Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 1900 → Rev 1901

/programs/develop/libraries/Mesa/src/mesa/program/register_allocate.c
0,0 → 1,424
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
 
/** @file register_allocate.c
*
* Graph-coloring register allocator.
*/
 
#include <ralloc.h>
 
#include "main/imports.h"
#include "main/macros.h"
#include "main/mtypes.h"
#include "register_allocate.h"
 
struct ra_reg {
char *name;
GLboolean *conflicts;
};
 
struct ra_regs {
struct ra_reg *regs;
unsigned int count;
 
struct ra_class **classes;
unsigned int class_count;
};
 
struct ra_class {
GLboolean *regs;
 
/**
* p_B in Runeson/Nyström paper.
*
* This is "how many regs are in the set."
*/
unsigned int p;
 
/**
* q_B,C in Runeson/Nyström paper.
*/
unsigned int *q;
};
 
struct ra_node {
GLboolean *adjacency;
unsigned int class;
unsigned int adjacency_count;
unsigned int reg;
GLboolean in_stack;
float spill_cost;
};
 
struct ra_graph {
struct ra_regs *regs;
/**
* the variables that need register allocation.
*/
struct ra_node *nodes;
unsigned int count; /**< count of nodes. */
 
unsigned int *stack;
unsigned int stack_count;
};
 
struct ra_regs *
ra_alloc_reg_set(unsigned int count)
{
unsigned int i;
struct ra_regs *regs;
 
regs = rzalloc(NULL, struct ra_regs);
regs->count = count;
regs->regs = rzalloc_array(regs, struct ra_reg, count);
 
for (i = 0; i < count; i++) {
regs->regs[i].conflicts = rzalloc_array(regs->regs, GLboolean, count);
regs->regs[i].conflicts[i] = GL_TRUE;
}
 
return regs;
}
 
void
ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
{
regs->regs[r1].conflicts[r2] = GL_TRUE;
regs->regs[r2].conflicts[r1] = GL_TRUE;
}
 
unsigned int
ra_alloc_reg_class(struct ra_regs *regs)
{
struct ra_class *class;
 
regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
regs->class_count + 1);
 
class = rzalloc(regs, struct ra_class);
regs->classes[regs->class_count] = class;
 
class->regs = rzalloc_array(class, GLboolean, regs->count);
 
return regs->class_count++;
}
 
void
ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
{
struct ra_class *class = regs->classes[c];
 
class->regs[r] = GL_TRUE;
class->p++;
}
 
/**
* Must be called after all conflicts and register classes have been
* set up and before the register set is used for allocation.
*/
void
ra_set_finalize(struct ra_regs *regs)
{
unsigned int b, c;
 
for (b = 0; b < regs->class_count; b++) {
regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
}
 
/* Compute, for each class B and C, how many regs of B an
* allocation to C could conflict with.
*/
for (b = 0; b < regs->class_count; b++) {
for (c = 0; c < regs->class_count; c++) {
unsigned int rc;
int max_conflicts = 0;
 
for (rc = 0; rc < regs->count; rc++) {
unsigned int rb;
int conflicts = 0;
 
if (!regs->classes[c]->regs[rc])
continue;
 
for (rb = 0; rb < regs->count; rb++) {
if (regs->classes[b]->regs[rb] &&
regs->regs[rb].conflicts[rc])
conflicts++;
}
max_conflicts = MAX2(max_conflicts, conflicts);
}
regs->classes[b]->q[c] = max_conflicts;
}
}
}
 
struct ra_graph *
ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
{
struct ra_graph *g;
unsigned int i;
 
g = rzalloc(regs, struct ra_graph);
g->regs = regs;
g->nodes = rzalloc_array(g, struct ra_node, count);
g->count = count;
 
g->stack = rzalloc_array(g, unsigned int, count);
 
for (i = 0; i < count; i++) {
g->nodes[i].adjacency = rzalloc_array(g, GLboolean, count);
g->nodes[i].adjacency[i] = GL_TRUE;
g->nodes[i].reg = ~0;
}
 
return g;
}
 
void
ra_set_node_class(struct ra_graph *g,
unsigned int n, unsigned int class)
{
g->nodes[n].class = class;
}
 
void
ra_add_node_interference(struct ra_graph *g,
unsigned int n1, unsigned int n2)
{
if (g->nodes[n1].adjacency[n2])
return;
 
g->nodes[n1].adjacency[n2] = GL_TRUE;
g->nodes[n2].adjacency_count++;
g->nodes[n2].adjacency[n1] = GL_TRUE;
g->nodes[n2].adjacency_count++;
}
 
static GLboolean pq_test(struct ra_graph *g, unsigned int n)
{
unsigned int j;
unsigned int q = 0;
int n_class = g->nodes[n].class;
 
for (j = 0; j < g->count; j++) {
if (j == n || g->nodes[j].in_stack)
continue;
 
if (g->nodes[n].adjacency[j]) {
unsigned int j_class = g->nodes[j].class;
q += g->regs->classes[n_class]->q[j_class];
}
}
 
return q < g->regs->classes[n_class]->p;
}
 
/**
* Simplifies the interference graph by pushing all
* trivially-colorable nodes into a stack of nodes to be colored,
* removing them from the graph, and rinsing and repeating.
*
* Returns GL_TRUE if all nodes were removed from the graph. GL_FALSE
* means that either spilling will be required, or optimistic coloring
* should be applied.
*/
GLboolean
ra_simplify(struct ra_graph *g)
{
GLboolean progress = GL_TRUE;
int i;
 
while (progress) {
progress = GL_FALSE;
 
for (i = g->count - 1; i >= 0; i--) {
if (g->nodes[i].in_stack)
continue;
 
if (pq_test(g, i)) {
g->stack[g->stack_count] = i;
g->stack_count++;
g->nodes[i].in_stack = GL_TRUE;
progress = GL_TRUE;
}
}
}
 
for (i = 0; i < g->count; i++) {
if (!g->nodes[i].in_stack)
return GL_FALSE;
}
 
return GL_TRUE;
}
 
/**
* Pops nodes from the stack back into the graph, coloring them with
* registers as they go.
*
* If all nodes were trivially colorable, then this must succeed. If
* not (optimistic coloring), then it may return GL_FALSE;
*/
GLboolean
ra_select(struct ra_graph *g)
{
int i;
 
while (g->stack_count != 0) {
unsigned int r;
int n = g->stack[g->stack_count - 1];
struct ra_class *c = g->regs->classes[g->nodes[n].class];
 
/* Find the lowest-numbered reg which is not used by a member
* of the graph adjacent to us.
*/
for (r = 0; r < g->regs->count; r++) {
if (!c->regs[r])
continue;
 
/* Check if any of our neighbors conflict with this register choice. */
for (i = 0; i < g->count; i++) {
if (g->nodes[n].adjacency[i] &&
!g->nodes[i].in_stack &&
g->regs->regs[r].conflicts[g->nodes[i].reg]) {
break;
}
}
if (i == g->count)
break;
}
if (r == g->regs->count)
return GL_FALSE;
 
g->nodes[n].reg = r;
g->nodes[n].in_stack = GL_FALSE;
g->stack_count--;
}
 
return GL_TRUE;
}
 
/**
* Optimistic register coloring: Just push the remaining nodes
* on the stack. They'll be colored first in ra_select(), and
* if they succeed then the locally-colorable nodes are still
* locally-colorable and the rest of the register allocation
* will succeed.
*/
void
ra_optimistic_color(struct ra_graph *g)
{
unsigned int i;
 
for (i = 0; i < g->count; i++) {
if (g->nodes[i].in_stack)
continue;
 
g->stack[g->stack_count] = i;
g->stack_count++;
g->nodes[i].in_stack = GL_TRUE;
}
}
 
GLboolean
ra_allocate_no_spills(struct ra_graph *g)
{
if (!ra_simplify(g)) {
ra_optimistic_color(g);
}
return ra_select(g);
}
 
unsigned int
ra_get_node_reg(struct ra_graph *g, unsigned int n)
{
return g->nodes[n].reg;
}
 
static float
ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
{
int j;
float benefit = 0;
int n_class = g->nodes[n].class;
 
/* Define the benefit of eliminating an interference between n, j
* through spilling as q(C, B) / p(C). This is similar to the
* "count number of edges" approach of traditional graph coloring,
* but takes classes into account.
*/
for (j = 0; j < g->count; j++) {
if (j != n && g->nodes[n].adjacency[j]) {
unsigned int j_class = g->nodes[j].class;
benefit += ((float)g->regs->classes[n_class]->q[j_class] /
g->regs->classes[n_class]->p);
break;
}
}
 
return benefit;
}
 
/**
* Returns a node number to be spilled according to the cost/benefit using
* the pq test, or -1 if there are no spillable nodes.
*/
int
ra_get_best_spill_node(struct ra_graph *g)
{
unsigned int best_node = -1;
unsigned int best_benefit = 0.0;
unsigned int n;
 
for (n = 0; n < g->count; n++) {
float cost = g->nodes[n].spill_cost;
float benefit;
 
if (cost <= 0.0)
continue;
 
benefit = ra_get_spill_benefit(g, n);
 
if (benefit / cost > best_benefit) {
best_benefit = benefit / cost;
best_node = n;
}
}
 
return best_node;
}
 
/**
* Only nodes with a spill cost set (cost != 0.0) will be considered
* for register spilling.
*/
void
ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
{
g->nodes[n].spill_cost = cost;
}