Subversion Repositories Kolibri OS

Rev

Rev 6660 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2332 Serge 1
/*
2
 * Copyright © 2008-2010 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eric Anholt 
25
 *    Zou Nan hai 
26
 *    Xiang Hai hao
27
 *
28
 */
29
 
6937 serge 30
#include 
3031 serge 31
#include 
2332 Serge 32
#include "i915_drv.h"
3031 serge 33
#include 
2351 Serge 34
#include "i915_trace.h"
2332 Serge 35
#include "intel_drv.h"
36
 
5354 serge 37
int __intel_ring_space(int head, int tail, int size)
2332 Serge 38
{
6084 serge 39
	int space = head - tail;
40
	if (space <= 0)
5060 serge 41
		space += size;
6084 serge 42
	return space - I915_RING_FREE_SPACE;
2332 Serge 43
}
44
 
6084 serge 45
void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
46
{
47
	if (ringbuf->last_retired_head != -1) {
48
		ringbuf->head = ringbuf->last_retired_head;
49
		ringbuf->last_retired_head = -1;
50
	}
51
 
52
	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
53
					    ringbuf->tail, ringbuf->size);
54
}
55
 
5354 serge 56
int intel_ring_space(struct intel_ringbuffer *ringbuf)
4560 Serge 57
{
6084 serge 58
	intel_ring_update_space(ringbuf);
59
	return ringbuf->space;
5060 serge 60
}
61
 
5354 serge 62
bool intel_ring_stopped(struct intel_engine_cs *ring)
5060 serge 63
{
4560 Serge 64
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
5060 serge 65
	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
66
}
4560 Serge 67
 
6084 serge 68
static void __intel_ring_advance(struct intel_engine_cs *ring)
5060 serge 69
{
70
	struct intel_ringbuffer *ringbuf = ring->buffer;
71
	ringbuf->tail &= ringbuf->size - 1;
72
	if (intel_ring_stopped(ring))
4560 Serge 73
		return;
5060 serge 74
	ring->write_tail(ring, ringbuf->tail);
4560 Serge 75
}
76
 
3031 serge 77
static int
6084 serge 78
gen2_render_ring_flush(struct drm_i915_gem_request *req,
3031 serge 79
		       u32	invalidate_domains,
80
		       u32	flush_domains)
2332 Serge 81
{
6084 serge 82
	struct intel_engine_cs *ring = req->ring;
3031 serge 83
	u32 cmd;
84
	int ret;
2332 Serge 85
 
3031 serge 86
	cmd = MI_FLUSH;
87
	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
88
		cmd |= MI_NO_WRITE_FLUSH;
2332 Serge 89
 
3031 serge 90
	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
91
		cmd |= MI_READ_FLUSH;
2332 Serge 92
 
6084 serge 93
	ret = intel_ring_begin(req, 2);
3031 serge 94
	if (ret)
95
		return ret;
96
 
97
	intel_ring_emit(ring, cmd);
98
	intel_ring_emit(ring, MI_NOOP);
99
	intel_ring_advance(ring);
100
 
101
	return 0;
2332 Serge 102
}
103
 
104
static int
6084 serge 105
gen4_render_ring_flush(struct drm_i915_gem_request *req,
106
		       u32	invalidate_domains,
107
		       u32	flush_domains)
2332 Serge 108
{
6084 serge 109
	struct intel_engine_cs *ring = req->ring;
2332 Serge 110
	struct drm_device *dev = ring->dev;
111
	u32 cmd;
112
	int ret;
113
 
114
	/*
115
	 * read/write caches:
116
	 *
117
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
118
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
119
	 * also flushed at 2d versus 3d pipeline switches.
120
	 *
121
	 * read-only caches:
122
	 *
123
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
124
	 * MI_READ_FLUSH is set, and is always flushed on 965.
125
	 *
126
	 * I915_GEM_DOMAIN_COMMAND may not exist?
127
	 *
128
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
129
	 * invalidated when MI_EXE_FLUSH is set.
130
	 *
131
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
132
	 * invalidated with every MI_FLUSH.
133
	 *
134
	 * TLBs:
135
	 *
136
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
137
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
138
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
139
	 * are flushed at any MI_FLUSH.
140
	 */
141
 
142
	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
3031 serge 143
	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
2332 Serge 144
		cmd &= ~MI_NO_WRITE_FLUSH;
145
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
146
		cmd |= MI_EXE_FLUSH;
147
 
148
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
149
	    (IS_G4X(dev) || IS_GEN5(dev)))
150
		cmd |= MI_INVALIDATE_ISP;
151
 
6084 serge 152
	ret = intel_ring_begin(req, 2);
2332 Serge 153
	if (ret)
154
		return ret;
155
 
156
	intel_ring_emit(ring, cmd);
157
	intel_ring_emit(ring, MI_NOOP);
158
	intel_ring_advance(ring);
159
 
160
	return 0;
161
}
162
 
2342 Serge 163
/**
164
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
165
 * implementing two workarounds on gen6.  From section 1.4.7.1
166
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
167
 *
168
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
169
 * produced by non-pipelined state commands), software needs to first
170
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
171
 * 0.
172
 *
173
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
174
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
175
 *
176
 * And the workaround for these two requires this workaround first:
177
 *
178
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
179
 * BEFORE the pipe-control with a post-sync op and no write-cache
180
 * flushes.
181
 *
182
 * And this last workaround is tricky because of the requirements on
183
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
184
 * volume 2 part 1:
185
 *
186
 *     "1 of the following must also be set:
187
 *      - Render Target Cache Flush Enable ([12] of DW1)
188
 *      - Depth Cache Flush Enable ([0] of DW1)
189
 *      - Stall at Pixel Scoreboard ([1] of DW1)
190
 *      - Depth Stall ([13] of DW1)
191
 *      - Post-Sync Operation ([13] of DW1)
192
 *      - Notify Enable ([8] of DW1)"
193
 *
194
 * The cache flushes require the workaround flush that triggered this
195
 * one, so we can't use it.  Depth stall would trigger the same.
196
 * Post-sync nonzero is what triggered this second workaround, so we
197
 * can't use that one either.  Notify enable is IRQs, which aren't
198
 * really our business.  That leaves only stall at scoreboard.
199
 */
200
static int
6084 serge 201
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
2342 Serge 202
{
6084 serge 203
	struct intel_engine_cs *ring = req->ring;
5060 serge 204
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
2342 Serge 205
	int ret;
206
 
6084 serge 207
	ret = intel_ring_begin(req, 6);
2342 Serge 208
	if (ret)
209
		return ret;
210
 
211
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
212
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
213
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
214
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
215
	intel_ring_emit(ring, 0); /* low dword */
216
	intel_ring_emit(ring, 0); /* high dword */
217
	intel_ring_emit(ring, MI_NOOP);
218
	intel_ring_advance(ring);
219
 
6084 serge 220
	ret = intel_ring_begin(req, 6);
2342 Serge 221
	if (ret)
222
		return ret;
223
 
224
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
225
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
226
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
227
	intel_ring_emit(ring, 0);
228
	intel_ring_emit(ring, 0);
229
	intel_ring_emit(ring, MI_NOOP);
230
	intel_ring_advance(ring);
231
 
232
	return 0;
233
}
234
 
235
static int
6084 serge 236
gen6_render_ring_flush(struct drm_i915_gem_request *req,
237
		       u32 invalidate_domains, u32 flush_domains)
2342 Serge 238
{
6084 serge 239
	struct intel_engine_cs *ring = req->ring;
2342 Serge 240
	u32 flags = 0;
5060 serge 241
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
2342 Serge 242
	int ret;
243
 
244
	/* Force SNB workarounds for PIPE_CONTROL flushes */
6084 serge 245
	ret = intel_emit_post_sync_nonzero_flush(req);
3031 serge 246
	if (ret)
247
		return ret;
2342 Serge 248
 
249
	/* Just flush everything.  Experiments have shown that reducing the
250
	 * number of bits based on the write domains has little performance
251
	 * impact.
252
	 */
3031 serge 253
	if (flush_domains) {
254
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
255
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
256
		/*
257
		 * Ensure that any following seqno writes only happen
258
		 * when the render cache is indeed flushed.
259
		 */
260
		flags |= PIPE_CONTROL_CS_STALL;
261
	}
262
	if (invalidate_domains) {
263
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
264
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
265
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
266
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
267
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
268
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
269
		/*
270
		 * TLB invalidate requires a post-sync write.
271
		 */
3243 Serge 272
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
3031 serge 273
	}
274
 
6084 serge 275
	ret = intel_ring_begin(req, 4);
3031 serge 276
	if (ret)
277
		return ret;
278
 
279
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
280
	intel_ring_emit(ring, flags);
281
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
282
	intel_ring_emit(ring, 0);
283
	intel_ring_advance(ring);
284
 
285
	return 0;
286
}
287
 
288
static int
6084 serge 289
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
3031 serge 290
{
6084 serge 291
	struct intel_engine_cs *ring = req->ring;
3031 serge 292
	int ret;
293
 
6084 serge 294
	ret = intel_ring_begin(req, 4);
3031 serge 295
	if (ret)
296
		return ret;
297
 
298
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
299
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
300
			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
301
	intel_ring_emit(ring, 0);
302
	intel_ring_emit(ring, 0);
303
	intel_ring_advance(ring);
304
 
305
	return 0;
306
}
307
 
308
static int
6084 serge 309
gen7_render_ring_flush(struct drm_i915_gem_request *req,
3031 serge 310
		       u32 invalidate_domains, u32 flush_domains)
311
{
6084 serge 312
	struct intel_engine_cs *ring = req->ring;
3031 serge 313
	u32 flags = 0;
5060 serge 314
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
3031 serge 315
	int ret;
316
 
317
	/*
318
	 * Ensure that any following seqno writes only happen when the render
319
	 * cache is indeed flushed.
320
	 *
321
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
322
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
323
	 * don't try to be clever and just set it unconditionally.
324
	 */
325
	flags |= PIPE_CONTROL_CS_STALL;
326
 
327
	/* Just flush everything.  Experiments have shown that reducing the
328
	 * number of bits based on the write domains has little performance
329
	 * impact.
330
	 */
331
	if (flush_domains) {
6084 serge 332
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
3031 serge 333
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
6320 serge 334
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
6084 serge 335
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
3031 serge 336
	}
337
	if (invalidate_domains) {
338
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
6084 serge 339
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
340
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
341
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
342
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
343
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
5354 serge 344
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
3031 serge 345
		/*
346
		 * TLB invalidate requires a post-sync write.
347
		 */
348
		flags |= PIPE_CONTROL_QW_WRITE;
3480 Serge 349
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2342 Serge 350
 
5354 serge 351
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
352
 
3031 serge 353
		/* Workaround: we must issue a pipe_control with CS-stall bit
354
		 * set before a pipe_control command that has the state cache
355
		 * invalidate bit set. */
6084 serge 356
		gen7_render_ring_cs_stall_wa(req);
3031 serge 357
	}
358
 
6084 serge 359
	ret = intel_ring_begin(req, 4);
2342 Serge 360
	if (ret)
361
		return ret;
362
 
3031 serge 363
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
2342 Serge 364
	intel_ring_emit(ring, flags);
3480 Serge 365
	intel_ring_emit(ring, scratch_addr);
3031 serge 366
	intel_ring_emit(ring, 0);
2342 Serge 367
	intel_ring_advance(ring);
368
 
369
	return 0;
370
}
371
 
4560 Serge 372
static int
6084 serge 373
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
5060 serge 374
		       u32 flags, u32 scratch_addr)
375
{
6084 serge 376
	struct intel_engine_cs *ring = req->ring;
5060 serge 377
	int ret;
378
 
6084 serge 379
	ret = intel_ring_begin(req, 6);
5060 serge 380
	if (ret)
381
		return ret;
382
 
383
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
384
	intel_ring_emit(ring, flags);
385
	intel_ring_emit(ring, scratch_addr);
386
	intel_ring_emit(ring, 0);
387
	intel_ring_emit(ring, 0);
388
	intel_ring_emit(ring, 0);
389
	intel_ring_advance(ring);
390
 
391
	return 0;
392
}
393
 
394
static int
6084 serge 395
gen8_render_ring_flush(struct drm_i915_gem_request *req,
4560 Serge 396
		       u32 invalidate_domains, u32 flush_domains)
397
{
398
	u32 flags = 0;
6084 serge 399
	u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
4560 Serge 400
	int ret;
401
 
402
	flags |= PIPE_CONTROL_CS_STALL;
403
 
404
	if (flush_domains) {
405
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
406
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
6320 serge 407
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
6084 serge 408
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
4560 Serge 409
	}
410
	if (invalidate_domains) {
411
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
412
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
413
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
414
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
415
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
416
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
417
		flags |= PIPE_CONTROL_QW_WRITE;
418
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
419
 
5060 serge 420
		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
6084 serge 421
		ret = gen8_emit_pipe_control(req,
5060 serge 422
					     PIPE_CONTROL_CS_STALL |
423
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
424
					     0);
6084 serge 425
		if (ret)
426
			return ret;
5060 serge 427
	}
4560 Serge 428
 
6084 serge 429
	return gen8_emit_pipe_control(req, flags, scratch_addr);
4560 Serge 430
}
431
 
5060 serge 432
static void ring_write_tail(struct intel_engine_cs *ring,
2332 Serge 433
			    u32 value)
434
{
5060 serge 435
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2332 Serge 436
	I915_WRITE_TAIL(ring, value);
437
}
438
 
5060 serge 439
u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
2332 Serge 440
{
5060 serge 441
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
442
	u64 acthd;
2332 Serge 443
 
5060 serge 444
	if (INTEL_INFO(ring->dev)->gen >= 8)
445
		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
446
					 RING_ACTHD_UDW(ring->mmio_base));
447
	else if (INTEL_INFO(ring->dev)->gen >= 4)
448
		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
449
	else
450
		acthd = I915_READ(ACTHD);
451
 
452
	return acthd;
2332 Serge 453
}
454
 
5060 serge 455
static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
4104 Serge 456
{
457
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
458
	u32 addr;
459
 
460
	addr = dev_priv->status_page_dmah->busaddr;
461
	if (INTEL_INFO(ring->dev)->gen >= 4)
462
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
463
	I915_WRITE(HWS_PGA, addr);
464
}
465
 
6084 serge 466
static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
467
{
468
	struct drm_device *dev = ring->dev;
469
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
6937 serge 470
	i915_reg_t mmio;
6084 serge 471
 
472
	/* The ring status page addresses are no longer next to the rest of
473
	 * the ring registers as of gen7.
474
	 */
475
	if (IS_GEN7(dev)) {
476
		switch (ring->id) {
477
		case RCS:
478
			mmio = RENDER_HWS_PGA_GEN7;
479
			break;
480
		case BCS:
481
			mmio = BLT_HWS_PGA_GEN7;
482
			break;
483
		/*
484
		 * VCS2 actually doesn't exist on Gen7. Only shut up
485
		 * gcc switch check warning
486
		 */
487
		case VCS2:
488
		case VCS:
489
			mmio = BSD_HWS_PGA_GEN7;
490
			break;
491
		case VECS:
492
			mmio = VEBOX_HWS_PGA_GEN7;
493
			break;
494
		}
495
	} else if (IS_GEN6(ring->dev)) {
496
		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
497
	} else {
498
		/* XXX: gen8 returns to sanity */
499
		mmio = RING_HWS_PGA(ring->mmio_base);
500
	}
501
 
502
	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
503
	POSTING_READ(mmio);
504
 
505
	/*
506
	 * Flush the TLB for this page
507
	 *
508
	 * FIXME: These two bits have disappeared on gen8, so a question
509
	 * arises: do we still need this and if so how should we go about
510
	 * invalidating the TLB?
511
	 */
512
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
6937 serge 513
		i915_reg_t reg = RING_INSTPM(ring->mmio_base);
6084 serge 514
 
515
		/* ring should be idle before issuing a sync flush*/
516
		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
517
 
518
		I915_WRITE(reg,
519
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
520
					      INSTPM_SYNC_FLUSH));
521
		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
522
			     1000))
523
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
524
				  ring->name);
525
	}
526
}
527
 
5060 serge 528
static bool stop_ring(struct intel_engine_cs *ring)
2332 Serge 529
{
5060 serge 530
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
2332 Serge 531
 
5060 serge 532
	if (!IS_GEN2(ring->dev)) {
533
		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
5354 serge 534
		if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
535
			DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
536
			/* Sometimes we observe that the idle flag is not
537
			 * set even though the ring is empty. So double
538
			 * check before giving up.
539
			 */
540
			if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
6084 serge 541
				return false;
5060 serge 542
		}
543
	}
3031 serge 544
 
2332 Serge 545
	I915_WRITE_CTL(ring, 0);
546
	I915_WRITE_HEAD(ring, 0);
547
	ring->write_tail(ring, 0);
548
 
5060 serge 549
	if (!IS_GEN2(ring->dev)) {
550
		(void)I915_READ_CTL(ring);
551
		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
552
	}
2332 Serge 553
 
5060 serge 554
	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
555
}
556
 
557
static int init_ring_common(struct intel_engine_cs *ring)
558
{
559
	struct drm_device *dev = ring->dev;
560
	struct drm_i915_private *dev_priv = dev->dev_private;
561
	struct intel_ringbuffer *ringbuf = ring->buffer;
562
	struct drm_i915_gem_object *obj = ringbuf->obj;
563
	int ret = 0;
564
 
6084 serge 565
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5060 serge 566
 
567
	if (!stop_ring(ring)) {
568
		/* G45 ring initialization often fails to reset head to zero */
2332 Serge 569
		DRM_DEBUG_KMS("%s head not reset to zero "
570
			      "ctl %08x head %08x tail %08x start %08x\n",
571
			      ring->name,
572
			      I915_READ_CTL(ring),
573
			      I915_READ_HEAD(ring),
574
			      I915_READ_TAIL(ring),
575
			      I915_READ_START(ring));
576
 
5060 serge 577
		if (!stop_ring(ring)) {
2332 Serge 578
			DRM_ERROR("failed to set %s head to zero "
579
				  "ctl %08x head %08x tail %08x start %08x\n",
580
				  ring->name,
581
				  I915_READ_CTL(ring),
582
				  I915_READ_HEAD(ring),
583
				  I915_READ_TAIL(ring),
584
				  I915_READ_START(ring));
5060 serge 585
			ret = -EIO;
586
			goto out;
2332 Serge 587
		}
588
	}
589
 
5060 serge 590
	if (I915_NEED_GFX_HWS(dev))
591
		intel_ring_setup_status_page(ring);
592
	else
593
		ring_setup_phys_status_page(ring);
594
 
595
	/* Enforce ordering by reading HEAD register back */
596
	I915_READ_HEAD(ring);
597
 
3031 serge 598
	/* Initialize the ring. This must happen _after_ we've cleared the ring
599
	 * registers with the above sequence (the readback of the HEAD registers
600
	 * also enforces ordering), otherwise the hw might lose the new ring
601
	 * register values. */
4104 Serge 602
	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
5354 serge 603
 
604
	/* WaClearRingBufHeadRegAtInit:ctg,elk */
605
	if (I915_READ_HEAD(ring))
606
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
607
			  ring->name, I915_READ_HEAD(ring));
608
	I915_WRITE_HEAD(ring, 0);
609
	(void)I915_READ_HEAD(ring);
610
 
2332 Serge 611
	I915_WRITE_CTL(ring,
5060 serge 612
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
3031 serge 613
			| RING_VALID);
2332 Serge 614
 
615
	/* If the head is still not zero, the ring is dead */
3031 serge 616
	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
4104 Serge 617
		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
3031 serge 618
		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
2332 Serge 619
		DRM_ERROR("%s initialization failed "
5060 serge 620
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
6084 serge 621
			  ring->name,
5060 serge 622
			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
623
			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
624
			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
3031 serge 625
		ret = -EIO;
626
		goto out;
2332 Serge 627
	}
628
 
6084 serge 629
	ringbuf->last_retired_head = -1;
630
	ringbuf->head = I915_READ_HEAD(ring);
631
	ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
632
	intel_ring_update_space(ringbuf);
5060 serge 633
 
4104 Serge 634
	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
635
 
3031 serge 636
out:
6084 serge 637
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2332 Serge 638
 
3031 serge 639
	return ret;
2332 Serge 640
}
641
 
5354 serge 642
void
643
intel_fini_pipe_control(struct intel_engine_cs *ring)
2332 Serge 644
{
5354 serge 645
	struct drm_device *dev = ring->dev;
646
 
647
	if (ring->scratch.obj == NULL)
648
		return;
649
 
650
	if (INTEL_INFO(dev)->gen >= 5) {
651
		kunmap(sg_page(ring->scratch.obj->pages->sgl));
652
		i915_gem_object_ggtt_unpin(ring->scratch.obj);
653
	}
654
 
655
	drm_gem_object_unreference(&ring->scratch.obj->base);
656
	ring->scratch.obj = NULL;
657
}
658
 
659
int
660
intel_init_pipe_control(struct intel_engine_cs *ring)
661
{
2332 Serge 662
	int ret;
663
 
6084 serge 664
	WARN_ON(ring->scratch.obj);
2332 Serge 665
 
4104 Serge 666
	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
667
	if (ring->scratch.obj == NULL) {
2332 Serge 668
		DRM_ERROR("Failed to allocate seqno page\n");
669
		ret = -ENOMEM;
670
		goto err;
671
	}
672
 
5060 serge 673
	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
674
	if (ret)
675
		goto err_unref;
2332 Serge 676
 
5060 serge 677
	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
2332 Serge 678
	if (ret)
679
		goto err_unref;
680
 
4104 Serge 681
	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
5354 serge 682
	ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
4104 Serge 683
	if (ring->scratch.cpu_page == NULL) {
684
		ret = -ENOMEM;
2332 Serge 685
		goto err_unpin;
4104 Serge 686
	}
2332 Serge 687
 
3480 Serge 688
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
4104 Serge 689
			 ring->name, ring->scratch.gtt_offset);
2332 Serge 690
	return 0;
691
 
692
err_unpin:
5060 serge 693
	i915_gem_object_ggtt_unpin(ring->scratch.obj);
2332 Serge 694
err_unref:
4104 Serge 695
	drm_gem_object_unreference(&ring->scratch.obj->base);
2332 Serge 696
err:
697
	return ret;
698
}
699
 
6084 serge 700
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
5354 serge 701
{
702
	int ret, i;
6084 serge 703
	struct intel_engine_cs *ring = req->ring;
5354 serge 704
	struct drm_device *dev = ring->dev;
705
	struct drm_i915_private *dev_priv = dev->dev_private;
706
	struct i915_workarounds *w = &dev_priv->workarounds;
707
 
6084 serge 708
	if (w->count == 0)
5354 serge 709
		return 0;
710
 
711
	ring->gpu_caches_dirty = true;
6084 serge 712
	ret = intel_ring_flush_all_caches(req);
5354 serge 713
	if (ret)
714
		return ret;
715
 
6084 serge 716
	ret = intel_ring_begin(req, (w->count * 2 + 2));
5354 serge 717
	if (ret)
718
		return ret;
719
 
720
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
721
	for (i = 0; i < w->count; i++) {
6937 serge 722
		intel_ring_emit_reg(ring, w->reg[i].addr);
5354 serge 723
		intel_ring_emit(ring, w->reg[i].value);
724
	}
725
	intel_ring_emit(ring, MI_NOOP);
726
 
727
	intel_ring_advance(ring);
728
 
729
	ring->gpu_caches_dirty = true;
6084 serge 730
	ret = intel_ring_flush_all_caches(req);
5354 serge 731
	if (ret)
732
		return ret;
733
 
734
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
735
 
736
	return 0;
737
}
738
 
6084 serge 739
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
740
{
741
	int ret;
742
 
743
	ret = intel_ring_workarounds_emit(req);
744
	if (ret != 0)
745
		return ret;
746
 
747
	ret = i915_gem_render_state_init(req);
748
	if (ret)
749
		DRM_ERROR("init render state: %d\n", ret);
750
 
751
	return ret;
752
}
753
 
5354 serge 754
static int wa_add(struct drm_i915_private *dev_priv,
6937 serge 755
		  i915_reg_t addr,
756
		  const u32 mask, const u32 val)
5354 serge 757
{
758
	const u32 idx = dev_priv->workarounds.count;
759
 
760
	if (WARN_ON(idx >= I915_MAX_WA_REGS))
761
		return -ENOSPC;
762
 
763
	dev_priv->workarounds.reg[idx].addr = addr;
764
	dev_priv->workarounds.reg[idx].value = val;
765
	dev_priv->workarounds.reg[idx].mask = mask;
766
 
767
	dev_priv->workarounds.count++;
768
 
769
	return 0;
770
}
771
 
6084 serge 772
#define WA_REG(addr, mask, val) do { \
5354 serge 773
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
774
		if (r) \
775
			return r; \
6084 serge 776
	} while (0)
5354 serge 777
 
778
#define WA_SET_BIT_MASKED(addr, mask) \
779
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
780
 
781
#define WA_CLR_BIT_MASKED(addr, mask) \
782
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
783
 
784
#define WA_SET_FIELD_MASKED(addr, mask, value) \
785
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
786
 
787
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
788
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
789
 
790
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
791
 
6084 serge 792
static int gen8_init_workarounds(struct intel_engine_cs *ring)
5354 serge 793
{
794
	struct drm_device *dev = ring->dev;
795
	struct drm_i915_private *dev_priv = dev->dev_private;
796
 
6084 serge 797
	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
5354 serge 798
 
6084 serge 799
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
800
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
5354 serge 801
 
6084 serge 802
	/* WaDisablePartialInstShootdown:bdw,chv */
803
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
804
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
5354 serge 805
 
806
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
807
	 * workaround for for a possible hang in the unlikely event a TLB
808
	 * invalidation occurs during a PSD flush.
809
	 */
6084 serge 810
	/* WaForceEnableNonCoherent:bdw,chv */
811
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
5354 serge 812
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
6084 serge 813
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
814
			  HDC_FORCE_NON_COHERENT);
5354 serge 815
 
6084 serge 816
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
817
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
818
	 *  polygons in the same 8x4 pixel/sample area to be processed without
819
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
820
	 *  buffer."
821
	 *
822
	 * This optimization is off by default for BDW and CHV; turn it on.
823
	 */
824
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
5354 serge 825
 
6084 serge 826
	/* Wa4x4STCOptimizationDisable:bdw,chv */
827
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
828
 
5354 serge 829
	/*
830
	 * BSpec recommends 8x4 when MSAA is used,
831
	 * however in practice 16x4 seems fastest.
832
	 *
833
	 * Note that PS/WM thread counts depend on the WIZ hashing
834
	 * disable bit, which we don't touch here, but it's good
835
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
836
	 */
837
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
838
			    GEN6_WIZ_HASHING_MASK,
839
			    GEN6_WIZ_HASHING_16x4);
840
 
841
	return 0;
842
}
843
 
6084 serge 844
static int bdw_init_workarounds(struct intel_engine_cs *ring)
845
{
846
	int ret;
847
	struct drm_device *dev = ring->dev;
848
	struct drm_i915_private *dev_priv = dev->dev_private;
849
 
850
	ret = gen8_init_workarounds(ring);
851
	if (ret)
852
		return ret;
853
 
854
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
855
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
856
 
857
	/* WaDisableDopClockGating:bdw */
858
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
859
			  DOP_CLOCK_GATING_DISABLE);
860
 
861
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
862
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
863
 
864
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
865
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
866
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
867
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
868
			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
869
 
870
	return 0;
871
}
872
 
5354 serge 873
static int chv_init_workarounds(struct intel_engine_cs *ring)
874
{
6084 serge 875
	int ret;
5354 serge 876
	struct drm_device *dev = ring->dev;
877
	struct drm_i915_private *dev_priv = dev->dev_private;
878
 
6084 serge 879
	ret = gen8_init_workarounds(ring);
880
	if (ret)
881
		return ret;
882
 
5354 serge 883
	/* WaDisableThreadStallDopClockGating:chv */
6084 serge 884
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
885
 
886
	/* Improve HiZ throughput on CHV. */
887
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
888
 
889
	return 0;
890
}
891
 
892
static int gen9_init_workarounds(struct intel_engine_cs *ring)
893
{
894
	struct drm_device *dev = ring->dev;
895
	struct drm_i915_private *dev_priv = dev->dev_private;
896
	uint32_t tmp;
897
 
898
	/* WaEnableLbsSlaRetryTimerDecrement:skl */
899
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
900
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
901
 
902
	/* WaDisableKillLogic:bxt,skl */
903
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
904
		   ECOCHK_DIS_TLB);
905
 
906
	/* WaDisablePartialInstShootdown:skl,bxt */
5354 serge 907
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
6084 serge 908
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
5354 serge 909
 
6084 serge 910
	/* Syncing dependencies between camera and graphics:skl,bxt */
911
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
912
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
913
 
914
		/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
6937 serge 915
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
916
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
6084 serge 917
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
918
				  GEN9_DG_MIRROR_FIX_ENABLE);
919
 
920
		/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
6937 serge 921
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
922
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
6084 serge 923
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
924
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
925
		/*
926
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
927
		 * but we do that in per ctx batchbuffer as there is an issue
928
		 * with this register not getting restored on ctx restore
929
		 */
930
	}
931
 
932
		/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
6937 serge 933
	if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
6084 serge 934
		WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
935
				  GEN9_ENABLE_YV12_BUGFIX);
936
 
937
	/* Wa4x4STCOptimizationDisable:skl,bxt */
938
	/* WaDisablePartialResolveInVc:skl,bxt */
939
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
940
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
941
 
942
	/* WaCcsTlbPrefetchDisable:skl,bxt */
943
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
944
			  GEN9_CCS_TLB_PREFETCH_ENABLE);
945
 
946
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
6937 serge 947
	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
948
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
6084 serge 949
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
950
				  PIXEL_MASK_CAMMING_DISABLE);
951
 
952
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt */
953
	tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
6937 serge 954
	if (IS_SKL_REVID(dev, SKL_REVID_F0, REVID_FOREVER) ||
955
	    IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
6084 serge 956
		tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
957
	WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
958
 
959
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
6937 serge 960
	if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
6084 serge 961
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
962
				  GEN8_SAMPLER_POWER_BYPASS_DIS);
963
 
964
	/* WaDisableSTUnitPowerOptimization:skl,bxt */
965
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
966
 
967
	return 0;
968
}
969
 
970
static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
971
{
972
	struct drm_device *dev = ring->dev;
973
	struct drm_i915_private *dev_priv = dev->dev_private;
974
	u8 vals[3] = { 0, 0, 0 };
975
	unsigned int i;
976
 
977
	for (i = 0; i < 3; i++) {
978
		u8 ss;
979
 
980
		/*
981
		 * Only consider slices where one, and only one, subslice has 7
982
		 * EUs
983
		 */
6937 serge 984
		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
6084 serge 985
			continue;
986
 
987
		/*
988
		 * subslice_7eu[i] != 0 (because of the check above) and
989
		 * ss_max == 4 (maximum number of subslices possible per slice)
990
		 *
991
		 * ->    0 <= ss <= 3;
992
		 */
993
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
994
		vals[i] = 3 - ss;
995
	}
996
 
997
	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
998
		return 0;
999
 
1000
	/* Tune IZ hashing. See intel_device_info_runtime_init() */
1001
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1002
			    GEN9_IZ_HASHING_MASK(2) |
1003
			    GEN9_IZ_HASHING_MASK(1) |
1004
			    GEN9_IZ_HASHING_MASK(0),
1005
			    GEN9_IZ_HASHING(2, vals[2]) |
1006
			    GEN9_IZ_HASHING(1, vals[1]) |
1007
			    GEN9_IZ_HASHING(0, vals[0]));
1008
 
1009
	return 0;
1010
}
1011
 
1012
static int skl_init_workarounds(struct intel_engine_cs *ring)
1013
{
1014
	int ret;
1015
	struct drm_device *dev = ring->dev;
1016
	struct drm_i915_private *dev_priv = dev->dev_private;
1017
 
1018
	ret = gen9_init_workarounds(ring);
1019
	if (ret)
1020
		return ret;
1021
 
6937 serge 1022
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
6084 serge 1023
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1024
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
1025
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1026
	}
1027
 
1028
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1029
	 * involving this register should also be added to WA batch as required.
5354 serge 1030
	 */
6937 serge 1031
	if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
6084 serge 1032
		/* WaDisableLSQCROPERFforOCL:skl */
1033
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1034
			   GEN8_LQSC_RO_PERF_DIS);
5354 serge 1035
 
6084 serge 1036
	/* WaEnableGapsTsvCreditFix:skl */
6937 serge 1037
	if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
6084 serge 1038
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1039
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
1040
	}
1041
 
1042
	/* WaDisablePowerCompilerClockGating:skl */
6937 serge 1043
	if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
6084 serge 1044
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
1045
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1046
 
6937 serge 1047
	/* This is tied to WaForceContextSaveRestoreNonCoherent */
1048
	if (IS_SKL_REVID(dev, 0, REVID_FOREVER)) {
6084 serge 1049
		/*
1050
		 *Use Force Non-Coherent whenever executing a 3D context. This
1051
		 * is a workaround for a possible hang in the unlikely event
1052
		 * a TLB invalidation occurs during a PSD flush.
1053
		 */
1054
		/* WaForceEnableNonCoherent:skl */
1055
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1056
				  HDC_FORCE_NON_COHERENT);
6937 serge 1057
 
1058
		/* WaDisableHDCInvalidation:skl */
1059
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1060
			   BDW_DISABLE_HDC_INVALIDATION);
6084 serge 1061
	}
1062
 
1063
		/* WaBarrierPerformanceFixDisable:skl */
6937 serge 1064
	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
6084 serge 1065
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1066
				  HDC_FENCE_DEST_SLM_DISABLE |
1067
				  HDC_BARRIER_PERFORMANCE_DISABLE);
1068
 
1069
	/* WaDisableSbeCacheDispatchPortSharing:skl */
6937 serge 1070
	if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
6084 serge 1071
		WA_SET_BIT_MASKED(
1072
			GEN7_HALF_SLICE_CHICKEN1,
1073
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1074
 
1075
	return skl_tune_iz_hashing(ring);
1076
}
1077
 
1078
static int bxt_init_workarounds(struct intel_engine_cs *ring)
1079
{
1080
	int ret;
1081
	struct drm_device *dev = ring->dev;
1082
	struct drm_i915_private *dev_priv = dev->dev_private;
1083
 
1084
	ret = gen9_init_workarounds(ring);
1085
	if (ret)
1086
		return ret;
1087
 
1088
	/* WaStoreMultiplePTEenable:bxt */
1089
	/* This is a requirement according to Hardware specification */
6937 serge 1090
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
6084 serge 1091
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1092
 
1093
	/* WaSetClckGatingDisableMedia:bxt */
6937 serge 1094
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
6084 serge 1095
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1096
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1097
	}
1098
 
1099
	/* WaDisableThreadStallDopClockGating:bxt */
1100
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1101
			  STALL_DOP_GATING_DISABLE);
1102
 
1103
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
6937 serge 1104
	if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
6084 serge 1105
		WA_SET_BIT_MASKED(
1106
			GEN7_HALF_SLICE_CHICKEN1,
1107
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1108
	}
1109
 
5354 serge 1110
	return 0;
1111
}
1112
 
1113
int init_workarounds_ring(struct intel_engine_cs *ring)
1114
{
1115
	struct drm_device *dev = ring->dev;
1116
	struct drm_i915_private *dev_priv = dev->dev_private;
1117
 
1118
	WARN_ON(ring->id != RCS);
1119
 
1120
	dev_priv->workarounds.count = 0;
1121
 
1122
	if (IS_BROADWELL(dev))
1123
		return bdw_init_workarounds(ring);
1124
 
1125
	if (IS_CHERRYVIEW(dev))
1126
		return chv_init_workarounds(ring);
1127
 
6084 serge 1128
	if (IS_SKYLAKE(dev))
1129
		return skl_init_workarounds(ring);
1130
 
1131
	if (IS_BROXTON(dev))
1132
		return bxt_init_workarounds(ring);
1133
 
5354 serge 1134
	return 0;
1135
}
1136
 
5060 serge 1137
static int init_render_ring(struct intel_engine_cs *ring)
2332 Serge 1138
{
1139
	struct drm_device *dev = ring->dev;
1140
	struct drm_i915_private *dev_priv = dev->dev_private;
1141
	int ret = init_ring_common(ring);
5060 serge 1142
	if (ret)
1143
		return ret;
2332 Serge 1144
 
5060 serge 1145
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1146
	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
3031 serge 1147
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
3243 Serge 1148
 
1149
	/* We need to disable the AsyncFlip performance optimisations in order
1150
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1151
	 * programmed to '1' on all products.
4104 Serge 1152
	 *
6084 serge 1153
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
3243 Serge 1154
	 */
6084 serge 1155
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
3243 Serge 1156
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1157
 
1158
	/* Required for the hardware to program scanline values for waiting */
5060 serge 1159
	/* WaEnableFlushTlbInvalidationMode:snb */
3243 Serge 1160
	if (INTEL_INFO(dev)->gen == 6)
1161
		I915_WRITE(GFX_MODE,
5060 serge 1162
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
3243 Serge 1163
 
5060 serge 1164
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
6084 serge 1165
	if (IS_GEN7(dev))
1166
		I915_WRITE(GFX_MODE_GEN7,
5060 serge 1167
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
6084 serge 1168
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
2332 Serge 1169
 
3031 serge 1170
	if (IS_GEN6(dev)) {
1171
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
1172
		 * "If this bit is set, STCunit will have LRA as replacement
1173
		 *  policy. [...] This bit must be reset.  LRA replacement
1174
		 *  policy is not supported."
1175
		 */
1176
		I915_WRITE(CACHE_MODE_0,
1177
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
2342 Serge 1178
	}
1179
 
6084 serge 1180
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
3031 serge 1181
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1182
 
4560 Serge 1183
	if (HAS_L3_DPF(dev))
1184
		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
3031 serge 1185
 
5354 serge 1186
	return init_workarounds_ring(ring);
2332 Serge 1187
}
1188
 
5060 serge 1189
static void render_ring_cleanup(struct intel_engine_cs *ring)
2332 Serge 1190
{
3480 Serge 1191
	struct drm_device *dev = ring->dev;
5128 serge 1192
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 1193
 
5128 serge 1194
	if (dev_priv->semaphore_obj) {
1195
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1196
		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1197
		dev_priv->semaphore_obj = NULL;
1198
	}
1199
 
5354 serge 1200
	intel_fini_pipe_control(ring);
2332 Serge 1201
}
1202
 
6084 serge 1203
static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
5060 serge 1204
			   unsigned int num_dwords)
2332 Serge 1205
{
5060 serge 1206
#define MBOX_UPDATE_DWORDS 8
6084 serge 1207
	struct intel_engine_cs *signaller = signaller_req->ring;
5060 serge 1208
	struct drm_device *dev = signaller->dev;
1209
	struct drm_i915_private *dev_priv = dev->dev_private;
1210
	struct intel_engine_cs *waiter;
1211
	int i, ret, num_rings;
1212
 
1213
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1214
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1215
#undef MBOX_UPDATE_DWORDS
1216
 
6084 serge 1217
	ret = intel_ring_begin(signaller_req, num_dwords);
5060 serge 1218
	if (ret)
1219
		return ret;
1220
 
1221
	for_each_ring(waiter, dev_priv, i) {
6084 serge 1222
		u32 seqno;
5060 serge 1223
		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1224
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1225
			continue;
1226
 
6084 serge 1227
		seqno = i915_gem_request_get_seqno(signaller_req);
5060 serge 1228
		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1229
		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1230
					   PIPE_CONTROL_QW_WRITE |
1231
					   PIPE_CONTROL_FLUSH_ENABLE);
1232
		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1233
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
6084 serge 1234
		intel_ring_emit(signaller, seqno);
5060 serge 1235
		intel_ring_emit(signaller, 0);
1236
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1237
					   MI_SEMAPHORE_TARGET(waiter->id));
1238
		intel_ring_emit(signaller, 0);
1239
	}
1240
 
1241
	return 0;
2332 Serge 1242
}
1243
 
6084 serge 1244
static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
5060 serge 1245
			   unsigned int num_dwords)
1246
{
1247
#define MBOX_UPDATE_DWORDS 6
6084 serge 1248
	struct intel_engine_cs *signaller = signaller_req->ring;
5060 serge 1249
	struct drm_device *dev = signaller->dev;
1250
	struct drm_i915_private *dev_priv = dev->dev_private;
1251
	struct intel_engine_cs *waiter;
1252
	int i, ret, num_rings;
1253
 
1254
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1255
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1256
#undef MBOX_UPDATE_DWORDS
1257
 
6084 serge 1258
	ret = intel_ring_begin(signaller_req, num_dwords);
5060 serge 1259
	if (ret)
1260
		return ret;
1261
 
1262
	for_each_ring(waiter, dev_priv, i) {
6084 serge 1263
		u32 seqno;
5060 serge 1264
		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1265
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1266
			continue;
1267
 
6084 serge 1268
		seqno = i915_gem_request_get_seqno(signaller_req);
5060 serge 1269
		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1270
					   MI_FLUSH_DW_OP_STOREDW);
1271
		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1272
					   MI_FLUSH_DW_USE_GTT);
1273
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
6084 serge 1274
		intel_ring_emit(signaller, seqno);
5060 serge 1275
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1276
					   MI_SEMAPHORE_TARGET(waiter->id));
1277
		intel_ring_emit(signaller, 0);
1278
	}
1279
 
1280
	return 0;
1281
}
1282
 
6084 serge 1283
static int gen6_signal(struct drm_i915_gem_request *signaller_req,
5060 serge 1284
		       unsigned int num_dwords)
1285
{
6084 serge 1286
	struct intel_engine_cs *signaller = signaller_req->ring;
5060 serge 1287
	struct drm_device *dev = signaller->dev;
1288
	struct drm_i915_private *dev_priv = dev->dev_private;
1289
	struct intel_engine_cs *useless;
1290
	int i, ret, num_rings;
1291
 
1292
#define MBOX_UPDATE_DWORDS 3
1293
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1294
	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1295
#undef MBOX_UPDATE_DWORDS
1296
 
6084 serge 1297
	ret = intel_ring_begin(signaller_req, num_dwords);
5060 serge 1298
	if (ret)
1299
		return ret;
1300
 
1301
	for_each_ring(useless, dev_priv, i) {
6937 serge 1302
		i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
1303
 
1304
		if (i915_mmio_reg_valid(mbox_reg)) {
6084 serge 1305
			u32 seqno = i915_gem_request_get_seqno(signaller_req);
6937 serge 1306
 
5060 serge 1307
			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
6937 serge 1308
			intel_ring_emit_reg(signaller, mbox_reg);
6084 serge 1309
			intel_ring_emit(signaller, seqno);
5060 serge 1310
		}
1311
	}
1312
 
1313
	/* If num_dwords was rounded, make sure the tail pointer is correct */
1314
	if (num_rings % 2 == 0)
1315
		intel_ring_emit(signaller, MI_NOOP);
1316
 
1317
	return 0;
1318
}
1319
 
2342 Serge 1320
/**
1321
 * gen6_add_request - Update the semaphore mailbox registers
1322
 *
6084 serge 1323
 * @request - request to write to the ring
2342 Serge 1324
 *
1325
 * Update the mailbox registers in the *other* rings with the current seqno.
1326
 * This acts like a signal in the canonical semaphore.
1327
 */
2332 Serge 1328
static int
6084 serge 1329
gen6_add_request(struct drm_i915_gem_request *req)
2332 Serge 1330
{
6084 serge 1331
	struct intel_engine_cs *ring = req->ring;
5060 serge 1332
	int ret;
2332 Serge 1333
 
5060 serge 1334
	if (ring->semaphore.signal)
6084 serge 1335
		ret = ring->semaphore.signal(req, 4);
5060 serge 1336
	else
6084 serge 1337
		ret = intel_ring_begin(req, 4);
4560 Serge 1338
 
2332 Serge 1339
	if (ret)
1340
		return ret;
1341
 
1342
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1343
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
6084 serge 1344
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
2332 Serge 1345
	intel_ring_emit(ring, MI_USER_INTERRUPT);
4560 Serge 1346
	__intel_ring_advance(ring);
2332 Serge 1347
 
1348
	return 0;
1349
}
1350
 
3480 Serge 1351
static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1352
					      u32 seqno)
1353
{
1354
	struct drm_i915_private *dev_priv = dev->dev_private;
1355
	return dev_priv->last_seqno < seqno;
1356
}
1357
 
2342 Serge 1358
/**
1359
 * intel_ring_sync - sync the waiter to the signaller on seqno
1360
 *
1361
 * @waiter - ring that is waiting
1362
 * @signaller - ring which has, or will signal
1363
 * @seqno - seqno which the waiter will block on
1364
 */
5060 serge 1365
 
2342 Serge 1366
static int
6084 serge 1367
gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
5060 serge 1368
	       struct intel_engine_cs *signaller,
1369
	       u32 seqno)
1370
{
6084 serge 1371
	struct intel_engine_cs *waiter = waiter_req->ring;
5060 serge 1372
	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1373
	int ret;
1374
 
6084 serge 1375
	ret = intel_ring_begin(waiter_req, 4);
5060 serge 1376
	if (ret)
1377
		return ret;
1378
 
1379
	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1380
				MI_SEMAPHORE_GLOBAL_GTT |
1381
				MI_SEMAPHORE_POLL |
1382
				MI_SEMAPHORE_SAD_GTE_SDD);
1383
	intel_ring_emit(waiter, seqno);
1384
	intel_ring_emit(waiter,
1385
			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1386
	intel_ring_emit(waiter,
1387
			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1388
	intel_ring_advance(waiter);
1389
	return 0;
1390
}
1391
 
1392
static int
6084 serge 1393
gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
5060 serge 1394
	       struct intel_engine_cs *signaller,
6084 serge 1395
	       u32 seqno)
2332 Serge 1396
{
6084 serge 1397
	struct intel_engine_cs *waiter = waiter_req->ring;
2342 Serge 1398
	u32 dw1 = MI_SEMAPHORE_MBOX |
1399
		  MI_SEMAPHORE_COMPARE |
1400
		  MI_SEMAPHORE_REGISTER;
5060 serge 1401
	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1402
	int ret;
2332 Serge 1403
 
3031 serge 1404
	/* Throughout all of the GEM code, seqno passed implies our current
1405
	 * seqno is >= the last seqno executed. However for hardware the
1406
	 * comparison is strictly greater than.
1407
	 */
1408
	seqno -= 1;
1409
 
5060 serge 1410
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
3031 serge 1411
 
6084 serge 1412
	ret = intel_ring_begin(waiter_req, 4);
2332 Serge 1413
	if (ret)
1414
		return ret;
1415
 
3480 Serge 1416
	/* If seqno wrap happened, omit the wait with no-ops */
1417
	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
5060 serge 1418
		intel_ring_emit(waiter, dw1 | wait_mbox);
6084 serge 1419
		intel_ring_emit(waiter, seqno);
1420
		intel_ring_emit(waiter, 0);
1421
		intel_ring_emit(waiter, MI_NOOP);
3480 Serge 1422
	} else {
1423
		intel_ring_emit(waiter, MI_NOOP);
1424
		intel_ring_emit(waiter, MI_NOOP);
1425
		intel_ring_emit(waiter, MI_NOOP);
1426
		intel_ring_emit(waiter, MI_NOOP);
1427
	}
2342 Serge 1428
	intel_ring_advance(waiter);
2332 Serge 1429
 
1430
	return 0;
1431
}
1432
 
1433
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
1434
do {									\
2342 Serge 1435
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
1436
		 PIPE_CONTROL_DEPTH_STALL);				\
2332 Serge 1437
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
1438
	intel_ring_emit(ring__, 0);							\
1439
	intel_ring_emit(ring__, 0);							\
1440
} while (0)
1441
 
1442
static int
6084 serge 1443
pc_render_add_request(struct drm_i915_gem_request *req)
2332 Serge 1444
{
6084 serge 1445
	struct intel_engine_cs *ring = req->ring;
5060 serge 1446
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
2332 Serge 1447
	int ret;
1448
 
1449
	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1450
	 * incoherent with writes to memory, i.e. completely fubar,
1451
	 * so we need to use PIPE_NOTIFY instead.
1452
	 *
1453
	 * However, we also need to workaround the qword write
1454
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1455
	 * memory before requesting an interrupt.
1456
	 */
6084 serge 1457
	ret = intel_ring_begin(req, 32);
2332 Serge 1458
	if (ret)
1459
		return ret;
1460
 
2342 Serge 1461
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1462
			PIPE_CONTROL_WRITE_FLUSH |
1463
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
4104 Serge 1464
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
6084 serge 1465
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
2332 Serge 1466
	intel_ring_emit(ring, 0);
1467
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 1468
	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
2332 Serge 1469
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 1470
	scratch_addr += 2 * CACHELINE_BYTES;
2332 Serge 1471
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 1472
	scratch_addr += 2 * CACHELINE_BYTES;
2332 Serge 1473
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 1474
	scratch_addr += 2 * CACHELINE_BYTES;
2332 Serge 1475
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 1476
	scratch_addr += 2 * CACHELINE_BYTES;
2332 Serge 1477
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
3031 serge 1478
 
2342 Serge 1479
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1480
			PIPE_CONTROL_WRITE_FLUSH |
1481
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
2332 Serge 1482
			PIPE_CONTROL_NOTIFY);
4104 Serge 1483
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
6084 serge 1484
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
2332 Serge 1485
	intel_ring_emit(ring, 0);
4560 Serge 1486
	__intel_ring_advance(ring);
2332 Serge 1487
 
1488
	return 0;
1489
}
1490
 
1491
static u32
5060 serge 1492
gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
2342 Serge 1493
{
1494
	/* Workaround to force correct ordering between irq and seqno writes on
1495
	 * ivb (and maybe also on snb) by reading from a CS register (like
1496
	 * ACTHD) before reading the status page. */
5060 serge 1497
	if (!lazy_coherency) {
1498
		struct drm_i915_private *dev_priv = ring->dev->dev_private;
1499
		POSTING_READ(RING_ACTHD(ring->mmio_base));
1500
	}
1501
 
2342 Serge 1502
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1503
}
1504
 
1505
static u32
5060 serge 1506
ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
2332 Serge 1507
{
1508
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1509
}
1510
 
3480 Serge 1511
static void
5060 serge 1512
ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
3480 Serge 1513
{
1514
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1515
}
1516
 
2332 Serge 1517
static u32
5060 serge 1518
pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
2332 Serge 1519
{
4104 Serge 1520
	return ring->scratch.cpu_page[0];
2332 Serge 1521
}
1522
 
3480 Serge 1523
static void
5060 serge 1524
pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
3480 Serge 1525
{
4104 Serge 1526
	ring->scratch.cpu_page[0] = seqno;
3480 Serge 1527
}
1528
 
3031 serge 1529
static bool
5060 serge 1530
gen5_ring_get_irq(struct intel_engine_cs *ring)
2332 Serge 1531
{
3031 serge 1532
	struct drm_device *dev = ring->dev;
5060 serge 1533
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1534
	unsigned long flags;
1535
 
5354 serge 1536
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
3031 serge 1537
		return false;
1538
 
1539
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
4104 Serge 1540
	if (ring->irq_refcount++ == 0)
5060 serge 1541
		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
3031 serge 1542
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1543
 
1544
	return true;
2332 Serge 1545
}
1546
 
1547
static void
5060 serge 1548
gen5_ring_put_irq(struct intel_engine_cs *ring)
2332 Serge 1549
{
3031 serge 1550
	struct drm_device *dev = ring->dev;
5060 serge 1551
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1552
	unsigned long flags;
1553
 
1554
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
4104 Serge 1555
	if (--ring->irq_refcount == 0)
5060 serge 1556
		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
3031 serge 1557
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1558
}
1559
 
3031 serge 1560
static bool
5060 serge 1561
i9xx_ring_get_irq(struct intel_engine_cs *ring)
2332 Serge 1562
{
3031 serge 1563
	struct drm_device *dev = ring->dev;
5060 serge 1564
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1565
	unsigned long flags;
1566
 
5354 serge 1567
	if (!intel_irqs_enabled(dev_priv))
3031 serge 1568
		return false;
1569
 
1570
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1571
	if (ring->irq_refcount++ == 0) {
1572
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
6084 serge 1573
		I915_WRITE(IMR, dev_priv->irq_mask);
1574
		POSTING_READ(IMR);
3031 serge 1575
	}
1576
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1577
 
1578
	return true;
2332 Serge 1579
}
1580
 
1581
static void
5060 serge 1582
i9xx_ring_put_irq(struct intel_engine_cs *ring)
2332 Serge 1583
{
3031 serge 1584
	struct drm_device *dev = ring->dev;
5060 serge 1585
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1586
	unsigned long flags;
1587
 
1588
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1589
	if (--ring->irq_refcount == 0) {
1590
		dev_priv->irq_mask |= ring->irq_enable_mask;
6084 serge 1591
		I915_WRITE(IMR, dev_priv->irq_mask);
1592
		POSTING_READ(IMR);
3031 serge 1593
	}
1594
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1595
}
1596
 
1597
static bool
5060 serge 1598
i8xx_ring_get_irq(struct intel_engine_cs *ring)
2332 Serge 1599
{
1600
	struct drm_device *dev = ring->dev;
5060 serge 1601
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1602
	unsigned long flags;
2332 Serge 1603
 
5354 serge 1604
	if (!intel_irqs_enabled(dev_priv))
2332 Serge 1605
		return false;
1606
 
3031 serge 1607
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 1608
	if (ring->irq_refcount++ == 0) {
3031 serge 1609
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1610
		I915_WRITE16(IMR, dev_priv->irq_mask);
1611
		POSTING_READ16(IMR);
2332 Serge 1612
	}
3031 serge 1613
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1614
 
1615
	return true;
1616
}
1617
 
1618
static void
5060 serge 1619
i8xx_ring_put_irq(struct intel_engine_cs *ring)
2332 Serge 1620
{
1621
	struct drm_device *dev = ring->dev;
5060 serge 1622
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1623
	unsigned long flags;
2332 Serge 1624
 
3031 serge 1625
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 1626
	if (--ring->irq_refcount == 0) {
3031 serge 1627
		dev_priv->irq_mask |= ring->irq_enable_mask;
1628
		I915_WRITE16(IMR, dev_priv->irq_mask);
1629
		POSTING_READ16(IMR);
2332 Serge 1630
	}
3031 serge 1631
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1632
}
1633
 
1634
static int
6084 serge 1635
bsd_ring_flush(struct drm_i915_gem_request *req,
2332 Serge 1636
	       u32     invalidate_domains,
1637
	       u32     flush_domains)
1638
{
6084 serge 1639
	struct intel_engine_cs *ring = req->ring;
2332 Serge 1640
	int ret;
1641
 
6084 serge 1642
	ret = intel_ring_begin(req, 2);
2332 Serge 1643
	if (ret)
1644
		return ret;
1645
 
1646
	intel_ring_emit(ring, MI_FLUSH);
1647
	intel_ring_emit(ring, MI_NOOP);
1648
	intel_ring_advance(ring);
1649
	return 0;
1650
}
1651
 
1652
static int
6084 serge 1653
i9xx_add_request(struct drm_i915_gem_request *req)
2332 Serge 1654
{
6084 serge 1655
	struct intel_engine_cs *ring = req->ring;
2332 Serge 1656
	int ret;
1657
 
6084 serge 1658
	ret = intel_ring_begin(req, 4);
2332 Serge 1659
	if (ret)
1660
		return ret;
1661
 
1662
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1663
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
6084 serge 1664
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
2332 Serge 1665
	intel_ring_emit(ring, MI_USER_INTERRUPT);
4560 Serge 1666
	__intel_ring_advance(ring);
2332 Serge 1667
 
1668
	return 0;
1669
}
1670
 
1671
static bool
5060 serge 1672
gen6_ring_get_irq(struct intel_engine_cs *ring)
2332 Serge 1673
{
1674
	struct drm_device *dev = ring->dev;
5060 serge 1675
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1676
	unsigned long flags;
2332 Serge 1677
 
5354 serge 1678
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
6084 serge 1679
		return false;
2332 Serge 1680
 
3031 serge 1681
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 1682
	if (ring->irq_refcount++ == 0) {
4560 Serge 1683
		if (HAS_L3_DPF(dev) && ring->id == RCS)
4104 Serge 1684
			I915_WRITE_IMR(ring,
1685
				       ~(ring->irq_enable_mask |
4560 Serge 1686
					 GT_PARITY_ERROR(dev)));
3031 serge 1687
		else
1688
			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
5060 serge 1689
		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
2332 Serge 1690
	}
3031 serge 1691
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1692
 
6084 serge 1693
	return true;
2332 Serge 1694
}
1695
 
1696
static void
5060 serge 1697
gen6_ring_put_irq(struct intel_engine_cs *ring)
2332 Serge 1698
{
1699
	struct drm_device *dev = ring->dev;
5060 serge 1700
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1701
	unsigned long flags;
2332 Serge 1702
 
3031 serge 1703
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 1704
	if (--ring->irq_refcount == 0) {
4560 Serge 1705
		if (HAS_L3_DPF(dev) && ring->id == RCS)
1706
			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
3031 serge 1707
		else
1708
			I915_WRITE_IMR(ring, ~0);
5060 serge 1709
		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
2332 Serge 1710
	}
3031 serge 1711
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1712
}
1713
 
4104 Serge 1714
static bool
5060 serge 1715
hsw_vebox_get_irq(struct intel_engine_cs *ring)
4104 Serge 1716
{
1717
	struct drm_device *dev = ring->dev;
1718
	struct drm_i915_private *dev_priv = dev->dev_private;
1719
	unsigned long flags;
1720
 
5354 serge 1721
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
4104 Serge 1722
		return false;
1723
 
1724
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1725
	if (ring->irq_refcount++ == 0) {
1726
		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
5060 serge 1727
		gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
4104 Serge 1728
	}
1729
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1730
 
1731
	return true;
1732
}
1733
 
1734
static void
5060 serge 1735
hsw_vebox_put_irq(struct intel_engine_cs *ring)
4104 Serge 1736
{
1737
	struct drm_device *dev = ring->dev;
1738
	struct drm_i915_private *dev_priv = dev->dev_private;
1739
	unsigned long flags;
1740
 
1741
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1742
	if (--ring->irq_refcount == 0) {
1743
		I915_WRITE_IMR(ring, ~0);
5060 serge 1744
		gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
4104 Serge 1745
	}
1746
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1747
}
1748
 
4560 Serge 1749
static bool
5060 serge 1750
gen8_ring_get_irq(struct intel_engine_cs *ring)
4560 Serge 1751
{
1752
	struct drm_device *dev = ring->dev;
1753
	struct drm_i915_private *dev_priv = dev->dev_private;
1754
	unsigned long flags;
1755
 
5354 serge 1756
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
4560 Serge 1757
		return false;
1758
 
1759
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1760
	if (ring->irq_refcount++ == 0) {
1761
		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1762
			I915_WRITE_IMR(ring,
1763
				       ~(ring->irq_enable_mask |
1764
					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1765
		} else {
1766
			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1767
		}
1768
		POSTING_READ(RING_IMR(ring->mmio_base));
1769
	}
1770
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1771
 
1772
	return true;
1773
}
1774
 
1775
static void
5060 serge 1776
gen8_ring_put_irq(struct intel_engine_cs *ring)
4560 Serge 1777
{
1778
	struct drm_device *dev = ring->dev;
1779
	struct drm_i915_private *dev_priv = dev->dev_private;
1780
	unsigned long flags;
1781
 
1782
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1783
	if (--ring->irq_refcount == 0) {
1784
		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1785
			I915_WRITE_IMR(ring,
1786
				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1787
		} else {
1788
			I915_WRITE_IMR(ring, ~0);
1789
		}
1790
		POSTING_READ(RING_IMR(ring->mmio_base));
1791
	}
1792
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1793
}
1794
 
2332 Serge 1795
static int
6084 serge 1796
i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
5060 serge 1797
			 u64 offset, u32 length,
6084 serge 1798
			 unsigned dispatch_flags)
2332 Serge 1799
{
6084 serge 1800
	struct intel_engine_cs *ring = req->ring;
2332 Serge 1801
	int ret;
1802
 
6084 serge 1803
	ret = intel_ring_begin(req, 2);
2332 Serge 1804
	if (ret)
1805
		return ret;
1806
 
1807
	intel_ring_emit(ring,
3031 serge 1808
			MI_BATCH_BUFFER_START |
1809
			MI_BATCH_GTT |
6084 serge 1810
			(dispatch_flags & I915_DISPATCH_SECURE ?
1811
 
2332 Serge 1812
	intel_ring_emit(ring, offset);
1813
	intel_ring_advance(ring);
1814
 
1815
	return 0;
1816
}
1817
 
3243 Serge 1818
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1819
#define I830_BATCH_LIMIT (256*1024)
5128 serge 1820
#define I830_TLB_ENTRIES (2)
1821
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
2332 Serge 1822
static int
6084 serge 1823
i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1824
			 u64 offset, u32 len,
1825
			 unsigned dispatch_flags)
2332 Serge 1826
{
6084 serge 1827
	struct intel_engine_cs *ring = req->ring;
5128 serge 1828
	u32 cs_offset = ring->scratch.gtt_offset;
2332 Serge 1829
	int ret;
1830
 
6084 serge 1831
	ret = intel_ring_begin(req, 6);
1832
	if (ret)
1833
		return ret;
2332 Serge 1834
 
5128 serge 1835
	/* Evict the invalid PTE TLBs */
1836
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1837
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1838
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1839
	intel_ring_emit(ring, cs_offset);
1840
	intel_ring_emit(ring, 0xdeadbeef);
6084 serge 1841
	intel_ring_emit(ring, MI_NOOP);
1842
	intel_ring_advance(ring);
3243 Serge 1843
 
6084 serge 1844
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
3243 Serge 1845
		if (len > I830_BATCH_LIMIT)
1846
			return -ENOSPC;
1847
 
6084 serge 1848
		ret = intel_ring_begin(req, 6 + 2);
3243 Serge 1849
		if (ret)
1850
			return ret;
5128 serge 1851
 
1852
		/* Blit the batch (which has now all relocs applied) to the
1853
		 * stable batch scratch bo area (so that the CS never
1854
		 * stumbles over its tlb invalidation bug) ...
1855
		 */
1856
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1857
		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
5139 serge 1858
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
3243 Serge 1859
		intel_ring_emit(ring, cs_offset);
1860
		intel_ring_emit(ring, 4096);
1861
		intel_ring_emit(ring, offset);
5128 serge 1862
 
3243 Serge 1863
		intel_ring_emit(ring, MI_FLUSH);
5128 serge 1864
		intel_ring_emit(ring, MI_NOOP);
1865
		intel_ring_advance(ring);
3243 Serge 1866
 
1867
		/* ... and execute it. */
5128 serge 1868
		offset = cs_offset;
1869
	}
1870
 
6084 serge 1871
	ret = intel_ring_begin(req, 4);
5128 serge 1872
	if (ret)
1873
		return ret;
1874
 
6084 serge 1875
	intel_ring_emit(ring, MI_BATCH_BUFFER);
1876
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1877
 
5128 serge 1878
	intel_ring_emit(ring, offset + len - 8);
1879
	intel_ring_emit(ring, MI_NOOP);
3031 serge 1880
	intel_ring_advance(ring);
1881
 
1882
	return 0;
1883
}
1884
 
1885
static int
6084 serge 1886
i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
5060 serge 1887
			 u64 offset, u32 len,
6084 serge 1888
			 unsigned dispatch_flags)
3031 serge 1889
{
6084 serge 1890
	struct intel_engine_cs *ring = req->ring;
3031 serge 1891
	int ret;
1892
 
6084 serge 1893
	ret = intel_ring_begin(req, 2);
1894
	if (ret)
1895
		return ret;
2332 Serge 1896
 
3031 serge 1897
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
6084 serge 1898
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1899
 
2332 Serge 1900
	intel_ring_advance(ring);
1901
 
1902
	return 0;
1903
}
1904
 
6660 serge 1905
static void cleanup_phys_status_page(struct intel_engine_cs *ring)
1906
{
1907
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
1908
 
1909
	if (!dev_priv->status_page_dmah)
1910
		return;
1911
 
1912
	drm_pci_free(ring->dev, dev_priv->status_page_dmah);
1913
	ring->status_page.page_addr = NULL;
1914
}
1915
 
5060 serge 1916
static void cleanup_status_page(struct intel_engine_cs *ring)
2332 Serge 1917
{
1918
	struct drm_i915_gem_object *obj;
1919
 
1920
	obj = ring->status_page.obj;
1921
	if (obj == NULL)
1922
		return;
1923
 
5354 serge 1924
	kunmap(sg_page(obj->pages->sgl));
5060 serge 1925
	i915_gem_object_ggtt_unpin(obj);
2344 Serge 1926
	drm_gem_object_unreference(&obj->base);
2332 Serge 1927
	ring->status_page.obj = NULL;
1928
}
1929
 
5060 serge 1930
static int init_status_page(struct intel_engine_cs *ring)
2332 Serge 1931
{
6660 serge 1932
	struct drm_i915_gem_object *obj = ring->status_page.obj;
5060 serge 1933
 
6660 serge 1934
	if (obj == NULL) {
5060 serge 1935
		unsigned flags;
6084 serge 1936
		int ret;
2332 Serge 1937
 
5060 serge 1938
		obj = i915_gem_alloc_object(ring->dev, 4096);
6084 serge 1939
		if (obj == NULL) {
1940
			DRM_ERROR("Failed to allocate status page\n");
5060 serge 1941
			return -ENOMEM;
6084 serge 1942
		}
2332 Serge 1943
 
6084 serge 1944
		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1945
		if (ret)
1946
			goto err_unref;
2332 Serge 1947
 
5060 serge 1948
		flags = 0;
1949
		if (!HAS_LLC(ring->dev))
1950
			/* On g33, we cannot place HWS above 256MiB, so
1951
			 * restrict its pinning to the low mappable arena.
1952
			 * Though this restriction is not documented for
1953
			 * gen4, gen5, or byt, they also behave similarly
1954
			 * and hang if the HWS is placed at the top of the
1955
			 * GTT. To generalise, it appears that all !llc
1956
			 * platforms have issues with us placing the HWS
1957
			 * above the mappable region (even though we never
1958
			 * actualy map it).
1959
			 */
1960
			flags |= PIN_MAPPABLE;
1961
		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1962
		if (ret) {
1963
err_unref:
1964
			drm_gem_object_unreference(&obj->base);
1965
			return ret;
1966
		}
1967
 
1968
		ring->status_page.obj = obj;
2332 Serge 1969
	}
1970
 
4104 Serge 1971
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
5354 serge 1972
	ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
2332 Serge 1973
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1974
 
1975
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1976
			ring->name, ring->status_page.gfx_addr);
1977
 
1978
	return 0;
1979
}
1980
 
5060 serge 1981
static int init_phys_status_page(struct intel_engine_cs *ring)
3243 Serge 1982
{
6084 serge 1983
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3243 Serge 1984
 
6084 serge 1985
	if (!dev_priv->status_page_dmah) {
1986
		dev_priv->status_page_dmah =
1987
			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1988
		if (!dev_priv->status_page_dmah)
1989
			return -ENOMEM;
1990
	}
3243 Serge 1991
 
6084 serge 1992
	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1993
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
3243 Serge 1994
 
6084 serge 1995
	return 0;
3243 Serge 1996
}
1997
 
5354 serge 1998
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2332 Serge 1999
{
5060 serge 2000
	iounmap(ringbuf->virtual_start);
5354 serge 2001
	ringbuf->virtual_start = NULL;
5060 serge 2002
	i915_gem_object_ggtt_unpin(ringbuf->obj);
2003
}
2004
 
5354 serge 2005
int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
6084 serge 2006
				     struct intel_ringbuffer *ringbuf)
5060 serge 2007
{
2008
	struct drm_i915_private *dev_priv = to_i915(dev);
5354 serge 2009
	struct drm_i915_gem_object *obj = ringbuf->obj;
6937 serge 2010
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2011
	unsigned flags = PIN_OFFSET_BIAS | 4096;
2332 Serge 2012
	int ret;
2340 Serge 2013
 
5354 serge 2014
	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2015
	if (ret)
2016
		return ret;
2017
 
2018
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
2019
	if (ret) {
2020
		i915_gem_object_ggtt_unpin(obj);
2021
		return ret;
2022
	}
2023
 
2024
	ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2025
			i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2026
	if (ringbuf->virtual_start == NULL) {
2027
		i915_gem_object_ggtt_unpin(obj);
2028
		return -EINVAL;
2029
	}
2030
 
6084 serge 2031
	return 0;
5354 serge 2032
}
2332 Serge 2033
 
6084 serge 2034
static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
5354 serge 2035
{
2036
	drm_gem_object_unreference(&ringbuf->obj->base);
2037
	ringbuf->obj = NULL;
2038
}
2039
 
6084 serge 2040
static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2041
				      struct intel_ringbuffer *ringbuf)
5354 serge 2042
{
2043
	struct drm_i915_gem_object *obj;
2044
 
3480 Serge 2045
	obj = NULL;
4371 Serge 2046
	if (!HAS_LLC(dev))
5060 serge 2047
		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
3480 Serge 2048
	if (obj == NULL)
5060 serge 2049
		obj = i915_gem_alloc_object(dev, ringbuf->size);
2050
	if (obj == NULL)
2051
		return -ENOMEM;
2332 Serge 2052
 
5060 serge 2053
	/* mark ring buffers as read-only from GPU side by default */
2054
	obj->gt_ro = 1;
2332 Serge 2055
 
5354 serge 2056
	ringbuf->obj = obj;
2332 Serge 2057
 
5060 serge 2058
	return 0;
2059
}
2060
 
6084 serge 2061
struct intel_ringbuffer *
2062
intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2063
{
2064
	struct intel_ringbuffer *ring;
2065
	int ret;
2066
 
2067
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
6937 serge 2068
	if (ring == NULL) {
2069
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2070
				 engine->name);
6084 serge 2071
		return ERR_PTR(-ENOMEM);
6937 serge 2072
	}
6084 serge 2073
 
2074
	ring->ring = engine;
6937 serge 2075
	list_add(&ring->link, &engine->buffers);
6084 serge 2076
 
2077
	ring->size = size;
2078
	/* Workaround an erratum on the i830 which causes a hang if
2079
	 * the TAIL pointer points to within the last 2 cachelines
2080
	 * of the buffer.
2081
	 */
2082
	ring->effective_size = size;
2083
	if (IS_I830(engine->dev) || IS_845G(engine->dev))
2084
		ring->effective_size -= 2 * CACHELINE_BYTES;
2085
 
2086
	ring->last_retired_head = -1;
2087
	intel_ring_update_space(ring);
2088
 
2089
	ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2090
	if (ret) {
6937 serge 2091
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
6084 serge 2092
			  engine->name, ret);
6937 serge 2093
		list_del(&ring->link);
6084 serge 2094
		kfree(ring);
2095
		return ERR_PTR(ret);
2096
	}
2097
 
2098
	return ring;
2099
}
2100
 
2101
void
2102
intel_ringbuffer_free(struct intel_ringbuffer *ring)
2103
{
2104
	intel_destroy_ringbuffer_obj(ring);
6937 serge 2105
	list_del(&ring->link);
6084 serge 2106
	kfree(ring);
2107
}
2108
 
5060 serge 2109
static int intel_init_ring_buffer(struct drm_device *dev,
2110
				  struct intel_engine_cs *ring)
2111
{
6084 serge 2112
	struct intel_ringbuffer *ringbuf;
5060 serge 2113
	int ret;
2114
 
6084 serge 2115
	WARN_ON(ring->buffer);
5060 serge 2116
 
2117
	ring->dev = dev;
2118
	INIT_LIST_HEAD(&ring->active_list);
2119
	INIT_LIST_HEAD(&ring->request_list);
5354 serge 2120
	INIT_LIST_HEAD(&ring->execlist_queue);
6937 serge 2121
	INIT_LIST_HEAD(&ring->buffers);
6084 serge 2122
	i915_gem_batch_pool_init(dev, &ring->batch_pool);
5060 serge 2123
	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2124
 
2125
	init_waitqueue_head(&ring->irq_queue);
2126
 
6084 serge 2127
	ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
6937 serge 2128
	if (IS_ERR(ringbuf)) {
2129
		ret = PTR_ERR(ringbuf);
2130
		goto error;
2131
	}
6084 serge 2132
	ring->buffer = ringbuf;
2133
 
5060 serge 2134
	if (I915_NEED_GFX_HWS(dev)) {
2135
		ret = init_status_page(ring);
2136
		if (ret)
2137
			goto error;
2138
	} else {
6660 serge 2139
		WARN_ON(ring->id != RCS);
5060 serge 2140
		ret = init_phys_status_page(ring);
6084 serge 2141
		if (ret)
5060 serge 2142
			goto error;
2143
	}
2332 Serge 2144
 
6084 serge 2145
	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
5060 serge 2146
	if (ret) {
6084 serge 2147
		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2148
				ring->name, ret);
2149
		intel_destroy_ringbuffer_obj(ringbuf);
5060 serge 2150
		goto error;
2151
	}
2152
 
2153
	ret = i915_cmd_parser_init_ring(ring);
2154
	if (ret)
2155
		goto error;
2156
 
2332 Serge 2157
	return 0;
2158
 
5060 serge 2159
error:
6937 serge 2160
	intel_cleanup_ring_buffer(ring);
2332 Serge 2161
	return ret;
2162
}
2163
 
5060 serge 2164
void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2332 Serge 2165
{
5354 serge 2166
	struct drm_i915_private *dev_priv;
2332 Serge 2167
 
5060 serge 2168
	if (!intel_ring_initialized(ring))
2332 Serge 2169
		return;
2170
 
5354 serge 2171
	dev_priv = to_i915(ring->dev);
2172
 
6937 serge 2173
	if (ring->buffer) {
5060 serge 2174
	intel_stop_ring_buffer(ring);
2175
	WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2332 Serge 2176
 
6084 serge 2177
	intel_unpin_ringbuffer_obj(ring->buffer);
2178
	intel_ringbuffer_free(ring->buffer);
2179
	ring->buffer = NULL;
6937 serge 2180
	}
2332 Serge 2181
 
2182
	if (ring->cleanup)
2183
		ring->cleanup(ring);
2184
 
6660 serge 2185
	if (I915_NEED_GFX_HWS(ring->dev)) {
6084 serge 2186
	cleanup_status_page(ring);
6660 serge 2187
	} else {
2188
		WARN_ON(ring->id != RCS);
2189
		cleanup_phys_status_page(ring);
2190
	}
2332 Serge 2191
 
5060 serge 2192
	i915_cmd_parser_fini_ring(ring);
6084 serge 2193
	i915_gem_batch_pool_fini(&ring->batch_pool);
6937 serge 2194
	ring->dev = NULL;
3031 serge 2195
}
2196
 
6084 serge 2197
static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
3031 serge 2198
{
5060 serge 2199
	struct intel_ringbuffer *ringbuf = ring->buffer;
3031 serge 2200
	struct drm_i915_gem_request *request;
6084 serge 2201
	unsigned space;
3031 serge 2202
	int ret;
2203
 
6084 serge 2204
	if (intel_ring_space(ringbuf) >= n)
2205
		return 0;
3031 serge 2206
 
6084 serge 2207
	/* The whole point of reserving space is to not wait! */
2208
	WARN_ON(ringbuf->reserved_in_use);
2332 Serge 2209
 
3031 serge 2210
	list_for_each_entry(request, &ring->request_list, list) {
6084 serge 2211
		space = __intel_ring_space(request->postfix, ringbuf->tail,
2212
					   ringbuf->size);
2213
		if (space >= n)
3031 serge 2214
			break;
2215
	}
2216
 
6084 serge 2217
	if (WARN_ON(&request->list == &ring->request_list))
3031 serge 2218
		return -ENOSPC;
2219
 
6084 serge 2220
	ret = i915_wait_request(request);
3031 serge 2221
	if (ret)
2222
		return ret;
2223
 
6084 serge 2224
	ringbuf->space = space;
3031 serge 2225
	return 0;
2226
}
2227
 
6084 serge 2228
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
3031 serge 2229
{
3243 Serge 2230
	uint32_t __iomem *virt;
5060 serge 2231
	int rem = ringbuf->size - ringbuf->tail;
3243 Serge 2232
 
5060 serge 2233
	virt = ringbuf->virtual_start + ringbuf->tail;
3243 Serge 2234
	rem /= 4;
2235
	while (rem--)
2236
		iowrite32(MI_NOOP, virt++);
2237
 
5060 serge 2238
	ringbuf->tail = 0;
6084 serge 2239
	intel_ring_update_space(ringbuf);
3243 Serge 2240
}
2241
 
5060 serge 2242
int intel_ring_idle(struct intel_engine_cs *ring)
3243 Serge 2243
{
6084 serge 2244
	struct drm_i915_gem_request *req;
3243 Serge 2245
 
2246
	/* Wait upon the last request to be completed */
2247
	if (list_empty(&ring->request_list))
2248
		return 0;
2249
 
6084 serge 2250
	req = list_entry(ring->request_list.prev,
2251
			struct drm_i915_gem_request,
2252
			list);
3243 Serge 2253
 
6084 serge 2254
	/* Make sure we do not trigger any retires */
2255
	return __i915_wait_request(req,
2256
				   atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2257
				   to_i915(ring->dev)->mm.interruptible,
2258
				   NULL, NULL);
3243 Serge 2259
}
2260
 
6084 serge 2261
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
3243 Serge 2262
{
6084 serge 2263
	request->ringbuf = request->ring->buffer;
2264
	return 0;
2265
}
3243 Serge 2266
 
6084 serge 2267
int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2268
{
2269
	/*
2270
	 * The first call merely notes the reserve request and is common for
2271
	 * all back ends. The subsequent localised _begin() call actually
2272
	 * ensures that the reservation is available. Without the begin, if
2273
	 * the request creator immediately submitted the request without
2274
	 * adding any commands to it then there might not actually be
2275
	 * sufficient room for the submission commands.
2276
	 */
2277
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
4560 Serge 2278
 
6084 serge 2279
	return intel_ring_begin(request, 0);
2280
}
4560 Serge 2281
 
6084 serge 2282
void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2283
{
2284
	WARN_ON(ringbuf->reserved_size);
2285
	WARN_ON(ringbuf->reserved_in_use);
2286
 
2287
	ringbuf->reserved_size = size;
2288
}
2289
 
2290
void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2291
{
2292
	WARN_ON(ringbuf->reserved_in_use);
2293
 
2294
	ringbuf->reserved_size   = 0;
2295
	ringbuf->reserved_in_use = false;
2296
}
2297
 
2298
void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2299
{
2300
	WARN_ON(ringbuf->reserved_in_use);
2301
 
2302
	ringbuf->reserved_in_use = true;
2303
	ringbuf->reserved_tail   = ringbuf->tail;
2304
}
2305
 
2306
void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2307
{
2308
	WARN_ON(!ringbuf->reserved_in_use);
2309
	if (ringbuf->tail > ringbuf->reserved_tail) {
2310
		WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2311
		     "request reserved size too small: %d vs %d!\n",
2312
		     ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2313
	} else {
2314
		/*
2315
		 * The ring was wrapped while the reserved space was in use.
2316
		 * That means that some unknown amount of the ring tail was
2317
		 * no-op filled and skipped. Thus simply adding the ring size
2318
		 * to the tail and doing the above space check will not work.
2319
		 * Rather than attempt to track how much tail was skipped,
2320
		 * it is much simpler to say that also skipping the sanity
2321
		 * check every once in a while is not a big issue.
2322
		 */
4560 Serge 2323
	}
2324
 
6084 serge 2325
	ringbuf->reserved_size   = 0;
2326
	ringbuf->reserved_in_use = false;
3243 Serge 2327
}
2328
 
6084 serge 2329
static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
3480 Serge 2330
{
5060 serge 2331
	struct intel_ringbuffer *ringbuf = ring->buffer;
6084 serge 2332
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
2333
	int remain_actual = ringbuf->size - ringbuf->tail;
2334
	int ret, total_bytes, wait_bytes = 0;
2335
	bool need_wrap = false;
3480 Serge 2336
 
6084 serge 2337
	if (ringbuf->reserved_in_use)
2338
		total_bytes = bytes;
2339
	else
2340
		total_bytes = bytes + ringbuf->reserved_size;
2341
 
2342
	if (unlikely(bytes > remain_usable)) {
2343
		/*
2344
		 * Not enough space for the basic request. So need to flush
2345
		 * out the remainder and then wait for base + reserved.
2346
		 */
2347
		wait_bytes = remain_actual + total_bytes;
2348
		need_wrap = true;
2349
	} else {
2350
		if (unlikely(total_bytes > remain_usable)) {
2351
			/*
2352
			 * The base request will fit but the reserved space
6660 serge 2353
			 * falls off the end. So don't need an immediate wrap
2354
			 * and only need to effectively wait for the reserved
2355
			 * size space from the start of ringbuffer.
6084 serge 2356
			 */
2357
			wait_bytes = remain_actual + ringbuf->reserved_size;
2358
		} else if (total_bytes > ringbuf->space) {
2359
			/* No wrapping required, just waiting. */
2360
			wait_bytes = total_bytes;
2361
		}
3480 Serge 2362
	}
2363
 
6084 serge 2364
	if (wait_bytes) {
2365
		ret = ring_wait_for_space(ring, wait_bytes);
3480 Serge 2366
		if (unlikely(ret))
2367
			return ret;
6084 serge 2368
 
2369
		if (need_wrap)
2370
			__wrap_ring_buffer(ringbuf);
3480 Serge 2371
	}
2372
 
2373
	return 0;
2374
}
2375
 
6084 serge 2376
int intel_ring_begin(struct drm_i915_gem_request *req,
2332 Serge 2377
		     int num_dwords)
2378
{
6084 serge 2379
	struct intel_engine_cs *ring;
2380
	struct drm_i915_private *dev_priv;
2332 Serge 2381
	int ret;
2382
 
6084 serge 2383
	WARN_ON(req == NULL);
2384
	ring = req->ring;
2385
	dev_priv = ring->dev->dev_private;
2386
 
3480 Serge 2387
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2388
				   dev_priv->mm.interruptible);
3031 serge 2389
	if (ret)
2390
		return ret;
2332 Serge 2391
 
4560 Serge 2392
	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2393
	if (ret)
2394
		return ret;
2395
 
5060 serge 2396
	ring->buffer->space -= num_dwords * sizeof(uint32_t);
4560 Serge 2397
	return 0;
3480 Serge 2398
}
2332 Serge 2399
 
5060 serge 2400
/* Align the ring tail to a cacheline boundary */
6084 serge 2401
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
3480 Serge 2402
{
6084 serge 2403
	struct intel_engine_cs *ring = req->ring;
5060 serge 2404
	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2405
	int ret;
3480 Serge 2406
 
5060 serge 2407
	if (num_dwords == 0)
2408
		return 0;
2409
 
2410
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
6084 serge 2411
	ret = intel_ring_begin(req, num_dwords);
5060 serge 2412
	if (ret)
2413
		return ret;
2414
 
2415
	while (num_dwords--)
2416
		intel_ring_emit(ring, MI_NOOP);
2417
 
2418
	intel_ring_advance(ring);
2419
 
2420
	return 0;
2421
}
2422
 
2423
void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2424
{
2425
	struct drm_device *dev = ring->dev;
2426
	struct drm_i915_private *dev_priv = dev->dev_private;
2427
 
2428
	if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
3480 Serge 2429
		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2430
		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
5060 serge 2431
		if (HAS_VEBOX(dev))
4104 Serge 2432
			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2332 Serge 2433
	}
2434
 
3480 Serge 2435
	ring->set_seqno(ring, seqno);
4104 Serge 2436
	ring->hangcheck.seqno = seqno;
2332 Serge 2437
}
2438
 
5060 serge 2439
static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2332 Serge 2440
				     u32 value)
2441
{
5060 serge 2442
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2332 Serge 2443
 
2444
       /* Every tail move must follow the sequence below */
3031 serge 2445
 
2446
	/* Disable notification that the ring is IDLE. The GT
2447
	 * will then assume that it is busy and bring it out of rc6.
2448
	 */
6084 serge 2449
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
3031 serge 2450
		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2332 Serge 2451
 
3031 serge 2452
	/* Clear the context id. Here be magic! */
2453
	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2454
 
2455
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
6084 serge 2456
	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
3031 serge 2457
		      GEN6_BSD_SLEEP_INDICATOR) == 0,
6084 serge 2458
		     50))
3031 serge 2459
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2332 Serge 2460
 
3031 serge 2461
	/* Now that the ring is fully powered up, update the tail */
6084 serge 2462
	I915_WRITE_TAIL(ring, value);
3031 serge 2463
	POSTING_READ(RING_TAIL(ring->mmio_base));
2464
 
2465
	/* Let the ring send IDLE messages to the GT again,
2466
	 * and so let it sleep to conserve power when idle.
2467
	 */
6084 serge 2468
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
3031 serge 2469
		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2332 Serge 2470
}
2471
 
6084 serge 2472
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2473
			       u32 invalidate, u32 flush)
2332 Serge 2474
{
6084 serge 2475
	struct intel_engine_cs *ring = req->ring;
2332 Serge 2476
	uint32_t cmd;
2477
	int ret;
2478
 
6084 serge 2479
	ret = intel_ring_begin(req, 4);
2332 Serge 2480
	if (ret)
2481
		return ret;
2482
 
2483
	cmd = MI_FLUSH_DW;
4560 Serge 2484
	if (INTEL_INFO(ring->dev)->gen >= 8)
2485
		cmd += 1;
6084 serge 2486
 
2487
	/* We always require a command barrier so that subsequent
2488
	 * commands, such as breadcrumb interrupts, are strictly ordered
2489
	 * wrt the contents of the write cache being flushed to memory
2490
	 * (and thus being coherent from the CPU).
2491
	 */
2492
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2493
 
3243 Serge 2494
	/*
2495
	 * Bspec vol 1c.5 - video engine command streamer:
2496
	 * "If ENABLED, all TLBs will be invalidated once the flush
2497
	 * operation is complete. This bit is only valid when the
2498
	 * Post-Sync Operation field is a value of 1h or 3h."
2499
	 */
2332 Serge 2500
	if (invalidate & I915_GEM_GPU_DOMAINS)
6084 serge 2501
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2502
 
2332 Serge 2503
	intel_ring_emit(ring, cmd);
3243 Serge 2504
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
4560 Serge 2505
	if (INTEL_INFO(ring->dev)->gen >= 8) {
2506
		intel_ring_emit(ring, 0); /* upper addr */
2507
		intel_ring_emit(ring, 0); /* value */
2508
	} else  {
6084 serge 2509
		intel_ring_emit(ring, 0);
2510
		intel_ring_emit(ring, MI_NOOP);
4560 Serge 2511
	}
2332 Serge 2512
	intel_ring_advance(ring);
2513
	return 0;
2514
}
2515
 
2516
static int
6084 serge 2517
gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
5060 serge 2518
			      u64 offset, u32 len,
6084 serge 2519
			      unsigned dispatch_flags)
4560 Serge 2520
{
6084 serge 2521
	struct intel_engine_cs *ring = req->ring;
2522
	bool ppgtt = USES_PPGTT(ring->dev) &&
2523
			!(dispatch_flags & I915_DISPATCH_SECURE);
4560 Serge 2524
	int ret;
2525
 
6084 serge 2526
	ret = intel_ring_begin(req, 4);
4560 Serge 2527
	if (ret)
2528
		return ret;
2529
 
2530
	/* FIXME(BDW): Address space and security selectors. */
6084 serge 2531
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2532
			(dispatch_flags & I915_DISPATCH_RS ?
2533
			 MI_BATCH_RESOURCE_STREAMER : 0));
5060 serge 2534
	intel_ring_emit(ring, lower_32_bits(offset));
2535
	intel_ring_emit(ring, upper_32_bits(offset));
4560 Serge 2536
	intel_ring_emit(ring, MI_NOOP);
2537
	intel_ring_advance(ring);
2538
 
2539
	return 0;
2540
}
2541
 
2542
static int
6084 serge 2543
hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2544
			     u64 offset, u32 len,
2545
			     unsigned dispatch_flags)
3243 Serge 2546
{
6084 serge 2547
	struct intel_engine_cs *ring = req->ring;
3243 Serge 2548
	int ret;
2549
 
6084 serge 2550
	ret = intel_ring_begin(req, 2);
3243 Serge 2551
	if (ret)
2552
		return ret;
2553
 
2554
	intel_ring_emit(ring,
5354 serge 2555
			MI_BATCH_BUFFER_START |
6084 serge 2556
			(dispatch_flags & I915_DISPATCH_SECURE ?
2557
 
2558
			(dispatch_flags & I915_DISPATCH_RS ?
2559
			 MI_BATCH_RESOURCE_STREAMER : 0));
3243 Serge 2560
	/* bit0-7 is the length on GEN6+ */
2561
	intel_ring_emit(ring, offset);
2562
	intel_ring_advance(ring);
2563
 
2564
	return 0;
2565
}
2566
 
2567
static int
6084 serge 2568
gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
5060 serge 2569
			      u64 offset, u32 len,
6084 serge 2570
			      unsigned dispatch_flags)
2332 Serge 2571
{
6084 serge 2572
	struct intel_engine_cs *ring = req->ring;
2573
	int ret;
2332 Serge 2574
 
6084 serge 2575
	ret = intel_ring_begin(req, 2);
2576
	if (ret)
2577
		return ret;
2332 Serge 2578
 
3243 Serge 2579
	intel_ring_emit(ring,
2580
			MI_BATCH_BUFFER_START |
6084 serge 2581
			(dispatch_flags & I915_DISPATCH_SECURE ?
2582
 
2583
	/* bit0-7 is the length on GEN6+ */
2584
	intel_ring_emit(ring, offset);
2585
	intel_ring_advance(ring);
2332 Serge 2586
 
6084 serge 2587
	return 0;
2332 Serge 2588
}
2589
 
2590
/* Blitter support (SandyBridge+) */
2591
 
6084 serge 2592
static int gen6_ring_flush(struct drm_i915_gem_request *req,
2593
			   u32 invalidate, u32 flush)
2332 Serge 2594
{
6084 serge 2595
	struct intel_engine_cs *ring = req->ring;
4104 Serge 2596
	struct drm_device *dev = ring->dev;
2332 Serge 2597
	uint32_t cmd;
2598
	int ret;
2599
 
6084 serge 2600
	ret = intel_ring_begin(req, 4);
2332 Serge 2601
	if (ret)
2602
		return ret;
2603
 
2604
	cmd = MI_FLUSH_DW;
6084 serge 2605
	if (INTEL_INFO(dev)->gen >= 8)
4560 Serge 2606
		cmd += 1;
6084 serge 2607
 
2608
	/* We always require a command barrier so that subsequent
2609
	 * commands, such as breadcrumb interrupts, are strictly ordered
2610
	 * wrt the contents of the write cache being flushed to memory
2611
	 * (and thus being coherent from the CPU).
2612
	 */
2613
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2614
 
3243 Serge 2615
	/*
2616
	 * Bspec vol 1c.3 - blitter engine command streamer:
2617
	 * "If ENABLED, all TLBs will be invalidated once the flush
2618
	 * operation is complete. This bit is only valid when the
2619
	 * Post-Sync Operation field is a value of 1h or 3h."
2620
	 */
2332 Serge 2621
	if (invalidate & I915_GEM_DOMAIN_RENDER)
6084 serge 2622
		cmd |= MI_INVALIDATE_TLB;
2332 Serge 2623
	intel_ring_emit(ring, cmd);
3243 Serge 2624
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
6084 serge 2625
	if (INTEL_INFO(dev)->gen >= 8) {
4560 Serge 2626
		intel_ring_emit(ring, 0); /* upper addr */
2627
		intel_ring_emit(ring, 0); /* value */
2628
	} else  {
6084 serge 2629
		intel_ring_emit(ring, 0);
2630
		intel_ring_emit(ring, MI_NOOP);
4560 Serge 2631
	}
2332 Serge 2632
	intel_ring_advance(ring);
4104 Serge 2633
 
2332 Serge 2634
	return 0;
2635
}
2636
 
2637
int intel_init_render_ring_buffer(struct drm_device *dev)
2638
{
5060 serge 2639
	struct drm_i915_private *dev_priv = dev->dev_private;
2640
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2641
	struct drm_i915_gem_object *obj;
2642
	int ret;
2340 Serge 2643
 
3031 serge 2644
	ring->name = "render ring";
2645
	ring->id = RCS;
2646
	ring->mmio_base = RENDER_RING_BASE;
2647
 
5060 serge 2648
	if (INTEL_INFO(dev)->gen >= 8) {
2649
		if (i915_semaphore_is_enabled(dev)) {
2650
			obj = i915_gem_alloc_object(dev, 4096);
2651
			if (obj == NULL) {
2652
				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2653
				i915.semaphores = 0;
2654
			} else {
2655
				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2656
				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2657
				if (ret != 0) {
2658
					drm_gem_object_unreference(&obj->base);
2659
					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2660
					i915.semaphores = 0;
2661
				} else
2662
					dev_priv->semaphore_obj = obj;
2663
			}
2664
		}
5354 serge 2665
 
6084 serge 2666
		ring->init_context = intel_rcs_ctx_init;
5060 serge 2667
		ring->add_request = gen6_add_request;
2668
		ring->flush = gen8_render_ring_flush;
2669
		ring->irq_get = gen8_ring_get_irq;
2670
		ring->irq_put = gen8_ring_put_irq;
2671
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2672
		ring->get_seqno = gen6_ring_get_seqno;
2673
		ring->set_seqno = ring_set_seqno;
2674
		if (i915_semaphore_is_enabled(dev)) {
2675
			WARN_ON(!dev_priv->semaphore_obj);
2676
			ring->semaphore.sync_to = gen8_ring_sync;
2677
			ring->semaphore.signal = gen8_rcs_signal;
2678
			GEN8_RING_SEMAPHORE_INIT;
2679
		}
2680
	} else if (INTEL_INFO(dev)->gen >= 6) {
6084 serge 2681
		ring->init_context = intel_rcs_ctx_init;
2682
		ring->add_request = gen6_add_request;
3031 serge 2683
		ring->flush = gen7_render_ring_flush;
2684
		if (INTEL_INFO(dev)->gen == 6)
6084 serge 2685
			ring->flush = gen6_render_ring_flush;
3031 serge 2686
		ring->irq_get = gen6_ring_get_irq;
2687
		ring->irq_put = gen6_ring_put_irq;
4104 Serge 2688
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2342 Serge 2689
		ring->get_seqno = gen6_ring_get_seqno;
3480 Serge 2690
		ring->set_seqno = ring_set_seqno;
5060 serge 2691
		if (i915_semaphore_is_enabled(dev)) {
6084 serge 2692
			ring->semaphore.sync_to = gen6_ring_sync;
2693
			ring->semaphore.signal = gen6_signal;
2694
			/*
5060 serge 2695
			 * The current semaphore is only applied on pre-gen8
2696
			 * platform.  And there is no VCS2 ring on the pre-gen8
2697
			 * platform. So the semaphore between RCS and VCS2 is
2698
			 * initialized as INVALID.  Gen8 will initialize the
2699
			 * sema between VCS2 and RCS later.
6084 serge 2700
			 */
2701
			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2702
			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2703
			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2704
			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2705
			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2706
			ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2707
			ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2708
			ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2709
			ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2710
			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
5060 serge 2711
		}
2332 Serge 2712
	} else if (IS_GEN5(dev)) {
6084 serge 2713
		ring->add_request = pc_render_add_request;
3031 serge 2714
		ring->flush = gen4_render_ring_flush;
2342 Serge 2715
		ring->get_seqno = pc_render_get_seqno;
3480 Serge 2716
		ring->set_seqno = pc_render_set_seqno;
3031 serge 2717
		ring->irq_get = gen5_ring_get_irq;
2718
		ring->irq_put = gen5_ring_put_irq;
4104 Serge 2719
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2720
					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
3031 serge 2721
	} else {
2722
		ring->add_request = i9xx_add_request;
2723
		if (INTEL_INFO(dev)->gen < 4)
2724
			ring->flush = gen2_render_ring_flush;
2725
		else
2726
			ring->flush = gen4_render_ring_flush;
2727
		ring->get_seqno = ring_get_seqno;
3480 Serge 2728
		ring->set_seqno = ring_set_seqno;
3031 serge 2729
		if (IS_GEN2(dev)) {
2730
			ring->irq_get = i8xx_ring_get_irq;
2731
			ring->irq_put = i8xx_ring_put_irq;
2732
		} else {
2733
			ring->irq_get = i9xx_ring_get_irq;
2734
			ring->irq_put = i9xx_ring_put_irq;
2735
		}
2736
		ring->irq_enable_mask = I915_USER_INTERRUPT;
2332 Serge 2737
	}
3031 serge 2738
	ring->write_tail = ring_write_tail;
5060 serge 2739
 
3243 Serge 2740
	if (IS_HASWELL(dev))
2741
		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
4560 Serge 2742
	else if (IS_GEN8(dev))
2743
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3243 Serge 2744
	else if (INTEL_INFO(dev)->gen >= 6)
3031 serge 2745
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2746
	else if (INTEL_INFO(dev)->gen >= 4)
2747
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2748
	else if (IS_I830(dev) || IS_845G(dev))
2749
		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2750
	else
2751
		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
6084 serge 2752
	ring->init_hw = init_render_ring;
3031 serge 2753
	ring->cleanup = render_ring_cleanup;
2332 Serge 2754
 
3243 Serge 2755
	/* Workaround batchbuffer to combat CS tlb bug. */
2756
	if (HAS_BROKEN_CS_TLB(dev)) {
5128 serge 2757
		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
3243 Serge 2758
		if (obj == NULL) {
2759
			DRM_ERROR("Failed to allocate batch bo\n");
2760
			return -ENOMEM;
2761
		}
2762
 
5060 serge 2763
		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
3243 Serge 2764
		if (ret != 0) {
2765
			drm_gem_object_unreference(&obj->base);
2766
			DRM_ERROR("Failed to ping batch bo\n");
2767
			return ret;
2768
		}
2769
 
4104 Serge 2770
		ring->scratch.obj = obj;
2771
		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2332 Serge 2772
	}
2340 Serge 2773
 
6084 serge 2774
	ret = intel_init_ring_buffer(dev, ring);
2775
	if (ret)
2776
		return ret;
2777
 
2778
	if (INTEL_INFO(dev)->gen >= 5) {
2779
		ret = intel_init_pipe_control(ring);
2780
		if (ret)
2781
			return ret;
2782
	}
2783
 
2784
	return 0;
2332 Serge 2785
}
2786
 
2787
int intel_init_bsd_ring_buffer(struct drm_device *dev)
2788
{
5060 serge 2789
	struct drm_i915_private *dev_priv = dev->dev_private;
2790
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2332 Serge 2791
 
3031 serge 2792
	ring->name = "bsd ring";
2793
	ring->id = VCS;
2332 Serge 2794
 
3031 serge 2795
	ring->write_tail = ring_write_tail;
4560 Serge 2796
	if (INTEL_INFO(dev)->gen >= 6) {
3031 serge 2797
		ring->mmio_base = GEN6_BSD_RING_BASE;
2798
		/* gen6 bsd needs a special wa for tail updates */
2799
		if (IS_GEN6(dev))
2800
			ring->write_tail = gen6_bsd_ring_write_tail;
4104 Serge 2801
		ring->flush = gen6_bsd_ring_flush;
3031 serge 2802
		ring->add_request = gen6_add_request;
2803
		ring->get_seqno = gen6_ring_get_seqno;
3480 Serge 2804
		ring->set_seqno = ring_set_seqno;
4560 Serge 2805
		if (INTEL_INFO(dev)->gen >= 8) {
2806
			ring->irq_enable_mask =
2807
				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2808
			ring->irq_get = gen8_ring_get_irq;
2809
			ring->irq_put = gen8_ring_put_irq;
2810
			ring->dispatch_execbuffer =
2811
				gen8_ring_dispatch_execbuffer;
5060 serge 2812
			if (i915_semaphore_is_enabled(dev)) {
2813
				ring->semaphore.sync_to = gen8_ring_sync;
2814
				ring->semaphore.signal = gen8_xcs_signal;
2815
				GEN8_RING_SEMAPHORE_INIT;
2816
			}
4560 Serge 2817
		} else {
6084 serge 2818
			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2819
			ring->irq_get = gen6_ring_get_irq;
2820
			ring->irq_put = gen6_ring_put_irq;
4560 Serge 2821
			ring->dispatch_execbuffer =
2822
				gen6_ring_dispatch_execbuffer;
5060 serge 2823
			if (i915_semaphore_is_enabled(dev)) {
6084 serge 2824
				ring->semaphore.sync_to = gen6_ring_sync;
2825
				ring->semaphore.signal = gen6_signal;
2826
				ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2827
				ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2828
				ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2829
				ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2830
				ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2831
				ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2832
				ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2833
				ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2834
				ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2835
				ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
5060 serge 2836
			}
4560 Serge 2837
		}
3031 serge 2838
	} else {
2839
		ring->mmio_base = BSD_RING_BASE;
2840
		ring->flush = bsd_ring_flush;
2841
		ring->add_request = i9xx_add_request;
2842
		ring->get_seqno = ring_get_seqno;
3480 Serge 2843
		ring->set_seqno = ring_set_seqno;
3031 serge 2844
		if (IS_GEN5(dev)) {
4104 Serge 2845
			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
3031 serge 2846
			ring->irq_get = gen5_ring_get_irq;
2847
			ring->irq_put = gen5_ring_put_irq;
2848
		} else {
2849
			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2850
			ring->irq_get = i9xx_ring_get_irq;
2851
			ring->irq_put = i9xx_ring_put_irq;
2852
		}
2853
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2854
	}
6084 serge 2855
	ring->init_hw = init_ring_common;
3031 serge 2856
 
2332 Serge 2857
	return intel_init_ring_buffer(dev, ring);
2858
}
2859
 
5060 serge 2860
/**
6084 serge 2861
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
5060 serge 2862
 */
2863
int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2864
{
2865
	struct drm_i915_private *dev_priv = dev->dev_private;
2866
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2867
 
2868
	ring->name = "bsd2 ring";
2869
	ring->id = VCS2;
2870
 
2871
	ring->write_tail = ring_write_tail;
2872
	ring->mmio_base = GEN8_BSD2_RING_BASE;
2873
	ring->flush = gen6_bsd_ring_flush;
2874
	ring->add_request = gen6_add_request;
2875
	ring->get_seqno = gen6_ring_get_seqno;
2876
	ring->set_seqno = ring_set_seqno;
2877
	ring->irq_enable_mask =
2878
			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2879
	ring->irq_get = gen8_ring_get_irq;
2880
	ring->irq_put = gen8_ring_put_irq;
2881
	ring->dispatch_execbuffer =
2882
			gen8_ring_dispatch_execbuffer;
2883
	if (i915_semaphore_is_enabled(dev)) {
2884
		ring->semaphore.sync_to = gen8_ring_sync;
2885
		ring->semaphore.signal = gen8_xcs_signal;
2886
		GEN8_RING_SEMAPHORE_INIT;
2887
	}
6084 serge 2888
	ring->init_hw = init_ring_common;
5060 serge 2889
 
2890
	return intel_init_ring_buffer(dev, ring);
2891
}
2892
 
2332 Serge 2893
int intel_init_blt_ring_buffer(struct drm_device *dev)
2894
{
5060 serge 2895
	struct drm_i915_private *dev_priv = dev->dev_private;
2896
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2332 Serge 2897
 
3031 serge 2898
	ring->name = "blitter ring";
2899
	ring->id = BCS;
2332 Serge 2900
 
3031 serge 2901
	ring->mmio_base = BLT_RING_BASE;
2902
	ring->write_tail = ring_write_tail;
4104 Serge 2903
	ring->flush = gen6_ring_flush;
3031 serge 2904
	ring->add_request = gen6_add_request;
2905
	ring->get_seqno = gen6_ring_get_seqno;
3480 Serge 2906
	ring->set_seqno = ring_set_seqno;
4560 Serge 2907
	if (INTEL_INFO(dev)->gen >= 8) {
2908
		ring->irq_enable_mask =
2909
			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2910
		ring->irq_get = gen8_ring_get_irq;
2911
		ring->irq_put = gen8_ring_put_irq;
2912
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
5060 serge 2913
		if (i915_semaphore_is_enabled(dev)) {
2914
			ring->semaphore.sync_to = gen8_ring_sync;
2915
			ring->semaphore.signal = gen8_xcs_signal;
2916
			GEN8_RING_SEMAPHORE_INIT;
2917
		}
4560 Serge 2918
	} else {
6084 serge 2919
		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2920
		ring->irq_get = gen6_ring_get_irq;
2921
		ring->irq_put = gen6_ring_put_irq;
2922
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
5060 serge 2923
		if (i915_semaphore_is_enabled(dev)) {
2924
			ring->semaphore.signal = gen6_signal;
6084 serge 2925
			ring->semaphore.sync_to = gen6_ring_sync;
2926
			/*
5060 serge 2927
			 * The current semaphore is only applied on pre-gen8
2928
			 * platform.  And there is no VCS2 ring on the pre-gen8
2929
			 * platform. So the semaphore between BCS and VCS2 is
2930
			 * initialized as INVALID.  Gen8 will initialize the
2931
			 * sema between BCS and VCS2 later.
6084 serge 2932
			 */
2933
			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2934
			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2935
			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2936
			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2937
			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2938
			ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2939
			ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2940
			ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2941
			ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2942
			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
5060 serge 2943
		}
4560 Serge 2944
	}
6084 serge 2945
	ring->init_hw = init_ring_common;
3031 serge 2946
 
2332 Serge 2947
	return intel_init_ring_buffer(dev, ring);
2948
}
3031 serge 2949
 
4104 Serge 2950
int intel_init_vebox_ring_buffer(struct drm_device *dev)
2951
{
5060 serge 2952
	struct drm_i915_private *dev_priv = dev->dev_private;
2953
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
4104 Serge 2954
 
2955
	ring->name = "video enhancement ring";
2956
	ring->id = VECS;
2957
 
2958
	ring->mmio_base = VEBOX_RING_BASE;
2959
	ring->write_tail = ring_write_tail;
2960
	ring->flush = gen6_ring_flush;
2961
	ring->add_request = gen6_add_request;
2962
	ring->get_seqno = gen6_ring_get_seqno;
2963
	ring->set_seqno = ring_set_seqno;
4560 Serge 2964
 
2965
	if (INTEL_INFO(dev)->gen >= 8) {
2966
		ring->irq_enable_mask =
2967
			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2968
		ring->irq_get = gen8_ring_get_irq;
2969
		ring->irq_put = gen8_ring_put_irq;
2970
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
5060 serge 2971
		if (i915_semaphore_is_enabled(dev)) {
2972
			ring->semaphore.sync_to = gen8_ring_sync;
2973
			ring->semaphore.signal = gen8_xcs_signal;
2974
			GEN8_RING_SEMAPHORE_INIT;
2975
		}
4560 Serge 2976
	} else {
6084 serge 2977
		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2978
		ring->irq_get = hsw_vebox_get_irq;
2979
		ring->irq_put = hsw_vebox_put_irq;
2980
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
5060 serge 2981
		if (i915_semaphore_is_enabled(dev)) {
6084 serge 2982
			ring->semaphore.sync_to = gen6_ring_sync;
2983
			ring->semaphore.signal = gen6_signal;
2984
			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2985
			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2986
			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2987
			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2988
			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2989
			ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2990
			ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2991
			ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2992
			ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2993
			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
5060 serge 2994
		}
4560 Serge 2995
	}
6084 serge 2996
	ring->init_hw = init_ring_common;
4104 Serge 2997
 
2998
	return intel_init_ring_buffer(dev, ring);
2999
}
3000
 
3031 serge 3001
int
6084 serge 3002
intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3031 serge 3003
{
6084 serge 3004
	struct intel_engine_cs *ring = req->ring;
3031 serge 3005
	int ret;
3006
 
3007
	if (!ring->gpu_caches_dirty)
3008
		return 0;
3009
 
6084 serge 3010
	ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3031 serge 3011
	if (ret)
3012
		return ret;
3013
 
6084 serge 3014
	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3031 serge 3015
 
3016
	ring->gpu_caches_dirty = false;
3017
	return 0;
3018
}
3019
 
3020
int
6084 serge 3021
intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3031 serge 3022
{
6084 serge 3023
	struct intel_engine_cs *ring = req->ring;
3031 serge 3024
	uint32_t flush_domains;
3025
	int ret;
3026
 
3027
	flush_domains = 0;
3028
	if (ring->gpu_caches_dirty)
3029
		flush_domains = I915_GEM_GPU_DOMAINS;
3030
 
6084 serge 3031
	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3031 serge 3032
	if (ret)
3033
		return ret;
3034
 
6084 serge 3035
	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3031 serge 3036
 
3037
	ring->gpu_caches_dirty = false;
3038
	return 0;
3039
}
5060 serge 3040
 
3041
void
3042
intel_stop_ring_buffer(struct intel_engine_cs *ring)
3043
{
3044
	int ret;
3045
 
3046
	if (!intel_ring_initialized(ring))
3047
		return;
3048
 
3049
	ret = intel_ring_idle(ring);
3050
	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3051
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3052
			  ring->name, ret);
3053
 
3054
	stop_ring(ring);
3055
}