Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 5563 → Rev 5564

/contrib/sdk/sources/Mesa/mesa-10.6.0/src/gallium/drivers/vc4/vc4_qpu_emit.c
0,0 → 1,602
/*
* Copyright © 2014 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
 
#include <inttypes.h>
 
#include "vc4_context.h"
#include "vc4_qir.h"
#include "vc4_qpu.h"
#include "util/ralloc.h"
 
static void
vc4_dump_program(struct vc4_compile *c)
{
fprintf(stderr, "%s prog %d/%d QPU:\n",
qir_get_stage_name(c->stage),
c->program_id, c->variant_id);
 
for (int i = 0; i < c->qpu_inst_count; i++) {
fprintf(stderr, "0x%016"PRIx64" ", c->qpu_insts[i]);
vc4_qpu_disasm(&c->qpu_insts[i], 1);
fprintf(stderr, "\n");
}
}
 
static void
queue(struct vc4_compile *c, uint64_t inst)
{
struct queued_qpu_inst *q = rzalloc(c, struct queued_qpu_inst);
q->inst = inst;
insert_at_tail(&c->qpu_inst_list, &q->link);
}
 
static uint64_t *
last_inst(struct vc4_compile *c)
{
struct queued_qpu_inst *q =
(struct queued_qpu_inst *)last_elem(&c->qpu_inst_list);
return &q->inst;
}
 
static void
set_last_cond_add(struct vc4_compile *c, uint32_t cond)
{
*last_inst(c) = qpu_set_cond_add(*last_inst(c), cond);
}
 
/**
* Some special registers can be read from either file, which lets us resolve
* raddr conflicts without extra MOVs.
*/
static bool
swap_file(struct qpu_reg *src)
{
switch (src->addr) {
case QPU_R_UNIF:
case QPU_R_VARY:
if (src->mux == QPU_MUX_SMALL_IMM) {
return false;
} else {
if (src->mux == QPU_MUX_A)
src->mux = QPU_MUX_B;
else
src->mux = QPU_MUX_A;
return true;
}
 
default:
return false;
}
}
 
/**
* This is used to resolve the fact that we might register-allocate two
* different operands of an instruction to the same physical register file
* even though instructions have only one field for the register file source
* address.
*
* In that case, we need to move one to a temporary that can be used in the
* instruction, instead. We reserve ra31/rb31 for this purpose.
*/
static void
fixup_raddr_conflict(struct vc4_compile *c,
struct qpu_reg dst,
struct qpu_reg *src0, struct qpu_reg *src1)
{
uint32_t mux0 = src0->mux == QPU_MUX_SMALL_IMM ? QPU_MUX_B : src0->mux;
uint32_t mux1 = src1->mux == QPU_MUX_SMALL_IMM ? QPU_MUX_B : src1->mux;
 
if (mux0 <= QPU_MUX_R5 ||
mux0 != mux1 ||
(src0->addr == src1->addr &&
src0->mux == src1->mux)) {
return;
}
 
if (swap_file(src0) || swap_file(src1))
return;
 
if (mux0 == QPU_MUX_A) {
queue(c, qpu_a_MOV(qpu_rb(31), *src1));
*src1 = qpu_rb(31);
} else {
queue(c, qpu_a_MOV(qpu_ra(31), *src1));
*src1 = qpu_ra(31);
}
}
 
void
vc4_generate_code(struct vc4_context *vc4, struct vc4_compile *c)
{
struct qpu_reg *temp_registers = vc4_register_allocate(vc4, c);
bool discard = false;
uint32_t inputs_remaining = c->num_inputs;
uint32_t vpm_read_fifo_count = 0;
uint32_t vpm_read_offset = 0;
int last_vpm_read_index = -1;
/* Map from the QIR ops enum order to QPU unpack bits. */
static const uint32_t unpack_map[] = {
QPU_UNPACK_8A,
QPU_UNPACK_8B,
QPU_UNPACK_8C,
QPU_UNPACK_8D,
QPU_UNPACK_16A_TO_F32,
QPU_UNPACK_16B_TO_F32,
};
 
make_empty_list(&c->qpu_inst_list);
 
switch (c->stage) {
case QSTAGE_VERT:
case QSTAGE_COORD:
/* There's a 4-entry FIFO for VPMVCD reads, each of which can
* load up to 16 dwords (4 vec4s) per vertex.
*/
while (inputs_remaining) {
uint32_t num_entries = MIN2(inputs_remaining, 16);
queue(c, qpu_load_imm_ui(qpu_vrsetup(),
vpm_read_offset |
0x00001a00 |
((num_entries & 0xf) << 20)));
inputs_remaining -= num_entries;
vpm_read_offset += num_entries;
vpm_read_fifo_count++;
}
assert(vpm_read_fifo_count <= 4);
 
queue(c, qpu_load_imm_ui(qpu_vwsetup(), 0x00001a00));
break;
case QSTAGE_FRAG:
break;
}
 
struct simple_node *node;
foreach(node, &c->instructions) {
struct qinst *qinst = (struct qinst *)node;
 
#if 0
fprintf(stderr, "translating qinst to qpu: ");
qir_dump_inst(qinst);
fprintf(stderr, "\n");
#endif
 
static const struct {
uint32_t op;
bool is_mul;
} translate[] = {
#define A(name) [QOP_##name] = {QPU_A_##name, false}
#define M(name) [QOP_##name] = {QPU_M_##name, true}
A(FADD),
A(FSUB),
A(FMIN),
A(FMAX),
A(FMINABS),
A(FMAXABS),
A(FTOI),
A(ITOF),
A(ADD),
A(SUB),
A(SHL),
A(SHR),
A(ASR),
A(MIN),
A(MAX),
A(AND),
A(OR),
A(XOR),
A(NOT),
 
M(FMUL),
M(MUL24),
};
 
struct qpu_reg src[4];
for (int i = 0; i < qir_get_op_nsrc(qinst->op); i++) {
int index = qinst->src[i].index;
switch (qinst->src[i].file) {
case QFILE_NULL:
src[i] = qpu_rn(0);
break;
case QFILE_TEMP:
src[i] = temp_registers[index];
break;
case QFILE_UNIF:
src[i] = qpu_unif();
break;
case QFILE_VARY:
src[i] = qpu_vary();
break;
case QFILE_SMALL_IMM:
src[i].mux = QPU_MUX_SMALL_IMM;
src[i].addr = qpu_encode_small_immediate(qinst->src[i].index);
/* This should only have returned a valid
* small immediate field, not ~0 for failure.
*/
assert(src[i].addr <= 47);
break;
case QFILE_VPM:
assert((int)qinst->src[i].index >=
last_vpm_read_index);
last_vpm_read_index = qinst->src[i].index;
src[i] = qpu_ra(QPU_R_VPM);
break;
}
}
 
struct qpu_reg dst;
switch (qinst->dst.file) {
case QFILE_NULL:
dst = qpu_ra(QPU_W_NOP);
break;
case QFILE_TEMP:
dst = temp_registers[qinst->dst.index];
break;
case QFILE_VPM:
dst = qpu_ra(QPU_W_VPM);
break;
case QFILE_VARY:
case QFILE_UNIF:
case QFILE_SMALL_IMM:
assert(!"not reached");
break;
}
 
switch (qinst->op) {
case QOP_MOV:
/* Skip emitting the MOV if it's a no-op. */
if (dst.mux == QPU_MUX_A || dst.mux == QPU_MUX_B ||
dst.mux != src[0].mux || dst.addr != src[0].addr) {
queue(c, qpu_a_MOV(dst, src[0]));
}
break;
 
case QOP_SEL_X_0_ZS:
case QOP_SEL_X_0_ZC:
case QOP_SEL_X_0_NS:
case QOP_SEL_X_0_NC:
queue(c, qpu_a_MOV(dst, src[0]));
set_last_cond_add(c, qinst->op - QOP_SEL_X_0_ZS +
QPU_COND_ZS);
 
queue(c, qpu_a_XOR(dst, qpu_r0(), qpu_r0()));
set_last_cond_add(c, ((qinst->op - QOP_SEL_X_0_ZS) ^
1) + QPU_COND_ZS);
break;
 
case QOP_SEL_X_Y_ZS:
case QOP_SEL_X_Y_ZC:
case QOP_SEL_X_Y_NS:
case QOP_SEL_X_Y_NC:
queue(c, qpu_a_MOV(dst, src[0]));
set_last_cond_add(c, qinst->op - QOP_SEL_X_Y_ZS +
QPU_COND_ZS);
 
queue(c, qpu_a_MOV(dst, src[1]));
set_last_cond_add(c, ((qinst->op - QOP_SEL_X_Y_ZS) ^
1) + QPU_COND_ZS);
 
break;
 
case QOP_RCP:
case QOP_RSQ:
case QOP_EXP2:
case QOP_LOG2:
switch (qinst->op) {
case QOP_RCP:
queue(c, qpu_a_MOV(qpu_rb(QPU_W_SFU_RECIP),
src[0]));
break;
case QOP_RSQ:
queue(c, qpu_a_MOV(qpu_rb(QPU_W_SFU_RECIPSQRT),
src[0]));
break;
case QOP_EXP2:
queue(c, qpu_a_MOV(qpu_rb(QPU_W_SFU_EXP),
src[0]));
break;
case QOP_LOG2:
queue(c, qpu_a_MOV(qpu_rb(QPU_W_SFU_LOG),
src[0]));
break;
default:
abort();
}
 
queue(c, qpu_a_MOV(dst, qpu_r4()));
 
break;
 
case QOP_PACK_8888_F:
queue(c, qpu_m_MOV(dst, src[0]));
*last_inst(c) |= QPU_PM;
*last_inst(c) |= QPU_SET_FIELD(QPU_PACK_MUL_8888,
QPU_PACK);
break;
 
case QOP_PACK_8A_F:
case QOP_PACK_8B_F:
case QOP_PACK_8C_F:
case QOP_PACK_8D_F:
/* If dst doesn't happen to already contain src[0],
* then we have to move it in.
*/
if (qinst->src[0].file != QFILE_NULL &&
(src[0].mux != dst.mux || src[0].addr != dst.addr)) {
/* Don't overwrite src1 while setting up
* the dst!
*/
if (dst.mux == src[1].mux &&
dst.addr == src[1].addr) {
queue(c, qpu_m_MOV(qpu_rb(31), src[1]));
src[1] = qpu_rb(31);
}
 
queue(c, qpu_m_MOV(dst, src[0]));
}
 
queue(c, qpu_m_MOV(dst, src[1]));
*last_inst(c) |= QPU_PM;
*last_inst(c) |= QPU_SET_FIELD(QPU_PACK_MUL_8A +
qinst->op - QOP_PACK_8A_F,
QPU_PACK);
break;
 
case QOP_FRAG_X:
queue(c, qpu_a_ITOF(dst,
qpu_ra(QPU_R_XY_PIXEL_COORD)));
break;
 
case QOP_FRAG_Y:
queue(c, qpu_a_ITOF(dst,
qpu_rb(QPU_R_XY_PIXEL_COORD)));
break;
 
case QOP_FRAG_REV_FLAG:
queue(c, qpu_a_ITOF(dst,
qpu_rb(QPU_R_MS_REV_FLAGS)));
break;
 
case QOP_FRAG_Z:
case QOP_FRAG_W:
/* QOP_FRAG_Z/W don't emit instructions, just allocate
* the register to the Z/W payload.
*/
break;
 
case QOP_TLB_DISCARD_SETUP:
discard = true;
queue(c, qpu_a_MOV(src[0], src[0]));
*last_inst(c) |= QPU_SF;
break;
 
case QOP_TLB_STENCIL_SETUP:
queue(c, qpu_a_MOV(qpu_ra(QPU_W_TLB_STENCIL_SETUP), src[0]));
break;
 
case QOP_TLB_Z_WRITE:
queue(c, qpu_a_MOV(qpu_ra(QPU_W_TLB_Z), src[0]));
if (discard) {
set_last_cond_add(c, QPU_COND_ZS);
}
break;
 
case QOP_TLB_COLOR_READ:
queue(c, qpu_NOP());
*last_inst(c) = qpu_set_sig(*last_inst(c),
QPU_SIG_COLOR_LOAD);
 
break;
 
case QOP_TLB_COLOR_WRITE:
queue(c, qpu_a_MOV(qpu_tlbc(), src[0]));
if (discard) {
set_last_cond_add(c, QPU_COND_ZS);
}
break;
 
case QOP_VARY_ADD_C:
queue(c, qpu_a_FADD(dst, src[0], qpu_r5()));
break;
 
case QOP_PACK_SCALED: {
uint64_t a = (qpu_a_MOV(dst, src[0]) |
QPU_SET_FIELD(QPU_PACK_A_16A,
QPU_PACK));
uint64_t b = (qpu_a_MOV(dst, src[1]) |
QPU_SET_FIELD(QPU_PACK_A_16B,
QPU_PACK));
 
if (dst.mux == src[1].mux && dst.addr == src[1].addr) {
queue(c, b);
queue(c, a);
} else {
queue(c, a);
queue(c, b);
}
break;
}
 
case QOP_TEX_S:
case QOP_TEX_T:
case QOP_TEX_R:
case QOP_TEX_B:
queue(c, qpu_a_MOV(qpu_rb(QPU_W_TMU0_S +
(qinst->op - QOP_TEX_S)),
src[0]));
break;
 
case QOP_TEX_DIRECT:
fixup_raddr_conflict(c, dst, &src[0], &src[1]);
queue(c, qpu_a_ADD(qpu_rb(QPU_W_TMU0_S), src[0], src[1]));
break;
 
case QOP_TEX_RESULT:
queue(c, qpu_NOP());
*last_inst(c) = qpu_set_sig(*last_inst(c),
QPU_SIG_LOAD_TMU0);
 
break;
 
case QOP_R4_UNPACK_A:
case QOP_R4_UNPACK_B:
case QOP_R4_UNPACK_C:
case QOP_R4_UNPACK_D:
assert(src[0].mux == QPU_MUX_R4);
queue(c, qpu_a_MOV(dst, src[0]));
*last_inst(c) |= QPU_PM;
*last_inst(c) |= QPU_SET_FIELD(QPU_UNPACK_8A +
(qinst->op -
QOP_R4_UNPACK_A),
QPU_UNPACK);
 
break;
 
case QOP_UNPACK_8A_F:
case QOP_UNPACK_8B_F:
case QOP_UNPACK_8C_F:
case QOP_UNPACK_8D_F:
case QOP_UNPACK_16A_F:
case QOP_UNPACK_16B_F: {
assert(src[0].mux == QPU_MUX_A);
 
/* Since we're setting the pack bits, if the
* destination is in A it would get re-packed.
*/
queue(c, qpu_a_FMAX((dst.mux == QPU_MUX_A ?
qpu_rb(31) : dst),
src[0], src[0]));
*last_inst(c) |= QPU_SET_FIELD(unpack_map[qinst->op -
QOP_UNPACK_8A_F],
QPU_UNPACK);
 
if (dst.mux == QPU_MUX_A) {
queue(c, qpu_a_MOV(dst, qpu_rb(31)));
}
}
break;
 
case QOP_UNPACK_8A_I:
case QOP_UNPACK_8B_I:
case QOP_UNPACK_8C_I:
case QOP_UNPACK_8D_I:
case QOP_UNPACK_16A_I:
case QOP_UNPACK_16B_I: {
assert(src[0].mux == QPU_MUX_A);
 
/* Since we're setting the pack bits, if the
* destination is in A it would get re-packed.
*/
queue(c, qpu_a_MOV((dst.mux == QPU_MUX_A ?
qpu_rb(31) : dst), src[0]));
*last_inst(c) |= QPU_SET_FIELD(unpack_map[qinst->op -
QOP_UNPACK_8A_I],
QPU_UNPACK);
 
if (dst.mux == QPU_MUX_A) {
queue(c, qpu_a_MOV(dst, qpu_rb(31)));
}
}
break;
 
default:
assert(qinst->op < ARRAY_SIZE(translate));
assert(translate[qinst->op].op != 0); /* NOPs */
 
/* If we have only one source, put it in the second
* argument slot as well so that we don't take up
* another raddr just to get unused data.
*/
if (qir_get_op_nsrc(qinst->op) == 1)
src[1] = src[0];
 
fixup_raddr_conflict(c, dst, &src[0], &src[1]);
 
if (translate[qinst->op].is_mul) {
queue(c, qpu_m_alu2(translate[qinst->op].op,
dst,
src[0], src[1]));
} else {
queue(c, qpu_a_alu2(translate[qinst->op].op,
dst,
src[0], src[1]));
}
 
break;
}
 
if (qinst->sf) {
assert(!qir_is_multi_instruction(qinst));
*last_inst(c) |= QPU_SF;
}
}
 
qpu_schedule_instructions(c);
 
/* thread end can't have VPM write or read */
if (QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
QPU_WADDR_ADD) == QPU_W_VPM ||
QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
QPU_WADDR_MUL) == QPU_W_VPM ||
QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
QPU_RADDR_A) == QPU_R_VPM ||
QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
QPU_RADDR_B) == QPU_R_VPM) {
qpu_serialize_one_inst(c, qpu_NOP());
}
 
/* thread end can't have uniform read */
if (QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
QPU_RADDR_A) == QPU_R_UNIF ||
QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
QPU_RADDR_B) == QPU_R_UNIF) {
qpu_serialize_one_inst(c, qpu_NOP());
}
 
/* thread end can't have TLB operations */
if (qpu_inst_is_tlb(c->qpu_insts[c->qpu_inst_count - 1]))
qpu_serialize_one_inst(c, qpu_NOP());
 
c->qpu_insts[c->qpu_inst_count - 1] =
qpu_set_sig(c->qpu_insts[c->qpu_inst_count - 1],
QPU_SIG_PROG_END);
qpu_serialize_one_inst(c, qpu_NOP());
qpu_serialize_one_inst(c, qpu_NOP());
 
switch (c->stage) {
case QSTAGE_VERT:
case QSTAGE_COORD:
break;
case QSTAGE_FRAG:
c->qpu_insts[c->qpu_inst_count - 1] =
qpu_set_sig(c->qpu_insts[c->qpu_inst_count - 1],
QPU_SIG_SCOREBOARD_UNLOCK);
break;
}
 
if (vc4_debug & VC4_DEBUG_QPU)
vc4_dump_program(c);
 
vc4_qpu_validate(c->qpu_insts, c->qpu_inst_count);
 
free(temp_registers);
}