Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 4357 → Rev 4358

/contrib/sdk/sources/Mesa/src/mesa/state_tracker/st_atom_array.c
0,0 → 1,596
 
/**************************************************************************
*
* Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
* Copyright 2012 Marek Olšák <maraeo@gmail.com>
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
 
/*
* This converts the VBO's vertex attribute/array information into
* Gallium vertex state and binds it.
*
* Authors:
* Keith Whitwell <keith@tungstengraphics.com>
* Marek Olšák <maraeo@gmail.com>
*/
 
#include "st_context.h"
#include "st_atom.h"
#include "st_cb_bufferobjects.h"
#include "st_draw.h"
#include "st_program.h"
 
#include "cso_cache/cso_context.h"
#include "util/u_math.h"
 
#include "main/bufferobj.h"
#include "main/glformats.h"
 
 
static GLuint double_types[4] = {
PIPE_FORMAT_R64_FLOAT,
PIPE_FORMAT_R64G64_FLOAT,
PIPE_FORMAT_R64G64B64_FLOAT,
PIPE_FORMAT_R64G64B64A64_FLOAT
};
 
static GLuint float_types[4] = {
PIPE_FORMAT_R32_FLOAT,
PIPE_FORMAT_R32G32_FLOAT,
PIPE_FORMAT_R32G32B32_FLOAT,
PIPE_FORMAT_R32G32B32A32_FLOAT
};
 
static GLuint half_float_types[4] = {
PIPE_FORMAT_R16_FLOAT,
PIPE_FORMAT_R16G16_FLOAT,
PIPE_FORMAT_R16G16B16_FLOAT,
PIPE_FORMAT_R16G16B16A16_FLOAT
};
 
static GLuint uint_types_norm[4] = {
PIPE_FORMAT_R32_UNORM,
PIPE_FORMAT_R32G32_UNORM,
PIPE_FORMAT_R32G32B32_UNORM,
PIPE_FORMAT_R32G32B32A32_UNORM
};
 
static GLuint uint_types_scale[4] = {
PIPE_FORMAT_R32_USCALED,
PIPE_FORMAT_R32G32_USCALED,
PIPE_FORMAT_R32G32B32_USCALED,
PIPE_FORMAT_R32G32B32A32_USCALED
};
 
static GLuint uint_types_int[4] = {
PIPE_FORMAT_R32_UINT,
PIPE_FORMAT_R32G32_UINT,
PIPE_FORMAT_R32G32B32_UINT,
PIPE_FORMAT_R32G32B32A32_UINT
};
 
static GLuint int_types_norm[4] = {
PIPE_FORMAT_R32_SNORM,
PIPE_FORMAT_R32G32_SNORM,
PIPE_FORMAT_R32G32B32_SNORM,
PIPE_FORMAT_R32G32B32A32_SNORM
};
 
static GLuint int_types_scale[4] = {
PIPE_FORMAT_R32_SSCALED,
PIPE_FORMAT_R32G32_SSCALED,
PIPE_FORMAT_R32G32B32_SSCALED,
PIPE_FORMAT_R32G32B32A32_SSCALED
};
 
static GLuint int_types_int[4] = {
PIPE_FORMAT_R32_SINT,
PIPE_FORMAT_R32G32_SINT,
PIPE_FORMAT_R32G32B32_SINT,
PIPE_FORMAT_R32G32B32A32_SINT
};
 
static GLuint ushort_types_norm[4] = {
PIPE_FORMAT_R16_UNORM,
PIPE_FORMAT_R16G16_UNORM,
PIPE_FORMAT_R16G16B16_UNORM,
PIPE_FORMAT_R16G16B16A16_UNORM
};
 
static GLuint ushort_types_scale[4] = {
PIPE_FORMAT_R16_USCALED,
PIPE_FORMAT_R16G16_USCALED,
PIPE_FORMAT_R16G16B16_USCALED,
PIPE_FORMAT_R16G16B16A16_USCALED
};
 
static GLuint ushort_types_int[4] = {
PIPE_FORMAT_R16_UINT,
PIPE_FORMAT_R16G16_UINT,
PIPE_FORMAT_R16G16B16_UINT,
PIPE_FORMAT_R16G16B16A16_UINT
};
 
static GLuint short_types_norm[4] = {
PIPE_FORMAT_R16_SNORM,
PIPE_FORMAT_R16G16_SNORM,
PIPE_FORMAT_R16G16B16_SNORM,
PIPE_FORMAT_R16G16B16A16_SNORM
};
 
static GLuint short_types_scale[4] = {
PIPE_FORMAT_R16_SSCALED,
PIPE_FORMAT_R16G16_SSCALED,
PIPE_FORMAT_R16G16B16_SSCALED,
PIPE_FORMAT_R16G16B16A16_SSCALED
};
 
static GLuint short_types_int[4] = {
PIPE_FORMAT_R16_SINT,
PIPE_FORMAT_R16G16_SINT,
PIPE_FORMAT_R16G16B16_SINT,
PIPE_FORMAT_R16G16B16A16_SINT
};
 
static GLuint ubyte_types_norm[4] = {
PIPE_FORMAT_R8_UNORM,
PIPE_FORMAT_R8G8_UNORM,
PIPE_FORMAT_R8G8B8_UNORM,
PIPE_FORMAT_R8G8B8A8_UNORM
};
 
static GLuint ubyte_types_scale[4] = {
PIPE_FORMAT_R8_USCALED,
PIPE_FORMAT_R8G8_USCALED,
PIPE_FORMAT_R8G8B8_USCALED,
PIPE_FORMAT_R8G8B8A8_USCALED
};
 
static GLuint ubyte_types_int[4] = {
PIPE_FORMAT_R8_UINT,
PIPE_FORMAT_R8G8_UINT,
PIPE_FORMAT_R8G8B8_UINT,
PIPE_FORMAT_R8G8B8A8_UINT
};
 
static GLuint byte_types_norm[4] = {
PIPE_FORMAT_R8_SNORM,
PIPE_FORMAT_R8G8_SNORM,
PIPE_FORMAT_R8G8B8_SNORM,
PIPE_FORMAT_R8G8B8A8_SNORM
};
 
static GLuint byte_types_scale[4] = {
PIPE_FORMAT_R8_SSCALED,
PIPE_FORMAT_R8G8_SSCALED,
PIPE_FORMAT_R8G8B8_SSCALED,
PIPE_FORMAT_R8G8B8A8_SSCALED
};
 
static GLuint byte_types_int[4] = {
PIPE_FORMAT_R8_SINT,
PIPE_FORMAT_R8G8_SINT,
PIPE_FORMAT_R8G8B8_SINT,
PIPE_FORMAT_R8G8B8A8_SINT
};
 
static GLuint fixed_types[4] = {
PIPE_FORMAT_R32_FIXED,
PIPE_FORMAT_R32G32_FIXED,
PIPE_FORMAT_R32G32B32_FIXED,
PIPE_FORMAT_R32G32B32A32_FIXED
};
 
 
/**
* Return a PIPE_FORMAT_x for the given GL datatype and size.
*/
enum pipe_format
st_pipe_vertex_format(GLenum type, GLuint size, GLenum format,
GLboolean normalized, GLboolean integer)
{
assert((type >= GL_BYTE && type <= GL_DOUBLE) ||
type == GL_FIXED || type == GL_HALF_FLOAT ||
type == GL_INT_2_10_10_10_REV ||
type == GL_UNSIGNED_INT_2_10_10_10_REV);
assert(size >= 1);
assert(size <= 4);
assert(format == GL_RGBA || format == GL_BGRA);
 
if (type == GL_INT_2_10_10_10_REV ||
type == GL_UNSIGNED_INT_2_10_10_10_REV) {
assert(size == 4);
assert(!integer);
 
if (format == GL_BGRA) {
if (type == GL_INT_2_10_10_10_REV) {
if (normalized)
return PIPE_FORMAT_B10G10R10A2_SNORM;
else
return PIPE_FORMAT_B10G10R10A2_SSCALED;
} else {
if (normalized)
return PIPE_FORMAT_B10G10R10A2_UNORM;
else
return PIPE_FORMAT_B10G10R10A2_USCALED;
}
} else {
if (type == GL_INT_2_10_10_10_REV) {
if (normalized)
return PIPE_FORMAT_R10G10B10A2_SNORM;
else
return PIPE_FORMAT_R10G10B10A2_SSCALED;
} else {
if (normalized)
return PIPE_FORMAT_R10G10B10A2_UNORM;
else
return PIPE_FORMAT_R10G10B10A2_USCALED;
}
}
}
 
if (format == GL_BGRA) {
/* this is an odd-ball case */
assert(type == GL_UNSIGNED_BYTE);
assert(normalized);
return PIPE_FORMAT_B8G8R8A8_UNORM;
}
 
if (integer) {
switch (type) {
case GL_INT: return int_types_int[size-1];
case GL_SHORT: return short_types_int[size-1];
case GL_BYTE: return byte_types_int[size-1];
case GL_UNSIGNED_INT: return uint_types_int[size-1];
case GL_UNSIGNED_SHORT: return ushort_types_int[size-1];
case GL_UNSIGNED_BYTE: return ubyte_types_int[size-1];
default: assert(0); return 0;
}
}
else if (normalized) {
switch (type) {
case GL_DOUBLE: return double_types[size-1];
case GL_FLOAT: return float_types[size-1];
case GL_HALF_FLOAT: return half_float_types[size-1];
case GL_INT: return int_types_norm[size-1];
case GL_SHORT: return short_types_norm[size-1];
case GL_BYTE: return byte_types_norm[size-1];
case GL_UNSIGNED_INT: return uint_types_norm[size-1];
case GL_UNSIGNED_SHORT: return ushort_types_norm[size-1];
case GL_UNSIGNED_BYTE: return ubyte_types_norm[size-1];
case GL_FIXED: return fixed_types[size-1];
default: assert(0); return 0;
}
}
else {
switch (type) {
case GL_DOUBLE: return double_types[size-1];
case GL_FLOAT: return float_types[size-1];
case GL_HALF_FLOAT: return half_float_types[size-1];
case GL_INT: return int_types_scale[size-1];
case GL_SHORT: return short_types_scale[size-1];
case GL_BYTE: return byte_types_scale[size-1];
case GL_UNSIGNED_INT: return uint_types_scale[size-1];
case GL_UNSIGNED_SHORT: return ushort_types_scale[size-1];
case GL_UNSIGNED_BYTE: return ubyte_types_scale[size-1];
case GL_FIXED: return fixed_types[size-1];
default: assert(0); return 0;
}
}
return PIPE_FORMAT_NONE; /* silence compiler warning */
}
 
/**
* Examine the active arrays to determine if we have interleaved
* vertex arrays all living in one VBO, or all living in user space.
*/
static GLboolean
is_interleaved_arrays(const struct st_vertex_program *vp,
const struct st_vp_variant *vpv,
const struct gl_client_array **arrays)
{
GLuint attr;
const struct gl_buffer_object *firstBufObj = NULL;
GLint firstStride = -1;
const GLubyte *firstPtr = NULL;
GLboolean userSpaceBuffer = GL_FALSE;
 
for (attr = 0; attr < vpv->num_inputs; attr++) {
const GLuint mesaAttr = vp->index_to_input[attr];
const struct gl_client_array *array = arrays[mesaAttr];
const struct gl_buffer_object *bufObj = array->BufferObj;
const GLsizei stride = array->StrideB; /* in bytes */
 
if (attr == 0) {
/* save info about the first array */
firstStride = stride;
firstPtr = array->Ptr;
firstBufObj = bufObj;
userSpaceBuffer = !bufObj || !bufObj->Name;
}
else {
/* check if other arrays interleave with the first, in same buffer */
if (stride != firstStride)
return GL_FALSE; /* strides don't match */
 
if (bufObj != firstBufObj)
return GL_FALSE; /* arrays in different VBOs */
 
if (abs(array->Ptr - firstPtr) > firstStride)
return GL_FALSE; /* arrays start too far apart */
 
if ((!_mesa_is_bufferobj(bufObj)) != userSpaceBuffer)
return GL_FALSE; /* mix of VBO and user-space arrays */
}
}
 
return GL_TRUE;
}
 
/**
* Set up for drawing interleaved arrays that all live in one VBO
* or all live in user space.
* \param vbuffer returns vertex buffer info
* \param velements returns vertex element info
*/
static boolean
setup_interleaved_attribs(const struct st_vertex_program *vp,
const struct st_vp_variant *vpv,
const struct gl_client_array **arrays,
struct pipe_vertex_buffer *vbuffer,
struct pipe_vertex_element velements[])
{
GLuint attr;
const GLubyte *low_addr = NULL;
GLboolean usingVBO; /* all arrays in a VBO? */
struct gl_buffer_object *bufobj;
GLsizei stride;
 
/* Find the lowest address of the arrays we're drawing,
* Init bufobj and stride.
*/
if (vpv->num_inputs) {
const GLuint mesaAttr0 = vp->index_to_input[0];
const struct gl_client_array *array = arrays[mesaAttr0];
 
/* Since we're doing interleaved arrays, we know there'll be at most
* one buffer object and the stride will be the same for all arrays.
* Grab them now.
*/
bufobj = array->BufferObj;
stride = array->StrideB;
 
low_addr = arrays[vp->index_to_input[0]]->Ptr;
 
for (attr = 1; attr < vpv->num_inputs; attr++) {
const GLubyte *start = arrays[vp->index_to_input[attr]]->Ptr;
low_addr = MIN2(low_addr, start);
}
}
else {
/* not sure we'll ever have zero inputs, but play it safe */
bufobj = NULL;
stride = 0;
low_addr = 0;
}
 
/* are the arrays in user space? */
usingVBO = _mesa_is_bufferobj(bufobj);
 
for (attr = 0; attr < vpv->num_inputs; attr++) {
const GLuint mesaAttr = vp->index_to_input[attr];
const struct gl_client_array *array = arrays[mesaAttr];
unsigned src_offset = (unsigned) (array->Ptr - low_addr);
 
assert(array->_ElementSize ==
_mesa_bytes_per_vertex_attrib(array->Size, array->Type));
 
velements[attr].src_offset = src_offset;
velements[attr].instance_divisor = array->InstanceDivisor;
velements[attr].vertex_buffer_index = 0;
velements[attr].src_format = st_pipe_vertex_format(array->Type,
array->Size,
array->Format,
array->Normalized,
array->Integer);
assert(velements[attr].src_format);
}
 
/*
* Return the vbuffer info and setup user-space attrib info, if needed.
*/
if (vpv->num_inputs == 0) {
/* just defensive coding here */
vbuffer->buffer = NULL;
vbuffer->user_buffer = NULL;
vbuffer->buffer_offset = 0;
vbuffer->stride = 0;
}
else if (usingVBO) {
/* all interleaved arrays in a VBO */
struct st_buffer_object *stobj = st_buffer_object(bufobj);
 
if (!stobj || !stobj->buffer) {
return FALSE; /* out-of-memory error probably */
}
 
vbuffer->buffer = stobj->buffer;
vbuffer->user_buffer = NULL;
vbuffer->buffer_offset = pointer_to_offset(low_addr);
vbuffer->stride = stride;
}
else {
/* all interleaved arrays in user memory */
vbuffer->buffer = NULL;
vbuffer->user_buffer = low_addr;
vbuffer->buffer_offset = 0;
vbuffer->stride = stride;
}
return TRUE;
}
 
/**
* Set up a separate pipe_vertex_buffer and pipe_vertex_element for each
* vertex attribute.
* \param vbuffer returns vertex buffer info
* \param velements returns vertex element info
*/
static boolean
setup_non_interleaved_attribs(struct st_context *st,
const struct st_vertex_program *vp,
const struct st_vp_variant *vpv,
const struct gl_client_array **arrays,
struct pipe_vertex_buffer vbuffer[],
struct pipe_vertex_element velements[])
{
struct gl_context *ctx = st->ctx;
GLuint attr;
 
for (attr = 0; attr < vpv->num_inputs; attr++) {
const GLuint mesaAttr = vp->index_to_input[attr];
const struct gl_client_array *array = arrays[mesaAttr];
struct gl_buffer_object *bufobj = array->BufferObj;
GLsizei stride = array->StrideB;
 
assert(array->_ElementSize ==
_mesa_bytes_per_vertex_attrib(array->Size, array->Type));
 
if (_mesa_is_bufferobj(bufobj)) {
/* Attribute data is in a VBO.
* Recall that for VBOs, the gl_client_array->Ptr field is
* really an offset from the start of the VBO, not a pointer.
*/
struct st_buffer_object *stobj = st_buffer_object(bufobj);
 
if (!stobj || !stobj->buffer) {
return FALSE; /* out-of-memory error probably */
}
 
vbuffer[attr].buffer = stobj->buffer;
vbuffer[attr].user_buffer = NULL;
vbuffer[attr].buffer_offset = pointer_to_offset(array->Ptr);
}
else {
/* wrap user data */
void *ptr;
 
if (array->Ptr) {
ptr = (void *) array->Ptr;
}
else {
/* no array, use ctx->Current.Attrib[] value */
ptr = (void *) ctx->Current.Attrib[mesaAttr];
stride = 0;
}
 
assert(ptr);
 
vbuffer[attr].buffer = NULL;
vbuffer[attr].user_buffer = ptr;
vbuffer[attr].buffer_offset = 0;
}
 
/* common-case setup */
vbuffer[attr].stride = stride; /* in bytes */
 
velements[attr].src_offset = 0;
velements[attr].instance_divisor = array->InstanceDivisor;
velements[attr].vertex_buffer_index = attr;
velements[attr].src_format = st_pipe_vertex_format(array->Type,
array->Size,
array->Format,
array->Normalized,
array->Integer);
assert(velements[attr].src_format);
}
return TRUE;
}
 
static void update_array(struct st_context *st)
{
struct gl_context *ctx = st->ctx;
const struct gl_client_array **arrays = ctx->Array._DrawArrays;
const struct st_vertex_program *vp;
const struct st_vp_variant *vpv;
struct pipe_vertex_buffer vbuffer[PIPE_MAX_SHADER_INPUTS];
struct pipe_vertex_element velements[PIPE_MAX_ATTRIBS];
unsigned num_vbuffers, num_velements;
 
st->vertex_array_out_of_memory = FALSE;
 
/* No drawing has been done yet, so do nothing. */
if (!arrays)
return;
 
/* vertex program validation must be done before this */
vp = st->vp;
vpv = st->vp_variant;
 
memset(velements, 0, sizeof(struct pipe_vertex_element) * vpv->num_inputs);
 
/*
* Setup the vbuffer[] and velements[] arrays.
*/
if (is_interleaved_arrays(vp, vpv, arrays)) {
if (!setup_interleaved_attribs(vp, vpv, arrays, vbuffer, velements)) {
st->vertex_array_out_of_memory = TRUE;
return;
}
 
num_vbuffers = 1;
num_velements = vpv->num_inputs;
if (num_velements == 0)
num_vbuffers = 0;
}
else {
if (!setup_non_interleaved_attribs(st, vp, vpv, arrays, vbuffer,
velements)) {
st->vertex_array_out_of_memory = TRUE;
return;
}
 
num_vbuffers = vpv->num_inputs;
num_velements = vpv->num_inputs;
}
 
cso_set_vertex_buffers(st->cso_context, 0, num_vbuffers, vbuffer);
if (st->last_num_vbuffers > num_vbuffers) {
/* Unbind remaining buffers, if any. */
cso_set_vertex_buffers(st->cso_context, num_vbuffers,
st->last_num_vbuffers - num_vbuffers, NULL);
}
st->last_num_vbuffers = num_vbuffers;
cso_set_vertex_elements(st->cso_context, num_velements, velements);
}
 
 
const struct st_tracked_state st_update_array = {
"st_update_array", /* name */
{ /* dirty */
0, /* mesa */
ST_NEW_VERTEX_ARRAYS | ST_NEW_VERTEX_PROGRAM, /* st */
},
update_array /* update */
};