Subversion Repositories Kolibri OS

Rev

Rev 647 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
145 halyavin 1
/*
2
 *  i386 specific functions for TCC assembler
6429 siemargl 3
 *
145 halyavin 4
 *  Copyright (c) 2001, 2002 Fabrice Bellard
6429 siemargl 5
 *  Copyright (c) 2009 Frédéric Feret (x86_64 support)
145 halyavin 6
 *
7
 * This library is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2 of the License, or (at your option) any later version.
11
 *
12
 * This library is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with this library; if not, write to the Free Software
19
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20
 */
21
 
6429 siemargl 22
#include "tcc.h"
23
 
24
/* #define NB_ASM_REGS 8 */
145 halyavin 25
#define MAX_OPERANDS 3
6429 siemargl 26
#define NB_SAVED_REGS 3
145 halyavin 27
 
6429 siemargl 28
#define TOK_ASM_first TOK_ASM_clc
29
#define TOK_ASM_last TOK_ASM_emms
30
#define TOK_ASM_alllast TOK_ASM_pxor
31
 
32
#define OPC_JMP        0x01  /* jmp operand */
33
#define OPC_B          0x02  /* only used with OPC_WL */
34
#define OPC_WL         0x04  /* accepts w, l or no suffix */
35
#define OPC_BWL        (OPC_B | OPC_WL) /* accepts b, w, l or no suffix */
36
#define OPC_REG        0x08 /* register is added to opcode */
37
#define OPC_MODRM      0x10 /* modrm encoding */
38
#define OPC_FWAIT      0x20 /* add fwait opcode */
39
#define OPC_TEST       0x40 /* test opcodes */
40
#define OPC_SHIFT      0x80 /* shift opcodes */
145 halyavin 41
#define OPC_D16      0x0100 /* generate data16 prefix */
42
#define OPC_ARITH    0x0200 /* arithmetic opcodes */
43
#define OPC_SHORTJMP 0x0400 /* short jmp operand */
44
#define OPC_FARITH   0x0800 /* FPU arithmetic opcodes */
6429 siemargl 45
#ifdef TCC_TARGET_X86_64
46
# define OPC_WLQ     0x1000  /* accepts w, l, q or no suffix */
47
# define OPC_BWLQ    (OPC_B | OPC_WLQ) /* accepts b, w, l, q or no suffix */
48
# define OPC_WLX     OPC_WLQ
49
#else
50
# define OPC_WLX     OPC_WL
51
#endif
52
 
145 halyavin 53
#define OPC_GROUP_SHIFT 13
54
 
55
/* in order to compress the operand type, we use specific operands and
6429 siemargl 56
   we or only with EA  */
57
enum {
58
    OPT_REG8=0, /* warning: value is hardcoded from TOK_ASM_xxx */
59
    OPT_REG16,  /* warning: value is hardcoded from TOK_ASM_xxx */
60
    OPT_REG32,  /* warning: value is hardcoded from TOK_ASM_xxx */
61
#ifdef TCC_TARGET_X86_64
62
    OPT_REG64,  /* warning: value is hardcoded from TOK_ASM_xxx */
63
#endif
64
    OPT_MMX,    /* warning: value is hardcoded from TOK_ASM_xxx */
65
    OPT_SSE,    /* warning: value is hardcoded from TOK_ASM_xxx */
66
    OPT_CR,     /* warning: value is hardcoded from TOK_ASM_xxx */
67
    OPT_TR,     /* warning: value is hardcoded from TOK_ASM_xxx */
68
    OPT_DB,     /* warning: value is hardcoded from TOK_ASM_xxx */
69
    OPT_SEG,
70
    OPT_ST,
71
    OPT_IM8,
72
    OPT_IM8S,
73
    OPT_IM16,
74
    OPT_IM32,
75
#ifdef TCC_TARGET_X86_64
76
    OPT_IM64,
77
#endif
78
    OPT_EAX,    /* %al, %ax, %eax or %rax register */
79
    OPT_ST0,    /* %st(0) register */
80
    OPT_CL,     /* %cl register */
81
    OPT_DX,     /* %dx register */
82
    OPT_ADDR,   /* OP_EA with only offset */
83
    OPT_INDIR,  /* *(expr) */
84
    /* composite types */
85
    OPT_COMPOSITE_FIRST,
86
    OPT_IM,     /* IM8 | IM16 | IM32 | IM64 */
87
    OPT_REG,    /* REG8 | REG16 | REG32 | REG64 */
88
    OPT_REGW,   /* REG16 | REG32 | REG64 */
89
    OPT_IMW,    /* IM16 | IM32 | IM64 */
90
#ifdef TCC_TARGET_X86_64
91
    OPT_IMNO64, /* IM16 | IM32 */
92
#endif
93
    /* can be ored with any OPT_xxx */
94
    OPT_EA = 0x80
95
};
145 halyavin 96
 
97
#define OP_REG8   (1 << OPT_REG8)
98
#define OP_REG16  (1 << OPT_REG16)
99
#define OP_REG32  (1 << OPT_REG32)
100
#define OP_MMX    (1 << OPT_MMX)
101
#define OP_SSE    (1 << OPT_SSE)
102
#define OP_CR     (1 << OPT_CR)
103
#define OP_TR     (1 << OPT_TR)
104
#define OP_DB     (1 << OPT_DB)
105
#define OP_SEG    (1 << OPT_SEG)
106
#define OP_ST     (1 << OPT_ST)
107
#define OP_IM8    (1 << OPT_IM8)
108
#define OP_IM8S   (1 << OPT_IM8S)
109
#define OP_IM16   (1 << OPT_IM16)
110
#define OP_IM32   (1 << OPT_IM32)
111
#define OP_EAX    (1 << OPT_EAX)
112
#define OP_ST0    (1 << OPT_ST0)
113
#define OP_CL     (1 << OPT_CL)
114
#define OP_DX     (1 << OPT_DX)
115
#define OP_ADDR   (1 << OPT_ADDR)
116
#define OP_INDIR  (1 << OPT_INDIR)
6429 siemargl 117
#ifdef TCC_TARGET_X86_64
118
# define OP_REG64  (1 << OPT_REG64)
119
# define OP_IM64   (1 << OPT_IM64)
120
#else
121
# define OP_REG64 0
122
# define OP_IM64  0
123
#endif
145 halyavin 124
 
125
#define OP_EA     0x40000000
6429 siemargl 126
#define OP_REG    (OP_REG8 | OP_REG16 | OP_REG32 | OP_REG64)
127
 
128
#ifdef TCC_TARGET_X86_64
129
# define OP_IM      OP_IM64
130
# define TREG_XAX   TREG_RAX
131
# define TREG_XCX   TREG_RCX
132
# define TREG_XDX   TREG_RDX
133
#else
134
# define OP_IM      OP_IM32
135
# define TREG_XAX   TREG_EAX
136
# define TREG_XCX   TREG_ECX
137
# define TREG_XDX   TREG_EDX
138
#endif
139
 
140
typedef struct ASMInstr {
141
    uint16_t sym;
142
    uint16_t opcode;
143
    uint16_t instr_type;
144
    uint8_t nb_ops;
145
    uint8_t op_type[MAX_OPERANDS]; /* see OP_xxx */
146
} ASMInstr;
147
 
148
typedef struct Operand {
149
    uint32_t type;
145 halyavin 150
    int8_t  reg; /* register, -1 if none */
151
    int8_t  reg2; /* second register, -1 if none */
152
    uint8_t shift;
153
    ExprValue e;
154
} Operand;
155
 
6429 siemargl 156
static const uint8_t reg_to_size[9] = {
157
/*
145 halyavin 158
    [OP_REG8] = 0,
159
    [OP_REG16] = 1,
160
    [OP_REG32] = 2,
6429 siemargl 161
#ifdef TCC_TARGET_X86_64
162
    [OP_REG64] = 3,
163
#endif
164
*/
165
    0, 0, 1, 0, 2, 0, 0, 0, 3
145 halyavin 166
};
167
 
168
#define NB_TEST_OPCODES 30
169
 
170
static const uint8_t test_bits[NB_TEST_OPCODES] = {
171
 0x00, /* o */
172
 0x01, /* no */
173
 0x02, /* b */
174
 0x02, /* c */
175
 0x02, /* nae */
176
 0x03, /* nb */
177
 0x03, /* nc */
178
 0x03, /* ae */
179
 0x04, /* e */
180
 0x04, /* z */
181
 0x05, /* ne */
182
 0x05, /* nz */
183
 0x06, /* be */
184
 0x06, /* na */
185
 0x07, /* nbe */
186
 0x07, /* a */
187
 0x08, /* s */
188
 0x09, /* ns */
189
 0x0a, /* p */
190
 0x0a, /* pe */
191
 0x0b, /* np */
192
 0x0b, /* po */
193
 0x0c, /* l */
194
 0x0c, /* nge */
195
 0x0d, /* nl */
196
 0x0d, /* ge */
197
 0x0e, /* le */
198
 0x0e, /* ng */
199
 0x0f, /* nle */
200
 0x0f, /* g */
201
};
202
 
6429 siemargl 203
static const uint8_t segment_prefixes[] = {
204
 0x26, /* es */
205
 0x2e, /* cs */
206
 0x36, /* ss */
207
 0x3e, /* ds */
208
 0x64, /* fs */
209
 0x65  /* gs */
210
};
211
 
145 halyavin 212
static const ASMInstr asm_instrs[] = {
213
#define ALT(x) x
214
#define DEF_ASM_OP0(name, opcode)
215
#define DEF_ASM_OP0L(name, opcode, group, instr_type) { TOK_ASM_ ## name, opcode, (instr_type | group << OPC_GROUP_SHIFT), 0 },
216
#define DEF_ASM_OP1(name, opcode, group, instr_type, op0) { TOK_ASM_ ## name, opcode, (instr_type | group << OPC_GROUP_SHIFT), 1, { op0 }},
217
#define DEF_ASM_OP2(name, opcode, group, instr_type, op0, op1) { TOK_ASM_ ## name, opcode, (instr_type | group << OPC_GROUP_SHIFT), 2, { op0, op1 }},
218
#define DEF_ASM_OP3(name, opcode, group, instr_type, op0, op1, op2) { TOK_ASM_ ## name, opcode, (instr_type | group << OPC_GROUP_SHIFT), 3, { op0, op1, op2 }},
6429 siemargl 219
#ifdef TCC_TARGET_X86_64
220
# include "x86_64-asm.h"
221
#else
222
# include "i386-asm.h"
223
#endif
145 halyavin 224
    /* last operation */
225
    { 0, },
226
};
227
 
228
static const uint16_t op0_codes[] = {
229
#define ALT(x)
230
#define DEF_ASM_OP0(x, opcode) opcode,
231
#define DEF_ASM_OP0L(name, opcode, group, instr_type)
232
#define DEF_ASM_OP1(name, opcode, group, instr_type, op0)
233
#define DEF_ASM_OP2(name, opcode, group, instr_type, op0, op1)
234
#define DEF_ASM_OP3(name, opcode, group, instr_type, op0, op1, op2)
6429 siemargl 235
#ifdef TCC_TARGET_X86_64
236
# include "x86_64-asm.h"
237
#else
238
# include "i386-asm.h"
239
#endif
145 halyavin 240
};
241
 
242
static inline int get_reg_shift(TCCState *s1)
243
{
244
    int shift, v;
6429 siemargl 245
#ifdef I386_ASM_16
246
    if (s1->seg_size == 16)
247
        tcc_error("invalid effective address");
248
#endif
145 halyavin 249
    v = asm_int_expr(s1);
250
    switch(v) {
251
    case 1:
252
        shift = 0;
253
        break;
254
    case 2:
255
        shift = 1;
256
        break;
257
    case 4:
258
        shift = 2;
259
        break;
260
    case 8:
261
        shift = 3;
262
        break;
263
    default:
264
        expect("1, 2, 4 or 8 constant");
265
        shift = 0;
266
        break;
267
    }
268
    return shift;
269
}
270
 
271
static int asm_parse_reg(void)
272
{
6429 siemargl 273
    int reg = 0;
145 halyavin 274
    if (tok != '%')
275
        goto error_32;
276
    next();
277
    if (tok >= TOK_ASM_eax && tok <= TOK_ASM_edi) {
278
        reg = tok - TOK_ASM_eax;
6429 siemargl 279
#ifdef TCC_TARGET_X86_64
280
    } else if (tok >= TOK_ASM_rax && tok <= TOK_ASM_rdi) {
281
        reg = tok - TOK_ASM_rax;
282
#endif
283
#ifdef I386_ASM_16
284
    } else if (tok >= TOK_ASM_ax && tok <= TOK_ASM_di) {
285
        reg = tok - TOK_ASM_ax;
286
#endif
145 halyavin 287
    } else {
288
    error_32:
6429 siemargl 289
        expect("register");
145 halyavin 290
    }
6429 siemargl 291
    next();
292
    return reg;
145 halyavin 293
}
294
 
295
static void parse_operand(TCCState *s1, Operand *op)
296
{
297
    ExprValue e;
298
    int reg, indir;
299
    const char *p;
300
 
301
    indir = 0;
302
    if (tok == '*') {
303
        next();
304
        indir = OP_INDIR;
305
    }
306
 
307
    if (tok == '%') {
308
        next();
309
        if (tok >= TOK_ASM_al && tok <= TOK_ASM_db7) {
310
            reg = tok - TOK_ASM_al;
311
            op->type = 1 << (reg >> 3); /* WARNING: do not change constant order */
312
            op->reg = reg & 7;
6429 siemargl 313
            if ((op->type & OP_REG) && op->reg == TREG_XAX)
145 halyavin 314
                op->type |= OP_EAX;
6429 siemargl 315
            else if (op->type == OP_REG8 && op->reg == TREG_XCX)
145 halyavin 316
                op->type |= OP_CL;
6429 siemargl 317
            else if (op->type == OP_REG16 && op->reg == TREG_XDX)
145 halyavin 318
                op->type |= OP_DX;
319
        } else if (tok >= TOK_ASM_dr0 && tok <= TOK_ASM_dr7) {
320
            op->type = OP_DB;
321
            op->reg = tok - TOK_ASM_dr0;
322
        } else if (tok >= TOK_ASM_es && tok <= TOK_ASM_gs) {
323
            op->type = OP_SEG;
324
            op->reg = tok - TOK_ASM_es;
325
        } else if (tok == TOK_ASM_st) {
326
            op->type = OP_ST;
327
            op->reg = 0;
328
            next();
329
            if (tok == '(') {
330
                next();
331
                if (tok != TOK_PPNUM)
332
                    goto reg_error;
6429 siemargl 333
                p = tokc.str.data;
145 halyavin 334
                reg = p[0] - '0';
335
                if ((unsigned)reg >= 8 || p[1] != '\0')
336
                    goto reg_error;
337
                op->reg = reg;
338
                next();
339
                skip(')');
340
            }
341
            if (op->reg == 0)
342
                op->type |= OP_ST0;
343
            goto no_skip;
344
        } else {
345
        reg_error:
6429 siemargl 346
            tcc_error("unknown register");
145 halyavin 347
        }
348
        next();
349
    no_skip: ;
350
    } else if (tok == '$') {
351
        /* constant value */
352
        next();
353
        asm_expr(s1, &e);
6429 siemargl 354
        op->type = OP_IM;
145 halyavin 355
        op->e.v = e.v;
356
        op->e.sym = e.sym;
357
        if (!op->e.sym) {
358
            if (op->e.v == (uint8_t)op->e.v)
359
                op->type |= OP_IM8;
360
            if (op->e.v == (int8_t)op->e.v)
361
                op->type |= OP_IM8S;
362
            if (op->e.v == (uint16_t)op->e.v)
363
                op->type |= OP_IM16;
6429 siemargl 364
#ifdef TCC_TARGET_X86_64
365
            if (op->e.v == (uint32_t)op->e.v)
366
                op->type |= OP_IM32;
367
#endif
145 halyavin 368
        }
369
    } else {
370
        /* address(reg,reg2,shift) with all variants */
371
        op->type = OP_EA;
372
        op->reg = -1;
373
        op->reg2 = -1;
374
        op->shift = 0;
375
        if (tok != '(') {
376
            asm_expr(s1, &e);
377
            op->e.v = e.v;
378
            op->e.sym = e.sym;
379
        } else {
6429 siemargl 380
            next();
381
            if (tok == '%') {
382
                unget_tok('(');
383
                op->e.v = 0;
384
                op->e.sym = NULL;
385
            } else {
386
                /* bracketed offset expression */
387
                asm_expr(s1, &e);
388
                if (tok != ')')
389
                    expect(")");
390
                next();
391
                op->e.v = e.v;
392
                op->e.sym = e.sym;
393
            }
145 halyavin 394
        }
395
        if (tok == '(') {
396
            next();
397
            if (tok != ',') {
398
                op->reg = asm_parse_reg();
399
            }
400
            if (tok == ',') {
401
                next();
402
                if (tok != ',') {
403
                    op->reg2 = asm_parse_reg();
6429 siemargl 404
                }
405
                if (tok == ',') {
406
                    next();
407
                    op->shift = get_reg_shift(s1);
408
                }
145 halyavin 409
            }
410
            skip(')');
411
        }
412
        if (op->reg == -1 && op->reg2 == -1)
413
            op->type |= OP_ADDR;
414
    }
415
    op->type |= indir;
416
}
417
 
418
/* XXX: unify with C code output ? */
6429 siemargl 419
ST_FUNC void gen_expr32(ExprValue *pe)
145 halyavin 420
{
6429 siemargl 421
    gen_addr32(pe->sym ? VT_SYM : 0, pe->sym, pe->v);
145 halyavin 422
}
423
 
6429 siemargl 424
#ifdef TCC_TARGET_X86_64
425
static void gen_expr64(ExprValue *pe)
426
{
427
    gen_addr64(pe->sym ? VT_SYM : 0, pe->sym, pe->v);
428
}
429
#endif
430
 
145 halyavin 431
/* XXX: unify with C code output ? */
432
static void gen_disp32(ExprValue *pe)
433
{
6429 siemargl 434
    Sym *sym = pe->sym;
435
    if (sym && sym->r == cur_text_section->sh_num) {
436
        /* same section: we can output an absolute value. Note
437
           that the TCC compiler behaves differently here because
438
           it always outputs a relocation to ease (future) code
439
           elimination in the linker */
440
        gen_le32(pe->v + sym->jnext - ind - 4);
441
    } else {
442
        if (sym && sym->type.t == VT_VOID) {
443
            sym->type.t = VT_FUNC;
444
            sym->type.ref = NULL;
445
        }
446
        gen_addrpc32(VT_SYM, sym, pe->v);
447
    }
448
}
449
 
450
#ifdef I386_ASM_16
451
static void gen_expr16(ExprValue *pe)
452
{
453
    if (pe->sym)
454
        greloc(cur_text_section, pe->sym, ind, R_386_16);
455
    gen_le16(pe->v);
456
}
457
static void gen_disp16(ExprValue *pe)
458
{
145 halyavin 459
    Sym *sym;
460
    sym = pe->sym;
461
    if (sym) {
462
        if (sym->r == cur_text_section->sh_num) {
463
            /* same section: we can output an absolute value. Note
464
               that the TCC compiler behaves differently here because
465
               it always outputs a relocation to ease (future) code
466
               elimination in the linker */
6429 siemargl 467
            gen_le16(pe->v + sym->jnext - ind - 2);
145 halyavin 468
        } else {
6429 siemargl 469
            greloc(cur_text_section, sym, ind, R_386_PC16);
470
            gen_le16(pe->v - 2);
145 halyavin 471
        }
472
    } else {
473
        /* put an empty PC32 relocation */
6429 siemargl 474
        put_elf_reloc(symtab_section, cur_text_section,
475
                      ind, R_386_PC16, 0);
476
        gen_le16(pe->v - 2);
145 halyavin 477
    }
478
}
6429 siemargl 479
#endif
145 halyavin 480
 
481
/* generate the modrm operand */
482
static inline void asm_modrm(int reg, Operand *op)
483
{
484
    int mod, reg1, reg2, sib_reg1;
485
 
486
    if (op->type & (OP_REG | OP_MMX | OP_SSE)) {
487
        g(0xc0 + (reg << 3) + op->reg);
488
    } else if (op->reg == -1 && op->reg2 == -1) {
489
        /* displacement only */
6429 siemargl 490
#ifdef I386_ASM_16
491
        if (tcc_state->seg_size == 16) {
492
            g(0x06 + (reg << 3));
493
            gen_expr16(&op->e);
494
        } else if (tcc_state->seg_size == 32)
495
#endif
496
        {
497
            g(0x05 + (reg << 3));
498
            gen_expr32(&op->e);
499
        }
145 halyavin 500
    } else {
501
        sib_reg1 = op->reg;
502
        /* fist compute displacement encoding */
503
        if (sib_reg1 == -1) {
504
            sib_reg1 = 5;
505
            mod = 0x00;
506
        } else if (op->e.v == 0 && !op->e.sym && op->reg != 5) {
507
            mod = 0x00;
508
        } else if (op->e.v == (int8_t)op->e.v && !op->e.sym) {
509
            mod = 0x40;
510
        } else {
511
            mod = 0x80;
512
        }
513
        /* compute if sib byte needed */
514
        reg1 = op->reg;
515
        if (op->reg2 != -1)
516
            reg1 = 4;
6429 siemargl 517
#ifdef I386_ASM_16
518
        if (tcc_state->seg_size == 32) {
519
#endif
145 halyavin 520
        g(mod + (reg << 3) + reg1);
521
        if (reg1 == 4) {
522
            /* add sib byte */
523
            reg2 = op->reg2;
524
            if (reg2 == -1)
525
                reg2 = 4; /* indicate no index */
526
            g((op->shift << 6) + (reg2 << 3) + sib_reg1);
527
        }
6429 siemargl 528
#ifdef I386_ASM_16
529
        } else if (tcc_state->seg_size == 16) {
530
            /* edi = 7, esi = 6 --> di = 5, si = 4 */
531
            if ((reg1 == 6) || (reg1 == 7)) {
532
                reg1 -= 2;
533
            /* ebx = 3 --> bx = 7 */
534
            } else if (reg1 == 3) {
535
                reg1 = 7;
536
            /* o32 = 5 --> o16 = 6 */
537
            } else if (reg1 == 5) {
538
                reg1 = 6;
539
            /* sib not valid in 16-bit mode */
540
            } else if (reg1 == 4) {
541
                reg2 = op->reg2;
542
		/* bp + si + offset */
543
		if ((sib_reg1 == 5) && (reg2 == 6)) {
544
		    reg1 = 2;
545
		/* bp + di + offset */
546
		} else if ((sib_reg1 == 5) && (reg2 == 7)) {
547
		    reg1 = 3;
548
		/* bx + si + offset */
549
		} else if ((sib_reg1 == 3) && (reg2 == 6)) {
550
		    reg1 = 0;
551
		/* bx + di + offset */
552
		} else if ((sib_reg1 == 3) && (reg2 == 7)) {
553
		    reg1 = 1;
554
		} else {
555
		    tcc_error("invalid effective address");
556
		}
557
		if (op->e.v == 0)
558
		    mod = 0;
559
            } else {
560
                tcc_error("invalid register");
561
            }
562
            g(mod + (reg << 3) + reg1);
563
        }
564
#endif
145 halyavin 565
        /* add offset */
566
        if (mod == 0x40) {
567
            g(op->e.v);
568
        } else if (mod == 0x80 || op->reg == -1) {
6429 siemargl 569
#ifdef I386_ASM_16
570
            if (tcc_state->seg_size == 16)
571
                gen_expr16(&op->e);
572
            else if (tcc_state->seg_size == 32)
573
#endif
574
                gen_expr32(&op->e);
145 halyavin 575
        }
576
    }
577
}
578
 
6429 siemargl 579
ST_FUNC void asm_opcode(TCCState *s1, int opcode)
145 halyavin 580
{
581
    const ASMInstr *pa;
6429 siemargl 582
    int i, modrm_index, reg, v, op1, is_short_jmp, seg_prefix;
583
    int nb_ops, s;
145 halyavin 584
    Operand ops[MAX_OPERANDS], *pop;
585
    int op_type[3]; /* decoded op type */
6429 siemargl 586
#ifdef I386_ASM_16
587
    static int a32 = 0, o32 = 0, addr32 = 0, data32 = 0;
588
#endif
145 halyavin 589
 
6429 siemargl 590
    /* force synthetic ';' after prefix instruction, so we can handle */
591
    /* one-line things like "rep stosb" instead of only "rep\nstosb" */
592
    if (opcode >= TOK_ASM_wait && opcode <= TOK_ASM_repnz)
593
        unget_tok(';');
594
 
145 halyavin 595
    /* get operands */
596
    pop = ops;
597
    nb_ops = 0;
6429 siemargl 598
    seg_prefix = 0;
145 halyavin 599
    for(;;) {
600
        if (tok == ';' || tok == TOK_LINEFEED)
601
            break;
602
        if (nb_ops >= MAX_OPERANDS) {
6429 siemargl 603
            tcc_error("incorrect number of operands");
145 halyavin 604
        }
605
        parse_operand(s1, pop);
6429 siemargl 606
        if (tok == ':') {
607
           if (pop->type != OP_SEG || seg_prefix)
608
               tcc_error("incorrect prefix");
609
           seg_prefix = segment_prefixes[pop->reg];
610
           next();
611
           parse_operand(s1, pop);
612
#ifndef I386_ASM_16
613
           if (!(pop->type & OP_EA)) {
614
               tcc_error("segment prefix must be followed by memory reference");
615
           }
616
#endif
617
        }
145 halyavin 618
        pop++;
619
        nb_ops++;
620
        if (tok != ',')
621
            break;
622
        next();
623
    }
624
 
625
    is_short_jmp = 0;
626
    s = 0; /* avoid warning */
6429 siemargl 627
 
145 halyavin 628
    /* optimize matching by using a lookup table (no hashing is needed
629
       !) */
630
    for(pa = asm_instrs; pa->sym != 0; pa++) {
631
        s = 0;
632
        if (pa->instr_type & OPC_FARITH) {
633
            v = opcode - pa->sym;
634
            if (!((unsigned)v < 8 * 6 && (v % 6) == 0))
635
                continue;
636
        } else if (pa->instr_type & OPC_ARITH) {
6429 siemargl 637
            if (!(opcode >= pa->sym && opcode < pa->sym + 8*NBWLX))
145 halyavin 638
                continue;
6429 siemargl 639
            s = (opcode - pa->sym) % NBWLX;
145 halyavin 640
        } else if (pa->instr_type & OPC_SHIFT) {
6429 siemargl 641
            if (!(opcode >= pa->sym && opcode < pa->sym + 7*NBWLX))
145 halyavin 642
                continue;
6429 siemargl 643
            s = (opcode - pa->sym) % NBWLX;
145 halyavin 644
        } else if (pa->instr_type & OPC_TEST) {
645
            if (!(opcode >= pa->sym && opcode < pa->sym + NB_TEST_OPCODES))
646
                continue;
647
        } else if (pa->instr_type & OPC_B) {
6429 siemargl 648
            if (!(opcode >= pa->sym && opcode < pa->sym + NBWLX))
145 halyavin 649
                continue;
6429 siemargl 650
            s = opcode - pa->sym;
651
        } else if (pa->instr_type & OPC_WLX) {
652
            if (!(opcode >= pa->sym && opcode < pa->sym + NBWLX-1))
145 halyavin 653
                continue;
654
            s = opcode - pa->sym + 1;
655
        } else {
656
            if (pa->sym != opcode)
657
                continue;
658
        }
659
        if (pa->nb_ops != nb_ops)
660
            continue;
661
        /* now decode and check each operand */
662
        for(i = 0; i < nb_ops; i++) {
663
            int op1, op2;
664
            op1 = pa->op_type[i];
665
            op2 = op1 & 0x1f;
666
            switch(op2) {
667
            case OPT_IM:
6429 siemargl 668
                v = OP_IM8 | OP_IM16 | OP_IM32 | OP_IM64;
145 halyavin 669
                break;
670
            case OPT_REG:
6429 siemargl 671
                v = OP_REG8 | OP_REG16 | OP_REG32 | OP_REG64;
145 halyavin 672
                break;
673
            case OPT_REGW:
6429 siemargl 674
                v = OP_REG16 | OP_REG32 | OP_REG64;
145 halyavin 675
                break;
676
            case OPT_IMW:
6429 siemargl 677
                v = OP_IM16 | OP_IM32 | OP_IM64;
678
                break;
679
#ifdef TCC_TARGET_X86_64
680
            case OPT_IMNO64:
145 halyavin 681
                v = OP_IM16 | OP_IM32;
682
                break;
6429 siemargl 683
#endif
145 halyavin 684
            default:
685
                v = 1 << op2;
686
                break;
687
            }
688
            if (op1 & OPT_EA)
689
                v |= OP_EA;
690
            op_type[i] = v;
691
            if ((ops[i].type & v) == 0)
692
                goto next;
693
        }
694
        /* all is matching ! */
695
        break;
696
    next: ;
697
    }
698
    if (pa->sym == 0) {
6429 siemargl 699
        if (opcode >= TOK_ASM_first && opcode <= TOK_ASM_last) {
145 halyavin 700
            int b;
6429 siemargl 701
            b = op0_codes[opcode - TOK_ASM_first];
702
#ifdef I386_ASM_16
703
            if (opcode == TOK_ASM_o32) {
704
                if (s1->seg_size == 32)
705
                    tcc_error("incorrect prefix");
706
                else
707
                    o32 = data32 = 1;
708
            } else if (opcode == TOK_ASM_a32) {
709
                if (s1->seg_size == 32)
710
                    tcc_error("incorrect prefix");
711
                else
712
                    a32 = addr32 = 1;
713
            }
714
#endif
145 halyavin 715
            if (b & 0xff00)
716
                g(b >> 8);
717
            g(b);
718
            return;
6429 siemargl 719
        } else if (opcode <= TOK_ASM_alllast) {
720
            tcc_error("bad operand with opcode '%s'",
721
                  get_tok_str(opcode, NULL));
145 halyavin 722
        } else {
6429 siemargl 723
            tcc_error("unknown opcode '%s'",
145 halyavin 724
                  get_tok_str(opcode, NULL));
725
        }
726
    }
727
    /* if the size is unknown, then evaluate it (OPC_B or OPC_WL case) */
6429 siemargl 728
    if (s == NBWLX-1) {
729
        for(i = 0; s == NBWLX-1 && i < nb_ops; i++) {
145 halyavin 730
            if ((ops[i].type & OP_REG) && !(op_type[i] & (OP_CL | OP_DX)))
731
                s = reg_to_size[ops[i].type & OP_REG];
732
        }
6429 siemargl 733
        if (s == NBWLX-1) {
734
            if ((opcode == TOK_ASM_push || opcode == TOK_ASM_pop) &&
735
                (ops[0].type & (OP_SEG | OP_IM8S | OP_IM32 | OP_IM64)))
145 halyavin 736
                s = 2;
737
            else
6429 siemargl 738
                tcc_error("cannot infer opcode suffix");
145 halyavin 739
        }
740
    }
741
 
6429 siemargl 742
#ifdef I386_ASM_16
743
    for(i = 0; i < nb_ops; i++) {
744
        if (ops[i].type & OP_REG32) {
745
            if (s1->seg_size == 16)
746
                o32 = 1;
747
        } else if (!(ops[i].type & OP_REG32)) {
748
            if (s1->seg_size == 32)
749
                o32 = 1;
750
        }
751
    }
752
 
753
 
754
    if (s == 1 || (pa->instr_type & OPC_D16)) {
755
        if (s1->seg_size == 32)
756
            o32 = 1;
757
    } else if (s == 2) {
758
        if (s1->seg_size == 16) {
759
            if (!(pa->instr_type & OPC_D16))
760
            o32 = 1;
761
        }
762
    }
763
 
764
    /* generate a16/a32 prefix if needed */
765
    if ((a32 == 1) && (addr32 == 0))
766
        g(0x67);
767
    /* generate o16/o32 prefix if needed */
768
    if ((o32 == 1) && (data32 == 0))
769
        g(0x66);
770
 
771
    addr32 = data32 = 0;
772
#else
145 halyavin 773
    /* generate data16 prefix if needed */
774
    if (s == 1 || (pa->instr_type & OPC_D16))
6429 siemargl 775
        g(0x66);
776
#ifdef TCC_TARGET_X86_64
777
    else if (s == 3) {
778
        /* generate REX prefix */
779
        if ((opcode != TOK_ASM_push && opcode != TOK_ASM_pop)
780
            || !(ops[0].type & OP_REG64))
781
            g(0x48);
782
    }
783
#endif
784
#endif
785
 
145 halyavin 786
    /* now generates the operation */
787
    if (pa->instr_type & OPC_FWAIT)
788
        g(0x9b);
6429 siemargl 789
    if (seg_prefix)
790
        g(seg_prefix);
145 halyavin 791
 
792
    v = pa->opcode;
6429 siemargl 793
    if ((v == 0x69 || v == 0x6b) && nb_ops == 2) {
145 halyavin 794
        /* kludge for imul $im, %reg */
795
        nb_ops = 3;
796
        ops[2] = ops[1];
6429 siemargl 797
        op_type[2] = op_type[1];
145 halyavin 798
    } else if (v == 0xcd && ops[0].e.v == 3 && !ops[0].e.sym) {
799
        v--; /* int $3 case */
800
        nb_ops = 0;
801
    } else if ((v == 0x06 || v == 0x07)) {
802
        if (ops[0].reg >= 4) {
803
            /* push/pop %fs or %gs */
804
            v = 0x0fa0 + (v - 0x06) + ((ops[0].reg - 4) << 3);
805
        } else {
806
            v += ops[0].reg << 3;
807
        }
808
        nb_ops = 0;
809
    } else if (v <= 0x05) {
810
        /* arith case */
6429 siemargl 811
        v += ((opcode - TOK_ASM_addb) / NBWLX) << 3;
145 halyavin 812
    } else if ((pa->instr_type & (OPC_FARITH | OPC_MODRM)) == OPC_FARITH) {
813
        /* fpu arith case */
814
        v += ((opcode - pa->sym) / 6) << 3;
815
    }
816
    if (pa->instr_type & OPC_REG) {
817
        for(i = 0; i < nb_ops; i++) {
818
            if (op_type[i] & (OP_REG | OP_ST)) {
819
                v += ops[i].reg;
820
                break;
821
            }
822
        }
823
        /* mov $im, %reg case */
824
        if (pa->opcode == 0xb0 && s >= 1)
825
            v += 7;
826
    }
827
    if (pa->instr_type & OPC_B)
6429 siemargl 828
        v += s >= 1;
145 halyavin 829
    if (pa->instr_type & OPC_TEST)
6429 siemargl 830
        v += test_bits[opcode - pa->sym];
145 halyavin 831
    if (pa->instr_type & OPC_SHORTJMP) {
832
        Sym *sym;
833
        int jmp_disp;
834
 
835
        /* see if we can really generate the jump with a byte offset */
836
        sym = ops[0].e.sym;
837
        if (!sym)
838
            goto no_short_jump;
839
        if (sym->r != cur_text_section->sh_num)
840
            goto no_short_jump;
6429 siemargl 841
        jmp_disp = ops[0].e.v + sym->jnext - ind - 2;
145 halyavin 842
        if (jmp_disp == (int8_t)jmp_disp) {
843
            /* OK to generate jump */
844
            is_short_jmp = 1;
845
            ops[0].e.v = jmp_disp;
846
        } else {
847
        no_short_jump:
848
            if (pa->instr_type & OPC_JMP) {
849
                /* long jump will be allowed. need to modify the
850
                   opcode slightly */
851
                if (v == 0xeb)
852
                    v = 0xe9;
6429 siemargl 853
                else
145 halyavin 854
                    v += 0x0f10;
855
            } else {
6429 siemargl 856
                tcc_error("invalid displacement");
145 halyavin 857
            }
858
        }
859
    }
860
    op1 = v >> 8;
861
    if (op1)
862
        g(op1);
863
    g(v);
6429 siemargl 864
 
145 halyavin 865
    /* search which operand will used for modrm */
866
    modrm_index = 0;
867
    if (pa->instr_type & OPC_SHIFT) {
6429 siemargl 868
        reg = (opcode - pa->sym) / NBWLX;
145 halyavin 869
        if (reg == 6)
870
            reg = 7;
871
    } else if (pa->instr_type & OPC_ARITH) {
6429 siemargl 872
        reg = (opcode - pa->sym) / NBWLX;
145 halyavin 873
    } else if (pa->instr_type & OPC_FARITH) {
874
        reg = (opcode - pa->sym) / 6;
875
    } else {
876
        reg = (pa->instr_type >> OPC_GROUP_SHIFT) & 7;
877
    }
878
    if (pa->instr_type & OPC_MODRM) {
879
        /* first look for an ea operand */
880
        for(i = 0;i < nb_ops; i++) {
881
            if (op_type[i] & OP_EA)
882
                goto modrm_found;
883
        }
884
        /* then if not found, a register or indirection (shift instructions) */
885
        for(i = 0;i < nb_ops; i++) {
886
            if (op_type[i] & (OP_REG | OP_MMX | OP_SSE | OP_INDIR))
887
                goto modrm_found;
888
        }
889
#ifdef ASM_DEBUG
6429 siemargl 890
        tcc_error("bad op table");
891
#endif
145 halyavin 892
    modrm_found:
893
        modrm_index = i;
894
        /* if a register is used in another operand then it is
895
           used instead of group */
896
        for(i = 0;i < nb_ops; i++) {
897
            v = op_type[i];
6429 siemargl 898
            if (i != modrm_index &&
145 halyavin 899
                (v & (OP_REG | OP_MMX | OP_SSE | OP_CR | OP_TR | OP_DB | OP_SEG))) {
900
                reg = ops[i].reg;
901
                break;
902
            }
903
        }
904
 
905
        asm_modrm(reg, &ops[modrm_index]);
906
    }
907
 
908
    /* emit constants */
6429 siemargl 909
#ifndef TCC_TARGET_X86_64
145 halyavin 910
    if (pa->opcode == 0x9a || pa->opcode == 0xea) {
911
        /* ljmp or lcall kludge */
6429 siemargl 912
#ifdef I386_ASM_16
913
        if (s1->seg_size == 16 && o32 == 0)
914
            gen_expr16(&ops[1].e);
915
        else
916
#endif
917
            gen_expr32(&ops[1].e);
145 halyavin 918
        if (ops[0].e.sym)
6429 siemargl 919
            tcc_error("cannot relocate");
145 halyavin 920
        gen_le16(ops[0].e.v);
6429 siemargl 921
        return;
922
    }
923
#endif
924
    for(i = 0;i < nb_ops; i++) {
925
        v = op_type[i];
926
        if (v & (OP_IM8 | OP_IM16 | OP_IM32 | OP_IM64 | OP_IM8S | OP_ADDR)) {
927
            /* if multiple sizes are given it means we must look
928
               at the op size */
929
            if ((v | OP_IM8 | OP_IM64) == (OP_IM8 | OP_IM16 | OP_IM32 | OP_IM64)) {
930
                if (s == 0)
931
                    v = OP_IM8;
932
                else if (s == 1)
933
                    v = OP_IM16;
934
                else if (s == 2 || (v & OP_IM64) == 0)
935
                    v = OP_IM32;
936
                else
937
                    v = OP_IM64;
938
            }
939
            if (v & (OP_IM8 | OP_IM8S)) {
940
                if (ops[i].e.sym)
941
                    goto error_relocate;
942
                g(ops[i].e.v);
943
            } else if (v & OP_IM16) {
944
#ifdef I386_ASM_16
945
                if (s1->seg_size == 16)
946
                    gen_expr16(&ops[i].e);
947
                else
948
#endif
949
                if (ops[i].e.sym)
950
                error_relocate:
951
                    tcc_error("cannot relocate");
952
                else
953
                    gen_le16(ops[i].e.v);
954
            } else {
955
                if (pa->instr_type & (OPC_JMP | OPC_SHORTJMP)) {
956
                    if (is_short_jmp)
957
                        g(ops[i].e.v);
958
#ifdef I386_ASM_16
959
                    else if (s1->seg_size == 16)
960
                        gen_disp16(&ops[i].e);
961
#endif
145 halyavin 962
                    else
6429 siemargl 963
                        gen_disp32(&ops[i].e);
145 halyavin 964
                } else {
6429 siemargl 965
#ifdef I386_ASM_16
966
                    if (s1->seg_size == 16 && !((o32 == 1) && (v & OP_IM32)))
967
                        gen_expr16(&ops[i].e);
968
                    else
969
#endif
970
#ifdef TCC_TARGET_X86_64
971
                    if (v & OP_IM64)
972
                        gen_expr64(&ops[i].e);
973
                    else
974
#endif
145 halyavin 975
                        gen_expr32(&ops[i].e);
976
                }
977
            }
6429 siemargl 978
#ifdef I386_ASM_16
979
        } else if (v & (OP_REG16 | OP_REG32)) {
980
            if (pa->instr_type & (OPC_JMP | OPC_SHORTJMP)) {
981
                /* jmp $r */
982
                g(0xE0 + ops[i].reg);
983
            }
984
#endif
985
#ifdef TCC_TARGET_X86_64
986
        } else if (v & (OP_REG32 | OP_REG64)) {
987
            if (pa->instr_type & (OPC_JMP | OPC_SHORTJMP)) {
988
                /* jmp $r */
989
                g(0xE0 + ops[i].reg);
990
            }
991
#endif
145 halyavin 992
        }
993
    }
6429 siemargl 994
#ifdef I386_ASM_16
995
    a32 = o32 = 0;
996
#endif
145 halyavin 997
}
998
 
999
/* return the constraint priority (we allocate first the lowest
1000
   numbered constraints) */
1001
static inline int constraint_priority(const char *str)
1002
{
1003
    int priority, c, pr;
1004
 
1005
    /* we take the lowest priority */
1006
    priority = 0;
1007
    for(;;) {
1008
        c = *str;
1009
        if (c == '\0')
1010
            break;
1011
        str++;
1012
        switch(c) {
1013
        case 'A':
1014
            pr = 0;
1015
            break;
1016
        case 'a':
1017
        case 'b':
1018
        case 'c':
1019
        case 'd':
1020
        case 'S':
1021
        case 'D':
1022
            pr = 1;
1023
            break;
1024
        case 'q':
1025
            pr = 2;
1026
            break;
1027
        case 'r':
1028
            pr = 3;
1029
            break;
1030
        case 'N':
1031
        case 'M':
1032
        case 'I':
1033
        case 'i':
1034
        case 'm':
1035
        case 'g':
1036
            pr = 4;
1037
            break;
1038
        default:
6429 siemargl 1039
            tcc_error("unknown constraint '%c'", c);
145 halyavin 1040
            pr = 0;
1041
        }
1042
        if (pr > priority)
1043
            priority = pr;
1044
    }
1045
    return priority;
1046
}
1047
 
1048
static const char *skip_constraint_modifiers(const char *p)
1049
{
1050
    while (*p == '=' || *p == '&' || *p == '+' || *p == '%')
1051
        p++;
1052
    return p;
1053
}
1054
 
1055
#define REG_OUT_MASK 0x01
1056
#define REG_IN_MASK  0x02
1057
 
1058
#define is_reg_allocated(reg) (regs_allocated[reg] & reg_mask)
1059
 
6429 siemargl 1060
ST_FUNC void asm_compute_constraints(ASMOperand *operands,
1061
                                    int nb_operands, int nb_outputs,
145 halyavin 1062
                                    const uint8_t *clobber_regs,
1063
                                    int *pout_reg)
1064
{
1065
    ASMOperand *op;
1066
    int sorted_op[MAX_ASM_OPERANDS];
1067
    int i, j, k, p1, p2, tmp, reg, c, reg_mask;
1068
    const char *str;
1069
    uint8_t regs_allocated[NB_ASM_REGS];
6429 siemargl 1070
 
145 halyavin 1071
    /* init fields */
1072
    for(i=0;i
1073
        op = &operands[i];
1074
        op->input_index = -1;
1075
        op->ref_index = -1;
1076
        op->reg = -1;
1077
        op->is_memory = 0;
1078
        op->is_rw = 0;
1079
    }
1080
    /* compute constraint priority and evaluate references to output
1081
       constraints if input constraints */
1082
    for(i=0;i
1083
        op = &operands[i];
1084
        str = op->constraint;
1085
        str = skip_constraint_modifiers(str);
1086
        if (isnum(*str) || *str == '[') {
1087
            /* this is a reference to another constraint */
1088
            k = find_constraint(operands, nb_operands, str, NULL);
1089
            if ((unsigned)k >= i || i < nb_outputs)
6429 siemargl 1090
                tcc_error("invalid reference in constraint %d ('%s')",
145 halyavin 1091
                      i, str);
1092
            op->ref_index = k;
1093
            if (operands[k].input_index >= 0)
6429 siemargl 1094
                tcc_error("cannot reference twice the same operand");
145 halyavin 1095
            operands[k].input_index = i;
1096
            op->priority = 5;
1097
        } else {
1098
            op->priority = constraint_priority(str);
1099
        }
1100
    }
6429 siemargl 1101
 
145 halyavin 1102
    /* sort operands according to their priority */
1103
    for(i=0;i
1104
        sorted_op[i] = i;
1105
    for(i=0;i
1106
        for(j=i+1;j
6429 siemargl 1107
            p1 = operands[sorted_op[i]].priority;
145 halyavin 1108
            p2 = operands[sorted_op[j]].priority;
1109
            if (p2 < p1) {
1110
                tmp = sorted_op[i];
1111
                sorted_op[i] = sorted_op[j];
1112
                sorted_op[j] = tmp;
1113
            }
1114
        }
1115
    }
1116
 
1117
    for(i = 0;i < NB_ASM_REGS; i++) {
1118
        if (clobber_regs[i])
1119
            regs_allocated[i] = REG_IN_MASK | REG_OUT_MASK;
1120
        else
1121
            regs_allocated[i] = 0;
1122
    }
1123
    /* esp cannot be used */
6429 siemargl 1124
    regs_allocated[4] = REG_IN_MASK | REG_OUT_MASK;
145 halyavin 1125
    /* ebp cannot be used yet */
6429 siemargl 1126
    regs_allocated[5] = REG_IN_MASK | REG_OUT_MASK;
145 halyavin 1127
 
1128
    /* allocate registers and generate corresponding asm moves */
1129
    for(i=0;i
1130
        j = sorted_op[i];
1131
        op = &operands[j];
1132
        str = op->constraint;
1133
        /* no need to allocate references */
1134
        if (op->ref_index >= 0)
1135
            continue;
1136
        /* select if register is used for output, input or both */
1137
        if (op->input_index >= 0) {
1138
            reg_mask = REG_IN_MASK | REG_OUT_MASK;
1139
        } else if (j < nb_outputs) {
1140
            reg_mask = REG_OUT_MASK;
1141
        } else {
1142
            reg_mask = REG_IN_MASK;
1143
        }
1144
    try_next:
1145
        c = *str++;
1146
        switch(c) {
1147
        case '=':
1148
            goto try_next;
1149
        case '+':
1150
            op->is_rw = 1;
1151
            /* FALL THRU */
1152
        case '&':
1153
            if (j >= nb_outputs)
6429 siemargl 1154
                tcc_error("'%c' modifier can only be applied to outputs", c);
145 halyavin 1155
            reg_mask = REG_IN_MASK | REG_OUT_MASK;
1156
            goto try_next;
1157
        case 'A':
1158
            /* allocate both eax and edx */
6429 siemargl 1159
            if (is_reg_allocated(TREG_XAX) ||
1160
                is_reg_allocated(TREG_XDX))
145 halyavin 1161
                goto try_next;
1162
            op->is_llong = 1;
6429 siemargl 1163
            op->reg = TREG_XAX;
1164
            regs_allocated[TREG_XAX] |= reg_mask;
1165
            regs_allocated[TREG_XDX] |= reg_mask;
145 halyavin 1166
            break;
1167
        case 'a':
6429 siemargl 1168
            reg = TREG_XAX;
145 halyavin 1169
            goto alloc_reg;
1170
        case 'b':
1171
            reg = 3;
1172
            goto alloc_reg;
1173
        case 'c':
6429 siemargl 1174
            reg = TREG_XCX;
145 halyavin 1175
            goto alloc_reg;
1176
        case 'd':
6429 siemargl 1177
            reg = TREG_XDX;
145 halyavin 1178
            goto alloc_reg;
1179
        case 'S':
1180
            reg = 6;
1181
            goto alloc_reg;
1182
        case 'D':
1183
            reg = 7;
1184
        alloc_reg:
1185
            if (is_reg_allocated(reg))
1186
                goto try_next;
1187
            goto reg_found;
1188
        case 'q':
1189
            /* eax, ebx, ecx or edx */
1190
            for(reg = 0; reg < 4; reg++) {
1191
                if (!is_reg_allocated(reg))
1192
                    goto reg_found;
1193
            }
1194
            goto try_next;
1195
        case 'r':
1196
            /* any general register */
1197
            for(reg = 0; reg < 8; reg++) {
1198
                if (!is_reg_allocated(reg))
1199
                    goto reg_found;
1200
            }
1201
            goto try_next;
1202
        reg_found:
1203
            /* now we can reload in the register */
1204
            op->is_llong = 0;
1205
            op->reg = reg;
1206
            regs_allocated[reg] |= reg_mask;
1207
            break;
1208
        case 'i':
1209
            if (!((op->vt->r & (VT_VALMASK | VT_LVAL)) == VT_CONST))
1210
                goto try_next;
1211
            break;
1212
        case 'I':
1213
        case 'N':
1214
        case 'M':
1215
            if (!((op->vt->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST))
1216
                goto try_next;
1217
            break;
1218
        case 'm':
1219
        case 'g':
1220
            /* nothing special to do because the operand is already in
1221
               memory, except if the pointer itself is stored in a
1222
               memory variable (VT_LLOCAL case) */
1223
            /* XXX: fix constant case */
1224
            /* if it is a reference to a memory zone, it must lie
1225
               in a register, so we reserve the register in the
1226
               input registers and a load will be generated
1227
               later */
1228
            if (j < nb_outputs || c == 'm') {
1229
                if ((op->vt->r & VT_VALMASK) == VT_LLOCAL) {
1230
                    /* any general register */
1231
                    for(reg = 0; reg < 8; reg++) {
1232
                        if (!(regs_allocated[reg] & REG_IN_MASK))
1233
                            goto reg_found1;
1234
                    }
1235
                    goto try_next;
1236
                reg_found1:
1237
                    /* now we can reload in the register */
1238
                    regs_allocated[reg] |= REG_IN_MASK;
1239
                    op->reg = reg;
1240
                    op->is_memory = 1;
1241
                }
1242
            }
1243
            break;
1244
        default:
6429 siemargl 1245
            tcc_error("asm constraint %d ('%s') could not be satisfied",
145 halyavin 1246
                  j, op->constraint);
1247
            break;
1248
        }
1249
        /* if a reference is present for that operand, we assign it too */
1250
        if (op->input_index >= 0) {
1251
            operands[op->input_index].reg = op->reg;
1252
            operands[op->input_index].is_llong = op->is_llong;
1253
        }
1254
    }
6429 siemargl 1255
 
145 halyavin 1256
    /* compute out_reg. It is used to store outputs registers to memory
1257
       locations references by pointers (VT_LLOCAL case) */
1258
    *pout_reg = -1;
1259
    for(i=0;i
1260
        op = &operands[i];
6429 siemargl 1261
        if (op->reg >= 0 &&
145 halyavin 1262
            (op->vt->r & VT_VALMASK) == VT_LLOCAL  &&
1263
            !op->is_memory) {
1264
            for(reg = 0; reg < 8; reg++) {
1265
                if (!(regs_allocated[reg] & REG_OUT_MASK))
1266
                    goto reg_found2;
1267
            }
6429 siemargl 1268
            tcc_error("could not find free output register for reloading");
145 halyavin 1269
        reg_found2:
1270
            *pout_reg = reg;
1271
            break;
1272
        }
1273
    }
6429 siemargl 1274
 
145 halyavin 1275
    /* print sorted constraints */
1276
#ifdef ASM_DEBUG
1277
    for(i=0;i
1278
        j = sorted_op[i];
1279
        op = &operands[j];
6429 siemargl 1280
        printf("%%%d [%s]: \"%s\" r=0x%04x reg=%d\n",
1281
               j,
1282
               op->id ? get_tok_str(op->id, NULL) : "",
145 halyavin 1283
               op->constraint,
1284
               op->vt->r,
1285
               op->reg);
1286
    }
1287
    if (*pout_reg >= 0)
1288
        printf("out_reg=%d\n", *pout_reg);
1289
#endif
1290
}
1291
 
6429 siemargl 1292
ST_FUNC void subst_asm_operand(CString *add_str,
145 halyavin 1293
                              SValue *sv, int modifier)
1294
{
1295
    int r, reg, size, val;
1296
    char buf[64];
1297
 
1298
    r = sv->r;
1299
    if ((r & VT_VALMASK) == VT_CONST) {
1300
        if (!(r & VT_LVAL) && modifier != 'c' && modifier != 'n')
1301
            cstr_ccat(add_str, '$');
1302
        if (r & VT_SYM) {
6429 siemargl 1303
            cstr_cat(add_str, get_tok_str(sv->sym->v, NULL), -1);
1304
            if ((uint32_t)sv->c.i != 0) {
145 halyavin 1305
                cstr_ccat(add_str, '+');
1306
            } else {
1307
                return;
1308
            }
1309
        }
1310
        val = sv->c.i;
1311
        if (modifier == 'n')
1312
            val = -val;
6429 siemargl 1313
        snprintf(buf, sizeof(buf), "%d", (int)sv->c.i);
1314
        cstr_cat(add_str, buf, -1);
145 halyavin 1315
    } else if ((r & VT_VALMASK) == VT_LOCAL) {
6429 siemargl 1316
        snprintf(buf, sizeof(buf), "%d(%%ebp)", (int)sv->c.i);
1317
        cstr_cat(add_str, buf, -1);
145 halyavin 1318
    } else if (r & VT_LVAL) {
1319
        reg = r & VT_VALMASK;
1320
        if (reg >= VT_CONST)
6429 siemargl 1321
            tcc_error("internal compiler error");
1322
        snprintf(buf, sizeof(buf), "(%%%s)",
145 halyavin 1323
                 get_tok_str(TOK_ASM_eax + reg, NULL));
6429 siemargl 1324
        cstr_cat(add_str, buf, -1);
145 halyavin 1325
    } else {
1326
        /* register case */
1327
        reg = r & VT_VALMASK;
1328
        if (reg >= VT_CONST)
6429 siemargl 1329
            tcc_error("internal compiler error");
145 halyavin 1330
 
1331
        /* choose register operand size */
1332
        if ((sv->type.t & VT_BTYPE) == VT_BYTE)
1333
            size = 1;
1334
        else if ((sv->type.t & VT_BTYPE) == VT_SHORT)
1335
            size = 2;
6429 siemargl 1336
#ifdef TCC_TARGET_X86_64
1337
        else if ((sv->type.t & VT_BTYPE) == VT_LLONG)
1338
            size = 8;
1339
#endif
145 halyavin 1340
        else
1341
            size = 4;
1342
        if (size == 1 && reg >= 4)
1343
            size = 4;
1344
 
1345
        if (modifier == 'b') {
1346
            if (reg >= 4)
6429 siemargl 1347
                tcc_error("cannot use byte register");
145 halyavin 1348
            size = 1;
1349
        } else if (modifier == 'h') {
1350
            if (reg >= 4)
6429 siemargl 1351
                tcc_error("cannot use byte register");
145 halyavin 1352
            size = -1;
1353
        } else if (modifier == 'w') {
1354
            size = 2;
6429 siemargl 1355
#ifdef TCC_TARGET_X86_64
1356
        } else if (modifier == 'q') {
1357
            size = 8;
1358
#endif
145 halyavin 1359
        }
1360
 
1361
        switch(size) {
1362
        case -1:
1363
            reg = TOK_ASM_ah + reg;
1364
            break;
1365
        case 1:
1366
            reg = TOK_ASM_al + reg;
1367
            break;
1368
        case 2:
1369
            reg = TOK_ASM_ax + reg;
1370
            break;
1371
        default:
1372
            reg = TOK_ASM_eax + reg;
1373
            break;
6429 siemargl 1374
#ifdef TCC_TARGET_X86_64
1375
        case 8:
1376
            reg = TOK_ASM_rax + reg;
1377
            break;
1378
#endif
145 halyavin 1379
        }
1380
        snprintf(buf, sizeof(buf), "%%%s", get_tok_str(reg, NULL));
6429 siemargl 1381
        cstr_cat(add_str, buf, -1);
145 halyavin 1382
    }
1383
}
1384
 
6429 siemargl 1385
/* generate prolog and epilog code for asm statement */
1386
ST_FUNC void asm_gen_code(ASMOperand *operands, int nb_operands,
145 halyavin 1387
                         int nb_outputs, int is_output,
1388
                         uint8_t *clobber_regs,
1389
                         int out_reg)
1390
{
1391
    uint8_t regs_allocated[NB_ASM_REGS];
1392
    ASMOperand *op;
1393
    int i, reg;
1394
    static uint8_t reg_saved[NB_SAVED_REGS] = { 3, 6, 7 };
1395
 
1396
    /* mark all used registers */
1397
    memcpy(regs_allocated, clobber_regs, sizeof(regs_allocated));
1398
    for(i = 0; i < nb_operands;i++) {
1399
        op = &operands[i];
1400
        if (op->reg >= 0)
1401
            regs_allocated[op->reg] = 1;
1402
    }
1403
    if (!is_output) {
1404
        /* generate reg save code */
1405
        for(i = 0; i < NB_SAVED_REGS; i++) {
1406
            reg = reg_saved[i];
6429 siemargl 1407
            if (regs_allocated[reg]) {
1408
#ifdef I386_ASM_16
1409
                if (tcc_state->seg_size == 16)
1410
                    g(0x66);
1411
#endif
145 halyavin 1412
                g(0x50 + reg);
6429 siemargl 1413
            }
145 halyavin 1414
        }
1415
 
1416
        /* generate load code */
1417
        for(i = 0; i < nb_operands; i++) {
1418
            op = &operands[i];
1419
            if (op->reg >= 0) {
1420
                if ((op->vt->r & VT_VALMASK) == VT_LLOCAL &&
1421
                    op->is_memory) {
1422
                    /* memory reference case (for both input and
1423
                       output cases) */
1424
                    SValue sv;
1425
                    sv = *op->vt;
1426
                    sv.r = (sv.r & ~VT_VALMASK) | VT_LOCAL;
1427
                    load(op->reg, &sv);
1428
                } else if (i >= nb_outputs || op->is_rw) {
1429
                    /* load value in register */
1430
                    load(op->reg, op->vt);
1431
                    if (op->is_llong) {
1432
                        SValue sv;
1433
                        sv = *op->vt;
6429 siemargl 1434
                        sv.c.i += 4;
1435
                        load(TREG_XDX, &sv);
145 halyavin 1436
                    }
1437
                }
1438
            }
1439
        }
1440
    } else {
1441
        /* generate save code */
1442
        for(i = 0 ; i < nb_outputs; i++) {
1443
            op = &operands[i];
1444
            if (op->reg >= 0) {
1445
                if ((op->vt->r & VT_VALMASK) == VT_LLOCAL) {
1446
                    if (!op->is_memory) {
1447
                        SValue sv;
1448
                        sv = *op->vt;
1449
                        sv.r = (sv.r & ~VT_VALMASK) | VT_LOCAL;
1450
                        load(out_reg, &sv);
1451
 
1452
                        sv.r = (sv.r & ~VT_VALMASK) | out_reg;
1453
                        store(op->reg, &sv);
1454
                    }
1455
                } else {
1456
                    store(op->reg, op->vt);
1457
                    if (op->is_llong) {
1458
                        SValue sv;
1459
                        sv = *op->vt;
6429 siemargl 1460
                        sv.c.i += 4;
1461
                        store(TREG_XDX, &sv);
145 halyavin 1462
                    }
1463
                }
1464
            }
1465
        }
1466
        /* generate reg restore code */
1467
        for(i = NB_SAVED_REGS - 1; i >= 0; i--) {
1468
            reg = reg_saved[i];
6429 siemargl 1469
            if (regs_allocated[reg]) {
1470
#ifdef I386_ASM_16
1471
                if (tcc_state->seg_size == 16)
1472
                    g(0x66);
1473
#endif
145 halyavin 1474
                g(0x58 + reg);
6429 siemargl 1475
            }
145 halyavin 1476
        }
1477
    }
1478
}
1479
 
6429 siemargl 1480
ST_FUNC void asm_clobber(uint8_t *clobber_regs, const char *str)
145 halyavin 1481
{
1482
    int reg;
1483
    TokenSym *ts;
1484
 
6429 siemargl 1485
    if (!strcmp(str, "memory") ||
145 halyavin 1486
        !strcmp(str, "cc"))
1487
        return;
1488
    ts = tok_alloc(str, strlen(str));
1489
    reg = ts->tok;
1490
    if (reg >= TOK_ASM_eax && reg <= TOK_ASM_edi) {
1491
        reg -= TOK_ASM_eax;
1492
    } else if (reg >= TOK_ASM_ax && reg <= TOK_ASM_di) {
1493
        reg -= TOK_ASM_ax;
6429 siemargl 1494
#ifdef TCC_TARGET_X86_64
1495
    } else if (reg >= TOK_ASM_rax && reg <= TOK_ASM_rdi) {
1496
        reg -= TOK_ASM_rax;
1497
#endif
145 halyavin 1498
    } else {
6429 siemargl 1499
        tcc_error("invalid clobber register '%s'", str);
145 halyavin 1500
    }
1501
    clobber_regs[reg] = 1;
1502
}