Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 4103 → Rev 4104

/drivers/video/drm/i915/i915_irq.c
35,6 → 35,8
#include "i915_trace.h"
#include "intel_drv.h"
 
#define assert_spin_locked(a)
 
static const u32 hpd_ibx[] = {
[HPD_CRT] = SDE_CRT_HOTPLUG,
[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
69,15 → 71,6
[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
};
 
static const u32 hpd_status_i965[] = {
[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I965,
[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I965,
[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
};
 
static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
87,8 → 80,6
[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
};
 
static void ibx_hpd_irq_setup(struct drm_device *dev);
static void i915_hpd_irq_setup(struct drm_device *dev);
 
#define pr_err(fmt, ...) \
printk(KERN_ERR pr_fmt(fmt), ##__VA_ARGS__)
105,6 → 96,14
static void
ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
{
assert_spin_locked(&dev_priv->irq_lock);
 
if (dev_priv->pc8.irqs_disabled) {
WARN(1, "IRQs disabled\n");
dev_priv->pc8.regsave.deimr &= ~mask;
return;
}
 
if ((dev_priv->irq_mask & mask) != 0) {
dev_priv->irq_mask &= ~mask;
I915_WRITE(DEIMR, dev_priv->irq_mask);
115,6 → 114,14
static void
ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
{
assert_spin_locked(&dev_priv->irq_lock);
 
if (dev_priv->pc8.irqs_disabled) {
WARN(1, "IRQs disabled\n");
dev_priv->pc8.regsave.deimr |= mask;
return;
}
 
if ((dev_priv->irq_mask & mask) != mask) {
dev_priv->irq_mask |= mask;
I915_WRITE(DEIMR, dev_priv->irq_mask);
122,6 → 129,330
}
}
 
/**
* ilk_update_gt_irq - update GTIMR
* @dev_priv: driver private
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
uint32_t interrupt_mask,
uint32_t enabled_irq_mask)
{
assert_spin_locked(&dev_priv->irq_lock);
 
if (dev_priv->pc8.irqs_disabled) {
WARN(1, "IRQs disabled\n");
dev_priv->pc8.regsave.gtimr &= ~interrupt_mask;
dev_priv->pc8.regsave.gtimr |= (~enabled_irq_mask &
interrupt_mask);
return;
}
 
dev_priv->gt_irq_mask &= ~interrupt_mask;
dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
POSTING_READ(GTIMR);
}
 
void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
{
ilk_update_gt_irq(dev_priv, mask, mask);
}
 
void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
{
ilk_update_gt_irq(dev_priv, mask, 0);
}
 
/**
* snb_update_pm_irq - update GEN6_PMIMR
* @dev_priv: driver private
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
uint32_t interrupt_mask,
uint32_t enabled_irq_mask)
{
uint32_t new_val;
 
assert_spin_locked(&dev_priv->irq_lock);
 
if (dev_priv->pc8.irqs_disabled) {
WARN(1, "IRQs disabled\n");
dev_priv->pc8.regsave.gen6_pmimr &= ~interrupt_mask;
dev_priv->pc8.regsave.gen6_pmimr |= (~enabled_irq_mask &
interrupt_mask);
return;
}
 
new_val = dev_priv->pm_irq_mask;
new_val &= ~interrupt_mask;
new_val |= (~enabled_irq_mask & interrupt_mask);
 
if (new_val != dev_priv->pm_irq_mask) {
dev_priv->pm_irq_mask = new_val;
I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
POSTING_READ(GEN6_PMIMR);
}
}
 
void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
{
snb_update_pm_irq(dev_priv, mask, mask);
}
 
void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
{
snb_update_pm_irq(dev_priv, mask, 0);
}
 
static bool ivb_can_enable_err_int(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc;
enum pipe pipe;
 
assert_spin_locked(&dev_priv->irq_lock);
 
for_each_pipe(pipe) {
crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
 
if (crtc->cpu_fifo_underrun_disabled)
return false;
}
 
return true;
}
 
static bool cpt_can_enable_serr_int(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe;
struct intel_crtc *crtc;
 
assert_spin_locked(&dev_priv->irq_lock);
 
for_each_pipe(pipe) {
crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
 
if (crtc->pch_fifo_underrun_disabled)
return false;
}
 
return true;
}
 
static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
enum pipe pipe, bool enable)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
DE_PIPEB_FIFO_UNDERRUN;
 
if (enable)
ironlake_enable_display_irq(dev_priv, bit);
else
ironlake_disable_display_irq(dev_priv, bit);
}
 
static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
enum pipe pipe, bool enable)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (enable) {
I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
 
if (!ivb_can_enable_err_int(dev))
return;
 
ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
} else {
bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
 
/* Change the state _after_ we've read out the current one. */
ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
 
if (!was_enabled &&
(I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
pipe_name(pipe));
}
}
}
 
/**
* ibx_display_interrupt_update - update SDEIMR
* @dev_priv: driver private
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
uint32_t interrupt_mask,
uint32_t enabled_irq_mask)
{
uint32_t sdeimr = I915_READ(SDEIMR);
sdeimr &= ~interrupt_mask;
sdeimr |= (~enabled_irq_mask & interrupt_mask);
 
assert_spin_locked(&dev_priv->irq_lock);
 
if (dev_priv->pc8.irqs_disabled &&
(interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
WARN(1, "IRQs disabled\n");
dev_priv->pc8.regsave.sdeimr &= ~interrupt_mask;
dev_priv->pc8.regsave.sdeimr |= (~enabled_irq_mask &
interrupt_mask);
return;
}
 
I915_WRITE(SDEIMR, sdeimr);
POSTING_READ(SDEIMR);
}
#define ibx_enable_display_interrupt(dev_priv, bits) \
ibx_display_interrupt_update((dev_priv), (bits), (bits))
#define ibx_disable_display_interrupt(dev_priv, bits) \
ibx_display_interrupt_update((dev_priv), (bits), 0)
 
static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
enum transcoder pch_transcoder,
bool enable)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
 
if (enable)
ibx_enable_display_interrupt(dev_priv, bit);
else
ibx_disable_display_interrupt(dev_priv, bit);
}
 
static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
enum transcoder pch_transcoder,
bool enable)
{
struct drm_i915_private *dev_priv = dev->dev_private;
 
if (enable) {
I915_WRITE(SERR_INT,
SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
 
if (!cpt_can_enable_serr_int(dev))
return;
 
ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
} else {
uint32_t tmp = I915_READ(SERR_INT);
bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
 
/* Change the state _after_ we've read out the current one. */
ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
 
if (!was_enabled &&
(tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
transcoder_name(pch_transcoder));
}
}
}
 
/**
* intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
* @dev: drm device
* @pipe: pipe
* @enable: true if we want to report FIFO underrun errors, false otherwise
*
* This function makes us disable or enable CPU fifo underruns for a specific
* pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
* reporting for one pipe may also disable all the other CPU error interruts for
* the other pipes, due to the fact that there's just one interrupt mask/enable
* bit for all the pipes.
*
* Returns the previous state of underrun reporting.
*/
bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
enum pipe pipe, bool enable)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
unsigned long flags;
bool ret;
 
spin_lock_irqsave(&dev_priv->irq_lock, flags);
 
ret = !intel_crtc->cpu_fifo_underrun_disabled;
 
if (enable == ret)
goto done;
 
intel_crtc->cpu_fifo_underrun_disabled = !enable;
 
if (IS_GEN5(dev) || IS_GEN6(dev))
ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
else if (IS_GEN7(dev))
ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
 
done:
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
return ret;
}
 
/**
* intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
* @dev: drm device
* @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
* @enable: true if we want to report FIFO underrun errors, false otherwise
*
* This function makes us disable or enable PCH fifo underruns for a specific
* PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
* underrun reporting for one transcoder may also disable all the other PCH
* error interruts for the other transcoders, due to the fact that there's just
* one interrupt mask/enable bit for all the transcoders.
*
* Returns the previous state of underrun reporting.
*/
bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
enum transcoder pch_transcoder,
bool enable)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
unsigned long flags;
bool ret;
 
/*
* NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
* has only one pch transcoder A that all pipes can use. To avoid racy
* pch transcoder -> pipe lookups from interrupt code simply store the
* underrun statistics in crtc A. Since we never expose this anywhere
* nor use it outside of the fifo underrun code here using the "wrong"
* crtc on LPT won't cause issues.
*/
 
spin_lock_irqsave(&dev_priv->irq_lock, flags);
 
ret = !intel_crtc->pch_fifo_underrun_disabled;
 
if (enable == ret)
goto done;
 
intel_crtc->pch_fifo_underrun_disabled = !enable;
 
if (HAS_PCH_IBX(dev))
ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
else
cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
 
done:
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
return ret;
}
 
 
void
i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
{
128,6 → 459,8
u32 reg = PIPESTAT(pipe);
u32 pipestat = I915_READ(reg) & 0x7fff0000;
 
assert_spin_locked(&dev_priv->irq_lock);
 
if ((pipestat & mask) == mask)
return;
 
143,6 → 476,8
u32 reg = PIPESTAT(pipe);
u32 pipestat = I915_READ(reg) & 0x7fff0000;
 
assert_spin_locked(&dev_priv->irq_lock);
 
if ((pipestat & mask) == 0)
return;
 
153,28 → 488,21
 
#if 0
/**
* intel_enable_asle - enable ASLE interrupt for OpRegion
* i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
*/
void intel_enable_asle(struct drm_device *dev)
static void i915_enable_asle_pipestat(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
unsigned long irqflags;
 
/* FIXME: opregion/asle for VLV */
if (IS_VALLEYVIEW(dev))
if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
return;
 
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
 
if (HAS_PCH_SPLIT(dev))
ironlake_enable_display_irq(dev_priv, DE_GSE);
else {
i915_enable_pipestat(dev_priv, 1,
PIPE_LEGACY_BLC_EVENT_ENABLE);
i915_enable_pipestat(dev_priv, 1, PIPE_LEGACY_BLC_EVENT_ENABLE);
if (INTEL_INFO(dev)->gen >= 4)
i915_enable_pipestat(dev_priv, 0,
PIPE_LEGACY_BLC_EVENT_ENABLE);
}
i915_enable_pipestat(dev_priv, 0, PIPE_LEGACY_BLC_EVENT_ENABLE);
 
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
193,11 → 521,17
i915_pipe_enabled(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
pipe);
 
return I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_ENABLE;
if (drm_core_check_feature(dev, DRIVER_MODESET)) {
/* Locking is horribly broken here, but whatever. */
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 
return intel_crtc->active;
} else {
return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
}
}
 
/* Called from drm generic code, passed a 'crtc', which
* we use as a pipe index
346,6 → 680,21
crtc);
}
 
static int intel_hpd_irq_event(struct drm_device *dev, struct drm_connector *connector)
{
enum drm_connector_status old_status;
 
WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
old_status = connector->status;
 
connector->status = connector->funcs->detect(connector, false);
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %d to %d\n",
connector->base.id,
drm_get_connector_name(connector),
old_status, connector->status);
return (old_status != connector->status);
}
 
/*
* Handle hotplug events outside the interrupt handler proper.
*/
362,6 → 711,8
struct drm_connector *connector;
unsigned long irqflags;
bool hpd_disabled = false;
bool changed = false;
u32 hpd_event_bits;
 
/* HPD irq before everything is fully set up. */
if (!dev_priv->enable_hotplug_processing)
371,6 → 722,9
DRM_DEBUG_KMS("running encoder hotplug functions\n");
 
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
 
hpd_event_bits = dev_priv->hpd_event_bits;
dev_priv->hpd_event_bits = 0;
list_for_each_entry(connector, &mode_config->connector_list, head) {
intel_connector = to_intel_connector(connector);
intel_encoder = intel_connector->encoder;
385,7 → 739,11
| DRM_CONNECTOR_POLL_DISCONNECT;
hpd_disabled = true;
}
if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
drm_get_connector_name(connector), intel_encoder->hpd_pin);
}
}
/* if there were no outputs to poll, poll was disabled,
* therefore make sure it's enabled when disabling HPD on
* some connectors */
397,24 → 755,29
 
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
 
list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
list_for_each_entry(connector, &mode_config->connector_list, head) {
intel_connector = to_intel_connector(connector);
intel_encoder = intel_connector->encoder;
if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
if (intel_encoder->hot_plug)
intel_encoder->hot_plug(intel_encoder);
 
if (intel_hpd_irq_event(dev, connector))
changed = true;
}
}
mutex_unlock(&mode_config->mutex);
 
/* Just fire off a uevent and let userspace tell us what to do */
drm_helper_hpd_irq_event(dev);
if (changed)
drm_kms_helper_hotplug_event(dev);
}
 
static void ironlake_handle_rps_change(struct drm_device *dev)
static void ironlake_rps_change_irq_handler(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
u32 busy_up, busy_down, max_avg, min_avg;
u8 new_delay;
unsigned long flags;
 
spin_lock_irqsave(&mchdev_lock, flags);
spin_lock(&mchdev_lock);
 
I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
 
442,7 → 805,7
if (ironlake_set_drps(dev, new_delay))
dev_priv->ips.cur_delay = new_delay;
 
spin_unlock_irqrestore(&mchdev_lock, flags);
spin_unlock(&mchdev_lock);
 
return;
}
450,8 → 813,6
static void notify_ring(struct drm_device *dev,
struct intel_ring_buffer *ring)
{
struct drm_i915_private *dev_priv = dev->dev_private;
 
if (ring->obj == NULL)
return;
 
458,12 → 819,6
trace_i915_gem_request_complete(ring, ring->get_seqno(ring, false));
 
wake_up_all(&ring->irq_queue);
// if (i915_enable_hangcheck) {
// dev_priv->hangcheck_count = 0;
// mod_timer(&dev_priv->hangcheck_timer,
// jiffies +
// msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
// }
}
 
#if 0
471,34 → 826,59
{
drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
rps.work);
u32 pm_iir, pm_imr;
u32 pm_iir;
u8 new_delay;
 
spin_lock_irq(&dev_priv->rps.lock);
spin_lock_irq(&dev_priv->irq_lock);
pm_iir = dev_priv->rps.pm_iir;
dev_priv->rps.pm_iir = 0;
pm_imr = I915_READ(GEN6_PMIMR);
I915_WRITE(GEN6_PMIMR, 0);
spin_unlock_irq(&dev_priv->rps.lock);
/* Make sure not to corrupt PMIMR state used by ringbuffer code */
snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
spin_unlock_irq(&dev_priv->irq_lock);
 
if ((pm_iir & GEN6_PM_DEFERRED_EVENTS) == 0)
/* Make sure we didn't queue anything we're not going to process. */
WARN_ON(pm_iir & ~GEN6_PM_RPS_EVENTS);
 
if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
return;
 
mutex_lock(&dev_priv->rps.hw_lock);
 
if (pm_iir & GEN6_PM_RP_UP_THRESHOLD)
if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
new_delay = dev_priv->rps.cur_delay + 1;
else
 
/*
* For better performance, jump directly
* to RPe if we're below it.
*/
if (IS_VALLEYVIEW(dev_priv->dev) &&
dev_priv->rps.cur_delay < dev_priv->rps.rpe_delay)
new_delay = dev_priv->rps.rpe_delay;
} else
new_delay = dev_priv->rps.cur_delay - 1;
 
/* sysfs frequency interfaces may have snuck in while servicing the
* interrupt
*/
if (!(new_delay > dev_priv->rps.max_delay ||
new_delay < dev_priv->rps.min_delay)) {
if (new_delay >= dev_priv->rps.min_delay &&
new_delay <= dev_priv->rps.max_delay) {
if (IS_VALLEYVIEW(dev_priv->dev))
valleyview_set_rps(dev_priv->dev, new_delay);
else
gen6_set_rps(dev_priv->dev, new_delay);
}
 
if (IS_VALLEYVIEW(dev_priv->dev)) {
/*
* On VLV, when we enter RC6 we may not be at the minimum
* voltage level, so arm a timer to check. It should only
* fire when there's activity or once after we've entered
* RC6, and then won't be re-armed until the next RPS interrupt.
*/
mod_delayed_work(dev_priv->wq, &dev_priv->rps.vlv_work,
msecs_to_jiffies(100));
}
 
mutex_unlock(&dev_priv->rps.hw_lock);
}
 
543,13 → 923,12
I915_WRITE(GEN7_MISCCPCTL, misccpctl);
 
spin_lock_irqsave(&dev_priv->irq_lock, flags);
dev_priv->gt_irq_mask &= ~GT_GEN7_L3_PARITY_ERROR_INTERRUPT;
I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
ilk_enable_gt_irq(dev_priv, GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
 
mutex_unlock(&dev_priv->dev->struct_mutex);
 
parity_event[0] = "L3_PARITY_ERROR=1";
parity_event[0] = I915_L3_PARITY_UEVENT "=1";
parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
566,18 → 945,16
kfree(parity_event[1]);
}
 
static void ivybridge_handle_parity_error(struct drm_device *dev)
static void ivybridge_parity_error_irq_handler(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
unsigned long flags;
 
if (!HAS_L3_GPU_CACHE(dev))
return;
 
spin_lock_irqsave(&dev_priv->irq_lock, flags);
dev_priv->gt_irq_mask |= GT_GEN7_L3_PARITY_ERROR_INTERRUPT;
I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
spin_lock(&dev_priv->irq_lock);
ilk_disable_gt_irq(dev_priv, GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
spin_unlock(&dev_priv->irq_lock);
 
queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
}
584,24 → 961,35
 
#endif
 
static void ilk_gt_irq_handler(struct drm_device *dev,
struct drm_i915_private *dev_priv,
u32 gt_iir)
{
if (gt_iir &
(GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
notify_ring(dev, &dev_priv->ring[RCS]);
if (gt_iir & ILK_BSD_USER_INTERRUPT)
notify_ring(dev, &dev_priv->ring[VCS]);
}
 
static void snb_gt_irq_handler(struct drm_device *dev,
struct drm_i915_private *dev_priv,
u32 gt_iir)
{
 
if (gt_iir & (GEN6_RENDER_USER_INTERRUPT |
GEN6_RENDER_PIPE_CONTROL_NOTIFY_INTERRUPT))
if (gt_iir &
(GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
notify_ring(dev, &dev_priv->ring[RCS]);
if (gt_iir & GEN6_BSD_USER_INTERRUPT)
if (gt_iir & GT_BSD_USER_INTERRUPT)
notify_ring(dev, &dev_priv->ring[VCS]);
if (gt_iir & GEN6_BLITTER_USER_INTERRUPT)
if (gt_iir & GT_BLT_USER_INTERRUPT)
notify_ring(dev, &dev_priv->ring[BCS]);
 
if (gt_iir & (GT_GEN6_BLT_CS_ERROR_INTERRUPT |
GT_GEN6_BSD_CS_ERROR_INTERRUPT |
GT_RENDER_CS_ERROR_INTERRUPT)) {
if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
GT_BSD_CS_ERROR_INTERRUPT |
GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
i915_handle_error(dev, false);
// i915_handle_error(dev, false);
}
 
// if (gt_iir & GT_GEN7_L3_PARITY_ERROR_INTERRUPT)
608,50 → 996,32
// ivybridge_handle_parity_error(dev);
}
 
static void gen6_queue_rps_work(struct drm_i915_private *dev_priv,
u32 pm_iir)
{
unsigned long flags;
 
/*
* IIR bits should never already be set because IMR should
* prevent an interrupt from being shown in IIR. The warning
* displays a case where we've unsafely cleared
* dev_priv->rps.pm_iir. Although missing an interrupt of the same
* type is not a problem, it displays a problem in the logic.
*
* The mask bit in IMR is cleared by dev_priv->rps.work.
*/
 
spin_lock_irqsave(&dev_priv->rps.lock, flags);
dev_priv->rps.pm_iir |= pm_iir;
I915_WRITE(GEN6_PMIMR, dev_priv->rps.pm_iir);
POSTING_READ(GEN6_PMIMR);
spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
 
// queue_work(dev_priv->wq, &dev_priv->rps.work);
}
 
#define HPD_STORM_DETECT_PERIOD 1000
#define HPD_STORM_THRESHOLD 5
 
static inline bool hotplug_irq_storm_detect(struct drm_device *dev,
static inline void intel_hpd_irq_handler(struct drm_device *dev,
u32 hotplug_trigger,
const u32 *hpd)
{
drm_i915_private_t *dev_priv = dev->dev_private;
unsigned long irqflags;
int i;
bool ret = false;
bool storm_detected = false;
 
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
if (!hotplug_trigger)
return;
 
spin_lock(&dev_priv->irq_lock);
for (i = 1; i < HPD_NUM_PINS; i++) {
 
WARN(((hpd[i] & hotplug_trigger) &&
dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED),
"Received HPD interrupt although disabled\n");
 
if (!(hpd[i] & hotplug_trigger) ||
dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
continue;
 
dev_priv->hpd_event_bits |= (1 << i);
// if (!time_in_range(GetTimerTicks(), dev_priv->hpd_stats[i].hpd_last_jiffies,
// dev_priv->hpd_stats[i].hpd_last_jiffies
// + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
666,9 → 1036,11
// }
}
 
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
if (storm_detected)
dev_priv->display.hpd_irq_setup(dev);
spin_unlock(&dev_priv->irq_lock);
 
return ret;
 
}
 
static void gmbus_irq_handler(struct drm_device *dev)
685,6 → 1057,31
wake_up_all(&dev_priv->gmbus_wait_queue);
}
 
/* The RPS events need forcewake, so we add them to a work queue and mask their
* IMR bits until the work is done. Other interrupts can be processed without
* the work queue. */
static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
{
if (pm_iir & GEN6_PM_RPS_EVENTS) {
spin_lock(&dev_priv->irq_lock);
dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
snb_disable_pm_irq(dev_priv, pm_iir & GEN6_PM_RPS_EVENTS);
spin_unlock(&dev_priv->irq_lock);
 
queue_work(dev_priv->wq, &dev_priv->rps.work);
}
 
if (HAS_VEBOX(dev_priv->dev)) {
if (pm_iir & PM_VEBOX_USER_INTERRUPT)
notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
 
if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
// i915_handle_error(dev_priv->dev, false);
}
}
}
 
static irqreturn_t valleyview_irq_handler(int irq, void *arg)
{
struct drm_device *dev = (struct drm_device *) arg;
745,12 → 1142,9
 
DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
hotplug_status);
if (hotplug_trigger) {
if (hotplug_irq_storm_detect(dev, hotplug_trigger, hpd_status_i915))
i915_hpd_irq_setup(dev);
queue_work(dev_priv->wq,
&dev_priv->hotplug_work);
}
 
intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
 
I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
I915_READ(PORT_HOTPLUG_STAT);
}
776,15 → 1170,14
int pipe;
u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
 
if (hotplug_trigger) {
if (hotplug_irq_storm_detect(dev, hotplug_trigger, hpd_ibx))
ibx_hpd_irq_setup(dev);
queue_work(dev_priv->wq, &dev_priv->hotplug_work);
intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
 
if (pch_iir & SDE_AUDIO_POWER_MASK) {
int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
SDE_AUDIO_POWER_SHIFT);
DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
port_name(port));
}
if (pch_iir & SDE_AUDIO_POWER_MASK)
DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
(pch_iir & SDE_AUDIO_POWER_MASK) >>
SDE_AUDIO_POWER_SHIFT);
 
if (pch_iir & SDE_AUX_MASK)
dp_aux_irq_handler(dev);
813,12 → 1206,66
if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
 
if (pch_iir & SDE_TRANSA_FIFO_UNDER)
if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
false))
DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
 
if (pch_iir & SDE_TRANSB_FIFO_UNDER)
DRM_DEBUG_DRIVER("PCH transcoder B underrun interrupt\n");
if (pch_iir & SDE_TRANSA_FIFO_UNDER)
DRM_DEBUG_DRIVER("PCH transcoder A underrun interrupt\n");
if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
false))
DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
}
 
static void ivb_err_int_handler(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 err_int = I915_READ(GEN7_ERR_INT);
 
if (err_int & ERR_INT_POISON)
DRM_ERROR("Poison interrupt\n");
 
if (err_int & ERR_INT_FIFO_UNDERRUN_A)
if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
 
if (err_int & ERR_INT_FIFO_UNDERRUN_B)
if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
 
if (err_int & ERR_INT_FIFO_UNDERRUN_C)
if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_C, false))
DRM_DEBUG_DRIVER("Pipe C FIFO underrun\n");
 
I915_WRITE(GEN7_ERR_INT, err_int);
}
 
static void cpt_serr_int_handler(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 serr_int = I915_READ(SERR_INT);
 
if (serr_int & SERR_INT_POISON)
DRM_ERROR("PCH poison interrupt\n");
 
if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
false))
DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
 
if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
false))
DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
 
if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
false))
DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
 
I915_WRITE(SERR_INT, serr_int);
}
 
static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
825,15 → 1272,14
int pipe;
u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
 
if (hotplug_trigger) {
if (hotplug_irq_storm_detect(dev, hotplug_trigger, hpd_cpt))
ibx_hpd_irq_setup(dev);
queue_work(dev_priv->wq, &dev_priv->hotplug_work);
intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
 
if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
SDE_AUDIO_POWER_SHIFT_CPT);
DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
port_name(port));
}
if (pch_iir & SDE_AUDIO_POWER_MASK_CPT)
DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
(pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
SDE_AUDIO_POWER_SHIFT_CPT);
 
if (pch_iir & SDE_AUX_MASK_CPT)
dp_aux_irq_handler(dev);
852,142 → 1298,21
DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
pipe_name(pipe),
I915_READ(FDI_RX_IIR(pipe)));
}
 
static irqreturn_t ivybridge_irq_handler(int irq, void *arg)
{
struct drm_device *dev = (struct drm_device *) arg;
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
u32 de_iir, gt_iir, de_ier, pm_iir, sde_ier = 0;
irqreturn_t ret = IRQ_NONE;
int i;
 
atomic_inc(&dev_priv->irq_received);
 
/* disable master interrupt before clearing iir */
de_ier = I915_READ(DEIER);
I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
 
/* Disable south interrupts. We'll only write to SDEIIR once, so further
* interrupts will will be stored on its back queue, and then we'll be
* able to process them after we restore SDEIER (as soon as we restore
* it, we'll get an interrupt if SDEIIR still has something to process
* due to its back queue). */
if (!HAS_PCH_NOP(dev)) {
sde_ier = I915_READ(SDEIER);
I915_WRITE(SDEIER, 0);
POSTING_READ(SDEIER);
if (pch_iir & SDE_ERROR_CPT)
cpt_serr_int_handler(dev);
}
 
gt_iir = I915_READ(GTIIR);
if (gt_iir) {
snb_gt_irq_handler(dev, dev_priv, gt_iir);
I915_WRITE(GTIIR, gt_iir);
ret = IRQ_HANDLED;
}
 
de_iir = I915_READ(DEIIR);
if (de_iir) {
if (de_iir & DE_AUX_CHANNEL_A_IVB)
dp_aux_irq_handler(dev);
#if 0
if (de_iir & DE_GSE_IVB)
intel_opregion_gse_intr(dev);
 
for (i = 0; i < 3; i++) {
if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
drm_handle_vblank(dev, i);
if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
intel_prepare_page_flip(dev, i);
intel_finish_page_flip_plane(dev, i);
}
}
#endif
/* check event from PCH */
if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
u32 pch_iir = I915_READ(SDEIIR);
 
cpt_irq_handler(dev, pch_iir);
 
/* clear PCH hotplug event before clear CPU irq */
I915_WRITE(SDEIIR, pch_iir);
}
 
I915_WRITE(DEIIR, de_iir);
ret = IRQ_HANDLED;
}
 
pm_iir = I915_READ(GEN6_PMIIR);
if (pm_iir) {
// if (pm_iir & GEN6_PM_DEFERRED_EVENTS)
// gen6_queue_rps_work(dev_priv, pm_iir);
I915_WRITE(GEN6_PMIIR, pm_iir);
ret = IRQ_HANDLED;
}
 
I915_WRITE(DEIER, de_ier);
POSTING_READ(DEIER);
if (!HAS_PCH_NOP(dev)) {
I915_WRITE(SDEIER, sde_ier);
POSTING_READ(SDEIER);
}
 
return ret;
}
 
static void ilk_gt_irq_handler(struct drm_device *dev,
struct drm_i915_private *dev_priv,
u32 gt_iir)
static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
{
if (gt_iir & (GT_USER_INTERRUPT | GT_PIPE_NOTIFY))
notify_ring(dev, &dev_priv->ring[RCS]);
if (gt_iir & GT_BSD_USER_INTERRUPT)
notify_ring(dev, &dev_priv->ring[VCS]);
}
struct drm_i915_private *dev_priv = dev->dev_private;
 
static irqreturn_t ironlake_irq_handler(int irq, void *arg)
{
struct drm_device *dev = (struct drm_device *) arg;
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
int ret = IRQ_NONE;
u32 de_iir, gt_iir, de_ier, pm_iir, sde_ier;
 
atomic_inc(&dev_priv->irq_received);
 
/* disable master interrupt before clearing iir */
de_ier = I915_READ(DEIER);
I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
POSTING_READ(DEIER);
 
/* Disable south interrupts. We'll only write to SDEIIR once, so further
* interrupts will will be stored on its back queue, and then we'll be
* able to process them after we restore SDEIER (as soon as we restore
* it, we'll get an interrupt if SDEIIR still has something to process
* due to its back queue). */
sde_ier = I915_READ(SDEIER);
I915_WRITE(SDEIER, 0);
POSTING_READ(SDEIER);
 
de_iir = I915_READ(DEIIR);
gt_iir = I915_READ(GTIIR);
pm_iir = I915_READ(GEN6_PMIIR);
 
if (de_iir == 0 && gt_iir == 0 && (!IS_GEN6(dev) || pm_iir == 0))
goto done;
 
ret = IRQ_HANDLED;
 
if (IS_GEN5(dev))
ilk_gt_irq_handler(dev, dev_priv, gt_iir);
else
snb_gt_irq_handler(dev, dev_priv, gt_iir);
 
if (de_iir & DE_AUX_CHANNEL_A)
dp_aux_irq_handler(dev);
 
#if 0
if (de_iir & DE_GSE)
intel_opregion_gse_intr(dev);
intel_opregion_asle_intr(dev);
 
if (de_iir & DE_PIPEA_VBLANK)
drm_handle_vblank(dev, 0);
995,6 → 1320,18
if (de_iir & DE_PIPEB_VBLANK)
drm_handle_vblank(dev, 1);
 
if (de_iir & DE_POISON)
DRM_ERROR("Poison interrupt\n");
#endif
 
if (de_iir & DE_PIPEA_FIFO_UNDERRUN)
if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
 
if (de_iir & DE_PIPEB_FIFO_UNDERRUN)
if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
#if 0
if (de_iir & DE_PLANEA_FLIP_DONE) {
intel_prepare_page_flip(dev, 0);
intel_finish_page_flip_plane(dev, 0);
1018,556 → 1355,234
/* should clear PCH hotplug event before clear CPU irq */
I915_WRITE(SDEIIR, pch_iir);
}
#if 0
 
if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
ironlake_handle_rps_change(dev);
 
if (IS_GEN6(dev) && pm_iir & GEN6_PM_DEFERRED_EVENTS)
gen6_queue_rps_work(dev_priv, pm_iir);
#endif
I915_WRITE(GTIIR, gt_iir);
I915_WRITE(DEIIR, de_iir);
I915_WRITE(GEN6_PMIIR, pm_iir);
 
done:
I915_WRITE(DEIER, de_ier);
POSTING_READ(DEIER);
I915_WRITE(SDEIER, sde_ier);
POSTING_READ(SDEIER);
 
return ret;
ironlake_rps_change_irq_handler(dev);
}
 
 
 
 
/* NB: please notice the memset */
static void i915_get_extra_instdone(struct drm_device *dev,
uint32_t *instdone)
static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
{
struct drm_i915_private *dev_priv = dev->dev_private;
memset(instdone, 0, sizeof(*instdone) * I915_NUM_INSTDONE_REG);
 
switch(INTEL_INFO(dev)->gen) {
case 2:
case 3:
instdone[0] = I915_READ(INSTDONE);
break;
case 4:
case 5:
case 6:
instdone[0] = I915_READ(INSTDONE_I965);
instdone[1] = I915_READ(INSTDONE1);
break;
default:
WARN_ONCE(1, "Unsupported platform\n");
case 7:
instdone[0] = I915_READ(GEN7_INSTDONE_1);
instdone[1] = I915_READ(GEN7_SC_INSTDONE);
instdone[2] = I915_READ(GEN7_SAMPLER_INSTDONE);
instdone[3] = I915_READ(GEN7_ROW_INSTDONE);
break;
}
}
 
#ifdef CONFIG_DEBUG_FS
static struct drm_i915_error_object *
i915_error_object_create_sized(struct drm_i915_private *dev_priv,
struct drm_i915_gem_object *src,
const int num_pages)
{
struct drm_i915_error_object *dst;
int i;
u32 reloc_offset;
 
if (src == NULL || src->pages == NULL)
return NULL;
// if (de_iir & DE_ERR_INT_IVB)
// ivb_err_int_handler(dev);
 
dst = kmalloc(sizeof(*dst) + num_pages * sizeof(u32 *), GFP_ATOMIC);
if (dst == NULL)
return NULL;
if (de_iir & DE_AUX_CHANNEL_A_IVB)
dp_aux_irq_handler(dev);
 
reloc_offset = src->gtt_offset;
for (i = 0; i < num_pages; i++) {
unsigned long flags;
void *d;
 
d = kmalloc(PAGE_SIZE, GFP_ATOMIC);
if (d == NULL)
goto unwind;
 
local_irq_save(flags);
if (reloc_offset < dev_priv->gtt.mappable_end &&
src->has_global_gtt_mapping) {
void __iomem *s;
 
/* Simply ignore tiling or any overlapping fence.
* It's part of the error state, and this hopefully
* captures what the GPU read.
*/
 
s = io_mapping_map_atomic_wc(dev_priv->gtt.mappable,
reloc_offset);
memcpy_fromio(d, s, PAGE_SIZE);
io_mapping_unmap_atomic(s);
} else if (src->stolen) {
unsigned long offset;
 
offset = dev_priv->mm.stolen_base;
offset += src->stolen->start;
offset += i << PAGE_SHIFT;
 
memcpy_fromio(d, (void __iomem *) offset, PAGE_SIZE);
} else {
struct page *page;
void *s;
 
page = i915_gem_object_get_page(src, i);
 
drm_clflush_pages(&page, 1);
 
s = kmap_atomic(page);
memcpy(d, s, PAGE_SIZE);
kunmap_atomic(s);
 
drm_clflush_pages(&page, 1);
if (de_iir & DE_GSE_IVB)
intel_opregion_asle_intr(dev);
#if 0
for (i = 0; i < 3; i++) {
if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
drm_handle_vblank(dev, i);
if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
intel_prepare_page_flip(dev, i);
intel_finish_page_flip_plane(dev, i);
}
local_irq_restore(flags);
 
dst->pages[i] = d;
 
reloc_offset += PAGE_SIZE;
}
dst->page_count = num_pages;
dst->gtt_offset = src->gtt_offset;
#endif
 
return dst;
/* check event from PCH */
if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
u32 pch_iir = I915_READ(SDEIIR);
 
unwind:
while (i--)
kfree(dst->pages[i]);
kfree(dst);
return NULL;
}
#define i915_error_object_create(dev_priv, src) \
i915_error_object_create_sized((dev_priv), (src), \
(src)->base.size>>PAGE_SHIFT)
cpt_irq_handler(dev, pch_iir);
 
static void
i915_error_object_free(struct drm_i915_error_object *obj)
{
int page;
 
if (obj == NULL)
return;
 
for (page = 0; page < obj->page_count; page++)
kfree(obj->pages[page]);
 
kfree(obj);
/* clear PCH hotplug event before clear CPU irq */
I915_WRITE(SDEIIR, pch_iir);
}
 
void
i915_error_state_free(struct kref *error_ref)
{
struct drm_i915_error_state *error = container_of(error_ref,
typeof(*error), ref);
int i;
 
for (i = 0; i < ARRAY_SIZE(error->ring); i++) {
i915_error_object_free(error->ring[i].batchbuffer);
i915_error_object_free(error->ring[i].ringbuffer);
kfree(error->ring[i].requests);
}
 
kfree(error->active_bo);
kfree(error->overlay);
kfree(error);
}
static void capture_bo(struct drm_i915_error_buffer *err,
struct drm_i915_gem_object *obj)
static irqreturn_t ironlake_irq_handler(int irq, void *arg)
{
err->size = obj->base.size;
err->name = obj->base.name;
err->rseqno = obj->last_read_seqno;
err->wseqno = obj->last_write_seqno;
err->gtt_offset = obj->gtt_offset;
err->read_domains = obj->base.read_domains;
err->write_domain = obj->base.write_domain;
err->fence_reg = obj->fence_reg;
err->pinned = 0;
if (obj->pin_count > 0)
err->pinned = 1;
if (obj->user_pin_count > 0)
err->pinned = -1;
err->tiling = obj->tiling_mode;
err->dirty = obj->dirty;
err->purgeable = obj->madv != I915_MADV_WILLNEED;
err->ring = obj->ring ? obj->ring->id : -1;
err->cache_level = obj->cache_level;
}
struct drm_device *dev = (struct drm_device *) arg;
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
u32 de_iir, gt_iir, de_ier, sde_ier = 0;
irqreturn_t ret = IRQ_NONE;
bool err_int_reenable = false;
 
static u32 capture_active_bo(struct drm_i915_error_buffer *err,
int count, struct list_head *head)
{
struct drm_i915_gem_object *obj;
int i = 0;
atomic_inc(&dev_priv->irq_received);
 
list_for_each_entry(obj, head, mm_list) {
capture_bo(err++, obj);
if (++i == count)
break;
}
/* We get interrupts on unclaimed registers, so check for this before we
* do any I915_{READ,WRITE}. */
intel_uncore_check_errors(dev);
 
return i;
}
/* disable master interrupt before clearing iir */
de_ier = I915_READ(DEIER);
I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
POSTING_READ(DEIER);
 
static u32 capture_pinned_bo(struct drm_i915_error_buffer *err,
int count, struct list_head *head)
{
struct drm_i915_gem_object *obj;
int i = 0;
 
list_for_each_entry(obj, head, gtt_list) {
if (obj->pin_count == 0)
continue;
 
capture_bo(err++, obj);
if (++i == count)
break;
/* Disable south interrupts. We'll only write to SDEIIR once, so further
* interrupts will will be stored on its back queue, and then we'll be
* able to process them after we restore SDEIER (as soon as we restore
* it, we'll get an interrupt if SDEIIR still has something to process
* due to its back queue). */
if (!HAS_PCH_NOP(dev)) {
sde_ier = I915_READ(SDEIER);
I915_WRITE(SDEIER, 0);
POSTING_READ(SDEIER);
}
 
return i;
/* On Haswell, also mask ERR_INT because we don't want to risk
* generating "unclaimed register" interrupts from inside the interrupt
* handler. */
if (IS_HASWELL(dev)) {
spin_lock(&dev_priv->irq_lock);
err_int_reenable = ~dev_priv->irq_mask & DE_ERR_INT_IVB;
if (err_int_reenable)
ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
spin_unlock(&dev_priv->irq_lock);
}
 
static void i915_gem_record_fences(struct drm_device *dev,
struct drm_i915_error_state *error)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int i;
 
/* Fences */
switch (INTEL_INFO(dev)->gen) {
case 7:
case 6:
for (i = 0; i < dev_priv->num_fence_regs; i++)
error->fence[i] = I915_READ64(FENCE_REG_SANDYBRIDGE_0 + (i * 8));
break;
case 5:
case 4:
for (i = 0; i < 16; i++)
error->fence[i] = I915_READ64(FENCE_REG_965_0 + (i * 8));
break;
case 3:
if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
for (i = 0; i < 8; i++)
error->fence[i+8] = I915_READ(FENCE_REG_945_8 + (i * 4));
case 2:
for (i = 0; i < 8; i++)
error->fence[i] = I915_READ(FENCE_REG_830_0 + (i * 4));
break;
 
default:
BUG();
gt_iir = I915_READ(GTIIR);
if (gt_iir) {
if (INTEL_INFO(dev)->gen >= 6)
snb_gt_irq_handler(dev, dev_priv, gt_iir);
else
ilk_gt_irq_handler(dev, dev_priv, gt_iir);
I915_WRITE(GTIIR, gt_iir);
ret = IRQ_HANDLED;
}
}
 
static struct drm_i915_error_object *
i915_error_first_batchbuffer(struct drm_i915_private *dev_priv,
struct intel_ring_buffer *ring)
{
struct drm_i915_gem_object *obj;
u32 seqno;
 
if (!ring->get_seqno)
return NULL;
 
if (HAS_BROKEN_CS_TLB(dev_priv->dev)) {
u32 acthd = I915_READ(ACTHD);
 
if (WARN_ON(ring->id != RCS))
return NULL;
 
obj = ring->private;
if (acthd >= obj->gtt_offset &&
acthd < obj->gtt_offset + obj->base.size)
return i915_error_object_create(dev_priv, obj);
de_iir = I915_READ(DEIIR);
if (de_iir) {
if (INTEL_INFO(dev)->gen >= 7)
ivb_display_irq_handler(dev, de_iir);
else
ilk_display_irq_handler(dev, de_iir);
I915_WRITE(DEIIR, de_iir);
ret = IRQ_HANDLED;
}
 
seqno = ring->get_seqno(ring, false);
list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list) {
if (obj->ring != ring)
continue;
 
if (i915_seqno_passed(seqno, obj->last_read_seqno))
continue;
 
if ((obj->base.read_domains & I915_GEM_DOMAIN_COMMAND) == 0)
continue;
 
/* We need to copy these to an anonymous buffer as the simplest
* method to avoid being overwritten by userspace.
*/
return i915_error_object_create(dev_priv, obj);
if (INTEL_INFO(dev)->gen >= 6) {
u32 pm_iir = I915_READ(GEN6_PMIIR);
if (pm_iir) {
gen6_rps_irq_handler(dev_priv, pm_iir);
I915_WRITE(GEN6_PMIIR, pm_iir);
ret = IRQ_HANDLED;
}
 
return NULL;
}
 
static void i915_record_ring_state(struct drm_device *dev,
struct drm_i915_error_state *error,
struct intel_ring_buffer *ring)
{
struct drm_i915_private *dev_priv = dev->dev_private;
 
if (INTEL_INFO(dev)->gen >= 6) {
error->rc_psmi[ring->id] = I915_READ(ring->mmio_base + 0x50);
error->fault_reg[ring->id] = I915_READ(RING_FAULT_REG(ring));
error->semaphore_mboxes[ring->id][0]
= I915_READ(RING_SYNC_0(ring->mmio_base));
error->semaphore_mboxes[ring->id][1]
= I915_READ(RING_SYNC_1(ring->mmio_base));
error->semaphore_seqno[ring->id][0] = ring->sync_seqno[0];
error->semaphore_seqno[ring->id][1] = ring->sync_seqno[1];
if (err_int_reenable) {
spin_lock(&dev_priv->irq_lock);
if (ivb_can_enable_err_int(dev))
ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
spin_unlock(&dev_priv->irq_lock);
}
 
if (INTEL_INFO(dev)->gen >= 4) {
error->faddr[ring->id] = I915_READ(RING_DMA_FADD(ring->mmio_base));
error->ipeir[ring->id] = I915_READ(RING_IPEIR(ring->mmio_base));
error->ipehr[ring->id] = I915_READ(RING_IPEHR(ring->mmio_base));
error->instdone[ring->id] = I915_READ(RING_INSTDONE(ring->mmio_base));
error->instps[ring->id] = I915_READ(RING_INSTPS(ring->mmio_base));
if (ring->id == RCS)
error->bbaddr = I915_READ64(BB_ADDR);
} else {
error->faddr[ring->id] = I915_READ(DMA_FADD_I8XX);
error->ipeir[ring->id] = I915_READ(IPEIR);
error->ipehr[ring->id] = I915_READ(IPEHR);
error->instdone[ring->id] = I915_READ(INSTDONE);
I915_WRITE(DEIER, de_ier);
POSTING_READ(DEIER);
if (!HAS_PCH_NOP(dev)) {
I915_WRITE(SDEIER, sde_ier);
POSTING_READ(SDEIER);
}
 
error->waiting[ring->id] = waitqueue_active(&ring->irq_queue);
error->instpm[ring->id] = I915_READ(RING_INSTPM(ring->mmio_base));
error->seqno[ring->id] = ring->get_seqno(ring, false);
error->acthd[ring->id] = intel_ring_get_active_head(ring);
error->head[ring->id] = I915_READ_HEAD(ring);
error->tail[ring->id] = I915_READ_TAIL(ring);
error->ctl[ring->id] = I915_READ_CTL(ring);
 
error->cpu_ring_head[ring->id] = ring->head;
error->cpu_ring_tail[ring->id] = ring->tail;
return ret;
}
 
 
static void i915_gem_record_active_context(struct intel_ring_buffer *ring,
struct drm_i915_error_state *error,
struct drm_i915_error_ring *ering)
static void i915_error_wake_up(struct drm_i915_private *dev_priv,
bool reset_completed)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
struct drm_i915_gem_object *obj;
 
/* Currently render ring is the only HW context user */
if (ring->id != RCS || !error->ccid)
return;
 
list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list) {
if ((error->ccid & PAGE_MASK) == obj->gtt_offset) {
ering->ctx = i915_error_object_create_sized(dev_priv,
obj, 1);
}
}
}
 
static void i915_gem_record_rings(struct drm_device *dev,
struct drm_i915_error_state *error)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
struct drm_i915_gem_request *request;
int i, count;
int i;
 
for_each_ring(ring, dev_priv, i) {
i915_record_ring_state(dev, error, ring);
/*
* Notify all waiters for GPU completion events that reset state has
* been changed, and that they need to restart their wait after
* checking for potential errors (and bail out to drop locks if there is
* a gpu reset pending so that i915_error_work_func can acquire them).
*/
 
error->ring[i].batchbuffer =
i915_error_first_batchbuffer(dev_priv, ring);
/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
for_each_ring(ring, dev_priv, i)
wake_up_all(&ring->irq_queue);
 
error->ring[i].ringbuffer =
i915_error_object_create(dev_priv, ring->obj);
 
 
i915_gem_record_active_context(ring, error, &error->ring[i]);
 
count = 0;
list_for_each_entry(request, &ring->request_list, list)
count++;
 
error->ring[i].num_requests = count;
error->ring[i].requests =
kmalloc(count*sizeof(struct drm_i915_error_request),
GFP_ATOMIC);
if (error->ring[i].requests == NULL) {
error->ring[i].num_requests = 0;
continue;
/*
* Signal tasks blocked in i915_gem_wait_for_error that the pending
* reset state is cleared.
*/
if (reset_completed)
wake_up_all(&dev_priv->gpu_error.reset_queue);
}
 
count = 0;
list_for_each_entry(request, &ring->request_list, list) {
struct drm_i915_error_request *erq;
 
erq = &error->ring[i].requests[count++];
erq->seqno = request->seqno;
erq->jiffies = request->emitted_jiffies;
erq->tail = request->tail;
}
}
}
 
#if 0
/**
* i915_capture_error_state - capture an error record for later analysis
* @dev: drm device
* i915_error_work_func - do process context error handling work
* @work: work struct
*
* Should be called when an error is detected (either a hang or an error
* interrupt) to capture error state from the time of the error. Fills
* out a structure which becomes available in debugfs for user level tools
* to pick up.
* Fire an error uevent so userspace can see that a hang or error
* was detected.
*/
static void i915_capture_error_state(struct drm_device *dev)
static void i915_error_work_func(struct work_struct *work)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
struct drm_i915_error_state *error;
unsigned long flags;
int i, pipe;
struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
work);
drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
gpu_error);
struct drm_device *dev = dev_priv->dev;
char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
int ret;
 
spin_lock_irqsave(&dev_priv->gpu_error.lock, flags);
error = dev_priv->gpu_error.first_error;
spin_unlock_irqrestore(&dev_priv->gpu_error.lock, flags);
if (error)
return;
kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
 
/* Account for pipe specific data like PIPE*STAT */
error = kzalloc(sizeof(*error), GFP_ATOMIC);
if (!error) {
DRM_DEBUG_DRIVER("out of memory, not capturing error state\n");
return;
}
/*
* Note that there's only one work item which does gpu resets, so we
* need not worry about concurrent gpu resets potentially incrementing
* error->reset_counter twice. We only need to take care of another
* racing irq/hangcheck declaring the gpu dead for a second time. A
* quick check for that is good enough: schedule_work ensures the
* correct ordering between hang detection and this work item, and since
* the reset in-progress bit is only ever set by code outside of this
* work we don't need to worry about any other races.
*/
if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
DRM_DEBUG_DRIVER("resetting chip\n");
kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE,
reset_event);
 
DRM_INFO("capturing error event; look for more information in "
"/sys/kernel/debug/dri/%d/i915_error_state\n",
dev->primary->index);
/*
* All state reset _must_ be completed before we update the
* reset counter, for otherwise waiters might miss the reset
* pending state and not properly drop locks, resulting in
* deadlocks with the reset work.
*/
ret = i915_reset(dev);
 
kref_init(&error->ref);
error->eir = I915_READ(EIR);
error->pgtbl_er = I915_READ(PGTBL_ER);
if (HAS_HW_CONTEXTS(dev))
error->ccid = I915_READ(CCID);
intel_display_handle_reset(dev);
 
if (HAS_PCH_SPLIT(dev))
error->ier = I915_READ(DEIER) | I915_READ(GTIER);
else if (IS_VALLEYVIEW(dev))
error->ier = I915_READ(GTIER) | I915_READ(VLV_IER);
else if (IS_GEN2(dev))
error->ier = I915_READ16(IER);
else
error->ier = I915_READ(IER);
if (ret == 0) {
/*
* After all the gem state is reset, increment the reset
* counter and wake up everyone waiting for the reset to
* complete.
*
* Since unlock operations are a one-sided barrier only,
* we need to insert a barrier here to order any seqno
* updates before
* the counter increment.
*/
smp_mb__before_atomic_inc();
atomic_inc(&dev_priv->gpu_error.reset_counter);
 
if (INTEL_INFO(dev)->gen >= 6)
error->derrmr = I915_READ(DERRMR);
 
if (IS_VALLEYVIEW(dev))
error->forcewake = I915_READ(FORCEWAKE_VLV);
else if (INTEL_INFO(dev)->gen >= 7)
error->forcewake = I915_READ(FORCEWAKE_MT);
else if (INTEL_INFO(dev)->gen == 6)
error->forcewake = I915_READ(FORCEWAKE);
 
if (!HAS_PCH_SPLIT(dev))
for_each_pipe(pipe)
error->pipestat[pipe] = I915_READ(PIPESTAT(pipe));
 
if (INTEL_INFO(dev)->gen >= 6) {
error->error = I915_READ(ERROR_GEN6);
error->done_reg = I915_READ(DONE_REG);
kobject_uevent_env(&dev->primary->kdev.kobj,
KOBJ_CHANGE, reset_done_event);
} else {
atomic_set(&error->reset_counter, I915_WEDGED);
}
 
if (INTEL_INFO(dev)->gen == 7)
error->err_int = I915_READ(GEN7_ERR_INT);
 
i915_get_extra_instdone(dev, error->extra_instdone);
 
i915_gem_record_fences(dev, error);
i915_gem_record_rings(dev, error);
 
/* Record buffers on the active and pinned lists. */
error->active_bo = NULL;
error->pinned_bo = NULL;
 
i = 0;
list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list)
i++;
error->active_bo_count = i;
list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
if (obj->pin_count)
i++;
error->pinned_bo_count = i - error->active_bo_count;
 
error->active_bo = NULL;
error->pinned_bo = NULL;
if (i) {
error->active_bo = kmalloc(sizeof(*error->active_bo)*i,
GFP_ATOMIC);
if (error->active_bo)
error->pinned_bo =
error->active_bo + error->active_bo_count;
/*
* Note: The wake_up also serves as a memory barrier so that
* waiters see the update value of the reset counter atomic_t.
*/
i915_error_wake_up(dev_priv, true);
}
 
if (error->active_bo)
error->active_bo_count =
capture_active_bo(error->active_bo,
error->active_bo_count,
&dev_priv->mm.active_list);
 
if (error->pinned_bo)
error->pinned_bo_count =
capture_pinned_bo(error->pinned_bo,
error->pinned_bo_count,
&dev_priv->mm.bound_list);
 
do_gettimeofday(&error->time);
 
error->overlay = intel_overlay_capture_error_state(dev);
error->display = intel_display_capture_error_state(dev);
 
spin_lock_irqsave(&dev_priv->gpu_error.lock, flags);
if (dev_priv->gpu_error.first_error == NULL) {
dev_priv->gpu_error.first_error = error;
error = NULL;
}
spin_unlock_irqrestore(&dev_priv->gpu_error.lock, flags);
 
if (error)
i915_error_state_free(&error->ref);
}
 
void i915_destroy_error_state(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_error_state *error;
unsigned long flags;
 
spin_lock_irqsave(&dev_priv->gpu_error.lock, flags);
error = dev_priv->gpu_error.first_error;
dev_priv->gpu_error.first_error = NULL;
spin_unlock_irqrestore(&dev_priv->gpu_error.lock, flags);
 
if (error)
kref_put(&error->ref, i915_error_state_free);
}
#else
#define i915_capture_error_state(x)
#endif
 
static void i915_report_and_clear_eir(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
1673,8 → 1688,6
void i915_handle_error(struct drm_device *dev, bool wedged)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int i;
 
i915_capture_error_state(dev);
i915_report_and_clear_eir(dev);
1684,19 → 1697,30
&dev_priv->gpu_error.reset_counter);
 
/*
* Wakeup waiting processes so that the reset work item
* doesn't deadlock trying to grab various locks.
* Wakeup waiting processes so that the reset work function
* i915_error_work_func doesn't deadlock trying to grab various
* locks. By bumping the reset counter first, the woken
* processes will see a reset in progress and back off,
* releasing their locks and then wait for the reset completion.
* We must do this for _all_ gpu waiters that might hold locks
* that the reset work needs to acquire.
*
* Note: The wake_up serves as the required memory barrier to
* ensure that the waiters see the updated value of the reset
* counter atomic_t.
*/
for_each_ring(ring, dev_priv, i)
wake_up_all(&ring->irq_queue);
i915_error_wake_up(dev_priv, false);
}
 
// queue_work(dev_priv->wq, &dev_priv->error_work);
/*
* Our reset work can grab modeset locks (since it needs to reset the
* state of outstanding pagelips). Hence it must not be run on our own
* dev-priv->wq work queue for otherwise the flush_work in the pageflip
* code will deadlock.
*/
schedule_work(&dev_priv->gpu_error.work);
}
 
#if 0
 
 
static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = dev->dev_private;
1727,10 → 1751,10
if (INTEL_INFO(dev)->gen >= 4) {
int dspsurf = DSPSURF(intel_crtc->plane);
stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
obj->gtt_offset;
i915_gem_obj_ggtt_offset(obj);
} else {
int dspaddr = DSPADDR(intel_crtc->plane);
stall_detected = I915_READ(dspaddr) == (obj->gtt_offset +
stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
crtc->y * crtc->fb->pitches[0] +
crtc->x * crtc->fb->bits_per_pixel/8);
}
1776,34 → 1800,19
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
unsigned long irqflags;
uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
DE_PIPE_VBLANK_ILK(pipe);
 
if (!i915_pipe_enabled(dev, pipe))
return -EINVAL;
 
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
ironlake_enable_display_irq(dev_priv, (pipe == 0) ?
DE_PIPEA_VBLANK : DE_PIPEB_VBLANK);
ironlake_enable_display_irq(dev_priv, bit);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
 
return 0;
}
 
static int ivybridge_enable_vblank(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
unsigned long irqflags;
 
if (!i915_pipe_enabled(dev, pipe))
return -EINVAL;
 
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
ironlake_enable_display_irq(dev_priv,
DE_PIPEA_VBLANK_IVB << (5 * pipe));
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
 
return 0;
}
 
static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1849,24 → 1858,14
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
unsigned long irqflags;
uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
DE_PIPE_VBLANK_ILK(pipe);
 
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
ironlake_disable_display_irq(dev_priv, (pipe == 0) ?
DE_PIPEA_VBLANK : DE_PIPEB_VBLANK);
ironlake_disable_display_irq(dev_priv, bit);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
 
static void ivybridge_disable_vblank(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
unsigned long irqflags;
 
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
ironlake_disable_display_irq(dev_priv,
DE_PIPEA_VBLANK_IVB << (pipe * 5));
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
 
static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1891,27 → 1890,224
return list_entry(ring->request_list.prev,
struct drm_i915_gem_request, list)->seqno;
}
/* drm_dma.h hooks
 
static bool
ring_idle(struct intel_ring_buffer *ring, u32 seqno)
{
return (list_empty(&ring->request_list) ||
i915_seqno_passed(seqno, ring_last_seqno(ring)));
}
 
static struct intel_ring_buffer *
semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
u32 cmd, ipehr, acthd, acthd_min;
 
ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
if ((ipehr & ~(0x3 << 16)) !=
(MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
return NULL;
 
/* ACTHD is likely pointing to the dword after the actual command,
* so scan backwards until we find the MBOX.
*/
static void ironlake_irq_preinstall(struct drm_device *dev)
acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
acthd_min = max((int)acthd - 3 * 4, 0);
do {
cmd = ioread32(ring->virtual_start + acthd);
if (cmd == ipehr)
break;
 
acthd -= 4;
if (acthd < acthd_min)
return NULL;
} while (1);
 
*seqno = ioread32(ring->virtual_start+acthd+4)+1;
return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
}
 
static int semaphore_passed(struct intel_ring_buffer *ring)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
struct drm_i915_private *dev_priv = ring->dev->dev_private;
struct intel_ring_buffer *signaller;
u32 seqno, ctl;
 
atomic_set(&dev_priv->irq_received, 0);
ring->hangcheck.deadlock = true;
 
I915_WRITE(HWSTAM, 0xeffe);
signaller = semaphore_waits_for(ring, &seqno);
if (signaller == NULL || signaller->hangcheck.deadlock)
return -1;
 
/* XXX hotplug from PCH */
/* cursory check for an unkickable deadlock */
ctl = I915_READ_CTL(signaller);
if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
return -1;
 
I915_WRITE(DEIMR, 0xffffffff);
I915_WRITE(DEIER, 0x0);
POSTING_READ(DEIER);
return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
}
 
/* and GT */
I915_WRITE(GTIMR, 0xffffffff);
I915_WRITE(GTIER, 0x0);
POSTING_READ(GTIER);
static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
{
struct intel_ring_buffer *ring;
int i;
 
for_each_ring(ring, dev_priv, i)
ring->hangcheck.deadlock = false;
}
 
static enum intel_ring_hangcheck_action
ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 tmp;
 
if (ring->hangcheck.acthd != acthd)
return HANGCHECK_ACTIVE;
 
if (IS_GEN2(dev))
return HANGCHECK_HUNG;
 
/* Is the chip hanging on a WAIT_FOR_EVENT?
* If so we can simply poke the RB_WAIT bit
* and break the hang. This should work on
* all but the second generation chipsets.
*/
tmp = I915_READ_CTL(ring);
if (tmp & RING_WAIT) {
DRM_ERROR("Kicking stuck wait on %s\n",
ring->name);
I915_WRITE_CTL(ring, tmp);
return HANGCHECK_KICK;
}
 
if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
switch (semaphore_passed(ring)) {
default:
return HANGCHECK_HUNG;
case 1:
DRM_ERROR("Kicking stuck semaphore on %s\n",
ring->name);
I915_WRITE_CTL(ring, tmp);
return HANGCHECK_KICK;
case 0:
return HANGCHECK_WAIT;
}
}
 
return HANGCHECK_HUNG;
}
 
/**
* This is called when the chip hasn't reported back with completed
* batchbuffers in a long time. We keep track per ring seqno progress and
* if there are no progress, hangcheck score for that ring is increased.
* Further, acthd is inspected to see if the ring is stuck. On stuck case
* we kick the ring. If we see no progress on three subsequent calls
* we assume chip is wedged and try to fix it by resetting the chip.
*/
static void i915_hangcheck_elapsed(unsigned long data)
{
struct drm_device *dev = (struct drm_device *)data;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int i;
int busy_count = 0, rings_hung = 0;
bool stuck[I915_NUM_RINGS] = { 0 };
#define BUSY 1
#define KICK 5
#define HUNG 20
#define FIRE 30
 
if (!i915_enable_hangcheck)
return;
 
for_each_ring(ring, dev_priv, i) {
u32 seqno, acthd;
bool busy = true;
 
semaphore_clear_deadlocks(dev_priv);
 
seqno = ring->get_seqno(ring, false);
acthd = intel_ring_get_active_head(ring);
 
if (ring->hangcheck.seqno == seqno) {
if (ring_idle(ring, seqno)) {
// if (waitqueue_active(&ring->irq_queue)) {
/* Issue a wake-up to catch stuck h/w. */
// DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
// ring->name);
// wake_up_all(&ring->irq_queue);
// ring->hangcheck.score += HUNG;
// } else
busy = false;
} else {
/* We always increment the hangcheck score
* if the ring is busy and still processing
* the same request, so that no single request
* can run indefinitely (such as a chain of
* batches). The only time we do not increment
* the hangcheck score on this ring, if this
* ring is in a legitimate wait for another
* ring. In that case the waiting ring is a
* victim and we want to be sure we catch the
* right culprit. Then every time we do kick
* the ring, add a small increment to the
* score so that we can catch a batch that is
* being repeatedly kicked and so responsible
* for stalling the machine.
*/
ring->hangcheck.action = ring_stuck(ring,
acthd);
 
switch (ring->hangcheck.action) {
case HANGCHECK_WAIT:
break;
case HANGCHECK_ACTIVE:
ring->hangcheck.score += BUSY;
break;
case HANGCHECK_KICK:
ring->hangcheck.score += KICK;
break;
case HANGCHECK_HUNG:
ring->hangcheck.score += HUNG;
stuck[i] = true;
break;
}
}
} else {
/* Gradually reduce the count so that we catch DoS
* attempts across multiple batches.
*/
if (ring->hangcheck.score > 0)
ring->hangcheck.score--;
}
 
ring->hangcheck.seqno = seqno;
ring->hangcheck.acthd = acthd;
busy_count += busy;
}
 
for_each_ring(ring, dev_priv, i) {
if (ring->hangcheck.score > FIRE) {
DRM_INFO("%s on %s\n",
stuck[i] ? "stuck" : "no progress",
ring->name);
rings_hung++;
}
}
 
// if (rings_hung)
// return i915_handle_error(dev, true);
 
}
 
static void ibx_irq_preinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
 
if (HAS_PCH_NOP(dev))
return;
 
1927,6 → 2123,42
POSTING_READ(SDEIER);
}
 
static void gen5_gt_irq_preinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
 
/* and GT */
I915_WRITE(GTIMR, 0xffffffff);
I915_WRITE(GTIER, 0x0);
POSTING_READ(GTIER);
 
if (INTEL_INFO(dev)->gen >= 6) {
/* and PM */
I915_WRITE(GEN6_PMIMR, 0xffffffff);
I915_WRITE(GEN6_PMIER, 0x0);
POSTING_READ(GEN6_PMIER);
}
}
 
/* drm_dma.h hooks
*/
static void ironlake_irq_preinstall(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
atomic_set(&dev_priv->irq_received, 0);
 
I915_WRITE(HWSTAM, 0xeffe);
 
I915_WRITE(DEIMR, 0xffffffff);
I915_WRITE(DEIER, 0x0);
POSTING_READ(DEIER);
 
gen5_gt_irq_preinstall(dev);
 
ibx_irq_preinstall(dev);
}
 
static void valleyview_irq_preinstall(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1943,10 → 2175,9
/* and GT */
I915_WRITE(GTIIR, I915_READ(GTIIR));
I915_WRITE(GTIIR, I915_READ(GTIIR));
I915_WRITE(GTIMR, 0xffffffff);
I915_WRITE(GTIER, 0x0);
POSTING_READ(GTIER);
 
gen5_gt_irq_preinstall(dev);
 
I915_WRITE(DPINVGTT, 0xff);
 
I915_WRITE(PORT_HOTPLUG_EN, 0);
1964,22 → 2195,21
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
struct drm_mode_config *mode_config = &dev->mode_config;
struct intel_encoder *intel_encoder;
u32 mask = ~I915_READ(SDEIMR);
u32 hotplug;
u32 hotplug_irqs, hotplug, enabled_irqs = 0;
 
if (HAS_PCH_IBX(dev)) {
mask &= ~SDE_HOTPLUG_MASK;
hotplug_irqs = SDE_HOTPLUG_MASK;
list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
mask |= hpd_ibx[intel_encoder->hpd_pin];
enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
} else {
mask &= ~SDE_HOTPLUG_MASK_CPT;
hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
mask |= hpd_cpt[intel_encoder->hpd_pin];
enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
}
 
I915_WRITE(SDEIMR, ~mask);
ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
 
/*
* Enable digital hotplug on the PCH, and configure the DP short pulse
2000,101 → 2230,110
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
u32 mask;
 
if (HAS_PCH_IBX(dev))
mask = SDE_GMBUS | SDE_AUX_MASK;
else
mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
 
if (HAS_PCH_NOP(dev))
return;
 
if (HAS_PCH_IBX(dev)) {
mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
SDE_TRANSA_FIFO_UNDER | SDE_POISON;
} else {
mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
 
I915_WRITE(SERR_INT, I915_READ(SERR_INT));
}
 
I915_WRITE(SDEIIR, I915_READ(SDEIIR));
I915_WRITE(SDEIMR, ~mask);
}
 
static int ironlake_irq_postinstall(struct drm_device *dev)
static void gen5_gt_irq_postinstall(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
/* enable kind of interrupts always enabled */
u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
DE_AUX_CHANNEL_A;
u32 render_irqs;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pm_irqs, gt_irqs;
 
dev_priv->irq_mask = ~display_mask;
pm_irqs = gt_irqs = 0;
 
/* should always can generate irq */
I915_WRITE(DEIIR, I915_READ(DEIIR));
I915_WRITE(DEIMR, dev_priv->irq_mask);
I915_WRITE(DEIER, display_mask | DE_PIPEA_VBLANK | DE_PIPEB_VBLANK);
POSTING_READ(DEIER);
 
dev_priv->gt_irq_mask = ~0;
if (HAS_L3_GPU_CACHE(dev)) {
/* L3 parity interrupt is always unmasked. */
dev_priv->gt_irq_mask = ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
gt_irqs |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
}
 
gt_irqs |= GT_RENDER_USER_INTERRUPT;
if (IS_GEN5(dev)) {
gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
ILK_BSD_USER_INTERRUPT;
} else {
gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
}
 
I915_WRITE(GTIIR, I915_READ(GTIIR));
I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
 
if (IS_GEN6(dev))
render_irqs =
GT_USER_INTERRUPT |
GEN6_BSD_USER_INTERRUPT |
GEN6_BLITTER_USER_INTERRUPT;
else
render_irqs =
GT_USER_INTERRUPT |
GT_PIPE_NOTIFY |
GT_BSD_USER_INTERRUPT;
I915_WRITE(GTIER, render_irqs);
I915_WRITE(GTIER, gt_irqs);
POSTING_READ(GTIER);
 
ibx_irq_postinstall(dev);
if (INTEL_INFO(dev)->gen >= 6) {
pm_irqs |= GEN6_PM_RPS_EVENTS;
 
if (IS_IRONLAKE_M(dev)) {
/* Clear & enable PCU event interrupts */
I915_WRITE(DEIIR, DE_PCU_EVENT);
I915_WRITE(DEIER, I915_READ(DEIER) | DE_PCU_EVENT);
ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
}
if (HAS_VEBOX(dev))
pm_irqs |= PM_VEBOX_USER_INTERRUPT;
 
return 0;
dev_priv->pm_irq_mask = 0xffffffff;
I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
I915_WRITE(GEN6_PMIER, pm_irqs);
POSTING_READ(GEN6_PMIER);
}
}
 
static int ivybridge_irq_postinstall(struct drm_device *dev)
static int ironlake_irq_postinstall(struct drm_device *dev)
{
unsigned long irqflags;
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
/* enable kind of interrupts always enabled */
u32 display_mask =
DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | DE_PCH_EVENT_IVB |
DE_PLANEC_FLIP_DONE_IVB |
u32 display_mask, extra_mask;
 
if (INTEL_INFO(dev)->gen >= 7) {
display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
DE_PLANEB_FLIP_DONE_IVB |
DE_PLANEA_FLIP_DONE_IVB |
DE_AUX_CHANNEL_A_IVB;
u32 render_irqs;
DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB |
DE_ERR_INT_IVB);
extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
DE_PIPEA_VBLANK_IVB);
 
I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
} else {
display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
DE_AUX_CHANNEL_A | DE_PIPEB_FIFO_UNDERRUN |
DE_PIPEA_FIFO_UNDERRUN | DE_POISON);
extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT;
}
 
dev_priv->irq_mask = ~display_mask;
 
/* should always can generate irq */
I915_WRITE(DEIIR, I915_READ(DEIIR));
I915_WRITE(DEIMR, dev_priv->irq_mask);
I915_WRITE(DEIER,
display_mask |
DE_PIPEC_VBLANK_IVB |
DE_PIPEB_VBLANK_IVB |
DE_PIPEA_VBLANK_IVB);
I915_WRITE(DEIER, display_mask | extra_mask);
POSTING_READ(DEIER);
 
dev_priv->gt_irq_mask = ~GT_GEN7_L3_PARITY_ERROR_INTERRUPT;
gen5_gt_irq_postinstall(dev);
 
I915_WRITE(GTIIR, I915_READ(GTIIR));
I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
ibx_irq_postinstall(dev);
 
render_irqs = GT_USER_INTERRUPT | GEN6_BSD_USER_INTERRUPT |
GEN6_BLITTER_USER_INTERRUPT | GT_GEN7_L3_PARITY_ERROR_INTERRUPT;
I915_WRITE(GTIER, render_irqs);
POSTING_READ(GTIER);
if (IS_IRONLAKE_M(dev)) {
/* Enable PCU event interrupts
*
* spinlocking not required here for correctness since interrupt
* setup is guaranteed to run in single-threaded context. But we
* need it to make the assert_spin_locked happy. */
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
 
ibx_irq_postinstall(dev);
 
return 0;
}
 
2103,8 → 2342,7
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
u32 enable_mask;
u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV;
u32 render_irqs;
u16 msid;
unsigned long irqflags;
 
enable_mask = I915_DISPLAY_PORT_INTERRUPT;
enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2120,13 → 2358,6
I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
 
/* Hack for broken MSIs on VLV */
// pci_write_config_dword(dev_priv->dev->pdev, 0x94, 0xfee00000);
// pci_read_config_word(dev->pdev, 0x98, &msid);
// msid &= 0xff; /* mask out delivery bits */
// msid |= (1<<14);
// pci_write_config_word(dev_priv->dev->pdev, 0x98, msid);
 
I915_WRITE(PORT_HOTPLUG_EN, 0);
POSTING_READ(PORT_HOTPLUG_EN);
 
2137,21 → 2368,19
I915_WRITE(PIPESTAT(1), 0xffff);
POSTING_READ(VLV_IER);
 
/* Interrupt setup is already guaranteed to be single-threaded, this is
* just to make the assert_spin_locked check happy. */
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_enable_pipestat(dev_priv, 0, pipestat_enable);
i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
i915_enable_pipestat(dev_priv, 1, pipestat_enable);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
 
I915_WRITE(VLV_IIR, 0xffffffff);
I915_WRITE(VLV_IIR, 0xffffffff);
 
I915_WRITE(GTIIR, I915_READ(GTIIR));
I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
gen5_gt_irq_postinstall(dev);
 
render_irqs = GT_USER_INTERRUPT | GEN6_BSD_USER_INTERRUPT |
GEN6_BLITTER_USER_INTERRUPT;
I915_WRITE(GTIER, render_irqs);
POSTING_READ(GTIER);
 
/* ack & enable invalid PTE error interrupts */
#if 0 /* FIXME: add support to irq handler for checking these bits */
I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2197,6 → 2426,8
I915_WRITE(DEIMR, 0xffffffff);
I915_WRITE(DEIER, 0x0);
I915_WRITE(DEIIR, I915_READ(DEIIR));
if (IS_GEN7(dev))
I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
 
I915_WRITE(GTIMR, 0xffffffff);
I915_WRITE(GTIER, 0x0);
2208,6 → 2439,8
I915_WRITE(SDEIMR, 0xffffffff);
I915_WRITE(SDEIER, 0x0);
I915_WRITE(SDEIIR, I915_READ(SDEIIR));
if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
I915_WRITE(SERR_INT, I915_READ(SERR_INT));
}
 
#if 0
2290,7 → 2523,6
u16 iir, new_iir;
u32 pipe_stats[2];
unsigned long irqflags;
int irq_received;
int pipe;
u16 flip_mask =
I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2309,8 → 2541,8
* interrupts (for non-MSI).
*/
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
i915_handle_error(dev, false);
// if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
// i915_handle_error(dev, false);
 
for_each_pipe(pipe) {
int reg = PIPESTAT(pipe);
2324,7 → 2556,6
DRM_DEBUG_DRIVER("pipe %c underrun\n",
pipe_name(pipe));
I915_WRITE(reg, pipe_stats[pipe]);
irq_received = 1;
}
}
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2485,8 → 2716,8
* interrupts (for non-MSI).
*/
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
i915_handle_error(dev, false);
// if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
// i915_handle_error(dev, false);
 
for_each_pipe(pipe) {
int reg = PIPESTAT(pipe);
2514,12 → 2745,9
 
DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
hotplug_status);
if (hotplug_trigger) {
if (hotplug_irq_storm_detect(dev, hotplug_trigger, hpd_status_i915))
i915_hpd_irq_setup(dev);
queue_work(dev_priv->wq,
&dev_priv->hotplug_work);
}
 
intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
 
I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
POSTING_READ(PORT_HOTPLUG_STAT);
}
2615,6 → 2843,7
drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
u32 enable_mask;
u32 error_mask;
unsigned long irqflags;
 
/* Unmask the interrupts that we always want on. */
dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
2633,7 → 2862,11
if (IS_G4X(dev))
enable_mask |= I915_BSD_USER_INTERRUPT;
 
/* Interrupt setup is already guaranteed to be single-threaded, this is
* just to make the assert_spin_locked check happy. */
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
 
/*
* Enable some error detection, note the instruction error mask
2669,6 → 2902,8
struct intel_encoder *intel_encoder;
u32 hotplug_en;
 
assert_spin_locked(&dev_priv->irq_lock);
 
if (I915_HAS_HOTPLUG(dev)) {
hotplug_en = I915_READ(PORT_HOTPLUG_EN);
hotplug_en &= ~HOTPLUG_INT_EN_MASK;
2719,8 → 2954,8
* interrupts (for non-MSI).
*/
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
i915_handle_error(dev, false);
// if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
// i915_handle_error(dev, false);
 
for_each_pipe(pipe) {
int reg = PIPESTAT(pipe);
2749,17 → 2984,14
u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
HOTPLUG_INT_STATUS_G4X :
HOTPLUG_INT_STATUS_I965);
HOTPLUG_INT_STATUS_I915);
 
DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
hotplug_status);
if (hotplug_trigger) {
if (hotplug_irq_storm_detect(dev, hotplug_trigger,
IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i965))
i915_hpd_irq_setup(dev);
queue_work(dev_priv->wq,
&dev_priv->hotplug_work);
}
 
intel_hpd_irq_handler(dev, hotplug_trigger,
IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i915);
 
I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
I915_READ(PORT_HOTPLUG_STAT);
}
2843,6 → 3075,7
// pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
 
 
// dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
 
if (IS_VALLEYVIEW(dev)) {
dev->driver->irq_handler = valleyview_irq_handler;
2849,12 → 3082,6
dev->driver->irq_preinstall = valleyview_irq_preinstall;
dev->driver->irq_postinstall = valleyview_irq_postinstall;
dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
/* Share pre & uninstall handlers with ILK/SNB */
dev->driver->irq_handler = ivybridge_irq_handler;
dev->driver->irq_preinstall = ironlake_irq_preinstall;
dev->driver->irq_postinstall = ivybridge_irq_postinstall;
dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
} else if (HAS_PCH_SPLIT(dev)) {
dev->driver->irq_handler = ironlake_irq_handler;
dev->driver->irq_preinstall = ironlake_irq_preinstall;
2881,6 → 3108,7
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_connector *connector;
unsigned long irqflags;
int i;
 
for (i = 1; i < HPD_NUM_PINS; i++) {
2893,66 → 3121,87
if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
connector->polled = DRM_CONNECTOR_POLL_HPD;
}
 
/* Interrupt setup is already guaranteed to be single-threaded, this is
* just to make the assert_spin_locked checks happy. */
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
if (dev_priv->display.hpd_irq_setup)
dev_priv->display.hpd_irq_setup(dev);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
 
 
irqreturn_t intel_irq_handler(struct drm_device *dev)
/* Disable interrupts so we can allow Package C8+. */
void hsw_pc8_disable_interrupts(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long irqflags;
 
// printf("i915 irq\n");
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
 
// printf("device %p driver %p handler %p\n", dev, dev->driver, dev->driver->irq_handler) ;
dev_priv->pc8.regsave.deimr = I915_READ(DEIMR);
dev_priv->pc8.regsave.sdeimr = I915_READ(SDEIMR);
dev_priv->pc8.regsave.gtimr = I915_READ(GTIMR);
dev_priv->pc8.regsave.gtier = I915_READ(GTIER);
dev_priv->pc8.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
 
return dev->driver->irq_handler(0, dev);
ironlake_disable_display_irq(dev_priv, ~DE_PCH_EVENT_IVB);
ibx_disable_display_interrupt(dev_priv, ~SDE_HOTPLUG_MASK_CPT);
ilk_disable_gt_irq(dev_priv, 0xffffffff);
snb_disable_pm_irq(dev_priv, 0xffffffff);
 
dev_priv->pc8.irqs_disabled = true;
 
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
 
int drm_irq_install(struct drm_device *dev)
/* Restore interrupts so we can recover from Package C8+. */
void hsw_pc8_restore_interrupts(struct drm_device *dev)
{
unsigned long sh_flags = 0;
int irq_line;
int ret = 0;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long irqflags;
uint32_t val, expected;
 
char *irqname;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
 
mutex_lock(&dev->struct_mutex);
val = I915_READ(DEIMR);
expected = ~DE_PCH_EVENT_IVB;
WARN(val != expected, "DEIMR is 0x%08x, not 0x%08x\n", val, expected);
 
/* Driver must have been initialized */
if (!dev->dev_private) {
mutex_unlock(&dev->struct_mutex);
return -EINVAL;
}
val = I915_READ(SDEIMR) & ~SDE_HOTPLUG_MASK_CPT;
expected = ~SDE_HOTPLUG_MASK_CPT;
WARN(val != expected, "SDEIMR non-HPD bits are 0x%08x, not 0x%08x\n",
val, expected);
 
if (dev->irq_enabled) {
mutex_unlock(&dev->struct_mutex);
return -EBUSY;
}
dev->irq_enabled = 1;
mutex_unlock(&dev->struct_mutex);
val = I915_READ(GTIMR);
expected = 0xffffffff;
WARN(val != expected, "GTIMR is 0x%08x, not 0x%08x\n", val, expected);
 
irq_line = drm_dev_to_irq(dev);
val = I915_READ(GEN6_PMIMR);
expected = 0xffffffff;
WARN(val != expected, "GEN6_PMIMR is 0x%08x, not 0x%08x\n", val,
expected);
 
DRM_DEBUG("irq=%d\n", drm_dev_to_irq(dev));
dev_priv->pc8.irqs_disabled = false;
 
/* Before installing handler */
if (dev->driver->irq_preinstall)
dev->driver->irq_preinstall(dev);
ironlake_enable_display_irq(dev_priv, ~dev_priv->pc8.regsave.deimr);
ibx_enable_display_interrupt(dev_priv,
~dev_priv->pc8.regsave.sdeimr &
~SDE_HOTPLUG_MASK_CPT);
ilk_enable_gt_irq(dev_priv, ~dev_priv->pc8.regsave.gtimr);
snb_enable_pm_irq(dev_priv, ~dev_priv->pc8.regsave.gen6_pmimr);
I915_WRITE(GTIER, dev_priv->pc8.regsave.gtier);
 
ret = AttachIntHandler(irq_line, intel_irq_handler, (u32)dev);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
 
/* After installing handler */
if (dev->driver->irq_postinstall)
ret = dev->driver->irq_postinstall(dev);
 
if (ret < 0) {
DRM_ERROR(__FUNCTION__);
}
irqreturn_t intel_irq_handler(struct drm_device *dev)
{
 
u16_t cmd = PciRead16(dev->pdev->busnr, dev->pdev->devfn, 4);
cmd&= ~(1<<10);
PciWrite16(dev->pdev->busnr, dev->pdev->devfn, 4, cmd);
// printf("i915 irq\n");
 
return ret;
// printf("device %p driver %p handler %p\n", dev, dev->driver, dev->driver->irq_handler) ;
 
return dev->driver->irq_handler(0, dev);
}