Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 5563 → Rev 5564

/contrib/sdk/sources/Mesa/mesa-10.6.0/src/glsl/ir_constant_expression.cpp
0,0 → 1,2144
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
 
/**
* \file ir_constant_expression.cpp
* Evaluate and process constant valued expressions
*
* In GLSL, constant valued expressions are used in several places. These
* must be processed and evaluated very early in the compilation process.
*
* * Sizes of arrays
* * Initializers for uniforms
* * Initializers for \c const variables
*/
 
#include <math.h>
#include "main/core.h" /* for MAX2, MIN2, CLAMP */
#include "util/rounding.h" /* for _mesa_roundeven */
#include "ir.h"
#include "glsl_types.h"
#include "program/hash_table.h"
 
#if defined(_MSC_VER) && (_MSC_VER < 1800)
static int isnormal(double x)
{
return _fpclass(x) == _FPCLASS_NN || _fpclass(x) == _FPCLASS_PN;
}
#elif defined(__SUNPRO_CC) && !defined(isnormal)
#include <ieeefp.h>
static int isnormal(double x)
{
return fpclass(x) == FP_NORMAL;
}
#endif
 
#if defined(_MSC_VER)
static double copysign(double x, double y)
{
return _copysign(x, y);
}
#endif
 
static float
dot_f(ir_constant *op0, ir_constant *op1)
{
assert(op0->type->is_float() && op1->type->is_float());
 
float result = 0;
for (unsigned c = 0; c < op0->type->components(); c++)
result += op0->value.f[c] * op1->value.f[c];
 
return result;
}
 
static double
dot_d(ir_constant *op0, ir_constant *op1)
{
assert(op0->type->is_double() && op1->type->is_double());
 
double result = 0;
for (unsigned c = 0; c < op0->type->components(); c++)
result += op0->value.d[c] * op1->value.d[c];
 
return result;
}
 
/* This method is the only one supported by gcc. Unions in particular
* are iffy, and read-through-converted-pointer is killed by strict
* aliasing. OTOH, the compiler sees through the memcpy, so the
* resulting asm is reasonable.
*/
static float
bitcast_u2f(unsigned int u)
{
assert(sizeof(float) == sizeof(unsigned int));
float f;
memcpy(&f, &u, sizeof(f));
return f;
}
 
static unsigned int
bitcast_f2u(float f)
{
assert(sizeof(float) == sizeof(unsigned int));
unsigned int u;
memcpy(&u, &f, sizeof(f));
return u;
}
 
/**
* Evaluate one component of a floating-point 4x8 unpacking function.
*/
typedef uint8_t
(*pack_1x8_func_t)(float);
 
/**
* Evaluate one component of a floating-point 2x16 unpacking function.
*/
typedef uint16_t
(*pack_1x16_func_t)(float);
 
/**
* Evaluate one component of a floating-point 4x8 unpacking function.
*/
typedef float
(*unpack_1x8_func_t)(uint8_t);
 
/**
* Evaluate one component of a floating-point 2x16 unpacking function.
*/
typedef float
(*unpack_1x16_func_t)(uint16_t);
 
/**
* Evaluate a 2x16 floating-point packing function.
*/
static uint32_t
pack_2x16(pack_1x16_func_t pack_1x16,
float x, float y)
{
/* From section 8.4 of the GLSL ES 3.00 spec:
*
* packSnorm2x16
* -------------
* The first component of the vector will be written to the least
* significant bits of the output; the last component will be written to
* the most significant bits.
*
* The specifications for the other packing functions contain similar
* language.
*/
uint32_t u = 0;
u |= ((uint32_t) pack_1x16(x) << 0);
u |= ((uint32_t) pack_1x16(y) << 16);
return u;
}
 
/**
* Evaluate a 4x8 floating-point packing function.
*/
static uint32_t
pack_4x8(pack_1x8_func_t pack_1x8,
float x, float y, float z, float w)
{
/* From section 8.4 of the GLSL 4.30 spec:
*
* packSnorm4x8
* ------------
* The first component of the vector will be written to the least
* significant bits of the output; the last component will be written to
* the most significant bits.
*
* The specifications for the other packing functions contain similar
* language.
*/
uint32_t u = 0;
u |= ((uint32_t) pack_1x8(x) << 0);
u |= ((uint32_t) pack_1x8(y) << 8);
u |= ((uint32_t) pack_1x8(z) << 16);
u |= ((uint32_t) pack_1x8(w) << 24);
return u;
}
 
/**
* Evaluate a 2x16 floating-point unpacking function.
*/
static void
unpack_2x16(unpack_1x16_func_t unpack_1x16,
uint32_t u,
float *x, float *y)
{
/* From section 8.4 of the GLSL ES 3.00 spec:
*
* unpackSnorm2x16
* ---------------
* The first component of the returned vector will be extracted from
* the least significant bits of the input; the last component will be
* extracted from the most significant bits.
*
* The specifications for the other unpacking functions contain similar
* language.
*/
*x = unpack_1x16((uint16_t) (u & 0xffff));
*y = unpack_1x16((uint16_t) (u >> 16));
}
 
/**
* Evaluate a 4x8 floating-point unpacking function.
*/
static void
unpack_4x8(unpack_1x8_func_t unpack_1x8, uint32_t u,
float *x, float *y, float *z, float *w)
{
/* From section 8.4 of the GLSL 4.30 spec:
*
* unpackSnorm4x8
* --------------
* The first component of the returned vector will be extracted from
* the least significant bits of the input; the last component will be
* extracted from the most significant bits.
*
* The specifications for the other unpacking functions contain similar
* language.
*/
*x = unpack_1x8((uint8_t) (u & 0xff));
*y = unpack_1x8((uint8_t) (u >> 8));
*z = unpack_1x8((uint8_t) (u >> 16));
*w = unpack_1x8((uint8_t) (u >> 24));
}
 
/**
* Evaluate one component of packSnorm4x8.
*/
static uint8_t
pack_snorm_1x8(float x)
{
/* From section 8.4 of the GLSL 4.30 spec:
*
* packSnorm4x8
* ------------
* The conversion for component c of v to fixed point is done as
* follows:
*
* packSnorm4x8: round(clamp(c, -1, +1) * 127.0)
*
* We must first cast the float to an int, because casting a negative
* float to a uint is undefined.
*/
return (uint8_t) (int)
_mesa_roundevenf(CLAMP(x, -1.0f, +1.0f) * 127.0f);
}
 
/**
* Evaluate one component of packSnorm2x16.
*/
static uint16_t
pack_snorm_1x16(float x)
{
/* From section 8.4 of the GLSL ES 3.00 spec:
*
* packSnorm2x16
* -------------
* The conversion for component c of v to fixed point is done as
* follows:
*
* packSnorm2x16: round(clamp(c, -1, +1) * 32767.0)
*
* We must first cast the float to an int, because casting a negative
* float to a uint is undefined.
*/
return (uint16_t) (int)
_mesa_roundevenf(CLAMP(x, -1.0f, +1.0f) * 32767.0f);
}
 
/**
* Evaluate one component of unpackSnorm4x8.
*/
static float
unpack_snorm_1x8(uint8_t u)
{
/* From section 8.4 of the GLSL 4.30 spec:
*
* unpackSnorm4x8
* --------------
* The conversion for unpacked fixed-point value f to floating point is
* done as follows:
*
* unpackSnorm4x8: clamp(f / 127.0, -1, +1)
*/
return CLAMP((int8_t) u / 127.0f, -1.0f, +1.0f);
}
 
/**
* Evaluate one component of unpackSnorm2x16.
*/
static float
unpack_snorm_1x16(uint16_t u)
{
/* From section 8.4 of the GLSL ES 3.00 spec:
*
* unpackSnorm2x16
* ---------------
* The conversion for unpacked fixed-point value f to floating point is
* done as follows:
*
* unpackSnorm2x16: clamp(f / 32767.0, -1, +1)
*/
return CLAMP((int16_t) u / 32767.0f, -1.0f, +1.0f);
}
 
/**
* Evaluate one component packUnorm4x8.
*/
static uint8_t
pack_unorm_1x8(float x)
{
/* From section 8.4 of the GLSL 4.30 spec:
*
* packUnorm4x8
* ------------
* The conversion for component c of v to fixed point is done as
* follows:
*
* packUnorm4x8: round(clamp(c, 0, +1) * 255.0)
*/
return (uint8_t) (int) _mesa_roundevenf(CLAMP(x, 0.0f, 1.0f) * 255.0f);
}
 
/**
* Evaluate one component packUnorm2x16.
*/
static uint16_t
pack_unorm_1x16(float x)
{
/* From section 8.4 of the GLSL ES 3.00 spec:
*
* packUnorm2x16
* -------------
* The conversion for component c of v to fixed point is done as
* follows:
*
* packUnorm2x16: round(clamp(c, 0, +1) * 65535.0)
*/
return (uint16_t) (int)
_mesa_roundevenf(CLAMP(x, 0.0f, 1.0f) * 65535.0f);
}
 
/**
* Evaluate one component of unpackUnorm4x8.
*/
static float
unpack_unorm_1x8(uint8_t u)
{
/* From section 8.4 of the GLSL 4.30 spec:
*
* unpackUnorm4x8
* --------------
* The conversion for unpacked fixed-point value f to floating point is
* done as follows:
*
* unpackUnorm4x8: f / 255.0
*/
return (float) u / 255.0f;
}
 
/**
* Evaluate one component of unpackUnorm2x16.
*/
static float
unpack_unorm_1x16(uint16_t u)
{
/* From section 8.4 of the GLSL ES 3.00 spec:
*
* unpackUnorm2x16
* ---------------
* The conversion for unpacked fixed-point value f to floating point is
* done as follows:
*
* unpackUnorm2x16: f / 65535.0
*/
return (float) u / 65535.0f;
}
 
/**
* Evaluate one component of packHalf2x16.
*/
static uint16_t
pack_half_1x16(float x)
{
return _mesa_float_to_half(x);
}
 
/**
* Evaluate one component of unpackHalf2x16.
*/
static float
unpack_half_1x16(uint16_t u)
{
return _mesa_half_to_float(u);
}
 
/**
* Get the constant that is ultimately referenced by an r-value, in a constant
* expression evaluation context.
*
* The offset is used when the reference is to a specific column of a matrix.
*/
static bool
constant_referenced(const ir_dereference *deref,
struct hash_table *variable_context,
ir_constant *&store, int &offset)
{
store = NULL;
offset = 0;
 
if (variable_context == NULL)
return false;
 
switch (deref->ir_type) {
case ir_type_dereference_array: {
const ir_dereference_array *const da =
(const ir_dereference_array *) deref;
 
ir_constant *const index_c =
da->array_index->constant_expression_value(variable_context);
 
if (!index_c || !index_c->type->is_scalar() || !index_c->type->is_integer())
break;
 
const int index = index_c->type->base_type == GLSL_TYPE_INT ?
index_c->get_int_component(0) :
index_c->get_uint_component(0);
 
ir_constant *substore;
int suboffset;
 
const ir_dereference *const deref = da->array->as_dereference();
if (!deref)
break;
 
if (!constant_referenced(deref, variable_context, substore, suboffset))
break;
 
const glsl_type *const vt = da->array->type;
if (vt->is_array()) {
store = substore->get_array_element(index);
offset = 0;
} else if (vt->is_matrix()) {
store = substore;
offset = index * vt->vector_elements;
} else if (vt->is_vector()) {
store = substore;
offset = suboffset + index;
}
 
break;
}
 
case ir_type_dereference_record: {
const ir_dereference_record *const dr =
(const ir_dereference_record *) deref;
 
const ir_dereference *const deref = dr->record->as_dereference();
if (!deref)
break;
 
ir_constant *substore;
int suboffset;
 
if (!constant_referenced(deref, variable_context, substore, suboffset))
break;
 
/* Since we're dropping it on the floor...
*/
assert(suboffset == 0);
 
store = substore->get_record_field(dr->field);
break;
}
 
case ir_type_dereference_variable: {
const ir_dereference_variable *const dv =
(const ir_dereference_variable *) deref;
 
store = (ir_constant *) hash_table_find(variable_context, dv->var);
break;
}
 
default:
assert(!"Should not get here.");
break;
}
 
return store != NULL;
}
 
 
ir_constant *
ir_rvalue::constant_expression_value(struct hash_table *)
{
assert(this->type->is_error());
return NULL;
}
 
ir_constant *
ir_expression::constant_expression_value(struct hash_table *variable_context)
{
if (this->type->is_error())
return NULL;
 
ir_constant *op[ARRAY_SIZE(this->operands)] = { NULL, };
ir_constant_data data;
 
memset(&data, 0, sizeof(data));
 
for (unsigned operand = 0; operand < this->get_num_operands(); operand++) {
op[operand] = this->operands[operand]->constant_expression_value(variable_context);
if (!op[operand])
return NULL;
}
 
if (op[1] != NULL)
switch (this->operation) {
case ir_binop_lshift:
case ir_binop_rshift:
case ir_binop_ldexp:
case ir_binop_interpolate_at_offset:
case ir_binop_interpolate_at_sample:
case ir_binop_vector_extract:
case ir_triop_csel:
case ir_triop_bitfield_extract:
break;
 
default:
assert(op[0]->type->base_type == op[1]->type->base_type);
break;
}
 
bool op0_scalar = op[0]->type->is_scalar();
bool op1_scalar = op[1] != NULL && op[1]->type->is_scalar();
 
/* When iterating over a vector or matrix's components, we want to increase
* the loop counter. However, for scalars, we want to stay at 0.
*/
unsigned c0_inc = op0_scalar ? 0 : 1;
unsigned c1_inc = op1_scalar ? 0 : 1;
unsigned components;
if (op1_scalar || !op[1]) {
components = op[0]->type->components();
} else {
components = op[1]->type->components();
}
 
void *ctx = ralloc_parent(this);
 
/* Handle array operations here, rather than below. */
if (op[0]->type->is_array()) {
assert(op[1] != NULL && op[1]->type->is_array());
switch (this->operation) {
case ir_binop_all_equal:
return new(ctx) ir_constant(op[0]->has_value(op[1]));
case ir_binop_any_nequal:
return new(ctx) ir_constant(!op[0]->has_value(op[1]));
default:
break;
}
return NULL;
}
 
switch (this->operation) {
case ir_unop_bit_not:
switch (op[0]->type->base_type) {
case GLSL_TYPE_INT:
for (unsigned c = 0; c < components; c++)
data.i[c] = ~ op[0]->value.i[c];
break;
case GLSL_TYPE_UINT:
for (unsigned c = 0; c < components; c++)
data.u[c] = ~ op[0]->value.u[c];
break;
default:
assert(0);
}
break;
 
case ir_unop_logic_not:
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.b[c] = !op[0]->value.b[c];
break;
 
case ir_unop_f2i:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.i[c] = (int) op[0]->value.f[c];
}
break;
case ir_unop_f2u:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.i[c] = (unsigned) op[0]->value.f[c];
}
break;
case ir_unop_i2f:
assert(op[0]->type->base_type == GLSL_TYPE_INT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = (float) op[0]->value.i[c];
}
break;
case ir_unop_u2f:
assert(op[0]->type->base_type == GLSL_TYPE_UINT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = (float) op[0]->value.u[c];
}
break;
case ir_unop_b2f:
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = op[0]->value.b[c] ? 1.0F : 0.0F;
}
break;
case ir_unop_f2b:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.b[c] = op[0]->value.f[c] != 0.0F ? true : false;
}
break;
case ir_unop_b2i:
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.u[c] = op[0]->value.b[c] ? 1 : 0;
}
break;
case ir_unop_i2b:
assert(op[0]->type->is_integer());
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.b[c] = op[0]->value.u[c] ? true : false;
}
break;
case ir_unop_u2i:
assert(op[0]->type->base_type == GLSL_TYPE_UINT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.i[c] = op[0]->value.u[c];
}
break;
case ir_unop_i2u:
assert(op[0]->type->base_type == GLSL_TYPE_INT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.u[c] = op[0]->value.i[c];
}
break;
case ir_unop_bitcast_i2f:
assert(op[0]->type->base_type == GLSL_TYPE_INT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = bitcast_u2f(op[0]->value.i[c]);
}
break;
case ir_unop_bitcast_f2i:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.i[c] = bitcast_f2u(op[0]->value.f[c]);
}
break;
case ir_unop_bitcast_u2f:
assert(op[0]->type->base_type == GLSL_TYPE_UINT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = bitcast_u2f(op[0]->value.u[c]);
}
break;
case ir_unop_bitcast_f2u:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.u[c] = bitcast_f2u(op[0]->value.f[c]);
}
break;
case ir_unop_any:
assert(op[0]->type->is_boolean());
data.b[0] = false;
for (unsigned c = 0; c < op[0]->type->components(); c++) {
if (op[0]->value.b[c])
data.b[0] = true;
}
break;
case ir_unop_d2f:
assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = op[0]->value.d[c];
}
break;
case ir_unop_f2d:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.d[c] = op[0]->value.f[c];
}
break;
case ir_unop_d2i:
assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.i[c] = op[0]->value.d[c];
}
break;
case ir_unop_i2d:
assert(op[0]->type->base_type == GLSL_TYPE_INT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.d[c] = op[0]->value.i[c];
}
break;
case ir_unop_d2u:
assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.u[c] = op[0]->value.d[c];
}
break;
case ir_unop_u2d:
assert(op[0]->type->base_type == GLSL_TYPE_UINT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.d[c] = op[0]->value.u[c];
}
break;
case ir_unop_d2b:
assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.b[c] = op[0]->value.d[c] != 0.0;
}
break;
case ir_unop_trunc:
for (unsigned c = 0; c < op[0]->type->components(); c++) {
if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
data.d[c] = trunc(op[0]->value.d[c]);
else
data.f[c] = truncf(op[0]->value.f[c]);
}
break;
 
case ir_unop_round_even:
for (unsigned c = 0; c < op[0]->type->components(); c++) {
if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
data.d[c] = _mesa_roundeven(op[0]->value.d[c]);
else
data.f[c] = _mesa_roundevenf(op[0]->value.f[c]);
}
break;
 
case ir_unop_ceil:
for (unsigned c = 0; c < op[0]->type->components(); c++) {
if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
data.d[c] = ceil(op[0]->value.d[c]);
else
data.f[c] = ceilf(op[0]->value.f[c]);
}
break;
 
case ir_unop_floor:
for (unsigned c = 0; c < op[0]->type->components(); c++) {
if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
data.d[c] = floor(op[0]->value.d[c]);
else
data.f[c] = floorf(op[0]->value.f[c]);
}
break;
 
case ir_unop_fract:
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (this->type->base_type) {
case GLSL_TYPE_UINT:
data.u[c] = 0;
break;
case GLSL_TYPE_INT:
data.i[c] = 0;
break;
case GLSL_TYPE_FLOAT:
data.f[c] = op[0]->value.f[c] - floor(op[0]->value.f[c]);
break;
case GLSL_TYPE_DOUBLE:
data.d[c] = op[0]->value.d[c] - floor(op[0]->value.d[c]);
break;
default:
assert(0);
}
}
break;
 
case ir_unop_sin:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = sinf(op[0]->value.f[c]);
}
break;
 
case ir_unop_cos:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = cosf(op[0]->value.f[c]);
}
break;
 
case ir_unop_neg:
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (this->type->base_type) {
case GLSL_TYPE_UINT:
data.u[c] = -((int) op[0]->value.u[c]);
break;
case GLSL_TYPE_INT:
data.i[c] = -op[0]->value.i[c];
break;
case GLSL_TYPE_FLOAT:
data.f[c] = -op[0]->value.f[c];
break;
case GLSL_TYPE_DOUBLE:
data.d[c] = -op[0]->value.d[c];
break;
default:
assert(0);
}
}
break;
 
case ir_unop_abs:
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (this->type->base_type) {
case GLSL_TYPE_UINT:
data.u[c] = op[0]->value.u[c];
break;
case GLSL_TYPE_INT:
data.i[c] = op[0]->value.i[c];
if (data.i[c] < 0)
data.i[c] = -data.i[c];
break;
case GLSL_TYPE_FLOAT:
data.f[c] = fabs(op[0]->value.f[c]);
break;
case GLSL_TYPE_DOUBLE:
data.d[c] = fabs(op[0]->value.d[c]);
break;
default:
assert(0);
}
}
break;
 
case ir_unop_sign:
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (this->type->base_type) {
case GLSL_TYPE_UINT:
data.u[c] = op[0]->value.i[c] > 0;
break;
case GLSL_TYPE_INT:
data.i[c] = (op[0]->value.i[c] > 0) - (op[0]->value.i[c] < 0);
break;
case GLSL_TYPE_FLOAT:
data.f[c] = float((op[0]->value.f[c] > 0)-(op[0]->value.f[c] < 0));
break;
case GLSL_TYPE_DOUBLE:
data.d[c] = double((op[0]->value.d[c] > 0)-(op[0]->value.d[c] < 0));
break;
default:
assert(0);
}
}
break;
 
case ir_unop_rcp:
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (this->type->base_type) {
case GLSL_TYPE_UINT:
if (op[0]->value.u[c] != 0.0)
data.u[c] = 1 / op[0]->value.u[c];
break;
case GLSL_TYPE_INT:
if (op[0]->value.i[c] != 0.0)
data.i[c] = 1 / op[0]->value.i[c];
break;
case GLSL_TYPE_FLOAT:
if (op[0]->value.f[c] != 0.0)
data.f[c] = 1.0F / op[0]->value.f[c];
break;
case GLSL_TYPE_DOUBLE:
if (op[0]->value.d[c] != 0.0)
data.d[c] = 1.0 / op[0]->value.d[c];
break;
default:
assert(0);
}
}
break;
 
case ir_unop_rsq:
for (unsigned c = 0; c < op[0]->type->components(); c++) {
if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
data.d[c] = 1.0 / sqrt(op[0]->value.d[c]);
else
data.f[c] = 1.0F / sqrtf(op[0]->value.f[c]);
}
break;
 
case ir_unop_sqrt:
for (unsigned c = 0; c < op[0]->type->components(); c++) {
if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
data.d[c] = sqrt(op[0]->value.d[c]);
else
data.f[c] = sqrtf(op[0]->value.f[c]);
}
break;
 
case ir_unop_exp:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = expf(op[0]->value.f[c]);
}
break;
 
case ir_unop_exp2:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = exp2f(op[0]->value.f[c]);
}
break;
 
case ir_unop_log:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = logf(op[0]->value.f[c]);
}
break;
 
case ir_unop_log2:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = log2f(op[0]->value.f[c]);
}
break;
 
case ir_unop_dFdx:
case ir_unop_dFdx_coarse:
case ir_unop_dFdx_fine:
case ir_unop_dFdy:
case ir_unop_dFdy_coarse:
case ir_unop_dFdy_fine:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = 0.0;
}
break;
 
case ir_unop_pack_snorm_2x16:
assert(op[0]->type == glsl_type::vec2_type);
data.u[0] = pack_2x16(pack_snorm_1x16,
op[0]->value.f[0],
op[0]->value.f[1]);
break;
case ir_unop_pack_snorm_4x8:
assert(op[0]->type == glsl_type::vec4_type);
data.u[0] = pack_4x8(pack_snorm_1x8,
op[0]->value.f[0],
op[0]->value.f[1],
op[0]->value.f[2],
op[0]->value.f[3]);
break;
case ir_unop_unpack_snorm_2x16:
assert(op[0]->type == glsl_type::uint_type);
unpack_2x16(unpack_snorm_1x16,
op[0]->value.u[0],
&data.f[0], &data.f[1]);
break;
case ir_unop_unpack_snorm_4x8:
assert(op[0]->type == glsl_type::uint_type);
unpack_4x8(unpack_snorm_1x8,
op[0]->value.u[0],
&data.f[0], &data.f[1], &data.f[2], &data.f[3]);
break;
case ir_unop_pack_unorm_2x16:
assert(op[0]->type == glsl_type::vec2_type);
data.u[0] = pack_2x16(pack_unorm_1x16,
op[0]->value.f[0],
op[0]->value.f[1]);
break;
case ir_unop_pack_unorm_4x8:
assert(op[0]->type == glsl_type::vec4_type);
data.u[0] = pack_4x8(pack_unorm_1x8,
op[0]->value.f[0],
op[0]->value.f[1],
op[0]->value.f[2],
op[0]->value.f[3]);
break;
case ir_unop_unpack_unorm_2x16:
assert(op[0]->type == glsl_type::uint_type);
unpack_2x16(unpack_unorm_1x16,
op[0]->value.u[0],
&data.f[0], &data.f[1]);
break;
case ir_unop_unpack_unorm_4x8:
assert(op[0]->type == glsl_type::uint_type);
unpack_4x8(unpack_unorm_1x8,
op[0]->value.u[0],
&data.f[0], &data.f[1], &data.f[2], &data.f[3]);
break;
case ir_unop_pack_half_2x16:
assert(op[0]->type == glsl_type::vec2_type);
data.u[0] = pack_2x16(pack_half_1x16,
op[0]->value.f[0],
op[0]->value.f[1]);
break;
case ir_unop_unpack_half_2x16:
assert(op[0]->type == glsl_type::uint_type);
unpack_2x16(unpack_half_1x16,
op[0]->value.u[0],
&data.f[0], &data.f[1]);
break;
case ir_binop_pow:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
data.f[c] = powf(op[0]->value.f[c], op[1]->value.f[c]);
}
break;
 
case ir_binop_dot:
if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
data.d[0] = dot_d(op[0], op[1]);
else
data.f[0] = dot_f(op[0], op[1]);
break;
 
case ir_binop_min:
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
 
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.u[c] = MIN2(op[0]->value.u[c0], op[1]->value.u[c1]);
break;
case GLSL_TYPE_INT:
data.i[c] = MIN2(op[0]->value.i[c0], op[1]->value.i[c1]);
break;
case GLSL_TYPE_FLOAT:
data.f[c] = MIN2(op[0]->value.f[c0], op[1]->value.f[c1]);
break;
case GLSL_TYPE_DOUBLE:
data.d[c] = MIN2(op[0]->value.d[c0], op[1]->value.d[c1]);
break;
default:
assert(0);
}
}
 
break;
case ir_binop_max:
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
 
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.u[c] = MAX2(op[0]->value.u[c0], op[1]->value.u[c1]);
break;
case GLSL_TYPE_INT:
data.i[c] = MAX2(op[0]->value.i[c0], op[1]->value.i[c1]);
break;
case GLSL_TYPE_FLOAT:
data.f[c] = MAX2(op[0]->value.f[c0], op[1]->value.f[c1]);
break;
case GLSL_TYPE_DOUBLE:
data.d[c] = MAX2(op[0]->value.d[c0], op[1]->value.d[c1]);
break;
default:
assert(0);
}
}
break;
 
case ir_binop_add:
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
 
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.u[c] = op[0]->value.u[c0] + op[1]->value.u[c1];
break;
case GLSL_TYPE_INT:
data.i[c] = op[0]->value.i[c0] + op[1]->value.i[c1];
break;
case GLSL_TYPE_FLOAT:
data.f[c] = op[0]->value.f[c0] + op[1]->value.f[c1];
break;
case GLSL_TYPE_DOUBLE:
data.d[c] = op[0]->value.d[c0] + op[1]->value.d[c1];
break;
default:
assert(0);
}
}
 
break;
case ir_binop_sub:
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
 
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.u[c] = op[0]->value.u[c0] - op[1]->value.u[c1];
break;
case GLSL_TYPE_INT:
data.i[c] = op[0]->value.i[c0] - op[1]->value.i[c1];
break;
case GLSL_TYPE_FLOAT:
data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1];
break;
case GLSL_TYPE_DOUBLE:
data.d[c] = op[0]->value.d[c0] - op[1]->value.d[c1];
break;
default:
assert(0);
}
}
 
break;
case ir_binop_mul:
/* Check for equal types, or unequal types involving scalars */
if ((op[0]->type == op[1]->type && !op[0]->type->is_matrix())
|| op0_scalar || op1_scalar) {
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
 
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.u[c] = op[0]->value.u[c0] * op[1]->value.u[c1];
break;
case GLSL_TYPE_INT:
data.i[c] = op[0]->value.i[c0] * op[1]->value.i[c1];
break;
case GLSL_TYPE_FLOAT:
data.f[c] = op[0]->value.f[c0] * op[1]->value.f[c1];
break;
case GLSL_TYPE_DOUBLE:
data.d[c] = op[0]->value.d[c0] * op[1]->value.d[c1];
break;
default:
assert(0);
}
}
} else {
assert(op[0]->type->is_matrix() || op[1]->type->is_matrix());
 
/* Multiply an N-by-M matrix with an M-by-P matrix. Since either
* matrix can be a GLSL vector, either N or P can be 1.
*
* For vec*mat, the vector is treated as a row vector. This
* means the vector is a 1-row x M-column matrix.
*
* For mat*vec, the vector is treated as a column vector. Since
* matrix_columns is 1 for vectors, this just works.
*/
const unsigned n = op[0]->type->is_vector()
? 1 : op[0]->type->vector_elements;
const unsigned m = op[1]->type->vector_elements;
const unsigned p = op[1]->type->matrix_columns;
for (unsigned j = 0; j < p; j++) {
for (unsigned i = 0; i < n; i++) {
for (unsigned k = 0; k < m; k++) {
if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
data.d[i+n*j] += op[0]->value.d[i+n*k]*op[1]->value.d[k+m*j];
else
data.f[i+n*j] += op[0]->value.f[i+n*k]*op[1]->value.f[k+m*j];
}
}
}
}
 
break;
case ir_binop_div:
/* FINISHME: Emit warning when division-by-zero is detected. */
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
 
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
if (op[1]->value.u[c1] == 0) {
data.u[c] = 0;
} else {
data.u[c] = op[0]->value.u[c0] / op[1]->value.u[c1];
}
break;
case GLSL_TYPE_INT:
if (op[1]->value.i[c1] == 0) {
data.i[c] = 0;
} else {
data.i[c] = op[0]->value.i[c0] / op[1]->value.i[c1];
}
break;
case GLSL_TYPE_FLOAT:
data.f[c] = op[0]->value.f[c0] / op[1]->value.f[c1];
break;
case GLSL_TYPE_DOUBLE:
data.d[c] = op[0]->value.d[c0] / op[1]->value.d[c1];
break;
default:
assert(0);
}
}
 
break;
case ir_binop_mod:
/* FINISHME: Emit warning when division-by-zero is detected. */
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
 
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
if (op[1]->value.u[c1] == 0) {
data.u[c] = 0;
} else {
data.u[c] = op[0]->value.u[c0] % op[1]->value.u[c1];
}
break;
case GLSL_TYPE_INT:
if (op[1]->value.i[c1] == 0) {
data.i[c] = 0;
} else {
data.i[c] = op[0]->value.i[c0] % op[1]->value.i[c1];
}
break;
case GLSL_TYPE_FLOAT:
/* We don't use fmod because it rounds toward zero; GLSL specifies
* the use of floor.
*/
data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1]
* floorf(op[0]->value.f[c0] / op[1]->value.f[c1]);
break;
case GLSL_TYPE_DOUBLE:
/* We don't use fmod because it rounds toward zero; GLSL specifies
* the use of floor.
*/
data.d[c] = op[0]->value.d[c0] - op[1]->value.d[c1]
* floor(op[0]->value.d[c0] / op[1]->value.d[c1]);
break;
default:
assert(0);
}
}
 
break;
 
case ir_binop_logic_and:
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.b[c] = op[0]->value.b[c] && op[1]->value.b[c];
break;
case ir_binop_logic_xor:
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.b[c] = op[0]->value.b[c] ^ op[1]->value.b[c];
break;
case ir_binop_logic_or:
assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
for (unsigned c = 0; c < op[0]->type->components(); c++)
data.b[c] = op[0]->value.b[c] || op[1]->value.b[c];
break;
 
case ir_binop_less:
assert(op[0]->type == op[1]->type);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.b[c] = op[0]->value.u[c] < op[1]->value.u[c];
break;
case GLSL_TYPE_INT:
data.b[c] = op[0]->value.i[c] < op[1]->value.i[c];
break;
case GLSL_TYPE_FLOAT:
data.b[c] = op[0]->value.f[c] < op[1]->value.f[c];
break;
case GLSL_TYPE_DOUBLE:
data.b[c] = op[0]->value.d[c] < op[1]->value.d[c];
break;
default:
assert(0);
}
}
break;
case ir_binop_greater:
assert(op[0]->type == op[1]->type);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.b[c] = op[0]->value.u[c] > op[1]->value.u[c];
break;
case GLSL_TYPE_INT:
data.b[c] = op[0]->value.i[c] > op[1]->value.i[c];
break;
case GLSL_TYPE_FLOAT:
data.b[c] = op[0]->value.f[c] > op[1]->value.f[c];
break;
case GLSL_TYPE_DOUBLE:
data.b[c] = op[0]->value.d[c] > op[1]->value.d[c];
break;
default:
assert(0);
}
}
break;
case ir_binop_lequal:
assert(op[0]->type == op[1]->type);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.b[c] = op[0]->value.u[c] <= op[1]->value.u[c];
break;
case GLSL_TYPE_INT:
data.b[c] = op[0]->value.i[c] <= op[1]->value.i[c];
break;
case GLSL_TYPE_FLOAT:
data.b[c] = op[0]->value.f[c] <= op[1]->value.f[c];
break;
case GLSL_TYPE_DOUBLE:
data.b[c] = op[0]->value.d[c] <= op[1]->value.d[c];
break;
default:
assert(0);
}
}
break;
case ir_binop_gequal:
assert(op[0]->type == op[1]->type);
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.b[c] = op[0]->value.u[c] >= op[1]->value.u[c];
break;
case GLSL_TYPE_INT:
data.b[c] = op[0]->value.i[c] >= op[1]->value.i[c];
break;
case GLSL_TYPE_FLOAT:
data.b[c] = op[0]->value.f[c] >= op[1]->value.f[c];
break;
case GLSL_TYPE_DOUBLE:
data.b[c] = op[0]->value.d[c] >= op[1]->value.d[c];
break;
default:
assert(0);
}
}
break;
case ir_binop_equal:
assert(op[0]->type == op[1]->type);
for (unsigned c = 0; c < components; c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.b[c] = op[0]->value.u[c] == op[1]->value.u[c];
break;
case GLSL_TYPE_INT:
data.b[c] = op[0]->value.i[c] == op[1]->value.i[c];
break;
case GLSL_TYPE_FLOAT:
data.b[c] = op[0]->value.f[c] == op[1]->value.f[c];
break;
case GLSL_TYPE_BOOL:
data.b[c] = op[0]->value.b[c] == op[1]->value.b[c];
break;
case GLSL_TYPE_DOUBLE:
data.b[c] = op[0]->value.d[c] == op[1]->value.d[c];
break;
default:
assert(0);
}
}
break;
case ir_binop_nequal:
assert(op[0]->type == op[1]->type);
for (unsigned c = 0; c < components; c++) {
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.b[c] = op[0]->value.u[c] != op[1]->value.u[c];
break;
case GLSL_TYPE_INT:
data.b[c] = op[0]->value.i[c] != op[1]->value.i[c];
break;
case GLSL_TYPE_FLOAT:
data.b[c] = op[0]->value.f[c] != op[1]->value.f[c];
break;
case GLSL_TYPE_BOOL:
data.b[c] = op[0]->value.b[c] != op[1]->value.b[c];
break;
case GLSL_TYPE_DOUBLE:
data.b[c] = op[0]->value.d[c] != op[1]->value.d[c];
break;
default:
assert(0);
}
}
break;
case ir_binop_all_equal:
data.b[0] = op[0]->has_value(op[1]);
break;
case ir_binop_any_nequal:
data.b[0] = !op[0]->has_value(op[1]);
break;
 
case ir_binop_lshift:
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
 
if (op[0]->type->base_type == GLSL_TYPE_INT &&
op[1]->type->base_type == GLSL_TYPE_INT) {
data.i[c] = op[0]->value.i[c0] << op[1]->value.i[c1];
 
} else if (op[0]->type->base_type == GLSL_TYPE_INT &&
op[1]->type->base_type == GLSL_TYPE_UINT) {
data.i[c] = op[0]->value.i[c0] << op[1]->value.u[c1];
 
} else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
op[1]->type->base_type == GLSL_TYPE_INT) {
data.u[c] = op[0]->value.u[c0] << op[1]->value.i[c1];
 
} else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
op[1]->type->base_type == GLSL_TYPE_UINT) {
data.u[c] = op[0]->value.u[c0] << op[1]->value.u[c1];
}
}
break;
 
case ir_binop_rshift:
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
 
if (op[0]->type->base_type == GLSL_TYPE_INT &&
op[1]->type->base_type == GLSL_TYPE_INT) {
data.i[c] = op[0]->value.i[c0] >> op[1]->value.i[c1];
 
} else if (op[0]->type->base_type == GLSL_TYPE_INT &&
op[1]->type->base_type == GLSL_TYPE_UINT) {
data.i[c] = op[0]->value.i[c0] >> op[1]->value.u[c1];
 
} else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
op[1]->type->base_type == GLSL_TYPE_INT) {
data.u[c] = op[0]->value.u[c0] >> op[1]->value.i[c1];
 
} else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
op[1]->type->base_type == GLSL_TYPE_UINT) {
data.u[c] = op[0]->value.u[c0] >> op[1]->value.u[c1];
}
}
break;
 
case ir_binop_bit_and:
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
 
switch (op[0]->type->base_type) {
case GLSL_TYPE_INT:
data.i[c] = op[0]->value.i[c0] & op[1]->value.i[c1];
break;
case GLSL_TYPE_UINT:
data.u[c] = op[0]->value.u[c0] & op[1]->value.u[c1];
break;
default:
assert(0);
}
}
break;
 
case ir_binop_bit_or:
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
 
switch (op[0]->type->base_type) {
case GLSL_TYPE_INT:
data.i[c] = op[0]->value.i[c0] | op[1]->value.i[c1];
break;
case GLSL_TYPE_UINT:
data.u[c] = op[0]->value.u[c0] | op[1]->value.u[c1];
break;
default:
assert(0);
}
}
break;
 
case ir_binop_vector_extract: {
const int c = CLAMP(op[1]->value.i[0], 0,
(int) op[0]->type->vector_elements - 1);
 
switch (op[0]->type->base_type) {
case GLSL_TYPE_UINT:
data.u[0] = op[0]->value.u[c];
break;
case GLSL_TYPE_INT:
data.i[0] = op[0]->value.i[c];
break;
case GLSL_TYPE_FLOAT:
data.f[0] = op[0]->value.f[c];
break;
case GLSL_TYPE_DOUBLE:
data.d[0] = op[0]->value.d[c];
break;
case GLSL_TYPE_BOOL:
data.b[0] = op[0]->value.b[c];
break;
default:
assert(0);
}
break;
}
 
case ir_binop_bit_xor:
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
 
switch (op[0]->type->base_type) {
case GLSL_TYPE_INT:
data.i[c] = op[0]->value.i[c0] ^ op[1]->value.i[c1];
break;
case GLSL_TYPE_UINT:
data.u[c] = op[0]->value.u[c0] ^ op[1]->value.u[c1];
break;
default:
assert(0);
}
}
break;
 
case ir_unop_bitfield_reverse:
/* http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious */
for (unsigned c = 0; c < components; c++) {
unsigned int v = op[0]->value.u[c]; // input bits to be reversed
unsigned int r = v; // r will be reversed bits of v; first get LSB of v
int s = sizeof(v) * CHAR_BIT - 1; // extra shift needed at end
 
for (v >>= 1; v; v >>= 1) {
r <<= 1;
r |= v & 1;
s--;
}
r <<= s; // shift when v's highest bits are zero
 
data.u[c] = r;
}
break;
 
case ir_unop_bit_count:
for (unsigned c = 0; c < components; c++) {
unsigned count = 0;
unsigned v = op[0]->value.u[c];
 
for (; v; count++) {
v &= v - 1;
}
data.u[c] = count;
}
break;
 
case ir_unop_find_msb:
for (unsigned c = 0; c < components; c++) {
int v = op[0]->value.i[c];
 
if (v == 0 || (op[0]->type->base_type == GLSL_TYPE_INT && v == -1))
data.i[c] = -1;
else {
int count = 0;
int top_bit = op[0]->type->base_type == GLSL_TYPE_UINT
? 0 : v & (1 << 31);
 
while (((v & (1 << 31)) == top_bit) && count != 32) {
count++;
v <<= 1;
}
 
data.i[c] = 31 - count;
}
}
break;
 
case ir_unop_find_lsb:
for (unsigned c = 0; c < components; c++) {
if (op[0]->value.i[c] == 0)
data.i[c] = -1;
else {
unsigned pos = 0;
unsigned v = op[0]->value.u[c];
 
for (; !(v & 1); v >>= 1) {
pos++;
}
data.u[c] = pos;
}
}
break;
 
case ir_unop_saturate:
for (unsigned c = 0; c < components; c++) {
data.f[c] = CLAMP(op[0]->value.f[c], 0.0f, 1.0f);
}
break;
case ir_unop_pack_double_2x32: {
/* XXX needs to be checked on big-endian */
uint64_t temp;
temp = (uint64_t)op[0]->value.u[0] | ((uint64_t)op[0]->value.u[1] << 32);
data.d[0] = *(double *)&temp;
 
break;
}
case ir_unop_unpack_double_2x32:
/* XXX needs to be checked on big-endian */
data.u[0] = *(uint32_t *)&op[0]->value.d[0];
data.u[1] = *((uint32_t *)&op[0]->value.d[0] + 1);
break;
 
case ir_triop_bitfield_extract: {
int offset = op[1]->value.i[0];
int bits = op[2]->value.i[0];
 
for (unsigned c = 0; c < components; c++) {
if (bits == 0)
data.u[c] = 0;
else if (offset < 0 || bits < 0)
data.u[c] = 0; /* Undefined, per spec. */
else if (offset + bits > 32)
data.u[c] = 0; /* Undefined, per spec. */
else {
if (op[0]->type->base_type == GLSL_TYPE_INT) {
/* int so that the right shift will sign-extend. */
int value = op[0]->value.i[c];
value <<= 32 - bits - offset;
value >>= 32 - bits;
data.i[c] = value;
} else {
unsigned value = op[0]->value.u[c];
value <<= 32 - bits - offset;
value >>= 32 - bits;
data.u[c] = value;
}
}
}
break;
}
 
case ir_binop_bfm: {
int bits = op[0]->value.i[0];
int offset = op[1]->value.i[0];
 
for (unsigned c = 0; c < components; c++) {
if (bits == 0)
data.u[c] = op[0]->value.u[c];
else if (offset < 0 || bits < 0)
data.u[c] = 0; /* Undefined for bitfieldInsert, per spec. */
else if (offset + bits > 32)
data.u[c] = 0; /* Undefined for bitfieldInsert, per spec. */
else
data.u[c] = ((1 << bits) - 1) << offset;
}
break;
}
 
case ir_binop_ldexp:
for (unsigned c = 0; c < components; c++) {
if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) {
data.d[c] = ldexp(op[0]->value.d[c], op[1]->value.i[c]);
/* Flush subnormal values to zero. */
if (!isnormal(data.d[c]))
data.d[c] = copysign(0.0, op[0]->value.d[c]);
} else {
data.f[c] = ldexp(op[0]->value.f[c], op[1]->value.i[c]);
/* Flush subnormal values to zero. */
if (!isnormal(data.f[c]))
data.f[c] = copysign(0.0f, op[0]->value.f[c]);
}
}
break;
 
case ir_triop_fma:
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT ||
op[0]->type->base_type == GLSL_TYPE_DOUBLE);
assert(op[1]->type->base_type == GLSL_TYPE_FLOAT ||
op[1]->type->base_type == GLSL_TYPE_DOUBLE);
assert(op[2]->type->base_type == GLSL_TYPE_FLOAT ||
op[2]->type->base_type == GLSL_TYPE_DOUBLE);
 
for (unsigned c = 0; c < components; c++) {
if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
data.d[c] = op[0]->value.d[c] * op[1]->value.d[c]
+ op[2]->value.d[c];
else
data.f[c] = op[0]->value.f[c] * op[1]->value.f[c]
+ op[2]->value.f[c];
}
break;
 
case ir_triop_lrp: {
assert(op[0]->type->base_type == GLSL_TYPE_FLOAT ||
op[0]->type->base_type == GLSL_TYPE_DOUBLE);
assert(op[1]->type->base_type == GLSL_TYPE_FLOAT ||
op[1]->type->base_type == GLSL_TYPE_DOUBLE);
assert(op[2]->type->base_type == GLSL_TYPE_FLOAT ||
op[2]->type->base_type == GLSL_TYPE_DOUBLE);
 
unsigned c2_inc = op[2]->type->is_scalar() ? 0 : 1;
for (unsigned c = 0, c2 = 0; c < components; c2 += c2_inc, c++) {
if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
data.d[c] = op[0]->value.d[c] * (1.0 - op[2]->value.d[c2]) +
(op[1]->value.d[c] * op[2]->value.d[c2]);
else
data.f[c] = op[0]->value.f[c] * (1.0f - op[2]->value.f[c2]) +
(op[1]->value.f[c] * op[2]->value.f[c2]);
}
break;
}
 
case ir_triop_csel:
for (unsigned c = 0; c < components; c++) {
if (op[1]->type->base_type == GLSL_TYPE_DOUBLE)
data.d[c] = op[0]->value.b[c] ? op[1]->value.d[c]
: op[2]->value.d[c];
else
data.u[c] = op[0]->value.b[c] ? op[1]->value.u[c]
: op[2]->value.u[c];
}
break;
 
case ir_triop_vector_insert: {
const unsigned idx = op[2]->value.u[0];
 
memcpy(&data, &op[0]->value, sizeof(data));
 
switch (this->type->base_type) {
case GLSL_TYPE_INT:
data.i[idx] = op[1]->value.i[0];
break;
case GLSL_TYPE_UINT:
data.u[idx] = op[1]->value.u[0];
break;
case GLSL_TYPE_FLOAT:
data.f[idx] = op[1]->value.f[0];
break;
case GLSL_TYPE_BOOL:
data.b[idx] = op[1]->value.b[0];
break;
case GLSL_TYPE_DOUBLE:
data.d[idx] = op[1]->value.d[0];
break;
default:
assert(!"Should not get here.");
break;
}
break;
}
 
case ir_quadop_bitfield_insert: {
int offset = op[2]->value.i[0];
int bits = op[3]->value.i[0];
 
for (unsigned c = 0; c < components; c++) {
if (bits == 0)
data.u[c] = op[0]->value.u[c];
else if (offset < 0 || bits < 0)
data.u[c] = 0; /* Undefined, per spec. */
else if (offset + bits > 32)
data.u[c] = 0; /* Undefined, per spec. */
else {
unsigned insert_mask = ((1 << bits) - 1) << offset;
 
unsigned insert = op[1]->value.u[c];
insert <<= offset;
insert &= insert_mask;
 
unsigned base = op[0]->value.u[c];
base &= ~insert_mask;
 
data.u[c] = base | insert;
}
}
break;
}
 
case ir_quadop_vector:
for (unsigned c = 0; c < this->type->vector_elements; c++) {
switch (this->type->base_type) {
case GLSL_TYPE_INT:
data.i[c] = op[c]->value.i[0];
break;
case GLSL_TYPE_UINT:
data.u[c] = op[c]->value.u[0];
break;
case GLSL_TYPE_FLOAT:
data.f[c] = op[c]->value.f[0];
break;
case GLSL_TYPE_DOUBLE:
data.d[c] = op[c]->value.d[0];
break;
default:
assert(0);
}
}
break;
 
default:
/* FINISHME: Should handle all expression types. */
return NULL;
}
 
return new(ctx) ir_constant(this->type, &data);
}
 
 
ir_constant *
ir_texture::constant_expression_value(struct hash_table *)
{
/* texture lookups aren't constant expressions */
return NULL;
}
 
 
ir_constant *
ir_swizzle::constant_expression_value(struct hash_table *variable_context)
{
ir_constant *v = this->val->constant_expression_value(variable_context);
 
if (v != NULL) {
ir_constant_data data = { { 0 } };
 
const unsigned swiz_idx[4] = {
this->mask.x, this->mask.y, this->mask.z, this->mask.w
};
 
for (unsigned i = 0; i < this->mask.num_components; i++) {
switch (v->type->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT: data.u[i] = v->value.u[swiz_idx[i]]; break;
case GLSL_TYPE_FLOAT: data.f[i] = v->value.f[swiz_idx[i]]; break;
case GLSL_TYPE_BOOL: data.b[i] = v->value.b[swiz_idx[i]]; break;
case GLSL_TYPE_DOUBLE:data.d[i] = v->value.d[swiz_idx[i]]; break;
default: assert(!"Should not get here."); break;
}
}
 
void *ctx = ralloc_parent(this);
return new(ctx) ir_constant(this->type, &data);
}
return NULL;
}
 
 
ir_constant *
ir_dereference_variable::constant_expression_value(struct hash_table *variable_context)
{
/* This may occur during compile and var->type is glsl_type::error_type */
if (!var)
return NULL;
 
/* Give priority to the context hashtable, if it exists */
if (variable_context) {
ir_constant *value = (ir_constant *)hash_table_find(variable_context, var);
if(value)
return value;
}
 
/* The constant_value of a uniform variable is its initializer,
* not the lifetime constant value of the uniform.
*/
if (var->data.mode == ir_var_uniform)
return NULL;
 
if (!var->constant_value)
return NULL;
 
return var->constant_value->clone(ralloc_parent(var), NULL);
}
 
 
ir_constant *
ir_dereference_array::constant_expression_value(struct hash_table *variable_context)
{
ir_constant *array = this->array->constant_expression_value(variable_context);
ir_constant *idx = this->array_index->constant_expression_value(variable_context);
 
if ((array != NULL) && (idx != NULL)) {
void *ctx = ralloc_parent(this);
if (array->type->is_matrix()) {
/* Array access of a matrix results in a vector.
*/
const unsigned column = idx->value.u[0];
 
const glsl_type *const column_type = array->type->column_type();
 
/* Offset in the constant matrix to the first element of the column
* to be extracted.
*/
const unsigned mat_idx = column * column_type->vector_elements;
 
ir_constant_data data = { { 0 } };
 
switch (column_type->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
for (unsigned i = 0; i < column_type->vector_elements; i++)
data.u[i] = array->value.u[mat_idx + i];
 
break;
 
case GLSL_TYPE_FLOAT:
for (unsigned i = 0; i < column_type->vector_elements; i++)
data.f[i] = array->value.f[mat_idx + i];
 
break;
 
case GLSL_TYPE_DOUBLE:
for (unsigned i = 0; i < column_type->vector_elements; i++)
data.d[i] = array->value.d[mat_idx + i];
 
break;
 
default:
assert(!"Should not get here.");
break;
}
 
return new(ctx) ir_constant(column_type, &data);
} else if (array->type->is_vector()) {
const unsigned component = idx->value.u[0];
 
return new(ctx) ir_constant(array, component);
} else {
const unsigned index = idx->value.u[0];
return array->get_array_element(index)->clone(ctx, NULL);
}
}
return NULL;
}
 
 
ir_constant *
ir_dereference_record::constant_expression_value(struct hash_table *)
{
ir_constant *v = this->record->constant_expression_value();
 
return (v != NULL) ? v->get_record_field(this->field) : NULL;
}
 
 
ir_constant *
ir_assignment::constant_expression_value(struct hash_table *)
{
/* FINISHME: Handle CEs involving assignment (return RHS) */
return NULL;
}
 
 
ir_constant *
ir_constant::constant_expression_value(struct hash_table *)
{
return this;
}
 
 
ir_constant *
ir_call::constant_expression_value(struct hash_table *variable_context)
{
return this->callee->constant_expression_value(&this->actual_parameters, variable_context);
}
 
 
bool ir_function_signature::constant_expression_evaluate_expression_list(const struct exec_list &body,
struct hash_table *variable_context,
ir_constant **result)
{
foreach_in_list(ir_instruction, inst, &body) {
switch(inst->ir_type) {
 
/* (declare () type symbol) */
case ir_type_variable: {
ir_variable *var = inst->as_variable();
hash_table_insert(variable_context, ir_constant::zero(this, var->type), var);
break;
}
 
/* (assign [condition] (write-mask) (ref) (value)) */
case ir_type_assignment: {
ir_assignment *asg = inst->as_assignment();
if (asg->condition) {
ir_constant *cond = asg->condition->constant_expression_value(variable_context);
if (!cond)
return false;
if (!cond->get_bool_component(0))
break;
}
 
ir_constant *store = NULL;
int offset = 0;
 
if (!constant_referenced(asg->lhs, variable_context, store, offset))
return false;
 
ir_constant *value = asg->rhs->constant_expression_value(variable_context);
 
if (!value)
return false;
 
store->copy_masked_offset(value, offset, asg->write_mask);
break;
}
 
/* (return (expression)) */
case ir_type_return:
assert (result);
*result = inst->as_return()->value->constant_expression_value(variable_context);
return *result != NULL;
 
/* (call name (ref) (params))*/
case ir_type_call: {
ir_call *call = inst->as_call();
 
/* Just say no to void functions in constant expressions. We
* don't need them at that point.
*/
 
if (!call->return_deref)
return false;
 
ir_constant *store = NULL;
int offset = 0;
 
if (!constant_referenced(call->return_deref, variable_context,
store, offset))
return false;
 
ir_constant *value = call->constant_expression_value(variable_context);
 
if(!value)
return false;
 
store->copy_offset(value, offset);
break;
}
 
/* (if condition (then-instructions) (else-instructions)) */
case ir_type_if: {
ir_if *iif = inst->as_if();
 
ir_constant *cond = iif->condition->constant_expression_value(variable_context);
if (!cond || !cond->type->is_boolean())
return false;
 
exec_list &branch = cond->get_bool_component(0) ? iif->then_instructions : iif->else_instructions;
 
*result = NULL;
if (!constant_expression_evaluate_expression_list(branch, variable_context, result))
return false;
 
/* If there was a return in the branch chosen, drop out now. */
if (*result)
return true;
 
break;
}
 
/* Every other expression type, we drop out. */
default:
return false;
}
}
 
/* Reaching the end of the block is not an error condition */
if (result)
*result = NULL;
 
return true;
}
 
ir_constant *
ir_function_signature::constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context)
{
const glsl_type *type = this->return_type;
if (type == glsl_type::void_type)
return NULL;
 
/* From the GLSL 1.20 spec, page 23:
* "Function calls to user-defined functions (non-built-in functions)
* cannot be used to form constant expressions."
*/
if (!this->is_builtin())
return NULL;
 
/*
* Of the builtin functions, only the texture lookups and the noise
* ones must not be used in constant expressions. They all include
* specific opcodes so they don't need to be special-cased at this
* point.
*/
 
/* Initialize the table of dereferencable names with the function
* parameters. Verify their const-ness on the way.
*
* We expect the correctness of the number of parameters to have
* been checked earlier.
*/
hash_table *deref_hash = hash_table_ctor(8, hash_table_pointer_hash,
hash_table_pointer_compare);
 
/* If "origin" is non-NULL, then the function body is there. So we
* have to use the variable objects from the object with the body,
* but the parameter instanciation on the current object.
*/
const exec_node *parameter_info = origin ? origin->parameters.head : parameters.head;
 
foreach_in_list(ir_rvalue, n, actual_parameters) {
ir_constant *constant = n->constant_expression_value(variable_context);
if (constant == NULL) {
hash_table_dtor(deref_hash);
return NULL;
}
 
 
ir_variable *var = (ir_variable *)parameter_info;
hash_table_insert(deref_hash, constant, var);
 
parameter_info = parameter_info->next;
}
 
ir_constant *result = NULL;
 
/* Now run the builtin function until something non-constant
* happens or we get the result.
*/
if (constant_expression_evaluate_expression_list(origin ? origin->body : body, deref_hash, &result) && result)
result = result->clone(ralloc_parent(this), NULL);
 
hash_table_dtor(deref_hash);
 
return result;
}