Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 4871 → Rev 4872

/contrib/sdk/sources/libc/pe/loader.c
0,0 → 1,768
 
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <alloca.h>
#include <malloc.h>
#include <setjmp.h>
#include <envz.h>
 
#include <kos32sys.h>
 
#include "list.h"
#include "pe.h"
 
#define unlikely(x) __builtin_expect(!!(x), 0)
 
//#define DBG(format,...) printf(format,##__VA_ARGS__)
 
#define DBG(format,...)
 
 
void init_loader(void *libc_image);
void* create_image(void *raw);
int link_image(void *img_base, PIMAGE_IMPORT_DESCRIPTOR imp);
 
extern char* __appenv;
extern int __appenv_size;
 
typedef struct tag_module module_t;
 
struct app_hdr
{
char banner[8];
int version;
int start;
int iend;
int memsize;
int stacktop;
char *cmdline;
char *path;
int reserved;
void *__idata_start;
void *__idata_end;
void (*main)(int argc, char **argv, char **envp);
};
 
struct tag_module
{
struct list_head list;
 
char *img_name;
char *img_path;
 
uint32_t refcount;
 
void *start;
uint32_t end;
 
void *entry;
 
PIMAGE_NT_HEADERS32 img_hdr;
PIMAGE_SECTION_HEADER img_sec;
PIMAGE_EXPORT_DIRECTORY img_exp;
};
 
typedef struct
{
struct list_head list;
char *path;
int path_len;
}dll_path_t;
 
module_t* load_library(const char *name);
 
LIST_HEAD(path_list);
 
static module_t libc_dll;
static char libc_name[] = "libc.dll";
static char libc_path[] = "/KolibriOS/lib/libc.dll";
 
static inline int IsPowerOf2(uint32_t val)
{
if(val == 0)
return 0;
return (val & (val - 1)) == 0;
}
 
 
int validate_pe(void *raw, size_t raw_size, int is_exec)
{
PIMAGE_DOS_HEADER dos;
PIMAGE_NT_HEADERS32 nt;
 
dos = (PIMAGE_DOS_HEADER)raw;
 
if( !raw || raw_size < sizeof(IMAGE_DOS_HEADER) )
return 0;
 
if( dos->e_magic != IMAGE_DOS_SIGNATURE || dos->e_lfanew <= 0)
return 0;
 
nt = MakePtr( PIMAGE_NT_HEADERS32, dos, dos->e_lfanew);
 
if( (uint32_t)nt < (uint32_t)raw)
return 0;
 
if(nt->Signature != IMAGE_NT_SIGNATURE)
return 0;
 
if(nt->FileHeader.Machine != IMAGE_FILE_MACHINE_I386)
return 0;
 
if(is_exec && (nt->FileHeader.Characteristics & IMAGE_FILE_DLL))
return 0;
 
if(nt->OptionalHeader.Magic != IMAGE_NT_OPTIONAL_HDR32_MAGIC)
return 0;
 
if( is_exec && nt->OptionalHeader.ImageBase != 0)
return 0;
 
if(nt->OptionalHeader.SectionAlignment < 4096)
{
if(nt->OptionalHeader.FileAlignment != nt->OptionalHeader.SectionAlignment)
return 0;
}
else if(nt->OptionalHeader.SectionAlignment < nt->OptionalHeader.FileAlignment)
return 0;
 
if(!IsPowerOf2(nt->OptionalHeader.SectionAlignment) ||
!IsPowerOf2(nt->OptionalHeader.FileAlignment))
return 0;
 
if(nt->FileHeader.NumberOfSections > 96)
return 0;
 
return 1;
}
 
 
void init_loader(void *libc_image)
{
 
PIMAGE_DOS_HEADER dos;
PIMAGE_NT_HEADERS32 nt;
PIMAGE_EXPORT_DIRECTORY exp;
 
struct app_hdr *header = NULL;
dll_path_t *path;
int len;
char *p;
 
#if 0
 
if(__appenv_size)
{
char *env;
env = envz_get(__appenv, __appenv_size, "PATH");
if( env )
{
while( *env )
{
p = env;
while(*p)
{
if( *p == 0x0D)
break;
else if( *p == 0x0A)
break;
else if( *p == ':')
break;
p++;
};
len = p-env;
if(len)
{
char *p1;
 
p1 = (char*)malloc(len+1);
memcpy(p1, env, len);
p1[len]=0;
 
path = (dll_path_t*)malloc(sizeof(dll_path_t));
INIT_LIST_HEAD(&path->list);
path->path = p1;
path->path_len = len;
DBG("add libraries path %s\n", path->path);
list_add_tail(&path->list, &path_list);
};
if(*p == ':')
{
env = p+1;
continue;
}
else break;
};
};
};
#endif
 
len = strrchr(header->path, '/') - header->path+1;
p = (char*)malloc(len+1);
memcpy(p, header->path, len);
p[len]=0;
 
path = (dll_path_t*)malloc(sizeof(dll_path_t));
INIT_LIST_HEAD(&path->list);
path->path = p;
path->path_len = len;
DBG("add libraries path %s\n", path->path);
list_add_tail(&path->list, &path_list);
 
 
path = (dll_path_t*)malloc(sizeof(dll_path_t));
INIT_LIST_HEAD(&path->list);
path->path = "/kolibrios/lib/";
path->path_len = 15; /* FIXME */
DBG("add libraries path %s\n", path->path);
list_add_tail(&path->list, &path_list);
 
INIT_LIST_HEAD(&libc_dll.list);
 
libc_dll.img_name = libc_name;
libc_dll.img_path = libc_path;
 
libc_dll.refcount = 1;
 
dos = (PIMAGE_DOS_HEADER)libc_image;
nt = MakePtr( PIMAGE_NT_HEADERS32, dos, dos->e_lfanew);
exp = MakePtr(PIMAGE_EXPORT_DIRECTORY, libc_image,
nt->OptionalHeader.DataDirectory[0].VirtualAddress);
 
libc_dll.start = libc_image;
libc_dll.end = MakePtr(uint32_t,libc_image, nt->OptionalHeader.SizeOfImage);
 
libc_dll.img_hdr = nt;
libc_dll.img_sec = MakePtr(PIMAGE_SECTION_HEADER,nt, sizeof(IMAGE_NT_HEADERS32));
libc_dll.img_exp = MakePtr(PIMAGE_EXPORT_DIRECTORY,libc_image,
nt->OptionalHeader.DataDirectory[0].VirtualAddress);
 
};
 
static inline void sec_copy(void *dst, void *src, size_t len)
{
__asm__ __volatile__ (
"shrl $2, %%ecx \n\t"
"rep movsl"
:
:"c"(len),"S"(src),"D"(dst)
:"cc");
__asm__ __volatile__ (
""
:::"ecx","esi","edi");
};
 
 
void* create_image(void *raw)
{
PIMAGE_DOS_HEADER dos;
PIMAGE_NT_HEADERS32 nt;
PIMAGE_SECTION_HEADER img_sec;
 
void *img_base;
uint32_t sec_align;
int i;
 
dos = (PIMAGE_DOS_HEADER)raw;
nt = MakePtr( PIMAGE_NT_HEADERS32, dos, dos->e_lfanew);
 
img_base = user_alloc(nt->OptionalHeader.SizeOfImage);
 
if(unlikely(img_base == NULL))
return 0;
 
sec_copy(img_base, raw, nt->OptionalHeader.SizeOfHeaders);
 
img_sec = MakePtr(PIMAGE_SECTION_HEADER, nt, sizeof(IMAGE_NT_HEADERS32));
 
sec_align = nt->OptionalHeader.SectionAlignment;
 
for(i=0; i< nt->FileHeader.NumberOfSections; i++)
{
void *src_ptr;
void *dest_ptr;
size_t sec_size;
 
if ( img_sec->SizeOfRawData && img_sec->PointerToRawData )
{
src_ptr = MakePtr(void*, raw, img_sec->PointerToRawData);
dest_ptr = MakePtr(void*, img_base, img_sec->VirtualAddress);
sec_copy(dest_ptr, src_ptr, img_sec->SizeOfRawData);
};
 
img_sec++;
};
 
if(nt->OptionalHeader.DataDirectory[5].Size)
{
PIMAGE_BASE_RELOCATION reloc;
 
uint32_t delta = (uint32_t)img_base - nt->OptionalHeader.ImageBase;
 
reloc = MakePtr(PIMAGE_BASE_RELOCATION, img_base,
nt->OptionalHeader.DataDirectory[5].VirtualAddress);
 
while ( reloc->SizeOfBlock != 0 )
{
uint32_t cnt;
uint16_t *entry;
uint16_t reltype;
uint32_t offs;
 
cnt = (reloc->SizeOfBlock - sizeof(*reloc))/sizeof(uint16_t);
entry = MakePtr( uint16_t*, reloc, sizeof(*reloc) );
 
for ( i=0; i < cnt; i++ )
{
uint16_t *p16;
uint32_t *p32;
 
reltype = (*entry & 0xF000) >> 12;
offs = (*entry & 0x0FFF) + reloc->VirtualAddress;
switch(reltype)
{
case 1:
p16 = MakePtr(uint16_t*, img_base, offs);
*p16+= (uint16_t)(delta>>16);
break;
case 2:
p16 = MakePtr(uint16_t*, img_base, offs);
*p16+= (uint16_t)delta;
break;
case 3:
p32 = MakePtr(uint32_t*, img_base, offs);
*p32+= delta;
}
entry++;
}
reloc = MakePtr(PIMAGE_BASE_RELOCATION, reloc,reloc->SizeOfBlock);
}
};
return img_base;
};
 
//static jmp_buf loader_env;
//static loader_recursion;
 
int link_image(void *img_base, PIMAGE_IMPORT_DESCRIPTOR imp)
{
static jmp_buf loader_env;
static recursion = -1;
int warn = 0;
 
recursion++;
if( !recursion )
{
if( unlikely(setjmp(loader_env) != 0))
{
recursion = -1;
return 0;
};
};
 
while ( imp->Name )
{
PIMAGE_DOS_HEADER expdos;
PIMAGE_NT_HEADERS32 expnt;
PIMAGE_EXPORT_DIRECTORY exp;
PIMAGE_THUNK_DATA32 thunk;
 
void **iat;
char *libname;
uint32_t *exp_functions;
uint16_t *exp_ordinals;
char **exp_names;
 
const module_t *api;
 
libname=MakePtr(char*,imp->Name, img_base);
 
DBG("import from %s\n",libname);
 
api = load_library(libname);
if(unlikely(api == NULL))
{
printf("library %s not found\n", libname);
longjmp(loader_env, 1);
}
 
iat = MakePtr(void**,imp->FirstThunk, img_base);
 
if(imp->OriginalFirstThunk !=0 )
{
thunk = MakePtr(PIMAGE_THUNK_DATA32,imp->OriginalFirstThunk, img_base);
}
else
{
thunk = MakePtr(PIMAGE_THUNK_DATA32,imp->FirstThunk, img_base);
};
 
exp = api->img_exp;
 
exp_functions = MakePtr(uint32_t*,exp->AddressOfFunctions,api->start);
exp_ordinals = MakePtr(uint16_t*, exp->AddressOfNameOrdinals,api->start);
exp_names = MakePtr(char**, exp->AddressOfNames,api->start);
 
while ( thunk->u1.AddressOfData != 0 )
{
PIMAGE_IMPORT_BY_NAME imp_name;
 
if (thunk->u1.Ordinal & IMAGE_ORDINAL_FLAG)
{
// ordinal = (*func_list) & 0x7fffffff;
// *ImportAddressList = LdrGetExportByOrdinal(ImportedModule->DllBase, Ordinal);
// if ((*ImportAddressList) == NULL)
// {
// DPRINT1("Failed to import #%ld from %wZ\n", Ordinal, &ImportedModule->FullDllName);
// RtlpRaiseImportNotFound(NULL, Ordinal, &ImportedModule->FullDllName);
// return STATUS_ENTRYPOINT_NOT_FOUND;
// }
}
else
{
char *export_name;
uint16_t ordinal;
void *function;
uint32_t minn;
uint32_t maxn;
 
imp_name = MakePtr(PIMAGE_IMPORT_BY_NAME,
thunk->u1.AddressOfData, img_base);
*iat = NULL;
 
DBG("import %s", imp_name->Name);
 
if(imp_name->Hint < exp->NumberOfNames)
{
export_name = MakePtr(char*,exp_names[imp_name->Hint],
api->start);
if(strcmp(imp_name->Name, export_name) == 0)
{
ordinal = exp_ordinals[imp_name->Hint];
function = MakePtr(void*,exp_functions[ordinal], api->start);
if((uint32_t)function >= (uint32_t)exp)
{
printf("forward %s\n", function);
warn=1;
}
else
{
DBG(" \t\tat %x\n", function);
*iat = function;
};
thunk++; // Advance to next thunk
iat++;
continue;
};
};
 
 
minn = 0;
maxn = exp->NumberOfNames - 1;
while (minn <= maxn)
{
int mid;
int res;
 
mid = (minn + maxn) / 2;
 
export_name = MakePtr(char*,exp_names[mid],api->start);
 
res = strcmp(export_name, imp_name->Name);
if (res == 0)
{
ordinal = exp_ordinals[mid];
function = MakePtr(void*,exp_functions[ordinal], api->start);
 
if((uint32_t)function >= (uint32_t)exp)
{
printf("forward %s\n", function);
warn=1;
}
else
{
DBG(" \t\tat %x\n", function);
*iat = function;
};
break;
}
else if (minn == maxn)
{
printf(" unresolved %s\n",imp_name->Name);
warn=1;
break;
}
else if (res > 0)
{
maxn = mid - 1;
}
else
{
minn = mid + 1;
}
};
};
thunk++; // Advance to next thunk
iat++;
}
imp++; // advance to next IMAGE_IMPORT_DESCRIPTOR
};
 
recursion--;
 
if ( !warn )
return 1;
else
return 0;
}
 
int link_app()
{
struct app_hdr *header = NULL;
PIMAGE_IMPORT_DESCRIPTOR imp;
 
imp = (PIMAGE_IMPORT_DESCRIPTOR)header->__idata_start;
 
return link_image(NULL, imp);
 
}
 
 
void* get_entry_point(void *raw)
{
PIMAGE_DOS_HEADER dos;
PIMAGE_NT_HEADERS32 nt;
 
dos = (PIMAGE_DOS_HEADER)raw;
nt = MakePtr( PIMAGE_NT_HEADERS32, dos, dos->e_lfanew);
 
return MakePtr(void*, raw, nt->OptionalHeader.AddressOfEntryPoint);
};
 
 
void *get_proc_address(module_t *module, char *proc_name)
{
 
PIMAGE_DOS_HEADER expdos;
PIMAGE_NT_HEADERS32 expnt;
PIMAGE_EXPORT_DIRECTORY exp;
 
uint32_t *exp_functions;
uint16_t *exp_ordinals;
char **exp_names;
 
int minn, maxn;
char *export_name;
uint16_t ordinal;
void *function=NULL;
 
exp = module->img_exp;
 
exp_functions = MakePtr(uint32_t*,exp->AddressOfFunctions,module->start);
exp_ordinals = MakePtr(uint16_t*, exp->AddressOfNameOrdinals,module->start);
exp_names = MakePtr(char**, exp->AddressOfNames,module->start);
 
minn = 0;
maxn = exp->NumberOfNames - 1;
while (minn <= maxn)
{
int mid;
int res;
 
mid = (minn + maxn) / 2;
 
export_name = MakePtr(char*,exp_names[mid],module->start);
 
res = strcmp(export_name, proc_name);
if (res == 0)
{
ordinal = exp_ordinals[mid];
function = MakePtr(void*,exp_functions[ordinal], module->start);
 
if((uint32_t)function >= (uint32_t)exp)
{
printf("forward %s\n", function);
}
else
{
DBG(" \t\tat %x\n", function);
};
break;
}
else if (minn == maxn)
{
DBG(" unresolved %s\n",proc_name);
break;
}
else if (res > 0)
{
maxn = mid - 1;
}
else
{
minn = mid + 1;
}
};
 
return function;
};
 
static void *load_lib_internal(const char *path)
{
PIMAGE_DOS_HEADER dos;
PIMAGE_NT_HEADERS32 nt;
PIMAGE_EXPORT_DIRECTORY exp;
 
ufile_t uf;
void *raw_img;
size_t raw_size;
void *img_base = NULL;
 
uf = load_file(path);
raw_img = uf.data;
raw_size = uf.size;
 
if(raw_img == NULL)
return NULL;
 
if( validate_pe(raw_img, raw_size, 0) == 0)
{
printf("invalide module %s\n", path);
user_free(raw_img);
return NULL;
};
 
img_base = create_image(raw_img);
user_free(raw_img);
 
if( unlikely(img_base == NULL) )
printf("cannot create image %s\n",path);
 
return img_base;
}
 
module_t* load_library(const char *name)
{
PIMAGE_DOS_HEADER dos;
PIMAGE_NT_HEADERS32 nt;
PIMAGE_EXPORT_DIRECTORY exp;
 
module_t *module, *mod = &libc_dll;
dll_path_t *dllpath;
char *path;
int len;
char *libname, *tmp;
void *img_base;
 
 
/* check for already loaded libraries */
 
tmp = strrchr(name, '/');
libname = path = tmp != NULL ? tmp+1 : (char*)name;
 
// printf("path %s\n", path);
 
do
{
if( !strncmp(path, mod->img_name, 16))
return mod;
mod = (module_t*)mod->list.next;
}while(mod != &libc_dll);
 
if(name[0] == '/')
{
path = (char*)name;
img_base = load_lib_internal(path);
}
else
{
len = strlen(libname);
list_for_each_entry(dllpath, &path_list, list)
{
path = alloca(len+dllpath->path_len+1);
memcpy(path, dllpath->path, dllpath->path_len);
 
memcpy(path+dllpath->path_len, libname, len);
path[len+dllpath->path_len]=0;
 
// printf("%s\n", path);
 
img_base = load_lib_internal(path);
 
if( unlikely(img_base == NULL) )
continue;
};
}
 
if( unlikely(img_base == NULL) )
{
printf("unable to load %s\n", name);
return NULL;
};
 
module = (module_t*)malloc(sizeof(module_t));
 
if(unlikely(module == NULL))
{
printf("%s epic fail: no enough memory\n",__FUNCTION__);
goto err1;
}
 
INIT_LIST_HEAD(&module->list);
 
module->img_name = strdup(libname);
module->img_path = strdup(path);
module->start = img_base;
module->entry = get_entry_point(img_base);
module->refcount = 1;
 
dos = (PIMAGE_DOS_HEADER)img_base;
nt = MakePtr( PIMAGE_NT_HEADERS32, dos, dos->e_lfanew);
exp = MakePtr(PIMAGE_EXPORT_DIRECTORY, img_base,
nt->OptionalHeader.DataDirectory[0].VirtualAddress);
 
module->end = MakePtr(uint32_t,img_base, nt->OptionalHeader.SizeOfImage);
 
module->img_hdr = nt;
module->img_sec = MakePtr(PIMAGE_SECTION_HEADER,nt, sizeof(IMAGE_NT_HEADERS32));
module->img_exp = MakePtr(PIMAGE_EXPORT_DIRECTORY, img_base,
nt->OptionalHeader.DataDirectory[0].VirtualAddress);
 
list_add_tail(&module->list, &libc_dll.list);
 
if(nt->OptionalHeader.DataDirectory[1].Size)
{
PIMAGE_IMPORT_DESCRIPTOR imp;
int (*dll_startup)(module_t *mod, uint32_t reason);
 
imp = MakePtr(PIMAGE_IMPORT_DESCRIPTOR, img_base,
nt->OptionalHeader.DataDirectory[1].VirtualAddress);
 
if(link_image(img_base, imp) == 0)
goto err2;
 
dll_startup = get_proc_address(module, "DllStartup");
if( dll_startup )
{
if( 0 == dll_startup(module, 1))
goto err2;
}
};
 
// printf("module %s %p - %p\n", name, module->start, module->end);
 
return module;
 
err2:
list_del(&module->list);
free(module->img_name);
free(module->img_path);
free(module);
err1:
user_free(img_base);
return NULL;
 
};
 
 
/contrib/sdk/sources/libc/pe/crtloader.c
0,0 → 1,223
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <alloca.h>
#include <malloc.h>
#include <setjmp.h>
#include <envz.h>
 
#include <kos32sys.h>
 
#include "list.h"
#include "pe.h"
 
#define unlikely(x) __builtin_expect(!!(x), 0)
 
//#define DBG(format,...) printf(format,##__VA_ARGS__)
 
#define DBG(format,...)
 
static inline void sec_copy(void *dst, void *src, size_t len)
{
__asm__ __volatile__ (
"shrl $2, %%ecx \n\t"
"rep movsl"
:
:"c"(len),"S"(src),"D"(dst)
:"cc");
__asm__ __volatile__ (
""
:::"ecx","esi","edi");
};
 
void* load_libc();
 
static inline int IsPowerOf2(uint32_t val)
{
if(val == 0)
return 0;
return (val & (val - 1)) == 0;
}
 
int validate_pe(void *raw, size_t raw_size)
{
PIMAGE_DOS_HEADER dos;
PIMAGE_NT_HEADERS32 nt;
 
dos = (PIMAGE_DOS_HEADER)raw;
 
if( !raw || raw_size < sizeof(IMAGE_DOS_HEADER) )
return 0;
 
if( dos->e_magic != IMAGE_DOS_SIGNATURE || dos->e_lfanew <= 0)
return 0;
 
nt = MakePtr( PIMAGE_NT_HEADERS32, dos, dos->e_lfanew);
 
if( (uint32_t)nt < (uint32_t)raw)
return 0;
 
if(nt->Signature != IMAGE_NT_SIGNATURE)
return 0;
 
if(nt->FileHeader.Machine != IMAGE_FILE_MACHINE_I386)
return 0;
 
if(nt->OptionalHeader.Magic != IMAGE_NT_OPTIONAL_HDR32_MAGIC)
return 0;
 
if(nt->OptionalHeader.SectionAlignment < 4096)
{
if(nt->OptionalHeader.FileAlignment != nt->OptionalHeader.SectionAlignment)
return 0;
}
else if(nt->OptionalHeader.SectionAlignment < nt->OptionalHeader.FileAlignment)
return 0;
 
if(!IsPowerOf2(nt->OptionalHeader.SectionAlignment) ||
!IsPowerOf2(nt->OptionalHeader.FileAlignment))
return 0;
 
if(nt->FileHeader.NumberOfSections > 96)
return 0;
 
return 1;
}
 
void* create_image(void *raw)
{
PIMAGE_DOS_HEADER dos;
PIMAGE_NT_HEADERS32 nt;
PIMAGE_SECTION_HEADER img_sec;
 
void *img_base;
uint32_t sec_align;
int i;
 
dos = (PIMAGE_DOS_HEADER)raw;
nt = MakePtr( PIMAGE_NT_HEADERS32, dos, dos->e_lfanew);
 
img_base = user_alloc(nt->OptionalHeader.SizeOfImage);
 
if(unlikely(img_base == NULL))
return 0;
 
sec_copy(img_base, raw, nt->OptionalHeader.SizeOfHeaders);
 
img_sec = MakePtr(PIMAGE_SECTION_HEADER, nt, sizeof(IMAGE_NT_HEADERS32));
 
sec_align = nt->OptionalHeader.SectionAlignment;
 
for(i=0; i< nt->FileHeader.NumberOfSections; i++)
{
void *src_ptr;
void *dest_ptr;
size_t sec_size;
 
if ( img_sec->SizeOfRawData && img_sec->PointerToRawData )
{
src_ptr = MakePtr(void*, raw, img_sec->PointerToRawData);
dest_ptr = MakePtr(void*, img_base, img_sec->VirtualAddress);
sec_copy(dest_ptr, src_ptr, img_sec->SizeOfRawData);
};
 
img_sec++;
};
 
if(nt->OptionalHeader.DataDirectory[5].Size)
{
PIMAGE_BASE_RELOCATION reloc;
 
uint32_t delta = (uint32_t)img_base - nt->OptionalHeader.ImageBase;
 
reloc = MakePtr(PIMAGE_BASE_RELOCATION, img_base,
nt->OptionalHeader.DataDirectory[5].VirtualAddress);
 
while ( reloc->SizeOfBlock != 0 )
{
uint32_t cnt;
uint16_t *entry;
uint16_t reltype;
uint32_t offs;
 
cnt = (reloc->SizeOfBlock - sizeof(*reloc))/sizeof(uint16_t);
entry = MakePtr( uint16_t*, reloc, sizeof(*reloc) );
 
for ( i=0; i < cnt; i++ )
{
uint16_t *p16;
uint32_t *p32;
 
reltype = (*entry & 0xF000) >> 12;
offs = (*entry & 0x0FFF) + reloc->VirtualAddress;
switch(reltype)
{
case 1:
p16 = MakePtr(uint16_t*, img_base, offs);
*p16+= (uint16_t)(delta>>16);
break;
case 2:
p16 = MakePtr(uint16_t*, img_base, offs);
*p16+= (uint16_t)delta;
break;
case 3:
p32 = MakePtr(uint32_t*, img_base, offs);
*p32+= delta;
}
entry++;
}
reloc = MakePtr(PIMAGE_BASE_RELOCATION, reloc,reloc->SizeOfBlock);
};
// printf("unmap base %p offset %x %d page(s)\n",
// img_base,
// nt->OptionalHeader.DataDirectory[5].VirtualAddress,
// (nt->OptionalHeader.DataDirectory[5].Size+4095)>>12);
 
user_unmap(img_base,nt->OptionalHeader.DataDirectory[5].VirtualAddress,
nt->OptionalHeader.DataDirectory[5].Size);
};
return img_base;
};
 
void* get_entry_point(void *raw)
{
PIMAGE_DOS_HEADER dos;
PIMAGE_NT_HEADERS32 nt;
 
dos = (PIMAGE_DOS_HEADER)raw;
nt = MakePtr( PIMAGE_NT_HEADERS32, dos, dos->e_lfanew);
 
return MakePtr(void*, raw, nt->OptionalHeader.AddressOfEntryPoint);
};
 
 
void* load_libc()
{
void *raw_img;
size_t raw_size;
void *img_base = NULL;
ufile_t uf;
 
uf = load_file("/kolibrios/lib/libc.dll");
 
raw_img = uf.data;
raw_size = uf.size;
 
if(raw_img == NULL)
return NULL;
 
// printf("libc.dll raw %p, size %d\n", raw_img, raw_size);
 
if(validate_pe(raw_img, raw_size) != 0)
{
// printf("invalide libc.dll\n");
img_base = create_image(raw_img);
};
 
user_free(raw_img);
 
return img_base;
 
}
 
 
/contrib/sdk/sources/libc/pe/libc.asm
0,0 → 1,284
 
struc APP_HEADER_02
{ .banner dq ?
.version dd ? ;+8
.start dd ? ;+12
.i_end dd ? ;+16
.mem_size dd ? ;+20
.stack_top dd ? ;+24
.cmdline dd ? ;+28
.path dd ? ;+32
}
 
virtual at 0
app_hdr APP_HEADER_02
end virtual
 
format MS COFF
 
public EXPORTS
 
section '.flat' code readable align 16
 
EXPORTS:
dd szStart, START
dd szVersion, 0x00010001
dd szExec, exec
dd 0
 
check dd 0
 
szStart db 'START',0
szVersion db 'version',0
szExec db 'exec',0
 
START:
xor eax, eax
cmp [app_hdr.path], 0
je .ret
not eax
.ret:
mov [check], eax
ret 4
 
align 4
exec:
cmp [check], 0
lea ebp, [esp+4]
je .fail
 
mov eax, [ebp+8]
test eax, eax
jz .fail
 
mov ecx, [ebp]
mov edx, [ebp+4]
call validate_pe
test eax, eax
jz .fail
 
mov eax, 68
mov ebx, [ebp]
mov ecx, [ebx+60]
mov ecx, [ecx+96+ebx] ; app stack size
add ecx, 4095
and ecx, -4096
mov ebx, 12
 
int 0x40
test eax, eax
jz .fail
 
add ecx, eax
mov [fs:4], eax ;stack base
mov [fs:8], ecx ;stack top
 
mov esp, ecx
 
sub esp, 1024
mov eax, 9
mov ebx, esp
mov ecx, -1
int 0x40
mov eax, [ebx+30]
mov [fs:0], eax ; save pid
add esp, 1024
 
mov ecx, my_libc
call create_image
test eax, eax
jz .fail
 
mov ebx, [eax+60]
mov ebx, [ebx+40+eax]
add ebx, eax
push ebp
push EXPORTS
push eax
call ebx
 
ret
 
.fail:
ret 4
 
align 4
 
validate_pe:
test ecx, ecx
je .L2
cmp edx, 63
jbe .L2
cmp [ecx], word 23117
je .L10
.L2:
xor eax, eax
ret
 
align 4
.L10:
mov eax, [ecx+60]
test eax, eax
je .L2
add ecx, eax
jb .L2
cmp [ecx], dword 17744
jne .L2
cmp [ecx+4], word 332
jne .L2
test [ecx+23], byte 32
jne .L2
cmp [ecx+24], word 267
jne .L2
mov eax, [ecx+56]
cmp eax, 4095
ja .L3
cmp eax, [ecx+60]
jne .L2
test eax, eax
je .L2
.L5:
lea edx, [eax-1]
test edx, eax
jne .L2
mov eax, [ecx+60]
test eax, eax
je .L2
lea edx, [eax-1]
test edx, eax
jne .L2
xor eax, eax
cmp [ecx+6], word 96
setbe al
ret
.L3:
cmp eax, [ecx+60]
jae .L5
jmp .L2
 
align 4
create_image:
push ebp
push edi
push esi
push ebx
sub esp, 20
mov [esp+16], ecx
mov eax, [ecx+60]
add eax, ecx
mov [esp], eax
mov ecx, [eax+80]
mov ebx, 12
mov eax, 68
int 0x40
test eax, eax
je .L16
 
mov edx, [esp]
mov ecx, [edx+84]
mov esi, [esp+16]
mov edi, eax
shr ecx, 2
rep movsd
mov cx, [edx+6]
test cx, cx
je .L17
add edx, 248
movzx ecx, cx
lea ebp, [ecx-1]
xor bl, bl
jmp .L19
 
align 4
.L31:
add edx, 40
inc ebx
.L19:
mov ecx, [edx+16]
test ecx, ecx
je .L18
mov esi, [edx+20]
test esi, esi
je .L18
add esi, [esp+16]
mov edi, [edx+12]
add edi, eax
 
shr ecx, 2
rep movsd
 
.L18:
cmp ebx, ebp
jne .L31
.L17:
mov edx, [esp]
mov ecx, [edx+164]
test ecx, ecx
je .L16
 
mov ebp, eax
sub ebp, [edx+52]
mov ebx, [edx+160]
add ebx, eax
mov esi, [ebx+4]
test esi, esi
je .L16
 
mov edi, ebp
shr edi, 16
mov [esp], di
 
align 4
.L26:
lea edi, [esi-8]
shr edi, 1
je .L20
xor ecx, ecx
jmp .L25
 
align 4
.L32:
cmp si, 3
je .L24
dec si
jne .L21
mov esi, [esp]
add [eax+edx], si
.L21:
inc ecx
cmp ecx, edi
je .L20
.L25:
mov si, [ebx+8+ecx*2]
mov edx, esi
and edx, 4095
add edx, [ebx]
shr si, 12
cmp si, 2
jne .L32
add [eax+edx], bp
inc ecx
cmp ecx, edi
jne .L25
.L20:
add ebx, [ebx+4]
mov esi, [ebx+4]
test esi, esi
jne .L26
.L16:
add esp, 20
pop ebx
pop esi
pop edi
pop ebp
ret
 
align 4
.L24:
add [eax+edx], ebp
jmp .L21
 
 
align 16
my_libc:
file '../libc.dll'
/contrib/sdk/sources/libc/pe/list.h
0,0 → 1,707
#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H
 
 
/*
* Simple doubly linked list implementation.
*
* Some of the internal functions ("__xxx") are useful when
* manipulating whole lists rather than single entries, as
* sometimes we already know the next/prev entries and we can
* generate better code by using them directly rather than
* using the generic single-entry routines.
*/
 
/**
* container_of - cast a member of a structure out to the containing structure
* @ptr: the pointer to the member.
* @type: the type of the container struct this is embedded in.
* @member: the name of the member within the struct.
*
*/
#define container_of(ptr, type, member) ({ \
const typeof( ((type *)0)->member ) *__mptr = (ptr); \
(type *)( (char *)__mptr - offsetof(type,member) );})
 
#define LIST_POISON1 ((struct list_head*)0xFFFF0100)
#define LIST_POISON2 ((struct list_head*)0xFFFF0200)
 
#define prefetch(x) __builtin_prefetch(x)
 
struct list_head {
struct list_head *next, *prev;
};
 
#define LIST_HEAD_INIT(name) { &(name), &(name) }
 
#define LIST_HEAD(name) \
struct list_head name = LIST_HEAD_INIT(name)
 
static inline void INIT_LIST_HEAD(struct list_head *list)
{
list->next = list;
list->prev = list;
}
 
/*
* Insert a new entry between two known consecutive entries.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
#ifndef CONFIG_DEBUG_LIST
static inline void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next)
{
next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
}
#else
extern void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next);
#endif
 
/**
* list_add - add a new entry
* @new: new entry to be added
* @head: list head to add it after
*
* Insert a new entry after the specified head.
* This is good for implementing stacks.
*/
static inline void list_add(struct list_head *new, struct list_head *head)
{
__list_add(new, head, head->next);
}
 
 
/**
* list_add_tail - add a new entry
* @new: new entry to be added
* @head: list head to add it before
*
* Insert a new entry before the specified head.
* This is useful for implementing queues.
*/
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
__list_add(new, head->prev, head);
}
 
/*
* Delete a list entry by making the prev/next entries
* point to each other.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_del(struct list_head * prev, struct list_head * next)
{
next->prev = prev;
prev->next = next;
}
 
/**
* list_del - deletes entry from list.
* @entry: the element to delete from the list.
* Note: list_empty() on entry does not return true after this, the entry is
* in an undefined state.
*/
#ifndef CONFIG_DEBUG_LIST
static inline void list_del(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
entry->next = LIST_POISON1;
entry->prev = LIST_POISON2;
}
#else
extern void list_del(struct list_head *entry);
#endif
 
/**
* list_replace - replace old entry by new one
* @old : the element to be replaced
* @new : the new element to insert
*
* If @old was empty, it will be overwritten.
*/
static inline void list_replace(struct list_head *old,
struct list_head *new)
{
new->next = old->next;
new->next->prev = new;
new->prev = old->prev;
new->prev->next = new;
}
 
static inline void list_replace_init(struct list_head *old,
struct list_head *new)
{
list_replace(old, new);
INIT_LIST_HEAD(old);
}
 
/**
* list_del_init - deletes entry from list and reinitialize it.
* @entry: the element to delete from the list.
*/
static inline void list_del_init(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
INIT_LIST_HEAD(entry);
}
 
/**
* list_move - delete from one list and add as another's head
* @list: the entry to move
* @head: the head that will precede our entry
*/
static inline void list_move(struct list_head *list, struct list_head *head)
{
__list_del(list->prev, list->next);
list_add(list, head);
}
 
/**
* list_move_tail - delete from one list and add as another's tail
* @list: the entry to move
* @head: the head that will follow our entry
*/
static inline void list_move_tail(struct list_head *list,
struct list_head *head)
{
__list_del(list->prev, list->next);
list_add_tail(list, head);
}
 
/**
* list_is_last - tests whether @list is the last entry in list @head
* @list: the entry to test
* @head: the head of the list
*/
static inline int list_is_last(const struct list_head *list,
const struct list_head *head)
{
return list->next == head;
}
 
/**
* list_empty - tests whether a list is empty
* @head: the list to test.
*/
static inline int list_empty(const struct list_head *head)
{
return head->next == head;
}
 
/**
* list_empty_careful - tests whether a list is empty and not being modified
* @head: the list to test
*
* Description:
* tests whether a list is empty _and_ checks that no other CPU might be
* in the process of modifying either member (next or prev)
*
* NOTE: using list_empty_careful() without synchronization
* can only be safe if the only activity that can happen
* to the list entry is list_del_init(). Eg. it cannot be used
* if another CPU could re-list_add() it.
*/
static inline int list_empty_careful(const struct list_head *head)
{
struct list_head *next = head->next;
return (next == head) && (next == head->prev);
}
 
/**
* list_is_singular - tests whether a list has just one entry.
* @head: the list to test.
*/
static inline int list_is_singular(const struct list_head *head)
{
return !list_empty(head) && (head->next == head->prev);
}
 
static inline void __list_cut_position(struct list_head *list,
struct list_head *head, struct list_head *entry)
{
struct list_head *new_first = entry->next;
list->next = head->next;
list->next->prev = list;
list->prev = entry;
entry->next = list;
head->next = new_first;
new_first->prev = head;
}
 
/**
* list_cut_position - cut a list into two
* @list: a new list to add all removed entries
* @head: a list with entries
* @entry: an entry within head, could be the head itself
* and if so we won't cut the list
*
* This helper moves the initial part of @head, up to and
* including @entry, from @head to @list. You should
* pass on @entry an element you know is on @head. @list
* should be an empty list or a list you do not care about
* losing its data.
*
*/
static inline void list_cut_position(struct list_head *list,
struct list_head *head, struct list_head *entry)
{
if (list_empty(head))
return;
if (list_is_singular(head) &&
(head->next != entry && head != entry))
return;
if (entry == head)
INIT_LIST_HEAD(list);
else
__list_cut_position(list, head, entry);
}
 
static inline void __list_splice(const struct list_head *list,
struct list_head *prev,
struct list_head *next)
{
struct list_head *first = list->next;
struct list_head *last = list->prev;
 
first->prev = prev;
prev->next = first;
 
last->next = next;
next->prev = last;
}
 
/**
* list_splice - join two lists, this is designed for stacks
* @list: the new list to add.
* @head: the place to add it in the first list.
*/
static inline void list_splice(const struct list_head *list,
struct list_head *head)
{
if (!list_empty(list))
__list_splice(list, head, head->next);
}
 
/**
* list_splice_tail - join two lists, each list being a queue
* @list: the new list to add.
* @head: the place to add it in the first list.
*/
static inline void list_splice_tail(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list))
__list_splice(list, head->prev, head);
}
 
/**
* list_splice_init - join two lists and reinitialise the emptied list.
* @list: the new list to add.
* @head: the place to add it in the first list.
*
* The list at @list is reinitialised
*/
static inline void list_splice_init(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list, head, head->next);
INIT_LIST_HEAD(list);
}
}
 
/**
* list_splice_tail_init - join two lists and reinitialise the emptied list
* @list: the new list to add.
* @head: the place to add it in the first list.
*
* Each of the lists is a queue.
* The list at @list is reinitialised
*/
static inline void list_splice_tail_init(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list, head->prev, head);
INIT_LIST_HEAD(list);
}
}
 
/**
* list_entry - get the struct for this entry
* @ptr: the &struct list_head pointer.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*/
#define list_entry(ptr, type, member) \
container_of(ptr, type, member)
 
/**
* list_first_entry - get the first element from a list
* @ptr: the list head to take the element from.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*
* Note, that list is expected to be not empty.
*/
#define list_first_entry(ptr, type, member) \
list_entry((ptr)->next, type, member)
 
/**
* list_for_each - iterate over a list
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*/
#define list_for_each(pos, head) \
for (pos = (head)->next; prefetch(pos->next), pos != (head); \
pos = pos->next)
 
/**
* __list_for_each - iterate over a list
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*
* This variant differs from list_for_each() in that it's the
* simplest possible list iteration code, no prefetching is done.
* Use this for code that knows the list to be very short (empty
* or 1 entry) most of the time.
*/
#define __list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next)
 
/**
* list_for_each_prev - iterate over a list backwards
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*/
#define list_for_each_prev(pos, head) \
for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
pos = pos->prev)
 
/**
* list_for_each_safe - iterate over a list safe against removal of list entry
* @pos: the &struct list_head to use as a loop cursor.
* @n: another &struct list_head to use as temporary storage
* @head: the head for your list.
*/
#define list_for_each_safe(pos, n, head) \
for (pos = (head)->next, n = pos->next; pos != (head); \
pos = n, n = pos->next)
 
/**
* list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
* @pos: the &struct list_head to use as a loop cursor.
* @n: another &struct list_head to use as temporary storage
* @head: the head for your list.
*/
#define list_for_each_prev_safe(pos, n, head) \
for (pos = (head)->prev, n = pos->prev; \
prefetch(pos->prev), pos != (head); \
pos = n, n = pos->prev)
 
/**
* list_for_each_entry - iterate over list of given type
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry(pos, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member); \
prefetch(pos->member.next), &pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member))
 
/**
* list_for_each_entry_reverse - iterate backwards over list of given type.
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry_reverse(pos, head, member) \
for (pos = list_entry((head)->prev, typeof(*pos), member); \
prefetch(pos->member.prev), &pos->member != (head); \
pos = list_entry(pos->member.prev, typeof(*pos), member))
 
/**
* list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
* @pos: the type * to use as a start point
* @head: the head of the list
* @member: the name of the list_struct within the struct.
*
* Prepares a pos entry for use as a start point in list_for_each_entry_continue().
*/
#define list_prepare_entry(pos, head, member) \
((pos) ? : list_entry(head, typeof(*pos), member))
 
/**
* list_for_each_entry_continue - continue iteration over list of given type
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Continue to iterate over list of given type, continuing after
* the current position.
*/
#define list_for_each_entry_continue(pos, head, member) \
for (pos = list_entry(pos->member.next, typeof(*pos), member); \
prefetch(pos->member.next), &pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member))
 
/**
* list_for_each_entry_continue_reverse - iterate backwards from the given point
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Start to iterate over list of given type backwards, continuing after
* the current position.
*/
#define list_for_each_entry_continue_reverse(pos, head, member) \
for (pos = list_entry(pos->member.prev, typeof(*pos), member); \
prefetch(pos->member.prev), &pos->member != (head); \
pos = list_entry(pos->member.prev, typeof(*pos), member))
 
/**
* list_for_each_entry_from - iterate over list of given type from the current point
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate over list of given type, continuing from current position.
*/
#define list_for_each_entry_from(pos, head, member) \
for (; prefetch(pos->member.next), &pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member))
 
/**
* list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry_safe(pos, n, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member), \
n = list_entry(pos->member.next, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, typeof(*n), member))
 
/**
* list_for_each_entry_safe_continue
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate over list of given type, continuing after current point,
* safe against removal of list entry.
*/
#define list_for_each_entry_safe_continue(pos, n, head, member) \
for (pos = list_entry(pos->member.next, typeof(*pos), member), \
n = list_entry(pos->member.next, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, typeof(*n), member))
 
/**
* list_for_each_entry_safe_from
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate over list of given type from current point, safe against
* removal of list entry.
*/
#define list_for_each_entry_safe_from(pos, n, head, member) \
for (n = list_entry(pos->member.next, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, typeof(*n), member))
 
/**
* list_for_each_entry_safe_reverse
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate backwards over list of given type, safe against removal
* of list entry.
*/
#define list_for_each_entry_safe_reverse(pos, n, head, member) \
for (pos = list_entry((head)->prev, typeof(*pos), member), \
n = list_entry(pos->member.prev, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.prev, typeof(*n), member))
 
/*
* Double linked lists with a single pointer list head.
* Mostly useful for hash tables where the two pointer list head is
* too wasteful.
* You lose the ability to access the tail in O(1).
*/
 
struct hlist_head {
struct hlist_node *first;
};
 
struct hlist_node {
struct hlist_node *next, **pprev;
};
 
#define HLIST_HEAD_INIT { .first = NULL }
#define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
static inline void INIT_HLIST_NODE(struct hlist_node *h)
{
h->next = NULL;
h->pprev = NULL;
}
 
static inline int hlist_unhashed(const struct hlist_node *h)
{
return !h->pprev;
}
 
static inline int hlist_empty(const struct hlist_head *h)
{
return !h->first;
}
 
static inline void __hlist_del(struct hlist_node *n)
{
struct hlist_node *next = n->next;
struct hlist_node **pprev = n->pprev;
*pprev = next;
if (next)
next->pprev = pprev;
}
 
static inline void hlist_del(struct hlist_node *n)
{
__hlist_del(n);
n->next = (struct hlist_node*)LIST_POISON1;
n->pprev = (struct hlist_node**)LIST_POISON2;
}
 
static inline void hlist_del_init(struct hlist_node *n)
{
if (!hlist_unhashed(n)) {
__hlist_del(n);
INIT_HLIST_NODE(n);
}
}
 
static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
{
struct hlist_node *first = h->first;
n->next = first;
if (first)
first->pprev = &n->next;
h->first = n;
n->pprev = &h->first;
}
 
/* next must be != NULL */
static inline void hlist_add_before(struct hlist_node *n,
struct hlist_node *next)
{
n->pprev = next->pprev;
n->next = next;
next->pprev = &n->next;
*(n->pprev) = n;
}
 
static inline void hlist_add_after(struct hlist_node *n,
struct hlist_node *next)
{
next->next = n->next;
n->next = next;
next->pprev = &n->next;
 
if(next->next)
next->next->pprev = &next->next;
}
 
/*
* Move a list from one list head to another. Fixup the pprev
* reference of the first entry if it exists.
*/
static inline void hlist_move_list(struct hlist_head *old,
struct hlist_head *new)
{
new->first = old->first;
if (new->first)
new->first->pprev = &new->first;
old->first = NULL;
}
 
#define hlist_entry(ptr, type, member) container_of(ptr,type,member)
 
#define hlist_for_each(pos, head) \
for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \
pos = pos->next)
 
#define hlist_for_each_safe(pos, n, head) \
for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
pos = n)
 
/**
* hlist_for_each_entry - iterate over list of given type
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct hlist_node to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry(tpos, pos, head, member) \
for (pos = (head)->first; \
pos && ({ prefetch(pos->next); 1;}) && \
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
pos = pos->next)
 
/**
* hlist_for_each_entry_continue - iterate over a hlist continuing after current point
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct hlist_node to use as a loop cursor.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry_continue(tpos, pos, member) \
for (pos = (pos)->next; \
pos && ({ prefetch(pos->next); 1;}) && \
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
pos = pos->next)
 
/**
* hlist_for_each_entry_from - iterate over a hlist continuing from current point
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct hlist_node to use as a loop cursor.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry_from(tpos, pos, member) \
for (; pos && ({ prefetch(pos->next); 1;}) && \
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
pos = pos->next)
 
/**
* hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct hlist_node to use as a loop cursor.
* @n: another &struct hlist_node to use as temporary storage
* @head: the head for your list.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry_safe(tpos, pos, n, head, member) \
for (pos = (head)->first; \
pos && ({ n = pos->next; 1; }) && \
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
pos = n)
 
#endif
/contrib/sdk/sources/libc/pe/pe.h
0,0 → 1,188
 
typedef unsigned short WORD;
typedef unsigned int DWORD;
typedef unsigned int LONG;
typedef unsigned char BYTE;
 
#define IMAGE_DOS_SIGNATURE 0x5A4D
#define IMAGE_NT_SIGNATURE 0x00004550
#define IMAGE_NT_OPTIONAL_HDR32_MAGIC 0x10b
 
#pragma pack(push,2)
typedef struct _IMAGE_DOS_HEADER
{
WORD e_magic;
WORD e_cblp;
WORD e_cp;
WORD e_crlc;
WORD e_cparhdr;
WORD e_minalloc;
WORD e_maxalloc;
WORD e_ss;
WORD e_sp;
WORD e_csum;
WORD e_ip;
WORD e_cs;
WORD e_lfarlc;
WORD e_ovno;
WORD e_res[4];
WORD e_oemid;
WORD e_oeminfo;
WORD e_res2[10];
LONG e_lfanew;
} IMAGE_DOS_HEADER,*PIMAGE_DOS_HEADER;
#pragma pack(pop)
 
 
#pragma pack(push,4)
typedef struct _IMAGE_FILE_HEADER
{
WORD Machine;
WORD NumberOfSections;
DWORD TimeDateStamp;
DWORD PointerToSymbolTable;
DWORD NumberOfSymbols;
WORD SizeOfOptionalHeader;
WORD Characteristics;
} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;
 
#define IMAGE_FILE_DLL 0x2000
 
#define IMAGE_FILE_MACHINE_I386 0x014c /* Intel 386 or later processors
and compatible processors */
typedef struct _IMAGE_DATA_DIRECTORY {
DWORD VirtualAddress;
DWORD Size;
} IMAGE_DATA_DIRECTORY,*PIMAGE_DATA_DIRECTORY;
 
#define IMAGE_NUMBEROF_DIRECTORY_ENTRIES 16
 
typedef struct _IMAGE_OPTIONAL_HEADER {
WORD Magic;
BYTE MajorLinkerVersion;
BYTE MinorLinkerVersion;
DWORD SizeOfCode;
DWORD SizeOfInitializedData;
DWORD SizeOfUninitializedData;
DWORD AddressOfEntryPoint;
DWORD BaseOfCode;
DWORD BaseOfData;
DWORD ImageBase;
DWORD SectionAlignment;
DWORD FileAlignment;
WORD MajorOperatingSystemVersion;
WORD MinorOperatingSystemVersion;
WORD MajorImageVersion;
WORD MinorImageVersion;
WORD MajorSubsystemVersion;
WORD MinorSubsystemVersion;
DWORD Win32VersionValue;
DWORD SizeOfImage;
DWORD SizeOfHeaders;
DWORD CheckSum;
WORD Subsystem;
WORD DllCharacteristics;
DWORD SizeOfStackReserve;
DWORD SizeOfStackCommit;
DWORD SizeOfHeapReserve;
DWORD SizeOfHeapCommit;
DWORD LoaderFlags;
DWORD NumberOfRvaAndSizes;
IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
} IMAGE_OPTIONAL_HEADER,*PIMAGE_OPTIONAL_HEADER;
 
#pragma pack(pop)
 
 
#pragma pack(push,4)
typedef struct _IMAGE_NT_HEADERS
{
DWORD Signature;
IMAGE_FILE_HEADER FileHeader;
IMAGE_OPTIONAL_HEADER OptionalHeader;
} IMAGE_NT_HEADERS32,*PIMAGE_NT_HEADERS32;
 
#define IMAGE_SIZEOF_SHORT_NAME 8
 
typedef struct _IMAGE_SECTION_HEADER
{
BYTE Name[IMAGE_SIZEOF_SHORT_NAME];
union
{
DWORD PhysicalAddress;
DWORD VirtualSize;
} Misc;
DWORD VirtualAddress;
DWORD SizeOfRawData;
DWORD PointerToRawData;
DWORD PointerToRelocations;
DWORD PointerToLinenumbers;
WORD NumberOfRelocations;
WORD NumberOfLinenumbers;
DWORD Characteristics;
} IMAGE_SECTION_HEADER,*PIMAGE_SECTION_HEADER;
#pragma pack(pop)
 
#define IMAGE_SCN_CNT_INITIALIZED_DATA 0x00000040
#define IMAGE_SCN_CNT_UNINITIALIZED_DATA 0x00000080
#define IMAGE_SCN_MEM_SHARED 0x10000000
#define IMAGE_SCN_MEM_EXECUTE 0x20000000
#define IMAGE_SCN_MEM_WRITE 0x80000000
 
#pragma pack(push,4)
typedef struct _IMAGE_BASE_RELOCATION {
DWORD VirtualAddress;
DWORD SizeOfBlock;
} IMAGE_BASE_RELOCATION,*PIMAGE_BASE_RELOCATION;
#pragma pack(pop)
 
typedef struct _IMAGE_IMPORT_DESCRIPTOR
{
union
{
DWORD Characteristics;
DWORD OriginalFirstThunk;
};
DWORD TimeDateStamp;
DWORD ForwarderChain;
DWORD Name;
DWORD FirstThunk;
} IMAGE_IMPORT_DESCRIPTOR,*PIMAGE_IMPORT_DESCRIPTOR;
 
typedef struct _IMAGE_THUNK_DATA32
{
union
{
DWORD ForwarderString;
DWORD Function;
DWORD Ordinal;
DWORD AddressOfData;
} u1;
} IMAGE_THUNK_DATA32,*PIMAGE_THUNK_DATA32;
 
typedef struct _IMAGE_IMPORT_BY_NAME
{
WORD Hint;
BYTE Name[1];
} IMAGE_IMPORT_BY_NAME,*PIMAGE_IMPORT_BY_NAME;
 
#define IMAGE_ORDINAL_FLAG 0x80000000
 
typedef struct _IMAGE_EXPORT_DIRECTORY {
DWORD Characteristics;
DWORD TimeDateStamp;
WORD MajorVersion;
WORD MinorVersion;
DWORD Name;
DWORD Base;
DWORD NumberOfFunctions;
DWORD NumberOfNames;
DWORD AddressOfFunctions;
DWORD AddressOfNames;
DWORD AddressOfNameOrdinals;
} IMAGE_EXPORT_DIRECTORY,*PIMAGE_EXPORT_DIRECTORY;
 
 
#define MakePtr( cast, ptr, addValue ) (cast)( (uint32_t)(ptr) + (uint32_t)(addValue) )