Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 4357 → Rev 4358

/contrib/sdk/sources/Mesa/src/gallium/drivers/r300/compiler/r300_fragprog_emit.c
0,0 → 1,552
/*
* Copyright (C) 2005 Ben Skeggs.
*
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
 
/**
* \file
*
* Emit the r300_fragment_program_code that can be understood by the hardware.
* Input is a pre-transformed radeon_program.
*
* \author Ben Skeggs <darktama@iinet.net.au>
*
* \author Jerome Glisse <j.glisse@gmail.com>
*/
 
#include "r300_fragprog.h"
 
#include "../r300_reg.h"
 
#include "radeon_program_pair.h"
#include "r300_fragprog_swizzle.h"
 
 
struct r300_emit_state {
struct r300_fragment_program_compiler * compiler;
 
unsigned current_node : 2;
unsigned node_first_tex : 8;
unsigned node_first_alu : 8;
uint32_t node_flags;
};
 
#define PROG_CODE \
struct r300_fragment_program_compiler *c = emit->compiler; \
struct r300_fragment_program_code *code = &c->code->code.r300
 
#define error(fmt, args...) do { \
rc_error(&c->Base, "%s::%s(): " fmt "\n", \
__FILE__, __FUNCTION__, ##args); \
} while(0)
 
static unsigned int get_msbs_alu(unsigned int bits)
{
return (bits >> 6) & 0x7;
}
 
/**
* @param lsbs The number of least significant bits
*/
static unsigned int get_msbs_tex(unsigned int bits, unsigned int lsbs)
{
return (bits >> lsbs) & 0x15;
}
 
#define R400_EXT_GET_MSBS(x, lsbs, mask) (((x) >> lsbs) & mask)
 
/**
* Mark a temporary register as used.
*/
static void use_temporary(struct r300_fragment_program_code *code, unsigned int index)
{
if (index > code->pixsize)
code->pixsize = index;
}
 
static unsigned int use_source(struct r300_fragment_program_code* code, struct rc_pair_instruction_source src)
{
if (!src.Used)
return 0;
 
if (src.File == RC_FILE_CONSTANT) {
return src.Index | (1 << 5);
} else if (src.File == RC_FILE_TEMPORARY || src.File == RC_FILE_INPUT) {
use_temporary(code, src.Index);
return src.Index & 0x1f;
}
 
return 0;
}
 
 
static unsigned int translate_rgb_opcode(struct r300_fragment_program_compiler * c, rc_opcode opcode)
{
switch(opcode) {
case RC_OPCODE_CMP: return R300_ALU_OUTC_CMP;
case RC_OPCODE_CND: return R300_ALU_OUTC_CND;
case RC_OPCODE_DP3: return R300_ALU_OUTC_DP3;
case RC_OPCODE_DP4: return R300_ALU_OUTC_DP4;
case RC_OPCODE_FRC: return R300_ALU_OUTC_FRC;
default:
error("translate_rgb_opcode: Unknown opcode %s", rc_get_opcode_info(opcode)->Name);
/* fall through */
case RC_OPCODE_NOP:
/* fall through */
case RC_OPCODE_MAD: return R300_ALU_OUTC_MAD;
case RC_OPCODE_MAX: return R300_ALU_OUTC_MAX;
case RC_OPCODE_MIN: return R300_ALU_OUTC_MIN;
case RC_OPCODE_REPL_ALPHA: return R300_ALU_OUTC_REPL_ALPHA;
}
}
 
static unsigned int translate_alpha_opcode(struct r300_fragment_program_compiler * c, rc_opcode opcode)
{
switch(opcode) {
case RC_OPCODE_CMP: return R300_ALU_OUTA_CMP;
case RC_OPCODE_CND: return R300_ALU_OUTA_CND;
case RC_OPCODE_DP3: return R300_ALU_OUTA_DP4;
case RC_OPCODE_DP4: return R300_ALU_OUTA_DP4;
case RC_OPCODE_EX2: return R300_ALU_OUTA_EX2;
case RC_OPCODE_FRC: return R300_ALU_OUTA_FRC;
case RC_OPCODE_LG2: return R300_ALU_OUTA_LG2;
default:
error("translate_rgb_opcode: Unknown opcode %s", rc_get_opcode_info(opcode)->Name);
/* fall through */
case RC_OPCODE_NOP:
/* fall through */
case RC_OPCODE_MAD: return R300_ALU_OUTA_MAD;
case RC_OPCODE_MAX: return R300_ALU_OUTA_MAX;
case RC_OPCODE_MIN: return R300_ALU_OUTA_MIN;
case RC_OPCODE_RCP: return R300_ALU_OUTA_RCP;
case RC_OPCODE_RSQ: return R300_ALU_OUTA_RSQ;
}
}
 
/**
* Emit one paired ALU instruction.
*/
static int emit_alu(struct r300_emit_state * emit, struct rc_pair_instruction* inst)
{
int ip;
int j;
PROG_CODE;
 
if (code->alu.length >= c->Base.max_alu_insts) {
error("Too many ALU instructions");
return 0;
}
 
ip = code->alu.length++;
 
code->alu.inst[ip].rgb_inst = translate_rgb_opcode(c, inst->RGB.Opcode);
code->alu.inst[ip].alpha_inst = translate_alpha_opcode(c, inst->Alpha.Opcode);
 
for(j = 0; j < 3; ++j) {
/* Set the RGB address */
unsigned int src = use_source(code, inst->RGB.Src[j]);
unsigned int arg;
if (inst->RGB.Src[j].Index >= R300_PFS_NUM_TEMP_REGS)
code->alu.inst[ip].r400_ext_addr |= R400_ADDR_EXT_RGB_MSB_BIT(j);
 
code->alu.inst[ip].rgb_addr |= src << (6*j);
 
/* Set the Alpha address */
src = use_source(code, inst->Alpha.Src[j]);
if (inst->Alpha.Src[j].Index >= R300_PFS_NUM_TEMP_REGS)
code->alu.inst[ip].r400_ext_addr |= R400_ADDR_EXT_A_MSB_BIT(j);
 
code->alu.inst[ip].alpha_addr |= src << (6*j);
 
arg = r300FPTranslateRGBSwizzle(inst->RGB.Arg[j].Source, inst->RGB.Arg[j].Swizzle);
arg |= inst->RGB.Arg[j].Abs << 6;
arg |= inst->RGB.Arg[j].Negate << 5;
code->alu.inst[ip].rgb_inst |= arg << (7*j);
 
arg = r300FPTranslateAlphaSwizzle(inst->Alpha.Arg[j].Source, inst->Alpha.Arg[j].Swizzle);
arg |= inst->Alpha.Arg[j].Abs << 6;
arg |= inst->Alpha.Arg[j].Negate << 5;
code->alu.inst[ip].alpha_inst |= arg << (7*j);
}
 
/* Presubtract */
if (inst->RGB.Src[RC_PAIR_PRESUB_SRC].Used) {
switch(inst->RGB.Src[RC_PAIR_PRESUB_SRC].Index) {
case RC_PRESUB_BIAS:
code->alu.inst[ip].rgb_inst |=
R300_ALU_SRCP_1_MINUS_2_SRC0;
break;
case RC_PRESUB_ADD:
code->alu.inst[ip].rgb_inst |=
R300_ALU_SRCP_SRC1_PLUS_SRC0;
break;
case RC_PRESUB_SUB:
code->alu.inst[ip].rgb_inst |=
R300_ALU_SRCP_SRC1_MINUS_SRC0;
break;
case RC_PRESUB_INV:
code->alu.inst[ip].rgb_inst |=
R300_ALU_SRCP_1_MINUS_SRC0;
break;
default:
break;
}
}
 
if (inst->Alpha.Src[RC_PAIR_PRESUB_SRC].Used) {
switch(inst->Alpha.Src[RC_PAIR_PRESUB_SRC].Index) {
case RC_PRESUB_BIAS:
code->alu.inst[ip].alpha_inst |=
R300_ALU_SRCP_1_MINUS_2_SRC0;
break;
case RC_PRESUB_ADD:
code->alu.inst[ip].alpha_inst |=
R300_ALU_SRCP_SRC1_PLUS_SRC0;
break;
case RC_PRESUB_SUB:
code->alu.inst[ip].alpha_inst |=
R300_ALU_SRCP_SRC1_MINUS_SRC0;
break;
case RC_PRESUB_INV:
code->alu.inst[ip].alpha_inst |=
R300_ALU_SRCP_1_MINUS_SRC0;
break;
default:
break;
}
}
 
if (inst->RGB.Saturate)
code->alu.inst[ip].rgb_inst |= R300_ALU_OUTC_CLAMP;
if (inst->Alpha.Saturate)
code->alu.inst[ip].alpha_inst |= R300_ALU_OUTA_CLAMP;
 
if (inst->RGB.WriteMask) {
use_temporary(code, inst->RGB.DestIndex);
if (inst->RGB.DestIndex >= R300_PFS_NUM_TEMP_REGS)
code->alu.inst[ip].r400_ext_addr |= R400_ADDRD_EXT_RGB_MSB_BIT;
code->alu.inst[ip].rgb_addr |=
((inst->RGB.DestIndex & 0x1f) << R300_ALU_DSTC_SHIFT) |
(inst->RGB.WriteMask << R300_ALU_DSTC_REG_MASK_SHIFT);
}
if (inst->RGB.OutputWriteMask) {
code->alu.inst[ip].rgb_addr |=
(inst->RGB.OutputWriteMask << R300_ALU_DSTC_OUTPUT_MASK_SHIFT) |
R300_RGB_TARGET(inst->RGB.Target);
emit->node_flags |= R300_RGBA_OUT;
}
 
if (inst->Alpha.WriteMask) {
use_temporary(code, inst->Alpha.DestIndex);
if (inst->Alpha.DestIndex >= R300_PFS_NUM_TEMP_REGS)
code->alu.inst[ip].r400_ext_addr |= R400_ADDRD_EXT_A_MSB_BIT;
code->alu.inst[ip].alpha_addr |=
((inst->Alpha.DestIndex & 0x1f) << R300_ALU_DSTA_SHIFT) |
R300_ALU_DSTA_REG;
}
if (inst->Alpha.OutputWriteMask) {
code->alu.inst[ip].alpha_addr |= R300_ALU_DSTA_OUTPUT |
R300_ALPHA_TARGET(inst->Alpha.Target);
emit->node_flags |= R300_RGBA_OUT;
}
if (inst->Alpha.DepthWriteMask) {
code->alu.inst[ip].alpha_addr |= R300_ALU_DSTA_DEPTH;
emit->node_flags |= R300_W_OUT;
c->code->writes_depth = 1;
}
if (inst->Nop)
code->alu.inst[ip].rgb_inst |= R300_ALU_INSERT_NOP;
 
/* Handle Output Modifier
* According to the r300 docs, there is no RC_OMOD_DISABLE for r300 */
if (inst->RGB.Omod) {
if (inst->RGB.Omod == RC_OMOD_DISABLE) {
rc_error(&c->Base, "RC_OMOD_DISABLE not supported");
}
code->alu.inst[ip].rgb_inst |=
(inst->RGB.Omod << R300_ALU_OUTC_MOD_SHIFT);
}
if (inst->Alpha.Omod) {
if (inst->Alpha.Omod == RC_OMOD_DISABLE) {
rc_error(&c->Base, "RC_OMOD_DISABLE not supported");
}
code->alu.inst[ip].alpha_inst |=
(inst->Alpha.Omod << R300_ALU_OUTC_MOD_SHIFT);
}
return 1;
}
 
 
/**
* Finish the current node without advancing to the next one.
*/
static int finish_node(struct r300_emit_state * emit)
{
struct r300_fragment_program_compiler * c = emit->compiler;
struct r300_fragment_program_code *code = &emit->compiler->code->code.r300;
unsigned alu_offset;
unsigned alu_end;
unsigned tex_offset;
unsigned tex_end;
 
unsigned int alu_offset_msbs, alu_end_msbs;
 
if (code->alu.length == emit->node_first_alu) {
/* Generate a single NOP for this node */
struct rc_pair_instruction inst;
memset(&inst, 0, sizeof(inst));
if (!emit_alu(emit, &inst))
return 0;
}
 
alu_offset = emit->node_first_alu;
alu_end = code->alu.length - alu_offset - 1;
tex_offset = emit->node_first_tex;
tex_end = code->tex.length - tex_offset - 1;
 
if (code->tex.length == emit->node_first_tex) {
if (emit->current_node > 0) {
error("Node %i has no TEX instructions", emit->current_node);
return 0;
}
 
tex_end = 0;
} else {
if (emit->current_node == 0)
code->config |= R300_PFS_CNTL_FIRST_NODE_HAS_TEX;
}
 
/* Write the config register.
* Note: The order in which the words for each node are written
* is not correct here and needs to be fixed up once we're entirely
* done
*
* Also note that the register specification from AMD is slightly
* incorrect in its description of this register. */
code->code_addr[emit->current_node] =
((alu_offset << R300_ALU_START_SHIFT)
& R300_ALU_START_MASK)
| ((alu_end << R300_ALU_SIZE_SHIFT)
& R300_ALU_SIZE_MASK)
| ((tex_offset << R300_TEX_START_SHIFT)
& R300_TEX_START_MASK)
| ((tex_end << R300_TEX_SIZE_SHIFT)
& R300_TEX_SIZE_MASK)
| emit->node_flags
| (get_msbs_tex(tex_offset, 5)
<< R400_TEX_START_MSB_SHIFT)
| (get_msbs_tex(tex_end, 5)
<< R400_TEX_SIZE_MSB_SHIFT)
;
 
/* Write r400 extended instruction fields. These will be ignored on
* r300 cards. */
alu_offset_msbs = get_msbs_alu(alu_offset);
alu_end_msbs = get_msbs_alu(alu_end);
switch(emit->current_node) {
case 0:
code->r400_code_offset_ext |=
alu_offset_msbs << R400_ALU_START3_MSB_SHIFT
| alu_end_msbs << R400_ALU_SIZE3_MSB_SHIFT;
break;
case 1:
code->r400_code_offset_ext |=
alu_offset_msbs << R400_ALU_START2_MSB_SHIFT
| alu_end_msbs << R400_ALU_SIZE2_MSB_SHIFT;
break;
case 2:
code->r400_code_offset_ext |=
alu_offset_msbs << R400_ALU_START1_MSB_SHIFT
| alu_end_msbs << R400_ALU_SIZE1_MSB_SHIFT;
break;
case 3:
code->r400_code_offset_ext |=
alu_offset_msbs << R400_ALU_START0_MSB_SHIFT
| alu_end_msbs << R400_ALU_SIZE0_MSB_SHIFT;
break;
}
return 1;
}
 
 
/**
* Begin a block of texture instructions.
* Create the necessary indirection.
*/
static int begin_tex(struct r300_emit_state * emit)
{
PROG_CODE;
 
if (code->alu.length == emit->node_first_alu &&
code->tex.length == emit->node_first_tex) {
return 1;
}
 
if (emit->current_node == 3) {
error("Too many texture indirections");
return 0;
}
 
if (!finish_node(emit))
return 0;
 
emit->current_node++;
emit->node_first_tex = code->tex.length;
emit->node_first_alu = code->alu.length;
emit->node_flags = 0;
return 1;
}
 
 
static int emit_tex(struct r300_emit_state * emit, struct rc_instruction * inst)
{
unsigned int unit;
unsigned int dest;
unsigned int opcode;
PROG_CODE;
 
if (code->tex.length >= emit->compiler->Base.max_tex_insts) {
error("Too many TEX instructions");
return 0;
}
 
unit = inst->U.I.TexSrcUnit;
dest = inst->U.I.DstReg.Index;
 
switch(inst->U.I.Opcode) {
case RC_OPCODE_KIL: opcode = R300_TEX_OP_KIL; break;
case RC_OPCODE_TEX: opcode = R300_TEX_OP_LD; break;
case RC_OPCODE_TXB: opcode = R300_TEX_OP_TXB; break;
case RC_OPCODE_TXP: opcode = R300_TEX_OP_TXP; break;
default:
error("Unknown texture opcode %s", rc_get_opcode_info(inst->U.I.Opcode)->Name);
return 0;
}
 
if (inst->U.I.Opcode == RC_OPCODE_KIL) {
unit = 0;
dest = 0;
} else {
use_temporary(code, dest);
}
 
use_temporary(code, inst->U.I.SrcReg[0].Index);
 
code->tex.inst[code->tex.length++] =
((inst->U.I.SrcReg[0].Index << R300_SRC_ADDR_SHIFT)
& R300_SRC_ADDR_MASK)
| ((dest << R300_DST_ADDR_SHIFT)
& R300_DST_ADDR_MASK)
| (unit << R300_TEX_ID_SHIFT)
| (opcode << R300_TEX_INST_SHIFT)
| (inst->U.I.SrcReg[0].Index >= R300_PFS_NUM_TEMP_REGS ?
R400_SRC_ADDR_EXT_BIT : 0)
| (dest >= R300_PFS_NUM_TEMP_REGS ?
R400_DST_ADDR_EXT_BIT : 0)
;
return 1;
}
 
 
/**
* Final compilation step: Turn the intermediate radeon_program into
* machine-readable instructions.
*/
void r300BuildFragmentProgramHwCode(struct radeon_compiler *c, void *user)
{
struct r300_fragment_program_compiler *compiler = (struct r300_fragment_program_compiler*)c;
struct r300_emit_state emit;
struct r300_fragment_program_code *code = &compiler->code->code.r300;
unsigned int tex_end;
 
memset(&emit, 0, sizeof(emit));
emit.compiler = compiler;
 
memset(code, 0, sizeof(struct r300_fragment_program_code));
 
for(struct rc_instruction * inst = compiler->Base.Program.Instructions.Next;
inst != &compiler->Base.Program.Instructions && !compiler->Base.Error;
inst = inst->Next) {
if (inst->Type == RC_INSTRUCTION_NORMAL) {
if (inst->U.I.Opcode == RC_OPCODE_BEGIN_TEX) {
begin_tex(&emit);
continue;
}
 
emit_tex(&emit, inst);
} else {
emit_alu(&emit, &inst->U.P);
}
}
 
if (code->pixsize >= compiler->Base.max_temp_regs)
rc_error(&compiler->Base, "Too many hardware temporaries used.\n");
 
if (compiler->Base.Error)
return;
 
/* Finish the program */
finish_node(&emit);
 
code->config |= emit.current_node; /* FIRST_NODE_HAS_TEX set by finish_node */
 
/* Set r400 extended instruction fields. These values will be ignored
* on r300 cards. */
code->r400_code_offset_ext |=
(get_msbs_alu(0)
<< R400_ALU_OFFSET_MSB_SHIFT)
| (get_msbs_alu(code->alu.length - 1)
<< R400_ALU_SIZE_MSB_SHIFT);
 
tex_end = code->tex.length ? code->tex.length - 1 : 0;
code->code_offset =
((0 << R300_PFS_CNTL_ALU_OFFSET_SHIFT)
& R300_PFS_CNTL_ALU_OFFSET_MASK)
| (((code->alu.length - 1) << R300_PFS_CNTL_ALU_END_SHIFT)
& R300_PFS_CNTL_ALU_END_MASK)
| ((0 << R300_PFS_CNTL_TEX_OFFSET_SHIFT)
& R300_PFS_CNTL_TEX_OFFSET_MASK)
| ((tex_end << R300_PFS_CNTL_TEX_END_SHIFT)
& R300_PFS_CNTL_TEX_END_MASK)
| (get_msbs_tex(0, 5) << R400_TEX_START_MSB_SHIFT)
| (get_msbs_tex(tex_end, 6) << R400_TEX_SIZE_MSB_SHIFT)
;
 
if (emit.current_node < 3) {
int shift = 3 - emit.current_node;
int i;
for(i = emit.current_node; i >= 0; --i)
code->code_addr[shift + i] = code->code_addr[i];
for(i = 0; i < shift; ++i)
code->code_addr[i] = 0;
}
 
if (code->pixsize >= R300_PFS_NUM_TEMP_REGS
|| code->alu.length > R300_PFS_MAX_ALU_INST
|| code->tex.length > R300_PFS_MAX_TEX_INST) {
 
code->r390_mode = 1;
}
}