Subversion Repositories Kolibri OS

Rev

Rev 6937 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2332 Serge 1
/*
2
 * Copyright © 2008-2010 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eric Anholt 
25
 *    Zou Nan hai 
26
 *    Xiang Hai hao
27
 *
28
 */
29
 
6937 serge 30
#include 
3031 serge 31
#include 
2332 Serge 32
#include "i915_drv.h"
3031 serge 33
#include 
2351 Serge 34
#include "i915_trace.h"
2332 Serge 35
#include "intel_drv.h"
36
 
5354 serge 37
int __intel_ring_space(int head, int tail, int size)
2332 Serge 38
{
6084 serge 39
	int space = head - tail;
40
	if (space <= 0)
5060 serge 41
		space += size;
6084 serge 42
	return space - I915_RING_FREE_SPACE;
2332 Serge 43
}
44
 
6084 serge 45
void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
46
{
47
	if (ringbuf->last_retired_head != -1) {
48
		ringbuf->head = ringbuf->last_retired_head;
49
		ringbuf->last_retired_head = -1;
50
	}
51
 
52
	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
53
					    ringbuf->tail, ringbuf->size);
54
}
55
 
5354 serge 56
int intel_ring_space(struct intel_ringbuffer *ringbuf)
4560 Serge 57
{
6084 serge 58
	intel_ring_update_space(ringbuf);
59
	return ringbuf->space;
5060 serge 60
}
61
 
5354 serge 62
bool intel_ring_stopped(struct intel_engine_cs *ring)
5060 serge 63
{
4560 Serge 64
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
5060 serge 65
	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
66
}
4560 Serge 67
 
6084 serge 68
static void __intel_ring_advance(struct intel_engine_cs *ring)
5060 serge 69
{
70
	struct intel_ringbuffer *ringbuf = ring->buffer;
71
	ringbuf->tail &= ringbuf->size - 1;
72
	if (intel_ring_stopped(ring))
4560 Serge 73
		return;
5060 serge 74
	ring->write_tail(ring, ringbuf->tail);
4560 Serge 75
}
76
 
3031 serge 77
static int
6084 serge 78
gen2_render_ring_flush(struct drm_i915_gem_request *req,
3031 serge 79
		       u32	invalidate_domains,
80
		       u32	flush_domains)
2332 Serge 81
{
6084 serge 82
	struct intel_engine_cs *ring = req->ring;
3031 serge 83
	u32 cmd;
84
	int ret;
2332 Serge 85
 
3031 serge 86
	cmd = MI_FLUSH;
87
	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
88
		cmd |= MI_NO_WRITE_FLUSH;
2332 Serge 89
 
3031 serge 90
	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
91
		cmd |= MI_READ_FLUSH;
2332 Serge 92
 
6084 serge 93
	ret = intel_ring_begin(req, 2);
3031 serge 94
	if (ret)
95
		return ret;
96
 
97
	intel_ring_emit(ring, cmd);
98
	intel_ring_emit(ring, MI_NOOP);
99
	intel_ring_advance(ring);
100
 
101
	return 0;
2332 Serge 102
}
103
 
104
static int
6084 serge 105
gen4_render_ring_flush(struct drm_i915_gem_request *req,
106
		       u32	invalidate_domains,
107
		       u32	flush_domains)
2332 Serge 108
{
6084 serge 109
	struct intel_engine_cs *ring = req->ring;
2332 Serge 110
	struct drm_device *dev = ring->dev;
111
	u32 cmd;
112
	int ret;
113
 
114
	/*
115
	 * read/write caches:
116
	 *
117
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
118
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
119
	 * also flushed at 2d versus 3d pipeline switches.
120
	 *
121
	 * read-only caches:
122
	 *
123
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
124
	 * MI_READ_FLUSH is set, and is always flushed on 965.
125
	 *
126
	 * I915_GEM_DOMAIN_COMMAND may not exist?
127
	 *
128
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
129
	 * invalidated when MI_EXE_FLUSH is set.
130
	 *
131
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
132
	 * invalidated with every MI_FLUSH.
133
	 *
134
	 * TLBs:
135
	 *
136
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
137
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
138
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
139
	 * are flushed at any MI_FLUSH.
140
	 */
141
 
142
	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
3031 serge 143
	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
2332 Serge 144
		cmd &= ~MI_NO_WRITE_FLUSH;
145
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
146
		cmd |= MI_EXE_FLUSH;
147
 
148
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
149
	    (IS_G4X(dev) || IS_GEN5(dev)))
150
		cmd |= MI_INVALIDATE_ISP;
151
 
6084 serge 152
	ret = intel_ring_begin(req, 2);
2332 Serge 153
	if (ret)
154
		return ret;
155
 
156
	intel_ring_emit(ring, cmd);
157
	intel_ring_emit(ring, MI_NOOP);
158
	intel_ring_advance(ring);
159
 
160
	return 0;
161
}
162
 
2342 Serge 163
/**
164
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
165
 * implementing two workarounds on gen6.  From section 1.4.7.1
166
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
167
 *
168
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
169
 * produced by non-pipelined state commands), software needs to first
170
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
171
 * 0.
172
 *
173
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
174
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
175
 *
176
 * And the workaround for these two requires this workaround first:
177
 *
178
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
179
 * BEFORE the pipe-control with a post-sync op and no write-cache
180
 * flushes.
181
 *
182
 * And this last workaround is tricky because of the requirements on
183
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
184
 * volume 2 part 1:
185
 *
186
 *     "1 of the following must also be set:
187
 *      - Render Target Cache Flush Enable ([12] of DW1)
188
 *      - Depth Cache Flush Enable ([0] of DW1)
189
 *      - Stall at Pixel Scoreboard ([1] of DW1)
190
 *      - Depth Stall ([13] of DW1)
191
 *      - Post-Sync Operation ([13] of DW1)
192
 *      - Notify Enable ([8] of DW1)"
193
 *
194
 * The cache flushes require the workaround flush that triggered this
195
 * one, so we can't use it.  Depth stall would trigger the same.
196
 * Post-sync nonzero is what triggered this second workaround, so we
197
 * can't use that one either.  Notify enable is IRQs, which aren't
198
 * really our business.  That leaves only stall at scoreboard.
199
 */
200
static int
6084 serge 201
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
2342 Serge 202
{
6084 serge 203
	struct intel_engine_cs *ring = req->ring;
5060 serge 204
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
2342 Serge 205
	int ret;
206
 
6084 serge 207
	ret = intel_ring_begin(req, 6);
2342 Serge 208
	if (ret)
209
		return ret;
210
 
211
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
212
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
213
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
214
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
215
	intel_ring_emit(ring, 0); /* low dword */
216
	intel_ring_emit(ring, 0); /* high dword */
217
	intel_ring_emit(ring, MI_NOOP);
218
	intel_ring_advance(ring);
219
 
6084 serge 220
	ret = intel_ring_begin(req, 6);
2342 Serge 221
	if (ret)
222
		return ret;
223
 
224
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
225
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
226
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
227
	intel_ring_emit(ring, 0);
228
	intel_ring_emit(ring, 0);
229
	intel_ring_emit(ring, MI_NOOP);
230
	intel_ring_advance(ring);
231
 
232
	return 0;
233
}
234
 
235
static int
6084 serge 236
gen6_render_ring_flush(struct drm_i915_gem_request *req,
237
		       u32 invalidate_domains, u32 flush_domains)
2342 Serge 238
{
6084 serge 239
	struct intel_engine_cs *ring = req->ring;
2342 Serge 240
	u32 flags = 0;
5060 serge 241
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
2342 Serge 242
	int ret;
243
 
244
	/* Force SNB workarounds for PIPE_CONTROL flushes */
6084 serge 245
	ret = intel_emit_post_sync_nonzero_flush(req);
3031 serge 246
	if (ret)
247
		return ret;
2342 Serge 248
 
249
	/* Just flush everything.  Experiments have shown that reducing the
250
	 * number of bits based on the write domains has little performance
251
	 * impact.
252
	 */
3031 serge 253
	if (flush_domains) {
254
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
255
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
256
		/*
257
		 * Ensure that any following seqno writes only happen
258
		 * when the render cache is indeed flushed.
259
		 */
260
		flags |= PIPE_CONTROL_CS_STALL;
261
	}
262
	if (invalidate_domains) {
263
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
264
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
265
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
266
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
267
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
268
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
269
		/*
270
		 * TLB invalidate requires a post-sync write.
271
		 */
3243 Serge 272
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
3031 serge 273
	}
274
 
6084 serge 275
	ret = intel_ring_begin(req, 4);
3031 serge 276
	if (ret)
277
		return ret;
278
 
279
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
280
	intel_ring_emit(ring, flags);
281
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
282
	intel_ring_emit(ring, 0);
283
	intel_ring_advance(ring);
284
 
285
	return 0;
286
}
287
 
288
static int
6084 serge 289
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
3031 serge 290
{
6084 serge 291
	struct intel_engine_cs *ring = req->ring;
3031 serge 292
	int ret;
293
 
6084 serge 294
	ret = intel_ring_begin(req, 4);
3031 serge 295
	if (ret)
296
		return ret;
297
 
298
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
299
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
300
			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
301
	intel_ring_emit(ring, 0);
302
	intel_ring_emit(ring, 0);
303
	intel_ring_advance(ring);
304
 
305
	return 0;
306
}
307
 
308
static int
6084 serge 309
gen7_render_ring_flush(struct drm_i915_gem_request *req,
3031 serge 310
		       u32 invalidate_domains, u32 flush_domains)
311
{
6084 serge 312
	struct intel_engine_cs *ring = req->ring;
3031 serge 313
	u32 flags = 0;
5060 serge 314
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
3031 serge 315
	int ret;
316
 
317
	/*
318
	 * Ensure that any following seqno writes only happen when the render
319
	 * cache is indeed flushed.
320
	 *
321
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
322
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
323
	 * don't try to be clever and just set it unconditionally.
324
	 */
325
	flags |= PIPE_CONTROL_CS_STALL;
326
 
327
	/* Just flush everything.  Experiments have shown that reducing the
328
	 * number of bits based on the write domains has little performance
329
	 * impact.
330
	 */
331
	if (flush_domains) {
6084 serge 332
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
3031 serge 333
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
6320 serge 334
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
6084 serge 335
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
3031 serge 336
	}
337
	if (invalidate_domains) {
338
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
6084 serge 339
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
340
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
341
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
342
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
343
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
5354 serge 344
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
3031 serge 345
		/*
346
		 * TLB invalidate requires a post-sync write.
347
		 */
348
		flags |= PIPE_CONTROL_QW_WRITE;
3480 Serge 349
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2342 Serge 350
 
5354 serge 351
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
352
 
3031 serge 353
		/* Workaround: we must issue a pipe_control with CS-stall bit
354
		 * set before a pipe_control command that has the state cache
355
		 * invalidate bit set. */
6084 serge 356
		gen7_render_ring_cs_stall_wa(req);
3031 serge 357
	}
358
 
6084 serge 359
	ret = intel_ring_begin(req, 4);
2342 Serge 360
	if (ret)
361
		return ret;
362
 
3031 serge 363
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
2342 Serge 364
	intel_ring_emit(ring, flags);
3480 Serge 365
	intel_ring_emit(ring, scratch_addr);
3031 serge 366
	intel_ring_emit(ring, 0);
2342 Serge 367
	intel_ring_advance(ring);
368
 
369
	return 0;
370
}
371
 
4560 Serge 372
static int
6084 serge 373
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
5060 serge 374
		       u32 flags, u32 scratch_addr)
375
{
6084 serge 376
	struct intel_engine_cs *ring = req->ring;
5060 serge 377
	int ret;
378
 
6084 serge 379
	ret = intel_ring_begin(req, 6);
5060 serge 380
	if (ret)
381
		return ret;
382
 
383
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
384
	intel_ring_emit(ring, flags);
385
	intel_ring_emit(ring, scratch_addr);
386
	intel_ring_emit(ring, 0);
387
	intel_ring_emit(ring, 0);
388
	intel_ring_emit(ring, 0);
389
	intel_ring_advance(ring);
390
 
391
	return 0;
392
}
393
 
394
static int
6084 serge 395
gen8_render_ring_flush(struct drm_i915_gem_request *req,
4560 Serge 396
		       u32 invalidate_domains, u32 flush_domains)
397
{
398
	u32 flags = 0;
6084 serge 399
	u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
4560 Serge 400
	int ret;
401
 
402
	flags |= PIPE_CONTROL_CS_STALL;
403
 
404
	if (flush_domains) {
405
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
406
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
6320 serge 407
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
6084 serge 408
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
4560 Serge 409
	}
410
	if (invalidate_domains) {
411
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
412
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
413
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
414
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
415
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
416
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
417
		flags |= PIPE_CONTROL_QW_WRITE;
418
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
419
 
5060 serge 420
		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
6084 serge 421
		ret = gen8_emit_pipe_control(req,
5060 serge 422
					     PIPE_CONTROL_CS_STALL |
423
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
424
					     0);
6084 serge 425
		if (ret)
426
			return ret;
5060 serge 427
	}
4560 Serge 428
 
6084 serge 429
	return gen8_emit_pipe_control(req, flags, scratch_addr);
4560 Serge 430
}
431
 
5060 serge 432
static void ring_write_tail(struct intel_engine_cs *ring,
2332 Serge 433
			    u32 value)
434
{
5060 serge 435
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2332 Serge 436
	I915_WRITE_TAIL(ring, value);
437
}
438
 
5060 serge 439
u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
2332 Serge 440
{
5060 serge 441
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
442
	u64 acthd;
2332 Serge 443
 
5060 serge 444
	if (INTEL_INFO(ring->dev)->gen >= 8)
445
		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
446
					 RING_ACTHD_UDW(ring->mmio_base));
447
	else if (INTEL_INFO(ring->dev)->gen >= 4)
448
		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
449
	else
450
		acthd = I915_READ(ACTHD);
451
 
452
	return acthd;
2332 Serge 453
}
454
 
5060 serge 455
static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
4104 Serge 456
{
457
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
458
	u32 addr;
459
 
460
	addr = dev_priv->status_page_dmah->busaddr;
461
	if (INTEL_INFO(ring->dev)->gen >= 4)
462
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
463
	I915_WRITE(HWS_PGA, addr);
464
}
465
 
6084 serge 466
static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
467
{
468
	struct drm_device *dev = ring->dev;
469
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
6937 serge 470
	i915_reg_t mmio;
6084 serge 471
 
472
	/* The ring status page addresses are no longer next to the rest of
473
	 * the ring registers as of gen7.
474
	 */
475
	if (IS_GEN7(dev)) {
476
		switch (ring->id) {
477
		case RCS:
478
			mmio = RENDER_HWS_PGA_GEN7;
479
			break;
480
		case BCS:
481
			mmio = BLT_HWS_PGA_GEN7;
482
			break;
483
		/*
484
		 * VCS2 actually doesn't exist on Gen7. Only shut up
485
		 * gcc switch check warning
486
		 */
487
		case VCS2:
488
		case VCS:
489
			mmio = BSD_HWS_PGA_GEN7;
490
			break;
491
		case VECS:
492
			mmio = VEBOX_HWS_PGA_GEN7;
493
			break;
494
		}
495
	} else if (IS_GEN6(ring->dev)) {
496
		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
497
	} else {
498
		/* XXX: gen8 returns to sanity */
499
		mmio = RING_HWS_PGA(ring->mmio_base);
500
	}
501
 
502
	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
503
	POSTING_READ(mmio);
504
 
505
	/*
506
	 * Flush the TLB for this page
507
	 *
508
	 * FIXME: These two bits have disappeared on gen8, so a question
509
	 * arises: do we still need this and if so how should we go about
510
	 * invalidating the TLB?
511
	 */
512
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
6937 serge 513
		i915_reg_t reg = RING_INSTPM(ring->mmio_base);
6084 serge 514
 
515
		/* ring should be idle before issuing a sync flush*/
516
		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
517
 
518
		I915_WRITE(reg,
519
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
520
					      INSTPM_SYNC_FLUSH));
521
		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
522
			     1000))
523
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
524
				  ring->name);
525
	}
526
}
527
 
5060 serge 528
static bool stop_ring(struct intel_engine_cs *ring)
2332 Serge 529
{
5060 serge 530
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
2332 Serge 531
 
5060 serge 532
	if (!IS_GEN2(ring->dev)) {
533
		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
5354 serge 534
		if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
535
			DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
536
			/* Sometimes we observe that the idle flag is not
537
			 * set even though the ring is empty. So double
538
			 * check before giving up.
539
			 */
540
			if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
6084 serge 541
				return false;
5060 serge 542
		}
543
	}
3031 serge 544
 
2332 Serge 545
	I915_WRITE_CTL(ring, 0);
546
	I915_WRITE_HEAD(ring, 0);
547
	ring->write_tail(ring, 0);
548
 
5060 serge 549
	if (!IS_GEN2(ring->dev)) {
550
		(void)I915_READ_CTL(ring);
551
		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
552
	}
2332 Serge 553
 
5060 serge 554
	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
555
}
556
 
557
static int init_ring_common(struct intel_engine_cs *ring)
558
{
559
	struct drm_device *dev = ring->dev;
560
	struct drm_i915_private *dev_priv = dev->dev_private;
561
	struct intel_ringbuffer *ringbuf = ring->buffer;
562
	struct drm_i915_gem_object *obj = ringbuf->obj;
563
	int ret = 0;
564
 
6084 serge 565
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5060 serge 566
 
567
	if (!stop_ring(ring)) {
568
		/* G45 ring initialization often fails to reset head to zero */
2332 Serge 569
		DRM_DEBUG_KMS("%s head not reset to zero "
570
			      "ctl %08x head %08x tail %08x start %08x\n",
571
			      ring->name,
572
			      I915_READ_CTL(ring),
573
			      I915_READ_HEAD(ring),
574
			      I915_READ_TAIL(ring),
575
			      I915_READ_START(ring));
576
 
5060 serge 577
		if (!stop_ring(ring)) {
2332 Serge 578
			DRM_ERROR("failed to set %s head to zero "
579
				  "ctl %08x head %08x tail %08x start %08x\n",
580
				  ring->name,
581
				  I915_READ_CTL(ring),
582
				  I915_READ_HEAD(ring),
583
				  I915_READ_TAIL(ring),
584
				  I915_READ_START(ring));
5060 serge 585
			ret = -EIO;
586
			goto out;
2332 Serge 587
		}
588
	}
589
 
5060 serge 590
	if (I915_NEED_GFX_HWS(dev))
591
		intel_ring_setup_status_page(ring);
592
	else
593
		ring_setup_phys_status_page(ring);
594
 
595
	/* Enforce ordering by reading HEAD register back */
596
	I915_READ_HEAD(ring);
597
 
3031 serge 598
	/* Initialize the ring. This must happen _after_ we've cleared the ring
599
	 * registers with the above sequence (the readback of the HEAD registers
600
	 * also enforces ordering), otherwise the hw might lose the new ring
601
	 * register values. */
4104 Serge 602
	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
5354 serge 603
 
604
	/* WaClearRingBufHeadRegAtInit:ctg,elk */
605
	if (I915_READ_HEAD(ring))
606
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
607
			  ring->name, I915_READ_HEAD(ring));
608
	I915_WRITE_HEAD(ring, 0);
609
	(void)I915_READ_HEAD(ring);
610
 
2332 Serge 611
	I915_WRITE_CTL(ring,
5060 serge 612
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
3031 serge 613
			| RING_VALID);
2332 Serge 614
 
615
	/* If the head is still not zero, the ring is dead */
3031 serge 616
	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
4104 Serge 617
		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
3031 serge 618
		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
2332 Serge 619
		DRM_ERROR("%s initialization failed "
5060 serge 620
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
6084 serge 621
			  ring->name,
5060 serge 622
			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
623
			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
624
			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
3031 serge 625
		ret = -EIO;
626
		goto out;
2332 Serge 627
	}
628
 
6084 serge 629
	ringbuf->last_retired_head = -1;
630
	ringbuf->head = I915_READ_HEAD(ring);
631
	ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
632
	intel_ring_update_space(ringbuf);
5060 serge 633
 
4104 Serge 634
	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
635
 
3031 serge 636
out:
6084 serge 637
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2332 Serge 638
 
3031 serge 639
	return ret;
2332 Serge 640
}
641
 
5354 serge 642
void
643
intel_fini_pipe_control(struct intel_engine_cs *ring)
2332 Serge 644
{
5354 serge 645
	struct drm_device *dev = ring->dev;
646
 
647
	if (ring->scratch.obj == NULL)
648
		return;
649
 
650
	if (INTEL_INFO(dev)->gen >= 5) {
651
		kunmap(sg_page(ring->scratch.obj->pages->sgl));
652
		i915_gem_object_ggtt_unpin(ring->scratch.obj);
653
	}
654
 
655
	drm_gem_object_unreference(&ring->scratch.obj->base);
656
	ring->scratch.obj = NULL;
657
}
658
 
659
int
660
intel_init_pipe_control(struct intel_engine_cs *ring)
661
{
2332 Serge 662
	int ret;
663
 
6084 serge 664
	WARN_ON(ring->scratch.obj);
2332 Serge 665
 
4104 Serge 666
	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
667
	if (ring->scratch.obj == NULL) {
2332 Serge 668
		DRM_ERROR("Failed to allocate seqno page\n");
669
		ret = -ENOMEM;
670
		goto err;
671
	}
672
 
5060 serge 673
	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
674
	if (ret)
675
		goto err_unref;
2332 Serge 676
 
5060 serge 677
	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
2332 Serge 678
	if (ret)
679
		goto err_unref;
680
 
4104 Serge 681
	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
5354 serge 682
	ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
4104 Serge 683
	if (ring->scratch.cpu_page == NULL) {
684
		ret = -ENOMEM;
2332 Serge 685
		goto err_unpin;
4104 Serge 686
	}
2332 Serge 687
 
3480 Serge 688
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
4104 Serge 689
			 ring->name, ring->scratch.gtt_offset);
2332 Serge 690
	return 0;
691
 
692
err_unpin:
5060 serge 693
	i915_gem_object_ggtt_unpin(ring->scratch.obj);
2332 Serge 694
err_unref:
4104 Serge 695
	drm_gem_object_unreference(&ring->scratch.obj->base);
2332 Serge 696
err:
697
	return ret;
698
}
699
 
6084 serge 700
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
5354 serge 701
{
702
	int ret, i;
6084 serge 703
	struct intel_engine_cs *ring = req->ring;
5354 serge 704
	struct drm_device *dev = ring->dev;
705
	struct drm_i915_private *dev_priv = dev->dev_private;
706
	struct i915_workarounds *w = &dev_priv->workarounds;
707
 
6084 serge 708
	if (w->count == 0)
5354 serge 709
		return 0;
710
 
711
	ring->gpu_caches_dirty = true;
6084 serge 712
	ret = intel_ring_flush_all_caches(req);
5354 serge 713
	if (ret)
714
		return ret;
715
 
6084 serge 716
	ret = intel_ring_begin(req, (w->count * 2 + 2));
5354 serge 717
	if (ret)
718
		return ret;
719
 
720
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
721
	for (i = 0; i < w->count; i++) {
6937 serge 722
		intel_ring_emit_reg(ring, w->reg[i].addr);
5354 serge 723
		intel_ring_emit(ring, w->reg[i].value);
724
	}
725
	intel_ring_emit(ring, MI_NOOP);
726
 
727
	intel_ring_advance(ring);
728
 
729
	ring->gpu_caches_dirty = true;
6084 serge 730
	ret = intel_ring_flush_all_caches(req);
5354 serge 731
	if (ret)
732
		return ret;
733
 
734
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
735
 
736
	return 0;
737
}
738
 
6084 serge 739
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
740
{
741
	int ret;
742
 
743
	ret = intel_ring_workarounds_emit(req);
744
	if (ret != 0)
745
		return ret;
746
 
747
	ret = i915_gem_render_state_init(req);
748
	if (ret)
7144 serge 749
		return ret;
6084 serge 750
 
7144 serge 751
	return 0;
6084 serge 752
}
753
 
5354 serge 754
static int wa_add(struct drm_i915_private *dev_priv,
6937 serge 755
		  i915_reg_t addr,
756
		  const u32 mask, const u32 val)
5354 serge 757
{
758
	const u32 idx = dev_priv->workarounds.count;
759
 
760
	if (WARN_ON(idx >= I915_MAX_WA_REGS))
761
		return -ENOSPC;
762
 
763
	dev_priv->workarounds.reg[idx].addr = addr;
764
	dev_priv->workarounds.reg[idx].value = val;
765
	dev_priv->workarounds.reg[idx].mask = mask;
766
 
767
	dev_priv->workarounds.count++;
768
 
769
	return 0;
770
}
771
 
6084 serge 772
#define WA_REG(addr, mask, val) do { \
5354 serge 773
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
774
		if (r) \
775
			return r; \
6084 serge 776
	} while (0)
5354 serge 777
 
778
#define WA_SET_BIT_MASKED(addr, mask) \
779
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
780
 
781
#define WA_CLR_BIT_MASKED(addr, mask) \
782
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
783
 
784
#define WA_SET_FIELD_MASKED(addr, mask, value) \
785
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
786
 
787
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
788
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
789
 
790
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
791
 
7144 serge 792
static int wa_ring_whitelist_reg(struct intel_engine_cs *ring, i915_reg_t reg)
793
{
794
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
795
	struct i915_workarounds *wa = &dev_priv->workarounds;
796
	const uint32_t index = wa->hw_whitelist_count[ring->id];
797
 
798
	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
799
		return -EINVAL;
800
 
801
	WA_WRITE(RING_FORCE_TO_NONPRIV(ring->mmio_base, index),
802
		 i915_mmio_reg_offset(reg));
803
	wa->hw_whitelist_count[ring->id]++;
804
 
805
	return 0;
806
}
807
 
6084 serge 808
static int gen8_init_workarounds(struct intel_engine_cs *ring)
5354 serge 809
{
810
	struct drm_device *dev = ring->dev;
811
	struct drm_i915_private *dev_priv = dev->dev_private;
812
 
6084 serge 813
	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
5354 serge 814
 
6084 serge 815
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
816
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
5354 serge 817
 
6084 serge 818
	/* WaDisablePartialInstShootdown:bdw,chv */
819
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
820
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
5354 serge 821
 
822
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
823
	 * workaround for for a possible hang in the unlikely event a TLB
824
	 * invalidation occurs during a PSD flush.
825
	 */
6084 serge 826
	/* WaForceEnableNonCoherent:bdw,chv */
827
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
5354 serge 828
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
6084 serge 829
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
830
			  HDC_FORCE_NON_COHERENT);
5354 serge 831
 
6084 serge 832
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
833
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
834
	 *  polygons in the same 8x4 pixel/sample area to be processed without
835
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
836
	 *  buffer."
837
	 *
838
	 * This optimization is off by default for BDW and CHV; turn it on.
839
	 */
840
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
5354 serge 841
 
6084 serge 842
	/* Wa4x4STCOptimizationDisable:bdw,chv */
843
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
844
 
5354 serge 845
	/*
846
	 * BSpec recommends 8x4 when MSAA is used,
847
	 * however in practice 16x4 seems fastest.
848
	 *
849
	 * Note that PS/WM thread counts depend on the WIZ hashing
850
	 * disable bit, which we don't touch here, but it's good
851
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
852
	 */
853
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
854
			    GEN6_WIZ_HASHING_MASK,
855
			    GEN6_WIZ_HASHING_16x4);
856
 
857
	return 0;
858
}
859
 
6084 serge 860
static int bdw_init_workarounds(struct intel_engine_cs *ring)
861
{
862
	int ret;
863
	struct drm_device *dev = ring->dev;
864
	struct drm_i915_private *dev_priv = dev->dev_private;
865
 
866
	ret = gen8_init_workarounds(ring);
867
	if (ret)
868
		return ret;
869
 
870
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
871
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
872
 
873
	/* WaDisableDopClockGating:bdw */
874
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
875
			  DOP_CLOCK_GATING_DISABLE);
876
 
877
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
878
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
879
 
880
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
881
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
882
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
883
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
884
			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
885
 
886
	return 0;
887
}
888
 
5354 serge 889
static int chv_init_workarounds(struct intel_engine_cs *ring)
890
{
6084 serge 891
	int ret;
5354 serge 892
	struct drm_device *dev = ring->dev;
893
	struct drm_i915_private *dev_priv = dev->dev_private;
894
 
6084 serge 895
	ret = gen8_init_workarounds(ring);
896
	if (ret)
897
		return ret;
898
 
5354 serge 899
	/* WaDisableThreadStallDopClockGating:chv */
6084 serge 900
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
901
 
902
	/* Improve HiZ throughput on CHV. */
903
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
904
 
905
	return 0;
906
}
907
 
908
static int gen9_init_workarounds(struct intel_engine_cs *ring)
909
{
910
	struct drm_device *dev = ring->dev;
911
	struct drm_i915_private *dev_priv = dev->dev_private;
912
	uint32_t tmp;
7144 serge 913
	int ret;
6084 serge 914
 
915
	/* WaEnableLbsSlaRetryTimerDecrement:skl */
916
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
917
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
918
 
919
	/* WaDisableKillLogic:bxt,skl */
920
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
921
		   ECOCHK_DIS_TLB);
922
 
923
	/* WaDisablePartialInstShootdown:skl,bxt */
5354 serge 924
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
6084 serge 925
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
5354 serge 926
 
6084 serge 927
	/* Syncing dependencies between camera and graphics:skl,bxt */
928
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
929
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
930
 
7144 serge 931
	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
6937 serge 932
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
933
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
6084 serge 934
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
935
				  GEN9_DG_MIRROR_FIX_ENABLE);
936
 
7144 serge 937
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
6937 serge 938
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
939
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
6084 serge 940
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
941
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
942
		/*
943
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
944
		 * but we do that in per ctx batchbuffer as there is an issue
945
		 * with this register not getting restored on ctx restore
946
		 */
947
	}
948
 
7144 serge 949
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
6937 serge 950
	if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
6084 serge 951
		WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
952
				  GEN9_ENABLE_YV12_BUGFIX);
953
 
954
	/* Wa4x4STCOptimizationDisable:skl,bxt */
955
	/* WaDisablePartialResolveInVc:skl,bxt */
956
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
957
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
958
 
959
	/* WaCcsTlbPrefetchDisable:skl,bxt */
960
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
961
			  GEN9_CCS_TLB_PREFETCH_ENABLE);
962
 
963
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
6937 serge 964
	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
965
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
6084 serge 966
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
967
				  PIXEL_MASK_CAMMING_DISABLE);
968
 
969
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt */
970
	tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
6937 serge 971
	if (IS_SKL_REVID(dev, SKL_REVID_F0, REVID_FOREVER) ||
972
	    IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
6084 serge 973
		tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
974
	WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
975
 
976
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
6937 serge 977
	if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
6084 serge 978
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
979
				  GEN8_SAMPLER_POWER_BYPASS_DIS);
980
 
981
	/* WaDisableSTUnitPowerOptimization:skl,bxt */
982
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
983
 
7144 serge 984
	/* WaOCLCoherentLineFlush:skl,bxt */
985
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
986
				    GEN8_LQSC_FLUSH_COHERENT_LINES));
987
 
988
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
989
	ret= wa_ring_whitelist_reg(ring, GEN8_CS_CHICKEN1);
990
	if (ret)
991
		return ret;
992
 
993
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt */
994
	ret = wa_ring_whitelist_reg(ring, GEN8_HDC_CHICKEN1);
995
	if (ret)
996
		return ret;
997
 
6084 serge 998
	return 0;
999
}
1000
 
1001
static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
1002
{
1003
	struct drm_device *dev = ring->dev;
1004
	struct drm_i915_private *dev_priv = dev->dev_private;
1005
	u8 vals[3] = { 0, 0, 0 };
1006
	unsigned int i;
1007
 
1008
	for (i = 0; i < 3; i++) {
1009
		u8 ss;
1010
 
1011
		/*
1012
		 * Only consider slices where one, and only one, subslice has 7
1013
		 * EUs
1014
		 */
6937 serge 1015
		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
6084 serge 1016
			continue;
1017
 
1018
		/*
1019
		 * subslice_7eu[i] != 0 (because of the check above) and
1020
		 * ss_max == 4 (maximum number of subslices possible per slice)
1021
		 *
1022
		 * ->    0 <= ss <= 3;
1023
		 */
1024
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1025
		vals[i] = 3 - ss;
1026
	}
1027
 
1028
	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1029
		return 0;
1030
 
1031
	/* Tune IZ hashing. See intel_device_info_runtime_init() */
1032
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1033
			    GEN9_IZ_HASHING_MASK(2) |
1034
			    GEN9_IZ_HASHING_MASK(1) |
1035
			    GEN9_IZ_HASHING_MASK(0),
1036
			    GEN9_IZ_HASHING(2, vals[2]) |
1037
			    GEN9_IZ_HASHING(1, vals[1]) |
1038
			    GEN9_IZ_HASHING(0, vals[0]));
1039
 
1040
	return 0;
1041
}
1042
 
1043
static int skl_init_workarounds(struct intel_engine_cs *ring)
1044
{
1045
	int ret;
1046
	struct drm_device *dev = ring->dev;
1047
	struct drm_i915_private *dev_priv = dev->dev_private;
1048
 
1049
	ret = gen9_init_workarounds(ring);
1050
	if (ret)
1051
		return ret;
1052
 
7144 serge 1053
	/*
1054
	 * Actual WA is to disable percontext preemption granularity control
1055
	 * until D0 which is the default case so this is equivalent to
1056
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1057
	 */
1058
	if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
1059
		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1060
			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1061
	}
1062
 
6937 serge 1063
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
6084 serge 1064
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1065
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
1066
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1067
	}
1068
 
1069
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1070
	 * involving this register should also be added to WA batch as required.
5354 serge 1071
	 */
6937 serge 1072
	if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
6084 serge 1073
		/* WaDisableLSQCROPERFforOCL:skl */
1074
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1075
			   GEN8_LQSC_RO_PERF_DIS);
5354 serge 1076
 
6084 serge 1077
	/* WaEnableGapsTsvCreditFix:skl */
6937 serge 1078
	if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
6084 serge 1079
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1080
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
1081
	}
1082
 
1083
	/* WaDisablePowerCompilerClockGating:skl */
6937 serge 1084
	if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
6084 serge 1085
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
1086
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1087
 
6937 serge 1088
	/* This is tied to WaForceContextSaveRestoreNonCoherent */
1089
	if (IS_SKL_REVID(dev, 0, REVID_FOREVER)) {
6084 serge 1090
		/*
1091
		 *Use Force Non-Coherent whenever executing a 3D context. This
1092
		 * is a workaround for a possible hang in the unlikely event
1093
		 * a TLB invalidation occurs during a PSD flush.
1094
		 */
1095
		/* WaForceEnableNonCoherent:skl */
1096
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1097
				  HDC_FORCE_NON_COHERENT);
6937 serge 1098
 
1099
		/* WaDisableHDCInvalidation:skl */
1100
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1101
			   BDW_DISABLE_HDC_INVALIDATION);
6084 serge 1102
	}
1103
 
7144 serge 1104
	/* WaBarrierPerformanceFixDisable:skl */
6937 serge 1105
	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
6084 serge 1106
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1107
				  HDC_FENCE_DEST_SLM_DISABLE |
1108
				  HDC_BARRIER_PERFORMANCE_DISABLE);
1109
 
1110
	/* WaDisableSbeCacheDispatchPortSharing:skl */
6937 serge 1111
	if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
6084 serge 1112
		WA_SET_BIT_MASKED(
1113
			GEN7_HALF_SLICE_CHICKEN1,
1114
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1115
 
7144 serge 1116
	/* WaDisableLSQCROPERFforOCL:skl */
1117
	ret = wa_ring_whitelist_reg(ring, GEN8_L3SQCREG4);
1118
	if (ret)
1119
		return ret;
1120
 
6084 serge 1121
	return skl_tune_iz_hashing(ring);
1122
}
1123
 
1124
static int bxt_init_workarounds(struct intel_engine_cs *ring)
1125
{
1126
	int ret;
1127
	struct drm_device *dev = ring->dev;
1128
	struct drm_i915_private *dev_priv = dev->dev_private;
1129
 
1130
	ret = gen9_init_workarounds(ring);
1131
	if (ret)
1132
		return ret;
1133
 
1134
	/* WaStoreMultiplePTEenable:bxt */
1135
	/* This is a requirement according to Hardware specification */
6937 serge 1136
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
6084 serge 1137
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1138
 
1139
	/* WaSetClckGatingDisableMedia:bxt */
6937 serge 1140
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
6084 serge 1141
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1142
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1143
	}
1144
 
1145
	/* WaDisableThreadStallDopClockGating:bxt */
1146
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1147
			  STALL_DOP_GATING_DISABLE);
1148
 
1149
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
6937 serge 1150
	if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
6084 serge 1151
		WA_SET_BIT_MASKED(
1152
			GEN7_HALF_SLICE_CHICKEN1,
1153
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1154
	}
1155
 
7144 serge 1156
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1157
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1158
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1159
	/* WaDisableLSQCROPERFforOCL:bxt */
1160
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1161
		ret = wa_ring_whitelist_reg(ring, GEN9_CS_DEBUG_MODE1);
1162
		if (ret)
1163
			return ret;
1164
 
1165
		ret = wa_ring_whitelist_reg(ring, GEN8_L3SQCREG4);
1166
		if (ret)
1167
			return ret;
1168
	}
1169
 
5354 serge 1170
	return 0;
1171
}
1172
 
1173
int init_workarounds_ring(struct intel_engine_cs *ring)
1174
{
1175
	struct drm_device *dev = ring->dev;
1176
	struct drm_i915_private *dev_priv = dev->dev_private;
1177
 
1178
	WARN_ON(ring->id != RCS);
1179
 
1180
	dev_priv->workarounds.count = 0;
7144 serge 1181
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
5354 serge 1182
 
1183
	if (IS_BROADWELL(dev))
1184
		return bdw_init_workarounds(ring);
1185
 
1186
	if (IS_CHERRYVIEW(dev))
1187
		return chv_init_workarounds(ring);
1188
 
6084 serge 1189
	if (IS_SKYLAKE(dev))
1190
		return skl_init_workarounds(ring);
1191
 
1192
	if (IS_BROXTON(dev))
1193
		return bxt_init_workarounds(ring);
1194
 
5354 serge 1195
	return 0;
1196
}
1197
 
5060 serge 1198
static int init_render_ring(struct intel_engine_cs *ring)
2332 Serge 1199
{
1200
	struct drm_device *dev = ring->dev;
1201
	struct drm_i915_private *dev_priv = dev->dev_private;
1202
	int ret = init_ring_common(ring);
5060 serge 1203
	if (ret)
1204
		return ret;
2332 Serge 1205
 
5060 serge 1206
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1207
	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
3031 serge 1208
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
3243 Serge 1209
 
1210
	/* We need to disable the AsyncFlip performance optimisations in order
1211
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1212
	 * programmed to '1' on all products.
4104 Serge 1213
	 *
6084 serge 1214
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
3243 Serge 1215
	 */
6084 serge 1216
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
3243 Serge 1217
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1218
 
1219
	/* Required for the hardware to program scanline values for waiting */
5060 serge 1220
	/* WaEnableFlushTlbInvalidationMode:snb */
3243 Serge 1221
	if (INTEL_INFO(dev)->gen == 6)
1222
		I915_WRITE(GFX_MODE,
5060 serge 1223
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
3243 Serge 1224
 
5060 serge 1225
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
6084 serge 1226
	if (IS_GEN7(dev))
1227
		I915_WRITE(GFX_MODE_GEN7,
5060 serge 1228
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
6084 serge 1229
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
2332 Serge 1230
 
3031 serge 1231
	if (IS_GEN6(dev)) {
1232
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
1233
		 * "If this bit is set, STCunit will have LRA as replacement
1234
		 *  policy. [...] This bit must be reset.  LRA replacement
1235
		 *  policy is not supported."
1236
		 */
1237
		I915_WRITE(CACHE_MODE_0,
1238
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
2342 Serge 1239
	}
1240
 
6084 serge 1241
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
3031 serge 1242
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1243
 
4560 Serge 1244
	if (HAS_L3_DPF(dev))
1245
		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
3031 serge 1246
 
5354 serge 1247
	return init_workarounds_ring(ring);
2332 Serge 1248
}
1249
 
5060 serge 1250
static void render_ring_cleanup(struct intel_engine_cs *ring)
2332 Serge 1251
{
3480 Serge 1252
	struct drm_device *dev = ring->dev;
5128 serge 1253
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 1254
 
5128 serge 1255
	if (dev_priv->semaphore_obj) {
1256
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1257
		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1258
		dev_priv->semaphore_obj = NULL;
1259
	}
1260
 
5354 serge 1261
	intel_fini_pipe_control(ring);
2332 Serge 1262
}
1263
 
6084 serge 1264
static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
5060 serge 1265
			   unsigned int num_dwords)
2332 Serge 1266
{
5060 serge 1267
#define MBOX_UPDATE_DWORDS 8
6084 serge 1268
	struct intel_engine_cs *signaller = signaller_req->ring;
5060 serge 1269
	struct drm_device *dev = signaller->dev;
1270
	struct drm_i915_private *dev_priv = dev->dev_private;
1271
	struct intel_engine_cs *waiter;
1272
	int i, ret, num_rings;
1273
 
1274
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1275
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1276
#undef MBOX_UPDATE_DWORDS
1277
 
6084 serge 1278
	ret = intel_ring_begin(signaller_req, num_dwords);
5060 serge 1279
	if (ret)
1280
		return ret;
1281
 
1282
	for_each_ring(waiter, dev_priv, i) {
6084 serge 1283
		u32 seqno;
5060 serge 1284
		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1285
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1286
			continue;
1287
 
6084 serge 1288
		seqno = i915_gem_request_get_seqno(signaller_req);
5060 serge 1289
		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1290
		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1291
					   PIPE_CONTROL_QW_WRITE |
1292
					   PIPE_CONTROL_FLUSH_ENABLE);
1293
		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1294
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
6084 serge 1295
		intel_ring_emit(signaller, seqno);
5060 serge 1296
		intel_ring_emit(signaller, 0);
1297
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1298
					   MI_SEMAPHORE_TARGET(waiter->id));
1299
		intel_ring_emit(signaller, 0);
1300
	}
1301
 
1302
	return 0;
2332 Serge 1303
}
1304
 
6084 serge 1305
static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
5060 serge 1306
			   unsigned int num_dwords)
1307
{
1308
#define MBOX_UPDATE_DWORDS 6
6084 serge 1309
	struct intel_engine_cs *signaller = signaller_req->ring;
5060 serge 1310
	struct drm_device *dev = signaller->dev;
1311
	struct drm_i915_private *dev_priv = dev->dev_private;
1312
	struct intel_engine_cs *waiter;
1313
	int i, ret, num_rings;
1314
 
1315
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1316
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1317
#undef MBOX_UPDATE_DWORDS
1318
 
6084 serge 1319
	ret = intel_ring_begin(signaller_req, num_dwords);
5060 serge 1320
	if (ret)
1321
		return ret;
1322
 
1323
	for_each_ring(waiter, dev_priv, i) {
6084 serge 1324
		u32 seqno;
5060 serge 1325
		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1326
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1327
			continue;
1328
 
6084 serge 1329
		seqno = i915_gem_request_get_seqno(signaller_req);
5060 serge 1330
		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1331
					   MI_FLUSH_DW_OP_STOREDW);
1332
		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1333
					   MI_FLUSH_DW_USE_GTT);
1334
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
6084 serge 1335
		intel_ring_emit(signaller, seqno);
5060 serge 1336
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1337
					   MI_SEMAPHORE_TARGET(waiter->id));
1338
		intel_ring_emit(signaller, 0);
1339
	}
1340
 
1341
	return 0;
1342
}
1343
 
6084 serge 1344
static int gen6_signal(struct drm_i915_gem_request *signaller_req,
5060 serge 1345
		       unsigned int num_dwords)
1346
{
6084 serge 1347
	struct intel_engine_cs *signaller = signaller_req->ring;
5060 serge 1348
	struct drm_device *dev = signaller->dev;
1349
	struct drm_i915_private *dev_priv = dev->dev_private;
1350
	struct intel_engine_cs *useless;
1351
	int i, ret, num_rings;
1352
 
1353
#define MBOX_UPDATE_DWORDS 3
1354
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1355
	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1356
#undef MBOX_UPDATE_DWORDS
1357
 
6084 serge 1358
	ret = intel_ring_begin(signaller_req, num_dwords);
5060 serge 1359
	if (ret)
1360
		return ret;
1361
 
1362
	for_each_ring(useless, dev_priv, i) {
6937 serge 1363
		i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
1364
 
1365
		if (i915_mmio_reg_valid(mbox_reg)) {
6084 serge 1366
			u32 seqno = i915_gem_request_get_seqno(signaller_req);
6937 serge 1367
 
5060 serge 1368
			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
6937 serge 1369
			intel_ring_emit_reg(signaller, mbox_reg);
6084 serge 1370
			intel_ring_emit(signaller, seqno);
5060 serge 1371
		}
1372
	}
1373
 
1374
	/* If num_dwords was rounded, make sure the tail pointer is correct */
1375
	if (num_rings % 2 == 0)
1376
		intel_ring_emit(signaller, MI_NOOP);
1377
 
1378
	return 0;
1379
}
1380
 
2342 Serge 1381
/**
1382
 * gen6_add_request - Update the semaphore mailbox registers
1383
 *
6084 serge 1384
 * @request - request to write to the ring
2342 Serge 1385
 *
1386
 * Update the mailbox registers in the *other* rings with the current seqno.
1387
 * This acts like a signal in the canonical semaphore.
1388
 */
2332 Serge 1389
static int
6084 serge 1390
gen6_add_request(struct drm_i915_gem_request *req)
2332 Serge 1391
{
6084 serge 1392
	struct intel_engine_cs *ring = req->ring;
5060 serge 1393
	int ret;
2332 Serge 1394
 
5060 serge 1395
	if (ring->semaphore.signal)
6084 serge 1396
		ret = ring->semaphore.signal(req, 4);
5060 serge 1397
	else
6084 serge 1398
		ret = intel_ring_begin(req, 4);
4560 Serge 1399
 
2332 Serge 1400
	if (ret)
1401
		return ret;
1402
 
1403
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1404
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
6084 serge 1405
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
2332 Serge 1406
	intel_ring_emit(ring, MI_USER_INTERRUPT);
4560 Serge 1407
	__intel_ring_advance(ring);
2332 Serge 1408
 
1409
	return 0;
1410
}
1411
 
3480 Serge 1412
static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1413
					      u32 seqno)
1414
{
1415
	struct drm_i915_private *dev_priv = dev->dev_private;
1416
	return dev_priv->last_seqno < seqno;
1417
}
1418
 
2342 Serge 1419
/**
1420
 * intel_ring_sync - sync the waiter to the signaller on seqno
1421
 *
1422
 * @waiter - ring that is waiting
1423
 * @signaller - ring which has, or will signal
1424
 * @seqno - seqno which the waiter will block on
1425
 */
5060 serge 1426
 
2342 Serge 1427
static int
6084 serge 1428
gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
5060 serge 1429
	       struct intel_engine_cs *signaller,
1430
	       u32 seqno)
1431
{
6084 serge 1432
	struct intel_engine_cs *waiter = waiter_req->ring;
5060 serge 1433
	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1434
	int ret;
1435
 
6084 serge 1436
	ret = intel_ring_begin(waiter_req, 4);
5060 serge 1437
	if (ret)
1438
		return ret;
1439
 
1440
	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1441
				MI_SEMAPHORE_GLOBAL_GTT |
1442
				MI_SEMAPHORE_POLL |
1443
				MI_SEMAPHORE_SAD_GTE_SDD);
1444
	intel_ring_emit(waiter, seqno);
1445
	intel_ring_emit(waiter,
1446
			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1447
	intel_ring_emit(waiter,
1448
			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1449
	intel_ring_advance(waiter);
1450
	return 0;
1451
}
1452
 
1453
static int
6084 serge 1454
gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
5060 serge 1455
	       struct intel_engine_cs *signaller,
6084 serge 1456
	       u32 seqno)
2332 Serge 1457
{
6084 serge 1458
	struct intel_engine_cs *waiter = waiter_req->ring;
2342 Serge 1459
	u32 dw1 = MI_SEMAPHORE_MBOX |
1460
		  MI_SEMAPHORE_COMPARE |
1461
		  MI_SEMAPHORE_REGISTER;
5060 serge 1462
	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1463
	int ret;
2332 Serge 1464
 
3031 serge 1465
	/* Throughout all of the GEM code, seqno passed implies our current
1466
	 * seqno is >= the last seqno executed. However for hardware the
1467
	 * comparison is strictly greater than.
1468
	 */
1469
	seqno -= 1;
1470
 
5060 serge 1471
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
3031 serge 1472
 
6084 serge 1473
	ret = intel_ring_begin(waiter_req, 4);
2332 Serge 1474
	if (ret)
1475
		return ret;
1476
 
3480 Serge 1477
	/* If seqno wrap happened, omit the wait with no-ops */
1478
	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
5060 serge 1479
		intel_ring_emit(waiter, dw1 | wait_mbox);
6084 serge 1480
		intel_ring_emit(waiter, seqno);
1481
		intel_ring_emit(waiter, 0);
1482
		intel_ring_emit(waiter, MI_NOOP);
3480 Serge 1483
	} else {
1484
		intel_ring_emit(waiter, MI_NOOP);
1485
		intel_ring_emit(waiter, MI_NOOP);
1486
		intel_ring_emit(waiter, MI_NOOP);
1487
		intel_ring_emit(waiter, MI_NOOP);
1488
	}
2342 Serge 1489
	intel_ring_advance(waiter);
2332 Serge 1490
 
1491
	return 0;
1492
}
1493
 
1494
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
1495
do {									\
2342 Serge 1496
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
1497
		 PIPE_CONTROL_DEPTH_STALL);				\
2332 Serge 1498
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
1499
	intel_ring_emit(ring__, 0);							\
1500
	intel_ring_emit(ring__, 0);							\
1501
} while (0)
1502
 
1503
static int
6084 serge 1504
pc_render_add_request(struct drm_i915_gem_request *req)
2332 Serge 1505
{
6084 serge 1506
	struct intel_engine_cs *ring = req->ring;
5060 serge 1507
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
2332 Serge 1508
	int ret;
1509
 
1510
	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1511
	 * incoherent with writes to memory, i.e. completely fubar,
1512
	 * so we need to use PIPE_NOTIFY instead.
1513
	 *
1514
	 * However, we also need to workaround the qword write
1515
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1516
	 * memory before requesting an interrupt.
1517
	 */
6084 serge 1518
	ret = intel_ring_begin(req, 32);
2332 Serge 1519
	if (ret)
1520
		return ret;
1521
 
2342 Serge 1522
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1523
			PIPE_CONTROL_WRITE_FLUSH |
1524
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
4104 Serge 1525
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
6084 serge 1526
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
2332 Serge 1527
	intel_ring_emit(ring, 0);
1528
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 1529
	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
2332 Serge 1530
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 1531
	scratch_addr += 2 * CACHELINE_BYTES;
2332 Serge 1532
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 1533
	scratch_addr += 2 * CACHELINE_BYTES;
2332 Serge 1534
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 1535
	scratch_addr += 2 * CACHELINE_BYTES;
2332 Serge 1536
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 1537
	scratch_addr += 2 * CACHELINE_BYTES;
2332 Serge 1538
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
3031 serge 1539
 
2342 Serge 1540
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1541
			PIPE_CONTROL_WRITE_FLUSH |
1542
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
2332 Serge 1543
			PIPE_CONTROL_NOTIFY);
4104 Serge 1544
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
6084 serge 1545
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
2332 Serge 1546
	intel_ring_emit(ring, 0);
4560 Serge 1547
	__intel_ring_advance(ring);
2332 Serge 1548
 
1549
	return 0;
1550
}
1551
 
1552
static u32
5060 serge 1553
gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
2342 Serge 1554
{
1555
	/* Workaround to force correct ordering between irq and seqno writes on
1556
	 * ivb (and maybe also on snb) by reading from a CS register (like
1557
	 * ACTHD) before reading the status page. */
5060 serge 1558
	if (!lazy_coherency) {
1559
		struct drm_i915_private *dev_priv = ring->dev->dev_private;
1560
		POSTING_READ(RING_ACTHD(ring->mmio_base));
1561
	}
1562
 
2342 Serge 1563
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1564
}
1565
 
1566
static u32
5060 serge 1567
ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
2332 Serge 1568
{
1569
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1570
}
1571
 
3480 Serge 1572
static void
5060 serge 1573
ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
3480 Serge 1574
{
1575
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1576
}
1577
 
2332 Serge 1578
static u32
5060 serge 1579
pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
2332 Serge 1580
{
4104 Serge 1581
	return ring->scratch.cpu_page[0];
2332 Serge 1582
}
1583
 
3480 Serge 1584
static void
5060 serge 1585
pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
3480 Serge 1586
{
4104 Serge 1587
	ring->scratch.cpu_page[0] = seqno;
3480 Serge 1588
}
1589
 
3031 serge 1590
static bool
5060 serge 1591
gen5_ring_get_irq(struct intel_engine_cs *ring)
2332 Serge 1592
{
3031 serge 1593
	struct drm_device *dev = ring->dev;
5060 serge 1594
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1595
	unsigned long flags;
1596
 
5354 serge 1597
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
3031 serge 1598
		return false;
1599
 
1600
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
4104 Serge 1601
	if (ring->irq_refcount++ == 0)
5060 serge 1602
		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
3031 serge 1603
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1604
 
1605
	return true;
2332 Serge 1606
}
1607
 
1608
static void
5060 serge 1609
gen5_ring_put_irq(struct intel_engine_cs *ring)
2332 Serge 1610
{
3031 serge 1611
	struct drm_device *dev = ring->dev;
5060 serge 1612
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1613
	unsigned long flags;
1614
 
1615
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
4104 Serge 1616
	if (--ring->irq_refcount == 0)
5060 serge 1617
		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
3031 serge 1618
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1619
}
1620
 
3031 serge 1621
static bool
5060 serge 1622
i9xx_ring_get_irq(struct intel_engine_cs *ring)
2332 Serge 1623
{
3031 serge 1624
	struct drm_device *dev = ring->dev;
5060 serge 1625
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1626
	unsigned long flags;
1627
 
5354 serge 1628
	if (!intel_irqs_enabled(dev_priv))
3031 serge 1629
		return false;
1630
 
1631
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1632
	if (ring->irq_refcount++ == 0) {
1633
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
6084 serge 1634
		I915_WRITE(IMR, dev_priv->irq_mask);
1635
		POSTING_READ(IMR);
3031 serge 1636
	}
1637
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1638
 
1639
	return true;
2332 Serge 1640
}
1641
 
1642
static void
5060 serge 1643
i9xx_ring_put_irq(struct intel_engine_cs *ring)
2332 Serge 1644
{
3031 serge 1645
	struct drm_device *dev = ring->dev;
5060 serge 1646
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1647
	unsigned long flags;
1648
 
1649
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1650
	if (--ring->irq_refcount == 0) {
1651
		dev_priv->irq_mask |= ring->irq_enable_mask;
6084 serge 1652
		I915_WRITE(IMR, dev_priv->irq_mask);
1653
		POSTING_READ(IMR);
3031 serge 1654
	}
1655
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1656
}
1657
 
1658
static bool
5060 serge 1659
i8xx_ring_get_irq(struct intel_engine_cs *ring)
2332 Serge 1660
{
1661
	struct drm_device *dev = ring->dev;
5060 serge 1662
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1663
	unsigned long flags;
2332 Serge 1664
 
5354 serge 1665
	if (!intel_irqs_enabled(dev_priv))
2332 Serge 1666
		return false;
1667
 
3031 serge 1668
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 1669
	if (ring->irq_refcount++ == 0) {
3031 serge 1670
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1671
		I915_WRITE16(IMR, dev_priv->irq_mask);
1672
		POSTING_READ16(IMR);
2332 Serge 1673
	}
3031 serge 1674
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1675
 
1676
	return true;
1677
}
1678
 
1679
static void
5060 serge 1680
i8xx_ring_put_irq(struct intel_engine_cs *ring)
2332 Serge 1681
{
1682
	struct drm_device *dev = ring->dev;
5060 serge 1683
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1684
	unsigned long flags;
2332 Serge 1685
 
3031 serge 1686
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 1687
	if (--ring->irq_refcount == 0) {
3031 serge 1688
		dev_priv->irq_mask |= ring->irq_enable_mask;
1689
		I915_WRITE16(IMR, dev_priv->irq_mask);
1690
		POSTING_READ16(IMR);
2332 Serge 1691
	}
3031 serge 1692
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1693
}
1694
 
1695
static int
6084 serge 1696
bsd_ring_flush(struct drm_i915_gem_request *req,
2332 Serge 1697
	       u32     invalidate_domains,
1698
	       u32     flush_domains)
1699
{
6084 serge 1700
	struct intel_engine_cs *ring = req->ring;
2332 Serge 1701
	int ret;
1702
 
6084 serge 1703
	ret = intel_ring_begin(req, 2);
2332 Serge 1704
	if (ret)
1705
		return ret;
1706
 
1707
	intel_ring_emit(ring, MI_FLUSH);
1708
	intel_ring_emit(ring, MI_NOOP);
1709
	intel_ring_advance(ring);
1710
	return 0;
1711
}
1712
 
1713
static int
6084 serge 1714
i9xx_add_request(struct drm_i915_gem_request *req)
2332 Serge 1715
{
6084 serge 1716
	struct intel_engine_cs *ring = req->ring;
2332 Serge 1717
	int ret;
1718
 
6084 serge 1719
	ret = intel_ring_begin(req, 4);
2332 Serge 1720
	if (ret)
1721
		return ret;
1722
 
1723
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1724
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
6084 serge 1725
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
2332 Serge 1726
	intel_ring_emit(ring, MI_USER_INTERRUPT);
4560 Serge 1727
	__intel_ring_advance(ring);
2332 Serge 1728
 
1729
	return 0;
1730
}
1731
 
1732
static bool
5060 serge 1733
gen6_ring_get_irq(struct intel_engine_cs *ring)
2332 Serge 1734
{
1735
	struct drm_device *dev = ring->dev;
5060 serge 1736
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1737
	unsigned long flags;
2332 Serge 1738
 
5354 serge 1739
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
6084 serge 1740
		return false;
2332 Serge 1741
 
3031 serge 1742
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 1743
	if (ring->irq_refcount++ == 0) {
4560 Serge 1744
		if (HAS_L3_DPF(dev) && ring->id == RCS)
4104 Serge 1745
			I915_WRITE_IMR(ring,
1746
				       ~(ring->irq_enable_mask |
4560 Serge 1747
					 GT_PARITY_ERROR(dev)));
3031 serge 1748
		else
1749
			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
5060 serge 1750
		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
2332 Serge 1751
	}
3031 serge 1752
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1753
 
6084 serge 1754
	return true;
2332 Serge 1755
}
1756
 
1757
static void
5060 serge 1758
gen6_ring_put_irq(struct intel_engine_cs *ring)
2332 Serge 1759
{
1760
	struct drm_device *dev = ring->dev;
5060 serge 1761
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1762
	unsigned long flags;
2332 Serge 1763
 
3031 serge 1764
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 1765
	if (--ring->irq_refcount == 0) {
4560 Serge 1766
		if (HAS_L3_DPF(dev) && ring->id == RCS)
1767
			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
3031 serge 1768
		else
1769
			I915_WRITE_IMR(ring, ~0);
5060 serge 1770
		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
2332 Serge 1771
	}
3031 serge 1772
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1773
}
1774
 
4104 Serge 1775
static bool
5060 serge 1776
hsw_vebox_get_irq(struct intel_engine_cs *ring)
4104 Serge 1777
{
1778
	struct drm_device *dev = ring->dev;
1779
	struct drm_i915_private *dev_priv = dev->dev_private;
1780
	unsigned long flags;
1781
 
5354 serge 1782
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
4104 Serge 1783
		return false;
1784
 
1785
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1786
	if (ring->irq_refcount++ == 0) {
1787
		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
5060 serge 1788
		gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
4104 Serge 1789
	}
1790
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1791
 
1792
	return true;
1793
}
1794
 
1795
static void
5060 serge 1796
hsw_vebox_put_irq(struct intel_engine_cs *ring)
4104 Serge 1797
{
1798
	struct drm_device *dev = ring->dev;
1799
	struct drm_i915_private *dev_priv = dev->dev_private;
1800
	unsigned long flags;
1801
 
1802
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1803
	if (--ring->irq_refcount == 0) {
1804
		I915_WRITE_IMR(ring, ~0);
5060 serge 1805
		gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
4104 Serge 1806
	}
1807
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1808
}
1809
 
4560 Serge 1810
static bool
5060 serge 1811
gen8_ring_get_irq(struct intel_engine_cs *ring)
4560 Serge 1812
{
1813
	struct drm_device *dev = ring->dev;
1814
	struct drm_i915_private *dev_priv = dev->dev_private;
1815
	unsigned long flags;
1816
 
5354 serge 1817
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
4560 Serge 1818
		return false;
1819
 
1820
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1821
	if (ring->irq_refcount++ == 0) {
1822
		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1823
			I915_WRITE_IMR(ring,
1824
				       ~(ring->irq_enable_mask |
1825
					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1826
		} else {
1827
			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1828
		}
1829
		POSTING_READ(RING_IMR(ring->mmio_base));
1830
	}
1831
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1832
 
1833
	return true;
1834
}
1835
 
1836
static void
5060 serge 1837
gen8_ring_put_irq(struct intel_engine_cs *ring)
4560 Serge 1838
{
1839
	struct drm_device *dev = ring->dev;
1840
	struct drm_i915_private *dev_priv = dev->dev_private;
1841
	unsigned long flags;
1842
 
1843
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1844
	if (--ring->irq_refcount == 0) {
1845
		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1846
			I915_WRITE_IMR(ring,
1847
				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1848
		} else {
1849
			I915_WRITE_IMR(ring, ~0);
1850
		}
1851
		POSTING_READ(RING_IMR(ring->mmio_base));
1852
	}
1853
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1854
}
1855
 
2332 Serge 1856
static int
6084 serge 1857
i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
5060 serge 1858
			 u64 offset, u32 length,
6084 serge 1859
			 unsigned dispatch_flags)
2332 Serge 1860
{
6084 serge 1861
	struct intel_engine_cs *ring = req->ring;
2332 Serge 1862
	int ret;
1863
 
6084 serge 1864
	ret = intel_ring_begin(req, 2);
2332 Serge 1865
	if (ret)
1866
		return ret;
1867
 
1868
	intel_ring_emit(ring,
3031 serge 1869
			MI_BATCH_BUFFER_START |
1870
			MI_BATCH_GTT |
6084 serge 1871
			(dispatch_flags & I915_DISPATCH_SECURE ?
1872
 
2332 Serge 1873
	intel_ring_emit(ring, offset);
1874
	intel_ring_advance(ring);
1875
 
1876
	return 0;
1877
}
1878
 
3243 Serge 1879
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1880
#define I830_BATCH_LIMIT (256*1024)
5128 serge 1881
#define I830_TLB_ENTRIES (2)
1882
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
2332 Serge 1883
static int
6084 serge 1884
i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1885
			 u64 offset, u32 len,
1886
			 unsigned dispatch_flags)
2332 Serge 1887
{
6084 serge 1888
	struct intel_engine_cs *ring = req->ring;
5128 serge 1889
	u32 cs_offset = ring->scratch.gtt_offset;
2332 Serge 1890
	int ret;
1891
 
6084 serge 1892
	ret = intel_ring_begin(req, 6);
1893
	if (ret)
1894
		return ret;
2332 Serge 1895
 
5128 serge 1896
	/* Evict the invalid PTE TLBs */
1897
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1898
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1899
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1900
	intel_ring_emit(ring, cs_offset);
1901
	intel_ring_emit(ring, 0xdeadbeef);
6084 serge 1902
	intel_ring_emit(ring, MI_NOOP);
1903
	intel_ring_advance(ring);
3243 Serge 1904
 
6084 serge 1905
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
3243 Serge 1906
		if (len > I830_BATCH_LIMIT)
1907
			return -ENOSPC;
1908
 
6084 serge 1909
		ret = intel_ring_begin(req, 6 + 2);
3243 Serge 1910
		if (ret)
1911
			return ret;
5128 serge 1912
 
1913
		/* Blit the batch (which has now all relocs applied) to the
1914
		 * stable batch scratch bo area (so that the CS never
1915
		 * stumbles over its tlb invalidation bug) ...
1916
		 */
1917
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1918
		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
5139 serge 1919
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
3243 Serge 1920
		intel_ring_emit(ring, cs_offset);
1921
		intel_ring_emit(ring, 4096);
1922
		intel_ring_emit(ring, offset);
5128 serge 1923
 
3243 Serge 1924
		intel_ring_emit(ring, MI_FLUSH);
5128 serge 1925
		intel_ring_emit(ring, MI_NOOP);
1926
		intel_ring_advance(ring);
3243 Serge 1927
 
1928
		/* ... and execute it. */
5128 serge 1929
		offset = cs_offset;
1930
	}
1931
 
7144 serge 1932
	ret = intel_ring_begin(req, 2);
5128 serge 1933
	if (ret)
1934
		return ret;
1935
 
7144 serge 1936
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
6084 serge 1937
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1938
 
3031 serge 1939
	intel_ring_advance(ring);
1940
 
1941
	return 0;
1942
}
1943
 
1944
static int
6084 serge 1945
i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
5060 serge 1946
			 u64 offset, u32 len,
6084 serge 1947
			 unsigned dispatch_flags)
3031 serge 1948
{
6084 serge 1949
	struct intel_engine_cs *ring = req->ring;
3031 serge 1950
	int ret;
1951
 
6084 serge 1952
	ret = intel_ring_begin(req, 2);
1953
	if (ret)
1954
		return ret;
2332 Serge 1955
 
3031 serge 1956
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
6084 serge 1957
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1958
 
2332 Serge 1959
	intel_ring_advance(ring);
1960
 
1961
	return 0;
1962
}
1963
 
6660 serge 1964
static void cleanup_phys_status_page(struct intel_engine_cs *ring)
1965
{
1966
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
1967
 
1968
	if (!dev_priv->status_page_dmah)
1969
		return;
1970
 
1971
	drm_pci_free(ring->dev, dev_priv->status_page_dmah);
1972
	ring->status_page.page_addr = NULL;
1973
}
1974
 
5060 serge 1975
static void cleanup_status_page(struct intel_engine_cs *ring)
2332 Serge 1976
{
1977
	struct drm_i915_gem_object *obj;
1978
 
1979
	obj = ring->status_page.obj;
1980
	if (obj == NULL)
1981
		return;
1982
 
5354 serge 1983
	kunmap(sg_page(obj->pages->sgl));
5060 serge 1984
	i915_gem_object_ggtt_unpin(obj);
2344 Serge 1985
	drm_gem_object_unreference(&obj->base);
2332 Serge 1986
	ring->status_page.obj = NULL;
1987
}
1988
 
5060 serge 1989
static int init_status_page(struct intel_engine_cs *ring)
2332 Serge 1990
{
6660 serge 1991
	struct drm_i915_gem_object *obj = ring->status_page.obj;
5060 serge 1992
 
6660 serge 1993
	if (obj == NULL) {
5060 serge 1994
		unsigned flags;
6084 serge 1995
		int ret;
2332 Serge 1996
 
5060 serge 1997
		obj = i915_gem_alloc_object(ring->dev, 4096);
6084 serge 1998
		if (obj == NULL) {
1999
			DRM_ERROR("Failed to allocate status page\n");
5060 serge 2000
			return -ENOMEM;
6084 serge 2001
		}
2332 Serge 2002
 
6084 serge 2003
		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2004
		if (ret)
2005
			goto err_unref;
2332 Serge 2006
 
5060 serge 2007
		flags = 0;
2008
		if (!HAS_LLC(ring->dev))
2009
			/* On g33, we cannot place HWS above 256MiB, so
2010
			 * restrict its pinning to the low mappable arena.
2011
			 * Though this restriction is not documented for
2012
			 * gen4, gen5, or byt, they also behave similarly
2013
			 * and hang if the HWS is placed at the top of the
2014
			 * GTT. To generalise, it appears that all !llc
2015
			 * platforms have issues with us placing the HWS
2016
			 * above the mappable region (even though we never
2017
			 * actualy map it).
2018
			 */
2019
			flags |= PIN_MAPPABLE;
2020
		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2021
		if (ret) {
2022
err_unref:
2023
			drm_gem_object_unreference(&obj->base);
2024
			return ret;
2025
		}
2026
 
2027
		ring->status_page.obj = obj;
2332 Serge 2028
	}
2029
 
4104 Serge 2030
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
5354 serge 2031
	ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
2332 Serge 2032
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
2033
 
2034
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2035
			ring->name, ring->status_page.gfx_addr);
2036
 
2037
	return 0;
2038
}
2039
 
5060 serge 2040
static int init_phys_status_page(struct intel_engine_cs *ring)
3243 Serge 2041
{
6084 serge 2042
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3243 Serge 2043
 
6084 serge 2044
	if (!dev_priv->status_page_dmah) {
2045
		dev_priv->status_page_dmah =
2046
			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
2047
		if (!dev_priv->status_page_dmah)
2048
			return -ENOMEM;
2049
	}
3243 Serge 2050
 
6084 serge 2051
	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2052
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
3243 Serge 2053
 
6084 serge 2054
	return 0;
3243 Serge 2055
}
2056
 
5354 serge 2057
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2332 Serge 2058
{
7144 serge 2059
	if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2060
		vunmap(ringbuf->virtual_start);
2061
	else
2062
		iounmap(ringbuf->virtual_start);
5354 serge 2063
	ringbuf->virtual_start = NULL;
7144 serge 2064
	ringbuf->vma = NULL;
5060 serge 2065
	i915_gem_object_ggtt_unpin(ringbuf->obj);
2066
}
2067
 
7144 serge 2068
static u32 *vmap_obj(struct drm_i915_gem_object *obj)
2069
{
2070
	struct sg_page_iter sg_iter;
2071
	struct page **pages;
2072
	void *addr;
2073
	int i;
2074
 
2075
	pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
2076
	if (pages == NULL)
2077
		return NULL;
2078
 
2079
	i = 0;
2080
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
2081
		pages[i++] = sg_page_iter_page(&sg_iter);
2082
 
2083
	addr = vmap(pages, i, 0, PAGE_KERNEL);
2084
	drm_free_large(pages);
2085
 
2086
	return addr;
2087
}
2088
 
5354 serge 2089
int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
6084 serge 2090
				     struct intel_ringbuffer *ringbuf)
5060 serge 2091
{
2092
	struct drm_i915_private *dev_priv = to_i915(dev);
5354 serge 2093
	struct drm_i915_gem_object *obj = ringbuf->obj;
6937 serge 2094
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2095
	unsigned flags = PIN_OFFSET_BIAS | 4096;
2332 Serge 2096
	int ret;
2340 Serge 2097
 
7144 serge 2098
	if (HAS_LLC(dev_priv) && !obj->stolen) {
2099
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2100
		if (ret)
2101
			return ret;
5354 serge 2102
 
7144 serge 2103
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
2104
		if (ret) {
2105
			i915_gem_object_ggtt_unpin(obj);
2106
			return ret;
2107
		}
5354 serge 2108
 
7144 serge 2109
		ringbuf->virtual_start = vmap_obj(obj);
2110
		if (ringbuf->virtual_start == NULL) {
2111
			i915_gem_object_ggtt_unpin(obj);
2112
			return -ENOMEM;
2113
		}
2114
	} else {
2115
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2116
					    flags | PIN_MAPPABLE);
2117
		if (ret)
2118
			return ret;
2119
 
2120
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
2121
		if (ret) {
2122
			i915_gem_object_ggtt_unpin(obj);
2123
			return ret;
2124
		}
2125
 
2126
		/* Access through the GTT requires the device to be awake. */
2127
		assert_rpm_wakelock_held(dev_priv);
2128
 
2129
		ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2130
						    i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2131
		if (ringbuf->virtual_start == NULL) {
2132
			i915_gem_object_ggtt_unpin(obj);
2133
			return -EINVAL;
2134
		}
5354 serge 2135
	}
2136
 
7144 serge 2137
	ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2138
 
6084 serge 2139
	return 0;
5354 serge 2140
}
2332 Serge 2141
 
6084 serge 2142
static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
5354 serge 2143
{
2144
	drm_gem_object_unreference(&ringbuf->obj->base);
2145
	ringbuf->obj = NULL;
2146
}
2147
 
6084 serge 2148
static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2149
				      struct intel_ringbuffer *ringbuf)
5354 serge 2150
{
2151
	struct drm_i915_gem_object *obj;
2152
 
3480 Serge 2153
	obj = NULL;
4371 Serge 2154
	if (!HAS_LLC(dev))
5060 serge 2155
		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
3480 Serge 2156
	if (obj == NULL)
5060 serge 2157
		obj = i915_gem_alloc_object(dev, ringbuf->size);
2158
	if (obj == NULL)
2159
		return -ENOMEM;
2332 Serge 2160
 
5060 serge 2161
	/* mark ring buffers as read-only from GPU side by default */
2162
	obj->gt_ro = 1;
2332 Serge 2163
 
5354 serge 2164
	ringbuf->obj = obj;
2332 Serge 2165
 
5060 serge 2166
	return 0;
2167
}
2168
 
6084 serge 2169
struct intel_ringbuffer *
2170
intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2171
{
2172
	struct intel_ringbuffer *ring;
2173
	int ret;
2174
 
2175
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
6937 serge 2176
	if (ring == NULL) {
2177
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2178
				 engine->name);
6084 serge 2179
		return ERR_PTR(-ENOMEM);
6937 serge 2180
	}
6084 serge 2181
 
2182
	ring->ring = engine;
6937 serge 2183
	list_add(&ring->link, &engine->buffers);
6084 serge 2184
 
2185
	ring->size = size;
2186
	/* Workaround an erratum on the i830 which causes a hang if
2187
	 * the TAIL pointer points to within the last 2 cachelines
2188
	 * of the buffer.
2189
	 */
2190
	ring->effective_size = size;
2191
	if (IS_I830(engine->dev) || IS_845G(engine->dev))
2192
		ring->effective_size -= 2 * CACHELINE_BYTES;
2193
 
2194
	ring->last_retired_head = -1;
2195
	intel_ring_update_space(ring);
2196
 
2197
	ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2198
	if (ret) {
6937 serge 2199
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
7144 serge 2200
				 engine->name, ret);
6937 serge 2201
		list_del(&ring->link);
6084 serge 2202
		kfree(ring);
2203
		return ERR_PTR(ret);
2204
	}
2205
 
2206
	return ring;
2207
}
2208
 
2209
void
2210
intel_ringbuffer_free(struct intel_ringbuffer *ring)
2211
{
2212
	intel_destroy_ringbuffer_obj(ring);
6937 serge 2213
	list_del(&ring->link);
6084 serge 2214
	kfree(ring);
2215
}
2216
 
5060 serge 2217
static int intel_init_ring_buffer(struct drm_device *dev,
2218
				  struct intel_engine_cs *ring)
2219
{
6084 serge 2220
	struct intel_ringbuffer *ringbuf;
5060 serge 2221
	int ret;
2222
 
6084 serge 2223
	WARN_ON(ring->buffer);
5060 serge 2224
 
2225
	ring->dev = dev;
2226
	INIT_LIST_HEAD(&ring->active_list);
2227
	INIT_LIST_HEAD(&ring->request_list);
5354 serge 2228
	INIT_LIST_HEAD(&ring->execlist_queue);
6937 serge 2229
	INIT_LIST_HEAD(&ring->buffers);
6084 serge 2230
	i915_gem_batch_pool_init(dev, &ring->batch_pool);
5060 serge 2231
	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2232
 
2233
	init_waitqueue_head(&ring->irq_queue);
2234
 
6084 serge 2235
	ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
6937 serge 2236
	if (IS_ERR(ringbuf)) {
2237
		ret = PTR_ERR(ringbuf);
2238
		goto error;
2239
	}
6084 serge 2240
	ring->buffer = ringbuf;
2241
 
5060 serge 2242
	if (I915_NEED_GFX_HWS(dev)) {
2243
		ret = init_status_page(ring);
2244
		if (ret)
2245
			goto error;
2246
	} else {
6660 serge 2247
		WARN_ON(ring->id != RCS);
5060 serge 2248
		ret = init_phys_status_page(ring);
6084 serge 2249
		if (ret)
5060 serge 2250
			goto error;
2251
	}
2332 Serge 2252
 
6084 serge 2253
	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
5060 serge 2254
	if (ret) {
6084 serge 2255
		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2256
				ring->name, ret);
2257
		intel_destroy_ringbuffer_obj(ringbuf);
5060 serge 2258
		goto error;
2259
	}
2260
 
2261
	ret = i915_cmd_parser_init_ring(ring);
2262
	if (ret)
2263
		goto error;
2264
 
2332 Serge 2265
	return 0;
2266
 
5060 serge 2267
error:
6937 serge 2268
	intel_cleanup_ring_buffer(ring);
2332 Serge 2269
	return ret;
2270
}
2271
 
5060 serge 2272
void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2332 Serge 2273
{
5354 serge 2274
	struct drm_i915_private *dev_priv;
2332 Serge 2275
 
5060 serge 2276
	if (!intel_ring_initialized(ring))
2332 Serge 2277
		return;
2278
 
5354 serge 2279
	dev_priv = to_i915(ring->dev);
2280
 
6937 serge 2281
	if (ring->buffer) {
7144 serge 2282
		intel_stop_ring_buffer(ring);
2283
		WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2332 Serge 2284
 
7144 serge 2285
		intel_unpin_ringbuffer_obj(ring->buffer);
2286
		intel_ringbuffer_free(ring->buffer);
2287
		ring->buffer = NULL;
6937 serge 2288
	}
2332 Serge 2289
 
2290
	if (ring->cleanup)
2291
		ring->cleanup(ring);
2292
 
6660 serge 2293
	if (I915_NEED_GFX_HWS(ring->dev)) {
7144 serge 2294
		cleanup_status_page(ring);
6660 serge 2295
	} else {
2296
		WARN_ON(ring->id != RCS);
2297
		cleanup_phys_status_page(ring);
2298
	}
2332 Serge 2299
 
5060 serge 2300
	i915_cmd_parser_fini_ring(ring);
6084 serge 2301
	i915_gem_batch_pool_fini(&ring->batch_pool);
6937 serge 2302
	ring->dev = NULL;
3031 serge 2303
}
2304
 
6084 serge 2305
static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
3031 serge 2306
{
5060 serge 2307
	struct intel_ringbuffer *ringbuf = ring->buffer;
3031 serge 2308
	struct drm_i915_gem_request *request;
6084 serge 2309
	unsigned space;
3031 serge 2310
	int ret;
2311
 
6084 serge 2312
	if (intel_ring_space(ringbuf) >= n)
2313
		return 0;
3031 serge 2314
 
6084 serge 2315
	/* The whole point of reserving space is to not wait! */
2316
	WARN_ON(ringbuf->reserved_in_use);
2332 Serge 2317
 
3031 serge 2318
	list_for_each_entry(request, &ring->request_list, list) {
6084 serge 2319
		space = __intel_ring_space(request->postfix, ringbuf->tail,
2320
					   ringbuf->size);
2321
		if (space >= n)
3031 serge 2322
			break;
2323
	}
2324
 
6084 serge 2325
	if (WARN_ON(&request->list == &ring->request_list))
3031 serge 2326
		return -ENOSPC;
2327
 
6084 serge 2328
	ret = i915_wait_request(request);
3031 serge 2329
	if (ret)
2330
		return ret;
2331
 
6084 serge 2332
	ringbuf->space = space;
3031 serge 2333
	return 0;
2334
}
2335
 
6084 serge 2336
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
3031 serge 2337
{
3243 Serge 2338
	uint32_t __iomem *virt;
5060 serge 2339
	int rem = ringbuf->size - ringbuf->tail;
3243 Serge 2340
 
5060 serge 2341
	virt = ringbuf->virtual_start + ringbuf->tail;
3243 Serge 2342
	rem /= 4;
2343
	while (rem--)
2344
		iowrite32(MI_NOOP, virt++);
2345
 
5060 serge 2346
	ringbuf->tail = 0;
6084 serge 2347
	intel_ring_update_space(ringbuf);
3243 Serge 2348
}
2349
 
5060 serge 2350
int intel_ring_idle(struct intel_engine_cs *ring)
3243 Serge 2351
{
6084 serge 2352
	struct drm_i915_gem_request *req;
3243 Serge 2353
 
2354
	/* Wait upon the last request to be completed */
2355
	if (list_empty(&ring->request_list))
2356
		return 0;
2357
 
6084 serge 2358
	req = list_entry(ring->request_list.prev,
2359
			struct drm_i915_gem_request,
2360
			list);
3243 Serge 2361
 
6084 serge 2362
	/* Make sure we do not trigger any retires */
2363
	return __i915_wait_request(req,
2364
				   atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2365
				   to_i915(ring->dev)->mm.interruptible,
2366
				   NULL, NULL);
3243 Serge 2367
}
2368
 
6084 serge 2369
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
3243 Serge 2370
{
6084 serge 2371
	request->ringbuf = request->ring->buffer;
2372
	return 0;
2373
}
3243 Serge 2374
 
6084 serge 2375
int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2376
{
2377
	/*
2378
	 * The first call merely notes the reserve request and is common for
2379
	 * all back ends. The subsequent localised _begin() call actually
2380
	 * ensures that the reservation is available. Without the begin, if
2381
	 * the request creator immediately submitted the request without
2382
	 * adding any commands to it then there might not actually be
2383
	 * sufficient room for the submission commands.
2384
	 */
2385
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
4560 Serge 2386
 
6084 serge 2387
	return intel_ring_begin(request, 0);
2388
}
4560 Serge 2389
 
6084 serge 2390
void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2391
{
2392
	WARN_ON(ringbuf->reserved_size);
2393
	WARN_ON(ringbuf->reserved_in_use);
2394
 
2395
	ringbuf->reserved_size = size;
2396
}
2397
 
2398
void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2399
{
2400
	WARN_ON(ringbuf->reserved_in_use);
2401
 
2402
	ringbuf->reserved_size   = 0;
2403
	ringbuf->reserved_in_use = false;
2404
}
2405
 
2406
void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2407
{
2408
	WARN_ON(ringbuf->reserved_in_use);
2409
 
2410
	ringbuf->reserved_in_use = true;
2411
	ringbuf->reserved_tail   = ringbuf->tail;
2412
}
2413
 
2414
void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2415
{
2416
	WARN_ON(!ringbuf->reserved_in_use);
2417
	if (ringbuf->tail > ringbuf->reserved_tail) {
2418
		WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2419
		     "request reserved size too small: %d vs %d!\n",
2420
		     ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2421
	} else {
2422
		/*
2423
		 * The ring was wrapped while the reserved space was in use.
2424
		 * That means that some unknown amount of the ring tail was
2425
		 * no-op filled and skipped. Thus simply adding the ring size
2426
		 * to the tail and doing the above space check will not work.
2427
		 * Rather than attempt to track how much tail was skipped,
2428
		 * it is much simpler to say that also skipping the sanity
2429
		 * check every once in a while is not a big issue.
2430
		 */
4560 Serge 2431
	}
2432
 
6084 serge 2433
	ringbuf->reserved_size   = 0;
2434
	ringbuf->reserved_in_use = false;
3243 Serge 2435
}
2436
 
6084 serge 2437
static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
3480 Serge 2438
{
5060 serge 2439
	struct intel_ringbuffer *ringbuf = ring->buffer;
6084 serge 2440
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
2441
	int remain_actual = ringbuf->size - ringbuf->tail;
2442
	int ret, total_bytes, wait_bytes = 0;
2443
	bool need_wrap = false;
3480 Serge 2444
 
6084 serge 2445
	if (ringbuf->reserved_in_use)
2446
		total_bytes = bytes;
2447
	else
2448
		total_bytes = bytes + ringbuf->reserved_size;
2449
 
2450
	if (unlikely(bytes > remain_usable)) {
2451
		/*
2452
		 * Not enough space for the basic request. So need to flush
2453
		 * out the remainder and then wait for base + reserved.
2454
		 */
2455
		wait_bytes = remain_actual + total_bytes;
2456
		need_wrap = true;
2457
	} else {
2458
		if (unlikely(total_bytes > remain_usable)) {
2459
			/*
2460
			 * The base request will fit but the reserved space
6660 serge 2461
			 * falls off the end. So don't need an immediate wrap
2462
			 * and only need to effectively wait for the reserved
2463
			 * size space from the start of ringbuffer.
6084 serge 2464
			 */
2465
			wait_bytes = remain_actual + ringbuf->reserved_size;
2466
		} else if (total_bytes > ringbuf->space) {
2467
			/* No wrapping required, just waiting. */
2468
			wait_bytes = total_bytes;
2469
		}
3480 Serge 2470
	}
2471
 
6084 serge 2472
	if (wait_bytes) {
2473
		ret = ring_wait_for_space(ring, wait_bytes);
3480 Serge 2474
		if (unlikely(ret))
2475
			return ret;
6084 serge 2476
 
2477
		if (need_wrap)
2478
			__wrap_ring_buffer(ringbuf);
3480 Serge 2479
	}
2480
 
2481
	return 0;
2482
}
2483
 
6084 serge 2484
int intel_ring_begin(struct drm_i915_gem_request *req,
2332 Serge 2485
		     int num_dwords)
2486
{
6084 serge 2487
	struct intel_engine_cs *ring;
2488
	struct drm_i915_private *dev_priv;
2332 Serge 2489
	int ret;
2490
 
6084 serge 2491
	WARN_ON(req == NULL);
2492
	ring = req->ring;
2493
	dev_priv = ring->dev->dev_private;
2494
 
3480 Serge 2495
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2496
				   dev_priv->mm.interruptible);
3031 serge 2497
	if (ret)
2498
		return ret;
2332 Serge 2499
 
4560 Serge 2500
	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2501
	if (ret)
2502
		return ret;
2503
 
5060 serge 2504
	ring->buffer->space -= num_dwords * sizeof(uint32_t);
4560 Serge 2505
	return 0;
3480 Serge 2506
}
2332 Serge 2507
 
5060 serge 2508
/* Align the ring tail to a cacheline boundary */
6084 serge 2509
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
3480 Serge 2510
{
6084 serge 2511
	struct intel_engine_cs *ring = req->ring;
5060 serge 2512
	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2513
	int ret;
3480 Serge 2514
 
5060 serge 2515
	if (num_dwords == 0)
2516
		return 0;
2517
 
2518
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
6084 serge 2519
	ret = intel_ring_begin(req, num_dwords);
5060 serge 2520
	if (ret)
2521
		return ret;
2522
 
2523
	while (num_dwords--)
2524
		intel_ring_emit(ring, MI_NOOP);
2525
 
2526
	intel_ring_advance(ring);
2527
 
2528
	return 0;
2529
}
2530
 
2531
void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2532
{
2533
	struct drm_device *dev = ring->dev;
2534
	struct drm_i915_private *dev_priv = dev->dev_private;
2535
 
2536
	if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
3480 Serge 2537
		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2538
		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
5060 serge 2539
		if (HAS_VEBOX(dev))
4104 Serge 2540
			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2332 Serge 2541
	}
2542
 
3480 Serge 2543
	ring->set_seqno(ring, seqno);
4104 Serge 2544
	ring->hangcheck.seqno = seqno;
2332 Serge 2545
}
2546
 
5060 serge 2547
static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2332 Serge 2548
				     u32 value)
2549
{
5060 serge 2550
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2332 Serge 2551
 
2552
       /* Every tail move must follow the sequence below */
3031 serge 2553
 
2554
	/* Disable notification that the ring is IDLE. The GT
2555
	 * will then assume that it is busy and bring it out of rc6.
2556
	 */
6084 serge 2557
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
3031 serge 2558
		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2332 Serge 2559
 
3031 serge 2560
	/* Clear the context id. Here be magic! */
2561
	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2562
 
2563
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
6084 serge 2564
	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
3031 serge 2565
		      GEN6_BSD_SLEEP_INDICATOR) == 0,
6084 serge 2566
		     50))
3031 serge 2567
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2332 Serge 2568
 
3031 serge 2569
	/* Now that the ring is fully powered up, update the tail */
6084 serge 2570
	I915_WRITE_TAIL(ring, value);
3031 serge 2571
	POSTING_READ(RING_TAIL(ring->mmio_base));
2572
 
2573
	/* Let the ring send IDLE messages to the GT again,
2574
	 * and so let it sleep to conserve power when idle.
2575
	 */
6084 serge 2576
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
3031 serge 2577
		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2332 Serge 2578
}
2579
 
6084 serge 2580
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2581
			       u32 invalidate, u32 flush)
2332 Serge 2582
{
6084 serge 2583
	struct intel_engine_cs *ring = req->ring;
2332 Serge 2584
	uint32_t cmd;
2585
	int ret;
2586
 
6084 serge 2587
	ret = intel_ring_begin(req, 4);
2332 Serge 2588
	if (ret)
2589
		return ret;
2590
 
2591
	cmd = MI_FLUSH_DW;
4560 Serge 2592
	if (INTEL_INFO(ring->dev)->gen >= 8)
2593
		cmd += 1;
6084 serge 2594
 
2595
	/* We always require a command barrier so that subsequent
2596
	 * commands, such as breadcrumb interrupts, are strictly ordered
2597
	 * wrt the contents of the write cache being flushed to memory
2598
	 * (and thus being coherent from the CPU).
2599
	 */
2600
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2601
 
3243 Serge 2602
	/*
2603
	 * Bspec vol 1c.5 - video engine command streamer:
2604
	 * "If ENABLED, all TLBs will be invalidated once the flush
2605
	 * operation is complete. This bit is only valid when the
2606
	 * Post-Sync Operation field is a value of 1h or 3h."
2607
	 */
2332 Serge 2608
	if (invalidate & I915_GEM_GPU_DOMAINS)
6084 serge 2609
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2610
 
2332 Serge 2611
	intel_ring_emit(ring, cmd);
3243 Serge 2612
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
4560 Serge 2613
	if (INTEL_INFO(ring->dev)->gen >= 8) {
2614
		intel_ring_emit(ring, 0); /* upper addr */
2615
		intel_ring_emit(ring, 0); /* value */
2616
	} else  {
6084 serge 2617
		intel_ring_emit(ring, 0);
2618
		intel_ring_emit(ring, MI_NOOP);
4560 Serge 2619
	}
2332 Serge 2620
	intel_ring_advance(ring);
2621
	return 0;
2622
}
2623
 
2624
static int
6084 serge 2625
gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
5060 serge 2626
			      u64 offset, u32 len,
6084 serge 2627
			      unsigned dispatch_flags)
4560 Serge 2628
{
6084 serge 2629
	struct intel_engine_cs *ring = req->ring;
2630
	bool ppgtt = USES_PPGTT(ring->dev) &&
2631
			!(dispatch_flags & I915_DISPATCH_SECURE);
4560 Serge 2632
	int ret;
2633
 
6084 serge 2634
	ret = intel_ring_begin(req, 4);
4560 Serge 2635
	if (ret)
2636
		return ret;
2637
 
2638
	/* FIXME(BDW): Address space and security selectors. */
6084 serge 2639
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2640
			(dispatch_flags & I915_DISPATCH_RS ?
2641
			 MI_BATCH_RESOURCE_STREAMER : 0));
5060 serge 2642
	intel_ring_emit(ring, lower_32_bits(offset));
2643
	intel_ring_emit(ring, upper_32_bits(offset));
4560 Serge 2644
	intel_ring_emit(ring, MI_NOOP);
2645
	intel_ring_advance(ring);
2646
 
2647
	return 0;
2648
}
2649
 
2650
static int
6084 serge 2651
hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2652
			     u64 offset, u32 len,
2653
			     unsigned dispatch_flags)
3243 Serge 2654
{
6084 serge 2655
	struct intel_engine_cs *ring = req->ring;
3243 Serge 2656
	int ret;
2657
 
6084 serge 2658
	ret = intel_ring_begin(req, 2);
3243 Serge 2659
	if (ret)
2660
		return ret;
2661
 
2662
	intel_ring_emit(ring,
5354 serge 2663
			MI_BATCH_BUFFER_START |
6084 serge 2664
			(dispatch_flags & I915_DISPATCH_SECURE ?
2665
 
2666
			(dispatch_flags & I915_DISPATCH_RS ?
2667
			 MI_BATCH_RESOURCE_STREAMER : 0));
3243 Serge 2668
	/* bit0-7 is the length on GEN6+ */
2669
	intel_ring_emit(ring, offset);
2670
	intel_ring_advance(ring);
2671
 
2672
	return 0;
2673
}
2674
 
2675
static int
6084 serge 2676
gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
5060 serge 2677
			      u64 offset, u32 len,
6084 serge 2678
			      unsigned dispatch_flags)
2332 Serge 2679
{
6084 serge 2680
	struct intel_engine_cs *ring = req->ring;
2681
	int ret;
2332 Serge 2682
 
6084 serge 2683
	ret = intel_ring_begin(req, 2);
2684
	if (ret)
2685
		return ret;
2332 Serge 2686
 
3243 Serge 2687
	intel_ring_emit(ring,
2688
			MI_BATCH_BUFFER_START |
6084 serge 2689
			(dispatch_flags & I915_DISPATCH_SECURE ?
2690
 
2691
	/* bit0-7 is the length on GEN6+ */
2692
	intel_ring_emit(ring, offset);
2693
	intel_ring_advance(ring);
2332 Serge 2694
 
6084 serge 2695
	return 0;
2332 Serge 2696
}
2697
 
2698
/* Blitter support (SandyBridge+) */
2699
 
6084 serge 2700
static int gen6_ring_flush(struct drm_i915_gem_request *req,
2701
			   u32 invalidate, u32 flush)
2332 Serge 2702
{
6084 serge 2703
	struct intel_engine_cs *ring = req->ring;
4104 Serge 2704
	struct drm_device *dev = ring->dev;
2332 Serge 2705
	uint32_t cmd;
2706
	int ret;
2707
 
6084 serge 2708
	ret = intel_ring_begin(req, 4);
2332 Serge 2709
	if (ret)
2710
		return ret;
2711
 
2712
	cmd = MI_FLUSH_DW;
6084 serge 2713
	if (INTEL_INFO(dev)->gen >= 8)
4560 Serge 2714
		cmd += 1;
6084 serge 2715
 
2716
	/* We always require a command barrier so that subsequent
2717
	 * commands, such as breadcrumb interrupts, are strictly ordered
2718
	 * wrt the contents of the write cache being flushed to memory
2719
	 * (and thus being coherent from the CPU).
2720
	 */
2721
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2722
 
3243 Serge 2723
	/*
2724
	 * Bspec vol 1c.3 - blitter engine command streamer:
2725
	 * "If ENABLED, all TLBs will be invalidated once the flush
2726
	 * operation is complete. This bit is only valid when the
2727
	 * Post-Sync Operation field is a value of 1h or 3h."
2728
	 */
2332 Serge 2729
	if (invalidate & I915_GEM_DOMAIN_RENDER)
6084 serge 2730
		cmd |= MI_INVALIDATE_TLB;
2332 Serge 2731
	intel_ring_emit(ring, cmd);
3243 Serge 2732
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
6084 serge 2733
	if (INTEL_INFO(dev)->gen >= 8) {
4560 Serge 2734
		intel_ring_emit(ring, 0); /* upper addr */
2735
		intel_ring_emit(ring, 0); /* value */
2736
	} else  {
6084 serge 2737
		intel_ring_emit(ring, 0);
2738
		intel_ring_emit(ring, MI_NOOP);
4560 Serge 2739
	}
2332 Serge 2740
	intel_ring_advance(ring);
4104 Serge 2741
 
2332 Serge 2742
	return 0;
2743
}
2744
 
2745
int intel_init_render_ring_buffer(struct drm_device *dev)
2746
{
5060 serge 2747
	struct drm_i915_private *dev_priv = dev->dev_private;
2748
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2749
	struct drm_i915_gem_object *obj;
2750
	int ret;
2340 Serge 2751
 
3031 serge 2752
	ring->name = "render ring";
2753
	ring->id = RCS;
7144 serge 2754
	ring->exec_id = I915_EXEC_RENDER;
3031 serge 2755
	ring->mmio_base = RENDER_RING_BASE;
2756
 
5060 serge 2757
	if (INTEL_INFO(dev)->gen >= 8) {
2758
		if (i915_semaphore_is_enabled(dev)) {
2759
			obj = i915_gem_alloc_object(dev, 4096);
2760
			if (obj == NULL) {
2761
				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2762
				i915.semaphores = 0;
2763
			} else {
2764
				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2765
				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2766
				if (ret != 0) {
2767
					drm_gem_object_unreference(&obj->base);
2768
					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2769
					i915.semaphores = 0;
2770
				} else
2771
					dev_priv->semaphore_obj = obj;
2772
			}
2773
		}
5354 serge 2774
 
6084 serge 2775
		ring->init_context = intel_rcs_ctx_init;
5060 serge 2776
		ring->add_request = gen6_add_request;
2777
		ring->flush = gen8_render_ring_flush;
2778
		ring->irq_get = gen8_ring_get_irq;
2779
		ring->irq_put = gen8_ring_put_irq;
2780
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2781
		ring->get_seqno = gen6_ring_get_seqno;
2782
		ring->set_seqno = ring_set_seqno;
2783
		if (i915_semaphore_is_enabled(dev)) {
2784
			WARN_ON(!dev_priv->semaphore_obj);
2785
			ring->semaphore.sync_to = gen8_ring_sync;
2786
			ring->semaphore.signal = gen8_rcs_signal;
2787
			GEN8_RING_SEMAPHORE_INIT;
2788
		}
2789
	} else if (INTEL_INFO(dev)->gen >= 6) {
6084 serge 2790
		ring->init_context = intel_rcs_ctx_init;
2791
		ring->add_request = gen6_add_request;
3031 serge 2792
		ring->flush = gen7_render_ring_flush;
2793
		if (INTEL_INFO(dev)->gen == 6)
6084 serge 2794
			ring->flush = gen6_render_ring_flush;
3031 serge 2795
		ring->irq_get = gen6_ring_get_irq;
2796
		ring->irq_put = gen6_ring_put_irq;
4104 Serge 2797
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2342 Serge 2798
		ring->get_seqno = gen6_ring_get_seqno;
3480 Serge 2799
		ring->set_seqno = ring_set_seqno;
5060 serge 2800
		if (i915_semaphore_is_enabled(dev)) {
6084 serge 2801
			ring->semaphore.sync_to = gen6_ring_sync;
2802
			ring->semaphore.signal = gen6_signal;
2803
			/*
5060 serge 2804
			 * The current semaphore is only applied on pre-gen8
2805
			 * platform.  And there is no VCS2 ring on the pre-gen8
2806
			 * platform. So the semaphore between RCS and VCS2 is
2807
			 * initialized as INVALID.  Gen8 will initialize the
2808
			 * sema between VCS2 and RCS later.
6084 serge 2809
			 */
2810
			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2811
			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2812
			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2813
			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2814
			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2815
			ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2816
			ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2817
			ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2818
			ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2819
			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
5060 serge 2820
		}
2332 Serge 2821
	} else if (IS_GEN5(dev)) {
6084 serge 2822
		ring->add_request = pc_render_add_request;
3031 serge 2823
		ring->flush = gen4_render_ring_flush;
2342 Serge 2824
		ring->get_seqno = pc_render_get_seqno;
3480 Serge 2825
		ring->set_seqno = pc_render_set_seqno;
3031 serge 2826
		ring->irq_get = gen5_ring_get_irq;
2827
		ring->irq_put = gen5_ring_put_irq;
4104 Serge 2828
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2829
					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
3031 serge 2830
	} else {
2831
		ring->add_request = i9xx_add_request;
2832
		if (INTEL_INFO(dev)->gen < 4)
2833
			ring->flush = gen2_render_ring_flush;
2834
		else
2835
			ring->flush = gen4_render_ring_flush;
2836
		ring->get_seqno = ring_get_seqno;
3480 Serge 2837
		ring->set_seqno = ring_set_seqno;
3031 serge 2838
		if (IS_GEN2(dev)) {
2839
			ring->irq_get = i8xx_ring_get_irq;
2840
			ring->irq_put = i8xx_ring_put_irq;
2841
		} else {
2842
			ring->irq_get = i9xx_ring_get_irq;
2843
			ring->irq_put = i9xx_ring_put_irq;
2844
		}
2845
		ring->irq_enable_mask = I915_USER_INTERRUPT;
2332 Serge 2846
	}
3031 serge 2847
	ring->write_tail = ring_write_tail;
5060 serge 2848
 
3243 Serge 2849
	if (IS_HASWELL(dev))
2850
		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
4560 Serge 2851
	else if (IS_GEN8(dev))
2852
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3243 Serge 2853
	else if (INTEL_INFO(dev)->gen >= 6)
3031 serge 2854
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2855
	else if (INTEL_INFO(dev)->gen >= 4)
2856
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2857
	else if (IS_I830(dev) || IS_845G(dev))
2858
		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2859
	else
2860
		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
6084 serge 2861
	ring->init_hw = init_render_ring;
3031 serge 2862
	ring->cleanup = render_ring_cleanup;
2332 Serge 2863
 
3243 Serge 2864
	/* Workaround batchbuffer to combat CS tlb bug. */
2865
	if (HAS_BROKEN_CS_TLB(dev)) {
5128 serge 2866
		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
3243 Serge 2867
		if (obj == NULL) {
2868
			DRM_ERROR("Failed to allocate batch bo\n");
2869
			return -ENOMEM;
2870
		}
2871
 
5060 serge 2872
		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
3243 Serge 2873
		if (ret != 0) {
2874
			drm_gem_object_unreference(&obj->base);
2875
			DRM_ERROR("Failed to ping batch bo\n");
2876
			return ret;
2877
		}
2878
 
4104 Serge 2879
		ring->scratch.obj = obj;
2880
		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2332 Serge 2881
	}
2340 Serge 2882
 
6084 serge 2883
	ret = intel_init_ring_buffer(dev, ring);
2884
	if (ret)
2885
		return ret;
2886
 
2887
	if (INTEL_INFO(dev)->gen >= 5) {
2888
		ret = intel_init_pipe_control(ring);
2889
		if (ret)
2890
			return ret;
2891
	}
2892
 
2893
	return 0;
2332 Serge 2894
}
2895
 
2896
int intel_init_bsd_ring_buffer(struct drm_device *dev)
2897
{
5060 serge 2898
	struct drm_i915_private *dev_priv = dev->dev_private;
2899
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2332 Serge 2900
 
3031 serge 2901
	ring->name = "bsd ring";
2902
	ring->id = VCS;
7144 serge 2903
	ring->exec_id = I915_EXEC_BSD;
2332 Serge 2904
 
3031 serge 2905
	ring->write_tail = ring_write_tail;
4560 Serge 2906
	if (INTEL_INFO(dev)->gen >= 6) {
3031 serge 2907
		ring->mmio_base = GEN6_BSD_RING_BASE;
2908
		/* gen6 bsd needs a special wa for tail updates */
2909
		if (IS_GEN6(dev))
2910
			ring->write_tail = gen6_bsd_ring_write_tail;
4104 Serge 2911
		ring->flush = gen6_bsd_ring_flush;
3031 serge 2912
		ring->add_request = gen6_add_request;
2913
		ring->get_seqno = gen6_ring_get_seqno;
3480 Serge 2914
		ring->set_seqno = ring_set_seqno;
4560 Serge 2915
		if (INTEL_INFO(dev)->gen >= 8) {
2916
			ring->irq_enable_mask =
2917
				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2918
			ring->irq_get = gen8_ring_get_irq;
2919
			ring->irq_put = gen8_ring_put_irq;
2920
			ring->dispatch_execbuffer =
2921
				gen8_ring_dispatch_execbuffer;
5060 serge 2922
			if (i915_semaphore_is_enabled(dev)) {
2923
				ring->semaphore.sync_to = gen8_ring_sync;
2924
				ring->semaphore.signal = gen8_xcs_signal;
2925
				GEN8_RING_SEMAPHORE_INIT;
2926
			}
4560 Serge 2927
		} else {
6084 serge 2928
			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2929
			ring->irq_get = gen6_ring_get_irq;
2930
			ring->irq_put = gen6_ring_put_irq;
4560 Serge 2931
			ring->dispatch_execbuffer =
2932
				gen6_ring_dispatch_execbuffer;
5060 serge 2933
			if (i915_semaphore_is_enabled(dev)) {
6084 serge 2934
				ring->semaphore.sync_to = gen6_ring_sync;
2935
				ring->semaphore.signal = gen6_signal;
2936
				ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2937
				ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2938
				ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2939
				ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2940
				ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2941
				ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2942
				ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2943
				ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2944
				ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2945
				ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
5060 serge 2946
			}
4560 Serge 2947
		}
3031 serge 2948
	} else {
2949
		ring->mmio_base = BSD_RING_BASE;
2950
		ring->flush = bsd_ring_flush;
2951
		ring->add_request = i9xx_add_request;
2952
		ring->get_seqno = ring_get_seqno;
3480 Serge 2953
		ring->set_seqno = ring_set_seqno;
3031 serge 2954
		if (IS_GEN5(dev)) {
4104 Serge 2955
			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
3031 serge 2956
			ring->irq_get = gen5_ring_get_irq;
2957
			ring->irq_put = gen5_ring_put_irq;
2958
		} else {
2959
			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2960
			ring->irq_get = i9xx_ring_get_irq;
2961
			ring->irq_put = i9xx_ring_put_irq;
2962
		}
2963
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2964
	}
6084 serge 2965
	ring->init_hw = init_ring_common;
3031 serge 2966
 
2332 Serge 2967
	return intel_init_ring_buffer(dev, ring);
2968
}
2969
 
5060 serge 2970
/**
6084 serge 2971
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
5060 serge 2972
 */
2973
int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2974
{
2975
	struct drm_i915_private *dev_priv = dev->dev_private;
2976
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2977
 
2978
	ring->name = "bsd2 ring";
2979
	ring->id = VCS2;
7144 serge 2980
	ring->exec_id = I915_EXEC_BSD;
5060 serge 2981
 
2982
	ring->write_tail = ring_write_tail;
2983
	ring->mmio_base = GEN8_BSD2_RING_BASE;
2984
	ring->flush = gen6_bsd_ring_flush;
2985
	ring->add_request = gen6_add_request;
2986
	ring->get_seqno = gen6_ring_get_seqno;
2987
	ring->set_seqno = ring_set_seqno;
2988
	ring->irq_enable_mask =
2989
			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2990
	ring->irq_get = gen8_ring_get_irq;
2991
	ring->irq_put = gen8_ring_put_irq;
2992
	ring->dispatch_execbuffer =
2993
			gen8_ring_dispatch_execbuffer;
2994
	if (i915_semaphore_is_enabled(dev)) {
2995
		ring->semaphore.sync_to = gen8_ring_sync;
2996
		ring->semaphore.signal = gen8_xcs_signal;
2997
		GEN8_RING_SEMAPHORE_INIT;
2998
	}
6084 serge 2999
	ring->init_hw = init_ring_common;
5060 serge 3000
 
3001
	return intel_init_ring_buffer(dev, ring);
3002
}
3003
 
2332 Serge 3004
int intel_init_blt_ring_buffer(struct drm_device *dev)
3005
{
5060 serge 3006
	struct drm_i915_private *dev_priv = dev->dev_private;
3007
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2332 Serge 3008
 
3031 serge 3009
	ring->name = "blitter ring";
3010
	ring->id = BCS;
7144 serge 3011
	ring->exec_id = I915_EXEC_BLT;
2332 Serge 3012
 
3031 serge 3013
	ring->mmio_base = BLT_RING_BASE;
3014
	ring->write_tail = ring_write_tail;
4104 Serge 3015
	ring->flush = gen6_ring_flush;
3031 serge 3016
	ring->add_request = gen6_add_request;
3017
	ring->get_seqno = gen6_ring_get_seqno;
3480 Serge 3018
	ring->set_seqno = ring_set_seqno;
4560 Serge 3019
	if (INTEL_INFO(dev)->gen >= 8) {
3020
		ring->irq_enable_mask =
3021
			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3022
		ring->irq_get = gen8_ring_get_irq;
3023
		ring->irq_put = gen8_ring_put_irq;
3024
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
5060 serge 3025
		if (i915_semaphore_is_enabled(dev)) {
3026
			ring->semaphore.sync_to = gen8_ring_sync;
3027
			ring->semaphore.signal = gen8_xcs_signal;
3028
			GEN8_RING_SEMAPHORE_INIT;
3029
		}
4560 Serge 3030
	} else {
6084 serge 3031
		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3032
		ring->irq_get = gen6_ring_get_irq;
3033
		ring->irq_put = gen6_ring_put_irq;
3034
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
5060 serge 3035
		if (i915_semaphore_is_enabled(dev)) {
3036
			ring->semaphore.signal = gen6_signal;
6084 serge 3037
			ring->semaphore.sync_to = gen6_ring_sync;
3038
			/*
5060 serge 3039
			 * The current semaphore is only applied on pre-gen8
3040
			 * platform.  And there is no VCS2 ring on the pre-gen8
3041
			 * platform. So the semaphore between BCS and VCS2 is
3042
			 * initialized as INVALID.  Gen8 will initialize the
3043
			 * sema between BCS and VCS2 later.
6084 serge 3044
			 */
3045
			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
3046
			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
3047
			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
3048
			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
3049
			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3050
			ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
3051
			ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
3052
			ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
3053
			ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
3054
			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
5060 serge 3055
		}
4560 Serge 3056
	}
6084 serge 3057
	ring->init_hw = init_ring_common;
3031 serge 3058
 
2332 Serge 3059
	return intel_init_ring_buffer(dev, ring);
3060
}
3031 serge 3061
 
4104 Serge 3062
int intel_init_vebox_ring_buffer(struct drm_device *dev)
3063
{
5060 serge 3064
	struct drm_i915_private *dev_priv = dev->dev_private;
3065
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
4104 Serge 3066
 
3067
	ring->name = "video enhancement ring";
3068
	ring->id = VECS;
7144 serge 3069
	ring->exec_id = I915_EXEC_VEBOX;
4104 Serge 3070
 
3071
	ring->mmio_base = VEBOX_RING_BASE;
3072
	ring->write_tail = ring_write_tail;
3073
	ring->flush = gen6_ring_flush;
3074
	ring->add_request = gen6_add_request;
3075
	ring->get_seqno = gen6_ring_get_seqno;
3076
	ring->set_seqno = ring_set_seqno;
4560 Serge 3077
 
3078
	if (INTEL_INFO(dev)->gen >= 8) {
3079
		ring->irq_enable_mask =
3080
			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3081
		ring->irq_get = gen8_ring_get_irq;
3082
		ring->irq_put = gen8_ring_put_irq;
3083
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
5060 serge 3084
		if (i915_semaphore_is_enabled(dev)) {
3085
			ring->semaphore.sync_to = gen8_ring_sync;
3086
			ring->semaphore.signal = gen8_xcs_signal;
3087
			GEN8_RING_SEMAPHORE_INIT;
3088
		}
4560 Serge 3089
	} else {
6084 serge 3090
		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3091
		ring->irq_get = hsw_vebox_get_irq;
3092
		ring->irq_put = hsw_vebox_put_irq;
3093
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
5060 serge 3094
		if (i915_semaphore_is_enabled(dev)) {
6084 serge 3095
			ring->semaphore.sync_to = gen6_ring_sync;
3096
			ring->semaphore.signal = gen6_signal;
3097
			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3098
			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3099
			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3100
			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3101
			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3102
			ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3103
			ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3104
			ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3105
			ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3106
			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
5060 serge 3107
		}
4560 Serge 3108
	}
6084 serge 3109
	ring->init_hw = init_ring_common;
4104 Serge 3110
 
3111
	return intel_init_ring_buffer(dev, ring);
3112
}
3113
 
3031 serge 3114
int
6084 serge 3115
intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3031 serge 3116
{
6084 serge 3117
	struct intel_engine_cs *ring = req->ring;
3031 serge 3118
	int ret;
3119
 
3120
	if (!ring->gpu_caches_dirty)
3121
		return 0;
3122
 
6084 serge 3123
	ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3031 serge 3124
	if (ret)
3125
		return ret;
3126
 
6084 serge 3127
	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3031 serge 3128
 
3129
	ring->gpu_caches_dirty = false;
3130
	return 0;
3131
}
3132
 
3133
int
6084 serge 3134
intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3031 serge 3135
{
6084 serge 3136
	struct intel_engine_cs *ring = req->ring;
3031 serge 3137
	uint32_t flush_domains;
3138
	int ret;
3139
 
3140
	flush_domains = 0;
3141
	if (ring->gpu_caches_dirty)
3142
		flush_domains = I915_GEM_GPU_DOMAINS;
3143
 
6084 serge 3144
	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3031 serge 3145
	if (ret)
3146
		return ret;
3147
 
6084 serge 3148
	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3031 serge 3149
 
3150
	ring->gpu_caches_dirty = false;
3151
	return 0;
3152
}
5060 serge 3153
 
3154
void
3155
intel_stop_ring_buffer(struct intel_engine_cs *ring)
3156
{
3157
	int ret;
3158
 
3159
	if (!intel_ring_initialized(ring))
3160
		return;
3161
 
3162
	ret = intel_ring_idle(ring);
3163
	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3164
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3165
			  ring->name, ret);
3166
 
3167
	stop_ring(ring);
3168
}