Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
1901 serge 1
 
2
 * Mesa 3-D graphics library
3
 * Version:  3.5
4
 *
5
 * Copyright (C) 1999-2001  Brian Paul   All Rights Reserved.
6
 *
7
 * Permission is hereby granted, free of charge, to any person obtaining a
8
 * copy of this software and associated documentation files (the "Software"),
9
 * to deal in the Software without restriction, including without limitation
10
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11
 * and/or sell copies of the Software, and to permit persons to whom the
12
 * Software is furnished to do so, subject to the following conditions:
13
 *
14
 * The above copyright notice and this permission notice shall be included
15
 * in all copies or substantial portions of the Software.
16
 *
17
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20
 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21
 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23
 */
24
25
 
26
 
27
 * eval.c was written by
28
 * Bernd Barsuhn (bdbarsuh@cip.informatik.uni-erlangen.de) and
29
 * Volker Weiss (vrweiss@cip.informatik.uni-erlangen.de).
30
 *
31
 * My original implementation of evaluators was simplistic and didn't
32
 * compute surface normal vectors properly.  Bernd and Volker applied
33
 * used more sophisticated methods to get better results.
34
 *
35
 * Thanks guys!
36
 */
37
38
 
39
 
40
#include "main/config.h"
41
#include "m_eval.h"
42
43
 
44
45
 
46
 
47
 
48
 * Horner scheme for Bezier curves
49
 *
50
 * Bezier curves can be computed via a Horner scheme.
51
 * Horner is numerically less stable than the de Casteljau
52
 * algorithm, but it is faster. For curves of degree n
53
 * the complexity of Horner is O(n) and de Casteljau is O(n^2).
54
 * Since stability is not important for displaying curve
55
 * points I decided to use the Horner scheme.
56
 *
57
 * A cubic Bezier curve with control points b0, b1, b2, b3 can be
58
 * written as
59
 *
60
 *        (([3]        [3]     )     [3]       )     [3]
61
 * c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3
62
 *
63
 *                                           [n]
64
 * where s=1-t and the binomial coefficients [i]. These can
65
 * be computed iteratively using the identity:
66
 *
67
 * [n]               [n  ]             [n]
68
 * [i] = (n-i+1)/i * [i-1]     and     [0] = 1
69
 */
70
71
 
72
 
73
_math_horner_bezier_curve(const GLfloat * cp, GLfloat * out, GLfloat t,
74
			  GLuint dim, GLuint order)
75
{
76
   GLfloat s, powert, bincoeff;
77
   GLuint i, k;
78
79
 
80
      bincoeff = (GLfloat) (order - 1);
81
      s = 1.0F - t;
82
83
 
84
	 out[k] = s * cp[k] + bincoeff * t * cp[dim + k];
85
86
 
87
	   i++, powert *= t, cp += dim) {
88
	 bincoeff *= (GLfloat) (order - i);
89
	 bincoeff *= inv_tab[i];
90
91
 
92
	    out[k] = s * out[k] + bincoeff * powert * cp[k];
93
      }
94
   }
95
   else {			/* order=1 -> constant curve */
96
97
 
98
	 out[k] = cp[k];
99
   }
100
}
101
102
 
103
 * Tensor product Bezier surfaces
104
 *
105
 * Again the Horner scheme is used to compute a point on a
106
 * TP Bezier surface. First a control polygon for a curve
107
 * on the surface in one parameter direction is computed,
108
 * then the point on the curve for the other parameter
109
 * direction is evaluated.
110
 *
111
 * To store the curve control polygon additional storage
112
 * for max(uorder,vorder) points is needed in the
113
 * control net cn.
114
 */
115
116
 
117
_math_horner_bezier_surf(GLfloat * cn, GLfloat * out, GLfloat u, GLfloat v,
118
			 GLuint dim, GLuint uorder, GLuint vorder)
119
{
120
   GLfloat *cp = cn + uorder * vorder * dim;
121
   GLuint i, uinc = vorder * dim;
122
123
 
124
      if (uorder >= 2) {
125
	 GLfloat s, poweru, bincoeff;
126
	 GLuint j, k;
127
128
 
129
	 for (j = 0; j < vorder; j++) {
130
	    GLfloat *ucp = &cn[j * dim];
131
132
 
133
	    /* curve defined by the control polygons in u-direction */
134
	    bincoeff = (GLfloat) (uorder - 1);
135
	    s = 1.0F - u;
136
137
 
138
	       cp[j * dim + k] = s * ucp[k] + bincoeff * u * ucp[uinc + k];
139
140
 
141
		 i++, poweru *= u, ucp += uinc) {
142
	       bincoeff *= (GLfloat) (uorder - i);
143
	       bincoeff *= inv_tab[i];
144
145
 
146
		  cp[j * dim + k] =
147
		     s * cp[j * dim + k] + bincoeff * poweru * ucp[k];
148
	    }
149
	 }
150
151
 
152
	 _math_horner_bezier_curve(cp, out, v, dim, vorder);
153
      }
154
      else			/* uorder=1 -> cn defines a curve in v */
155
	 _math_horner_bezier_curve(cn, out, v, dim, vorder);
156
   }
157
   else {			/* vorder <= uorder */
158
159
 
160
	 GLuint i;
161
162
 
163
	 for (i = 0; i < uorder; i++, cn += uinc) {
164
	    /* For constant i all cn[i][j] (j=0..vorder) are located */
165
	    /* on consecutive memory locations, so we can use        */
166
	    /* horner_bezier_curve to compute the control points     */
167
168
 
169
	 }
170
171
 
172
	 _math_horner_bezier_curve(cp, out, u, dim, uorder);
173
      }
174
      else			/* vorder=1 -> cn defines a curve in u */
175
	 _math_horner_bezier_curve(cn, out, u, dim, uorder);
176
   }
177
}
178
179
 
180
 * The direct de Casteljau algorithm is used when a point on the
181
 * surface and the tangent directions spanning the tangent plane
182
 * should be computed (this is needed to compute normals to the
183
 * surface). In this case the de Casteljau algorithm approach is
184
 * nicer because a point and the partial derivatives can be computed
185
 * at the same time. To get the correct tangent length du and dv
186
 * must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1.
187
 * Since only the directions are needed, this scaling step is omitted.
188
 *
189
 * De Casteljau needs additional storage for uorder*vorder
190
 * values in the control net cn.
191
 */
192
193
 
194
_math_de_casteljau_surf(GLfloat * cn, GLfloat * out, GLfloat * du,
195
			GLfloat * dv, GLfloat u, GLfloat v, GLuint dim,
196
			GLuint uorder, GLuint vorder)
197
{
198
   GLfloat *dcn = cn + uorder * vorder * dim;
199
   GLfloat us = 1.0F - u, vs = 1.0F - v;
200
   GLuint h, i, j, k;
201
   GLuint minorder = uorder < vorder ? uorder : vorder;
202
   GLuint uinc = vorder * dim;
203
   GLuint dcuinc = vorder;
204
205
 
206
   /* This does not drasticaly decrease the performance of the     */
207
   /* algorithm. If additional storage for (uorder-1)*(vorder-1)   */
208
   /* points would be available, the components could be accessed  */
209
   /* in the innermost loop which could lead to less cache misses. */
210
211
 
212
#define DCN(I, J) dcn[(I)*dcuinc+(J)]
213
   if (minorder < 3) {
214
      if (uorder == vorder) {
215
	 for (k = 0; k < dim; k++) {
216
	    /* Derivative direction in u */
217
	    du[k] = vs * (CN(1, 0, k) - CN(0, 0, k)) +
218
	       v * (CN(1, 1, k) - CN(0, 1, k));
219
220
 
221
	    dv[k] = us * (CN(0, 1, k) - CN(0, 0, k)) +
222
	       u * (CN(1, 1, k) - CN(1, 0, k));
223
224
 
225
	    out[k] = us * (vs * CN(0, 0, k) + v * CN(0, 1, k)) +
226
	       u * (vs * CN(1, 0, k) + v * CN(1, 1, k));
227
	 }
228
      }
229
      else if (minorder == uorder) {
230
	 for (k = 0; k < dim; k++) {
231
	    /* bilinear de Casteljau step */
232
	    DCN(1, 0) = CN(1, 0, k) - CN(0, 0, k);
233
	    DCN(0, 0) = us * CN(0, 0, k) + u * CN(1, 0, k);
234
235
 
236
	       /* for the derivative in u */
237
	       DCN(1, j + 1) = CN(1, j + 1, k) - CN(0, j + 1, k);
238
	       DCN(1, j) = vs * DCN(1, j) + v * DCN(1, j + 1);
239
240
 
241
	       DCN(0, j + 1) = us * CN(0, j + 1, k) + u * CN(1, j + 1, k);
242
	       DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);
243
	    }
244
245
 
246
	    for (h = minorder; h < vorder - 1; h++)
247
	       for (j = 0; j < vorder - h; j++) {
248
		  /* for the derivative in u */
249
		  DCN(1, j) = vs * DCN(1, j) + v * DCN(1, j + 1);
250
251
 
252
		  DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);
253
	       }
254
255
 
256
	    dv[k] = DCN(0, 1) - DCN(0, 0);
257
258
 
259
	    du[k] = vs * DCN(1, 0) + v * DCN(1, 1);
260
261
 
262
	    out[k] = vs * DCN(0, 0) + v * DCN(0, 1);
263
	 }
264
      }
265
      else {			/* minorder == vorder */
266
267
 
268
	    /* bilinear de Casteljau step */
269
	    DCN(0, 1) = CN(0, 1, k) - CN(0, 0, k);
270
	    DCN(0, 0) = vs * CN(0, 0, k) + v * CN(0, 1, k);
271
	    for (i = 0; i < uorder - 1; i++) {
272
	       /* for the derivative in v */
273
	       DCN(i + 1, 1) = CN(i + 1, 1, k) - CN(i + 1, 0, k);
274
	       DCN(i, 1) = us * DCN(i, 1) + u * DCN(i + 1, 1);
275
276
 
277
	       DCN(i + 1, 0) = vs * CN(i + 1, 0, k) + v * CN(i + 1, 1, k);
278
	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
279
	    }
280
281
 
282
	    for (h = minorder; h < uorder - 1; h++)
283
	       for (i = 0; i < uorder - h; i++) {
284
		  /* for the derivative in v */
285
		  DCN(i, 1) = us * DCN(i, 1) + u * DCN(i + 1, 1);
286
287
 
288
		  DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
289
	       }
290
291
 
292
	    du[k] = DCN(1, 0) - DCN(0, 0);
293
294
 
295
	    dv[k] = us * DCN(0, 1) + u * DCN(1, 1);
296
297
 
298
	    out[k] = us * DCN(0, 0) + u * DCN(1, 0);
299
	 }
300
      }
301
   }
302
   else if (uorder == vorder) {
303
      for (k = 0; k < dim; k++) {
304
	 /* first bilinear de Casteljau step */
305
	 for (i = 0; i < uorder - 1; i++) {
306
	    DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k);
307
	    for (j = 0; j < vorder - 1; j++) {
308
	       DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k);
309
	       DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
310
	    }
311
	 }
312
313
 
314
	 for (h = 2; h < minorder - 1; h++)
315
	    for (i = 0; i < uorder - h; i++) {
316
	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
317
	       for (j = 0; j < vorder - h; j++) {
318
		  DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1);
319
		  DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
320
	       }
321
	    }
322
323
 
324
	 du[k] = vs * (DCN(1, 0) - DCN(0, 0)) + v * (DCN(1, 1) - DCN(0, 1));
325
326
 
327
	 dv[k] = us * (DCN(0, 1) - DCN(0, 0)) + u * (DCN(1, 1) - DCN(1, 0));
328
329
 
330
	 out[k] = us * (vs * DCN(0, 0) + v * DCN(0, 1)) +
331
	    u * (vs * DCN(1, 0) + v * DCN(1, 1));
332
      }
333
   }
334
   else if (minorder == uorder) {
335
      for (k = 0; k < dim; k++) {
336
	 /* first bilinear de Casteljau step */
337
	 for (i = 0; i < uorder - 1; i++) {
338
	    DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k);
339
	    for (j = 0; j < vorder - 1; j++) {
340
	       DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k);
341
	       DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
342
	    }
343
	 }
344
345
 
346
	 for (h = 2; h < minorder - 1; h++)
347
	    for (i = 0; i < uorder - h; i++) {
348
	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
349
	       for (j = 0; j < vorder - h; j++) {
350
		  DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1);
351
		  DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
352
	       }
353
	    }
354
355
 
356
	 DCN(2, 0) = DCN(1, 0) - DCN(0, 0);
357
	 DCN(0, 0) = us * DCN(0, 0) + u * DCN(1, 0);
358
	 for (j = 0; j < vorder - 1; j++) {
359
	    /* for the derivative in u */
360
	    DCN(2, j + 1) = DCN(1, j + 1) - DCN(0, j + 1);
361
	    DCN(2, j) = vs * DCN(2, j) + v * DCN(2, j + 1);
362
363
 
364
	    DCN(0, j + 1) = us * DCN(0, j + 1) + u * DCN(1, j + 1);
365
	    DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);
366
	 }
367
368
 
369
	 for (h = minorder; h < vorder - 1; h++)
370
	    for (j = 0; j < vorder - h; j++) {
371
	       /* for the derivative in u */
372
	       DCN(2, j) = vs * DCN(2, j) + v * DCN(2, j + 1);
373
374
 
375
	       DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);
376
	    }
377
378
 
379
	 dv[k] = DCN(0, 1) - DCN(0, 0);
380
381
 
382
	 du[k] = vs * DCN(2, 0) + v * DCN(2, 1);
383
384
 
385
	 out[k] = vs * DCN(0, 0) + v * DCN(0, 1);
386
      }
387
   }
388
   else {			/* minorder == vorder */
389
390
 
391
	 /* first bilinear de Casteljau step */
392
	 for (i = 0; i < uorder - 1; i++) {
393
	    DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k);
394
	    for (j = 0; j < vorder - 1; j++) {
395
	       DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k);
396
	       DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
397
	    }
398
	 }
399
400
 
401
	 for (h = 2; h < minorder - 1; h++)
402
	    for (i = 0; i < uorder - h; i++) {
403
	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
404
	       for (j = 0; j < vorder - h; j++) {
405
		  DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1);
406
		  DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
407
	       }
408
	    }
409
410
 
411
	 DCN(0, 2) = DCN(0, 1) - DCN(0, 0);
412
	 DCN(0, 0) = vs * DCN(0, 0) + v * DCN(0, 1);
413
	 for (i = 0; i < uorder - 1; i++) {
414
	    /* for the derivative in v */
415
	    DCN(i + 1, 2) = DCN(i + 1, 1) - DCN(i + 1, 0);
416
	    DCN(i, 2) = us * DCN(i, 2) + u * DCN(i + 1, 2);
417
418
 
419
	    DCN(i + 1, 0) = vs * DCN(i + 1, 0) + v * DCN(i + 1, 1);
420
	    DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
421
	 }
422
423
 
424
	 for (h = minorder; h < uorder - 1; h++)
425
	    for (i = 0; i < uorder - h; i++) {
426
	       /* for the derivative in v */
427
	       DCN(i, 2) = us * DCN(i, 2) + u * DCN(i + 1, 2);
428
429
 
430
	       DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
431
	    }
432
433
 
434
	 du[k] = DCN(1, 0) - DCN(0, 0);
435
436
 
437
	 dv[k] = us * DCN(0, 2) + u * DCN(1, 2);
438
439
 
440
	 out[k] = us * DCN(0, 0) + u * DCN(1, 0);
441
      }
442
   }
443
#undef DCN
444
#undef CN
445
}
446
447
 
448
 
449
 * Do one-time initialization for evaluators.
450
 */
451
void
452
_math_init_eval(void)
453
{
454
   GLuint i;
455
456
 
457
    */
458
   for (i = 1; i < MAX_EVAL_ORDER; i++)
459
      inv_tab[i] = 1.0F / i;
460
}
461