Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
1901 serge 1
/*
2
 * Copyright © 2010 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eric Anholt 
25
 *
26
 */
27
 
28
/** @file register_allocate.c
29
 *
30
 * Graph-coloring register allocator.
31
 */
32
 
33
#include 
34
 
35
#include "main/imports.h"
36
#include "main/macros.h"
37
#include "main/mtypes.h"
38
#include "register_allocate.h"
39
 
40
struct ra_reg {
41
   char *name;
42
   GLboolean *conflicts;
43
};
44
 
45
struct ra_regs {
46
   struct ra_reg *regs;
47
   unsigned int count;
48
 
49
   struct ra_class **classes;
50
   unsigned int class_count;
51
};
52
 
53
struct ra_class {
54
   GLboolean *regs;
55
 
56
   /**
57
    * p_B in Runeson/Nyström paper.
58
    *
59
    * This is "how many regs are in the set."
60
    */
61
   unsigned int p;
62
 
63
   /**
64
    * q_B,C in Runeson/Nyström paper.
65
    */
66
   unsigned int *q;
67
};
68
 
69
struct ra_node {
70
   GLboolean *adjacency;
71
   unsigned int class;
72
   unsigned int adjacency_count;
73
   unsigned int reg;
74
   GLboolean in_stack;
75
   float spill_cost;
76
};
77
 
78
struct ra_graph {
79
   struct ra_regs *regs;
80
   /**
81
    * the variables that need register allocation.
82
    */
83
   struct ra_node *nodes;
84
   unsigned int count; /**< count of nodes. */
85
 
86
   unsigned int *stack;
87
   unsigned int stack_count;
88
};
89
 
90
struct ra_regs *
91
ra_alloc_reg_set(unsigned int count)
92
{
93
   unsigned int i;
94
   struct ra_regs *regs;
95
 
96
   regs = rzalloc(NULL, struct ra_regs);
97
   regs->count = count;
98
   regs->regs = rzalloc_array(regs, struct ra_reg, count);
99
 
100
   for (i = 0; i < count; i++) {
101
      regs->regs[i].conflicts = rzalloc_array(regs->regs, GLboolean, count);
102
      regs->regs[i].conflicts[i] = GL_TRUE;
103
   }
104
 
105
   return regs;
106
}
107
 
108
void
109
ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
110
{
111
   regs->regs[r1].conflicts[r2] = GL_TRUE;
112
   regs->regs[r2].conflicts[r1] = GL_TRUE;
113
}
114
 
115
unsigned int
116
ra_alloc_reg_class(struct ra_regs *regs)
117
{
118
   struct ra_class *class;
119
 
120
   regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
121
			    regs->class_count + 1);
122
 
123
   class = rzalloc(regs, struct ra_class);
124
   regs->classes[regs->class_count] = class;
125
 
126
   class->regs = rzalloc_array(class, GLboolean, regs->count);
127
 
128
   return regs->class_count++;
129
}
130
 
131
void
132
ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
133
{
134
   struct ra_class *class = regs->classes[c];
135
 
136
   class->regs[r] = GL_TRUE;
137
   class->p++;
138
}
139
 
140
/**
141
 * Must be called after all conflicts and register classes have been
142
 * set up and before the register set is used for allocation.
143
 */
144
void
145
ra_set_finalize(struct ra_regs *regs)
146
{
147
   unsigned int b, c;
148
 
149
   for (b = 0; b < regs->class_count; b++) {
150
      regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
151
   }
152
 
153
   /* Compute, for each class B and C, how many regs of B an
154
    * allocation to C could conflict with.
155
    */
156
   for (b = 0; b < regs->class_count; b++) {
157
      for (c = 0; c < regs->class_count; c++) {
158
	 unsigned int rc;
159
	 int max_conflicts = 0;
160
 
161
	 for (rc = 0; rc < regs->count; rc++) {
162
	    unsigned int rb;
163
	    int conflicts = 0;
164
 
165
	    if (!regs->classes[c]->regs[rc])
166
	       continue;
167
 
168
	    for (rb = 0; rb < regs->count; rb++) {
169
	       if (regs->classes[b]->regs[rb] &&
170
		   regs->regs[rb].conflicts[rc])
171
		  conflicts++;
172
	    }
173
	    max_conflicts = MAX2(max_conflicts, conflicts);
174
	 }
175
	 regs->classes[b]->q[c] = max_conflicts;
176
      }
177
   }
178
}
179
 
180
struct ra_graph *
181
ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
182
{
183
   struct ra_graph *g;
184
   unsigned int i;
185
 
186
   g = rzalloc(regs, struct ra_graph);
187
   g->regs = regs;
188
   g->nodes = rzalloc_array(g, struct ra_node, count);
189
   g->count = count;
190
 
191
   g->stack = rzalloc_array(g, unsigned int, count);
192
 
193
   for (i = 0; i < count; i++) {
194
      g->nodes[i].adjacency = rzalloc_array(g, GLboolean, count);
195
      g->nodes[i].adjacency[i] = GL_TRUE;
196
      g->nodes[i].reg = ~0;
197
   }
198
 
199
   return g;
200
}
201
 
202
void
203
ra_set_node_class(struct ra_graph *g,
204
		  unsigned int n, unsigned int class)
205
{
206
   g->nodes[n].class = class;
207
}
208
 
209
void
210
ra_add_node_interference(struct ra_graph *g,
211
			 unsigned int n1, unsigned int n2)
212
{
213
   if (g->nodes[n1].adjacency[n2])
214
      return;
215
 
216
   g->nodes[n1].adjacency[n2] = GL_TRUE;
217
   g->nodes[n2].adjacency_count++;
218
   g->nodes[n2].adjacency[n1] = GL_TRUE;
219
   g->nodes[n2].adjacency_count++;
220
}
221
 
222
static GLboolean pq_test(struct ra_graph *g, unsigned int n)
223
{
224
   unsigned int j;
225
   unsigned int q = 0;
226
   int n_class = g->nodes[n].class;
227
 
228
   for (j = 0; j < g->count; j++) {
229
      if (j == n || g->nodes[j].in_stack)
230
	 continue;
231
 
232
      if (g->nodes[n].adjacency[j]) {
233
	 unsigned int j_class = g->nodes[j].class;
234
	 q += g->regs->classes[n_class]->q[j_class];
235
      }
236
   }
237
 
238
   return q < g->regs->classes[n_class]->p;
239
}
240
 
241
/**
242
 * Simplifies the interference graph by pushing all
243
 * trivially-colorable nodes into a stack of nodes to be colored,
244
 * removing them from the graph, and rinsing and repeating.
245
 *
246
 * Returns GL_TRUE if all nodes were removed from the graph.  GL_FALSE
247
 * means that either spilling will be required, or optimistic coloring
248
 * should be applied.
249
 */
250
GLboolean
251
ra_simplify(struct ra_graph *g)
252
{
253
   GLboolean progress = GL_TRUE;
254
   int i;
255
 
256
   while (progress) {
257
      progress = GL_FALSE;
258
 
259
      for (i = g->count - 1; i >= 0; i--) {
260
	 if (g->nodes[i].in_stack)
261
	    continue;
262
 
263
	 if (pq_test(g, i)) {
264
	    g->stack[g->stack_count] = i;
265
	    g->stack_count++;
266
	    g->nodes[i].in_stack = GL_TRUE;
267
	    progress = GL_TRUE;
268
	 }
269
      }
270
   }
271
 
272
   for (i = 0; i < g->count; i++) {
273
      if (!g->nodes[i].in_stack)
274
	 return GL_FALSE;
275
   }
276
 
277
   return GL_TRUE;
278
}
279
 
280
/**
281
 * Pops nodes from the stack back into the graph, coloring them with
282
 * registers as they go.
283
 *
284
 * If all nodes were trivially colorable, then this must succeed.  If
285
 * not (optimistic coloring), then it may return GL_FALSE;
286
 */
287
GLboolean
288
ra_select(struct ra_graph *g)
289
{
290
   int i;
291
 
292
   while (g->stack_count != 0) {
293
      unsigned int r;
294
      int n = g->stack[g->stack_count - 1];
295
      struct ra_class *c = g->regs->classes[g->nodes[n].class];
296
 
297
      /* Find the lowest-numbered reg which is not used by a member
298
       * of the graph adjacent to us.
299
       */
300
      for (r = 0; r < g->regs->count; r++) {
301
	 if (!c->regs[r])
302
	    continue;
303
 
304
	 /* Check if any of our neighbors conflict with this register choice. */
305
	 for (i = 0; i < g->count; i++) {
306
	    if (g->nodes[n].adjacency[i] &&
307
	       !g->nodes[i].in_stack &&
308
		g->regs->regs[r].conflicts[g->nodes[i].reg]) {
309
	       break;
310
	    }
311
	 }
312
	 if (i == g->count)
313
	    break;
314
      }
315
      if (r == g->regs->count)
316
	 return GL_FALSE;
317
 
318
      g->nodes[n].reg = r;
319
      g->nodes[n].in_stack = GL_FALSE;
320
      g->stack_count--;
321
   }
322
 
323
   return GL_TRUE;
324
}
325
 
326
/**
327
 * Optimistic register coloring: Just push the remaining nodes
328
 * on the stack.  They'll be colored first in ra_select(), and
329
 * if they succeed then the locally-colorable nodes are still
330
 * locally-colorable and the rest of the register allocation
331
 * will succeed.
332
 */
333
void
334
ra_optimistic_color(struct ra_graph *g)
335
{
336
   unsigned int i;
337
 
338
   for (i = 0; i < g->count; i++) {
339
      if (g->nodes[i].in_stack)
340
	 continue;
341
 
342
      g->stack[g->stack_count] = i;
343
      g->stack_count++;
344
      g->nodes[i].in_stack = GL_TRUE;
345
   }
346
}
347
 
348
GLboolean
349
ra_allocate_no_spills(struct ra_graph *g)
350
{
351
   if (!ra_simplify(g)) {
352
      ra_optimistic_color(g);
353
   }
354
   return ra_select(g);
355
}
356
 
357
unsigned int
358
ra_get_node_reg(struct ra_graph *g, unsigned int n)
359
{
360
   return g->nodes[n].reg;
361
}
362
 
363
static float
364
ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
365
{
366
   int j;
367
   float benefit = 0;
368
   int n_class = g->nodes[n].class;
369
 
370
   /* Define the benefit of eliminating an interference between n, j
371
    * through spilling as q(C, B) / p(C).  This is similar to the
372
    * "count number of edges" approach of traditional graph coloring,
373
    * but takes classes into account.
374
    */
375
   for (j = 0; j < g->count; j++) {
376
      if (j != n && g->nodes[n].adjacency[j]) {
377
	 unsigned int j_class = g->nodes[j].class;
378
	 benefit += ((float)g->regs->classes[n_class]->q[j_class] /
379
		     g->regs->classes[n_class]->p);
380
	 break;
381
      }
382
   }
383
 
384
   return benefit;
385
}
386
 
387
/**
388
 * Returns a node number to be spilled according to the cost/benefit using
389
 * the pq test, or -1 if there are no spillable nodes.
390
 */
391
int
392
ra_get_best_spill_node(struct ra_graph *g)
393
{
394
   unsigned int best_node = -1;
395
   unsigned int best_benefit = 0.0;
396
   unsigned int n;
397
 
398
   for (n = 0; n < g->count; n++) {
399
      float cost = g->nodes[n].spill_cost;
400
      float benefit;
401
 
402
      if (cost <= 0.0)
403
	 continue;
404
 
405
      benefit = ra_get_spill_benefit(g, n);
406
 
407
      if (benefit / cost > best_benefit) {
408
	 best_benefit = benefit / cost;
409
	 best_node = n;
410
      }
411
   }
412
 
413
   return best_node;
414
}
415
 
416
/**
417
 * Only nodes with a spill cost set (cost != 0.0) will be considered
418
 * for register spilling.
419
 */
420
void
421
ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
422
{
423
   g->nodes[n].spill_cost = cost;
424
}