMPLEMENTATION`` in exactly one source file.
You can ``#include`` ``minimp3.h`` in as many files as you like.
Also you can use ``MINIMP3_ONLY_MP3`` define to strip MP1/MP2 decoding code.
MINIMP3_ONLY_SIMD define controls generic (non SSE/NEON) code generation (always enabled on x64/arm64 targets).
In case you do not want any platform-specific SIMD optimizations, you can define ``MINIMP3_NO_SIMD``.
MINIMP3_NONSTANDARD_BUT_LOGICAL define saves some code bytes, and enforces non-stadnard but logical behaviour of mono-stereo transition (rare case).
MINIMP3_FLOAT_OUTPUT makes ``mp3dec_decode_frame()`` output to be float instead of short and additional function mp3dec_f32_to_s16 will be available for float->short conversion if needed.
 
Then. we decode the input stream frame-by-frame:
 
```c
/*typedef struct
{
int frame_bytes;
int channels;
int hz;
int layer;
int bitrate_kbps;
} mp3dec_frame_info_t;*/
mp3dec_frame_info_t info;
short pcm[MINIMP3_MAX_SAMPLES_PER_FRAME];
/*unsigned char *input_buf; - input byte stream*/
samples = mp3dec_decode_frame(&mp3d, input_buf, buf_size, pcm, &info);
```
 
The ``mp3dec_decode_frame()`` function decodes one full MP3 frame from the
input buffer, which must be large enough to hold one full frame.
 
The decoder will analyze the input buffer to properly sync with the MP3 stream,
and will skip ID3 data, as well as any data which is not valid. Short buffers
may cause false sync and can produce 'squealing' artefacts. The bigger the size
of the input buffer, the more reliable the sync procedure. We recommend having
as many as 10 consecutive MP3 frames (~16KB) in the input buffer at a time.
 
The size of the consumed MP3 data is returned in the ``mp3dec_frame_info_t``
field of the ``frame_bytes`` struct; you must remove the data corresponding to
the ``frame_bytes`` field from the input buffer before the next decoder
invocation.
 
The decoding function returns the number of decoded samples. The following cases
are possible:
 
- **0:** No MP3 data was found in the input buffer
- **384:** Layer 1
- **576:** MPEG 2 Layer 3
- **1152:** Otherwise
 
The following is a description of the possible combinations of the number of
samples and ``frame_bytes`` field values:
 
- More than 0 samples and ``frame_bytes > 0``: Succesful decode
- 0 samples and ``frame_bytes > 0``: The decoder skipped ID3 or invalid data
- 0 samples and ``frame_bytes == 0``: Insufficient data
 
If ``frame_bytes == 0``, the other fields may be uninitialized or unchanged; if
``frame_bytes != 0``, the other fields are available. The application may call
``mp3dec_init()`` when changing decode position, but this is not necessary.
 
As a special case, the decoder supports already split MP3 streams (for example,
after doing an MP4 demux). In this case, the input buffer must contain _exactly
one_ non-free-format frame.
 
## Seeking
 
You can seek to any byte in the stream and call ``mp3dec_decode_frame``; this
will work in almost all cases, but is not completely guaranteed. Probablility of
sync procedure failure lowers when MAX_FRAME_SYNC_MATCHES value grows. Default
MAX_FRAME_SYNC_MATCHES=10 and probablility of sync failure should be very low.
If granule data is accidentally detected as a valid MP3 header, short audio artefacting is
possible.
 
High-level mp3dec_ex_seek function supports precise seek to sample (MP3D_SEEK_TO_SAMPLE)
using index and binary search.
 
## Track length detect
 
If the file is known to be cbr, then all frames have equal size and
lack ID3 tags, which allows us to decode the first frame and calculate all frame
positions as ``frame_bytes * N``. However, because of padding, frames can differ
in size even in this case.
 
In general case whole stream scan is needed to calculate it's length. Scan can be
omitted if vbr tag is present (added by encoders like lame and ffmpeg), which contains
length info. High-level functions automatically use the vbr tag if present.
 
## High-level API
 
If you need only decode file/buffer or use precise seek, you can use optional high-level API.
Just ``#include`` ``minimp3_ex.h`` instead and use following additional functions:
 
```c
#define MP3D_SEEK_TO_BYTE 0
#define MP3D_SEEK_TO_SAMPLE 1
 
#define MINIMP3_PREDECODE_FRAMES 2 /* frames to pre-decode and skip after seek (to fill internal structures) */
/*#define MINIMP3_SEEK_IDX_LINEAR_SEARCH*/ /* define to use linear index search instead of binary search on seek */
#define MINIMP3_IO_SIZE (128*1024) /* io buffer size for streaming functions, must be greater than MINIMP3_BUF_SIZE */
#define MINIMP3_BUF_SIZE (16*1024) /* buffer which can hold minimum 10 consecutive mp3 frames (~16KB) worst case */
#define MINIMP3_ENABLE_RING 0 /* enable hardware magic ring buffer if available, to make less input buffer memmove(s) in callback IO mode */
 
#define MP3D_E_MEMORY -1
#define MP3D_E_IOERROR -2
 
typedef struct
{
mp3d_sample_t *buffer;
size_t samples; /* channels included, byte size = samples*sizeof(mp3d_sample_t) */
int channels, hz, layer, avg_bitrate_kbps;
} mp3dec_file_info_t;
 
typedef size_t (*MP3D_READ_CB)(void *buf, size_t size, void *user_data);
typedef int (*MP3D_SEEK_CB)(uint64_t position, void *user_data);
 
typedef struct
{
MP3D_READ_CB read;
void *read_data;
MP3D_SEEK_CB seek;
void *seek_data;
} mp3dec_io_t;
 
typedef struct
{
uint64_t samples;
mp3dec_frame_info_t info;
int last_error;
...
} mp3dec_ex_t;
 
typedef int (*MP3D_ITERATE_CB)(void *user_data, const uint8_t *frame, int frame_size, int free_format_bytes, size_t buf_size, uint64_t offset, mp3dec_frame_info_t *info);
typedef int (*MP3D_PROGRESS_CB)(void *user_data, size_t file_size, uint64_t offset, mp3dec_frame_info_t *info);
 
/* decode whole buffer block */
int mp3dec_load_buf(mp3dec_t *dec, const uint8_t *buf, size_t buf_size, mp3dec_file_info_t *info, MP3D_PROGRESS_CB progress_cb, void *user_data);
int mp3dec_load_cb(mp3dec_t *dec, mp3dec_io_t *io, uint8_t *buf, size_t buf_size, mp3dec_file_info_t *info, MP3D_PROGRESS_CB progress_cb, void *user_data);
/* iterate through frames */
int mp3dec_iterate_buf(const uint8_t *buf, size_t buf_size, MP3D_ITERATE_CB callback, void *user_data);
int mp3dec_iterate_cb(mp3dec_io_t *io, uint8_t *buf, size_t buf_size, MP3D_ITERATE_CB callback, void *user_data);
/* streaming decoder with seeking capability */
int mp3dec_ex_open_buf(mp3dec_ex_t *dec, const uint8_t *buf, size_t buf_size, int seek_method);
int mp3dec_ex_open_cb(mp3dec_ex_t *dec, mp3dec_io_t *io, int seek_method);
void mp3dec_ex_close(mp3dec_ex_t *dec);
int mp3dec_ex_seek(mp3dec_ex_t *dec, uint64_t position);
size_t mp3dec_ex_read(mp3dec_ex_t *dec, mp3d_sample_t *buf, size_t samples);
#ifndef MINIMP3_NO_STDIO
/* stdio versions of file load, iterate and stream */
int mp3dec_load(mp3dec_t *dec, const char *file_name, mp3dec_file_info_t *info, MP3D_PROGRESS_CB progress_cb, void *user_data);
int mp3dec_iterate(const char *file_name, MP3D_ITERATE_CB callback, void *user_data);
int mp3dec_ex_open(mp3dec_ex_t *dec, const char *file_name, int seek_method);
#ifdef _WIN32
int mp3dec_load_w(mp3dec_t *dec, const wchar_t *file_name, mp3dec_file_info_t *info, MP3D_PROGRESS_CB progress_cb, void *user_data);
int mp3dec_iterate_w(const wchar_t *file_name, MP3D_ITERATE_CB callback, void *user_data);
int mp3dec_ex_open_w(mp3dec_ex_t *dec, const wchar_t *file_name, int seek_method);
#endif
#endif
```
 
Use MINIMP3_NO_STDIO define to exclude STDIO functions.
MINIMP3_ALLOW_MONO_STEREO_TRANSITION allows mixing mono and stereo in same file.
In that case ``mp3dec_frame_info_t->channels = 0`` is reported on such files and correct channels number passed to progress_cb callback for each frame in mp3dec_frame_info_t structure.
MP3D_PROGRESS_CB is optional and can be NULL, example of file decoding:
 
```c
mp3dec_t mp3d;
mp3dec_file_info_t info;
if (mp3dec_load(&mp3d, input_file_name, &info, NULL, NULL))
{
/* error */
}
/* mp3dec_file_info_t contains decoded samples and info,
use free(info.buffer) to deallocate samples */
```
 
Example of file decoding with seek capability:
 
```c
mp3dec_ex_t dec;
if (mp3dec_ex_open(&dec, input_file_name, MP3D_SEEK_TO_SAMPLE))
{
/* error */
}
/* dec.samples, dec.info.hz, dec.info.layer, dec.info.channels should be filled */
if (mp3dec_ex_seek(&dec, position))
{
/* error */
}
mp3d_sample_t *buffer = malloc(dec.samples*sizeof(mp3d_sample_t));
size_t readed = mp3dec_ex_read(&dec, buffer, dec.samples);
if (readed != dec.samples) /* normal eof or error condition */
{
if (dec.last_error)
{
/* error */
}
}
```
 
## Bindings
 
* https://github.com/tosone/minimp3 - go bindings
* https://github.com/notviri/rmp3 - rust `no_std` bindings which don't allocate.
* https://github.com/germangb/minimp3-rs - rust bindings
* https://github.com/johangu/node-minimp3 - NodeJS bindings
* https://github.com/pyminimp3/pyminimp3 - python bindings
* https://github.com/bashi/minimp3-wasm - wasm bindings
 
## Interesting links
 
* http://keyj.emphy.de/minimp3/
* https://github.com/technosaurus/PDMP3
* https://github.com/technosaurus/PDMP2
* https://github.com/packjpg/packMP3
* https://sites.google.com/a/kmlager.com/www/projects
* https://sourceforge.net/projects/mp3dec/
* http://blog.bjrn.se/2008/10/lets-build-mp3-decoder.html
* http://www.mp3-converter.com/mp3codec/
* http://www.multiweb.cz/twoinches/mp3inside.htm
* https://www.mp3-tech.org/
* http://id3.org/mp3Frame
* https://www.datavoyage.com/mpgscript/mpeghdr.htm
/contrib/media/minimp3/Tupfile.lua
0,0 → 1,8
if tup.getconfig("NO_GCC") ~= "" then return end
if tup.getconfig("HELPERDIR") == ""
then
HELPERDIR = "../../../../programs"
end
tup.include(HELPERDIR .. "/use_gcc.lua")
CFLAGS = CFLAGS_OPTIMIZE_SPEED .. " -o minimp3.obj -nostdlib -fwhole-program"
compile_gcc{"minimp3.c"}
/contrib/media/minimp3/compile kolibrios lib.bat
0,0 → 1,3
@echo off
gcc -c minimp3.c -o minimp3.obj -O2 -nostdlib
pause
/contrib/media/minimp3/minimp3.c
0,0 → 1,76
// minimp3 for KolibriOS in native shared COFF library format.
 
// Some functions to allow us building without any external libs
 
// memset - may be optimized
typedef unsigned int size_t;
static inline void* memset(void *mem, int c, unsigned size) {
 
for (unsigned int i = 0; i < size; i++ )
*((char *)mem+i) = (char) c;
return mem;
}
 
// memcpy - may be optimized
void* memcpy(void *dest, const void *src, size_t count) {
for (unsigned int i = 0; i < count; i++)
*(char *)(dest+i) = *(char *)(src+i);
return 0;
}
 
// For building with mingw compiler
void __chkstk_ms(){
return;
}
 
// Actual minimp3 related stuff starts here
 
#define MINIMP3_ONLY_MP3 // No MP2
//#define MINIMP3_ONLY_SIMD // No SSE2, some platforms might not have it
#define MINIMP3_NO_SIMD
//#define MINIMP3_NONSTANDARD_BUT_LOGICAL
//#define MINIMP3_FLOAT_OUTPUT
#define MINIMP3_IMPLEMENTATION // Include the actual decoder
#include "minimp3.h"
 
 
// KolibriOS type EXPORTS header
int __stdcall start(){
return 1;
}
 
int __stdcall version_major(){
return 1;
}
 
int __stdcall version_minor(){
return 0;
}
 
typedef struct{
char *name;
void *f;
}export_t;
 
char szStart[] ="START";
char szVersion[] ="version";
char szVersionM[] ="version_min";
char szInit[] ="init";
char szDecode[] ="decode";
 
export_t EXPORTS[] __asm__("EXPORTS") =
{
{ szStart, start },
{ szVersion, version_major },
{ szVersionM, version_minor },
{ szInit, mp3dec_init },
{ szDecode, mp3dec_decode_frame },
 
{ NULL, NULL },
};
 
// End of file
/contrib/media/minimp3/minimp3.h
0,0 → 1,1853
#ifndef MINIMP3_H
#define MINIMP3_H
/*
https://github.com/lieff/minimp3
To the extent possible under law, the author(s) have dedicated all copyright and related and neighboring rights to this software to the public domain worldwide.
This software is distributed without any warranty.
See <http://creativecommons.org/publicdomain/zero/1.0/>.
*/
#include <stdint.h>
 
#define MINIMP3_MAX_SAMPLES_PER_FRAME (1152*2)
 
typedef struct
{
int frame_bytes, frame_offset, channels, hz, layer, bitrate_kbps;
} mp3dec_frame_info_t;
 
typedef struct
{
float mdct_overlap[2][9*32], qmf_state[15*2*32];
int reserv, free_format_bytes;
unsigned char header[4], reserv_buf[511];
} mp3dec_t;
 
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
 
void mp3dec_init(mp3dec_t *dec);
#ifndef MINIMP3_FLOAT_OUTPUT
typedef int16_t mp3d_sample_t;
#else /* MINIMP3_FLOAT_OUTPUT */
typedef float mp3d_sample_t;
void mp3dec_f32_to_s16(const float *in, int16_t *out, int num_samples);
#endif /* MINIMP3_FLOAT_OUTPUT */
int mp3dec_decode_frame(mp3dec_t *dec, const uint8_t *mp3, int mp3_bytes, mp3d_sample_t *pcm, mp3dec_frame_info_t *info);
 
#ifdef __cplusplus
}
#endif /* __cplusplus */
 
#endif /* MINIMP3_H */
#if defined(MINIMP3_IMPLEMENTATION) && !defined(_MINIMP3_IMPLEMENTATION_GUARD)
#define _MINIMP3_IMPLEMENTATION_GUARD
 
#include <stdlib.h>
#include <string.h>
 
#define MAX_FREE_FORMAT_FRAME_SIZE 2304 /* more than ISO spec's */
#ifndef MAX_FRAME_SYNC_MATCHES
#define MAX_FRAME_SYNC_MATCHES 10
#endif /* MAX_FRAME_SYNC_MATCHES */
 
#define MAX_L3_FRAME_PAYLOAD_BYTES MAX_FREE_FORMAT_FRAME_SIZE /* MUST be >= 320000/8/32000*1152 = 1440 */
 
#define MAX_BITRESERVOIR_BYTES 511
#define SHORT_BLOCK_TYPE 2
#define STOP_BLOCK_TYPE 3
#define MODE_MONO 3
#define MODE_JOINT_STEREO 1
#define HDR_SIZE 4
#define HDR_IS_MONO(h) (((h[3]) & 0xC0) == 0xC0)
#define HDR_IS_MS_STEREO(h) (((h[3]) & 0xE0) == 0x60)
#define HDR_IS_FREE_FORMAT(h) (((h[2]) & 0xF0) == 0)
#define HDR_IS_CRC(h) (!((h[1]) & 1))
#define HDR_TEST_PADDING(h) ((h[2]) & 0x2)
#define HDR_TEST_MPEG1(h) ((h[1]) & 0x8)
#define HDR_TEST_NOT_MPEG25(h) ((h[1]) & 0x10)
#define HDR_TEST_I_STEREO(h) ((h[3]) & 0x10)
#define HDR_TEST_MS_STEREO(h) ((h[3]) & 0x20)
#define HDR_GET_STEREO_MODE(h) (((h[3]) >> 6) & 3)
#define HDR_GET_STEREO_MODE_EXT(h) (((h[3]) >> 4) & 3)
#define HDR_GET_LAYER(h) (((h[1]) >> 1) & 3)
#define HDR_GET_BITRATE(h) ((h[2]) >> 4)
#define HDR_GET_SAMPLE_RATE(h) (((h[2]) >> 2) & 3)
#define HDR_GET_MY_SAMPLE_RATE(h) (HDR_GET_SAMPLE_RATE(h) + (((h[1] >> 3) & 1) + ((h[1] >> 4) & 1))*3)
#define HDR_IS_FRAME_576(h) ((h[1] & 14) == 2)
#define HDR_IS_LAYER_1(h) ((h[1] & 6) == 6)
 
#define BITS_DEQUANTIZER_OUT -1
#define MAX_SCF (255 + BITS_DEQUANTIZER_OUT*4 - 210)
#define MAX_SCFI ((MAX_SCF + 3) & ~3)
 
#define MINIMP3_MIN(a, b) ((a) > (b) ? (b) : (a))
#define MINIMP3_MAX(a, b) ((a) < (b) ? (b) : (a))
 
#if !defined(MINIMP3_NO_SIMD)
 
#if !defined(MINIMP3_ONLY_SIMD) && (defined(_M_X64) || defined(_M_ARM64) || defined(__x86_64__) || defined(__aarch64__))
/* x64 always have SSE2, arm64 always have neon, no need for generic code */
#define MINIMP3_ONLY_SIMD
#endif /* SIMD checks... */
 
#if (defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))) || ((defined(__i386__) || defined(__x86_64__)) && defined(__SSE2__))
#if defined(_MSC_VER)
#include <intrin.h>
#endif /* defined(_MSC_VER) */
#include <immintrin.h>
#define HAVE_SSE 1
#define HAVE_SIMD 1
#define VSTORE _mm_storeu_ps
#define VLD _mm_loadu_ps
#define VSET _mm_set1_ps
#define VADD _mm_add_ps
#define VSUB _mm_sub_ps
#define VMUL _mm_mul_ps
#define VMAC(a, x, y) _mm_add_ps(a, _mm_mul_ps(x, y))
#define VMSB(a, x, y) _mm_sub_ps(a, _mm_mul_ps(x, y))
#define VMUL_S(x, s) _mm_mul_ps(x, _mm_set1_ps(s))
#define VREV(x) _mm_shuffle_ps(x, x, _MM_SHUFFLE(0, 1, 2, 3))
typedef __m128 f4;
#if defined(_MSC_VER) || defined(MINIMP3_ONLY_SIMD)
#define minimp3_cpuid __cpuid
#else /* defined(_MSC_VER) || defined(MINIMP3_ONLY_SIMD) */
static __inline__ __attribute__((always_inline)) void minimp3_cpuid(int CPUInfo[], const int InfoType)
{
#if defined(__PIC__)
__asm__ __volatile__(
#if defined(__x86_64__)
"push %%rbx\n"
"cpuid\n"
"xchgl %%ebx, %1\n"
"pop %%rbx\n"
#else /* defined(__x86_64__) */
"xchgl %%ebx, %1\n"
"cpuid\n"
"xchgl %%ebx, %1\n"
#endif /* defined(__x86_64__) */
: "=a" (CPUInfo[0]), "=r" (CPUInfo[1]), "=c" (CPUInfo[2]), "=d" (CPUInfo[3])
: "a" (InfoType));
#else /* defined(__PIC__) */
__asm__ __volatile__(
"cpuid"
: "=a" (CPUInfo[0]), "=b" (CPUInfo[1]), "=c" (CPUInfo[2]), "=d" (CPUInfo[3])
: "a" (InfoType));
#endif /* defined(__PIC__)*/
}
#endif /* defined(_MSC_VER) || defined(MINIMP3_ONLY_SIMD) */
static int have_simd()
{
#ifdef MINIMP3_ONLY_SIMD
return 1;
#else /* MINIMP3_ONLY_SIMD */
static int g_have_simd;
int CPUInfo[4];
#ifdef MINIMP3_TEST
static int g_counter;
if (g_counter++ > 100)
return 0;
#endif /* MINIMP3_TEST */
if (g_have_simd)
goto end;
minimp3_cpuid(CPUInfo, 0);
g_have_simd = 1;
if (CPUInfo[0] > 0)
{
minimp3_cpuid(CPUInfo, 1);
g_have_simd = (CPUInfo[3] & (1 << 26)) + 1; /* SSE2 */
}
end:
return g_have_simd - 1;
#endif /* MINIMP3_ONLY_SIMD */
}
#elif defined(__ARM_NEON) || defined(__aarch64__)
#include <arm_neon.h>
#define HAVE_SSE 0
#define HAVE_SIMD 1
#define VSTORE vst1q_f32
#define VLD vld1q_f32
#define VSET vmovq_n_f32
#define VADD vaddq_f32
#define VSUB vsubq_f32
#define VMUL vmulq_f32
#define VMAC(a, x, y) vmlaq_f32(a, x, y)
#define VMSB(a, x, y) vmlsq_f32(a, x, y)
#define VMUL_S(x, s) vmulq_f32(x, vmovq_n_f32(s))
#define VREV(x) vcombine_f32(vget_high_f32(vrev64q_f32(x)), vget_low_f32(vrev64q_f32(x)))
typedef float32x4_t f4;
static int have_simd()
{ /* TODO: detect neon for !MINIMP3_ONLY_SIMD */
return 1;
}
#else /* SIMD checks... */
#define HAVE_SSE 0
#define HAVE_SIMD 0
#ifdef MINIMP3_ONLY_SIMD
#error MINIMP3_ONLY_SIMD used, but SSE/NEON not enabled
#endif /* MINIMP3_ONLY_SIMD */
#endif /* SIMD checks... */
#else /* !defined(MINIMP3_NO_SIMD) */
#define HAVE_SIMD 0
#endif /* !defined(MINIMP3_NO_SIMD) */
 
#if defined(__ARM_ARCH) && (__ARM_ARCH >= 6) && !defined(__aarch64__)
#define HAVE_ARMV6 1
static __inline__ __attribute__((always_inline)) int32_t minimp3_clip_int16_arm(int32_t a)
{
int32_t x = 0;
__asm__ ("ssat %0, #16, %1" : "=r"(x) : "r"(a));
return x;
}
#endif
 
typedef struct
{
const uint8_t *buf;
int pos, limit;
} bs_t;
 
typedef struct
{
float scf[3*64];
uint8_t total_bands, stereo_bands, bitalloc[64], scfcod[64];
} L12_scale_info;
 
typedef struct
{
uint8_t tab_offset, code_tab_width, band_count;
} L12_subband_alloc_t;
 
typedef struct
{
const uint8_t *sfbtab;
uint16_t part_23_length, big_values, scalefac_compress;
uint8_t global_gain, block_type, mixed_block_flag, n_long_sfb, n_short_sfb;
uint8_t table_select[3], region_count[3], subblock_gain[3];
uint8_t preflag, scalefac_scale, count1_table, scfsi;
} L3_gr_info_t;
 
typedef struct
{
bs_t bs;
uint8_t maindata[MAX_BITRESERVOIR_BYTES + MAX_L3_FRAME_PAYLOAD_BYTES];
L3_gr_info_t gr_info[4];
float grbuf[2][576], scf[40], syn[18 + 15][2*32];
uint8_t ist_pos[2][39];
} mp3dec_scratch_t;
 
static void bs_init(bs_t *bs, const uint8_t *data, int bytes)
{
bs->buf = data;
bs->pos = 0;
bs->limit = bytes*8;
}
 
static uint32_t get_bits(bs_t *bs, int n)
{
uint32_t next, cache = 0, s = bs->pos & 7;
int shl = n + s;
const uint8_t *p = bs->buf + (bs->pos >> 3);
if ((bs->pos += n) > bs->limit)
return 0;
next = *p++ & (255 >> s);
while ((shl -= 8) > 0)
{
cache |= next << shl;
next = *p++;
}
return cache | (next >> -shl);
}
 
static int hdr_valid(const uint8_t *h)
{
return h[0] == 0xff &&
((h[1] & 0xF0) == 0xf0 || (h[1] & 0xFE) == 0xe2) &&
(HDR_GET_LAYER(h) != 0) &&
(HDR_GET_BITRATE(h) != 15) &&
(HDR_GET_SAMPLE_RATE(h) != 3);
}
 
static int hdr_compare(const uint8_t *h1, const uint8_t *h2)
{
return hdr_valid(h2) &&
((h1[1] ^ h2[1]) & 0xFE) == 0 &&
((h1[2] ^ h2[2]) & 0x0C) == 0 &&
!(HDR_IS_FREE_FORMAT(h1) ^ HDR_IS_FREE_FORMAT(h2));
}
 
static unsigned hdr_bitrate_kbps(const uint8_t *h)
{
static const uint8_t halfrate[2][3][15] = {
{ { 0,4,8,12,16,20,24,28,32,40,48,56,64,72,80 }, { 0,4,8,12,16,20,24,28,32,40,48,56,64,72,80 }, { 0,16,24,28,32,40,48,56,64,72,80,88,96,112,128 } },
{ { 0,16,20,24,28,32,40,48,56,64,80,96,112,128,160 }, { 0,16,24,28,32,40,48,56,64,80,96,112,128,160,192 }, { 0,16,32,48,64,80,96,112,128,144,160,176,192,208,224 } },
};
return 2*halfrate[!!HDR_TEST_MPEG1(h)][HDR_GET_LAYER(h) - 1][HDR_GET_BITRATE(h)];
}
 
static unsigned hdr_sample_rate_hz(const uint8_t *h)
{
static const unsigned g_hz[3] = { 44100, 48000, 32000 };
return g_hz[HDR_GET_SAMPLE_RATE(h)] >> (int)!HDR_TEST_MPEG1(h) >> (int)!HDR_TEST_NOT_MPEG25(h);
}
 
static unsigned hdr_frame_samples(const uint8_t *h)
{
return HDR_IS_LAYER_1(h) ? 384 : (1152 >> (int)HDR_IS_FRAME_576(h));
}
 
static int hdr_frame_bytes(const uint8_t *h, int free_format_size)
{
int frame_bytes = hdr_frame_samples(h)*hdr_bitrate_kbps(h)*125/hdr_sample_rate_hz(h);
if (HDR_IS_LAYER_1(h))
{
frame_bytes &= ~3; /* slot align */
}
return frame_bytes ? frame_bytes : free_format_size;
}
 
static int hdr_padding(const uint8_t *h)
{
return HDR_TEST_PADDING(h) ? (HDR_IS_LAYER_1(h) ? 4 : 1) : 0;
}
 
#ifndef MINIMP3_ONLY_MP3
static const L12_subband_alloc_t *L12_subband_alloc_table(const uint8_t *hdr, L12_scale_info *sci)
{
const L12_subband_alloc_t *alloc;
int mode = HDR_GET_STEREO_MODE(hdr);
int nbands, stereo_bands = (mode == MODE_MONO) ? 0 : (mode == MODE_JOINT_STEREO) ? (HDR_GET_STEREO_MODE_EXT(hdr) << 2) + 4 : 32;
 
if (HDR_IS_LAYER_1(hdr))
{
static const L12_subband_alloc_t g_alloc_L1[] = { { 76, 4, 32 } };
alloc = g_alloc_L1;
nbands = 32;
} else if (!HDR_TEST_MPEG1(hdr))
{
static const L12_subband_alloc_t g_alloc_L2M2[] = { { 60, 4, 4 }, { 44, 3, 7 }, { 44, 2, 19 } };
alloc = g_alloc_L2M2;
nbands = 30;
} else
{
static const L12_subband_alloc_t g_alloc_L2M1[] = { { 0, 4, 3 }, { 16, 4, 8 }, { 32, 3, 12 }, { 40, 2, 7 } };
int sample_rate_idx = HDR_GET_SAMPLE_RATE(hdr);
unsigned kbps = hdr_bitrate_kbps(hdr) >> (int)(mode != MODE_MONO);
if (!kbps) /* free-format */
{
kbps = 192;
}
 
alloc = g_alloc_L2M1;
nbands = 27;
if (kbps < 56)
{
static const L12_subband_alloc_t g_alloc_L2M1_lowrate[] = { { 44, 4, 2 }, { 44, 3, 10 } };
alloc = g_alloc_L2M1_lowrate;
nbands = sample_rate_idx == 2 ? 12 : 8;
} else if (kbps >= 96 && sample_rate_idx != 1)
{
nbands = 30;
}
}
 
sci->total_bands = (uint8_t)nbands;
sci->stereo_bands = (uint8_t)MINIMP3_MIN(stereo_bands, nbands);
 
return alloc;
}
 
static void L12_read_scalefactors(bs_t *bs, uint8_t *pba, uint8_t *scfcod, int bands, float *scf)
{
static const float g_deq_L12[18*3] = {
#define DQ(x) 9.53674316e-07f/x, 7.56931807e-07f/x, 6.00777173e-07f/x
DQ(3),DQ(7),DQ(15),DQ(31),DQ(63),DQ(127),DQ(255),DQ(511),DQ(1023),DQ(2047),DQ(4095),DQ(8191),DQ(16383),DQ(32767),DQ(65535),DQ(3),DQ(5),DQ(9)
};
int i, m;
for (i = 0; i < bands; i++)
{
float s = 0;
int ba = *pba++;
int mask = ba ? 4 + ((19 >> scfcod[i]) & 3) : 0;
for (m = 4; m; m >>= 1)
{
if (mask & m)
{
int b = get_bits(bs, 6);
s = g_deq_L12[ba*3 - 6 + b % 3]*(1 << 21 >> b/3);
}
*scf++ = s;
}
}
}
 
static void L12_read_scale_info(const uint8_t *hdr, bs_t *bs, L12_scale_info *sci)
{
static const uint8_t g_bitalloc_code_tab[] = {
0,17, 3, 4, 5,6,7, 8,9,10,11,12,13,14,15,16,
0,17,18, 3,19,4,5, 6,7, 8, 9,10,11,12,13,16,
0,17,18, 3,19,4,5,16,
0,17,18,16,
0,17,18,19, 4,5,6, 7,8, 9,10,11,12,13,14,15,
0,17,18, 3,19,4,5, 6,7, 8, 9,10,11,12,13,14,
0, 2, 3, 4, 5,6,7, 8,9,10,11,12,13,14,15,16
};
const L12_subband_alloc_t *subband_alloc = L12_subband_alloc_table(hdr, sci);
 
int i, k = 0, ba_bits = 0;
const uint8_t *ba_code_tab = g_bitalloc_code_tab;
 
for (i = 0; i < sci->total_bands; i++)
{
uint8_t ba;
if (i == k)
{
k += subband_alloc->band_count;
ba_bits = subband_alloc->code_tab_width;
ba_code_tab = g_bitalloc_code_tab + subband_alloc->tab_offset;
subband_alloc++;
}
ba = ba_code_tab[get_bits(bs, ba_bits)];
sci->bitalloc[2*i] = ba;
if (i < sci->stereo_bands)
{
ba = ba_code_tab[get_bits(bs, ba_bits)];
}
sci->bitalloc[2*i + 1] = sci->stereo_bands ? ba : 0;
}
 
for (i = 0; i < 2*sci->total_bands; i++)
{
sci->scfcod[i] = sci->bitalloc[i] ? HDR_IS_LAYER_1(hdr) ? 2 : get_bits(bs, 2) : 6;
}
 
L12_read_scalefactors(bs, sci->bitalloc, sci->scfcod, sci->total_bands*2, sci->scf);
 
for (i = sci->stereo_bands; i < sci->total_bands; i++)
{
sci->bitalloc[2*i + 1] = 0;
}
}
 
static int L12_dequantize_granule(float *grbuf, bs_t *bs, L12_scale_info *sci, int group_size)
{
int i, j, k, choff = 576;
for (j = 0; j < 4; j++)
{
float *dst = grbuf + group_size*j;
for (i = 0; i < 2*sci->total_bands; i++)
{
int ba = sci->bitalloc[i];
if (ba != 0)
{
if (ba < 17)
{
int half = (1 << (ba - 1)) - 1;
for (k = 0; k < group_size; k++)
{
dst[k] = (float)((int)get_bits(bs, ba) - half);
}
} else
{
unsigned mod = (2 << (ba - 17)) + 1; /* 3, 5, 9 */
unsigned code = get_bits(bs, mod + 2 - (mod >> 3)); /* 5, 7, 10 */
for (k = 0; k < group_size; k++, code /= mod)
{
dst[k] = (float)((int)(code % mod - mod/2));
}
}
}
dst += choff;
choff = 18 - choff;
}
}
return group_size*4;
}
 
static void L12_apply_scf_384(L12_scale_info *sci, const float *scf, float *dst)
{
int i, k;
memcpy(dst + 576 + sci->stereo_bands*18, dst + sci->stereo_bands*18, (sci->total_bands - sci->stereo_bands)*18*sizeof(float));
for (i = 0; i < sci->total_bands; i++, dst += 18, scf += 6)
{
for (k = 0; k < 12; k++)
{
dst[k + 0] *= scf[0];
dst[k + 576] *= scf[3];
}
}
}
#endif /* MINIMP3_ONLY_MP3 */
 
static int L3_read_side_info(bs_t *bs, L3_gr_info_t *gr, const uint8_t *hdr)
{
static const uint8_t g_scf_long[8][23] = {
{ 6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54,0 },
{ 12,12,12,12,12,12,16,20,24,28,32,40,48,56,64,76,90,2,2,2,2,2,0 },
{ 6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54,0 },
{ 6,6,6,6,6,6,8,10,12,14,16,18,22,26,32,38,46,54,62,70,76,36,0 },
{ 6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54,0 },
{ 4,4,4,4,4,4,6,6,8,8,10,12,16,20,24,28,34,42,50,54,76,158,0 },
{ 4,4,4,4,4,4,6,6,6,8,10,12,16,18,22,28,34,40,46,54,54,192,0 },
{ 4,4,4,4,4,4,6,6,8,10,12,16,20,24,30,38,46,56,68,84,102,26,0 }
};
static const uint8_t g_scf_short[8][40] = {
{ 4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,30,30,30,40,40,40,18,18,18,0 },
{ 8,8,8,8,8,8,8,8,8,12,12,12,16,16,16,20,20,20,24,24,24,28,28,28,36,36,36,2,2,2,2,2,2,2,2,2,26,26,26,0 },
{ 4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,8,8,8,10,10,10,14,14,14,18,18,18,26,26,26,32,32,32,42,42,42,18,18,18,0 },
{ 4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,32,32,32,44,44,44,12,12,12,0 },
{ 4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,30,30,30,40,40,40,18,18,18,0 },
{ 4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,22,22,22,30,30,30,56,56,56,0 },
{ 4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,10,10,10,12,12,12,14,14,14,16,16,16,20,20,20,26,26,26,66,66,66,0 },
{ 4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,12,12,12,16,16,16,20,20,20,26,26,26,34,34,34,42,42,42,12,12,12,0 }
};
static const uint8_t g_scf_mixed[8][40] = {
{ 6,6,6,6,6,6,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,30,30,30,40,40,40,18,18,18,0 },
{ 12,12,12,4,4,4,8,8,8,12,12,12,16,16,16,20,20,20,24,24,24,28,28,28,36,36,36,2,2,2,2,2,2,2,2,2,26,26,26,0 },
{ 6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,10,10,10,14,14,14,18,18,18,26,26,26,32,32,32,42,42,42,18,18,18,0 },
{ 6,6,6,6,6,6,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,32,32,32,44,44,44,12,12,12,0 },
{ 6,6,6,6,6,6,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,30,30,30,40,40,40,18,18,18,0 },
{ 4,4,4,4,4,4,6,6,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,22,22,22,30,30,30,56,56,56,0 },
{ 4,4,4,4,4,4,6,6,4,4,4,6,6,6,6,6,6,10,10,10,12,12,12,14,14,14,16,16,16,20,20,20,26,26,26,66,66,66,0 },
{ 4,4,4,4,4,4,6,6,4,4,4,6,6,6,8,8,8,12,12,12,16,16,16,20,20,20,26,26,26,34,34,34,42,42,42,12,12,12,0 }
};
 
unsigned tables, scfsi = 0;
int main_data_begin, part_23_sum = 0;
int sr_idx = HDR_GET_MY_SAMPLE_RATE(hdr); sr_idx -= (sr_idx != 0);
int gr_count = HDR_IS_MONO(hdr) ? 1 : 2;
 
if (HDR_TEST_MPEG1(hdr))
{
gr_count *= 2;
main_data_begin = get_bits(bs, 9);
scfsi = get_bits(bs, 7 + gr_count);
} else
{
main_data_begin = get_bits(bs, 8 + gr_count) >> gr_count;
}
 
do
{
if (HDR_IS_MONO(hdr))
{
scfsi <<= 4;
}
gr->part_23_length = (uint16_t)get_bits(bs, 12);
part_23_sum += gr->part_23_length;
gr->big_values = (uint16_t)get_bits(bs, 9);
if (gr->big_values > 288)
{
return -1;
}
gr->global_gain = (uint8_t)get_bits(bs, 8);
gr->scalefac_compress = (uint16_t)get_bits(bs, HDR_TEST_MPEG1(hdr) ? 4 : 9);
gr->sfbtab = g_scf_long[sr_idx];
gr->n_long_sfb = 22;
gr->n_short_sfb = 0;
if (get_bits(bs, 1))
{
gr->block_type = (uint8_t)get_bits(bs, 2);
if (!gr->block_type)
{
return -1;
}
gr->mixed_block_flag = (uint8_t)get_bits(bs, 1);
gr->region_count[0] = 7;
gr->region_count[1] = 255;
if (gr->block_type == SHORT_BLOCK_TYPE)
{
scfsi &= 0x0F0F;
if (!gr->mixed_block_flag)
{
gr->region_count[0] = 8;
gr->sfbtab = g_scf_short[sr_idx];
gr->n_long_sfb = 0;
gr->n_short_sfb = 39;
} else
{
gr->sfbtab = g_scf_mixed[sr_idx];
gr->n_long_sfb = HDR_TEST_MPEG1(hdr) ? 8 : 6;
gr->n_short_sfb = 30;
}
}
tables = get_bits(bs, 10);
tables <<= 5;
gr->subblock_gain[0] = (uint8_t)get_bits(bs, 3);
gr->subblock_gain[1] = (uint8_t)get_bits(bs, 3);
gr->subblock_gain[2] = (uint8_t)get_bits(bs, 3);
} else
{
gr->block_type = 0;
gr->mixed_block_flag = 0;
tables = get_bits(bs, 15);
gr->region_count[0] = (uint8_t)get_bits(bs, 4);
gr->region_count[1] = (uint8_t)get_bits(bs, 3);
gr->region_count[2] = 255;
}
gr->table_select[0] = (uint8_t)(tables >> 10);
gr->table_select[1] = (uint8_t)((tables >> 5) & 31);
gr->table_select[2] = (uint8_t)((tables) & 31);
gr->preflag = HDR_TEST_MPEG1(hdr) ? get_bits(bs, 1) : (gr->scalefac_compress >= 500);
gr->scalefac_scale = (uint8_t)get_bits(bs, 1);
gr->count1_table = (uint8_t)get_bits(bs, 1);
gr->scfsi = (uint8_t)((scfsi >> 12) & 15);
scfsi <<= 4;
gr++;
} while(--gr_count);
 
if (part_23_sum + bs->pos > bs->limit + main_data_begin*8)
{
return -1;
}
 
return main_data_begin;
}
 
static void L3_read_scalefactors(uint8_t *scf, uint8_t *ist_pos, const uint8_t *scf_size, const uint8_t *scf_count, bs_t *bitbuf, int scfsi)
{
int i, k;
for (i = 0; i < 4 && scf_count[i]; i++, scfsi *= 2)
{
int cnt = scf_count[i];
if (scfsi & 8)
{
memcpy(scf, ist_pos, cnt);
} else
{
int bits = scf_size[i];
if (!bits)
{
memset(scf, 0, cnt);
memset(ist_pos, 0, cnt);
} else
{
int max_scf = (scfsi < 0) ? (1 << bits) - 1 : -1;
for (k = 0; k < cnt; k++)
{
int s = get_bits(bitbuf, bits);
ist_pos[k] = (s == max_scf ? -1 : s);
scf[k] = s;
}
}
}
ist_pos += cnt;
scf += cnt;
}
scf[0] = scf[1] = scf[2] = 0;
}
 
static float L3_ldexp_q2(float y, int exp_q2)
{
static const float g_expfrac[4] = { 9.31322575e-10f,7.83145814e-10f,6.58544508e-10f,5.53767716e-10f };
int e;
do
{
e = MINIMP3_MIN(30*4, exp_q2);
y *= g_expfrac[e & 3]*(1 << 30 >> (e >> 2));
} while ((exp_q2 -= e) > 0);
return y;
}
 
static void L3_decode_scalefactors(const uint8_t *hdr, uint8_t *ist_pos, bs_t *bs, const L3_gr_info_t *gr, float *scf, int ch)
{
static const uint8_t g_scf_partitions[3][28] = {
{ 6,5,5, 5,6,5,5,5,6,5, 7,3,11,10,0,0, 7, 7, 7,0, 6, 6,6,3, 8, 8,5,0 },
{ 8,9,6,12,6,9,9,9,6,9,12,6,15,18,0,0, 6,15,12,0, 6,12,9,6, 6,18,9,0 },
{ 9,9,6,12,9,9,9,9,9,9,12,6,18,18,0,0,12,12,12,0,12, 9,9,6,15,12,9,0 }
};
const uint8_t *scf_partition = g_scf_partitions[!!gr->n_short_sfb + !gr->n_long_sfb];
uint8_t scf_size[4], iscf[40];
int i, scf_shift = gr->scalefac_scale + 1, gain_exp, scfsi = gr->scfsi;
float gain;
 
if (HDR_TEST_MPEG1(hdr))
{
static const uint8_t g_scfc_decode[16] = { 0,1,2,3, 12,5,6,7, 9,10,11,13, 14,15,18,19 };
int part = g_scfc_decode[gr->scalefac_compress];
scf_size[1] = scf_size[0] = (uint8_t)(part >> 2);
scf_size[3] = scf_size[2] = (uint8_t)(part & 3);
} else
{
static const uint8_t g_mod[6*4] = { 5,5,4,4,5,5,4,1,4,3,1,1,5,6,6,1,4,4,4,1,4,3,1,1 };
int k, modprod, sfc, ist = HDR_TEST_I_STEREO(hdr) && ch;
sfc = gr->scalefac_compress >> ist;
for (k = ist*3*4; sfc >= 0; sfc -= modprod, k += 4)
{
for (modprod = 1, i = 3; i >= 0; i--)
{
scf_size[i] = (uint8_t)(sfc / modprod % g_mod[k + i]);
modprod *= g_mod[k + i];
}
}
scf_partition += k;
scfsi = -16;
}
L3_read_scalefactors(iscf, ist_pos, scf_size, scf_partition, bs, scfsi);
 
if (gr->n_short_sfb)
{
int sh = 3 - scf_shift;
for (i = 0; i < gr->n_short_sfb; i += 3)
{
iscf[gr->n_long_sfb + i + 0] += gr->subblock_gain[0] << sh;
iscf[gr->n_long_sfb + i + 1] += gr->subblock_gain[1] << sh;
iscf[gr->n_long_sfb + i + 2] += gr->subblock_gain[2] << sh;
}
} else if (gr->preflag)
{
static const uint8_t g_preamp[10] = { 1,1,1,1,2,2,3,3,3,2 };
for (i = 0; i < 10; i++)
{
iscf[11 + i] += g_preamp[i];
}
}
 
gain_exp = gr->global_gain + BITS_DEQUANTIZER_OUT*4 - 210 - (HDR_IS_MS_STEREO(hdr) ? 2 : 0);
gain = L3_ldexp_q2(1 << (MAX_SCFI/4), MAX_SCFI - gain_exp);
for (i = 0; i < (int)(gr->n_long_sfb + gr->n_short_sfb); i++)
{
scf[i] = L3_ldexp_q2(gain, iscf[i] << scf_shift);
}
}
 
static const float g_pow43[129 + 16] = {
0,-1,-2.519842f,-4.326749f,-6.349604f,-8.549880f,-10.902724f,-13.390518f,-16.000000f,-18.720754f,-21.544347f,-24.463781f,-27.473142f,-30.567351f,-33.741992f,-36.993181f,
0,1,2.519842f,4.326749f,6.349604f,8.549880f,10.902724f,13.390518f,16.000000f,18.720754f,21.544347f,24.463781f,27.473142f,30.567351f,33.741992f,36.993181f,40.317474f,43.711787f,47.173345f,50.699631f,54.288352f,57.937408f,61.644865f,65.408941f,69.227979f,73.100443f,77.024898f,81.000000f,85.024491f,89.097188f,93.216975f,97.382800f,101.593667f,105.848633f,110.146801f,114.487321f,118.869381f,123.292209f,127.755065f,132.257246f,136.798076f,141.376907f,145.993119f,150.646117f,155.335327f,160.060199f,164.820202f,169.614826f,174.443577f,179.305980f,184.201575f,189.129918f,194.090580f,199.083145f,204.107210f,209.162385f,214.248292f,219.364564f,224.510845f,229.686789f,234.892058f,240.126328f,245.389280f,250.680604f,256.000000f,261.347174f,266.721841f,272.123723f,277.552547f,283.008049f,288.489971f,293.998060f,299.532071f,305.091761f,310.676898f,316.287249f,321.922592f,327.582707f,333.267377f,338.976394f,344.709550f,350.466646f,356.247482f,362.051866f,367.879608f,373.730522f,379.604427f,385.501143f,391.420496f,397.362314f,403.326427f,409.312672f,415.320884f,421.350905f,427.402579f,433.475750f,439.570269f,445.685987f,451.822757f,457.980436f,464.158883f,470.357960f,476.577530f,482.817459f,489.077615f,495.357868f,501.658090f,507.978156f,514.317941f,520.677324f,527.056184f,533.454404f,539.871867f,546.308458f,552.764065f,559.238575f,565.731879f,572.243870f,578.774440f,585.323483f,591.890898f,598.476581f,605.080431f,611.702349f,618.342238f,625.000000f,631.675540f,638.368763f,645.079578f
};
 
static float L3_pow_43(int x)
{
float frac;
int sign, mult = 256;
 
if (x < 129)
{
return g_pow43[16 + x];
}
 
if (x < 1024)
{
mult = 16;
x <<= 3;
}
 
sign = 2*x & 64;
frac = (float)((x & 63) - sign) / ((x & ~63) + sign);
return g_pow43[16 + ((x + sign) >> 6)]*(1.f + frac*((4.f/3) + frac*(2.f/9)))*mult;
}
 
static void L3_huffman(float *dst, bs_t *bs, const L3_gr_info_t *gr_info, const float *scf, int layer3gr_limit)
{
static const int16_t tabs[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
785,785,785,785,784,784,784,784,513,513,513,513,513,513,513,513,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,
-255,1313,1298,1282,785,785,785,785,784,784,784,784,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,290,288,
-255,1313,1298,1282,769,769,769,769,529,529,529,529,529,529,529,529,528,528,528,528,528,528,528,528,512,512,512,512,512,512,512,512,290,288,
-253,-318,-351,-367,785,785,785,785,784,784,784,784,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,819,818,547,547,275,275,275,275,561,560,515,546,289,274,288,258,
-254,-287,1329,1299,1314,1312,1057,1057,1042,1042,1026,1026,784,784,784,784,529,529,529,529,529,529,529,529,769,769,769,769,768,768,768,768,563,560,306,306,291,259,
-252,-413,-477,-542,1298,-575,1041,1041,784,784,784,784,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,-383,-399,1107,1092,1106,1061,849,849,789,789,1104,1091,773,773,1076,1075,341,340,325,309,834,804,577,577,532,532,516,516,832,818,803,816,561,561,531,531,515,546,289,289,288,258,
-252,-429,-493,-559,1057,1057,1042,1042,529,529,529,529,529,529,529,529,784,784,784,784,769,769,769,769,512,512,512,512,512,512,512,512,-382,1077,-415,1106,1061,1104,849,849,789,789,1091,1076,1029,1075,834,834,597,581,340,340,339,324,804,833,532,532,832,772,818,803,817,787,816,771,290,290,290,290,288,258,
-253,-349,-414,-447,-463,1329,1299,-479,1314,1312,1057,1057,1042,1042,1026,1026,785,785,785,785,784,784,784,784,769,769,769,769,768,768,768,768,-319,851,821,-335,836,850,805,849,341,340,325,336,533,533,579,579,564,564,773,832,578,548,563,516,321,276,306,291,304,259,
-251,-572,-733,-830,-863,-879,1041,1041,784,784,784,784,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,-511,-527,-543,1396,1351,1381,1366,1395,1335,1380,-559,1334,1138,1138,1063,1063,1350,1392,1031,1031,1062,1062,1364,1363,1120,1120,1333,1348,881,881,881,881,375,374,359,373,343,358,341,325,791,791,1123,1122,-703,1105,1045,-719,865,865,790,790,774,774,1104,1029,338,293,323,308,-799,-815,833,788,772,818,803,816,322,292,307,320,561,531,515,546,289,274,288,258,
-251,-525,-605,-685,-765,-831,-846,1298,1057,1057,1312,1282,785,785,785,785,784,784,784,784,769,769,769,769,512,512,512,512,512,512,512,512,1399,1398,1383,1367,1382,1396,1351,-511,1381,1366,1139,1139,1079,1079,1124,1124,1364,1349,1363,1333,882,882,882,882,807,807,807,807,1094,1094,1136,1136,373,341,535,535,881,775,867,822,774,-591,324,338,-671,849,550,550,866,864,609,609,293,336,534,534,789,835,773,-751,834,804,308,307,833,788,832,772,562,562,547,547,305,275,560,515,290,290,
-252,-397,-477,-557,-622,-653,-719,-735,-750,1329,1299,1314,1057,1057,1042,1042,1312,1282,1024,1024,785,785,785,785,784,784,784,784,769,769,769,769,-383,1127,1141,1111,1126,1140,1095,1110,869,869,883,883,1079,1109,882,882,375,374,807,868,838,881,791,-463,867,822,368,263,852,837,836,-543,610,610,550,550,352,336,534,534,865,774,851,821,850,805,593,533,579,564,773,832,578,578,548,548,577,577,307,276,306,291,516,560,259,259,
-250,-2107,-2507,-2764,-2909,-2974,-3007,-3023,1041,1041,1040,1040,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,-767,-1052,-1213,-1277,-1358,-1405,-1469,-1535,-1550,-1582,-1614,-1647,-1662,-1694,-1726,-1759,-1774,-1807,-1822,-1854,-1886,1565,-1919,-1935,-1951,-1967,1731,1730,1580,1717,-1983,1729,1564,-1999,1548,-2015,-2031,1715,1595,-2047,1714,-2063,1610,-2079,1609,-2095,1323,1323,1457,1457,1307,1307,1712,1547,1641,1700,1699,1594,1685,1625,1442,1442,1322,1322,-780,-973,-910,1279,1278,1277,1262,1276,1261,1275,1215,1260,1229,-959,974,974,989,989,-943,735,478,478,495,463,506,414,-1039,1003,958,1017,927,942,987,957,431,476,1272,1167,1228,-1183,1256,-1199,895,895,941,941,1242,1227,1212,1135,1014,1014,490,489,503,487,910,1013,985,925,863,894,970,955,1012,847,-1343,831,755,755,984,909,428,366,754,559,-1391,752,486,457,924,997,698,698,983,893,740,740,908,877,739,739,667,667,953,938,497,287,271,271,683,606,590,712,726,574,302,302,738,736,481,286,526,725,605,711,636,724,696,651,589,681,666,710,364,467,573,695,466,466,301,465,379,379,709,604,665,679,316,316,634,633,436,436,464,269,424,394,452,332,438,363,347,408,393,448,331,422,362,407,392,421,346,406,391,376,375,359,1441,1306,-2367,1290,-2383,1337,-2399,-2415,1426,1321,-2431,1411,1336,-2447,-2463,-2479,1169,1169,1049,1049,1424,1289,1412,1352,1319,-2495,1154,1154,1064,1064,1153,1153,416,390,360,404,403,389,344,374,373,343,358,372,327,357,342,311,356,326,1395,1394,1137,1137,1047,1047,1365,1392,1287,1379,1334,1364,1349,1378,1318,1363,792,792,792,792,1152,1152,1032,1032,1121,1121,1046,1046,1120,1120,1030,1030,-2895,1106,1061,1104,849,849,789,789,1091,1076,1029,1090,1060,1075,833,833,309,324,532,532,832,772,818,803,561,561,531,560,515,546,289,274,288,258,
-250,-1179,-1579,-1836,-1996,-2124,-2253,-2333,-2413,-2477,-2542,-2574,-2607,-2622,-2655,1314,1313,1298,1312,1282,785,785,785,785,1040,1040,1025,1025,768,768,768,768,-766,-798,-830,-862,-895,-911,-927,-943,-959,-975,-991,-1007,-1023,-1039,-1055,-1070,1724,1647,-1103,-1119,1631,1767,1662,1738,1708,1723,-1135,1780,1615,1779,1599,1677,1646,1778,1583,-1151,1777,1567,1737,1692,1765,1722,1707,1630,1751,1661,1764,1614,1736,1676,1763,1750,1645,1598,1721,1691,1762,1706,1582,1761,1566,-1167,1749,1629,767,766,751,765,494,494,735,764,719,749,734,763,447,447,748,718,477,506,431,491,446,476,461,505,415,430,475,445,504,399,460,489,414,503,383,474,429,459,502,502,746,752,488,398,501,473,413,472,486,271,480,270,-1439,-1455,1357,-1471,-1487,-1503,1341,1325,-1519,1489,1463,1403,1309,-1535,1372,1448,1418,1476,1356,1462,1387,-1551,1475,1340,1447,1402,1386,-1567,1068,1068,1474,1461,455,380,468,440,395,425,410,454,364,467,466,464,453,269,409,448,268,432,1371,1473,1432,1417,1308,1460,1355,1446,1459,1431,1083,1083,1401,1416,1458,1445,1067,1067,1370,1457,1051,1051,1291,1430,1385,1444,1354,1415,1400,1443,1082,1082,1173,1113,1186,1066,1185,1050,-1967,1158,1128,1172,1097,1171,1081,-1983,1157,1112,416,266,375,400,1170,1142,1127,1065,793,793,1169,1033,1156,1096,1141,1111,1155,1080,1126,1140,898,898,808,808,897,897,792,792,1095,1152,1032,1125,1110,1139,1079,1124,882,807,838,881,853,791,-2319,867,368,263,822,852,837,866,806,865,-2399,851,352,262,534,534,821,836,594,594,549,549,593,593,533,533,848,773,579,579,564,578,548,563,276,276,577,576,306,291,516,560,305,305,275,259,
-251,-892,-2058,-2620,-2828,-2957,-3023,-3039,1041,1041,1040,1040,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,-511,-527,-543,-559,1530,-575,-591,1528,1527,1407,1526,1391,1023,1023,1023,1023,1525,1375,1268,1268,1103,1103,1087,1087,1039,1039,1523,-604,815,815,815,815,510,495,509,479,508,463,507,447,431,505,415,399,-734,-782,1262,-815,1259,1244,-831,1258,1228,-847,-863,1196,-879,1253,987,987,748,-767,493,493,462,477,414,414,686,669,478,446,461,445,474,429,487,458,412,471,1266,1264,1009,1009,799,799,-1019,-1276,-1452,-1581,-1677,-1757,-1821,-1886,-1933,-1997,1257,1257,1483,1468,1512,1422,1497,1406,1467,1496,1421,1510,1134,1134,1225,1225,1466,1451,1374,1405,1252,1252,1358,1480,1164,1164,1251,1251,1238,1238,1389,1465,-1407,1054,1101,-1423,1207,-1439,830,830,1248,1038,1237,1117,1223,1148,1236,1208,411,426,395,410,379,269,1193,1222,1132,1235,1221,1116,976,976,1192,1162,1177,1220,1131,1191,963,963,-1647,961,780,-1663,558,558,994,993,437,408,393,407,829,978,813,797,947,-1743,721,721,377,392,844,950,828,890,706,706,812,859,796,960,948,843,934,874,571,571,-1919,690,555,689,421,346,539,539,944,779,918,873,932,842,903,888,570,570,931,917,674,674,-2575,1562,-2591,1609,-2607,1654,1322,1322,1441,1441,1696,1546,1683,1593,1669,1624,1426,1426,1321,1321,1639,1680,1425,1425,1305,1305,1545,1668,1608,1623,1667,1592,1638,1666,1320,1320,1652,1607,1409,1409,1304,1304,1288,1288,1664,1637,1395,1395,1335,1335,1622,1636,1394,1394,1319,1319,1606,1621,1392,1392,1137,1137,1137,1137,345,390,360,375,404,373,1047,-2751,-2767,-2783,1062,1121,1046,-2799,1077,-2815,1106,1061,789,789,1105,1104,263,355,310,340,325,354,352,262,339,324,1091,1076,1029,1090,1060,1075,833,833,788,788,1088,1028,818,818,803,803,561,561,531,531,816,771,546,546,289,274,288,258,
-253,-317,-381,-446,-478,-509,1279,1279,-811,-1179,-1451,-1756,-1900,-2028,-2189,-2253,-2333,-2414,-2445,-2511,-2526,1313,1298,-2559,1041,1041,1040,1040,1025,1025,1024,1024,1022,1007,1021,991,1020,975,1019,959,687,687,1018,1017,671,671,655,655,1016,1015,639,639,758,758,623,623,757,607,756,591,755,575,754,559,543,543,1009,783,-575,-621,-685,-749,496,-590,750,749,734,748,974,989,1003,958,988,973,1002,942,987,957,972,1001,926,986,941,971,956,1000,910,985,925,999,894,970,-1071,-1087,-1102,1390,-1135,1436,1509,1451,1374,-1151,1405,1358,1480,1420,-1167,1507,1494,1389,1342,1465,1435,1450,1326,1505,1310,1493,1373,1479,1404,1492,1464,1419,428,443,472,397,736,526,464,464,486,457,442,471,484,482,1357,1449,1434,1478,1388,1491,1341,1490,1325,1489,1463,1403,1309,1477,1372,1448,1418,1433,1476,1356,1462,1387,-1439,1475,1340,1447,1402,1474,1324,1461,1371,1473,269,448,1432,1417,1308,1460,-1711,1459,-1727,1441,1099,1099,1446,1386,1431,1401,-1743,1289,1083,1083,1160,1160,1458,1445,1067,1067,1370,1457,1307,1430,1129,1129,1098,1098,268,432,267,416,266,400,-1887,1144,1187,1082,1173,1113,1186,1066,1050,1158,1128,1143,1172,1097,1171,1081,420,391,1157,1112,1170,1142,1127,1065,1169,1049,1156,1096,1141,1111,1155,1080,1126,1154,1064,1153,1140,1095,1048,-2159,1125,1110,1137,-2175,823,823,1139,1138,807,807,384,264,368,263,868,838,853,791,867,822,852,837,866,806,865,790,-2319,851,821,836,352,262,850,805,849,-2399,533,533,835,820,336,261,578,548,563,577,532,532,832,772,562,562,547,547,305,275,560,515,290,290,288,258 };
static const uint8_t tab32[] = { 130,162,193,209,44,28,76,140,9,9,9,9,9,9,9,9,190,254,222,238,126,94,157,157,109,61,173,205 };
static const uint8_t tab33[] = { 252,236,220,204,188,172,156,140,124,108,92,76,60,44,28,12 };
static const int16_t tabindex[2*16] = { 0,32,64,98,0,132,180,218,292,364,426,538,648,746,0,1126,1460,1460,1460,1460,1460,1460,1460,1460,1842,1842,1842,1842,1842,1842,1842,1842 };
static const uint8_t g_linbits[] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,6,8,10,13,4,5,6,7,8,9,11,13 };
 
#define PEEK_BITS(n) (bs_cache >> (32 - n))
#define FLUSH_BITS(n) { bs_cache <<= (n); bs_sh += (n); }
#define CHECK_BITS while (bs_sh >= 0) { bs_cache |= (uint32_t)*bs_next_ptr++ << bs_sh; bs_sh -= 8; }
#define BSPOS ((bs_next_ptr - bs->buf)*8 - 24 + bs_sh)
 
float one = 0.0f;
int ireg = 0, big_val_cnt = gr_info->big_values;
const uint8_t *sfb = gr_info->sfbtab;
const uint8_t *bs_next_ptr = bs->buf + bs->pos/8;
uint32_t bs_cache = (((bs_next_ptr[0]*256u + bs_next_ptr[1])*256u + bs_next_ptr[2])*256u + bs_next_ptr[3]) << (bs->pos & 7);
int pairs_to_decode, np, bs_sh = (bs->pos & 7) - 8;
bs_next_ptr += 4;
 
while (big_val_cnt > 0)
{
int tab_num = gr_info->table_select[ireg];
int sfb_cnt = gr_info->region_count[ireg++];
const int16_t *codebook = tabs + tabindex[tab_num];
int linbits = g_linbits[tab_num];
if (linbits)
{
do
{
np = *sfb++ / 2;
pairs_to_decode = MINIMP3_MIN(big_val_cnt, np);
one = *scf++;
do
{
int j, w = 5;
int leaf = codebook[PEEK_BITS(w)];
while (leaf < 0)
{
FLUSH_BITS(w);
w = leaf & 7;
leaf = codebook[PEEK_BITS(w) - (leaf >> 3)];
}
FLUSH_BITS(leaf >> 8);
 
for (j = 0; j < 2; j++, dst++, leaf >>= 4)
{
int lsb = leaf & 0x0F;
if (lsb == 15)
{
lsb += PEEK_BITS(linbits);
FLUSH_BITS(linbits);
CHECK_BITS;
*dst = one*L3_pow_43(lsb)*((int32_t)bs_cache < 0 ? -1: 1);
} else
{
*dst = g_pow43[16 + lsb - 16*(bs_cache >> 31)]*one;
}
FLUSH_BITS(lsb ? 1 : 0);
}
CHECK_BITS;
} while (--pairs_to_decode);
} while ((big_val_cnt -= np) > 0 && --sfb_cnt >= 0);
} else
{
do
{
np = *sfb++ / 2;
pairs_to_decode = MINIMP3_MIN(big_val_cnt, np);
one = *scf++;
do
{
int j, w = 5;
int leaf = codebook[PEEK_BITS(w)];
while (leaf < 0)
{
FLUSH_BITS(w);
w = leaf & 7;
leaf = codebook[PEEK_BITS(w) - (leaf >> 3)];
}
FLUSH_BITS(leaf >> 8);
 
for (j = 0; j < 2; j++, dst++, leaf >>= 4)
{
int lsb = leaf & 0x0F;
*dst = g_pow43[16 + lsb - 16*(bs_cache >> 31)]*one;
FLUSH_BITS(lsb ? 1 : 0);
}
CHECK_BITS;
} while (--pairs_to_decode);
} while ((big_val_cnt -= np) > 0 && --sfb_cnt >= 0);
}
}
 
for (np = 1 - big_val_cnt;; dst += 4)
{
const uint8_t *codebook_count1 = (gr_info->count1_table) ? tab33 : tab32;
int leaf = codebook_count1[PEEK_BITS(4)];
if (!(leaf & 8))
{
leaf = codebook_count1[(leaf >> 3) + (bs_cache << 4 >> (32 - (leaf & 3)))];
}
FLUSH_BITS(leaf & 7);
if (BSPOS > layer3gr_limit)
{
break;
}
#define RELOAD_SCALEFACTOR if (!--np) { np = *sfb++/2; if (!np) break; one = *scf++; }
#define DEQ_COUNT1(s) if (leaf & (128 >> s)) { dst[s] = ((int32_t)bs_cache < 0) ? -one : one; FLUSH_BITS(1) }
RELOAD_SCALEFACTOR;
DEQ_COUNT1(0);
DEQ_COUNT1(1);
RELOAD_SCALEFACTOR;
DEQ_COUNT1(2);
DEQ_COUNT1(3);
CHECK_BITS;
}
 
bs->pos = layer3gr_limit;
}
 
static void L3_midside_stereo(float *left, int n)
{
int i = 0;
float *right = left + 576;
#if HAVE_SIMD
if (have_simd()) for (; i < n - 3; i += 4)
{
f4 vl = VLD(left + i);
f4 vr = VLD(right + i);
VSTORE(left + i, VADD(vl, vr));
VSTORE(right + i, VSUB(vl, vr));
}
#endif /* HAVE_SIMD */
for (; i < n; i++)
{
float a = left[i];
float b = right[i];
left[i] = a + b;
right[i] = a - b;
}
}
 
static void L3_intensity_stereo_band(float *left, int n, float kl, float kr)
{
int i;
for (i = 0; i < n; i++)
{
left[i + 576] = left[i]*kr;
left[i] = left[i]*kl;
}
}
 
static void L3_stereo_top_band(const float *right, const uint8_t *sfb, int nbands, int max_band[3])
{
int i, k;
 
max_band[0] = max_band[1] = max_band[2] = -1;
 
for (i = 0; i < nbands; i++)
{
for (k = 0; k < sfb[i]; k += 2)
{
if (right[k] != 0 || right[k + 1] != 0)
{
max_band[i % 3] = i;
break;
}
}
right += sfb[i];
}
}
 
static void L3_stereo_process(float *left, const uint8_t *ist_pos, const uint8_t *sfb, const uint8_t *hdr, int max_band[3], int mpeg2_sh)
{
static const float g_pan[7*2] = { 0,1,0.21132487f,0.78867513f,0.36602540f,0.63397460f,0.5f,0.5f,0.63397460f,0.36602540f,0.78867513f,0.21132487f,1,0 };
unsigned i, max_pos = HDR_TEST_MPEG1(hdr) ? 7 : 64;
 
for (i = 0; sfb[i]; i++)
{
unsigned ipos = ist_pos[i];
if ((int)i > max_band[i % 3] && ipos < max_pos)
{
float kl, kr, s = HDR_TEST_MS_STEREO(hdr) ? 1.41421356f : 1;
if (HDR_TEST_MPEG1(hdr))
{
kl = g_pan[2*ipos];
kr = g_pan[2*ipos + 1];
} else
{
kl = 1;
kr = L3_ldexp_q2(1, (ipos + 1) >> 1 << mpeg2_sh);
if (ipos & 1)
{
kl = kr;
kr = 1;
}
}
L3_intensity_stereo_band(left, sfb[i], kl*s, kr*s);
} else if (HDR_TEST_MS_STEREO(hdr))
{
L3_midside_stereo(left, sfb[i]);
}
left += sfb[i];
}
}
 
static void L3_intensity_stereo(float *left, uint8_t *ist_pos, const L3_gr_info_t *gr, const uint8_t *hdr)
{
int max_band[3], n_sfb = gr->n_long_sfb + gr->n_short_sfb;
int i, max_blocks = gr->n_short_sfb ? 3 : 1;
 
L3_stereo_top_band(left + 576, gr->sfbtab, n_sfb, max_band);
if (gr->n_long_sfb)
{
max_band[0] = max_band[1] = max_band[2] = MINIMP3_MAX(MINIMP3_MAX(max_band[0], max_band[1]), max_band[2]);
}
for (i = 0; i < max_blocks; i++)
{
int default_pos = HDR_TEST_MPEG1(hdr) ? 3 : 0;
int itop = n_sfb - max_blocks + i;
int prev = itop - max_blocks;
ist_pos[itop] = max_band[i] >= prev ? default_pos : ist_pos[prev];
}
L3_stereo_process(left, ist_pos, gr->sfbtab, hdr, max_band, gr[1].scalefac_compress & 1);
}
 
static void L3_reorder(float *grbuf, float *scratch, const uint8_t *sfb)
{
int i, len;
float *src = grbuf, *dst = scratch;
 
for (;0 != (len = *sfb); sfb += 3, src += 2*len)
{
for (i = 0; i < len; i++, src++)
{
*dst++ = src[0*len];
*dst++ = src[1*len];
*dst++ = src[2*len];
}
}
memcpy(grbuf, scratch, (dst - scratch)*sizeof(float));
}
 
static void L3_antialias(float *grbuf, int nbands)
{
static const float g_aa[2][8] = {
{0.85749293f,0.88174200f,0.94962865f,0.98331459f,0.99551782f,0.99916056f,0.99989920f,0.99999316f},
{0.51449576f,0.47173197f,0.31337745f,0.18191320f,0.09457419f,0.04096558f,0.01419856f,0.00369997f}
};
 
for (; nbands > 0; nbands--, grbuf += 18)
{
int i = 0;
#if HAVE_SIMD
if (have_simd()) for (; i < 8; i += 4)
{
f4 vu = VLD(grbuf + 18 + i);
f4 vd = VLD(grbuf + 14 - i);
f4 vc0 = VLD(g_aa[0] + i);
f4 vc1 = VLD(g_aa[1] + i);
vd = VREV(vd);
VSTORE(grbuf + 18 + i, VSUB(VMUL(vu, vc0), VMUL(vd, vc1)));
vd = VADD(VMUL(vu, vc1), VMUL(vd, vc0));
VSTORE(grbuf + 14 - i, VREV(vd));
}
#endif /* HAVE_SIMD */
#ifndef MINIMP3_ONLY_SIMD
for(; i < 8; i++)
{
float u = grbuf[18 + i];
float d = grbuf[17 - i];
grbuf[18 + i] = u*g_aa[0][i] - d*g_aa[1][i];
grbuf[17 - i] = u*g_aa[1][i] + d*g_aa[0][i];
}
#endif /* MINIMP3_ONLY_SIMD */
}
}
 
static void L3_dct3_9(float *y)
{
float s0, s1, s2, s3, s4, s5, s6, s7, s8, t0, t2, t4;
 
s0 = y[0]; s2 = y[2]; s4 = y[4]; s6 = y[6]; s8 = y[8];
t0 = s0 + s6*0.5f;
s0 -= s6;
t4 = (s4 + s2)*0.93969262f;
t2 = (s8 + s2)*0.76604444f;
s6 = (s4 - s8)*0.17364818f;
s4 += s8 - s2;
 
s2 = s0 - s4*0.5f;
y[4] = s4 + s0;
s8 = t0 - t2 + s6;
s0 = t0 - t4 + t2;
s4 = t0 + t4 - s6;
 
s1 = y[1]; s3 = y[3]; s5 = y[5]; s7 = y[7];
 
s3 *= 0.86602540f;
t0 = (s5 + s1)*0.98480775f;
t4 = (s5 - s7)*0.34202014f;
t2 = (s1 + s7)*0.64278761f;
s1 = (s1 - s5 - s7)*0.86602540f;
 
s5 = t0 - s3 - t2;
s7 = t4 - s3 - t0;
s3 = t4 + s3 - t2;
 
y[0] = s4 - s7;
y[1] = s2 + s1;
y[2] = s0 - s3;
y[3] = s8 + s5;
y[5] = s8 - s5;
y[6] = s0 + s3;
y[7] = s2 - s1;
y[8] = s4 + s7;
}
 
static void L3_imdct36(float *grbuf, float *overlap, const float *window, int nbands)
{
int i, j;
static const float g_twid9[18] = {
0.73727734f,0.79335334f,0.84339145f,0.88701083f,0.92387953f,0.95371695f,0.97629601f,0.99144486f,0.99904822f,0.67559021f,0.60876143f,0.53729961f,0.46174861f,0.38268343f,0.30070580f,0.21643961f,0.13052619f,0.04361938f
};
 
for (j = 0; j < nbands; j++, grbuf += 18, overlap += 9)
{
float co[9], si[9];
co[0] = -grbuf[0];
si[0] = grbuf[17];
for (i = 0; i < 4; i++)
{
si[8 - 2*i] = grbuf[4*i + 1] - grbuf[4*i + 2];
co[1 + 2*i] = grbuf[4*i + 1] + grbuf[4*i + 2];
si[7 - 2*i] = grbuf[4*i + 4] - grbuf[4*i + 3];
co[2 + 2*i] = -(grbuf[4*i + 3] + grbuf[4*i + 4]);
}
L3_dct3_9(co);
L3_dct3_9(si);
 
si[1] = -si[1];
si[3] = -si[3];
si[5] = -si[5];
si[7] = -si[7];
 
i = 0;
 
#if HAVE_SIMD
if (have_simd()) for (; i < 8; i += 4)
{
f4 vovl = VLD(overlap + i);
f4 vc = VLD(co + i);
f4 vs = VLD(si + i);
f4 vr0 = VLD(g_twid9 + i);
f4 vr1 = VLD(g_twid9 + 9 + i);
f4 vw0 = VLD(window + i);
f4 vw1 = VLD(window + 9 + i);
f4 vsum = VADD(VMUL(vc, vr1), VMUL(vs, vr0));
VSTORE(overlap + i, VSUB(VMUL(vc, vr0), VMUL(vs, vr1)));
VSTORE(grbuf + i, VSUB(VMUL(vovl, vw0), VMUL(vsum, vw1)));
vsum = VADD(VMUL(vovl, vw1), VMUL(vsum, vw0));
VSTORE(grbuf + 14 - i, VREV(vsum));
}
#endif /* HAVE_SIMD */
for (; i < 9; i++)
{
float ovl = overlap[i];
float sum = co[i]*g_twid9[9 + i] + si[i]*g_twid9[0 + i];
overlap[i] = co[i]*g_twid9[0 + i] - si[i]*g_twid9[9 + i];
grbuf[i] = ovl*window[0 + i] - sum*window[9 + i];
grbuf[17 - i] = ovl*window[9 + i] + sum*window[0 + i];
}
}
}
 
static void L3_idct3(float x0, float x1, float x2, float *dst)
{
float m1 = x1*0.86602540f;
float a1 = x0 - x2*0.5f;
dst[1] = x0 + x2;
dst[0] = a1 + m1;
dst[2] = a1 - m1;
}
 
static void L3_imdct12(float *x, float *dst, float *overlap)
{
static const float g_twid3[6] = { 0.79335334f,0.92387953f,0.99144486f, 0.60876143f,0.38268343f,0.13052619f };
float co[3], si[3];
int i;
 
L3_idct3(-x[0], x[6] + x[3], x[12] + x[9], co);
L3_idct3(x[15], x[12] - x[9], x[6] - x[3], si);
si[1] = -si[1];
 
for (i = 0; i < 3; i++)
{
float ovl = overlap[i];
float sum = co[i]*g_twid3[3 + i] + si[i]*g_twid3[0 + i];
overlap[i] = co[i]*g_twid3[0 + i] - si[i]*g_twid3[3 + i];
dst[i] = ovl*g_twid3[2 - i] - sum*g_twid3[5 - i];
dst[5 - i] = ovl*g_twid3[5 - i] + sum*g_twid3[2 - i];
}
}
 
static void L3_imdct_short(float *grbuf, float *overlap, int nbands)
{
for (;nbands > 0; nbands--, overlap += 9, grbuf += 18)
{
float tmp[18];
memcpy(tmp, grbuf, sizeof(tmp));
memcpy(grbuf, overlap, 6*sizeof(float));
L3_imdct12(tmp, grbuf + 6, overlap + 6);
L3_imdct12(tmp + 1, grbuf + 12, overlap + 6);
L3_imdct12(tmp + 2, overlap, overlap + 6);
}
}
 
static void L3_change_sign(float *grbuf)
{
int b, i;
for (b = 0, grbuf += 18; b < 32; b += 2, grbuf += 36)
for (i = 1; i < 18; i += 2)
grbuf[i] = -grbuf[i];
}
 
static void L3_imdct_gr(float *grbuf, float *overlap, unsigned block_type, unsigned n_long_bands)
{
static const float g_mdct_window[2][18] = {
{ 0.99904822f,0.99144486f,0.97629601f,0.95371695f,0.92387953f,0.88701083f,0.84339145f,0.79335334f,0.73727734f,0.04361938f,0.13052619f,0.21643961f,0.30070580f,0.38268343f,0.46174861f,0.53729961f,0.60876143f,0.67559021f },
{ 1,1,1,1,1,1,0.99144486f,0.92387953f,0.79335334f,0,0,0,0,0,0,0.13052619f,0.38268343f,0.60876143f }
};
if (n_long_bands)
{
L3_imdct36(grbuf, overlap, g_mdct_window[0], n_long_bands);
grbuf += 18*n_long_bands;
overlap += 9*n_long_bands;
}
if (block_type == SHORT_BLOCK_TYPE)
L3_imdct_short(grbuf, overlap, 32 - n_long_bands);
else
L3_imdct36(grbuf, overlap, g_mdct_window[block_type == STOP_BLOCK_TYPE], 32 - n_long_bands);
}
 
static void L3_save_reservoir(mp3dec_t *h, mp3dec_scratch_t *s)
{
int pos = (s->bs.pos + 7)/8u;
int remains = s->bs.limit/8u - pos;
if (remains > MAX_BITRESERVOIR_BYTES)
{
pos += remains - MAX_BITRESERVOIR_BYTES;
remains = MAX_BITRESERVOIR_BYTES;
}
if (remains > 0)
{
memmove(h->reserv_buf, s->maindata + pos, remains);
}
h->reserv = remains;
}
 
static int L3_restore_reservoir(mp3dec_t *h, bs_t *bs, mp3dec_scratch_t *s, int main_data_begin)
{
int frame_bytes = (bs->limit - bs->pos)/8;
int bytes_have = MINIMP3_MIN(h->reserv, main_data_begin);
memcpy(s->maindata, h->reserv_buf + MINIMP3_MAX(0, h->reserv - main_data_begin), MINIMP3_MIN(h->reserv, main_data_begin));
memcpy(s->maindata + bytes_have, bs->buf + bs->pos/8, frame_bytes);
bs_init(&s->bs, s->maindata, bytes_have + frame_bytes);
return h->reserv >= main_data_begin;
}
 
static void L3_decode(mp3dec_t *h, mp3dec_scratch_t *s, L3_gr_info_t *gr_info, int nch)
{
int ch;
 
for (ch = 0; ch < nch; ch++)
{
int layer3gr_limit = s->bs.pos + gr_info[ch].part_23_length;
L3_decode_scalefactors(h->header, s->ist_pos[ch], &s->bs, gr_info + ch, s->scf, ch);
L3_huffman(s->grbuf[ch], &s->bs, gr_info + ch, s->scf, layer3gr_limit);
}
 
if (HDR_TEST_I_STEREO(h->header))
{
L3_intensity_stereo(s->grbuf[0], s->ist_pos[1], gr_info, h->header);
} else if (HDR_IS_MS_STEREO(h->header))
{
L3_midside_stereo(s->grbuf[0], 576);
}
 
for (ch = 0; ch < nch; ch++, gr_info++)
{
int aa_bands = 31;
int n_long_bands = (gr_info->mixed_block_flag ? 2 : 0) << (int)(HDR_GET_MY_SAMPLE_RATE(h->header) == 2);
 
if (gr_info->n_short_sfb)
{
aa_bands = n_long_bands - 1;
L3_reorder(s->grbuf[ch] + n_long_bands*18, s->syn[0], gr_info->sfbtab + gr_info->n_long_sfb);
}
 
L3_antialias(s->grbuf[ch], aa_bands);
L3_imdct_gr(s->grbuf[ch], h->mdct_overlap[ch], gr_info->block_type, n_long_bands);
L3_change_sign(s->grbuf[ch]);
}
}
 
static void mp3d_DCT_II(float *grbuf, int n)
{
static const float g_sec[24] = {
10.19000816f,0.50060302f,0.50241929f,3.40760851f,0.50547093f,0.52249861f,2.05778098f,0.51544732f,0.56694406f,1.48416460f,0.53104258f,0.64682180f,1.16943991f,0.55310392f,0.78815460f,0.97256821f,0.58293498f,1.06067765f,0.83934963f,0.62250412f,1.72244716f,0.74453628f,0.67480832f,5.10114861f
};
int i, k = 0;
#if HAVE_SIMD
if (have_simd()) for (; k < n; k += 4)
{
f4 t[4][8], *x;
float *y = grbuf + k;
 
for (x = t[0], i = 0; i < 8; i++, x++)
{
f4 x0 = VLD(&y[i*18]);
f4 x1 = VLD(&y[(15 - i)*18]);
f4 x2 = VLD(&y[(16 + i)*18]);
f4 x3 = VLD(&y[(31 - i)*18]);
f4 t0 = VADD(x0, x3);
f4 t1 = VADD(x1, x2);
f4 t2 = VMUL_S(VSUB(x1, x2), g_sec[3*i + 0]);
f4 t3 = VMUL_S(VSUB(x0, x3), g_sec[3*i + 1]);
x[0] = VADD(t0, t1);
x[8] = VMUL_S(VSUB(t0, t1), g_sec[3*i + 2]);
x[16] = VADD(t3, t2);
x[24] = VMUL_S(VSUB(t3, t2), g_sec[3*i + 2]);
}
for (x = t[0], i = 0; i < 4; i++, x += 8)
{
f4 x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3], x4 = x[4], x5 = x[5], x6 = x[6], x7 = x[7], xt;
xt = VSUB(x0, x7); x0 = VADD(x0, x7);
x7 = VSUB(x1, x6); x1 = VADD(x1, x6);
x6 = VSUB(x2, x5); x2 = VADD(x2, x5);
x5 = VSUB(x3, x4); x3 = VADD(x3, x4);
x4 = VSUB(x0, x3); x0 = VADD(x0, x3);
x3 = VSUB(x1, x2); x1 = VADD(x1, x2);
x[0] = VADD(x0, x1);
x[4] = VMUL_S(VSUB(x0, x1), 0.70710677f);
x5 = VADD(x5, x6);
x6 = VMUL_S(VADD(x6, x7), 0.70710677f);
x7 = VADD(x7, xt);
x3 = VMUL_S(VADD(x3, x4), 0.70710677f);
x5 = VSUB(x5, VMUL_S(x7, 0.198912367f)); /* rotate by PI/8 */
x7 = VADD(x7, VMUL_S(x5, 0.382683432f));
x5 = VSUB(x5, VMUL_S(x7, 0.198912367f));
x0 = VSUB(xt, x6); xt = VADD(xt, x6);
x[1] = VMUL_S(VADD(xt, x7), 0.50979561f);
x[2] = VMUL_S(VADD(x4, x3), 0.54119611f);
x[3] = VMUL_S(VSUB(x0, x5), 0.60134488f);
x[5] = VMUL_S(VADD(x0, x5), 0.89997619f);
x[6] = VMUL_S(VSUB(x4, x3), 1.30656302f);
x[7] = VMUL_S(VSUB(xt, x7), 2.56291556f);
}
 
if (k > n - 3)
{
#if HAVE_SSE
#define VSAVE2(i, v) _mm_storel_pi((__m64 *)(void*)&y[i*18], v)
#else /* HAVE_SSE */
#define VSAVE2(i, v) vst1_f32((float32_t *)&y[i*18], vget_low_f32(v))
#endif /* HAVE_SSE */
for (i = 0; i < 7; i++, y += 4*18)
{
f4 s = VADD(t[3][i], t[3][i + 1]);
VSAVE2(0, t[0][i]);
VSAVE2(1, VADD(t[2][i], s));
VSAVE2(2, VADD(t[1][i], t[1][i + 1]));
VSAVE2(3, VADD(t[2][1 + i], s));
}
VSAVE2(0, t[0][7]);
VSAVE2(1, VADD(t[2][7], t[3][7]));
VSAVE2(2, t[1][7]);
VSAVE2(3, t[3][7]);
} else
{
#define VSAVE4(i, v) VSTORE(&y[i*18], v)
for (i = 0; i < 7; i++, y += 4*18)
{
f4 s = VADD(t[3][i], t[3][i + 1]);
VSAVE4(0, t[0][i]);
VSAVE4(1, VADD(t[2][i], s));
VSAVE4(2, VADD(t[1][i], t[1][i + 1]));
VSAVE4(3, VADD(t[2][1 + i], s));
}
VSAVE4(0, t[0][7]);
VSAVE4(1, VADD(t[2][7], t[3][7]));
VSAVE4(2, t[1][7]);
VSAVE4(3, t[3][7]);
}
} else
#endif /* HAVE_SIMD */
#ifdef MINIMP3_ONLY_SIMD
{}
#else /* MINIMP3_ONLY_SIMD */
for (; k < n; k++)
{
float t[4][8], *x, *y = grbuf + k;
 
for (x = t[0], i = 0; i < 8; i++, x++)
{
float x0 = y[i*18];
float x1 = y[(15 - i)*18];
float x2 = y[(16 + i)*18];
float x3 = y[(31 - i)*18];
float t0 = x0 + x3;
float t1 = x1 + x2;
float t2 = (x1 - x2)*g_sec[3*i + 0];
float t3 = (x0 - x3)*g_sec[3*i + 1];
x[0] = t0 + t1;
x[8] = (t0 - t1)*g_sec[3*i + 2];
x[16] = t3 + t2;
x[24] = (t3 - t2)*g_sec[3*i + 2];
}
for (x = t[0], i = 0; i < 4; i++, x += 8)
{
float x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3], x4 = x[4], x5 = x[5], x6 = x[6], x7 = x[7], xt;
xt = x0 - x7; x0 += x7;
x7 = x1 - x6; x1 += x6;
x6 = x2 - x5; x2 += x5;
x5 = x3 - x4; x3 += x4;
x4 = x0 - x3; x0 += x3;
x3 = x1 - x2; x1 += x2;
x[0] = x0 + x1;
x[4] = (x0 - x1)*0.70710677f;
x5 = x5 + x6;
x6 = (x6 + x7)*0.70710677f;
x7 = x7 + xt;
x3 = (x3 + x4)*0.70710677f;
x5 -= x7*0.198912367f; /* rotate by PI/8 */
x7 += x5*0.382683432f;
x5 -= x7*0.198912367f;
x0 = xt - x6; xt += x6;
x[1] = (xt + x7)*0.50979561f;
x[2] = (x4 + x3)*0.54119611f;
x[3] = (x0 - x5)*0.60134488f;
x[5] = (x0 + x5)*0.89997619f;
x[6] = (x4 - x3)*1.30656302f;
x[7] = (xt - x7)*2.56291556f;
 
}
for (i = 0; i < 7; i++, y += 4*18)
{
y[0*18] = t[0][i];
y[1*18] = t[2][i] + t[3][i] + t[3][i + 1];
y[2*18] = t[1][i] + t[1][i + 1];
y[3*18] = t[2][i + 1] + t[3][i] + t[3][i + 1];
}
y[0*18] = t[0][7];
y[1*18] = t[2][7] + t[3][7];
y[2*18] = t[1][7];
y[3*18] = t[3][7];
}
#endif /* MINIMP3_ONLY_SIMD */
}
 
#ifndef MINIMP3_FLOAT_OUTPUT
static int16_t mp3d_scale_pcm(float sample)
{
#if HAVE_ARMV6
int32_t s32 = (int32_t)(sample + .5f);
s32 -= (s32 < 0);
int16_t s = (int16_t)minimp3_clip_int16_arm(s32);
#else
if (sample >= 32766.5) return (int16_t) 32767;
if (sample <= -32767.5) return (int16_t)-32768;
int16_t s = (int16_t)(sample + .5f);
s -= (s < 0); /* away from zero, to be compliant */
#endif
return s;
}
#else /* MINIMP3_FLOAT_OUTPUT */
static float mp3d_scale_pcm(float sample)
{
return sample*(1.f/32768.f);
}
#endif /* MINIMP3_FLOAT_OUTPUT */
 
static void mp3d_synth_pair(mp3d_sample_t *pcm, int nch, const float *z)
{
float a;
a = (z[14*64] - z[ 0]) * 29;
a += (z[ 1*64] + z[13*64]) * 213;
a += (z[12*64] - z[ 2*64]) * 459;
a += (z[ 3*64] + z[11*64]) * 2037;
a += (z[10*64] - z[ 4*64]) * 5153;
a += (z[ 5*64] + z[ 9*64]) * 6574;
a += (z[ 8*64] - z[ 6*64]) * 37489;
a += z[ 7*64] * 75038;
pcm[0] = mp3d_scale_pcm(a);
 
z += 2;
a = z[14*64] * 104;
a += z[12*64] * 1567;
a += z[10*64] * 9727;
a += z[ 8*64] * 64019;
a += z[ 6*64] * -9975;
a += z[ 4*64] * -45;
a += z[ 2*64] * 146;
a += z[ 0*64] * -5;
pcm[16*nch] = mp3d_scale_pcm(a);
}
 
static void mp3d_synth(float *xl, mp3d_sample_t *dstl, int nch, float *lins)
{
int i;
float *xr = xl + 576*(nch - 1);
mp3d_sample_t *dstr = dstl + (nch - 1);
 
static const float g_win[] = {
-1,26,-31,208,218,401,-519,2063,2000,4788,-5517,7134,5959,35640,-39336,74992,
-1,24,-35,202,222,347,-581,2080,1952,4425,-5879,7640,5288,33791,-41176,74856,
-1,21,-38,196,225,294,-645,2087,1893,4063,-6237,8092,4561,31947,-43006,74630,
-1,19,-41,190,227,244,-711,2085,1822,3705,-6589,8492,3776,30112,-44821,74313,
-1,17,-45,183,228,197,-779,2075,1739,3351,-6935,8840,2935,28289,-46617,73908,
-1,16,-49,176,228,153,-848,2057,1644,3004,-7271,9139,2037,26482,-48390,73415,
-2,14,-53,169,227,111,-919,2032,1535,2663,-7597,9389,1082,24694,-50137,72835,
-2,13,-58,161,224,72,-991,2001,1414,2330,-7910,9592,70,22929,-51853,72169,
-2,11,-63,154,221,36,-1064,1962,1280,2006,-8209,9750,-998,21189,-53534,71420,
-2,10,-68,147,215,2,-1137,1919,1131,1692,-8491,9863,-2122,19478,-55178,70590,
-3,9,-73,139,208,-29,-1210,1870,970,1388,-8755,9935,-3300,17799,-56778,69679,
-3,8,-79,132,200,-57,-1283,1817,794,1095,-8998,9966,-4533,16155,-58333,68692,
-4,7,-85,125,189,-83,-1356,1759,605,814,-9219,9959,-5818,14548,-59838,67629,
-4,7,-91,117,177,-106,-1428,1698,402,545,-9416,9916,-7154,12980,-61289,66494,
-5,6,-97,111,163,-127,-1498,1634,185,288,-9585,9838,-8540,11455,-62684,65290
};
float *zlin = lins + 15*64;
const float *w = g_win;
 
zlin[4*15] = xl[18*16];
zlin[4*15 + 1] = xr[18*16];
zlin[4*15 + 2] = xl[0];
zlin[4*15 + 3] = xr[0];
 
zlin[4*31] = xl[1 + 18*16];
zlin[4*31 + 1] = xr[1 + 18*16];
zlin[4*31 + 2] = xl[1];
zlin[4*31 + 3] = xr[1];
 
mp3d_synth_pair(dstr, nch, lins + 4*15 + 1);
mp3d_synth_pair(dstr + 32*nch, nch, lins + 4*15 + 64 + 1);
mp3d_synth_pair(dstl, nch, lins + 4*15);
mp3d_synth_pair(dstl + 32*nch, nch, lins + 4*15 + 64);
 
#if HAVE_SIMD
if (have_simd()) for (i = 14; i >= 0; i--)
{
#define VLOAD(k) f4 w0 = VSET(*w++); f4 w1 = VSET(*w++); f4 vz = VLD(&zlin[4*i - 64*k]); f4 vy = VLD(&zlin[4*i - 64*(15 - k)]);
#define V0(k) { VLOAD(k) b = VADD(VMUL(vz, w1), VMUL(vy, w0)) ; a = VSUB(VMUL(vz, w0), VMUL(vy, w1)); }
#define V1(k) { VLOAD(k) b = VADD(b, VADD(VMUL(vz, w1), VMUL(vy, w0))); a = VADD(a, VSUB(VMUL(vz, w0), VMUL(vy, w1))); }
#define V2(k) { VLOAD(k) b = VADD(b, VADD(VMUL(vz, w1), VMUL(vy, w0))); a = VADD(a, VSUB(VMUL(vy, w1), VMUL(vz, w0))); }
f4 a, b;
zlin[4*i] = xl[18*(31 - i)];
zlin[4*i + 1] = xr[18*(31 - i)];
zlin[4*i + 2] = xl[1 + 18*(31 - i)];
zlin[4*i + 3] = xr[1 + 18*(31 - i)];
zlin[4*i + 64] = xl[1 + 18*(1 + i)];
zlin[4*i + 64 + 1] = xr[1 + 18*(1 + i)];
zlin[4*i - 64 + 2] = xl[18*(1 + i)];
zlin[4*i - 64 + 3] = xr[18*(1 + i)];
 
V0(0) V2(1) V1(2) V2(3) V1(4) V2(5) V1(6) V2(7)
 
{
#ifndef MINIMP3_FLOAT_OUTPUT
#if HAVE_SSE
static const f4 g_max = { 32767.0f, 32767.0f, 32767.0f, 32767.0f };
static const f4 g_min = { -32768.0f, -32768.0f, -32768.0f, -32768.0f };
__m128i pcm8 = _mm_packs_epi32(_mm_cvtps_epi32(_mm_max_ps(_mm_min_ps(a, g_max), g_min)),
_mm_cvtps_epi32(_mm_max_ps(_mm_min_ps(b, g_max), g_min)));
dstr[(15 - i)*nch] = _mm_extract_epi16(pcm8, 1);
dstr[(17 + i)*nch] = _mm_extract_epi16(pcm8, 5);
dstl[(15 - i)*nch] = _mm_extract_epi16(pcm8, 0);
dstl[(17 + i)*nch] = _mm_extract_epi16(pcm8, 4);
dstr[(47 - i)*nch] = _mm_extract_epi16(pcm8, 3);
dstr[(49 + i)*nch] = _mm_extract_epi16(pcm8, 7);
dstl[(47 - i)*nch] = _mm_extract_epi16(pcm8, 2);
dstl[(49 + i)*nch] = _mm_extract_epi16(pcm8, 6);
#else /* HAVE_SSE */
int16x4_t pcma, pcmb;
a = VADD(a, VSET(0.5f));
b = VADD(b, VSET(0.5f));
pcma = vqmovn_s32(vqaddq_s32(vcvtq_s32_f32(a), vreinterpretq_s32_u32(vcltq_f32(a, VSET(0)))));
pcmb = vqmovn_s32(vqaddq_s32(vcvtq_s32_f32(b), vreinterpretq_s32_u32(vcltq_f32(b, VSET(0)))));
vst1_lane_s16(dstr + (15 - i)*nch, pcma, 1);
vst1_lane_s16(dstr + (17 + i)*nch, pcmb, 1);
vst1_lane_s16(dstl + (15 - i)*nch, pcma, 0);
vst1_lane_s16(dstl + (17 + i)*nch, pcmb, 0);
vst1_lane_s16(dstr + (47 - i)*nch, pcma, 3);
vst1_lane_s16(dstr + (49 + i)*nch, pcmb, 3);
vst1_lane_s16(dstl + (47 - i)*nch, pcma, 2);
vst1_lane_s16(dstl + (49 + i)*nch, pcmb, 2);
#endif /* HAVE_SSE */
 
#else /* MINIMP3_FLOAT_OUTPUT */
 
static const f4 g_scale = { 1.0f/32768.0f, 1.0f/32768.0f, 1.0f/32768.0f, 1.0f/32768.0f };
a = VMUL(a, g_scale);
b = VMUL(b, g_scale);
#if HAVE_SSE
_mm_store_ss(dstr + (15 - i)*nch, _mm_shuffle_ps(a, a, _MM_SHUFFLE(1, 1, 1, 1)));
_mm_store_ss(dstr + (17 + i)*nch, _mm_shuffle_ps(b, b, _MM_SHUFFLE(1, 1, 1, 1)));
_mm_store_ss(dstl + (15 - i)*nch, _mm_shuffle_ps(a, a, _MM_SHUFFLE(0, 0, 0, 0)));
_mm_store_ss(dstl + (17 + i)*nch, _mm_shuffle_ps(b, b, _MM_SHUFFLE(0, 0, 0, 0)));
_mm_store_ss(dstr + (47 - i)*nch, _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 3, 3, 3)));
_mm_store_ss(dstr + (49 + i)*nch, _mm_shuffle_ps(b, b, _MM_SHUFFLE(3, 3, 3, 3)));
_mm_store_ss(dstl + (47 - i)*nch, _mm_shuffle_ps(a, a, _MM_SHUFFLE(2, 2, 2, 2)));
_mm_store_ss(dstl + (49 + i)*nch, _mm_shuffle_ps(b, b, _MM_SHUFFLE(2, 2, 2, 2)));
#else /* HAVE_SSE */
vst1q_lane_f32(dstr + (15 - i)*nch, a, 1);
vst1q_lane_f32(dstr + (17 + i)*nch, b, 1);
vst1q_lane_f32(dstl + (15 - i)*nch, a, 0);
vst1q_lane_f32(dstl + (17 + i)*nch, b, 0);
vst1q_lane_f32(dstr + (47 - i)*nch, a, 3);
vst1q_lane_f32(dstr + (49 + i)*nch, b, 3);
vst1q_lane_f32(dstl + (47 - i)*nch, a, 2);
vst1q_lane_f32(dstl + (49 + i)*nch, b, 2);
#endif /* HAVE_SSE */
#endif /* MINIMP3_FLOAT_OUTPUT */
}
} else
#endif /* HAVE_SIMD */
#ifdef MINIMP3_ONLY_SIMD
{}
#else /* MINIMP3_ONLY_SIMD */
for (i = 14; i >= 0; i--)
{
#define LOAD(k) float w0 = *w++; float w1 = *w++; float *vz = &zlin[4*i - k*64]; float *vy = &zlin[4*i - (15 - k)*64];
#define S0(k) { int j; LOAD(k); for (j = 0; j < 4; j++) b[j] = vz[j]*w1 + vy[j]*w0, a[j] = vz[j]*w0 - vy[j]*w1; }
#define S1(k) { int j; LOAD(k); for (j = 0; j < 4; j++) b[j] += vz[j]*w1 + vy[j]*w0, a[j] += vz[j]*w0 - vy[j]*w1; }
#define S2(k) { int j; LOAD(k); for (j = 0; j < 4; j++) b[j] += vz[j]*w1 + vy[j]*w0, a[j] += vy[j]*w1 - vz[j]*w0; }
float a[4], b[4];
 
zlin[4*i] = xl[18*(31 - i)];
zlin[4*i + 1] = xr[18*(31 - i)];
zlin[4*i + 2] = xl[1 + 18*(31 - i)];
zlin[4*i + 3] = xr[1 + 18*(31 - i)];
zlin[4*(i + 16)] = xl[1 + 18*(1 + i)];
zlin[4*(i + 16) + 1] = xr[1 + 18*(1 + i)];
zlin[4*(i - 16) + 2] = xl[18*(1 + i)];
zlin[4*(i - 16) + 3] = xr[18*(1 + i)];
 
S0(0) S2(1) S1(2) S2(3) S1(4) S2(5) S1(6) S2(7)
 
dstr[(15 - i)*nch] = mp3d_scale_pcm(a[1]);
dstr[(17 + i)*nch] = mp3d_scale_pcm(b[1]);
dstl[(15 - i)*nch] = mp3d_scale_pcm(a[0]);
dstl[(17 + i)*nch] = mp3d_scale_pcm(b[0]);
dstr[(47 - i)*nch] = mp3d_scale_pcm(a[3]);
dstr[(49 + i)*nch] = mp3d_scale_pcm(b[3]);
dstl[(47 - i)*nch] = mp3d_scale_pcm(a[2]);
dstl[(49 + i)*nch] = mp3d_scale_pcm(b[2]);
}
#endif /* MINIMP3_ONLY_SIMD */
}
 
static void mp3d_synth_granule(float *qmf_state, float *grbuf, int nbands, int nch, mp3d_sample_t *pcm, float *lins)
{
int i;
for (i = 0; i < nch; i++)
{
mp3d_DCT_II(grbuf + 576*i, nbands);
}
 
memcpy(lins, qmf_state, sizeof(float)*15*64);
 
for (i = 0; i < nbands; i += 2)
{
mp3d_synth(grbuf + i, pcm + 32*nch*i, nch, lins + i*64);
}
#ifndef MINIMP3_NONSTANDARD_BUT_LOGICAL
if (nch == 1)
{
for (i = 0; i < 15*64; i += 2)
{
qmf_state[i] = lins[nbands*64 + i];
}
} else
#endif /* MINIMP3_NONSTANDARD_BUT_LOGICAL */
{
memcpy(qmf_state, lins + nbands*64, sizeof(float)*15*64);
}
}
 
static int mp3d_match_frame(const uint8_t *hdr, int mp3_bytes, int frame_bytes)
{
int i, nmatch;
for (i = 0, nmatch = 0; nmatch < MAX_FRAME_SYNC_MATCHES; nmatch++)
{
i += hdr_frame_bytes(hdr + i, frame_bytes) + hdr_padding(hdr + i);
if (i + HDR_SIZE > mp3_bytes)
return nmatch > 0;
if (!hdr_compare(hdr, hdr + i))
return 0;
}
return 1;
}
 
static int mp3d_find_frame(const uint8_t *mp3, int mp3_bytes, int *free_format_bytes, int *ptr_frame_bytes)
{
int i, k;
for (i = 0; i < mp3_bytes - HDR_SIZE; i++, mp3++)
{
if (hdr_valid(mp3))
{
int frame_bytes = hdr_frame_bytes(mp3, *free_format_bytes);
int frame_and_padding = frame_bytes + hdr_padding(mp3);
 
for (k = HDR_SIZE; !frame_bytes && k < MAX_FREE_FORMAT_FRAME_SIZE && i + 2*k < mp3_bytes - HDR_SIZE; k++)
{
if (hdr_compare(mp3, mp3 + k))
{
int fb = k - hdr_padding(mp3);
int nextfb = fb + hdr_padding(mp3 + k);
if (i + k + nextfb + HDR_SIZE > mp3_bytes || !hdr_compare(mp3, mp3 + k + nextfb))
continue;
frame_and_padding = k;
frame_bytes = fb;
*free_format_bytes = fb;
}
}
if ((frame_bytes && i + frame_and_padding <= mp3_bytes &&
mp3d_match_frame(mp3, mp3_bytes - i, frame_bytes)) ||
(!i && frame_and_padding == mp3_bytes))
{
*ptr_frame_bytes = frame_and_padding;
return i;
}
*free_format_bytes = 0;
}
}
*ptr_frame_bytes = 0;
return mp3_bytes;
}
 
void mp3dec_init(mp3dec_t *dec)
{
dec->header[0] = 0;
}
 
int mp3dec_decode_frame(mp3dec_t *dec, const uint8_t *mp3, int mp3_bytes, mp3d_sample_t *pcm, mp3dec_frame_info_t *info)
{
int i = 0, igr, frame_size = 0, success = 1;
const uint8_t *hdr;
bs_t bs_frame[1];
mp3dec_scratch_t scratch;
 
if (mp3_bytes > 4 && dec->header[0] == 0xff && hdr_compare(dec->header, mp3))
{
frame_size = hdr_frame_bytes(mp3, dec->free_format_bytes) + hdr_padding(mp3);
if (frame_size != mp3_bytes && (frame_size + HDR_SIZE > mp3_bytes || !hdr_compare(mp3, mp3 + frame_size)))
{
frame_size = 0;
}
}
if (!frame_size)
{
memset(dec, 0, sizeof(mp3dec_t));
i = mp3d_find_frame(mp3, mp3_bytes, &dec->free_format_bytes, &frame_size);
if (!frame_size || i + frame_size > mp3_bytes)
{
info->frame_bytes = i;
return 0;
}
}
 
hdr = mp3 + i;
memcpy(dec->header, hdr, HDR_SIZE);
info->frame_bytes = i + frame_size;
info->frame_offset = i;
info->channels = HDR_IS_MONO(hdr) ? 1 : 2;
info->hz = hdr_sample_rate_hz(hdr);
info->layer = 4 - HDR_GET_LAYER(hdr);
info->bitrate_kbps = hdr_bitrate_kbps(hdr);
 
if (!pcm)
{
return hdr_frame_samples(hdr);
}
 
bs_init(bs_frame, hdr + HDR_SIZE, frame_size - HDR_SIZE);
if (HDR_IS_CRC(hdr))
{
get_bits(bs_frame, 16);
}
 
if (info->layer == 3)
{
int main_data_begin = L3_read_side_info(bs_frame, scratch.gr_info, hdr);
if (main_data_begin < 0 || bs_frame->pos > bs_frame->limit)
{
mp3dec_init(dec);
return 0;
}
success = L3_restore_reservoir(dec, bs_frame, &scratch, main_data_begin);
if (success)
{
for (igr = 0; igr < (HDR_TEST_MPEG1(hdr) ? 2 : 1); igr++, pcm += 576*info->channels)
{
memset(scratch.grbuf[0], 0, 576*2*sizeof(float));
L3_decode(dec, &scratch, scratch.gr_info + igr*info->channels, info->channels);
mp3d_synth_granule(dec->qmf_state, scratch.grbuf[0], 18, info->channels, pcm, scratch.syn[0]);
}
}
L3_save_reservoir(dec, &scratch);
} else
{
#ifdef MINIMP3_ONLY_MP3
return 0;
#else /* MINIMP3_ONLY_MP3 */
L12_scale_info sci[1];
L12_read_scale_info(hdr, bs_frame, sci);
 
memset(scratch.grbuf[0], 0, 576*2*sizeof(float));
for (i = 0, igr = 0; igr < 3; igr++)
{
if (12 == (i += L12_dequantize_granule(scratch.grbuf[0] + i, bs_frame, sci, info->layer | 1)))
{
i = 0;
L12_apply_scf_384(sci, sci->scf + igr, scratch.grbuf[0]);
mp3d_synth_granule(dec->qmf_state, scratch.grbuf[0], 12, info->channels, pcm, scratch.syn[0]);
memset(scratch.grbuf[0], 0, 576*2*sizeof(float));
pcm += 384*info->channels;
}
if (bs_frame->pos > bs_frame->limit)
{
mp3dec_init(dec);
return 0;
}
}
#endif /* MINIMP3_ONLY_MP3 */
}
return success*hdr_frame_samples(dec->header);
}
 
#ifdef MINIMP3_FLOAT_OUTPUT
void mp3dec_f32_to_s16(const float *in, int16_t *out, int num_samples)
{
int i = 0;
#if HAVE_SIMD
int aligned_count = num_samples & ~7;
for(; i < aligned_count; i += 8)
{
static const f4 g_scale = { 32768.0f, 32768.0f, 32768.0f, 32768.0f };
f4 a = VMUL(VLD(&in[i ]), g_scale);
f4 b = VMUL(VLD(&in[i+4]), g_scale);
#if HAVE_SSE
static const f4 g_max = { 32767.0f, 32767.0f, 32767.0f, 32767.0f };
static const f4 g_min = { -32768.0f, -32768.0f, -32768.0f, -32768.0f };
__m128i pcm8 = _mm_packs_epi32(_mm_cvtps_epi32(_mm_max_ps(_mm_min_ps(a, g_max), g_min)),
_mm_cvtps_epi32(_mm_max_ps(_mm_min_ps(b, g_max), g_min)));
out[i ] = _mm_extract_epi16(pcm8, 0);
out[i+1] = _mm_extract_epi16(pcm8, 1);
out[i+2] = _mm_extract_epi16(pcm8, 2);
out[i+3] = _mm_extract_epi16(pcm8, 3);
out[i+4] = _mm_extract_epi16(pcm8, 4);
out[i+5] = _mm_extract_epi16(pcm8, 5);
out[i+6] = _mm_extract_epi16(pcm8, 6);
out[i+7] = _mm_extract_epi16(pcm8, 7);
#else /* HAVE_SSE */
int16x4_t pcma, pcmb;
a = VADD(a, VSET(0.5f));
b = VADD(b, VSET(0.5f));
pcma = vqmovn_s32(vqaddq_s32(vcvtq_s32_f32(a), vreinterpretq_s32_u32(vcltq_f32(a, VSET(0)))));
pcmb = vqmovn_s32(vqaddq_s32(vcvtq_s32_f32(b), vreinterpretq_s32_u32(vcltq_f32(b, VSET(0)))));
vst1_lane_s16(out+i , pcma, 0);
vst1_lane_s16(out+i+1, pcma, 1);
vst1_lane_s16(out+i+2, pcma, 2);
vst1_lane_s16(out+i+3, pcma, 3);
vst1_lane_s16(out+i+4, pcmb, 0);
vst1_lane_s16(out+i+5, pcmb, 1);
vst1_lane_s16(out+i+6, pcmb, 2);
vst1_lane_s16(out+i+7, pcmb, 3);
#endif /* HAVE_SSE */
}
#endif /* HAVE_SIMD */
for(; i < num_samples; i++)
{
float sample = in[i] * 32768.0f;
if (sample >= 32766.5)
out[i] = (int16_t) 32767;
else if (sample <= -32767.5)
out[i] = (int16_t)-32768;
else
{
int16_t s = (int16_t)(sample + .5f);
s -= (s < 0); /* away from zero, to be compliant */
out[i] = s;
}
}
}
#endif /* MINIMP3_FLOAT_OUTPUT */
#endif /* MINIMP3_IMPLEMENTATION && !_MINIMP3_IMPLEMENTATION_GUARD */
/contrib/media/minimp3/minimp3.inc
0,0 → 1,24
 
 
struc mp3dec_frame_info {
 
.frame_bytes dd ? ; signed int
.frame_offset dd ? ; signed int
.channels dd ? ; signed int
.hz dd ? ; signed int
.layer dd ? ; signed int
.bitrate_kbps dd ? ; signed int
 
}
 
; mp3d rb 8192
 
; invoke mp3dec_init, mp3d
; test eax, eax
; jz
 
; mp3dec_frame_info info
; pcm rw MINIMP3_MAX_SAMPLES_PER_FRAME
 
; invoke mp3dec_decode_frame, mp3d, input_buf, [buf_size], pcm, info
; mov [samples], eax