Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 5563 → Rev 5564

/contrib/sdk/sources/Mesa/mesa-10.6.0/src/gallium/auxiliary/gallivm/lp_bld_type.h
0,0 → 1,453
/**************************************************************************
*
* Copyright 2009 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
 
/**
* @file
* Convenient representation of SIMD types.
*
* @author Jose Fonseca <jfonseca@vmware.com>
*/
 
 
#ifndef LP_BLD_TYPE_H
#define LP_BLD_TYPE_H
 
 
#include "util/u_format.h"
#include "pipe/p_compiler.h"
#include "gallivm/lp_bld.h"
 
/**
* Native SIMD architecture width available at runtime.
*
* Using this width should give the best performance,
* and it determines the necessary alignment of vector variables.
*/
extern unsigned lp_native_vector_width;
 
/**
* Maximum supported vector width (not necessarily supported at run-time).
*
* Should only be used when lp_native_vector_width isn't available,
* i.e. sizing/alignment of non-malloced variables.
*/
#define LP_MAX_VECTOR_WIDTH 256
 
/**
* Minimum vector alignment for static variable alignment
*
* It should always be a constant equal to LP_MAX_VECTOR_WIDTH/8. An
* expression is non-portable.
*/
#define LP_MIN_VECTOR_ALIGN 32
 
/**
* Several functions can only cope with vectors of length up to this value.
* You may need to increase that value if you want to represent bigger vectors.
*/
#define LP_MAX_VECTOR_LENGTH (LP_MAX_VECTOR_WIDTH/8)
 
/**
* The LLVM type system can't conveniently express all the things we care about
* on the types used for intermediate computations, such as signed vs unsigned,
* normalized values, or fixed point.
*/
struct lp_type {
/**
* Floating-point. Cannot be used with fixed. Integer numbers are
* represented by this zero.
*/
unsigned floating:1;
 
/**
* Fixed-point. Cannot be used with floating. Integer numbers are
* represented by this zero.
*/
unsigned fixed:1;
 
/**
* Whether it can represent negative values or not.
*
* If this is not set for floating point, it means that all values are
* assumed to be positive.
*/
unsigned sign:1;
 
/**
* Whether values are normalized to fit [0, 1] interval, or [-1, 1]
* interval for signed types.
*
* For integer types it means the representable integer range should be
* interpreted as the interval above.
*
* For floating and fixed point formats it means the values should be
* clamped to the interval above.
*/
unsigned norm:1;
 
/**
* Element width.
*
* For fixed point values, the fixed point is assumed to be at half the
* width.
*/
unsigned width:14;
 
/**
* Vector length. If length==1, this is a scalar (float/int) type.
*
* width*length should be a power of two greater or equal to eight.
*
* @sa LP_MAX_VECTOR_LENGTH
*/
unsigned length:14;
};
 
 
/**
* We need most of the information here in order to correctly and efficiently
* translate an arithmetic operation into LLVM IR. Putting it here avoids the
* trouble of passing it as parameters.
*/
struct lp_build_context
{
struct gallivm_state *gallivm;
 
/**
* This not only describes the input/output LLVM types, but also whether
* to normalize/clamp the results.
*/
struct lp_type type;
 
/** Same as lp_build_elem_type(type) */
LLVMTypeRef elem_type;
 
/** Same as lp_build_vec_type(type) */
LLVMTypeRef vec_type;
 
/** Same as lp_build_int_elem_type(type) */
LLVMTypeRef int_elem_type;
 
/** Same as lp_build_int_vec_type(type) */
LLVMTypeRef int_vec_type;
 
/** Same as lp_build_undef(type) */
LLVMValueRef undef;
 
/** Same as lp_build_zero(type) */
LLVMValueRef zero;
 
/** Same as lp_build_one(type) */
LLVMValueRef one;
};
 
 
/**
* Converts a format description into an lp_type.
*
* Only works with "array formats".
*
* e.g. With PIPE_FORMAT_R32G32B32A32_FLOAT returns an lp_type with float[4]
*/
static INLINE void
lp_type_from_format_desc(struct lp_type* type, const struct util_format_description *format_desc)
{
assert(format_desc->is_array);
assert(!format_desc->is_mixed);
 
memset(type, 0, sizeof(struct lp_type));
type->floating = format_desc->channel[0].type == UTIL_FORMAT_TYPE_FLOAT;
type->fixed = format_desc->channel[0].type == UTIL_FORMAT_TYPE_FIXED;
type->sign = format_desc->channel[0].type != UTIL_FORMAT_TYPE_UNSIGNED;
type->norm = format_desc->channel[0].normalized;
type->width = format_desc->channel[0].size;
type->length = format_desc->nr_channels;
}
 
 
static INLINE void
lp_type_from_format(struct lp_type* type, enum pipe_format format)
{
lp_type_from_format_desc(type, util_format_description(format));
}
 
 
static INLINE unsigned
lp_type_width(struct lp_type type)
{
return type.width * type.length;
}
 
 
/** Create scalar float type */
static INLINE struct lp_type
lp_type_float(unsigned width)
{
struct lp_type res_type;
 
memset(&res_type, 0, sizeof res_type);
res_type.floating = TRUE;
res_type.sign = TRUE;
res_type.width = width;
res_type.length = 1;
 
return res_type;
}
 
 
/** Create vector of float type */
static INLINE struct lp_type
lp_type_float_vec(unsigned width, unsigned total_width)
{
struct lp_type res_type;
 
memset(&res_type, 0, sizeof res_type);
res_type.floating = TRUE;
res_type.sign = TRUE;
res_type.width = width;
res_type.length = total_width / width;
 
return res_type;
}
 
 
/** Create scalar int type */
static INLINE struct lp_type
lp_type_int(unsigned width)
{
struct lp_type res_type;
 
memset(&res_type, 0, sizeof res_type);
res_type.sign = TRUE;
res_type.width = width;
res_type.length = 1;
 
return res_type;
}
 
 
/** Create vector int type */
static INLINE struct lp_type
lp_type_int_vec(unsigned width, unsigned total_width)
{
struct lp_type res_type;
 
memset(&res_type, 0, sizeof res_type);
res_type.sign = TRUE;
res_type.width = width;
res_type.length = total_width / width;
 
return res_type;
}
 
 
/** Create scalar uint type */
static INLINE struct lp_type
lp_type_uint(unsigned width)
{
struct lp_type res_type;
 
memset(&res_type, 0, sizeof res_type);
res_type.width = width;
res_type.length = 1;
 
return res_type;
}
 
 
/** Create vector uint type */
static INLINE struct lp_type
lp_type_uint_vec(unsigned width, unsigned total_width)
{
struct lp_type res_type;
 
memset(&res_type, 0, sizeof res_type);
res_type.width = width;
res_type.length = total_width / width;
 
return res_type;
}
 
 
static INLINE struct lp_type
lp_type_unorm(unsigned width, unsigned total_width)
{
struct lp_type res_type;
 
memset(&res_type, 0, sizeof res_type);
res_type.norm = TRUE;
res_type.width = width;
res_type.length = total_width / width;
 
return res_type;
}
 
 
static INLINE struct lp_type
lp_type_fixed(unsigned width, unsigned total_width)
{
struct lp_type res_type;
 
memset(&res_type, 0, sizeof res_type);
res_type.sign = TRUE;
res_type.fixed = TRUE;
res_type.width = width;
res_type.length = total_width / width;
 
return res_type;
}
 
 
static INLINE struct lp_type
lp_type_ufixed(unsigned width, unsigned total_width)
{
struct lp_type res_type;
 
memset(&res_type, 0, sizeof res_type);
res_type.fixed = TRUE;
res_type.width = width;
res_type.length = total_width / width;
 
return res_type;
}
 
 
LLVMTypeRef
lp_build_elem_type(struct gallivm_state *gallivm, struct lp_type type);
 
 
LLVMTypeRef
lp_build_vec_type(struct gallivm_state *gallivm, struct lp_type type);
 
 
boolean
lp_check_elem_type(struct lp_type type, LLVMTypeRef elem_type);
 
 
boolean
lp_check_vec_type(struct lp_type type, LLVMTypeRef vec_type);
 
 
boolean
lp_check_value(struct lp_type type, LLVMValueRef val);
 
 
LLVMTypeRef
lp_build_int_elem_type(struct gallivm_state *gallivm, struct lp_type type);
 
 
LLVMTypeRef
lp_build_int_vec_type(struct gallivm_state *gallivm, struct lp_type type);
 
 
static INLINE struct lp_type
lp_float32_vec4_type(void)
{
struct lp_type type;
 
memset(&type, 0, sizeof(type));
type.floating = TRUE;
type.sign = TRUE;
type.norm = FALSE;
type.width = 32;
type.length = 4;
 
return type;
}
 
 
static INLINE struct lp_type
lp_int32_vec4_type(void)
{
struct lp_type type;
 
memset(&type, 0, sizeof(type));
type.floating = FALSE;
type.sign = TRUE;
type.norm = FALSE;
type.width = 32;
type.length = 4;
 
return type;
}
 
 
static INLINE struct lp_type
lp_unorm8_vec4_type(void)
{
struct lp_type type;
 
memset(&type, 0, sizeof(type));
type.floating = FALSE;
type.sign = FALSE;
type.norm = TRUE;
type.width = 8;
type.length = 4;
 
return type;
}
 
 
struct lp_type
lp_elem_type(struct lp_type type);
 
 
struct lp_type
lp_uint_type(struct lp_type type);
 
 
struct lp_type
lp_int_type(struct lp_type type);
 
 
struct lp_type
lp_wider_type(struct lp_type type);
 
 
unsigned
lp_sizeof_llvm_type(LLVMTypeRef t);
 
 
const char *
lp_typekind_name(LLVMTypeKind t);
 
 
void
lp_dump_llvmtype(LLVMTypeRef t);
 
 
void
lp_build_context_init(struct lp_build_context *bld,
struct gallivm_state *gallivm,
struct lp_type type);
 
 
unsigned
lp_build_count_ir_module(LLVMModuleRef module);
 
 
#endif /* !LP_BLD_TYPE_H */