Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
8774 rgimad 1
/*
2
 *  Elliptic curves over GF(p): curve-specific data and functions
3
 *
4
 *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
5
 *  SPDX-License-Identifier: GPL-2.0
6
 *
7
 *  This program is free software; you can redistribute it and/or modify
8
 *  it under the terms of the GNU General Public License as published by
9
 *  the Free Software Foundation; either version 2 of the License, or
10
 *  (at your option) any later version.
11
 *
12
 *  This program is distributed in the hope that it will be useful,
13
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
 *  GNU General Public License for more details.
16
 *
17
 *  You should have received a copy of the GNU General Public License along
18
 *  with this program; if not, write to the Free Software Foundation, Inc.,
19
 *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20
 *
21
 *  This file is part of mbed TLS (https://tls.mbed.org)
22
 */
23
 
24
#if !defined(MBEDTLS_CONFIG_FILE)
25
#include "mbedtls/config.h"
26
#else
27
#include MBEDTLS_CONFIG_FILE
28
#endif
29
 
30
#if defined(MBEDTLS_ECP_C)
31
 
32
#include "mbedtls/ecp.h"
33
#include "mbedtls/platform_util.h"
34
 
35
#include 
36
 
37
#if !defined(MBEDTLS_ECP_ALT)
38
 
39
/* Parameter validation macros based on platform_util.h */
40
#define ECP_VALIDATE_RET( cond )    \
41
    MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA )
42
#define ECP_VALIDATE( cond )        \
43
    MBEDTLS_INTERNAL_VALIDATE( cond )
44
 
45
#if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
46
    !defined(inline) && !defined(__cplusplus)
47
#define inline __inline
48
#endif
49
 
50
/*
51
 * Conversion macros for embedded constants:
52
 * build lists of mbedtls_mpi_uint's from lists of unsigned char's grouped by 8, 4 or 2
53
 */
54
#if defined(MBEDTLS_HAVE_INT32)
55
 
56
#define BYTES_TO_T_UINT_4( a, b, c, d )                       \
57
    ( (mbedtls_mpi_uint) (a) <<  0 ) |                        \
58
    ( (mbedtls_mpi_uint) (b) <<  8 ) |                        \
59
    ( (mbedtls_mpi_uint) (c) << 16 ) |                        \
60
    ( (mbedtls_mpi_uint) (d) << 24 )
61
 
62
#define BYTES_TO_T_UINT_2( a, b )                   \
63
    BYTES_TO_T_UINT_4( a, b, 0, 0 )
64
 
65
#define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
66
    BYTES_TO_T_UINT_4( a, b, c, d ),                \
67
    BYTES_TO_T_UINT_4( e, f, g, h )
68
 
69
#else /* 64-bits */
70
 
71
#define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
72
    ( (mbedtls_mpi_uint) (a) <<  0 ) |                        \
73
    ( (mbedtls_mpi_uint) (b) <<  8 ) |                        \
74
    ( (mbedtls_mpi_uint) (c) << 16 ) |                        \
75
    ( (mbedtls_mpi_uint) (d) << 24 ) |                        \
76
    ( (mbedtls_mpi_uint) (e) << 32 ) |                        \
77
    ( (mbedtls_mpi_uint) (f) << 40 ) |                        \
78
    ( (mbedtls_mpi_uint) (g) << 48 ) |                        \
79
    ( (mbedtls_mpi_uint) (h) << 56 )
80
 
81
#define BYTES_TO_T_UINT_4( a, b, c, d )             \
82
    BYTES_TO_T_UINT_8( a, b, c, d, 0, 0, 0, 0 )
83
 
84
#define BYTES_TO_T_UINT_2( a, b )                   \
85
    BYTES_TO_T_UINT_8( a, b, 0, 0, 0, 0, 0, 0 )
86
 
87
#endif /* bits in mbedtls_mpi_uint */
88
 
89
/*
90
 * Note: the constants are in little-endian order
91
 * to be directly usable in MPIs
92
 */
93
 
94
/*
95
 * Domain parameters for secp192r1
96
 */
97
#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
98
static const mbedtls_mpi_uint secp192r1_p[] = {
99
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
100
    BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
101
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
102
};
103
static const mbedtls_mpi_uint secp192r1_b[] = {
104
    BYTES_TO_T_UINT_8( 0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE ),
105
    BYTES_TO_T_UINT_8( 0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F ),
106
    BYTES_TO_T_UINT_8( 0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64 ),
107
};
108
static const mbedtls_mpi_uint secp192r1_gx[] = {
109
    BYTES_TO_T_UINT_8( 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4 ),
110
    BYTES_TO_T_UINT_8( 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C ),
111
    BYTES_TO_T_UINT_8( 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18 ),
112
};
113
static const mbedtls_mpi_uint secp192r1_gy[] = {
114
    BYTES_TO_T_UINT_8( 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73 ),
115
    BYTES_TO_T_UINT_8( 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63 ),
116
    BYTES_TO_T_UINT_8( 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07 ),
117
};
118
static const mbedtls_mpi_uint secp192r1_n[] = {
119
    BYTES_TO_T_UINT_8( 0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14 ),
120
    BYTES_TO_T_UINT_8( 0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF ),
121
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
122
};
123
#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
124
 
125
/*
126
 * Domain parameters for secp224r1
127
 */
128
#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
129
static const mbedtls_mpi_uint secp224r1_p[] = {
130
    BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
131
    BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
132
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
133
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
134
};
135
static const mbedtls_mpi_uint secp224r1_b[] = {
136
    BYTES_TO_T_UINT_8( 0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27 ),
137
    BYTES_TO_T_UINT_8( 0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50 ),
138
    BYTES_TO_T_UINT_8( 0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C ),
139
    BYTES_TO_T_UINT_4( 0x85, 0x0A, 0x05, 0xB4 ),
140
};
141
static const mbedtls_mpi_uint secp224r1_gx[] = {
142
    BYTES_TO_T_UINT_8( 0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34 ),
143
    BYTES_TO_T_UINT_8( 0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A ),
144
    BYTES_TO_T_UINT_8( 0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B ),
145
    BYTES_TO_T_UINT_4( 0xBD, 0x0C, 0x0E, 0xB7 ),
146
};
147
static const mbedtls_mpi_uint secp224r1_gy[] = {
148
    BYTES_TO_T_UINT_8( 0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44 ),
149
    BYTES_TO_T_UINT_8( 0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD ),
150
    BYTES_TO_T_UINT_8( 0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5 ),
151
    BYTES_TO_T_UINT_4( 0x88, 0x63, 0x37, 0xBD ),
152
};
153
static const mbedtls_mpi_uint secp224r1_n[] = {
154
    BYTES_TO_T_UINT_8( 0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13 ),
155
    BYTES_TO_T_UINT_8( 0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF ),
156
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
157
    BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
158
};
159
#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
160
 
161
/*
162
 * Domain parameters for secp256r1
163
 */
164
#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
165
static const mbedtls_mpi_uint secp256r1_p[] = {
166
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
167
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
168
    BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
169
    BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
170
};
171
static const mbedtls_mpi_uint secp256r1_b[] = {
172
    BYTES_TO_T_UINT_8( 0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B ),
173
    BYTES_TO_T_UINT_8( 0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65 ),
174
    BYTES_TO_T_UINT_8( 0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3 ),
175
    BYTES_TO_T_UINT_8( 0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A ),
176
};
177
static const mbedtls_mpi_uint secp256r1_gx[] = {
178
    BYTES_TO_T_UINT_8( 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4 ),
179
    BYTES_TO_T_UINT_8( 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77 ),
180
    BYTES_TO_T_UINT_8( 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8 ),
181
    BYTES_TO_T_UINT_8( 0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B ),
182
};
183
static const mbedtls_mpi_uint secp256r1_gy[] = {
184
    BYTES_TO_T_UINT_8( 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB ),
185
    BYTES_TO_T_UINT_8( 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B ),
186
    BYTES_TO_T_UINT_8( 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E ),
187
    BYTES_TO_T_UINT_8( 0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F ),
188
};
189
static const mbedtls_mpi_uint secp256r1_n[] = {
190
    BYTES_TO_T_UINT_8( 0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3 ),
191
    BYTES_TO_T_UINT_8( 0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC ),
192
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
193
    BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
194
};
195
#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
196
 
197
/*
198
 * Domain parameters for secp384r1
199
 */
200
#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
201
static const mbedtls_mpi_uint secp384r1_p[] = {
202
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
203
    BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
204
    BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
205
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
206
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
207
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
208
};
209
static const mbedtls_mpi_uint secp384r1_b[] = {
210
    BYTES_TO_T_UINT_8( 0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A ),
211
    BYTES_TO_T_UINT_8( 0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6 ),
212
    BYTES_TO_T_UINT_8( 0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03 ),
213
    BYTES_TO_T_UINT_8( 0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18 ),
214
    BYTES_TO_T_UINT_8( 0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98 ),
215
    BYTES_TO_T_UINT_8( 0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3 ),
216
};
217
static const mbedtls_mpi_uint secp384r1_gx[] = {
218
    BYTES_TO_T_UINT_8( 0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A ),
219
    BYTES_TO_T_UINT_8( 0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55 ),
220
    BYTES_TO_T_UINT_8( 0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59 ),
221
    BYTES_TO_T_UINT_8( 0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E ),
222
    BYTES_TO_T_UINT_8( 0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E ),
223
    BYTES_TO_T_UINT_8( 0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA ),
224
};
225
static const mbedtls_mpi_uint secp384r1_gy[] = {
226
    BYTES_TO_T_UINT_8( 0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A ),
227
    BYTES_TO_T_UINT_8( 0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A ),
228
    BYTES_TO_T_UINT_8( 0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9 ),
229
    BYTES_TO_T_UINT_8( 0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8 ),
230
    BYTES_TO_T_UINT_8( 0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D ),
231
    BYTES_TO_T_UINT_8( 0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36 ),
232
};
233
static const mbedtls_mpi_uint secp384r1_n[] = {
234
    BYTES_TO_T_UINT_8( 0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC ),
235
    BYTES_TO_T_UINT_8( 0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58 ),
236
    BYTES_TO_T_UINT_8( 0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7 ),
237
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
238
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
239
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
240
};
241
#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
242
 
243
/*
244
 * Domain parameters for secp521r1
245
 */
246
#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
247
static const mbedtls_mpi_uint secp521r1_p[] = {
248
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
249
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
250
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
251
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
252
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
253
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
254
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
255
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
256
    BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
257
};
258
static const mbedtls_mpi_uint secp521r1_b[] = {
259
    BYTES_TO_T_UINT_8( 0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF ),
260
    BYTES_TO_T_UINT_8( 0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35 ),
261
    BYTES_TO_T_UINT_8( 0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16 ),
262
    BYTES_TO_T_UINT_8( 0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56 ),
263
    BYTES_TO_T_UINT_8( 0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8 ),
264
    BYTES_TO_T_UINT_8( 0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2 ),
265
    BYTES_TO_T_UINT_8( 0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92 ),
266
    BYTES_TO_T_UINT_8( 0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95 ),
267
    BYTES_TO_T_UINT_2( 0x51, 0x00 ),
268
};
269
static const mbedtls_mpi_uint secp521r1_gx[] = {
270
    BYTES_TO_T_UINT_8( 0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9 ),
271
    BYTES_TO_T_UINT_8( 0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33 ),
272
    BYTES_TO_T_UINT_8( 0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE ),
273
    BYTES_TO_T_UINT_8( 0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1 ),
274
    BYTES_TO_T_UINT_8( 0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8 ),
275
    BYTES_TO_T_UINT_8( 0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C ),
276
    BYTES_TO_T_UINT_8( 0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E ),
277
    BYTES_TO_T_UINT_8( 0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85 ),
278
    BYTES_TO_T_UINT_2( 0xC6, 0x00 ),
279
};
280
static const mbedtls_mpi_uint secp521r1_gy[] = {
281
    BYTES_TO_T_UINT_8( 0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88 ),
282
    BYTES_TO_T_UINT_8( 0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35 ),
283
    BYTES_TO_T_UINT_8( 0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5 ),
284
    BYTES_TO_T_UINT_8( 0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97 ),
285
    BYTES_TO_T_UINT_8( 0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17 ),
286
    BYTES_TO_T_UINT_8( 0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98 ),
287
    BYTES_TO_T_UINT_8( 0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C ),
288
    BYTES_TO_T_UINT_8( 0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39 ),
289
    BYTES_TO_T_UINT_2( 0x18, 0x01 ),
290
};
291
static const mbedtls_mpi_uint secp521r1_n[] = {
292
    BYTES_TO_T_UINT_8( 0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB ),
293
    BYTES_TO_T_UINT_8( 0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B ),
294
    BYTES_TO_T_UINT_8( 0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F ),
295
    BYTES_TO_T_UINT_8( 0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51 ),
296
    BYTES_TO_T_UINT_8( 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
297
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
298
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
299
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
300
    BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
301
};
302
#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
303
 
304
#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
305
static const mbedtls_mpi_uint secp192k1_p[] = {
306
    BYTES_TO_T_UINT_8( 0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
307
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
308
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
309
};
310
static const mbedtls_mpi_uint secp192k1_a[] = {
311
    BYTES_TO_T_UINT_2( 0x00, 0x00 ),
312
};
313
static const mbedtls_mpi_uint secp192k1_b[] = {
314
    BYTES_TO_T_UINT_2( 0x03, 0x00 ),
315
};
316
static const mbedtls_mpi_uint secp192k1_gx[] = {
317
    BYTES_TO_T_UINT_8( 0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D ),
318
    BYTES_TO_T_UINT_8( 0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26 ),
319
    BYTES_TO_T_UINT_8( 0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB ),
320
};
321
static const mbedtls_mpi_uint secp192k1_gy[] = {
322
    BYTES_TO_T_UINT_8( 0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40 ),
323
    BYTES_TO_T_UINT_8( 0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84 ),
324
    BYTES_TO_T_UINT_8( 0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B ),
325
};
326
static const mbedtls_mpi_uint secp192k1_n[] = {
327
    BYTES_TO_T_UINT_8( 0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F ),
328
    BYTES_TO_T_UINT_8( 0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF ),
329
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
330
};
331
#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
332
 
333
#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
334
static const mbedtls_mpi_uint secp224k1_p[] = {
335
    BYTES_TO_T_UINT_8( 0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
336
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
337
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
338
    BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
339
};
340
static const mbedtls_mpi_uint secp224k1_a[] = {
341
    BYTES_TO_T_UINT_2( 0x00, 0x00 ),
342
};
343
static const mbedtls_mpi_uint secp224k1_b[] = {
344
    BYTES_TO_T_UINT_2( 0x05, 0x00 ),
345
};
346
static const mbedtls_mpi_uint secp224k1_gx[] = {
347
    BYTES_TO_T_UINT_8( 0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F ),
348
    BYTES_TO_T_UINT_8( 0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69 ),
349
    BYTES_TO_T_UINT_8( 0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D ),
350
    BYTES_TO_T_UINT_4( 0x33, 0x5B, 0x45, 0xA1 ),
351
};
352
static const mbedtls_mpi_uint secp224k1_gy[] = {
353
    BYTES_TO_T_UINT_8( 0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2 ),
354
    BYTES_TO_T_UINT_8( 0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7 ),
355
    BYTES_TO_T_UINT_8( 0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F ),
356
    BYTES_TO_T_UINT_4( 0xED, 0x9F, 0x08, 0x7E ),
357
};
358
static const mbedtls_mpi_uint secp224k1_n[] = {
359
    BYTES_TO_T_UINT_8( 0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA ),
360
    BYTES_TO_T_UINT_8( 0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00 ),
361
    BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
362
    BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ),
363
};
364
#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
365
 
366
#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
367
static const mbedtls_mpi_uint secp256k1_p[] = {
368
    BYTES_TO_T_UINT_8( 0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
369
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
370
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
371
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
372
};
373
static const mbedtls_mpi_uint secp256k1_a[] = {
374
    BYTES_TO_T_UINT_2( 0x00, 0x00 ),
375
};
376
static const mbedtls_mpi_uint secp256k1_b[] = {
377
    BYTES_TO_T_UINT_2( 0x07, 0x00 ),
378
};
379
static const mbedtls_mpi_uint secp256k1_gx[] = {
380
    BYTES_TO_T_UINT_8( 0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59 ),
381
    BYTES_TO_T_UINT_8( 0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02 ),
382
    BYTES_TO_T_UINT_8( 0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55 ),
383
    BYTES_TO_T_UINT_8( 0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79 ),
384
};
385
static const mbedtls_mpi_uint secp256k1_gy[] = {
386
    BYTES_TO_T_UINT_8( 0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C ),
387
    BYTES_TO_T_UINT_8( 0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD ),
388
    BYTES_TO_T_UINT_8( 0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D ),
389
    BYTES_TO_T_UINT_8( 0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48 ),
390
};
391
static const mbedtls_mpi_uint secp256k1_n[] = {
392
    BYTES_TO_T_UINT_8( 0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF ),
393
    BYTES_TO_T_UINT_8( 0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA ),
394
    BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
395
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
396
};
397
#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
398
 
399
/*
400
 * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
401
 */
402
#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
403
static const mbedtls_mpi_uint brainpoolP256r1_p[] = {
404
    BYTES_TO_T_UINT_8( 0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20 ),
405
    BYTES_TO_T_UINT_8( 0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E ),
406
    BYTES_TO_T_UINT_8( 0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
407
    BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
408
};
409
static const mbedtls_mpi_uint brainpoolP256r1_a[] = {
410
    BYTES_TO_T_UINT_8( 0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9 ),
411
    BYTES_TO_T_UINT_8( 0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB ),
412
    BYTES_TO_T_UINT_8( 0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE ),
413
    BYTES_TO_T_UINT_8( 0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D ),
414
};
415
static const mbedtls_mpi_uint brainpoolP256r1_b[] = {
416
    BYTES_TO_T_UINT_8( 0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B ),
417
    BYTES_TO_T_UINT_8( 0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95 ),
418
    BYTES_TO_T_UINT_8( 0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3 ),
419
    BYTES_TO_T_UINT_8( 0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26 ),
420
};
421
static const mbedtls_mpi_uint brainpoolP256r1_gx[] = {
422
    BYTES_TO_T_UINT_8( 0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A ),
423
    BYTES_TO_T_UINT_8( 0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9 ),
424
    BYTES_TO_T_UINT_8( 0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C ),
425
    BYTES_TO_T_UINT_8( 0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B ),
426
};
427
static const mbedtls_mpi_uint brainpoolP256r1_gy[] = {
428
    BYTES_TO_T_UINT_8( 0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C ),
429
    BYTES_TO_T_UINT_8( 0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2 ),
430
    BYTES_TO_T_UINT_8( 0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97 ),
431
    BYTES_TO_T_UINT_8( 0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54 ),
432
};
433
static const mbedtls_mpi_uint brainpoolP256r1_n[] = {
434
    BYTES_TO_T_UINT_8( 0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90 ),
435
    BYTES_TO_T_UINT_8( 0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C ),
436
    BYTES_TO_T_UINT_8( 0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
437
    BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
438
};
439
#endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
440
 
441
/*
442
 * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
443
 */
444
#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
445
static const mbedtls_mpi_uint brainpoolP384r1_p[] = {
446
    BYTES_TO_T_UINT_8( 0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87 ),
447
    BYTES_TO_T_UINT_8( 0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC ),
448
    BYTES_TO_T_UINT_8( 0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12 ),
449
    BYTES_TO_T_UINT_8( 0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
450
    BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
451
    BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
452
};
453
static const mbedtls_mpi_uint brainpoolP384r1_a[] = {
454
    BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
455
    BYTES_TO_T_UINT_8( 0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A ),
456
    BYTES_TO_T_UINT_8( 0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13 ),
457
    BYTES_TO_T_UINT_8( 0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2 ),
458
    BYTES_TO_T_UINT_8( 0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C ),
459
    BYTES_TO_T_UINT_8( 0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B ),
460
};
461
static const mbedtls_mpi_uint brainpoolP384r1_b[] = {
462
    BYTES_TO_T_UINT_8( 0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A ),
463
    BYTES_TO_T_UINT_8( 0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C ),
464
    BYTES_TO_T_UINT_8( 0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E ),
465
    BYTES_TO_T_UINT_8( 0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F ),
466
    BYTES_TO_T_UINT_8( 0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B ),
467
    BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
468
};
469
static const mbedtls_mpi_uint brainpoolP384r1_gx[] = {
470
    BYTES_TO_T_UINT_8( 0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF ),
471
    BYTES_TO_T_UINT_8( 0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8 ),
472
    BYTES_TO_T_UINT_8( 0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB ),
473
    BYTES_TO_T_UINT_8( 0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88 ),
474
    BYTES_TO_T_UINT_8( 0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2 ),
475
    BYTES_TO_T_UINT_8( 0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D ),
476
};
477
static const mbedtls_mpi_uint brainpoolP384r1_gy[] = {
478
    BYTES_TO_T_UINT_8( 0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42 ),
479
    BYTES_TO_T_UINT_8( 0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E ),
480
    BYTES_TO_T_UINT_8( 0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1 ),
481
    BYTES_TO_T_UINT_8( 0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62 ),
482
    BYTES_TO_T_UINT_8( 0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C ),
483
    BYTES_TO_T_UINT_8( 0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A ),
484
};
485
static const mbedtls_mpi_uint brainpoolP384r1_n[] = {
486
    BYTES_TO_T_UINT_8( 0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B ),
487
    BYTES_TO_T_UINT_8( 0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF ),
488
    BYTES_TO_T_UINT_8( 0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F ),
489
    BYTES_TO_T_UINT_8( 0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
490
    BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
491
    BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
492
};
493
#endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
494
 
495
/*
496
 * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
497
 */
498
#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
499
static const mbedtls_mpi_uint brainpoolP512r1_p[] = {
500
    BYTES_TO_T_UINT_8( 0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28 ),
501
    BYTES_TO_T_UINT_8( 0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28 ),
502
    BYTES_TO_T_UINT_8( 0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE ),
503
    BYTES_TO_T_UINT_8( 0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D ),
504
    BYTES_TO_T_UINT_8( 0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
505
    BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
506
    BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
507
    BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
508
};
509
static const mbedtls_mpi_uint brainpoolP512r1_a[] = {
510
    BYTES_TO_T_UINT_8( 0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7 ),
511
    BYTES_TO_T_UINT_8( 0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F ),
512
    BYTES_TO_T_UINT_8( 0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A ),
513
    BYTES_TO_T_UINT_8( 0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D ),
514
    BYTES_TO_T_UINT_8( 0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8 ),
515
    BYTES_TO_T_UINT_8( 0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94 ),
516
    BYTES_TO_T_UINT_8( 0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2 ),
517
    BYTES_TO_T_UINT_8( 0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78 ),
518
};
519
static const mbedtls_mpi_uint brainpoolP512r1_b[] = {
520
    BYTES_TO_T_UINT_8( 0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28 ),
521
    BYTES_TO_T_UINT_8( 0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98 ),
522
    BYTES_TO_T_UINT_8( 0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77 ),
523
    BYTES_TO_T_UINT_8( 0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B ),
524
    BYTES_TO_T_UINT_8( 0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B ),
525
    BYTES_TO_T_UINT_8( 0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8 ),
526
    BYTES_TO_T_UINT_8( 0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA ),
527
    BYTES_TO_T_UINT_8( 0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D ),
528
};
529
static const mbedtls_mpi_uint brainpoolP512r1_gx[] = {
530
    BYTES_TO_T_UINT_8( 0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B ),
531
    BYTES_TO_T_UINT_8( 0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C ),
532
    BYTES_TO_T_UINT_8( 0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50 ),
533
    BYTES_TO_T_UINT_8( 0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF ),
534
    BYTES_TO_T_UINT_8( 0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4 ),
535
    BYTES_TO_T_UINT_8( 0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85 ),
536
    BYTES_TO_T_UINT_8( 0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A ),
537
    BYTES_TO_T_UINT_8( 0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81 ),
538
};
539
static const mbedtls_mpi_uint brainpoolP512r1_gy[] = {
540
    BYTES_TO_T_UINT_8( 0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78 ),
541
    BYTES_TO_T_UINT_8( 0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1 ),
542
    BYTES_TO_T_UINT_8( 0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B ),
543
    BYTES_TO_T_UINT_8( 0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2 ),
544
    BYTES_TO_T_UINT_8( 0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0 ),
545
    BYTES_TO_T_UINT_8( 0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2 ),
546
    BYTES_TO_T_UINT_8( 0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0 ),
547
    BYTES_TO_T_UINT_8( 0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D ),
548
};
549
static const mbedtls_mpi_uint brainpoolP512r1_n[] = {
550
    BYTES_TO_T_UINT_8( 0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5 ),
551
    BYTES_TO_T_UINT_8( 0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D ),
552
    BYTES_TO_T_UINT_8( 0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41 ),
553
    BYTES_TO_T_UINT_8( 0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55 ),
554
    BYTES_TO_T_UINT_8( 0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
555
    BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
556
    BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
557
    BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
558
};
559
#endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
560
 
561
/*
562
 * Create an MPI from embedded constants
563
 * (assumes len is an exact multiple of sizeof mbedtls_mpi_uint)
564
 */
565
static inline void ecp_mpi_load( mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len )
566
{
567
    X->s = 1;
568
    X->n = len / sizeof( mbedtls_mpi_uint );
569
    X->p = (mbedtls_mpi_uint *) p;
570
}
571
 
572
/*
573
 * Set an MPI to static value 1
574
 */
575
static inline void ecp_mpi_set1( mbedtls_mpi *X )
576
{
577
    static mbedtls_mpi_uint one[] = { 1 };
578
    X->s = 1;
579
    X->n = 1;
580
    X->p = one;
581
}
582
 
583
/*
584
 * Make group available from embedded constants
585
 */
586
static int ecp_group_load( mbedtls_ecp_group *grp,
587
                           const mbedtls_mpi_uint *p,  size_t plen,
588
                           const mbedtls_mpi_uint *a,  size_t alen,
589
                           const mbedtls_mpi_uint *b,  size_t blen,
590
                           const mbedtls_mpi_uint *gx, size_t gxlen,
591
                           const mbedtls_mpi_uint *gy, size_t gylen,
592
                           const mbedtls_mpi_uint *n,  size_t nlen)
593
{
594
    ecp_mpi_load( &grp->P, p, plen );
595
    if( a != NULL )
596
        ecp_mpi_load( &grp->A, a, alen );
597
    ecp_mpi_load( &grp->B, b, blen );
598
    ecp_mpi_load( &grp->N, n, nlen );
599
 
600
    ecp_mpi_load( &grp->G.X, gx, gxlen );
601
    ecp_mpi_load( &grp->G.Y, gy, gylen );
602
    ecp_mpi_set1( &grp->G.Z );
603
 
604
    grp->pbits = mbedtls_mpi_bitlen( &grp->P );
605
    grp->nbits = mbedtls_mpi_bitlen( &grp->N );
606
 
607
    grp->h = 1;
608
 
609
    return( 0 );
610
}
611
 
612
#if defined(MBEDTLS_ECP_NIST_OPTIM)
613
/* Forward declarations */
614
#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
615
static int ecp_mod_p192( mbedtls_mpi * );
616
#endif
617
#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
618
static int ecp_mod_p224( mbedtls_mpi * );
619
#endif
620
#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
621
static int ecp_mod_p256( mbedtls_mpi * );
622
#endif
623
#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
624
static int ecp_mod_p384( mbedtls_mpi * );
625
#endif
626
#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
627
static int ecp_mod_p521( mbedtls_mpi * );
628
#endif
629
 
630
#define NIST_MODP( P )      grp->modp = ecp_mod_ ## P;
631
#else
632
#define NIST_MODP( P )
633
#endif /* MBEDTLS_ECP_NIST_OPTIM */
634
 
635
/* Additional forward declarations */
636
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
637
static int ecp_mod_p255( mbedtls_mpi * );
638
#endif
639
#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
640
static int ecp_mod_p448( mbedtls_mpi * );
641
#endif
642
#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
643
static int ecp_mod_p192k1( mbedtls_mpi * );
644
#endif
645
#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
646
static int ecp_mod_p224k1( mbedtls_mpi * );
647
#endif
648
#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
649
static int ecp_mod_p256k1( mbedtls_mpi * );
650
#endif
651
 
652
#define LOAD_GROUP_A( G )   ecp_group_load( grp,            \
653
                            G ## _p,  sizeof( G ## _p  ),   \
654
                            G ## _a,  sizeof( G ## _a  ),   \
655
                            G ## _b,  sizeof( G ## _b  ),   \
656
                            G ## _gx, sizeof( G ## _gx ),   \
657
                            G ## _gy, sizeof( G ## _gy ),   \
658
                            G ## _n,  sizeof( G ## _n  ) )
659
 
660
#define LOAD_GROUP( G )     ecp_group_load( grp,            \
661
                            G ## _p,  sizeof( G ## _p  ),   \
662
                            NULL,     0,                    \
663
                            G ## _b,  sizeof( G ## _b  ),   \
664
                            G ## _gx, sizeof( G ## _gx ),   \
665
                            G ## _gy, sizeof( G ## _gy ),   \
666
                            G ## _n,  sizeof( G ## _n  ) )
667
 
668
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
669
/*
670
 * Specialized function for creating the Curve25519 group
671
 */
672
static int ecp_use_curve25519( mbedtls_ecp_group *grp )
673
{
674
    int ret;
675
 
676
    /* Actually ( A + 2 ) / 4 */
677
    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "01DB42" ) );
678
 
679
    /* P = 2^255 - 19 */
680
    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
681
    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 255 ) );
682
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 19 ) );
683
    grp->pbits = mbedtls_mpi_bitlen( &grp->P );
684
 
685
    /* N = 2^252 + 27742317777372353535851937790883648493 */
686
    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->N, 16,
687
                                              "14DEF9DEA2F79CD65812631A5CF5D3ED" ) );
688
    MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &grp->N, 252, 1 ) );
689
 
690
    /* Y intentionally not set, since we use x/z coordinates.
691
     * This is used as a marker to identify Montgomery curves! */
692
    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 9 ) );
693
    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
694
    mbedtls_mpi_free( &grp->G.Y );
695
 
696
    /* Actually, the required msb for private keys */
697
    grp->nbits = 254;
698
 
699
cleanup:
700
    if( ret != 0 )
701
        mbedtls_ecp_group_free( grp );
702
 
703
    return( ret );
704
}
705
#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
706
 
707
#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
708
/*
709
 * Specialized function for creating the Curve448 group
710
 */
711
static int ecp_use_curve448( mbedtls_ecp_group *grp )
712
{
713
    mbedtls_mpi Ns;
714
    int ret;
715
 
716
    mbedtls_mpi_init( &Ns );
717
 
718
    /* Actually ( A + 2 ) / 4 */
719
    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "98AA" ) );
720
 
721
    /* P = 2^448 - 2^224 - 1 */
722
    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
723
    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) );
724
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) );
725
    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) );
726
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) );
727
    grp->pbits = mbedtls_mpi_bitlen( &grp->P );
728
 
729
    /* Y intentionally not set, since we use x/z coordinates.
730
     * This is used as a marker to identify Montgomery curves! */
731
    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 5 ) );
732
    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
733
    mbedtls_mpi_free( &grp->G.Y );
734
 
735
    /* N = 2^446 - 13818066809895115352007386748515426880336692474882178609894547503885 */
736
    MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &grp->N, 446, 1 ) );
737
    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &Ns, 16,
738
                                              "8335DC163BB124B65129C96FDE933D8D723A70AADC873D6D54A7BB0D" ) );
739
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &grp->N, &grp->N, &Ns ) );
740
 
741
    /* Actually, the required msb for private keys */
742
    grp->nbits = 447;
743
 
744
cleanup:
745
    mbedtls_mpi_free( &Ns );
746
    if( ret != 0 )
747
        mbedtls_ecp_group_free( grp );
748
 
749
    return( ret );
750
}
751
#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
752
 
753
/*
754
 * Set a group using well-known domain parameters
755
 */
756
int mbedtls_ecp_group_load( mbedtls_ecp_group *grp, mbedtls_ecp_group_id id )
757
{
758
    ECP_VALIDATE_RET( grp != NULL );
759
    mbedtls_ecp_group_free( grp );
760
 
761
    grp->id = id;
762
 
763
    switch( id )
764
    {
765
#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
766
        case MBEDTLS_ECP_DP_SECP192R1:
767
            NIST_MODP( p192 );
768
            return( LOAD_GROUP( secp192r1 ) );
769
#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
770
 
771
#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
772
        case MBEDTLS_ECP_DP_SECP224R1:
773
            NIST_MODP( p224 );
774
            return( LOAD_GROUP( secp224r1 ) );
775
#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
776
 
777
#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
778
        case MBEDTLS_ECP_DP_SECP256R1:
779
            NIST_MODP( p256 );
780
            return( LOAD_GROUP( secp256r1 ) );
781
#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
782
 
783
#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
784
        case MBEDTLS_ECP_DP_SECP384R1:
785
            NIST_MODP( p384 );
786
            return( LOAD_GROUP( secp384r1 ) );
787
#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
788
 
789
#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
790
        case MBEDTLS_ECP_DP_SECP521R1:
791
            NIST_MODP( p521 );
792
            return( LOAD_GROUP( secp521r1 ) );
793
#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
794
 
795
#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
796
        case MBEDTLS_ECP_DP_SECP192K1:
797
            grp->modp = ecp_mod_p192k1;
798
            return( LOAD_GROUP_A( secp192k1 ) );
799
#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
800
 
801
#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
802
        case MBEDTLS_ECP_DP_SECP224K1:
803
            grp->modp = ecp_mod_p224k1;
804
            return( LOAD_GROUP_A( secp224k1 ) );
805
#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
806
 
807
#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
808
        case MBEDTLS_ECP_DP_SECP256K1:
809
            grp->modp = ecp_mod_p256k1;
810
            return( LOAD_GROUP_A( secp256k1 ) );
811
#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
812
 
813
#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
814
        case MBEDTLS_ECP_DP_BP256R1:
815
            return( LOAD_GROUP_A( brainpoolP256r1 ) );
816
#endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
817
 
818
#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
819
        case MBEDTLS_ECP_DP_BP384R1:
820
            return( LOAD_GROUP_A( brainpoolP384r1 ) );
821
#endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
822
 
823
#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
824
        case MBEDTLS_ECP_DP_BP512R1:
825
            return( LOAD_GROUP_A( brainpoolP512r1 ) );
826
#endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
827
 
828
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
829
        case MBEDTLS_ECP_DP_CURVE25519:
830
            grp->modp = ecp_mod_p255;
831
            return( ecp_use_curve25519( grp ) );
832
#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
833
 
834
#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
835
        case MBEDTLS_ECP_DP_CURVE448:
836
            grp->modp = ecp_mod_p448;
837
            return( ecp_use_curve448( grp ) );
838
#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
839
 
840
        default:
841
            mbedtls_ecp_group_free( grp );
842
            return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
843
    }
844
}
845
 
846
#if defined(MBEDTLS_ECP_NIST_OPTIM)
847
/*
848
 * Fast reduction modulo the primes used by the NIST curves.
849
 *
850
 * These functions are critical for speed, but not needed for correct
851
 * operations. So, we make the choice to heavily rely on the internals of our
852
 * bignum library, which creates a tight coupling between these functions and
853
 * our MPI implementation.  However, the coupling between the ECP module and
854
 * MPI remains loose, since these functions can be deactivated at will.
855
 */
856
 
857
#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
858
/*
859
 * Compared to the way things are presented in FIPS 186-3 D.2,
860
 * we proceed in columns, from right (least significant chunk) to left,
861
 * adding chunks to N in place, and keeping a carry for the next chunk.
862
 * This avoids moving things around in memory, and uselessly adding zeros,
863
 * compared to the more straightforward, line-oriented approach.
864
 *
865
 * For this prime we need to handle data in chunks of 64 bits.
866
 * Since this is always a multiple of our basic mbedtls_mpi_uint, we can
867
 * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it.
868
 */
869
 
870
/* Add 64-bit chunks (dst += src) and update carry */
871
static inline void add64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry )
872
{
873
    unsigned char i;
874
    mbedtls_mpi_uint c = 0;
875
    for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++, src++ )
876
    {
877
        *dst += c;      c  = ( *dst < c );
878
        *dst += *src;   c += ( *dst < *src );
879
    }
880
    *carry += c;
881
}
882
 
883
/* Add carry to a 64-bit chunk and update carry */
884
static inline void carry64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry )
885
{
886
    unsigned char i;
887
    for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++ )
888
    {
889
        *dst += *carry;
890
        *carry  = ( *dst < *carry );
891
    }
892
}
893
 
894
#define WIDTH       8 / sizeof( mbedtls_mpi_uint )
895
#define A( i )      N->p + (i) * WIDTH
896
#define ADD( i )    add64( p, A( i ), &c )
897
#define NEXT        p += WIDTH; carry64( p, &c )
898
#define LAST        p += WIDTH; *p = c; while( ++p < end ) *p = 0
899
 
900
/*
901
 * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
902
 */
903
static int ecp_mod_p192( mbedtls_mpi *N )
904
{
905
    int ret;
906
    mbedtls_mpi_uint c = 0;
907
    mbedtls_mpi_uint *p, *end;
908
 
909
    /* Make sure we have enough blocks so that A(5) is legal */
910
    MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, 6 * WIDTH ) );
911
 
912
    p = N->p;
913
    end = p + N->n;
914
 
915
    ADD( 3 ); ADD( 5 );             NEXT; // A0 += A3 + A5
916
    ADD( 3 ); ADD( 4 ); ADD( 5 );   NEXT; // A1 += A3 + A4 + A5
917
    ADD( 4 ); ADD( 5 );             LAST; // A2 += A4 + A5
918
 
919
cleanup:
920
    return( ret );
921
}
922
 
923
#undef WIDTH
924
#undef A
925
#undef ADD
926
#undef NEXT
927
#undef LAST
928
#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
929
 
930
#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) ||   \
931
    defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) ||   \
932
    defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
933
/*
934
 * The reader is advised to first understand ecp_mod_p192() since the same
935
 * general structure is used here, but with additional complications:
936
 * (1) chunks of 32 bits, and (2) subtractions.
937
 */
938
 
939
/*
940
 * For these primes, we need to handle data in chunks of 32 bits.
941
 * This makes it more complicated if we use 64 bits limbs in MPI,
942
 * which prevents us from using a uniform access method as for p192.
943
 *
944
 * So, we define a mini abstraction layer to access 32 bit chunks,
945
 * load them in 'cur' for work, and store them back from 'cur' when done.
946
 *
947
 * While at it, also define the size of N in terms of 32-bit chunks.
948
 */
949
#define LOAD32      cur = A( i );
950
 
951
#if defined(MBEDTLS_HAVE_INT32)  /* 32 bit */
952
 
953
#define MAX32       N->n
954
#define A( j )      N->p[j]
955
#define STORE32     N->p[i] = cur;
956
 
957
#else                               /* 64-bit */
958
 
959
#define MAX32       N->n * 2
960
#define A( j ) (j) % 2 ? (uint32_t)( N->p[(j)/2] >> 32 ) : \
961
                         (uint32_t)( N->p[(j)/2] )
962
#define STORE32                                   \
963
    if( i % 2 ) {                                 \
964
        N->p[i/2] &= 0x00000000FFFFFFFF;          \
965
        N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32;        \
966
    } else {                                      \
967
        N->p[i/2] &= 0xFFFFFFFF00000000;          \
968
        N->p[i/2] |= (mbedtls_mpi_uint) cur;                \
969
    }
970
 
971
#endif /* sizeof( mbedtls_mpi_uint ) */
972
 
973
/*
974
 * Helpers for addition and subtraction of chunks, with signed carry.
975
 */
976
static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
977
{
978
    *dst += src;
979
    *carry += ( *dst < src );
980
}
981
 
982
static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
983
{
984
    *carry -= ( *dst < src );
985
    *dst -= src;
986
}
987
 
988
#define ADD( j )    add32( &cur, A( j ), &c );
989
#define SUB( j )    sub32( &cur, A( j ), &c );
990
 
991
/*
992
 * Helpers for the main 'loop'
993
 * (see fix_negative for the motivation of C)
994
 */
995
#define INIT( b )                                                       \
996
    int ret;                                                            \
997
    signed char c = 0, cc;                                              \
998
    uint32_t cur;                                                       \
999
    size_t i = 0, bits = (b);                                           \
1000
    mbedtls_mpi C;                                                      \
1001
    mbedtls_mpi_uint Cp[ (b) / 8 / sizeof( mbedtls_mpi_uint) + 1 ];     \
1002
                                                                        \
1003
    C.s = 1;                                                            \
1004
    C.n = (b) / 8 / sizeof( mbedtls_mpi_uint) + 1;                      \
1005
    C.p = Cp;                                                           \
1006
    memset( Cp, 0, C.n * sizeof( mbedtls_mpi_uint ) );                  \
1007
                                                                        \
1008
    MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, (b) * 2 / 8 /                 \
1009
                                       sizeof( mbedtls_mpi_uint ) ) );  \
1010
    LOAD32;
1011
 
1012
#define NEXT                    \
1013
    STORE32; i++; LOAD32;       \
1014
    cc = c; c = 0;              \
1015
    if( cc < 0 )                \
1016
        sub32( &cur, -cc, &c ); \
1017
    else                        \
1018
        add32( &cur, cc, &c );  \
1019
 
1020
#define LAST                                    \
1021
    STORE32; i++;                               \
1022
    cur = c > 0 ? c : 0; STORE32;               \
1023
    cur = 0; while( ++i < MAX32 ) { STORE32; }  \
1024
    if( c < 0 ) fix_negative( N, c, &C, bits );
1025
 
1026
/*
1027
 * If the result is negative, we get it in the form
1028
 * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
1029
 */
1030
static inline int fix_negative( mbedtls_mpi *N, signed char c, mbedtls_mpi *C, size_t bits )
1031
{
1032
    int ret;
1033
 
1034
    /* C = - c * 2^(bits + 32) */
1035
#if !defined(MBEDTLS_HAVE_INT64)
1036
    ((void) bits);
1037
#else
1038
    if( bits == 224 )
1039
        C->p[ C->n - 1 ] = ((mbedtls_mpi_uint) -c) << 32;
1040
    else
1041
#endif
1042
        C->p[ C->n - 1 ] = (mbedtls_mpi_uint) -c;
1043
 
1044
    /* N = - ( C - N ) */
1045
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, C, N ) );
1046
    N->s = -1;
1047
 
1048
cleanup:
1049
 
1050
    return( ret );
1051
}
1052
 
1053
#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
1054
/*
1055
 * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
1056
 */
1057
static int ecp_mod_p224( mbedtls_mpi *N )
1058
{
1059
    INIT( 224 );
1060
 
1061
    SUB(  7 ); SUB( 11 );               NEXT; // A0 += -A7 - A11
1062
    SUB(  8 ); SUB( 12 );               NEXT; // A1 += -A8 - A12
1063
    SUB(  9 ); SUB( 13 );               NEXT; // A2 += -A9 - A13
1064
    SUB( 10 ); ADD(  7 ); ADD( 11 );    NEXT; // A3 += -A10 + A7 + A11
1065
    SUB( 11 ); ADD(  8 ); ADD( 12 );    NEXT; // A4 += -A11 + A8 + A12
1066
    SUB( 12 ); ADD(  9 ); ADD( 13 );    NEXT; // A5 += -A12 + A9 + A13
1067
    SUB( 13 ); ADD( 10 );               LAST; // A6 += -A13 + A10
1068
 
1069
cleanup:
1070
    return( ret );
1071
}
1072
#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
1073
 
1074
#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
1075
/*
1076
 * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
1077
 */
1078
static int ecp_mod_p256( mbedtls_mpi *N )
1079
{
1080
    INIT( 256 );
1081
 
1082
    ADD(  8 ); ADD(  9 );
1083
    SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 );             NEXT; // A0
1084
 
1085
    ADD(  9 ); ADD( 10 );
1086
    SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 );             NEXT; // A1
1087
 
1088
    ADD( 10 ); ADD( 11 );
1089
    SUB( 13 ); SUB( 14 ); SUB( 15 );                        NEXT; // A2
1090
 
1091
    ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
1092
    SUB( 15 ); SUB(  8 ); SUB(  9 );                        NEXT; // A3
1093
 
1094
    ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
1095
    SUB(  9 ); SUB( 10 );                                   NEXT; // A4
1096
 
1097
    ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
1098
    SUB( 10 ); SUB( 11 );                                   NEXT; // A5
1099
 
1100
    ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
1101
    SUB(  8 ); SUB(  9 );                                   NEXT; // A6
1102
 
1103
    ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
1104
    SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 );             LAST; // A7
1105
 
1106
cleanup:
1107
    return( ret );
1108
}
1109
#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
1110
 
1111
#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
1112
/*
1113
 * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
1114
 */
1115
static int ecp_mod_p384( mbedtls_mpi *N )
1116
{
1117
    INIT( 384 );
1118
 
1119
    ADD( 12 ); ADD( 21 ); ADD( 20 );
1120
    SUB( 23 );                                              NEXT; // A0
1121
 
1122
    ADD( 13 ); ADD( 22 ); ADD( 23 );
1123
    SUB( 12 ); SUB( 20 );                                   NEXT; // A2
1124
 
1125
    ADD( 14 ); ADD( 23 );
1126
    SUB( 13 ); SUB( 21 );                                   NEXT; // A2
1127
 
1128
    ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
1129
    SUB( 14 ); SUB( 22 ); SUB( 23 );                        NEXT; // A3
1130
 
1131
    ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
1132
    SUB( 15 ); SUB( 23 ); SUB( 23 );                        NEXT; // A4
1133
 
1134
    ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
1135
    SUB( 16 );                                              NEXT; // A5
1136
 
1137
    ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
1138
    SUB( 17 );                                              NEXT; // A6
1139
 
1140
    ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
1141
    SUB( 18 );                                              NEXT; // A7
1142
 
1143
    ADD( 20 ); ADD( 17 ); ADD( 16 );
1144
    SUB( 19 );                                              NEXT; // A8
1145
 
1146
    ADD( 21 ); ADD( 18 ); ADD( 17 );
1147
    SUB( 20 );                                              NEXT; // A9
1148
 
1149
    ADD( 22 ); ADD( 19 ); ADD( 18 );
1150
    SUB( 21 );                                              NEXT; // A10
1151
 
1152
    ADD( 23 ); ADD( 20 ); ADD( 19 );
1153
    SUB( 22 );                                              LAST; // A11
1154
 
1155
cleanup:
1156
    return( ret );
1157
}
1158
#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1159
 
1160
#undef A
1161
#undef LOAD32
1162
#undef STORE32
1163
#undef MAX32
1164
#undef INIT
1165
#undef NEXT
1166
#undef LAST
1167
 
1168
#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED ||
1169
          MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
1170
          MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1171
 
1172
#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
1173
/*
1174
 * Here we have an actual Mersenne prime, so things are more straightforward.
1175
 * However, chunks are aligned on a 'weird' boundary (521 bits).
1176
 */
1177
 
1178
/* Size of p521 in terms of mbedtls_mpi_uint */
1179
#define P521_WIDTH      ( 521 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1180
 
1181
/* Bits to keep in the most significant mbedtls_mpi_uint */
1182
#define P521_MASK       0x01FF
1183
 
1184
/*
1185
 * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
1186
 * Write N as A1 + 2^521 A0, return A0 + A1
1187
 */
1188
static int ecp_mod_p521( mbedtls_mpi *N )
1189
{
1190
    int ret;
1191
    size_t i;
1192
    mbedtls_mpi M;
1193
    mbedtls_mpi_uint Mp[P521_WIDTH + 1];
1194
    /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits:
1195
     * we need to hold bits 513 to 1056, which is 34 limbs, that is
1196
     * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
1197
 
1198
    if( N->n < P521_WIDTH )
1199
        return( 0 );
1200
 
1201
    /* M = A1 */
1202
    M.s = 1;
1203
    M.n = N->n - ( P521_WIDTH - 1 );
1204
    if( M.n > P521_WIDTH + 1 )
1205
        M.n = P521_WIDTH + 1;
1206
    M.p = Mp;
1207
    memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
1208
    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 521 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1209
 
1210
    /* N = A0 */
1211
    N->p[P521_WIDTH - 1] &= P521_MASK;
1212
    for( i = P521_WIDTH; i < N->n; i++ )
1213
        N->p[i] = 0;
1214
 
1215
    /* N = A0 + A1 */
1216
    MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1217
 
1218
cleanup:
1219
    return( ret );
1220
}
1221
 
1222
#undef P521_WIDTH
1223
#undef P521_MASK
1224
#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
1225
 
1226
#endif /* MBEDTLS_ECP_NIST_OPTIM */
1227
 
1228
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
1229
 
1230
/* Size of p255 in terms of mbedtls_mpi_uint */
1231
#define P255_WIDTH      ( 255 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1232
 
1233
/*
1234
 * Fast quasi-reduction modulo p255 = 2^255 - 19
1235
 * Write N as A0 + 2^255 A1, return A0 + 19 * A1
1236
 */
1237
static int ecp_mod_p255( mbedtls_mpi *N )
1238
{
1239
    int ret;
1240
    size_t i;
1241
    mbedtls_mpi M;
1242
    mbedtls_mpi_uint Mp[P255_WIDTH + 2];
1243
 
1244
    if( N->n < P255_WIDTH )
1245
        return( 0 );
1246
 
1247
    /* M = A1 */
1248
    M.s = 1;
1249
    M.n = N->n - ( P255_WIDTH - 1 );
1250
    if( M.n > P255_WIDTH + 1 )
1251
        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1252
    M.p = Mp;
1253
    memset( Mp, 0, sizeof Mp );
1254
    memcpy( Mp, N->p + P255_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
1255
    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 255 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1256
    M.n++; /* Make room for multiplication by 19 */
1257
 
1258
    /* N = A0 */
1259
    MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( N, 255, 0 ) );
1260
    for( i = P255_WIDTH; i < N->n; i++ )
1261
        N->p[i] = 0;
1262
 
1263
    /* N = A0 + 19 * A1 */
1264
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &M, 19 ) );
1265
    MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1266
 
1267
cleanup:
1268
    return( ret );
1269
}
1270
#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
1271
 
1272
#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
1273
 
1274
/* Size of p448 in terms of mbedtls_mpi_uint */
1275
#define P448_WIDTH      ( 448 / 8 / sizeof( mbedtls_mpi_uint ) )
1276
 
1277
/* Number of limbs fully occupied by 2^224 (max), and limbs used by it (min) */
1278
#define DIV_ROUND_UP( X, Y ) ( ( ( X ) + ( Y ) - 1 ) / ( Y ) )
1279
#define P224_WIDTH_MIN   ( 28 / sizeof( mbedtls_mpi_uint ) )
1280
#define P224_WIDTH_MAX   DIV_ROUND_UP( 28, sizeof( mbedtls_mpi_uint ) )
1281
#define P224_UNUSED_BITS ( ( P224_WIDTH_MAX * sizeof( mbedtls_mpi_uint ) * 8 ) - 224 )
1282
 
1283
/*
1284
 * Fast quasi-reduction modulo p448 = 2^448 - 2^224 - 1
1285
 * Write N as A0 + 2^448 A1 and A1 as B0 + 2^224 B1, and return
1286
 * A0 + A1 + B1 + (B0 + B1) * 2^224.  This is different to the reference
1287
 * implementation of Curve448, which uses its own special 56-bit limbs rather
1288
 * than a generic bignum library.  We could squeeze some extra speed out on
1289
 * 32-bit machines by splitting N up into 32-bit limbs and doing the
1290
 * arithmetic using the limbs directly as we do for the NIST primes above,
1291
 * but for 64-bit targets it should use half the number of operations if we do
1292
 * the reduction with 224-bit limbs, since mpi_add_mpi will then use 64-bit adds.
1293
 */
1294
static int ecp_mod_p448( mbedtls_mpi *N )
1295
{
1296
    int ret;
1297
    size_t i;
1298
    mbedtls_mpi M, Q;
1299
    mbedtls_mpi_uint Mp[P448_WIDTH + 1], Qp[P448_WIDTH];
1300
 
1301
    if( N->n <= P448_WIDTH )
1302
        return( 0 );
1303
 
1304
    /* M = A1 */
1305
    M.s = 1;
1306
    M.n = N->n - ( P448_WIDTH );
1307
    if( M.n > P448_WIDTH )
1308
        /* Shouldn't be called with N larger than 2^896! */
1309
        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1310
    M.p = Mp;
1311
    memset( Mp, 0, sizeof( Mp ) );
1312
    memcpy( Mp, N->p + P448_WIDTH, M.n * sizeof( mbedtls_mpi_uint ) );
1313
 
1314
    /* N = A0 */
1315
    for( i = P448_WIDTH; i < N->n; i++ )
1316
        N->p[i] = 0;
1317
 
1318
    /* N += A1 */
1319
    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &M ) );
1320
 
1321
    /* Q = B1, N += B1 */
1322
    Q = M;
1323
    Q.p = Qp;
1324
    memcpy( Qp, Mp, sizeof( Qp ) );
1325
    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Q, 224 ) );
1326
    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &Q ) );
1327
 
1328
    /* M = (B0 + B1) * 2^224, N += M */
1329
    if( sizeof( mbedtls_mpi_uint ) > 4 )
1330
        Mp[P224_WIDTH_MIN] &= ( (mbedtls_mpi_uint)-1 ) >> ( P224_UNUSED_BITS );
1331
    for( i = P224_WIDTH_MAX; i < M.n; ++i )
1332
        Mp[i] = 0;
1333
    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M, &M, &Q ) );
1334
    M.n = P448_WIDTH + 1; /* Make room for shifted carry bit from the addition */
1335
    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &M, 224 ) );
1336
    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &M ) );
1337
 
1338
cleanup:
1339
    return( ret );
1340
}
1341
#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
1342
 
1343
#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||   \
1344
    defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||   \
1345
    defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1346
/*
1347
 * Fast quasi-reduction modulo P = 2^s - R,
1348
 * with R about 33 bits, used by the Koblitz curves.
1349
 *
1350
 * Write N as A0 + 2^224 A1, return A0 + R * A1.
1351
 * Actually do two passes, since R is big.
1352
 */
1353
#define P_KOBLITZ_MAX   ( 256 / 8 / sizeof( mbedtls_mpi_uint ) )  // Max limbs in P
1354
#define P_KOBLITZ_R     ( 8 / sizeof( mbedtls_mpi_uint ) )        // Limbs in R
1355
static inline int ecp_mod_koblitz( mbedtls_mpi *N, mbedtls_mpi_uint *Rp, size_t p_limbs,
1356
                                   size_t adjust, size_t shift, mbedtls_mpi_uint mask )
1357
{
1358
    int ret;
1359
    size_t i;
1360
    mbedtls_mpi M, R;
1361
    mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R + 1];
1362
 
1363
    if( N->n < p_limbs )
1364
        return( 0 );
1365
 
1366
    /* Init R */
1367
    R.s = 1;
1368
    R.p = Rp;
1369
    R.n = P_KOBLITZ_R;
1370
 
1371
    /* Common setup for M */
1372
    M.s = 1;
1373
    M.p = Mp;
1374
 
1375
    /* M = A1 */
1376
    M.n = N->n - ( p_limbs - adjust );
1377
    if( M.n > p_limbs + adjust )
1378
        M.n = p_limbs + adjust;
1379
    memset( Mp, 0, sizeof Mp );
1380
    memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
1381
    if( shift != 0 )
1382
        MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1383
    M.n += R.n; /* Make room for multiplication by R */
1384
 
1385
    /* N = A0 */
1386
    if( mask != 0 )
1387
        N->p[p_limbs - 1] &= mask;
1388
    for( i = p_limbs; i < N->n; i++ )
1389
        N->p[i] = 0;
1390
 
1391
    /* N = A0 + R * A1 */
1392
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1393
    MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1394
 
1395
    /* Second pass */
1396
 
1397
    /* M = A1 */
1398
    M.n = N->n - ( p_limbs - adjust );
1399
    if( M.n > p_limbs + adjust )
1400
        M.n = p_limbs + adjust;
1401
    memset( Mp, 0, sizeof Mp );
1402
    memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
1403
    if( shift != 0 )
1404
        MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1405
    M.n += R.n; /* Make room for multiplication by R */
1406
 
1407
    /* N = A0 */
1408
    if( mask != 0 )
1409
        N->p[p_limbs - 1] &= mask;
1410
    for( i = p_limbs; i < N->n; i++ )
1411
        N->p[i] = 0;
1412
 
1413
    /* N = A0 + R * A1 */
1414
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1415
    MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1416
 
1417
cleanup:
1418
    return( ret );
1419
}
1420
#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||
1421
          MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||
1422
          MBEDTLS_ECP_DP_SECP256K1_ENABLED) */
1423
 
1424
#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
1425
/*
1426
 * Fast quasi-reduction modulo p192k1 = 2^192 - R,
1427
 * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119
1428
 */
1429
static int ecp_mod_p192k1( mbedtls_mpi *N )
1430
{
1431
    static mbedtls_mpi_uint Rp[] = {
1432
        BYTES_TO_T_UINT_8( 0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1433
 
1434
    return( ecp_mod_koblitz( N, Rp, 192 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1435
}
1436
#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
1437
 
1438
#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
1439
/*
1440
 * Fast quasi-reduction modulo p224k1 = 2^224 - R,
1441
 * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
1442
 */
1443
static int ecp_mod_p224k1( mbedtls_mpi *N )
1444
{
1445
    static mbedtls_mpi_uint Rp[] = {
1446
        BYTES_TO_T_UINT_8( 0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1447
 
1448
#if defined(MBEDTLS_HAVE_INT64)
1449
    return( ecp_mod_koblitz( N, Rp, 4, 1, 32, 0xFFFFFFFF ) );
1450
#else
1451
    return( ecp_mod_koblitz( N, Rp, 224 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1452
#endif
1453
}
1454
 
1455
#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
1456
 
1457
#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1458
/*
1459
 * Fast quasi-reduction modulo p256k1 = 2^256 - R,
1460
 * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
1461
 */
1462
static int ecp_mod_p256k1( mbedtls_mpi *N )
1463
{
1464
    static mbedtls_mpi_uint Rp[] = {
1465
        BYTES_TO_T_UINT_8( 0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1466
    return( ecp_mod_koblitz( N, Rp, 256 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1467
}
1468
#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
1469
 
1470
#endif /* !MBEDTLS_ECP_ALT */
1471
 
1472
#endif /* MBEDTLS_ECP_C */