Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 4357 → Rev 4358

/contrib/sdk/sources/Mesa/src/gallium/drivers/nv50/codegen/nv50_ir.h
0,0 → 1,1197
/*
* Copyright 2011 Christoph Bumiller
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
 
#ifndef __NV50_IR_H__
#define __NV50_IR_H__
 
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <deque>
#include <list>
#include <vector>
 
#include "nv50_ir_util.h"
#include "nv50_ir_graph.h"
 
#include "nv50_ir_driver.h"
 
namespace nv50_ir {
 
enum operation
{
OP_NOP = 0,
OP_PHI,
OP_UNION, // unify a new definition and several source values
OP_SPLIT, // $r0d -> { $r0, $r1 } ($r0d and $r0/$r1 will be coalesced)
OP_MERGE, // opposite of split, e.g. combine 2 32 bit into a 64 bit value
OP_CONSTRAINT, // copy values into consecutive registers
OP_MOV, // simple copy, no modifiers allowed
OP_LOAD,
OP_STORE,
OP_ADD, // NOTE: add u64 + u32 is legal for targets w/o 64-bit integer adds
OP_SUB,
OP_MUL,
OP_DIV,
OP_MOD,
OP_MAD,
OP_FMA,
OP_SAD, // abs(src0 - src1) + src2
OP_ABS,
OP_NEG,
OP_NOT,
OP_AND,
OP_OR,
OP_XOR,
OP_SHL,
OP_SHR,
OP_MAX,
OP_MIN,
OP_SAT, // CLAMP(f32, 0.0, 1.0)
OP_CEIL,
OP_FLOOR,
OP_TRUNC,
OP_CVT,
OP_SET_AND, // dst = (src0 CMP src1) & src2
OP_SET_OR,
OP_SET_XOR,
OP_SET,
OP_SELP, // dst = src2 ? src0 : src1
OP_SLCT, // dst = (src2 CMP 0) ? src0 : src1
OP_RCP,
OP_RSQ,
OP_LG2,
OP_SIN,
OP_COS,
OP_EX2,
OP_EXP, // exponential (base M_E)
OP_LOG, // natural logarithm
OP_PRESIN,
OP_PREEX2,
OP_SQRT,
OP_POW,
OP_BRA,
OP_CALL,
OP_RET,
OP_CONT,
OP_BREAK,
OP_PRERET,
OP_PRECONT,
OP_PREBREAK,
OP_BRKPT, // breakpoint (not related to loops)
OP_JOINAT, // push control flow convergence point
OP_JOIN, // converge
OP_DISCARD,
OP_EXIT,
OP_MEMBAR, // memory barrier (mfence, lfence, sfence)
OP_VFETCH, // indirection 0 in attribute space, indirection 1 is vertex base
OP_PFETCH, // fetch base address of vertex src0 (immediate) [+ src1]
OP_EXPORT,
OP_LINTERP,
OP_PINTERP,
OP_EMIT, // emit vertex
OP_RESTART, // restart primitive
OP_TEX,
OP_TXB, // texture bias
OP_TXL, // texure lod
OP_TXF, // texel fetch
OP_TXQ, // texture size query
OP_TXD, // texture derivatives
OP_TXG, // texture gather
OP_TEXCSAA, // texture op for coverage sampling
OP_TEXPREP, // turn cube map array into 2d array coordinates
OP_SULDB, // surface load (raw)
OP_SULDP, // surface load (formatted)
OP_SUSTB, // surface store (raw)
OP_SUSTP, // surface store (formatted)
OP_SUREDB,
OP_SUREDP, // surface reduction (atomic op)
OP_SULEA, // surface load effective address
OP_SUBFM, // surface bitfield manipulation
OP_SUCLAMP, // clamp surface coordinates
OP_SUEAU, // surface effective address
OP_MADSP, // special integer multiply-add
OP_TEXBAR, // texture dependency barrier
OP_DFDX,
OP_DFDY,
OP_RDSV, // read system value
OP_WRSV, // write system value
OP_QUADOP,
OP_QUADON,
OP_QUADPOP,
OP_POPCNT, // bitcount(src0 & src1)
OP_INSBF, // insert first src1[8:15] bits of src0 into src2 at src1[0:7]
OP_EXTBF, // place bits [K,K+N) of src0 into dst, src1 = 0xNNKK
OP_PERMT, // dst = bytes from src2,src0 selected by src1 (nvc0's src order)
OP_ATOM,
OP_BAR, // execution barrier, sources = { id, thread count, predicate }
OP_VADD, // byte/word vector operations
OP_VAVG,
OP_VMIN,
OP_VMAX,
OP_VSAD,
OP_VSET,
OP_VSHR,
OP_VSHL,
OP_VSEL,
OP_CCTL, // cache control
OP_LAST
};
 
// various instruction-specific modifier definitions Instruction::subOp
// MOV_FINAL marks a MOV originating from an EXPORT (used for placing TEXBARs)
#define NV50_IR_SUBOP_MUL_HIGH 1
#define NV50_IR_SUBOP_EMIT_RESTART 1
#define NV50_IR_SUBOP_LDC_IL 1
#define NV50_IR_SUBOP_LDC_IS 2
#define NV50_IR_SUBOP_LDC_ISL 3
#define NV50_IR_SUBOP_SHIFT_WRAP 1
#define NV50_IR_SUBOP_EMU_PRERET 1
#define NV50_IR_SUBOP_TEXBAR(n) n
#define NV50_IR_SUBOP_MOV_FINAL 1
#define NV50_IR_SUBOP_EXTBF_REV 1
#define NV50_IR_SUBOP_PERMT_F4E 1
#define NV50_IR_SUBOP_PERMT_B4E 2
#define NV50_IR_SUBOP_PERMT_RC8 3
#define NV50_IR_SUBOP_PERMT_ECL 4
#define NV50_IR_SUBOP_PERMT_ECR 5
#define NV50_IR_SUBOP_PERMT_RC16 6
#define NV50_IR_SUBOP_BAR_SYNC 0
#define NV50_IR_SUBOP_BAR_ARRIVE 1
#define NV50_IR_SUBOP_BAR_RED_AND 2
#define NV50_IR_SUBOP_BAR_RED_OR 3
#define NV50_IR_SUBOP_BAR_RED_POPC 4
#define NV50_IR_SUBOP_MEMBAR_L 1
#define NV50_IR_SUBOP_MEMBAR_S 2
#define NV50_IR_SUBOP_MEMBAR_M 3
#define NV50_IR_SUBOP_MEMBAR_CTA (0 << 2)
#define NV50_IR_SUBOP_MEMBAR_GL (1 << 2)
#define NV50_IR_SUBOP_MEMBAR_SYS (2 << 2)
#define NV50_IR_SUBOP_MEMBAR_DIR(m) ((m) & 0x3)
#define NV50_IR_SUBOP_MEMBAR_SCOPE(m) ((m) & ~0x3)
#define NV50_IR_SUBOP_MEMBAR(d,s) \
(NV50_IR_SUBOP_MEMBAR_##d | NV50_IR_SUBOP_MEMBAR_##s)
#define NV50_IR_SUBOP_ATOM_ADD 0
#define NV50_IR_SUBOP_ATOM_MIN 1
#define NV50_IR_SUBOP_ATOM_MAX 2
#define NV50_IR_SUBOP_ATOM_INC 3
#define NV50_IR_SUBOP_ATOM_DEC 4
#define NV50_IR_SUBOP_ATOM_AND 5
#define NV50_IR_SUBOP_ATOM_OR 6
#define NV50_IR_SUBOP_ATOM_XOR 7
#define NV50_IR_SUBOP_ATOM_CAS 8
#define NV50_IR_SUBOP_ATOM_EXCH 9
#define NV50_IR_SUBOP_CCTL_IV 5
#define NV50_IR_SUBOP_CCTL_IVALL 6
#define NV50_IR_SUBOP_SUST_IGN 0
#define NV50_IR_SUBOP_SUST_TRAP 1
#define NV50_IR_SUBOP_SUST_SDCL 3
#define NV50_IR_SUBOP_SULD_ZERO 0
#define NV50_IR_SUBOP_SULD_TRAP 1
#define NV50_IR_SUBOP_SULD_SDCL 3
#define NV50_IR_SUBOP_SUBFM_3D 1
#define NV50_IR_SUBOP_SUCLAMP_2D 0x10
#define NV50_IR_SUBOP_SUCLAMP_SD(r, d) (( 0 + (r)) | ((d == 2) ? 0x10 : 0))
#define NV50_IR_SUBOP_SUCLAMP_PL(r, d) (( 5 + (r)) | ((d == 2) ? 0x10 : 0))
#define NV50_IR_SUBOP_SUCLAMP_BL(r, d) ((10 + (r)) | ((d == 2) ? 0x10 : 0))
#define NV50_IR_SUBOP_MADSP_SD 0xffff
// Yes, we could represent those with DataType.
// Or put the type into operation and have a couple 1000 values in that enum.
// This will have to do for now.
// The bitfields are supposed to correspond to nve4 ISA.
#define NV50_IR_SUBOP_MADSP(a,b,c) (((c) << 8) | ((b) << 4) | (a))
#define NV50_IR_SUBOP_V1(d,a,b) (((d) << 10) | ((b) << 5) | (a) | 0x0000)
#define NV50_IR_SUBOP_V2(d,a,b) (((d) << 10) | ((b) << 5) | (a) | 0x4000)
#define NV50_IR_SUBOP_V4(d,a,b) (((d) << 10) | ((b) << 5) | (a) | 0x8000)
#define NV50_IR_SUBOP_Vn(n) ((n) >> 14)
 
enum DataType
{
TYPE_NONE,
TYPE_U8,
TYPE_S8,
TYPE_U16,
TYPE_S16,
TYPE_U32,
TYPE_S32,
TYPE_U64, // 64 bit operations are only lowered after register allocation
TYPE_S64,
TYPE_F16,
TYPE_F32,
TYPE_F64,
TYPE_B96,
TYPE_B128
};
 
enum CondCode
{
CC_FL = 0,
CC_NEVER = CC_FL, // when used with FILE_FLAGS
CC_LT = 1,
CC_EQ = 2,
CC_NOT_P = CC_EQ, // when used with FILE_PREDICATE
CC_LE = 3,
CC_GT = 4,
CC_NE = 5,
CC_P = CC_NE,
CC_GE = 6,
CC_TR = 7,
CC_ALWAYS = CC_TR,
CC_U = 8,
CC_LTU = 9,
CC_EQU = 10,
CC_LEU = 11,
CC_GTU = 12,
CC_NEU = 13,
CC_GEU = 14,
CC_NO = 0x10,
CC_NC = 0x11,
CC_NS = 0x12,
CC_NA = 0x13,
CC_A = 0x14,
CC_S = 0x15,
CC_C = 0x16,
CC_O = 0x17
};
 
enum RoundMode
{
ROUND_N, // nearest
ROUND_M, // towards -inf
ROUND_Z, // towards 0
ROUND_P, // towards +inf
ROUND_NI, // nearest integer
ROUND_MI, // to integer towards -inf
ROUND_ZI, // to integer towards 0
ROUND_PI, // to integer towards +inf
};
 
enum CacheMode
{
CACHE_CA, // cache at all levels
CACHE_WB = CACHE_CA, // cache write back
CACHE_CG, // cache at global level
CACHE_CS, // cache streaming
CACHE_CV, // cache as volatile
CACHE_WT = CACHE_CV // cache write-through
};
 
enum DataFile
{
FILE_NULL = 0,
FILE_GPR,
FILE_PREDICATE, // boolean predicate
FILE_FLAGS, // zero/sign/carry/overflow bits
FILE_ADDRESS,
LAST_REGISTER_FILE = FILE_ADDRESS,
FILE_IMMEDIATE,
FILE_MEMORY_CONST,
FILE_SHADER_INPUT,
FILE_SHADER_OUTPUT,
FILE_MEMORY_GLOBAL,
FILE_MEMORY_SHARED,
FILE_MEMORY_LOCAL,
FILE_SYSTEM_VALUE,
DATA_FILE_COUNT
};
 
enum TexTarget
{
TEX_TARGET_1D,
TEX_TARGET_2D,
TEX_TARGET_2D_MS,
TEX_TARGET_3D,
TEX_TARGET_CUBE,
TEX_TARGET_1D_SHADOW,
TEX_TARGET_2D_SHADOW,
TEX_TARGET_CUBE_SHADOW,
TEX_TARGET_1D_ARRAY,
TEX_TARGET_2D_ARRAY,
TEX_TARGET_2D_MS_ARRAY,
TEX_TARGET_CUBE_ARRAY,
TEX_TARGET_1D_ARRAY_SHADOW,
TEX_TARGET_2D_ARRAY_SHADOW,
TEX_TARGET_RECT,
TEX_TARGET_RECT_SHADOW,
TEX_TARGET_CUBE_ARRAY_SHADOW,
TEX_TARGET_BUFFER,
TEX_TARGET_COUNT
};
 
enum SVSemantic
{
SV_POSITION, // WPOS
SV_VERTEX_ID,
SV_INSTANCE_ID,
SV_INVOCATION_ID,
SV_PRIMITIVE_ID,
SV_VERTEX_COUNT, // gl_PatchVerticesIn
SV_LAYER,
SV_VIEWPORT_INDEX,
SV_YDIR,
SV_FACE,
SV_POINT_SIZE,
SV_POINT_COORD,
SV_CLIP_DISTANCE,
SV_SAMPLE_INDEX,
SV_TESS_FACTOR,
SV_TESS_COORD,
SV_TID,
SV_CTAID,
SV_NTID,
SV_GRIDID,
SV_NCTAID,
SV_LANEID,
SV_PHYSID,
SV_NPHYSID,
SV_CLOCK,
SV_LBASE,
SV_SBASE,
SV_UNDEFINED,
SV_LAST
};
 
class Program;
class Function;
class BasicBlock;
 
class Target;
 
class Instruction;
class CmpInstruction;
class TexInstruction;
class FlowInstruction;
 
class Value;
class LValue;
class Symbol;
class ImmediateValue;
 
struct Storage
{
DataFile file;
int8_t fileIndex; // signed, may be indirect for CONST[]
uint8_t size; // this should match the Instruction type's size
DataType type; // mainly for pretty printing
union {
uint64_t u64; // immediate values
uint32_t u32;
uint16_t u16;
uint8_t u8;
int64_t s64;
int32_t s32;
int16_t s16;
int8_t s8;
float f32;
double f64;
int32_t offset; // offset from 0 (base of address space)
int32_t id; // register id (< 0 if virtual/unassigned, in units <= 4)
struct {
SVSemantic sv;
int index;
} sv;
} data;
};
 
// precedence: NOT after SAT after NEG after ABS
#define NV50_IR_MOD_ABS (1 << 0)
#define NV50_IR_MOD_NEG (1 << 1)
#define NV50_IR_MOD_SAT (1 << 2)
#define NV50_IR_MOD_NOT (1 << 3)
#define NV50_IR_MOD_NEG_ABS (NV50_IR_MOD_NEG | NV50_IR_MOD_ABS)
 
#define NV50_IR_INTERP_MODE_MASK 0x3
#define NV50_IR_INTERP_LINEAR (0 << 0)
#define NV50_IR_INTERP_PERSPECTIVE (1 << 0)
#define NV50_IR_INTERP_FLAT (2 << 0)
#define NV50_IR_INTERP_SC (3 << 0) // what exactly is that ?
#define NV50_IR_INTERP_SAMPLE_MASK 0xc
#define NV50_IR_INTERP_DEFAULT (0 << 2)
#define NV50_IR_INTERP_CENTROID (1 << 2)
#define NV50_IR_INTERP_OFFSET (2 << 2)
#define NV50_IR_INTERP_SAMPLEID (3 << 2)
 
// do we really want this to be a class ?
class Modifier
{
public:
Modifier() : bits(0) { }
Modifier(unsigned int m) : bits(m) { }
Modifier(operation op);
 
// @return new Modifier applying a after b (asserts if unrepresentable)
Modifier operator*(const Modifier) const;
Modifier operator*=(const Modifier m) { *this = *this * m; return *this; }
Modifier operator==(const Modifier m) const { return m.bits == bits; }
Modifier operator!=(const Modifier m) const { return m.bits != bits; }
 
inline Modifier operator&(const Modifier m) const { return bits & m.bits; }
inline Modifier operator|(const Modifier m) const { return bits | m.bits; }
inline Modifier operator^(const Modifier m) const { return bits ^ m.bits; }
 
operation getOp() const;
 
inline int neg() const { return (bits & NV50_IR_MOD_NEG) ? 1 : 0; }
inline int abs() const { return (bits & NV50_IR_MOD_ABS) ? 1 : 0; }
 
inline operator bool() const { return bits ? true : false; }
 
void applyTo(ImmediateValue &imm) const;
 
int print(char *buf, size_t size) const;
 
private:
uint8_t bits;
};
 
class ValueRef
{
public:
ValueRef(Value * = NULL);
ValueRef(const ValueRef&);
~ValueRef();
 
inline bool exists() const { return value != NULL; }
 
void set(Value *);
void set(const ValueRef&);
inline Value *get() const { return value; }
inline Value *rep() const;
 
inline Instruction *getInsn() const { return insn; }
inline void setInsn(Instruction *inst) { insn = inst; }
 
inline bool isIndirect(int dim) const { return indirect[dim] >= 0; }
inline const ValueRef *getIndirect(int dim) const;
 
inline DataFile getFile() const;
inline unsigned getSize() const;
 
// SSA: return eventual (traverse MOVs) literal value, if it exists
bool getImmediate(ImmediateValue&) const;
 
public:
Modifier mod;
int8_t indirect[2]; // >= 0 if relative to lvalue in insn->src(indirect[i])
uint8_t swizzle;
 
bool usedAsPtr; // for printing
 
private:
Value *value;
Instruction *insn;
};
 
class ValueDef
{
public:
ValueDef(Value * = NULL);
ValueDef(const ValueDef&);
~ValueDef();
 
inline bool exists() const { return value != NULL; }
 
inline Value *get() const { return value; }
inline Value *rep() const;
void set(Value *);
bool mayReplace(const ValueRef &);
void replace(const ValueRef &, bool doSet); // replace all uses of the old value
 
inline Instruction *getInsn() const { return insn; }
inline void setInsn(Instruction *inst) { insn = inst; }
 
inline DataFile getFile() const;
inline unsigned getSize() const;
 
inline void setSSA(LValue *);
inline const LValue *preSSA() const;
 
private:
Value *value; // should make this LValue * ...
LValue *origin; // pre SSA value
Instruction *insn;
};
 
class Value
{
public:
Value();
virtual ~Value() { }
 
virtual Value *clone(ClonePolicy<Function>&) const = 0;
 
virtual int print(char *, size_t, DataType ty = TYPE_NONE) const = 0;
 
virtual bool equals(const Value *, bool strict = false) const;
virtual bool interfers(const Value *) const;
virtual bool isUniform() const { return true; }
 
inline Value *rep() const { return join; }
 
inline Instruction *getUniqueInsn() const;
inline Instruction *getInsn() const; // use when uniqueness is certain
 
inline int refCount() { return uses.size(); }
 
inline LValue *asLValue();
inline Symbol *asSym();
inline ImmediateValue *asImm();
inline const Symbol *asSym() const;
inline const ImmediateValue *asImm() const;
 
inline bool inFile(DataFile f) { return reg.file == f; }
 
static inline Value *get(Iterator&);
 
std::list<ValueRef *> uses;
std::list<ValueDef *> defs;
typedef std::list<ValueRef *>::iterator UseIterator;
typedef std::list<ValueRef *>::const_iterator UseCIterator;
typedef std::list<ValueDef *>::iterator DefIterator;
typedef std::list<ValueDef *>::const_iterator DefCIterator;
 
int id;
Storage reg;
 
// TODO: these should be in LValue:
Interval livei;
Value *join;
};
 
class LValue : public Value
{
public:
LValue(Function *, DataFile file);
LValue(Function *, LValue *);
~LValue() { }
 
virtual bool isUniform() const;
 
virtual LValue *clone(ClonePolicy<Function>&) const;
 
virtual int print(char *, size_t, DataType ty = TYPE_NONE) const;
 
public:
unsigned compMask : 8; // compound/component mask
unsigned compound : 1; // used by RA, value involved in split/merge
unsigned ssa : 1;
unsigned fixedReg : 1; // set & used by RA, earlier just use (id < 0)
unsigned noSpill : 1; // do not spill (e.g. if spill temporary already)
};
 
class Symbol : public Value
{
public:
Symbol(Program *, DataFile file = FILE_MEMORY_CONST, ubyte fileIdx = 0);
~Symbol() { }
 
virtual Symbol *clone(ClonePolicy<Function>&) const;
 
virtual bool equals(const Value *that, bool strict) const;
 
virtual bool isUniform() const;
 
virtual int print(char *, size_t, DataType ty = TYPE_NONE) const;
 
// print with indirect values
int print(char *, size_t, Value *, Value *, DataType ty = TYPE_NONE) const;
 
inline void setFile(DataFile file, ubyte fileIndex = 0)
{
reg.file = file;
reg.fileIndex = fileIndex;
}
 
inline void setOffset(int32_t offset);
inline void setAddress(Symbol *base, int32_t offset);
inline void setSV(SVSemantic sv, uint32_t idx = 0);
 
inline const Symbol *getBase() const { return baseSym; }
 
private:
Symbol *baseSym; // array base for Symbols representing array elements
};
 
class ImmediateValue : public Value
{
public:
ImmediateValue() { }
ImmediateValue(Program *, uint32_t);
ImmediateValue(Program *, float);
ImmediateValue(Program *, double);
// NOTE: not added to program with
ImmediateValue(const ImmediateValue *, DataType ty);
~ImmediateValue() { };
 
virtual ImmediateValue *clone(ClonePolicy<Function>&) const;
 
virtual bool equals(const Value *that, bool strict) const;
 
// these only work if 'type' is valid (we mostly use untyped literals):
bool isInteger(const int ival) const; // ival is cast to this' type
bool isNegative() const;
bool isPow2() const;
 
void applyLog2();
 
// for constant folding:
ImmediateValue operator+(const ImmediateValue&) const;
ImmediateValue operator-(const ImmediateValue&) const;
ImmediateValue operator*(const ImmediateValue&) const;
ImmediateValue operator/(const ImmediateValue&) const;
 
ImmediateValue& operator=(const ImmediateValue&); // only sets value !
 
bool compare(CondCode cc, float fval) const;
 
virtual int print(char *, size_t, DataType ty = TYPE_NONE) const;
};
 
class Instruction
{
public:
Instruction();
Instruction(Function *, operation, DataType);
virtual ~Instruction();
 
virtual Instruction *clone(ClonePolicy<Function>&,
Instruction * = NULL) const;
 
void setDef(int i, Value *);
void setSrc(int s, Value *);
void setSrc(int s, const ValueRef&);
void swapSources(int a, int b);
void moveSources(int s, int delta);
bool setIndirect(int s, int dim, Value *);
 
inline ValueRef& src(int s) { return srcs[s]; }
inline ValueDef& def(int s) { return defs[s]; }
inline const ValueRef& src(int s) const { return srcs[s]; }
inline const ValueDef& def(int s) const { return defs[s]; }
 
inline Value *getDef(int d) const { return defs[d].get(); }
inline Value *getSrc(int s) const { return srcs[s].get(); }
inline Value *getIndirect(int s, int dim) const;
 
inline bool defExists(unsigned d) const
{
return d < defs.size() && defs[d].exists();
}
inline bool srcExists(unsigned s) const
{
return s < srcs.size() && srcs[s].exists();
}
 
inline bool constrainedDefs() const;
 
bool setPredicate(CondCode ccode, Value *);
inline Value *getPredicate() const;
bool writesPredicate() const;
inline bool isPredicated() const { return predSrc >= 0; }
 
inline void setFlagsSrc(int s, Value *);
inline void setFlagsDef(int d, Value *);
inline bool usesFlags() const { return flagsSrc >= 0; }
 
unsigned int defCount() const { return defs.size(); };
unsigned int defCount(unsigned int mask, bool singleFile = false) const;
unsigned int srcCount() const { return srcs.size(); };
unsigned int srcCount(unsigned int mask, bool singleFile = false) const;
 
// save & remove / set indirect[0,1] and predicate source
void takeExtraSources(int s, Value *[3]);
void putExtraSources(int s, Value *[3]);
 
inline void setType(DataType type) { dType = sType = type; }
 
inline void setType(DataType dtype, DataType stype)
{
dType = dtype;
sType = stype;
}
 
inline bool isPseudo() const { return op < OP_MOV; }
bool isDead() const;
bool isNop() const;
bool isCommutationLegal(const Instruction *) const; // must be adjacent !
bool isActionEqual(const Instruction *) const;
bool isResultEqual(const Instruction *) const;
 
void print() const;
 
inline CmpInstruction *asCmp();
inline TexInstruction *asTex();
inline FlowInstruction *asFlow();
inline const TexInstruction *asTex() const;
inline const CmpInstruction *asCmp() const;
inline const FlowInstruction *asFlow() const;
 
public:
Instruction *next;
Instruction *prev;
int id;
int serial; // CFG order
 
operation op;
DataType dType; // destination or defining type
DataType sType; // source or secondary type
CondCode cc;
RoundMode rnd;
CacheMode cache;
 
uint16_t subOp; // quadop, 1 for mul-high, etc.
 
unsigned encSize : 4; // encoding size in bytes
unsigned saturate : 1; // to [0.0f, 1.0f]
unsigned join : 1; // converge control flow (use OP_JOIN until end)
unsigned fixed : 1; // prevent dead code elimination
unsigned terminator : 1; // end of basic block
unsigned ftz : 1; // flush denormal to zero
unsigned dnz : 1; // denormals, NaN are zero
unsigned ipa : 4; // interpolation mode
unsigned lanes : 4;
unsigned perPatch : 1;
unsigned exit : 1; // terminate program after insn
unsigned mask : 4; // for vector ops
 
int8_t postFactor; // MUL/DIV(if < 0) by 1 << postFactor
 
int8_t predSrc;
int8_t flagsDef;
int8_t flagsSrc;
 
uint8_t sched; // scheduling data (NOTE: maybe move to separate storage)
 
BasicBlock *bb;
 
protected:
std::deque<ValueDef> defs; // no gaps !
std::deque<ValueRef> srcs; // no gaps !
 
// instruction specific methods:
// (don't want to subclass, would need more constructors and memory pools)
public:
inline void setInterpolate(unsigned int mode) { ipa = mode; }
 
unsigned int getInterpMode() const { return ipa & 0x3; }
unsigned int getSampleMode() const { return ipa & 0xc; }
 
private:
void init();
};
 
enum TexQuery
{
TXQ_DIMS,
TXQ_TYPE,
TXQ_SAMPLE_POSITION,
TXQ_FILTER,
TXQ_LOD,
TXQ_WRAP,
TXQ_BORDER_COLOUR
};
 
class TexInstruction : public Instruction
{
public:
class Target
{
public:
Target(TexTarget targ = TEX_TARGET_2D) : target(targ) { }
 
const char *getName() const { return descTable[target].name; }
unsigned int getArgCount() const { return descTable[target].argc; }
unsigned int getDim() const { return descTable[target].dim; }
int isArray() const { return descTable[target].array ? 1 : 0; }
int isCube() const { return descTable[target].cube ? 1 : 0; }
int isShadow() const { return descTable[target].shadow ? 1 : 0; }
int isMS() const {
return target == TEX_TARGET_2D_MS || target == TEX_TARGET_2D_MS_ARRAY; }
 
Target& operator=(TexTarget targ)
{
assert(targ < TEX_TARGET_COUNT);
target = targ;
return *this;
}
 
inline bool operator==(TexTarget targ) const { return target == targ; }
inline bool operator!=(TexTarget targ) const { return target != targ; }
 
enum TexTarget getEnum() const { return target; }
 
private:
struct Desc
{
char name[19];
uint8_t dim;
uint8_t argc;
bool array;
bool cube;
bool shadow;
};
 
static const struct Desc descTable[TEX_TARGET_COUNT];
 
private:
enum TexTarget target;
};
 
public:
TexInstruction(Function *, operation);
virtual ~TexInstruction();
 
virtual TexInstruction *clone(ClonePolicy<Function>&,
Instruction * = NULL) const;
 
inline void setTexture(Target targ, uint8_t r, uint8_t s)
{
tex.r = r;
tex.s = s;
tex.target = targ;
}
 
void setIndirectR(Value *);
void setIndirectS(Value *);
inline Value *getIndirectR() const;
inline Value *getIndirectS() const;
 
public:
struct {
Target target;
 
uint16_t r;
uint16_t s;
int8_t rIndirectSrc;
int8_t sIndirectSrc;
 
uint8_t mask;
uint8_t gatherComp;
 
bool liveOnly; // only execute on live pixels of a quad (optimization)
bool levelZero;
bool derivAll;
 
int8_t useOffsets; // 0, 1, or 4 for textureGatherOffsets
int8_t offset[4][3];
 
enum TexQuery query;
} tex;
 
ValueRef dPdx[3];
ValueRef dPdy[3];
};
 
class CmpInstruction : public Instruction
{
public:
CmpInstruction(Function *, operation);
 
virtual CmpInstruction *clone(ClonePolicy<Function>&,
Instruction * = NULL) const;
 
void setCondition(CondCode cond) { setCond = cond; }
CondCode getCondition() const { return setCond; }
 
public:
CondCode setCond;
};
 
class FlowInstruction : public Instruction
{
public:
FlowInstruction(Function *, operation, void *target);
 
virtual FlowInstruction *clone(ClonePolicy<Function>&,
Instruction * = NULL) const;
 
public:
unsigned allWarp : 1;
unsigned absolute : 1;
unsigned limit : 1;
unsigned builtin : 1; // true for calls to emulation code
unsigned indirect : 1; // target in src(0)
 
union {
BasicBlock *bb;
int builtin;
Function *fn;
} target;
};
 
class BasicBlock
{
public:
BasicBlock(Function *);
~BasicBlock();
 
BasicBlock *clone(ClonePolicy<Function>&) const;
 
inline int getId() const { return id; }
inline unsigned int getInsnCount() const { return numInsns; }
inline bool isTerminated() const { return exit && exit->terminator; }
 
bool dominatedBy(BasicBlock *bb);
inline bool reachableBy(const BasicBlock *by, const BasicBlock *term);
 
// returns mask of conditional out blocks
// e.g. 3 for IF { .. } ELSE { .. } ENDIF, 1 for IF { .. } ENDIF
unsigned int initiatesSimpleConditional() const;
 
public:
Function *getFunction() const { return func; }
Program *getProgram() const { return program; }
 
Instruction *getEntry() const { return entry; } // first non-phi instruction
Instruction *getPhi() const { return phi; }
Instruction *getFirst() const { return phi ? phi : entry; }
Instruction *getExit() const { return exit; }
 
void insertHead(Instruction *);
void insertTail(Instruction *);
void insertBefore(Instruction *, Instruction *);
void insertAfter(Instruction *, Instruction *);
void remove(Instruction *);
void permuteAdjacent(Instruction *, Instruction *);
 
BasicBlock *idom() const;
 
// NOTE: currently does not rebuild the dominator tree
BasicBlock *splitBefore(Instruction *, bool attach = true);
BasicBlock *splitAfter(Instruction *, bool attach = true);
 
DLList& getDF() { return df; }
DLList::Iterator iterDF() { return df.iterator(); }
 
static inline BasicBlock *get(Iterator&);
static inline BasicBlock *get(Graph::Node *);
 
public:
Graph::Node cfg; // first edge is branch *taken* (the ELSE branch)
Graph::Node dom;
 
BitSet liveSet;
BitSet defSet;
 
uint32_t binPos;
uint32_t binSize;
 
Instruction *joinAt; // for quick reference
 
bool explicitCont; // loop headers: true if loop contains continue stmts
 
private:
int id;
DLList df;
 
Instruction *phi;
Instruction *entry;
Instruction *exit;
 
unsigned int numInsns;
 
private:
Function *func;
Program *program;
 
void splitCommon(Instruction *, BasicBlock *, bool attach);
};
 
class Function
{
public:
Function(Program *, const char *name, uint32_t label);
~Function();
 
static inline Function *get(Graph::Node *node);
 
inline Program *getProgram() const { return prog; }
inline const char *getName() const { return name; }
inline int getId() const { return id; }
inline uint32_t getLabel() const { return label; }
 
void print();
void printLiveIntervals() const;
void printCFGraph(const char *filePath);
 
bool setEntry(BasicBlock *);
bool setExit(BasicBlock *);
 
unsigned int orderInstructions(ArrayList&);
 
inline void add(BasicBlock *bb, int& id) { allBBlocks.insert(bb, id); }
inline void add(Instruction *insn, int& id) { allInsns.insert(insn, id); }
inline void add(LValue *lval, int& id) { allLValues.insert(lval, id); }
 
inline LValue *getLValue(int id);
 
void buildLiveSets();
void buildDefSets();
bool convertToSSA();
 
public:
std::deque<ValueDef> ins;
std::deque<ValueRef> outs;
std::deque<Value *> clobbers;
 
Graph cfg;
Graph::Node *cfgExit;
Graph *domTree;
Graph::Node call; // node in the call graph
 
BasicBlock **bbArray; // BBs in emission order
int bbCount;
 
unsigned int loopNestingBound;
int regClobberMax;
 
uint32_t binPos;
uint32_t binSize;
 
Value *stackPtr;
 
uint32_t tlsBase; // base address for l[] space (if no stack pointer is used)
uint32_t tlsSize;
 
ArrayList allBBlocks;
ArrayList allInsns;
ArrayList allLValues;
 
private:
void buildLiveSetsPreSSA(BasicBlock *, const int sequence);
void buildDefSetsPreSSA(BasicBlock *bb, const int seq);
 
private:
uint32_t label;
int id;
const char *const name;
Program *prog;
};
 
enum CGStage
{
CG_STAGE_PRE_SSA,
CG_STAGE_SSA, // expected directly before register allocation
CG_STAGE_POST_RA
};
 
class Program
{
public:
enum Type
{
TYPE_VERTEX,
TYPE_TESSELLATION_CONTROL,
TYPE_TESSELLATION_EVAL,
TYPE_GEOMETRY,
TYPE_FRAGMENT,
TYPE_COMPUTE
};
 
Program(Type type, Target *targ);
~Program();
 
void print();
 
Type getType() const { return progType; }
 
inline void add(Function *fn, int& id) { allFuncs.insert(fn, id); }
inline void del(Function *fn, int& id) { allFuncs.remove(id); }
inline void add(Value *rval, int& id) { allRValues.insert(rval, id); }
 
bool makeFromTGSI(struct nv50_ir_prog_info *);
bool makeFromSM4(struct nv50_ir_prog_info *);
bool convertToSSA();
bool optimizeSSA(int level);
bool optimizePostRA(int level);
bool registerAllocation();
bool emitBinary(struct nv50_ir_prog_info *);
 
const Target *getTarget() const { return target; }
 
private:
void emitSymbolTable(struct nv50_ir_prog_info *);
 
Type progType;
Target *target;
 
public:
Function *main;
Graph calls;
 
ArrayList allFuncs;
ArrayList allRValues;
 
uint32_t *code;
uint32_t binSize;
uint32_t tlsSize; // size required for FILE_MEMORY_LOCAL
 
int maxGPR;
 
MemoryPool mem_Instruction;
MemoryPool mem_CmpInstruction;
MemoryPool mem_TexInstruction;
MemoryPool mem_FlowInstruction;
MemoryPool mem_LValue;
MemoryPool mem_Symbol;
MemoryPool mem_ImmediateValue;
 
uint32_t dbgFlags;
uint8_t optLevel;
 
void *targetPriv; // e.g. to carry information between passes
 
const struct nv50_ir_prog_info *driver; // for driver configuration
 
void releaseInstruction(Instruction *);
void releaseValue(Value *);
};
 
// TODO: add const version
class Pass
{
public:
bool run(Program *, bool ordered = false, bool skipPhi = false);
bool run(Function *, bool ordered = false, bool skipPhi = false);
 
private:
// return false to continue with next entity on next higher level
virtual bool visit(Function *) { return true; }
virtual bool visit(BasicBlock *) { return true; }
virtual bool visit(Instruction *) { return false; }
 
bool doRun(Program *, bool ordered, bool skipPhi);
bool doRun(Function *, bool ordered, bool skipPhi);
 
protected:
bool err;
Function *func;
Program *prog;
};
 
// =============================================================================
 
#include "nv50_ir_inlines.h"
 
} // namespace nv50_ir
 
#endif // __NV50_IR_H__