Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 5563 → Rev 5564

/contrib/sdk/sources/Mesa/mesa-10.6.0/src/mesa/drivers/dri/i915/intel_mipmap_tree.c
0,0 → 1,956
/**************************************************************************
*
* Copyright 2006 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
 
#include <GL/gl.h>
#include <GL/internal/dri_interface.h>
 
#include "intel_batchbuffer.h"
#include "intel_chipset.h"
#include "intel_context.h"
#include "intel_mipmap_tree.h"
#include "intel_regions.h"
#include "intel_tex_layout.h"
#include "intel_tex.h"
#include "intel_blit.h"
 
#include "main/enums.h"
#include "main/formats.h"
#include "main/glformats.h"
#include "main/teximage.h"
 
#define FILE_DEBUG_FLAG DEBUG_MIPTREE
 
static GLenum
target_to_target(GLenum target)
{
switch (target) {
case GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB:
return GL_TEXTURE_CUBE_MAP_ARB;
default:
return target;
}
}
 
/**
* @param for_bo Indicates that the caller is
* intel_miptree_create_for_bo(). If true, then do not create
* \c stencil_mt.
*/
struct intel_mipmap_tree *
intel_miptree_create_layout(struct intel_context *intel,
GLenum target,
mesa_format format,
GLuint first_level,
GLuint last_level,
GLuint width0,
GLuint height0,
GLuint depth0,
bool for_bo)
{
struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
if (!mt)
return NULL;
 
DBG("%s target %s format %s level %d..%d <-- %p\n", __func__,
_mesa_lookup_enum_by_nr(target),
_mesa_get_format_name(format),
first_level, last_level, mt);
 
mt->target = target_to_target(target);
mt->format = format;
mt->first_level = first_level;
mt->last_level = last_level;
mt->logical_width0 = width0;
mt->logical_height0 = height0;
mt->logical_depth0 = depth0;
 
/* The cpp is bytes per (1, blockheight)-sized block for compressed
* textures. This is why you'll see divides by blockheight all over
*/
unsigned bw, bh;
_mesa_get_format_block_size(format, &bw, &bh);
assert(_mesa_get_format_bytes(mt->format) % bw == 0);
mt->cpp = _mesa_get_format_bytes(mt->format) / bw;
 
mt->compressed = _mesa_is_format_compressed(format);
mt->refcount = 1;
 
if (target == GL_TEXTURE_CUBE_MAP) {
assert(depth0 == 1);
depth0 = 6;
}
 
mt->physical_width0 = width0;
mt->physical_height0 = height0;
mt->physical_depth0 = depth0;
 
intel_get_texture_alignment_unit(intel, mt->format,
&mt->align_w, &mt->align_h);
 
(void) intel;
if (intel->is_945)
i945_miptree_layout(mt);
else
i915_miptree_layout(mt);
 
return mt;
}
 
/**
* \brief Helper function for intel_miptree_create().
*/
static uint32_t
intel_miptree_choose_tiling(struct intel_context *intel,
mesa_format format,
uint32_t width0,
enum intel_miptree_tiling_mode requested,
struct intel_mipmap_tree *mt)
{
/* Some usages may want only one type of tiling, like depth miptrees (Y
* tiled), or temporary BOs for uploading data once (linear).
*/
switch (requested) {
case INTEL_MIPTREE_TILING_ANY:
break;
case INTEL_MIPTREE_TILING_Y:
return I915_TILING_Y;
case INTEL_MIPTREE_TILING_NONE:
return I915_TILING_NONE;
}
 
int minimum_pitch = mt->total_width * mt->cpp;
 
/* If the width is much smaller than a tile, don't bother tiling. */
if (minimum_pitch < 64)
return I915_TILING_NONE;
 
if (ALIGN(minimum_pitch, 512) >= 32768) {
perf_debug("%dx%d miptree too large to blit, falling back to untiled",
mt->total_width, mt->total_height);
return I915_TILING_NONE;
}
 
/* We don't have BLORP to handle Y-tiled blits, so use X-tiling. */
return I915_TILING_X;
}
 
struct intel_mipmap_tree *
intel_miptree_create(struct intel_context *intel,
GLenum target,
mesa_format format,
GLuint first_level,
GLuint last_level,
GLuint width0,
GLuint height0,
GLuint depth0,
bool expect_accelerated_upload,
enum intel_miptree_tiling_mode requested_tiling)
{
struct intel_mipmap_tree *mt;
GLuint total_width, total_height;
 
 
mt = intel_miptree_create_layout(intel, target, format,
first_level, last_level, width0,
height0, depth0,
false);
/*
* pitch == 0 || height == 0 indicates the null texture
*/
if (!mt || !mt->total_width || !mt->total_height) {
intel_miptree_release(&mt);
return NULL;
}
 
total_width = mt->total_width;
total_height = mt->total_height;
 
uint32_t tiling = intel_miptree_choose_tiling(intel, format, width0,
requested_tiling,
mt);
bool y_or_x = tiling == (I915_TILING_Y | I915_TILING_X);
 
mt->region = intel_region_alloc(intel->intelScreen,
y_or_x ? I915_TILING_Y : tiling,
mt->cpp,
total_width,
total_height,
expect_accelerated_upload);
 
/* If the region is too large to fit in the aperture, we need to use the
* BLT engine to support it. The BLT paths can't currently handle Y-tiling,
* so we need to fall back to X.
*/
if (y_or_x && mt->region->bo->size >= intel->max_gtt_map_object_size) {
perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
mt->total_width, mt->total_height);
intel_region_release(&mt->region);
 
mt->region = intel_region_alloc(intel->intelScreen,
I915_TILING_X,
mt->cpp,
total_width,
total_height,
expect_accelerated_upload);
}
 
mt->offset = 0;
 
if (!mt->region) {
intel_miptree_release(&mt);
return NULL;
}
 
return mt;
}
 
struct intel_mipmap_tree *
intel_miptree_create_for_bo(struct intel_context *intel,
drm_intel_bo *bo,
mesa_format format,
uint32_t offset,
uint32_t width,
uint32_t height,
int pitch,
uint32_t tiling)
{
struct intel_mipmap_tree *mt;
 
struct intel_region *region = calloc(1, sizeof(*region));
if (!region)
return NULL;
 
/* Nothing will be able to use this miptree with the BO if the offset isn't
* aligned.
*/
if (tiling != I915_TILING_NONE)
assert(offset % 4096 == 0);
 
/* miptrees can't handle negative pitch. If you need flipping of images,
* that's outside of the scope of the mt.
*/
assert(pitch >= 0);
 
mt = intel_miptree_create_layout(intel, GL_TEXTURE_2D, format,
0, 0,
width, height, 1,
true);
if (!mt) {
free(region);
return mt;
}
 
region->cpp = mt->cpp;
region->width = width;
region->height = height;
region->pitch = pitch;
region->refcount = 1;
drm_intel_bo_reference(bo);
region->bo = bo;
region->tiling = tiling;
 
mt->region = region;
mt->offset = offset;
 
return mt;
}
 
 
/**
* For a singlesample DRI2 buffer, this simply wraps the given region with a miptree.
*
* For a multisample DRI2 buffer, this wraps the given region with
* a singlesample miptree, then creates a multisample miptree into which the
* singlesample miptree is embedded as a child.
*/
struct intel_mipmap_tree*
intel_miptree_create_for_dri2_buffer(struct intel_context *intel,
unsigned dri_attachment,
mesa_format format,
struct intel_region *region)
{
struct intel_mipmap_tree *mt = NULL;
 
/* Only the front and back buffers, which are color buffers, are shared
* through DRI2.
*/
assert(dri_attachment == __DRI_BUFFER_BACK_LEFT ||
dri_attachment == __DRI_BUFFER_FRONT_LEFT ||
dri_attachment == __DRI_BUFFER_FAKE_FRONT_LEFT);
assert(_mesa_get_format_base_format(format) == GL_RGB ||
_mesa_get_format_base_format(format) == GL_RGBA);
 
mt = intel_miptree_create_for_bo(intel,
region->bo,
format,
0,
region->width,
region->height,
region->pitch,
region->tiling);
if (!mt)
return NULL;
mt->region->name = region->name;
 
return mt;
}
 
/**
* For a singlesample image buffer, this simply wraps the given region with a miptree.
*
* For a multisample image buffer, this wraps the given region with
* a singlesample miptree, then creates a multisample miptree into which the
* singlesample miptree is embedded as a child.
*/
struct intel_mipmap_tree*
intel_miptree_create_for_image_buffer(struct intel_context *intel,
enum __DRIimageBufferMask buffer_type,
mesa_format format,
uint32_t num_samples,
struct intel_region *region)
{
struct intel_mipmap_tree *mt = NULL;
 
/* Only the front and back buffers, which are color buffers, are allocated
* through the image loader.
*/
assert(_mesa_get_format_base_format(format) == GL_RGB ||
_mesa_get_format_base_format(format) == GL_RGBA);
 
mt = intel_miptree_create_for_bo(intel,
region->bo,
format,
0,
region->width,
region->height,
region->pitch,
region->tiling);
return mt;
}
 
struct intel_mipmap_tree*
intel_miptree_create_for_renderbuffer(struct intel_context *intel,
mesa_format format,
uint32_t width,
uint32_t height)
{
uint32_t depth = 1;
 
return intel_miptree_create(intel, GL_TEXTURE_2D, format, 0, 0,
width, height, depth, true,
INTEL_MIPTREE_TILING_ANY);
}
 
void
intel_miptree_reference(struct intel_mipmap_tree **dst,
struct intel_mipmap_tree *src)
{
if (*dst == src)
return;
 
intel_miptree_release(dst);
 
if (src) {
src->refcount++;
DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
}
 
*dst = src;
}
 
 
void
intel_miptree_release(struct intel_mipmap_tree **mt)
{
if (!*mt)
return;
 
DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
if (--(*mt)->refcount <= 0) {
GLuint i;
 
DBG("%s deleting %p\n", __func__, *mt);
 
intel_region_release(&((*mt)->region));
 
for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
free((*mt)->level[i].slice);
}
 
free(*mt);
}
*mt = NULL;
}
 
void
intel_miptree_get_dimensions_for_image(struct gl_texture_image *image,
int *width, int *height, int *depth)
{
switch (image->TexObject->Target) {
case GL_TEXTURE_1D_ARRAY:
*width = image->Width;
*height = 1;
*depth = image->Height;
break;
default:
*width = image->Width;
*height = image->Height;
*depth = image->Depth;
break;
}
}
 
/**
* Can the image be pulled into a unified mipmap tree? This mirrors
* the completeness test in a lot of ways.
*
* Not sure whether I want to pass gl_texture_image here.
*/
bool
intel_miptree_match_image(struct intel_mipmap_tree *mt,
struct gl_texture_image *image)
{
struct intel_texture_image *intelImage = intel_texture_image(image);
GLuint level = intelImage->base.Base.Level;
int width, height, depth;
 
/* glTexImage* choose the texture object based on the target passed in, and
* objects can't change targets over their lifetimes, so this should be
* true.
*/
assert(target_to_target(image->TexObject->Target) == mt->target);
 
mesa_format mt_format = mt->format;
 
if (image->TexFormat != mt_format)
return false;
 
intel_miptree_get_dimensions_for_image(image, &width, &height, &depth);
 
if (mt->target == GL_TEXTURE_CUBE_MAP)
depth = 6;
 
/* Test image dimensions against the base level image adjusted for
* minification. This will also catch images not present in the
* tree, changed targets, etc.
*/
if (mt->target == GL_TEXTURE_2D_MULTISAMPLE ||
mt->target == GL_TEXTURE_2D_MULTISAMPLE_ARRAY) {
/* nonzero level here is always bogus */
assert(level == 0);
 
if (width != mt->logical_width0 ||
height != mt->logical_height0 ||
depth != mt->logical_depth0) {
return false;
}
}
else {
/* all normal textures, renderbuffers, etc */
if (width != mt->level[level].width ||
height != mt->level[level].height ||
depth != mt->level[level].depth) {
return false;
}
}
 
return true;
}
 
 
void
intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
GLuint level,
GLuint x, GLuint y,
GLuint w, GLuint h, GLuint d)
{
mt->level[level].width = w;
mt->level[level].height = h;
mt->level[level].depth = d;
mt->level[level].level_x = x;
mt->level[level].level_y = y;
 
DBG("%s level %d size: %d,%d,%d offset %d,%d\n", __func__,
level, w, h, d, x, y);
 
assert(mt->level[level].slice == NULL);
 
mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
mt->level[level].slice[0].x_offset = mt->level[level].level_x;
mt->level[level].slice[0].y_offset = mt->level[level].level_y;
}
 
 
void
intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
GLuint level, GLuint img,
GLuint x, GLuint y)
{
if (img == 0 && level == 0)
assert(x == 0 && y == 0);
 
assert(img < mt->level[level].depth);
 
mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
 
DBG("%s level %d img %d pos %d,%d\n",
__func__, level, img,
mt->level[level].slice[img].x_offset,
mt->level[level].slice[img].y_offset);
}
 
void
intel_miptree_get_image_offset(struct intel_mipmap_tree *mt,
GLuint level, GLuint slice,
GLuint *x, GLuint *y)
{
assert(slice < mt->level[level].depth);
 
*x = mt->level[level].slice[slice].x_offset;
*y = mt->level[level].slice[slice].y_offset;
}
 
/**
* Rendering with tiled buffers requires that the base address of the buffer
* be aligned to a page boundary. For renderbuffers, and sometimes with
* textures, we may want the surface to point at a texture image level that
* isn't at a page boundary.
*
* This function returns an appropriately-aligned base offset
* according to the tiling restrictions, plus any required x/y offset
* from there.
*/
uint32_t
intel_miptree_get_tile_offsets(struct intel_mipmap_tree *mt,
GLuint level, GLuint slice,
uint32_t *tile_x,
uint32_t *tile_y)
{
struct intel_region *region = mt->region;
uint32_t x, y;
uint32_t mask_x, mask_y;
 
intel_region_get_tile_masks(region, &mask_x, &mask_y, false);
intel_miptree_get_image_offset(mt, level, slice, &x, &y);
 
*tile_x = x & mask_x;
*tile_y = y & mask_y;
 
return intel_region_get_aligned_offset(region, x & ~mask_x, y & ~mask_y,
false);
}
 
static void
intel_miptree_copy_slice_sw(struct intel_context *intel,
struct intel_mipmap_tree *dst_mt,
struct intel_mipmap_tree *src_mt,
int level,
int slice,
int width,
int height)
{
void *src, *dst;
int src_stride, dst_stride;
int cpp = dst_mt->cpp;
 
intel_miptree_map(intel, src_mt,
level, slice,
0, 0,
width, height,
GL_MAP_READ_BIT,
&src, &src_stride);
 
intel_miptree_map(intel, dst_mt,
level, slice,
0, 0,
width, height,
GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT,
&dst, &dst_stride);
 
DBG("sw blit %s mt %p %p/%d -> %s mt %p %p/%d (%dx%d)\n",
_mesa_get_format_name(src_mt->format),
src_mt, src, src_stride,
_mesa_get_format_name(dst_mt->format),
dst_mt, dst, dst_stride,
width, height);
 
int row_size = cpp * width;
if (src_stride == row_size &&
dst_stride == row_size) {
memcpy(dst, src, row_size * height);
} else {
for (int i = 0; i < height; i++) {
memcpy(dst, src, row_size);
dst += dst_stride;
src += src_stride;
}
}
 
intel_miptree_unmap(intel, dst_mt, level, slice);
intel_miptree_unmap(intel, src_mt, level, slice);
}
 
static void
intel_miptree_copy_slice(struct intel_context *intel,
struct intel_mipmap_tree *dst_mt,
struct intel_mipmap_tree *src_mt,
int level,
int face,
int depth)
 
{
mesa_format format = src_mt->format;
uint32_t width = src_mt->level[level].width;
uint32_t height = src_mt->level[level].height;
int slice;
 
if (face > 0)
slice = face;
else
slice = depth;
 
assert(depth < src_mt->level[level].depth);
assert(src_mt->format == dst_mt->format);
 
if (dst_mt->compressed) {
height = ALIGN(height, dst_mt->align_h) / dst_mt->align_h;
width = ALIGN(width, dst_mt->align_w);
}
 
uint32_t dst_x, dst_y, src_x, src_y;
intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
 
DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
_mesa_get_format_name(src_mt->format),
src_mt, src_x, src_y, src_mt->region->pitch,
_mesa_get_format_name(dst_mt->format),
dst_mt, dst_x, dst_y, dst_mt->region->pitch,
width, height);
 
if (!intel_miptree_blit(intel,
src_mt, level, slice, 0, 0, false,
dst_mt, level, slice, 0, 0, false,
width, height, GL_COPY)) {
perf_debug("miptree validate blit for %s failed\n",
_mesa_get_format_name(format));
 
intel_miptree_copy_slice_sw(intel, dst_mt, src_mt, level, slice,
width, height);
}
}
 
/**
* Copies the image's current data to the given miptree, and associates that
* miptree with the image.
*
* If \c invalidate is true, then the actual image data does not need to be
* copied, but the image still needs to be associated to the new miptree (this
* is set to true if we're about to clear the image).
*/
void
intel_miptree_copy_teximage(struct intel_context *intel,
struct intel_texture_image *intelImage,
struct intel_mipmap_tree *dst_mt,
bool invalidate)
{
struct intel_mipmap_tree *src_mt = intelImage->mt;
struct intel_texture_object *intel_obj =
intel_texture_object(intelImage->base.Base.TexObject);
int level = intelImage->base.Base.Level;
int face = intelImage->base.Base.Face;
GLuint depth = intelImage->base.Base.Depth;
 
if (!invalidate) {
for (int slice = 0; slice < depth; slice++) {
intel_miptree_copy_slice(intel, dst_mt, src_mt, level, face, slice);
}
}
 
intel_miptree_reference(&intelImage->mt, dst_mt);
intel_obj->needs_validate = true;
}
 
void *
intel_miptree_map_raw(struct intel_context *intel, struct intel_mipmap_tree *mt)
{
drm_intel_bo *bo = mt->region->bo;
 
if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
if (drm_intel_bo_busy(bo)) {
perf_debug("Mapping a busy BO, causing a stall on the GPU.\n");
}
}
 
intel_flush(&intel->ctx);
 
if (mt->region->tiling != I915_TILING_NONE)
drm_intel_gem_bo_map_gtt(bo);
else
drm_intel_bo_map(bo, true);
 
return bo->virtual;
}
 
void
intel_miptree_unmap_raw(struct intel_context *intel,
struct intel_mipmap_tree *mt)
{
drm_intel_bo_unmap(mt->region->bo);
}
 
static void
intel_miptree_map_gtt(struct intel_context *intel,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level, unsigned int slice)
{
unsigned int bw, bh;
void *base;
unsigned int image_x, image_y;
int x = map->x;
int y = map->y;
 
/* For compressed formats, the stride is the number of bytes per
* row of blocks. intel_miptree_get_image_offset() already does
* the divide.
*/
_mesa_get_format_block_size(mt->format, &bw, &bh);
assert(y % bh == 0);
y /= bh;
 
base = intel_miptree_map_raw(intel, mt) + mt->offset;
 
if (base == NULL)
map->ptr = NULL;
else {
/* Note that in the case of cube maps, the caller must have passed the
* slice number referencing the face.
*/
intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
x += image_x;
y += image_y;
 
map->stride = mt->region->pitch;
map->ptr = base + y * map->stride + x * mt->cpp;
}
 
DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
map->x, map->y, map->w, map->h,
mt, _mesa_get_format_name(mt->format),
x, y, map->ptr, map->stride);
}
 
static void
intel_miptree_unmap_gtt(struct intel_context *intel,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level,
unsigned int slice)
{
intel_miptree_unmap_raw(intel, mt);
}
 
static void
intel_miptree_map_blit(struct intel_context *intel,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level, unsigned int slice)
{
map->mt = intel_miptree_create(intel, GL_TEXTURE_2D, mt->format,
0, 0,
map->w, map->h, 1,
false,
INTEL_MIPTREE_TILING_NONE);
if (!map->mt) {
fprintf(stderr, "Failed to allocate blit temporary\n");
goto fail;
}
map->stride = map->mt->region->pitch;
 
if (!intel_miptree_blit(intel,
mt, level, slice,
map->x, map->y, false,
map->mt, 0, 0,
0, 0, false,
map->w, map->h, GL_COPY)) {
fprintf(stderr, "Failed to blit\n");
goto fail;
}
 
intel_batchbuffer_flush(intel);
map->ptr = intel_miptree_map_raw(intel, map->mt);
 
DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
map->x, map->y, map->w, map->h,
mt, _mesa_get_format_name(mt->format),
level, slice, map->ptr, map->stride);
 
return;
 
fail:
intel_miptree_release(&map->mt);
map->ptr = NULL;
map->stride = 0;
}
 
static void
intel_miptree_unmap_blit(struct intel_context *intel,
struct intel_mipmap_tree *mt,
struct intel_miptree_map *map,
unsigned int level,
unsigned int slice)
{
struct gl_context *ctx = &intel->ctx;
 
intel_miptree_unmap_raw(intel, map->mt);
 
if (map->mode & GL_MAP_WRITE_BIT) {
bool ok = intel_miptree_blit(intel,
map->mt, 0, 0,
0, 0, false,
mt, level, slice,
map->x, map->y, false,
map->w, map->h, GL_COPY);
WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
}
 
intel_miptree_release(&map->mt);
}
 
/**
* Create and attach a map to the miptree at (level, slice). Return the
* attached map.
*/
static struct intel_miptree_map*
intel_miptree_attach_map(struct intel_mipmap_tree *mt,
unsigned int level,
unsigned int slice,
unsigned int x,
unsigned int y,
unsigned int w,
unsigned int h,
GLbitfield mode)
{
struct intel_miptree_map *map = calloc(1, sizeof(*map));
 
if (!map)
return NULL;
 
assert(mt->level[level].slice[slice].map == NULL);
mt->level[level].slice[slice].map = map;
 
map->mode = mode;
map->x = x;
map->y = y;
map->w = w;
map->h = h;
 
return map;
}
 
/**
* Release the map at (level, slice).
*/
static void
intel_miptree_release_map(struct intel_mipmap_tree *mt,
unsigned int level,
unsigned int slice)
{
struct intel_miptree_map **map;
 
map = &mt->level[level].slice[slice].map;
free(*map);
*map = NULL;
}
 
void
intel_miptree_map(struct intel_context *intel,
struct intel_mipmap_tree *mt,
unsigned int level,
unsigned int slice,
unsigned int x,
unsigned int y,
unsigned int w,
unsigned int h,
GLbitfield mode,
void **out_ptr,
int *out_stride)
{
struct intel_miptree_map *map;
 
map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
if (!map){
*out_ptr = NULL;
*out_stride = 0;
return;
}
 
/* See intel_miptree_blit() for details on the 32k pitch limit. */
if (mt->region->tiling != I915_TILING_NONE &&
mt->region->bo->size >= intel->max_gtt_map_object_size) {
assert(mt->region->pitch < 32768);
intel_miptree_map_blit(intel, mt, map, level, slice);
} else {
intel_miptree_map_gtt(intel, mt, map, level, slice);
}
 
*out_ptr = map->ptr;
*out_stride = map->stride;
 
if (map->ptr == NULL)
intel_miptree_release_map(mt, level, slice);
}
 
void
intel_miptree_unmap(struct intel_context *intel,
struct intel_mipmap_tree *mt,
unsigned int level,
unsigned int slice)
{
struct intel_miptree_map *map = mt->level[level].slice[slice].map;
 
if (!map)
return;
 
DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
mt, _mesa_get_format_name(mt->format), level, slice);
 
if (map->mt) {
intel_miptree_unmap_blit(intel, mt, map, level, slice);
} else {
intel_miptree_unmap_gtt(intel, mt, map, level, slice);
}
 
intel_miptree_release_map(mt, level, slice);
}