Subversion Repositories Kolibri OS

Rev

Rev 6320 | Rev 6937 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2332 Serge 1
/*
2
 * Copyright © 2008-2010 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eric Anholt 
25
 *    Zou Nan hai 
26
 *    Xiang Hai hao
27
 *
28
 */
29
 
3031 serge 30
#include 
2332 Serge 31
#include "i915_drv.h"
3031 serge 32
#include 
2351 Serge 33
#include "i915_trace.h"
2332 Serge 34
#include "intel_drv.h"
35
 
5354 serge 36
bool
37
intel_ring_initialized(struct intel_engine_cs *ring)
38
{
39
	struct drm_device *dev = ring->dev;
5060 serge 40
 
5354 serge 41
	if (!dev)
42
		return false;
43
 
44
	if (i915.enable_execlists) {
45
		struct intel_context *dctx = ring->default_context;
46
		struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
 
48
		return ringbuf->obj;
49
	} else
50
		return ring->buffer && ring->buffer->obj;
51
}
52
 
53
int __intel_ring_space(int head, int tail, int size)
2332 Serge 54
{
6084 serge 55
	int space = head - tail;
56
	if (space <= 0)
5060 serge 57
		space += size;
6084 serge 58
	return space - I915_RING_FREE_SPACE;
2332 Serge 59
}
60
 
6084 serge 61
void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62
{
63
	if (ringbuf->last_retired_head != -1) {
64
		ringbuf->head = ringbuf->last_retired_head;
65
		ringbuf->last_retired_head = -1;
66
	}
67
 
68
	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69
					    ringbuf->tail, ringbuf->size);
70
}
71
 
5354 serge 72
int intel_ring_space(struct intel_ringbuffer *ringbuf)
4560 Serge 73
{
6084 serge 74
	intel_ring_update_space(ringbuf);
75
	return ringbuf->space;
5060 serge 76
}
77
 
5354 serge 78
bool intel_ring_stopped(struct intel_engine_cs *ring)
5060 serge 79
{
4560 Serge 80
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
5060 serge 81
	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82
}
4560 Serge 83
 
6084 serge 84
static void __intel_ring_advance(struct intel_engine_cs *ring)
5060 serge 85
{
86
	struct intel_ringbuffer *ringbuf = ring->buffer;
87
	ringbuf->tail &= ringbuf->size - 1;
88
	if (intel_ring_stopped(ring))
4560 Serge 89
		return;
5060 serge 90
	ring->write_tail(ring, ringbuf->tail);
4560 Serge 91
}
92
 
3031 serge 93
static int
6084 serge 94
gen2_render_ring_flush(struct drm_i915_gem_request *req,
3031 serge 95
		       u32	invalidate_domains,
96
		       u32	flush_domains)
2332 Serge 97
{
6084 serge 98
	struct intel_engine_cs *ring = req->ring;
3031 serge 99
	u32 cmd;
100
	int ret;
2332 Serge 101
 
3031 serge 102
	cmd = MI_FLUSH;
103
	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
104
		cmd |= MI_NO_WRITE_FLUSH;
2332 Serge 105
 
3031 serge 106
	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
107
		cmd |= MI_READ_FLUSH;
2332 Serge 108
 
6084 serge 109
	ret = intel_ring_begin(req, 2);
3031 serge 110
	if (ret)
111
		return ret;
112
 
113
	intel_ring_emit(ring, cmd);
114
	intel_ring_emit(ring, MI_NOOP);
115
	intel_ring_advance(ring);
116
 
117
	return 0;
2332 Serge 118
}
119
 
120
static int
6084 serge 121
gen4_render_ring_flush(struct drm_i915_gem_request *req,
122
		       u32	invalidate_domains,
123
		       u32	flush_domains)
2332 Serge 124
{
6084 serge 125
	struct intel_engine_cs *ring = req->ring;
2332 Serge 126
	struct drm_device *dev = ring->dev;
127
	u32 cmd;
128
	int ret;
129
 
130
	/*
131
	 * read/write caches:
132
	 *
133
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
134
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
135
	 * also flushed at 2d versus 3d pipeline switches.
136
	 *
137
	 * read-only caches:
138
	 *
139
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
140
	 * MI_READ_FLUSH is set, and is always flushed on 965.
141
	 *
142
	 * I915_GEM_DOMAIN_COMMAND may not exist?
143
	 *
144
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
145
	 * invalidated when MI_EXE_FLUSH is set.
146
	 *
147
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
148
	 * invalidated with every MI_FLUSH.
149
	 *
150
	 * TLBs:
151
	 *
152
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
153
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
154
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
155
	 * are flushed at any MI_FLUSH.
156
	 */
157
 
158
	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
3031 serge 159
	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
2332 Serge 160
		cmd &= ~MI_NO_WRITE_FLUSH;
161
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
162
		cmd |= MI_EXE_FLUSH;
163
 
164
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
165
	    (IS_G4X(dev) || IS_GEN5(dev)))
166
		cmd |= MI_INVALIDATE_ISP;
167
 
6084 serge 168
	ret = intel_ring_begin(req, 2);
2332 Serge 169
	if (ret)
170
		return ret;
171
 
172
	intel_ring_emit(ring, cmd);
173
	intel_ring_emit(ring, MI_NOOP);
174
	intel_ring_advance(ring);
175
 
176
	return 0;
177
}
178
 
2342 Serge 179
/**
180
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
181
 * implementing two workarounds on gen6.  From section 1.4.7.1
182
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
183
 *
184
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
185
 * produced by non-pipelined state commands), software needs to first
186
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
187
 * 0.
188
 *
189
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
190
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
191
 *
192
 * And the workaround for these two requires this workaround first:
193
 *
194
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
195
 * BEFORE the pipe-control with a post-sync op and no write-cache
196
 * flushes.
197
 *
198
 * And this last workaround is tricky because of the requirements on
199
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
200
 * volume 2 part 1:
201
 *
202
 *     "1 of the following must also be set:
203
 *      - Render Target Cache Flush Enable ([12] of DW1)
204
 *      - Depth Cache Flush Enable ([0] of DW1)
205
 *      - Stall at Pixel Scoreboard ([1] of DW1)
206
 *      - Depth Stall ([13] of DW1)
207
 *      - Post-Sync Operation ([13] of DW1)
208
 *      - Notify Enable ([8] of DW1)"
209
 *
210
 * The cache flushes require the workaround flush that triggered this
211
 * one, so we can't use it.  Depth stall would trigger the same.
212
 * Post-sync nonzero is what triggered this second workaround, so we
213
 * can't use that one either.  Notify enable is IRQs, which aren't
214
 * really our business.  That leaves only stall at scoreboard.
215
 */
216
static int
6084 serge 217
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
2342 Serge 218
{
6084 serge 219
	struct intel_engine_cs *ring = req->ring;
5060 serge 220
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
2342 Serge 221
	int ret;
222
 
6084 serge 223
	ret = intel_ring_begin(req, 6);
2342 Serge 224
	if (ret)
225
		return ret;
226
 
227
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
229
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
230
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
231
	intel_ring_emit(ring, 0); /* low dword */
232
	intel_ring_emit(ring, 0); /* high dword */
233
	intel_ring_emit(ring, MI_NOOP);
234
	intel_ring_advance(ring);
235
 
6084 serge 236
	ret = intel_ring_begin(req, 6);
2342 Serge 237
	if (ret)
238
		return ret;
239
 
240
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
241
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
242
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
243
	intel_ring_emit(ring, 0);
244
	intel_ring_emit(ring, 0);
245
	intel_ring_emit(ring, MI_NOOP);
246
	intel_ring_advance(ring);
247
 
248
	return 0;
249
}
250
 
251
static int
6084 serge 252
gen6_render_ring_flush(struct drm_i915_gem_request *req,
253
		       u32 invalidate_domains, u32 flush_domains)
2342 Serge 254
{
6084 serge 255
	struct intel_engine_cs *ring = req->ring;
2342 Serge 256
	u32 flags = 0;
5060 serge 257
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
2342 Serge 258
	int ret;
259
 
260
	/* Force SNB workarounds for PIPE_CONTROL flushes */
6084 serge 261
	ret = intel_emit_post_sync_nonzero_flush(req);
3031 serge 262
	if (ret)
263
		return ret;
2342 Serge 264
 
265
	/* Just flush everything.  Experiments have shown that reducing the
266
	 * number of bits based on the write domains has little performance
267
	 * impact.
268
	 */
3031 serge 269
	if (flush_domains) {
270
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
271
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
272
		/*
273
		 * Ensure that any following seqno writes only happen
274
		 * when the render cache is indeed flushed.
275
		 */
276
		flags |= PIPE_CONTROL_CS_STALL;
277
	}
278
	if (invalidate_domains) {
279
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
280
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
281
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
282
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
283
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
284
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
285
		/*
286
		 * TLB invalidate requires a post-sync write.
287
		 */
3243 Serge 288
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
3031 serge 289
	}
290
 
6084 serge 291
	ret = intel_ring_begin(req, 4);
3031 serge 292
	if (ret)
293
		return ret;
294
 
295
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
296
	intel_ring_emit(ring, flags);
297
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
298
	intel_ring_emit(ring, 0);
299
	intel_ring_advance(ring);
300
 
301
	return 0;
302
}
303
 
304
static int
6084 serge 305
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
3031 serge 306
{
6084 serge 307
	struct intel_engine_cs *ring = req->ring;
3031 serge 308
	int ret;
309
 
6084 serge 310
	ret = intel_ring_begin(req, 4);
3031 serge 311
	if (ret)
312
		return ret;
313
 
314
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
315
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
316
			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
317
	intel_ring_emit(ring, 0);
318
	intel_ring_emit(ring, 0);
319
	intel_ring_advance(ring);
320
 
321
	return 0;
322
}
323
 
324
static int
6084 serge 325
gen7_render_ring_flush(struct drm_i915_gem_request *req,
3031 serge 326
		       u32 invalidate_domains, u32 flush_domains)
327
{
6084 serge 328
	struct intel_engine_cs *ring = req->ring;
3031 serge 329
	u32 flags = 0;
5060 serge 330
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
3031 serge 331
	int ret;
332
 
333
	/*
334
	 * Ensure that any following seqno writes only happen when the render
335
	 * cache is indeed flushed.
336
	 *
337
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
338
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
339
	 * don't try to be clever and just set it unconditionally.
340
	 */
341
	flags |= PIPE_CONTROL_CS_STALL;
342
 
343
	/* Just flush everything.  Experiments have shown that reducing the
344
	 * number of bits based on the write domains has little performance
345
	 * impact.
346
	 */
347
	if (flush_domains) {
6084 serge 348
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
3031 serge 349
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
6320 serge 350
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
6084 serge 351
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
3031 serge 352
	}
353
	if (invalidate_domains) {
354
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
6084 serge 355
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
356
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
357
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
358
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
359
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
5354 serge 360
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
3031 serge 361
		/*
362
		 * TLB invalidate requires a post-sync write.
363
		 */
364
		flags |= PIPE_CONTROL_QW_WRITE;
3480 Serge 365
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2342 Serge 366
 
5354 serge 367
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
368
 
3031 serge 369
		/* Workaround: we must issue a pipe_control with CS-stall bit
370
		 * set before a pipe_control command that has the state cache
371
		 * invalidate bit set. */
6084 serge 372
		gen7_render_ring_cs_stall_wa(req);
3031 serge 373
	}
374
 
6084 serge 375
	ret = intel_ring_begin(req, 4);
2342 Serge 376
	if (ret)
377
		return ret;
378
 
3031 serge 379
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
2342 Serge 380
	intel_ring_emit(ring, flags);
3480 Serge 381
	intel_ring_emit(ring, scratch_addr);
3031 serge 382
	intel_ring_emit(ring, 0);
2342 Serge 383
	intel_ring_advance(ring);
384
 
385
	return 0;
386
}
387
 
4560 Serge 388
static int
6084 serge 389
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
5060 serge 390
		       u32 flags, u32 scratch_addr)
391
{
6084 serge 392
	struct intel_engine_cs *ring = req->ring;
5060 serge 393
	int ret;
394
 
6084 serge 395
	ret = intel_ring_begin(req, 6);
5060 serge 396
	if (ret)
397
		return ret;
398
 
399
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
400
	intel_ring_emit(ring, flags);
401
	intel_ring_emit(ring, scratch_addr);
402
	intel_ring_emit(ring, 0);
403
	intel_ring_emit(ring, 0);
404
	intel_ring_emit(ring, 0);
405
	intel_ring_advance(ring);
406
 
407
	return 0;
408
}
409
 
410
static int
6084 serge 411
gen8_render_ring_flush(struct drm_i915_gem_request *req,
4560 Serge 412
		       u32 invalidate_domains, u32 flush_domains)
413
{
414
	u32 flags = 0;
6084 serge 415
	u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
4560 Serge 416
	int ret;
417
 
418
	flags |= PIPE_CONTROL_CS_STALL;
419
 
420
	if (flush_domains) {
421
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
422
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
6320 serge 423
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
6084 serge 424
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
4560 Serge 425
	}
426
	if (invalidate_domains) {
427
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
428
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
429
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
430
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
431
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
432
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
433
		flags |= PIPE_CONTROL_QW_WRITE;
434
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
435
 
5060 serge 436
		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
6084 serge 437
		ret = gen8_emit_pipe_control(req,
5060 serge 438
					     PIPE_CONTROL_CS_STALL |
439
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
440
					     0);
6084 serge 441
		if (ret)
442
			return ret;
5060 serge 443
	}
4560 Serge 444
 
6084 serge 445
	return gen8_emit_pipe_control(req, flags, scratch_addr);
4560 Serge 446
}
447
 
5060 serge 448
static void ring_write_tail(struct intel_engine_cs *ring,
2332 Serge 449
			    u32 value)
450
{
5060 serge 451
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2332 Serge 452
	I915_WRITE_TAIL(ring, value);
453
}
454
 
5060 serge 455
u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
2332 Serge 456
{
5060 serge 457
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
458
	u64 acthd;
2332 Serge 459
 
5060 serge 460
	if (INTEL_INFO(ring->dev)->gen >= 8)
461
		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
462
					 RING_ACTHD_UDW(ring->mmio_base));
463
	else if (INTEL_INFO(ring->dev)->gen >= 4)
464
		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
465
	else
466
		acthd = I915_READ(ACTHD);
467
 
468
	return acthd;
2332 Serge 469
}
470
 
5060 serge 471
static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
4104 Serge 472
{
473
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
474
	u32 addr;
475
 
476
	addr = dev_priv->status_page_dmah->busaddr;
477
	if (INTEL_INFO(ring->dev)->gen >= 4)
478
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
479
	I915_WRITE(HWS_PGA, addr);
480
}
481
 
6084 serge 482
static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
483
{
484
	struct drm_device *dev = ring->dev;
485
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
486
	u32 mmio = 0;
487
 
488
	/* The ring status page addresses are no longer next to the rest of
489
	 * the ring registers as of gen7.
490
	 */
491
	if (IS_GEN7(dev)) {
492
		switch (ring->id) {
493
		case RCS:
494
			mmio = RENDER_HWS_PGA_GEN7;
495
			break;
496
		case BCS:
497
			mmio = BLT_HWS_PGA_GEN7;
498
			break;
499
		/*
500
		 * VCS2 actually doesn't exist on Gen7. Only shut up
501
		 * gcc switch check warning
502
		 */
503
		case VCS2:
504
		case VCS:
505
			mmio = BSD_HWS_PGA_GEN7;
506
			break;
507
		case VECS:
508
			mmio = VEBOX_HWS_PGA_GEN7;
509
			break;
510
		}
511
	} else if (IS_GEN6(ring->dev)) {
512
		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
513
	} else {
514
		/* XXX: gen8 returns to sanity */
515
		mmio = RING_HWS_PGA(ring->mmio_base);
516
	}
517
 
518
	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
519
	POSTING_READ(mmio);
520
 
521
	/*
522
	 * Flush the TLB for this page
523
	 *
524
	 * FIXME: These two bits have disappeared on gen8, so a question
525
	 * arises: do we still need this and if so how should we go about
526
	 * invalidating the TLB?
527
	 */
528
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
529
		u32 reg = RING_INSTPM(ring->mmio_base);
530
 
531
		/* ring should be idle before issuing a sync flush*/
532
		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
533
 
534
		I915_WRITE(reg,
535
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
536
					      INSTPM_SYNC_FLUSH));
537
		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
538
			     1000))
539
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
540
				  ring->name);
541
	}
542
}
543
 
5060 serge 544
static bool stop_ring(struct intel_engine_cs *ring)
2332 Serge 545
{
5060 serge 546
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
2332 Serge 547
 
5060 serge 548
	if (!IS_GEN2(ring->dev)) {
549
		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
5354 serge 550
		if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
551
			DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
552
			/* Sometimes we observe that the idle flag is not
553
			 * set even though the ring is empty. So double
554
			 * check before giving up.
555
			 */
556
			if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
6084 serge 557
				return false;
5060 serge 558
		}
559
	}
3031 serge 560
 
2332 Serge 561
	I915_WRITE_CTL(ring, 0);
562
	I915_WRITE_HEAD(ring, 0);
563
	ring->write_tail(ring, 0);
564
 
5060 serge 565
	if (!IS_GEN2(ring->dev)) {
566
		(void)I915_READ_CTL(ring);
567
		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
568
	}
2332 Serge 569
 
5060 serge 570
	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
571
}
572
 
573
static int init_ring_common(struct intel_engine_cs *ring)
574
{
575
	struct drm_device *dev = ring->dev;
576
	struct drm_i915_private *dev_priv = dev->dev_private;
577
	struct intel_ringbuffer *ringbuf = ring->buffer;
578
	struct drm_i915_gem_object *obj = ringbuf->obj;
579
	int ret = 0;
580
 
6084 serge 581
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5060 serge 582
 
583
	if (!stop_ring(ring)) {
584
		/* G45 ring initialization often fails to reset head to zero */
2332 Serge 585
		DRM_DEBUG_KMS("%s head not reset to zero "
586
			      "ctl %08x head %08x tail %08x start %08x\n",
587
			      ring->name,
588
			      I915_READ_CTL(ring),
589
			      I915_READ_HEAD(ring),
590
			      I915_READ_TAIL(ring),
591
			      I915_READ_START(ring));
592
 
5060 serge 593
		if (!stop_ring(ring)) {
2332 Serge 594
			DRM_ERROR("failed to set %s head to zero "
595
				  "ctl %08x head %08x tail %08x start %08x\n",
596
				  ring->name,
597
				  I915_READ_CTL(ring),
598
				  I915_READ_HEAD(ring),
599
				  I915_READ_TAIL(ring),
600
				  I915_READ_START(ring));
5060 serge 601
			ret = -EIO;
602
			goto out;
2332 Serge 603
		}
604
	}
605
 
5060 serge 606
	if (I915_NEED_GFX_HWS(dev))
607
		intel_ring_setup_status_page(ring);
608
	else
609
		ring_setup_phys_status_page(ring);
610
 
611
	/* Enforce ordering by reading HEAD register back */
612
	I915_READ_HEAD(ring);
613
 
3031 serge 614
	/* Initialize the ring. This must happen _after_ we've cleared the ring
615
	 * registers with the above sequence (the readback of the HEAD registers
616
	 * also enforces ordering), otherwise the hw might lose the new ring
617
	 * register values. */
4104 Serge 618
	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
5354 serge 619
 
620
	/* WaClearRingBufHeadRegAtInit:ctg,elk */
621
	if (I915_READ_HEAD(ring))
622
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
623
			  ring->name, I915_READ_HEAD(ring));
624
	I915_WRITE_HEAD(ring, 0);
625
	(void)I915_READ_HEAD(ring);
626
 
2332 Serge 627
	I915_WRITE_CTL(ring,
5060 serge 628
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
3031 serge 629
			| RING_VALID);
2332 Serge 630
 
631
	/* If the head is still not zero, the ring is dead */
3031 serge 632
	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
4104 Serge 633
		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
3031 serge 634
		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
2332 Serge 635
		DRM_ERROR("%s initialization failed "
5060 serge 636
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
6084 serge 637
			  ring->name,
5060 serge 638
			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
639
			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
640
			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
3031 serge 641
		ret = -EIO;
642
		goto out;
2332 Serge 643
	}
644
 
6084 serge 645
	ringbuf->last_retired_head = -1;
646
	ringbuf->head = I915_READ_HEAD(ring);
647
	ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
648
	intel_ring_update_space(ringbuf);
5060 serge 649
 
4104 Serge 650
	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
651
 
3031 serge 652
out:
6084 serge 653
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2332 Serge 654
 
3031 serge 655
	return ret;
2332 Serge 656
}
657
 
5354 serge 658
void
659
intel_fini_pipe_control(struct intel_engine_cs *ring)
2332 Serge 660
{
5354 serge 661
	struct drm_device *dev = ring->dev;
662
 
663
	if (ring->scratch.obj == NULL)
664
		return;
665
 
666
	if (INTEL_INFO(dev)->gen >= 5) {
667
		kunmap(sg_page(ring->scratch.obj->pages->sgl));
668
		i915_gem_object_ggtt_unpin(ring->scratch.obj);
669
	}
670
 
671
	drm_gem_object_unreference(&ring->scratch.obj->base);
672
	ring->scratch.obj = NULL;
673
}
674
 
675
int
676
intel_init_pipe_control(struct intel_engine_cs *ring)
677
{
2332 Serge 678
	int ret;
679
 
6084 serge 680
	WARN_ON(ring->scratch.obj);
2332 Serge 681
 
4104 Serge 682
	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
683
	if (ring->scratch.obj == NULL) {
2332 Serge 684
		DRM_ERROR("Failed to allocate seqno page\n");
685
		ret = -ENOMEM;
686
		goto err;
687
	}
688
 
5060 serge 689
	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
690
	if (ret)
691
		goto err_unref;
2332 Serge 692
 
5060 serge 693
	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
2332 Serge 694
	if (ret)
695
		goto err_unref;
696
 
4104 Serge 697
	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
5354 serge 698
	ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
4104 Serge 699
	if (ring->scratch.cpu_page == NULL) {
700
		ret = -ENOMEM;
2332 Serge 701
		goto err_unpin;
4104 Serge 702
	}
2332 Serge 703
 
3480 Serge 704
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
4104 Serge 705
			 ring->name, ring->scratch.gtt_offset);
2332 Serge 706
	return 0;
707
 
708
err_unpin:
5060 serge 709
	i915_gem_object_ggtt_unpin(ring->scratch.obj);
2332 Serge 710
err_unref:
4104 Serge 711
	drm_gem_object_unreference(&ring->scratch.obj->base);
2332 Serge 712
err:
713
	return ret;
714
}
715
 
6084 serge 716
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
5354 serge 717
{
718
	int ret, i;
6084 serge 719
	struct intel_engine_cs *ring = req->ring;
5354 serge 720
	struct drm_device *dev = ring->dev;
721
	struct drm_i915_private *dev_priv = dev->dev_private;
722
	struct i915_workarounds *w = &dev_priv->workarounds;
723
 
6084 serge 724
	if (w->count == 0)
5354 serge 725
		return 0;
726
 
727
	ring->gpu_caches_dirty = true;
6084 serge 728
	ret = intel_ring_flush_all_caches(req);
5354 serge 729
	if (ret)
730
		return ret;
731
 
6084 serge 732
	ret = intel_ring_begin(req, (w->count * 2 + 2));
5354 serge 733
	if (ret)
734
		return ret;
735
 
736
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
737
	for (i = 0; i < w->count; i++) {
738
		intel_ring_emit(ring, w->reg[i].addr);
739
		intel_ring_emit(ring, w->reg[i].value);
740
	}
741
	intel_ring_emit(ring, MI_NOOP);
742
 
743
	intel_ring_advance(ring);
744
 
745
	ring->gpu_caches_dirty = true;
6084 serge 746
	ret = intel_ring_flush_all_caches(req);
5354 serge 747
	if (ret)
748
		return ret;
749
 
750
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
751
 
752
	return 0;
753
}
754
 
6084 serge 755
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
756
{
757
	int ret;
758
 
759
	ret = intel_ring_workarounds_emit(req);
760
	if (ret != 0)
761
		return ret;
762
 
763
	ret = i915_gem_render_state_init(req);
764
	if (ret)
765
		DRM_ERROR("init render state: %d\n", ret);
766
 
767
	return ret;
768
}
769
 
5354 serge 770
static int wa_add(struct drm_i915_private *dev_priv,
771
		  const u32 addr, const u32 mask, const u32 val)
772
{
773
	const u32 idx = dev_priv->workarounds.count;
774
 
775
	if (WARN_ON(idx >= I915_MAX_WA_REGS))
776
		return -ENOSPC;
777
 
778
	dev_priv->workarounds.reg[idx].addr = addr;
779
	dev_priv->workarounds.reg[idx].value = val;
780
	dev_priv->workarounds.reg[idx].mask = mask;
781
 
782
	dev_priv->workarounds.count++;
783
 
784
	return 0;
785
}
786
 
6084 serge 787
#define WA_REG(addr, mask, val) do { \
5354 serge 788
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
789
		if (r) \
790
			return r; \
6084 serge 791
	} while (0)
5354 serge 792
 
793
#define WA_SET_BIT_MASKED(addr, mask) \
794
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
795
 
796
#define WA_CLR_BIT_MASKED(addr, mask) \
797
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
798
 
799
#define WA_SET_FIELD_MASKED(addr, mask, value) \
800
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
801
 
802
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
803
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
804
 
805
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
806
 
6084 serge 807
static int gen8_init_workarounds(struct intel_engine_cs *ring)
5354 serge 808
{
809
	struct drm_device *dev = ring->dev;
810
	struct drm_i915_private *dev_priv = dev->dev_private;
811
 
6084 serge 812
	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
5354 serge 813
 
6084 serge 814
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
815
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
5354 serge 816
 
6084 serge 817
	/* WaDisablePartialInstShootdown:bdw,chv */
818
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
819
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
5354 serge 820
 
821
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
822
	 * workaround for for a possible hang in the unlikely event a TLB
823
	 * invalidation occurs during a PSD flush.
824
	 */
6084 serge 825
	/* WaForceEnableNonCoherent:bdw,chv */
826
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
5354 serge 827
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
6084 serge 828
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
829
			  HDC_FORCE_NON_COHERENT);
5354 serge 830
 
6084 serge 831
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
832
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
833
	 *  polygons in the same 8x4 pixel/sample area to be processed without
834
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
835
	 *  buffer."
836
	 *
837
	 * This optimization is off by default for BDW and CHV; turn it on.
838
	 */
839
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
5354 serge 840
 
6084 serge 841
	/* Wa4x4STCOptimizationDisable:bdw,chv */
842
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
843
 
5354 serge 844
	/*
845
	 * BSpec recommends 8x4 when MSAA is used,
846
	 * however in practice 16x4 seems fastest.
847
	 *
848
	 * Note that PS/WM thread counts depend on the WIZ hashing
849
	 * disable bit, which we don't touch here, but it's good
850
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
851
	 */
852
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
853
			    GEN6_WIZ_HASHING_MASK,
854
			    GEN6_WIZ_HASHING_16x4);
855
 
856
	return 0;
857
}
858
 
6084 serge 859
static int bdw_init_workarounds(struct intel_engine_cs *ring)
860
{
861
	int ret;
862
	struct drm_device *dev = ring->dev;
863
	struct drm_i915_private *dev_priv = dev->dev_private;
864
 
865
	ret = gen8_init_workarounds(ring);
866
	if (ret)
867
		return ret;
868
 
869
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
870
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
871
 
872
	/* WaDisableDopClockGating:bdw */
873
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
874
			  DOP_CLOCK_GATING_DISABLE);
875
 
876
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
877
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
878
 
879
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
880
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
881
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
882
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
883
			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
884
 
885
	return 0;
886
}
887
 
5354 serge 888
static int chv_init_workarounds(struct intel_engine_cs *ring)
889
{
6084 serge 890
	int ret;
5354 serge 891
	struct drm_device *dev = ring->dev;
892
	struct drm_i915_private *dev_priv = dev->dev_private;
893
 
6084 serge 894
	ret = gen8_init_workarounds(ring);
895
	if (ret)
896
		return ret;
897
 
5354 serge 898
	/* WaDisableThreadStallDopClockGating:chv */
6084 serge 899
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
900
 
901
	/* Improve HiZ throughput on CHV. */
902
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
903
 
904
	return 0;
905
}
906
 
907
static int gen9_init_workarounds(struct intel_engine_cs *ring)
908
{
909
	struct drm_device *dev = ring->dev;
910
	struct drm_i915_private *dev_priv = dev->dev_private;
911
	uint32_t tmp;
912
 
913
	/* WaEnableLbsSlaRetryTimerDecrement:skl */
914
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
915
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
916
 
917
	/* WaDisableKillLogic:bxt,skl */
918
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
919
		   ECOCHK_DIS_TLB);
920
 
921
	/* WaDisablePartialInstShootdown:skl,bxt */
5354 serge 922
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
6084 serge 923
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
5354 serge 924
 
6084 serge 925
	/* Syncing dependencies between camera and graphics:skl,bxt */
926
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
927
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
928
 
929
	if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
930
	    INTEL_REVID(dev) == SKL_REVID_B0)) ||
931
	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
932
		/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
933
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
934
				  GEN9_DG_MIRROR_FIX_ENABLE);
935
	}
936
 
937
	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
938
	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
939
		/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
940
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
941
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
942
		/*
943
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
944
		 * but we do that in per ctx batchbuffer as there is an issue
945
		 * with this register not getting restored on ctx restore
946
		 */
947
	}
948
 
949
	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
950
	    IS_BROXTON(dev)) {
951
		/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
952
		WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
953
				  GEN9_ENABLE_YV12_BUGFIX);
954
	}
955
 
956
	/* Wa4x4STCOptimizationDisable:skl,bxt */
957
	/* WaDisablePartialResolveInVc:skl,bxt */
958
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
959
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
960
 
961
	/* WaCcsTlbPrefetchDisable:skl,bxt */
962
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
963
			  GEN9_CCS_TLB_PREFETCH_ENABLE);
964
 
965
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
966
	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
967
	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
968
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
969
				  PIXEL_MASK_CAMMING_DISABLE);
970
 
971
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt */
972
	tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
973
	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
974
	    (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
975
		tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
976
	WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
977
 
978
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
979
	if (IS_SKYLAKE(dev) ||
980
	    (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_B0)) {
981
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
982
				  GEN8_SAMPLER_POWER_BYPASS_DIS);
983
	}
984
 
985
	/* WaDisableSTUnitPowerOptimization:skl,bxt */
986
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
987
 
988
	return 0;
989
}
990
 
991
static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
992
{
993
	struct drm_device *dev = ring->dev;
994
	struct drm_i915_private *dev_priv = dev->dev_private;
995
	u8 vals[3] = { 0, 0, 0 };
996
	unsigned int i;
997
 
998
	for (i = 0; i < 3; i++) {
999
		u8 ss;
1000
 
1001
		/*
1002
		 * Only consider slices where one, and only one, subslice has 7
1003
		 * EUs
1004
		 */
1005
		if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
1006
			continue;
1007
 
1008
		/*
1009
		 * subslice_7eu[i] != 0 (because of the check above) and
1010
		 * ss_max == 4 (maximum number of subslices possible per slice)
1011
		 *
1012
		 * ->    0 <= ss <= 3;
1013
		 */
1014
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1015
		vals[i] = 3 - ss;
1016
	}
1017
 
1018
	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1019
		return 0;
1020
 
1021
	/* Tune IZ hashing. See intel_device_info_runtime_init() */
1022
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1023
			    GEN9_IZ_HASHING_MASK(2) |
1024
			    GEN9_IZ_HASHING_MASK(1) |
1025
			    GEN9_IZ_HASHING_MASK(0),
1026
			    GEN9_IZ_HASHING(2, vals[2]) |
1027
			    GEN9_IZ_HASHING(1, vals[1]) |
1028
			    GEN9_IZ_HASHING(0, vals[0]));
1029
 
1030
	return 0;
1031
}
1032
 
1033
static int skl_init_workarounds(struct intel_engine_cs *ring)
1034
{
1035
	int ret;
1036
	struct drm_device *dev = ring->dev;
1037
	struct drm_i915_private *dev_priv = dev->dev_private;
1038
 
1039
	ret = gen9_init_workarounds(ring);
1040
	if (ret)
1041
		return ret;
1042
 
1043
	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1044
		/* WaDisableHDCInvalidation:skl */
1045
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1046
			   BDW_DISABLE_HDC_INVALIDATION);
1047
 
1048
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1049
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
1050
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1051
	}
1052
 
1053
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1054
	 * involving this register should also be added to WA batch as required.
5354 serge 1055
	 */
6084 serge 1056
	if (INTEL_REVID(dev) <= SKL_REVID_E0)
1057
		/* WaDisableLSQCROPERFforOCL:skl */
1058
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1059
			   GEN8_LQSC_RO_PERF_DIS);
5354 serge 1060
 
6084 serge 1061
	/* WaEnableGapsTsvCreditFix:skl */
1062
	if (IS_SKYLAKE(dev) && (INTEL_REVID(dev) >= SKL_REVID_C0)) {
1063
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1064
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
1065
	}
1066
 
1067
	/* WaDisablePowerCompilerClockGating:skl */
1068
	if (INTEL_REVID(dev) == SKL_REVID_B0)
1069
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
1070
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1071
 
1072
	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1073
		/*
1074
		 *Use Force Non-Coherent whenever executing a 3D context. This
1075
		 * is a workaround for a possible hang in the unlikely event
1076
		 * a TLB invalidation occurs during a PSD flush.
1077
		 */
1078
		/* WaForceEnableNonCoherent:skl */
1079
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1080
				  HDC_FORCE_NON_COHERENT);
1081
	}
1082
 
1083
	if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1084
	    INTEL_REVID(dev) == SKL_REVID_D0)
1085
		/* WaBarrierPerformanceFixDisable:skl */
1086
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1087
				  HDC_FENCE_DEST_SLM_DISABLE |
1088
				  HDC_BARRIER_PERFORMANCE_DISABLE);
1089
 
1090
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1091
	if (INTEL_REVID(dev) <= SKL_REVID_F0) {
1092
		WA_SET_BIT_MASKED(
1093
			GEN7_HALF_SLICE_CHICKEN1,
1094
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1095
	}
1096
 
1097
	return skl_tune_iz_hashing(ring);
1098
}
1099
 
1100
static int bxt_init_workarounds(struct intel_engine_cs *ring)
1101
{
1102
	int ret;
1103
	struct drm_device *dev = ring->dev;
1104
	struct drm_i915_private *dev_priv = dev->dev_private;
1105
 
1106
	ret = gen9_init_workarounds(ring);
1107
	if (ret)
1108
		return ret;
1109
 
1110
	/* WaStoreMultiplePTEenable:bxt */
1111
	/* This is a requirement according to Hardware specification */
1112
	if (INTEL_REVID(dev) == BXT_REVID_A0)
1113
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1114
 
1115
	/* WaSetClckGatingDisableMedia:bxt */
1116
	if (INTEL_REVID(dev) == BXT_REVID_A0) {
1117
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1118
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1119
	}
1120
 
1121
	/* WaDisableThreadStallDopClockGating:bxt */
1122
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1123
			  STALL_DOP_GATING_DISABLE);
1124
 
1125
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1126
	if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1127
		WA_SET_BIT_MASKED(
1128
			GEN7_HALF_SLICE_CHICKEN1,
1129
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1130
	}
1131
 
5354 serge 1132
	return 0;
1133
}
1134
 
1135
int init_workarounds_ring(struct intel_engine_cs *ring)
1136
{
1137
	struct drm_device *dev = ring->dev;
1138
	struct drm_i915_private *dev_priv = dev->dev_private;
1139
 
1140
	WARN_ON(ring->id != RCS);
1141
 
1142
	dev_priv->workarounds.count = 0;
1143
 
1144
	if (IS_BROADWELL(dev))
1145
		return bdw_init_workarounds(ring);
1146
 
1147
	if (IS_CHERRYVIEW(dev))
1148
		return chv_init_workarounds(ring);
1149
 
6084 serge 1150
	if (IS_SKYLAKE(dev))
1151
		return skl_init_workarounds(ring);
1152
 
1153
	if (IS_BROXTON(dev))
1154
		return bxt_init_workarounds(ring);
1155
 
5354 serge 1156
	return 0;
1157
}
1158
 
5060 serge 1159
static int init_render_ring(struct intel_engine_cs *ring)
2332 Serge 1160
{
1161
	struct drm_device *dev = ring->dev;
1162
	struct drm_i915_private *dev_priv = dev->dev_private;
1163
	int ret = init_ring_common(ring);
5060 serge 1164
	if (ret)
1165
		return ret;
2332 Serge 1166
 
5060 serge 1167
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1168
	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
3031 serge 1169
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
3243 Serge 1170
 
1171
	/* We need to disable the AsyncFlip performance optimisations in order
1172
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1173
	 * programmed to '1' on all products.
4104 Serge 1174
	 *
6084 serge 1175
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
3243 Serge 1176
	 */
6084 serge 1177
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
3243 Serge 1178
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1179
 
1180
	/* Required for the hardware to program scanline values for waiting */
5060 serge 1181
	/* WaEnableFlushTlbInvalidationMode:snb */
3243 Serge 1182
	if (INTEL_INFO(dev)->gen == 6)
1183
		I915_WRITE(GFX_MODE,
5060 serge 1184
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
3243 Serge 1185
 
5060 serge 1186
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
6084 serge 1187
	if (IS_GEN7(dev))
1188
		I915_WRITE(GFX_MODE_GEN7,
5060 serge 1189
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
6084 serge 1190
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
2332 Serge 1191
 
3031 serge 1192
	if (IS_GEN6(dev)) {
1193
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
1194
		 * "If this bit is set, STCunit will have LRA as replacement
1195
		 *  policy. [...] This bit must be reset.  LRA replacement
1196
		 *  policy is not supported."
1197
		 */
1198
		I915_WRITE(CACHE_MODE_0,
1199
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
2342 Serge 1200
	}
1201
 
6084 serge 1202
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
3031 serge 1203
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1204
 
4560 Serge 1205
	if (HAS_L3_DPF(dev))
1206
		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
3031 serge 1207
 
5354 serge 1208
	return init_workarounds_ring(ring);
2332 Serge 1209
}
1210
 
5060 serge 1211
static void render_ring_cleanup(struct intel_engine_cs *ring)
2332 Serge 1212
{
3480 Serge 1213
	struct drm_device *dev = ring->dev;
5128 serge 1214
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 1215
 
5128 serge 1216
	if (dev_priv->semaphore_obj) {
1217
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1218
		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1219
		dev_priv->semaphore_obj = NULL;
1220
	}
1221
 
5354 serge 1222
	intel_fini_pipe_control(ring);
2332 Serge 1223
}
1224
 
6084 serge 1225
static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
5060 serge 1226
			   unsigned int num_dwords)
2332 Serge 1227
{
5060 serge 1228
#define MBOX_UPDATE_DWORDS 8
6084 serge 1229
	struct intel_engine_cs *signaller = signaller_req->ring;
5060 serge 1230
	struct drm_device *dev = signaller->dev;
1231
	struct drm_i915_private *dev_priv = dev->dev_private;
1232
	struct intel_engine_cs *waiter;
1233
	int i, ret, num_rings;
1234
 
1235
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1236
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1237
#undef MBOX_UPDATE_DWORDS
1238
 
6084 serge 1239
	ret = intel_ring_begin(signaller_req, num_dwords);
5060 serge 1240
	if (ret)
1241
		return ret;
1242
 
1243
	for_each_ring(waiter, dev_priv, i) {
6084 serge 1244
		u32 seqno;
5060 serge 1245
		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1246
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1247
			continue;
1248
 
6084 serge 1249
		seqno = i915_gem_request_get_seqno(signaller_req);
5060 serge 1250
		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1251
		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1252
					   PIPE_CONTROL_QW_WRITE |
1253
					   PIPE_CONTROL_FLUSH_ENABLE);
1254
		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1255
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
6084 serge 1256
		intel_ring_emit(signaller, seqno);
5060 serge 1257
		intel_ring_emit(signaller, 0);
1258
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1259
					   MI_SEMAPHORE_TARGET(waiter->id));
1260
		intel_ring_emit(signaller, 0);
1261
	}
1262
 
1263
	return 0;
2332 Serge 1264
}
1265
 
6084 serge 1266
static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
5060 serge 1267
			   unsigned int num_dwords)
1268
{
1269
#define MBOX_UPDATE_DWORDS 6
6084 serge 1270
	struct intel_engine_cs *signaller = signaller_req->ring;
5060 serge 1271
	struct drm_device *dev = signaller->dev;
1272
	struct drm_i915_private *dev_priv = dev->dev_private;
1273
	struct intel_engine_cs *waiter;
1274
	int i, ret, num_rings;
1275
 
1276
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1277
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1278
#undef MBOX_UPDATE_DWORDS
1279
 
6084 serge 1280
	ret = intel_ring_begin(signaller_req, num_dwords);
5060 serge 1281
	if (ret)
1282
		return ret;
1283
 
1284
	for_each_ring(waiter, dev_priv, i) {
6084 serge 1285
		u32 seqno;
5060 serge 1286
		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1287
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1288
			continue;
1289
 
6084 serge 1290
		seqno = i915_gem_request_get_seqno(signaller_req);
5060 serge 1291
		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1292
					   MI_FLUSH_DW_OP_STOREDW);
1293
		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1294
					   MI_FLUSH_DW_USE_GTT);
1295
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
6084 serge 1296
		intel_ring_emit(signaller, seqno);
5060 serge 1297
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1298
					   MI_SEMAPHORE_TARGET(waiter->id));
1299
		intel_ring_emit(signaller, 0);
1300
	}
1301
 
1302
	return 0;
1303
}
1304
 
6084 serge 1305
static int gen6_signal(struct drm_i915_gem_request *signaller_req,
5060 serge 1306
		       unsigned int num_dwords)
1307
{
6084 serge 1308
	struct intel_engine_cs *signaller = signaller_req->ring;
5060 serge 1309
	struct drm_device *dev = signaller->dev;
1310
	struct drm_i915_private *dev_priv = dev->dev_private;
1311
	struct intel_engine_cs *useless;
1312
	int i, ret, num_rings;
1313
 
1314
#define MBOX_UPDATE_DWORDS 3
1315
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1316
	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1317
#undef MBOX_UPDATE_DWORDS
1318
 
6084 serge 1319
	ret = intel_ring_begin(signaller_req, num_dwords);
5060 serge 1320
	if (ret)
1321
		return ret;
1322
 
1323
	for_each_ring(useless, dev_priv, i) {
1324
		u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1325
		if (mbox_reg != GEN6_NOSYNC) {
6084 serge 1326
			u32 seqno = i915_gem_request_get_seqno(signaller_req);
5060 serge 1327
			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1328
			intel_ring_emit(signaller, mbox_reg);
6084 serge 1329
			intel_ring_emit(signaller, seqno);
5060 serge 1330
		}
1331
	}
1332
 
1333
	/* If num_dwords was rounded, make sure the tail pointer is correct */
1334
	if (num_rings % 2 == 0)
1335
		intel_ring_emit(signaller, MI_NOOP);
1336
 
1337
	return 0;
1338
}
1339
 
2342 Serge 1340
/**
1341
 * gen6_add_request - Update the semaphore mailbox registers
1342
 *
6084 serge 1343
 * @request - request to write to the ring
2342 Serge 1344
 *
1345
 * Update the mailbox registers in the *other* rings with the current seqno.
1346
 * This acts like a signal in the canonical semaphore.
1347
 */
2332 Serge 1348
static int
6084 serge 1349
gen6_add_request(struct drm_i915_gem_request *req)
2332 Serge 1350
{
6084 serge 1351
	struct intel_engine_cs *ring = req->ring;
5060 serge 1352
	int ret;
2332 Serge 1353
 
5060 serge 1354
	if (ring->semaphore.signal)
6084 serge 1355
		ret = ring->semaphore.signal(req, 4);
5060 serge 1356
	else
6084 serge 1357
		ret = intel_ring_begin(req, 4);
4560 Serge 1358
 
2332 Serge 1359
	if (ret)
1360
		return ret;
1361
 
1362
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1363
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
6084 serge 1364
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
2332 Serge 1365
	intel_ring_emit(ring, MI_USER_INTERRUPT);
4560 Serge 1366
	__intel_ring_advance(ring);
2332 Serge 1367
 
1368
	return 0;
1369
}
1370
 
3480 Serge 1371
static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1372
					      u32 seqno)
1373
{
1374
	struct drm_i915_private *dev_priv = dev->dev_private;
1375
	return dev_priv->last_seqno < seqno;
1376
}
1377
 
2342 Serge 1378
/**
1379
 * intel_ring_sync - sync the waiter to the signaller on seqno
1380
 *
1381
 * @waiter - ring that is waiting
1382
 * @signaller - ring which has, or will signal
1383
 * @seqno - seqno which the waiter will block on
1384
 */
5060 serge 1385
 
2342 Serge 1386
static int
6084 serge 1387
gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
5060 serge 1388
	       struct intel_engine_cs *signaller,
1389
	       u32 seqno)
1390
{
6084 serge 1391
	struct intel_engine_cs *waiter = waiter_req->ring;
5060 serge 1392
	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1393
	int ret;
1394
 
6084 serge 1395
	ret = intel_ring_begin(waiter_req, 4);
5060 serge 1396
	if (ret)
1397
		return ret;
1398
 
1399
	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1400
				MI_SEMAPHORE_GLOBAL_GTT |
1401
				MI_SEMAPHORE_POLL |
1402
				MI_SEMAPHORE_SAD_GTE_SDD);
1403
	intel_ring_emit(waiter, seqno);
1404
	intel_ring_emit(waiter,
1405
			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1406
	intel_ring_emit(waiter,
1407
			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1408
	intel_ring_advance(waiter);
1409
	return 0;
1410
}
1411
 
1412
static int
6084 serge 1413
gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
5060 serge 1414
	       struct intel_engine_cs *signaller,
6084 serge 1415
	       u32 seqno)
2332 Serge 1416
{
6084 serge 1417
	struct intel_engine_cs *waiter = waiter_req->ring;
2342 Serge 1418
	u32 dw1 = MI_SEMAPHORE_MBOX |
1419
		  MI_SEMAPHORE_COMPARE |
1420
		  MI_SEMAPHORE_REGISTER;
5060 serge 1421
	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1422
	int ret;
2332 Serge 1423
 
3031 serge 1424
	/* Throughout all of the GEM code, seqno passed implies our current
1425
	 * seqno is >= the last seqno executed. However for hardware the
1426
	 * comparison is strictly greater than.
1427
	 */
1428
	seqno -= 1;
1429
 
5060 serge 1430
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
3031 serge 1431
 
6084 serge 1432
	ret = intel_ring_begin(waiter_req, 4);
2332 Serge 1433
	if (ret)
1434
		return ret;
1435
 
3480 Serge 1436
	/* If seqno wrap happened, omit the wait with no-ops */
1437
	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
5060 serge 1438
		intel_ring_emit(waiter, dw1 | wait_mbox);
6084 serge 1439
		intel_ring_emit(waiter, seqno);
1440
		intel_ring_emit(waiter, 0);
1441
		intel_ring_emit(waiter, MI_NOOP);
3480 Serge 1442
	} else {
1443
		intel_ring_emit(waiter, MI_NOOP);
1444
		intel_ring_emit(waiter, MI_NOOP);
1445
		intel_ring_emit(waiter, MI_NOOP);
1446
		intel_ring_emit(waiter, MI_NOOP);
1447
	}
2342 Serge 1448
	intel_ring_advance(waiter);
2332 Serge 1449
 
1450
	return 0;
1451
}
1452
 
1453
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
1454
do {									\
2342 Serge 1455
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
1456
		 PIPE_CONTROL_DEPTH_STALL);				\
2332 Serge 1457
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
1458
	intel_ring_emit(ring__, 0);							\
1459
	intel_ring_emit(ring__, 0);							\
1460
} while (0)
1461
 
1462
static int
6084 serge 1463
pc_render_add_request(struct drm_i915_gem_request *req)
2332 Serge 1464
{
6084 serge 1465
	struct intel_engine_cs *ring = req->ring;
5060 serge 1466
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
2332 Serge 1467
	int ret;
1468
 
1469
	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1470
	 * incoherent with writes to memory, i.e. completely fubar,
1471
	 * so we need to use PIPE_NOTIFY instead.
1472
	 *
1473
	 * However, we also need to workaround the qword write
1474
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1475
	 * memory before requesting an interrupt.
1476
	 */
6084 serge 1477
	ret = intel_ring_begin(req, 32);
2332 Serge 1478
	if (ret)
1479
		return ret;
1480
 
2342 Serge 1481
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1482
			PIPE_CONTROL_WRITE_FLUSH |
1483
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
4104 Serge 1484
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
6084 serge 1485
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
2332 Serge 1486
	intel_ring_emit(ring, 0);
1487
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 1488
	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
2332 Serge 1489
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 1490
	scratch_addr += 2 * CACHELINE_BYTES;
2332 Serge 1491
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 1492
	scratch_addr += 2 * CACHELINE_BYTES;
2332 Serge 1493
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 1494
	scratch_addr += 2 * CACHELINE_BYTES;
2332 Serge 1495
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 1496
	scratch_addr += 2 * CACHELINE_BYTES;
2332 Serge 1497
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
3031 serge 1498
 
2342 Serge 1499
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1500
			PIPE_CONTROL_WRITE_FLUSH |
1501
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
2332 Serge 1502
			PIPE_CONTROL_NOTIFY);
4104 Serge 1503
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
6084 serge 1504
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
2332 Serge 1505
	intel_ring_emit(ring, 0);
4560 Serge 1506
	__intel_ring_advance(ring);
2332 Serge 1507
 
1508
	return 0;
1509
}
1510
 
1511
static u32
5060 serge 1512
gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
2342 Serge 1513
{
1514
	/* Workaround to force correct ordering between irq and seqno writes on
1515
	 * ivb (and maybe also on snb) by reading from a CS register (like
1516
	 * ACTHD) before reading the status page. */
5060 serge 1517
	if (!lazy_coherency) {
1518
		struct drm_i915_private *dev_priv = ring->dev->dev_private;
1519
		POSTING_READ(RING_ACTHD(ring->mmio_base));
1520
	}
1521
 
2342 Serge 1522
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1523
}
1524
 
1525
static u32
5060 serge 1526
ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
2332 Serge 1527
{
1528
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1529
}
1530
 
3480 Serge 1531
static void
5060 serge 1532
ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
3480 Serge 1533
{
1534
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1535
}
1536
 
2332 Serge 1537
static u32
5060 serge 1538
pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
2332 Serge 1539
{
4104 Serge 1540
	return ring->scratch.cpu_page[0];
2332 Serge 1541
}
1542
 
3480 Serge 1543
static void
5060 serge 1544
pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
3480 Serge 1545
{
4104 Serge 1546
	ring->scratch.cpu_page[0] = seqno;
3480 Serge 1547
}
1548
 
3031 serge 1549
static bool
5060 serge 1550
gen5_ring_get_irq(struct intel_engine_cs *ring)
2332 Serge 1551
{
3031 serge 1552
	struct drm_device *dev = ring->dev;
5060 serge 1553
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1554
	unsigned long flags;
1555
 
5354 serge 1556
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
3031 serge 1557
		return false;
1558
 
1559
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
4104 Serge 1560
	if (ring->irq_refcount++ == 0)
5060 serge 1561
		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
3031 serge 1562
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1563
 
1564
	return true;
2332 Serge 1565
}
1566
 
1567
static void
5060 serge 1568
gen5_ring_put_irq(struct intel_engine_cs *ring)
2332 Serge 1569
{
3031 serge 1570
	struct drm_device *dev = ring->dev;
5060 serge 1571
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1572
	unsigned long flags;
1573
 
1574
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
4104 Serge 1575
	if (--ring->irq_refcount == 0)
5060 serge 1576
		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
3031 serge 1577
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1578
}
1579
 
3031 serge 1580
static bool
5060 serge 1581
i9xx_ring_get_irq(struct intel_engine_cs *ring)
2332 Serge 1582
{
3031 serge 1583
	struct drm_device *dev = ring->dev;
5060 serge 1584
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1585
	unsigned long flags;
1586
 
5354 serge 1587
	if (!intel_irqs_enabled(dev_priv))
3031 serge 1588
		return false;
1589
 
1590
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1591
	if (ring->irq_refcount++ == 0) {
1592
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
6084 serge 1593
		I915_WRITE(IMR, dev_priv->irq_mask);
1594
		POSTING_READ(IMR);
3031 serge 1595
	}
1596
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1597
 
1598
	return true;
2332 Serge 1599
}
1600
 
1601
static void
5060 serge 1602
i9xx_ring_put_irq(struct intel_engine_cs *ring)
2332 Serge 1603
{
3031 serge 1604
	struct drm_device *dev = ring->dev;
5060 serge 1605
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1606
	unsigned long flags;
1607
 
1608
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1609
	if (--ring->irq_refcount == 0) {
1610
		dev_priv->irq_mask |= ring->irq_enable_mask;
6084 serge 1611
		I915_WRITE(IMR, dev_priv->irq_mask);
1612
		POSTING_READ(IMR);
3031 serge 1613
	}
1614
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1615
}
1616
 
1617
static bool
5060 serge 1618
i8xx_ring_get_irq(struct intel_engine_cs *ring)
2332 Serge 1619
{
1620
	struct drm_device *dev = ring->dev;
5060 serge 1621
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1622
	unsigned long flags;
2332 Serge 1623
 
5354 serge 1624
	if (!intel_irqs_enabled(dev_priv))
2332 Serge 1625
		return false;
1626
 
3031 serge 1627
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 1628
	if (ring->irq_refcount++ == 0) {
3031 serge 1629
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1630
		I915_WRITE16(IMR, dev_priv->irq_mask);
1631
		POSTING_READ16(IMR);
2332 Serge 1632
	}
3031 serge 1633
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1634
 
1635
	return true;
1636
}
1637
 
1638
static void
5060 serge 1639
i8xx_ring_put_irq(struct intel_engine_cs *ring)
2332 Serge 1640
{
1641
	struct drm_device *dev = ring->dev;
5060 serge 1642
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1643
	unsigned long flags;
2332 Serge 1644
 
3031 serge 1645
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 1646
	if (--ring->irq_refcount == 0) {
3031 serge 1647
		dev_priv->irq_mask |= ring->irq_enable_mask;
1648
		I915_WRITE16(IMR, dev_priv->irq_mask);
1649
		POSTING_READ16(IMR);
2332 Serge 1650
	}
3031 serge 1651
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1652
}
1653
 
1654
static int
6084 serge 1655
bsd_ring_flush(struct drm_i915_gem_request *req,
2332 Serge 1656
	       u32     invalidate_domains,
1657
	       u32     flush_domains)
1658
{
6084 serge 1659
	struct intel_engine_cs *ring = req->ring;
2332 Serge 1660
	int ret;
1661
 
6084 serge 1662
	ret = intel_ring_begin(req, 2);
2332 Serge 1663
	if (ret)
1664
		return ret;
1665
 
1666
	intel_ring_emit(ring, MI_FLUSH);
1667
	intel_ring_emit(ring, MI_NOOP);
1668
	intel_ring_advance(ring);
1669
	return 0;
1670
}
1671
 
1672
static int
6084 serge 1673
i9xx_add_request(struct drm_i915_gem_request *req)
2332 Serge 1674
{
6084 serge 1675
	struct intel_engine_cs *ring = req->ring;
2332 Serge 1676
	int ret;
1677
 
6084 serge 1678
	ret = intel_ring_begin(req, 4);
2332 Serge 1679
	if (ret)
1680
		return ret;
1681
 
1682
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1683
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
6084 serge 1684
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
2332 Serge 1685
	intel_ring_emit(ring, MI_USER_INTERRUPT);
4560 Serge 1686
	__intel_ring_advance(ring);
2332 Serge 1687
 
1688
	return 0;
1689
}
1690
 
1691
static bool
5060 serge 1692
gen6_ring_get_irq(struct intel_engine_cs *ring)
2332 Serge 1693
{
1694
	struct drm_device *dev = ring->dev;
5060 serge 1695
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1696
	unsigned long flags;
2332 Serge 1697
 
5354 serge 1698
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
6084 serge 1699
		return false;
2332 Serge 1700
 
3031 serge 1701
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 1702
	if (ring->irq_refcount++ == 0) {
4560 Serge 1703
		if (HAS_L3_DPF(dev) && ring->id == RCS)
4104 Serge 1704
			I915_WRITE_IMR(ring,
1705
				       ~(ring->irq_enable_mask |
4560 Serge 1706
					 GT_PARITY_ERROR(dev)));
3031 serge 1707
		else
1708
			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
5060 serge 1709
		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
2332 Serge 1710
	}
3031 serge 1711
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1712
 
6084 serge 1713
	return true;
2332 Serge 1714
}
1715
 
1716
static void
5060 serge 1717
gen6_ring_put_irq(struct intel_engine_cs *ring)
2332 Serge 1718
{
1719
	struct drm_device *dev = ring->dev;
5060 serge 1720
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1721
	unsigned long flags;
2332 Serge 1722
 
3031 serge 1723
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 1724
	if (--ring->irq_refcount == 0) {
4560 Serge 1725
		if (HAS_L3_DPF(dev) && ring->id == RCS)
1726
			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
3031 serge 1727
		else
1728
			I915_WRITE_IMR(ring, ~0);
5060 serge 1729
		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
2332 Serge 1730
	}
3031 serge 1731
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1732
}
1733
 
4104 Serge 1734
static bool
5060 serge 1735
hsw_vebox_get_irq(struct intel_engine_cs *ring)
4104 Serge 1736
{
1737
	struct drm_device *dev = ring->dev;
1738
	struct drm_i915_private *dev_priv = dev->dev_private;
1739
	unsigned long flags;
1740
 
5354 serge 1741
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
4104 Serge 1742
		return false;
1743
 
1744
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1745
	if (ring->irq_refcount++ == 0) {
1746
		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
5060 serge 1747
		gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
4104 Serge 1748
	}
1749
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1750
 
1751
	return true;
1752
}
1753
 
1754
static void
5060 serge 1755
hsw_vebox_put_irq(struct intel_engine_cs *ring)
4104 Serge 1756
{
1757
	struct drm_device *dev = ring->dev;
1758
	struct drm_i915_private *dev_priv = dev->dev_private;
1759
	unsigned long flags;
1760
 
1761
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1762
	if (--ring->irq_refcount == 0) {
1763
		I915_WRITE_IMR(ring, ~0);
5060 serge 1764
		gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
4104 Serge 1765
	}
1766
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1767
}
1768
 
4560 Serge 1769
static bool
5060 serge 1770
gen8_ring_get_irq(struct intel_engine_cs *ring)
4560 Serge 1771
{
1772
	struct drm_device *dev = ring->dev;
1773
	struct drm_i915_private *dev_priv = dev->dev_private;
1774
	unsigned long flags;
1775
 
5354 serge 1776
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
4560 Serge 1777
		return false;
1778
 
1779
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1780
	if (ring->irq_refcount++ == 0) {
1781
		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1782
			I915_WRITE_IMR(ring,
1783
				       ~(ring->irq_enable_mask |
1784
					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1785
		} else {
1786
			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1787
		}
1788
		POSTING_READ(RING_IMR(ring->mmio_base));
1789
	}
1790
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1791
 
1792
	return true;
1793
}
1794
 
1795
static void
5060 serge 1796
gen8_ring_put_irq(struct intel_engine_cs *ring)
4560 Serge 1797
{
1798
	struct drm_device *dev = ring->dev;
1799
	struct drm_i915_private *dev_priv = dev->dev_private;
1800
	unsigned long flags;
1801
 
1802
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1803
	if (--ring->irq_refcount == 0) {
1804
		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1805
			I915_WRITE_IMR(ring,
1806
				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1807
		} else {
1808
			I915_WRITE_IMR(ring, ~0);
1809
		}
1810
		POSTING_READ(RING_IMR(ring->mmio_base));
1811
	}
1812
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1813
}
1814
 
2332 Serge 1815
static int
6084 serge 1816
i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
5060 serge 1817
			 u64 offset, u32 length,
6084 serge 1818
			 unsigned dispatch_flags)
2332 Serge 1819
{
6084 serge 1820
	struct intel_engine_cs *ring = req->ring;
2332 Serge 1821
	int ret;
1822
 
6084 serge 1823
	ret = intel_ring_begin(req, 2);
2332 Serge 1824
	if (ret)
1825
		return ret;
1826
 
1827
	intel_ring_emit(ring,
3031 serge 1828
			MI_BATCH_BUFFER_START |
1829
			MI_BATCH_GTT |
6084 serge 1830
			(dispatch_flags & I915_DISPATCH_SECURE ?
1831
 
2332 Serge 1832
	intel_ring_emit(ring, offset);
1833
	intel_ring_advance(ring);
1834
 
1835
	return 0;
1836
}
1837
 
3243 Serge 1838
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1839
#define I830_BATCH_LIMIT (256*1024)
5128 serge 1840
#define I830_TLB_ENTRIES (2)
1841
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
2332 Serge 1842
static int
6084 serge 1843
i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1844
			 u64 offset, u32 len,
1845
			 unsigned dispatch_flags)
2332 Serge 1846
{
6084 serge 1847
	struct intel_engine_cs *ring = req->ring;
5128 serge 1848
	u32 cs_offset = ring->scratch.gtt_offset;
2332 Serge 1849
	int ret;
1850
 
6084 serge 1851
	ret = intel_ring_begin(req, 6);
1852
	if (ret)
1853
		return ret;
2332 Serge 1854
 
5128 serge 1855
	/* Evict the invalid PTE TLBs */
1856
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1857
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1858
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1859
	intel_ring_emit(ring, cs_offset);
1860
	intel_ring_emit(ring, 0xdeadbeef);
6084 serge 1861
	intel_ring_emit(ring, MI_NOOP);
1862
	intel_ring_advance(ring);
3243 Serge 1863
 
6084 serge 1864
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
3243 Serge 1865
		if (len > I830_BATCH_LIMIT)
1866
			return -ENOSPC;
1867
 
6084 serge 1868
		ret = intel_ring_begin(req, 6 + 2);
3243 Serge 1869
		if (ret)
1870
			return ret;
5128 serge 1871
 
1872
		/* Blit the batch (which has now all relocs applied) to the
1873
		 * stable batch scratch bo area (so that the CS never
1874
		 * stumbles over its tlb invalidation bug) ...
1875
		 */
1876
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1877
		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
5139 serge 1878
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
3243 Serge 1879
		intel_ring_emit(ring, cs_offset);
1880
		intel_ring_emit(ring, 4096);
1881
		intel_ring_emit(ring, offset);
5128 serge 1882
 
3243 Serge 1883
		intel_ring_emit(ring, MI_FLUSH);
5128 serge 1884
		intel_ring_emit(ring, MI_NOOP);
1885
		intel_ring_advance(ring);
3243 Serge 1886
 
1887
		/* ... and execute it. */
5128 serge 1888
		offset = cs_offset;
1889
	}
1890
 
6084 serge 1891
	ret = intel_ring_begin(req, 4);
5128 serge 1892
	if (ret)
1893
		return ret;
1894
 
6084 serge 1895
	intel_ring_emit(ring, MI_BATCH_BUFFER);
1896
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1897
 
5128 serge 1898
	intel_ring_emit(ring, offset + len - 8);
1899
	intel_ring_emit(ring, MI_NOOP);
3031 serge 1900
	intel_ring_advance(ring);
1901
 
1902
	return 0;
1903
}
1904
 
1905
static int
6084 serge 1906
i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
5060 serge 1907
			 u64 offset, u32 len,
6084 serge 1908
			 unsigned dispatch_flags)
3031 serge 1909
{
6084 serge 1910
	struct intel_engine_cs *ring = req->ring;
3031 serge 1911
	int ret;
1912
 
6084 serge 1913
	ret = intel_ring_begin(req, 2);
1914
	if (ret)
1915
		return ret;
2332 Serge 1916
 
3031 serge 1917
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
6084 serge 1918
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1919
 
2332 Serge 1920
	intel_ring_advance(ring);
1921
 
1922
	return 0;
1923
}
1924
 
6660 serge 1925
static void cleanup_phys_status_page(struct intel_engine_cs *ring)
1926
{
1927
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
1928
 
1929
	if (!dev_priv->status_page_dmah)
1930
		return;
1931
 
1932
	drm_pci_free(ring->dev, dev_priv->status_page_dmah);
1933
	ring->status_page.page_addr = NULL;
1934
}
1935
 
5060 serge 1936
static void cleanup_status_page(struct intel_engine_cs *ring)
2332 Serge 1937
{
1938
	struct drm_i915_gem_object *obj;
1939
 
1940
	obj = ring->status_page.obj;
1941
	if (obj == NULL)
1942
		return;
1943
 
5354 serge 1944
	kunmap(sg_page(obj->pages->sgl));
5060 serge 1945
	i915_gem_object_ggtt_unpin(obj);
2344 Serge 1946
	drm_gem_object_unreference(&obj->base);
2332 Serge 1947
	ring->status_page.obj = NULL;
1948
}
1949
 
5060 serge 1950
static int init_status_page(struct intel_engine_cs *ring)
2332 Serge 1951
{
6660 serge 1952
	struct drm_i915_gem_object *obj = ring->status_page.obj;
5060 serge 1953
 
6660 serge 1954
	if (obj == NULL) {
5060 serge 1955
		unsigned flags;
6084 serge 1956
		int ret;
2332 Serge 1957
 
5060 serge 1958
		obj = i915_gem_alloc_object(ring->dev, 4096);
6084 serge 1959
		if (obj == NULL) {
1960
			DRM_ERROR("Failed to allocate status page\n");
5060 serge 1961
			return -ENOMEM;
6084 serge 1962
		}
2332 Serge 1963
 
6084 serge 1964
		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1965
		if (ret)
1966
			goto err_unref;
2332 Serge 1967
 
5060 serge 1968
		flags = 0;
1969
		if (!HAS_LLC(ring->dev))
1970
			/* On g33, we cannot place HWS above 256MiB, so
1971
			 * restrict its pinning to the low mappable arena.
1972
			 * Though this restriction is not documented for
1973
			 * gen4, gen5, or byt, they also behave similarly
1974
			 * and hang if the HWS is placed at the top of the
1975
			 * GTT. To generalise, it appears that all !llc
1976
			 * platforms have issues with us placing the HWS
1977
			 * above the mappable region (even though we never
1978
			 * actualy map it).
1979
			 */
1980
			flags |= PIN_MAPPABLE;
1981
		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1982
		if (ret) {
1983
err_unref:
1984
			drm_gem_object_unreference(&obj->base);
1985
			return ret;
1986
		}
1987
 
1988
		ring->status_page.obj = obj;
2332 Serge 1989
	}
1990
 
4104 Serge 1991
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
5354 serge 1992
	ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
2332 Serge 1993
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1994
 
1995
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1996
			ring->name, ring->status_page.gfx_addr);
1997
 
1998
	return 0;
1999
}
2000
 
5060 serge 2001
static int init_phys_status_page(struct intel_engine_cs *ring)
3243 Serge 2002
{
6084 serge 2003
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3243 Serge 2004
 
6084 serge 2005
	if (!dev_priv->status_page_dmah) {
2006
		dev_priv->status_page_dmah =
2007
			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
2008
		if (!dev_priv->status_page_dmah)
2009
			return -ENOMEM;
2010
	}
3243 Serge 2011
 
6084 serge 2012
	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2013
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
3243 Serge 2014
 
6084 serge 2015
	return 0;
3243 Serge 2016
}
2017
 
5354 serge 2018
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2332 Serge 2019
{
5060 serge 2020
	iounmap(ringbuf->virtual_start);
5354 serge 2021
	ringbuf->virtual_start = NULL;
5060 serge 2022
	i915_gem_object_ggtt_unpin(ringbuf->obj);
2023
}
2024
 
5354 serge 2025
int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
6084 serge 2026
				     struct intel_ringbuffer *ringbuf)
5060 serge 2027
{
2028
	struct drm_i915_private *dev_priv = to_i915(dev);
5354 serge 2029
	struct drm_i915_gem_object *obj = ringbuf->obj;
2332 Serge 2030
	int ret;
2340 Serge 2031
 
5354 serge 2032
	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2033
	if (ret)
2034
		return ret;
2035
 
2036
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
2037
	if (ret) {
2038
		i915_gem_object_ggtt_unpin(obj);
2039
		return ret;
2040
	}
2041
 
2042
	ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2043
			i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2044
	if (ringbuf->virtual_start == NULL) {
2045
		i915_gem_object_ggtt_unpin(obj);
2046
		return -EINVAL;
2047
	}
2048
 
6084 serge 2049
	return 0;
5354 serge 2050
}
2332 Serge 2051
 
6084 serge 2052
static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
5354 serge 2053
{
2054
	drm_gem_object_unreference(&ringbuf->obj->base);
2055
	ringbuf->obj = NULL;
2056
}
2057
 
6084 serge 2058
static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2059
				      struct intel_ringbuffer *ringbuf)
5354 serge 2060
{
2061
	struct drm_i915_gem_object *obj;
2062
 
3480 Serge 2063
	obj = NULL;
4371 Serge 2064
	if (!HAS_LLC(dev))
5060 serge 2065
		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
3480 Serge 2066
	if (obj == NULL)
5060 serge 2067
		obj = i915_gem_alloc_object(dev, ringbuf->size);
2068
	if (obj == NULL)
2069
		return -ENOMEM;
2332 Serge 2070
 
5060 serge 2071
	/* mark ring buffers as read-only from GPU side by default */
2072
	obj->gt_ro = 1;
2332 Serge 2073
 
5354 serge 2074
	ringbuf->obj = obj;
2332 Serge 2075
 
5060 serge 2076
	return 0;
2077
}
2078
 
6084 serge 2079
struct intel_ringbuffer *
2080
intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2081
{
2082
	struct intel_ringbuffer *ring;
2083
	int ret;
2084
 
2085
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2086
	if (ring == NULL)
2087
		return ERR_PTR(-ENOMEM);
2088
 
2089
	ring->ring = engine;
2090
 
2091
	ring->size = size;
2092
	/* Workaround an erratum on the i830 which causes a hang if
2093
	 * the TAIL pointer points to within the last 2 cachelines
2094
	 * of the buffer.
2095
	 */
2096
	ring->effective_size = size;
2097
	if (IS_I830(engine->dev) || IS_845G(engine->dev))
2098
		ring->effective_size -= 2 * CACHELINE_BYTES;
2099
 
2100
	ring->last_retired_head = -1;
2101
	intel_ring_update_space(ring);
2102
 
2103
	ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2104
	if (ret) {
2105
		DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2106
			  engine->name, ret);
2107
		kfree(ring);
2108
		return ERR_PTR(ret);
2109
	}
2110
 
2111
	return ring;
2112
}
2113
 
2114
void
2115
intel_ringbuffer_free(struct intel_ringbuffer *ring)
2116
{
2117
	intel_destroy_ringbuffer_obj(ring);
2118
	kfree(ring);
2119
}
2120
 
5060 serge 2121
static int intel_init_ring_buffer(struct drm_device *dev,
2122
				  struct intel_engine_cs *ring)
2123
{
6084 serge 2124
	struct intel_ringbuffer *ringbuf;
5060 serge 2125
	int ret;
2126
 
6084 serge 2127
	WARN_ON(ring->buffer);
5060 serge 2128
 
2129
	ring->dev = dev;
2130
	INIT_LIST_HEAD(&ring->active_list);
2131
	INIT_LIST_HEAD(&ring->request_list);
5354 serge 2132
	INIT_LIST_HEAD(&ring->execlist_queue);
6084 serge 2133
	i915_gem_batch_pool_init(dev, &ring->batch_pool);
5060 serge 2134
	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2135
 
2136
	init_waitqueue_head(&ring->irq_queue);
2137
 
6084 serge 2138
	ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2139
	if (IS_ERR(ringbuf))
2140
		return PTR_ERR(ringbuf);
2141
	ring->buffer = ringbuf;
2142
 
5060 serge 2143
	if (I915_NEED_GFX_HWS(dev)) {
2144
		ret = init_status_page(ring);
2145
		if (ret)
2146
			goto error;
2147
	} else {
6660 serge 2148
		WARN_ON(ring->id != RCS);
5060 serge 2149
		ret = init_phys_status_page(ring);
6084 serge 2150
		if (ret)
5060 serge 2151
			goto error;
2152
	}
2332 Serge 2153
 
6084 serge 2154
	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
5060 serge 2155
	if (ret) {
6084 serge 2156
		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2157
				ring->name, ret);
2158
		intel_destroy_ringbuffer_obj(ringbuf);
5060 serge 2159
		goto error;
2160
	}
2161
 
2162
	ret = i915_cmd_parser_init_ring(ring);
2163
	if (ret)
2164
		goto error;
2165
 
2332 Serge 2166
	return 0;
2167
 
5060 serge 2168
error:
6084 serge 2169
	intel_ringbuffer_free(ringbuf);
5060 serge 2170
	ring->buffer = NULL;
2332 Serge 2171
	return ret;
2172
}
2173
 
5060 serge 2174
void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2332 Serge 2175
{
5354 serge 2176
	struct drm_i915_private *dev_priv;
2332 Serge 2177
 
5060 serge 2178
	if (!intel_ring_initialized(ring))
2332 Serge 2179
		return;
2180
 
5354 serge 2181
	dev_priv = to_i915(ring->dev);
2182
 
5060 serge 2183
	intel_stop_ring_buffer(ring);
2184
	WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2332 Serge 2185
 
6084 serge 2186
	intel_unpin_ringbuffer_obj(ring->buffer);
2187
	intel_ringbuffer_free(ring->buffer);
2188
	ring->buffer = NULL;
2332 Serge 2189
 
2190
	if (ring->cleanup)
2191
		ring->cleanup(ring);
2192
 
6660 serge 2193
	if (I915_NEED_GFX_HWS(ring->dev)) {
6084 serge 2194
	cleanup_status_page(ring);
6660 serge 2195
	} else {
2196
		WARN_ON(ring->id != RCS);
2197
		cleanup_phys_status_page(ring);
2198
	}
2332 Serge 2199
 
5060 serge 2200
	i915_cmd_parser_fini_ring(ring);
6084 serge 2201
	i915_gem_batch_pool_fini(&ring->batch_pool);
3031 serge 2202
}
2203
 
6084 serge 2204
static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
3031 serge 2205
{
5060 serge 2206
	struct intel_ringbuffer *ringbuf = ring->buffer;
3031 serge 2207
	struct drm_i915_gem_request *request;
6084 serge 2208
	unsigned space;
3031 serge 2209
	int ret;
2210
 
6084 serge 2211
	if (intel_ring_space(ringbuf) >= n)
2212
		return 0;
3031 serge 2213
 
6084 serge 2214
	/* The whole point of reserving space is to not wait! */
2215
	WARN_ON(ringbuf->reserved_in_use);
2332 Serge 2216
 
3031 serge 2217
	list_for_each_entry(request, &ring->request_list, list) {
6084 serge 2218
		space = __intel_ring_space(request->postfix, ringbuf->tail,
2219
					   ringbuf->size);
2220
		if (space >= n)
3031 serge 2221
			break;
2222
	}
2223
 
6084 serge 2224
	if (WARN_ON(&request->list == &ring->request_list))
3031 serge 2225
		return -ENOSPC;
2226
 
6084 serge 2227
	ret = i915_wait_request(request);
3031 serge 2228
	if (ret)
2229
		return ret;
2230
 
6084 serge 2231
	ringbuf->space = space;
3031 serge 2232
	return 0;
2233
}
2234
 
6084 serge 2235
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
3031 serge 2236
{
3243 Serge 2237
	uint32_t __iomem *virt;
5060 serge 2238
	int rem = ringbuf->size - ringbuf->tail;
3243 Serge 2239
 
5060 serge 2240
	virt = ringbuf->virtual_start + ringbuf->tail;
3243 Serge 2241
	rem /= 4;
2242
	while (rem--)
2243
		iowrite32(MI_NOOP, virt++);
2244
 
5060 serge 2245
	ringbuf->tail = 0;
6084 serge 2246
	intel_ring_update_space(ringbuf);
3243 Serge 2247
}
2248
 
5060 serge 2249
int intel_ring_idle(struct intel_engine_cs *ring)
3243 Serge 2250
{
6084 serge 2251
	struct drm_i915_gem_request *req;
3243 Serge 2252
 
2253
	/* Wait upon the last request to be completed */
2254
	if (list_empty(&ring->request_list))
2255
		return 0;
2256
 
6084 serge 2257
	req = list_entry(ring->request_list.prev,
2258
			struct drm_i915_gem_request,
2259
			list);
3243 Serge 2260
 
6084 serge 2261
	/* Make sure we do not trigger any retires */
2262
	return __i915_wait_request(req,
2263
				   atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2264
				   to_i915(ring->dev)->mm.interruptible,
2265
				   NULL, NULL);
3243 Serge 2266
}
2267
 
6084 serge 2268
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
3243 Serge 2269
{
6084 serge 2270
	request->ringbuf = request->ring->buffer;
2271
	return 0;
2272
}
3243 Serge 2273
 
6084 serge 2274
int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2275
{
2276
	/*
2277
	 * The first call merely notes the reserve request and is common for
2278
	 * all back ends. The subsequent localised _begin() call actually
2279
	 * ensures that the reservation is available. Without the begin, if
2280
	 * the request creator immediately submitted the request without
2281
	 * adding any commands to it then there might not actually be
2282
	 * sufficient room for the submission commands.
2283
	 */
2284
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
4560 Serge 2285
 
6084 serge 2286
	return intel_ring_begin(request, 0);
2287
}
4560 Serge 2288
 
6084 serge 2289
void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2290
{
2291
	WARN_ON(ringbuf->reserved_size);
2292
	WARN_ON(ringbuf->reserved_in_use);
2293
 
2294
	ringbuf->reserved_size = size;
2295
}
2296
 
2297
void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2298
{
2299
	WARN_ON(ringbuf->reserved_in_use);
2300
 
2301
	ringbuf->reserved_size   = 0;
2302
	ringbuf->reserved_in_use = false;
2303
}
2304
 
2305
void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2306
{
2307
	WARN_ON(ringbuf->reserved_in_use);
2308
 
2309
	ringbuf->reserved_in_use = true;
2310
	ringbuf->reserved_tail   = ringbuf->tail;
2311
}
2312
 
2313
void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2314
{
2315
	WARN_ON(!ringbuf->reserved_in_use);
2316
	if (ringbuf->tail > ringbuf->reserved_tail) {
2317
		WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2318
		     "request reserved size too small: %d vs %d!\n",
2319
		     ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2320
	} else {
2321
		/*
2322
		 * The ring was wrapped while the reserved space was in use.
2323
		 * That means that some unknown amount of the ring tail was
2324
		 * no-op filled and skipped. Thus simply adding the ring size
2325
		 * to the tail and doing the above space check will not work.
2326
		 * Rather than attempt to track how much tail was skipped,
2327
		 * it is much simpler to say that also skipping the sanity
2328
		 * check every once in a while is not a big issue.
2329
		 */
4560 Serge 2330
	}
2331
 
6084 serge 2332
	ringbuf->reserved_size   = 0;
2333
	ringbuf->reserved_in_use = false;
3243 Serge 2334
}
2335
 
6084 serge 2336
static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
3480 Serge 2337
{
5060 serge 2338
	struct intel_ringbuffer *ringbuf = ring->buffer;
6084 serge 2339
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
2340
	int remain_actual = ringbuf->size - ringbuf->tail;
2341
	int ret, total_bytes, wait_bytes = 0;
2342
	bool need_wrap = false;
3480 Serge 2343
 
6084 serge 2344
	if (ringbuf->reserved_in_use)
2345
		total_bytes = bytes;
2346
	else
2347
		total_bytes = bytes + ringbuf->reserved_size;
2348
 
2349
	if (unlikely(bytes > remain_usable)) {
2350
		/*
2351
		 * Not enough space for the basic request. So need to flush
2352
		 * out the remainder and then wait for base + reserved.
2353
		 */
2354
		wait_bytes = remain_actual + total_bytes;
2355
		need_wrap = true;
2356
	} else {
2357
		if (unlikely(total_bytes > remain_usable)) {
2358
			/*
2359
			 * The base request will fit but the reserved space
6660 serge 2360
			 * falls off the end. So don't need an immediate wrap
2361
			 * and only need to effectively wait for the reserved
2362
			 * size space from the start of ringbuffer.
6084 serge 2363
			 */
2364
			wait_bytes = remain_actual + ringbuf->reserved_size;
2365
		} else if (total_bytes > ringbuf->space) {
2366
			/* No wrapping required, just waiting. */
2367
			wait_bytes = total_bytes;
2368
		}
3480 Serge 2369
	}
2370
 
6084 serge 2371
	if (wait_bytes) {
2372
		ret = ring_wait_for_space(ring, wait_bytes);
3480 Serge 2373
		if (unlikely(ret))
2374
			return ret;
6084 serge 2375
 
2376
		if (need_wrap)
2377
			__wrap_ring_buffer(ringbuf);
3480 Serge 2378
	}
2379
 
2380
	return 0;
2381
}
2382
 
6084 serge 2383
int intel_ring_begin(struct drm_i915_gem_request *req,
2332 Serge 2384
		     int num_dwords)
2385
{
6084 serge 2386
	struct intel_engine_cs *ring;
2387
	struct drm_i915_private *dev_priv;
2332 Serge 2388
	int ret;
2389
 
6084 serge 2390
	WARN_ON(req == NULL);
2391
	ring = req->ring;
2392
	dev_priv = ring->dev->dev_private;
2393
 
3480 Serge 2394
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2395
				   dev_priv->mm.interruptible);
3031 serge 2396
	if (ret)
2397
		return ret;
2332 Serge 2398
 
4560 Serge 2399
	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2400
	if (ret)
2401
		return ret;
2402
 
5060 serge 2403
	ring->buffer->space -= num_dwords * sizeof(uint32_t);
4560 Serge 2404
	return 0;
3480 Serge 2405
}
2332 Serge 2406
 
5060 serge 2407
/* Align the ring tail to a cacheline boundary */
6084 serge 2408
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
3480 Serge 2409
{
6084 serge 2410
	struct intel_engine_cs *ring = req->ring;
5060 serge 2411
	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2412
	int ret;
3480 Serge 2413
 
5060 serge 2414
	if (num_dwords == 0)
2415
		return 0;
2416
 
2417
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
6084 serge 2418
	ret = intel_ring_begin(req, num_dwords);
5060 serge 2419
	if (ret)
2420
		return ret;
2421
 
2422
	while (num_dwords--)
2423
		intel_ring_emit(ring, MI_NOOP);
2424
 
2425
	intel_ring_advance(ring);
2426
 
2427
	return 0;
2428
}
2429
 
2430
void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2431
{
2432
	struct drm_device *dev = ring->dev;
2433
	struct drm_i915_private *dev_priv = dev->dev_private;
2434
 
2435
	if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
3480 Serge 2436
		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2437
		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
5060 serge 2438
		if (HAS_VEBOX(dev))
4104 Serge 2439
			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2332 Serge 2440
	}
2441
 
3480 Serge 2442
	ring->set_seqno(ring, seqno);
4104 Serge 2443
	ring->hangcheck.seqno = seqno;
2332 Serge 2444
}
2445
 
5060 serge 2446
static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2332 Serge 2447
				     u32 value)
2448
{
5060 serge 2449
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2332 Serge 2450
 
2451
       /* Every tail move must follow the sequence below */
3031 serge 2452
 
2453
	/* Disable notification that the ring is IDLE. The GT
2454
	 * will then assume that it is busy and bring it out of rc6.
2455
	 */
6084 serge 2456
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
3031 serge 2457
		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2332 Serge 2458
 
3031 serge 2459
	/* Clear the context id. Here be magic! */
2460
	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2461
 
2462
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
6084 serge 2463
	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
3031 serge 2464
		      GEN6_BSD_SLEEP_INDICATOR) == 0,
6084 serge 2465
		     50))
3031 serge 2466
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2332 Serge 2467
 
3031 serge 2468
	/* Now that the ring is fully powered up, update the tail */
6084 serge 2469
	I915_WRITE_TAIL(ring, value);
3031 serge 2470
	POSTING_READ(RING_TAIL(ring->mmio_base));
2471
 
2472
	/* Let the ring send IDLE messages to the GT again,
2473
	 * and so let it sleep to conserve power when idle.
2474
	 */
6084 serge 2475
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
3031 serge 2476
		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2332 Serge 2477
}
2478
 
6084 serge 2479
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2480
			       u32 invalidate, u32 flush)
2332 Serge 2481
{
6084 serge 2482
	struct intel_engine_cs *ring = req->ring;
2332 Serge 2483
	uint32_t cmd;
2484
	int ret;
2485
 
6084 serge 2486
	ret = intel_ring_begin(req, 4);
2332 Serge 2487
	if (ret)
2488
		return ret;
2489
 
2490
	cmd = MI_FLUSH_DW;
4560 Serge 2491
	if (INTEL_INFO(ring->dev)->gen >= 8)
2492
		cmd += 1;
6084 serge 2493
 
2494
	/* We always require a command barrier so that subsequent
2495
	 * commands, such as breadcrumb interrupts, are strictly ordered
2496
	 * wrt the contents of the write cache being flushed to memory
2497
	 * (and thus being coherent from the CPU).
2498
	 */
2499
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2500
 
3243 Serge 2501
	/*
2502
	 * Bspec vol 1c.5 - video engine command streamer:
2503
	 * "If ENABLED, all TLBs will be invalidated once the flush
2504
	 * operation is complete. This bit is only valid when the
2505
	 * Post-Sync Operation field is a value of 1h or 3h."
2506
	 */
2332 Serge 2507
	if (invalidate & I915_GEM_GPU_DOMAINS)
6084 serge 2508
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2509
 
2332 Serge 2510
	intel_ring_emit(ring, cmd);
3243 Serge 2511
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
4560 Serge 2512
	if (INTEL_INFO(ring->dev)->gen >= 8) {
2513
		intel_ring_emit(ring, 0); /* upper addr */
2514
		intel_ring_emit(ring, 0); /* value */
2515
	} else  {
6084 serge 2516
		intel_ring_emit(ring, 0);
2517
		intel_ring_emit(ring, MI_NOOP);
4560 Serge 2518
	}
2332 Serge 2519
	intel_ring_advance(ring);
2520
	return 0;
2521
}
2522
 
2523
static int
6084 serge 2524
gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
5060 serge 2525
			      u64 offset, u32 len,
6084 serge 2526
			      unsigned dispatch_flags)
4560 Serge 2527
{
6084 serge 2528
	struct intel_engine_cs *ring = req->ring;
2529
	bool ppgtt = USES_PPGTT(ring->dev) &&
2530
			!(dispatch_flags & I915_DISPATCH_SECURE);
4560 Serge 2531
	int ret;
2532
 
6084 serge 2533
	ret = intel_ring_begin(req, 4);
4560 Serge 2534
	if (ret)
2535
		return ret;
2536
 
2537
	/* FIXME(BDW): Address space and security selectors. */
6084 serge 2538
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2539
			(dispatch_flags & I915_DISPATCH_RS ?
2540
			 MI_BATCH_RESOURCE_STREAMER : 0));
5060 serge 2541
	intel_ring_emit(ring, lower_32_bits(offset));
2542
	intel_ring_emit(ring, upper_32_bits(offset));
4560 Serge 2543
	intel_ring_emit(ring, MI_NOOP);
2544
	intel_ring_advance(ring);
2545
 
2546
	return 0;
2547
}
2548
 
2549
static int
6084 serge 2550
hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2551
			     u64 offset, u32 len,
2552
			     unsigned dispatch_flags)
3243 Serge 2553
{
6084 serge 2554
	struct intel_engine_cs *ring = req->ring;
3243 Serge 2555
	int ret;
2556
 
6084 serge 2557
	ret = intel_ring_begin(req, 2);
3243 Serge 2558
	if (ret)
2559
		return ret;
2560
 
2561
	intel_ring_emit(ring,
5354 serge 2562
			MI_BATCH_BUFFER_START |
6084 serge 2563
			(dispatch_flags & I915_DISPATCH_SECURE ?
2564
 
2565
			(dispatch_flags & I915_DISPATCH_RS ?
2566
			 MI_BATCH_RESOURCE_STREAMER : 0));
3243 Serge 2567
	/* bit0-7 is the length on GEN6+ */
2568
	intel_ring_emit(ring, offset);
2569
	intel_ring_advance(ring);
2570
 
2571
	return 0;
2572
}
2573
 
2574
static int
6084 serge 2575
gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
5060 serge 2576
			      u64 offset, u32 len,
6084 serge 2577
			      unsigned dispatch_flags)
2332 Serge 2578
{
6084 serge 2579
	struct intel_engine_cs *ring = req->ring;
2580
	int ret;
2332 Serge 2581
 
6084 serge 2582
	ret = intel_ring_begin(req, 2);
2583
	if (ret)
2584
		return ret;
2332 Serge 2585
 
3243 Serge 2586
	intel_ring_emit(ring,
2587
			MI_BATCH_BUFFER_START |
6084 serge 2588
			(dispatch_flags & I915_DISPATCH_SECURE ?
2589
 
2590
	/* bit0-7 is the length on GEN6+ */
2591
	intel_ring_emit(ring, offset);
2592
	intel_ring_advance(ring);
2332 Serge 2593
 
6084 serge 2594
	return 0;
2332 Serge 2595
}
2596
 
2597
/* Blitter support (SandyBridge+) */
2598
 
6084 serge 2599
static int gen6_ring_flush(struct drm_i915_gem_request *req,
2600
			   u32 invalidate, u32 flush)
2332 Serge 2601
{
6084 serge 2602
	struct intel_engine_cs *ring = req->ring;
4104 Serge 2603
	struct drm_device *dev = ring->dev;
2332 Serge 2604
	uint32_t cmd;
2605
	int ret;
2606
 
6084 serge 2607
	ret = intel_ring_begin(req, 4);
2332 Serge 2608
	if (ret)
2609
		return ret;
2610
 
2611
	cmd = MI_FLUSH_DW;
6084 serge 2612
	if (INTEL_INFO(dev)->gen >= 8)
4560 Serge 2613
		cmd += 1;
6084 serge 2614
 
2615
	/* We always require a command barrier so that subsequent
2616
	 * commands, such as breadcrumb interrupts, are strictly ordered
2617
	 * wrt the contents of the write cache being flushed to memory
2618
	 * (and thus being coherent from the CPU).
2619
	 */
2620
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2621
 
3243 Serge 2622
	/*
2623
	 * Bspec vol 1c.3 - blitter engine command streamer:
2624
	 * "If ENABLED, all TLBs will be invalidated once the flush
2625
	 * operation is complete. This bit is only valid when the
2626
	 * Post-Sync Operation field is a value of 1h or 3h."
2627
	 */
2332 Serge 2628
	if (invalidate & I915_GEM_DOMAIN_RENDER)
6084 serge 2629
		cmd |= MI_INVALIDATE_TLB;
2332 Serge 2630
	intel_ring_emit(ring, cmd);
3243 Serge 2631
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
6084 serge 2632
	if (INTEL_INFO(dev)->gen >= 8) {
4560 Serge 2633
		intel_ring_emit(ring, 0); /* upper addr */
2634
		intel_ring_emit(ring, 0); /* value */
2635
	} else  {
6084 serge 2636
		intel_ring_emit(ring, 0);
2637
		intel_ring_emit(ring, MI_NOOP);
4560 Serge 2638
	}
2332 Serge 2639
	intel_ring_advance(ring);
4104 Serge 2640
 
2332 Serge 2641
	return 0;
2642
}
2643
 
2644
int intel_init_render_ring_buffer(struct drm_device *dev)
2645
{
5060 serge 2646
	struct drm_i915_private *dev_priv = dev->dev_private;
2647
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2648
	struct drm_i915_gem_object *obj;
2649
	int ret;
2340 Serge 2650
 
3031 serge 2651
	ring->name = "render ring";
2652
	ring->id = RCS;
2653
	ring->mmio_base = RENDER_RING_BASE;
2654
 
5060 serge 2655
	if (INTEL_INFO(dev)->gen >= 8) {
2656
		if (i915_semaphore_is_enabled(dev)) {
2657
			obj = i915_gem_alloc_object(dev, 4096);
2658
			if (obj == NULL) {
2659
				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2660
				i915.semaphores = 0;
2661
			} else {
2662
				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2663
				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2664
				if (ret != 0) {
2665
					drm_gem_object_unreference(&obj->base);
2666
					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2667
					i915.semaphores = 0;
2668
				} else
2669
					dev_priv->semaphore_obj = obj;
2670
			}
2671
		}
5354 serge 2672
 
6084 serge 2673
		ring->init_context = intel_rcs_ctx_init;
5060 serge 2674
		ring->add_request = gen6_add_request;
2675
		ring->flush = gen8_render_ring_flush;
2676
		ring->irq_get = gen8_ring_get_irq;
2677
		ring->irq_put = gen8_ring_put_irq;
2678
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2679
		ring->get_seqno = gen6_ring_get_seqno;
2680
		ring->set_seqno = ring_set_seqno;
2681
		if (i915_semaphore_is_enabled(dev)) {
2682
			WARN_ON(!dev_priv->semaphore_obj);
2683
			ring->semaphore.sync_to = gen8_ring_sync;
2684
			ring->semaphore.signal = gen8_rcs_signal;
2685
			GEN8_RING_SEMAPHORE_INIT;
2686
		}
2687
	} else if (INTEL_INFO(dev)->gen >= 6) {
6084 serge 2688
		ring->init_context = intel_rcs_ctx_init;
2689
		ring->add_request = gen6_add_request;
3031 serge 2690
		ring->flush = gen7_render_ring_flush;
2691
		if (INTEL_INFO(dev)->gen == 6)
6084 serge 2692
			ring->flush = gen6_render_ring_flush;
3031 serge 2693
		ring->irq_get = gen6_ring_get_irq;
2694
		ring->irq_put = gen6_ring_put_irq;
4104 Serge 2695
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2342 Serge 2696
		ring->get_seqno = gen6_ring_get_seqno;
3480 Serge 2697
		ring->set_seqno = ring_set_seqno;
5060 serge 2698
		if (i915_semaphore_is_enabled(dev)) {
6084 serge 2699
			ring->semaphore.sync_to = gen6_ring_sync;
2700
			ring->semaphore.signal = gen6_signal;
2701
			/*
5060 serge 2702
			 * The current semaphore is only applied on pre-gen8
2703
			 * platform.  And there is no VCS2 ring on the pre-gen8
2704
			 * platform. So the semaphore between RCS and VCS2 is
2705
			 * initialized as INVALID.  Gen8 will initialize the
2706
			 * sema between VCS2 and RCS later.
6084 serge 2707
			 */
2708
			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2709
			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2710
			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2711
			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2712
			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2713
			ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2714
			ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2715
			ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2716
			ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2717
			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
5060 serge 2718
		}
2332 Serge 2719
	} else if (IS_GEN5(dev)) {
6084 serge 2720
		ring->add_request = pc_render_add_request;
3031 serge 2721
		ring->flush = gen4_render_ring_flush;
2342 Serge 2722
		ring->get_seqno = pc_render_get_seqno;
3480 Serge 2723
		ring->set_seqno = pc_render_set_seqno;
3031 serge 2724
		ring->irq_get = gen5_ring_get_irq;
2725
		ring->irq_put = gen5_ring_put_irq;
4104 Serge 2726
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2727
					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
3031 serge 2728
	} else {
2729
		ring->add_request = i9xx_add_request;
2730
		if (INTEL_INFO(dev)->gen < 4)
2731
			ring->flush = gen2_render_ring_flush;
2732
		else
2733
			ring->flush = gen4_render_ring_flush;
2734
		ring->get_seqno = ring_get_seqno;
3480 Serge 2735
		ring->set_seqno = ring_set_seqno;
3031 serge 2736
		if (IS_GEN2(dev)) {
2737
			ring->irq_get = i8xx_ring_get_irq;
2738
			ring->irq_put = i8xx_ring_put_irq;
2739
		} else {
2740
			ring->irq_get = i9xx_ring_get_irq;
2741
			ring->irq_put = i9xx_ring_put_irq;
2742
		}
2743
		ring->irq_enable_mask = I915_USER_INTERRUPT;
2332 Serge 2744
	}
3031 serge 2745
	ring->write_tail = ring_write_tail;
5060 serge 2746
 
3243 Serge 2747
	if (IS_HASWELL(dev))
2748
		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
4560 Serge 2749
	else if (IS_GEN8(dev))
2750
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3243 Serge 2751
	else if (INTEL_INFO(dev)->gen >= 6)
3031 serge 2752
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2753
	else if (INTEL_INFO(dev)->gen >= 4)
2754
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2755
	else if (IS_I830(dev) || IS_845G(dev))
2756
		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2757
	else
2758
		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
6084 serge 2759
	ring->init_hw = init_render_ring;
3031 serge 2760
	ring->cleanup = render_ring_cleanup;
2332 Serge 2761
 
3243 Serge 2762
	/* Workaround batchbuffer to combat CS tlb bug. */
2763
	if (HAS_BROKEN_CS_TLB(dev)) {
5128 serge 2764
		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
3243 Serge 2765
		if (obj == NULL) {
2766
			DRM_ERROR("Failed to allocate batch bo\n");
2767
			return -ENOMEM;
2768
		}
2769
 
5060 serge 2770
		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
3243 Serge 2771
		if (ret != 0) {
2772
			drm_gem_object_unreference(&obj->base);
2773
			DRM_ERROR("Failed to ping batch bo\n");
2774
			return ret;
2775
		}
2776
 
4104 Serge 2777
		ring->scratch.obj = obj;
2778
		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2332 Serge 2779
	}
2340 Serge 2780
 
6084 serge 2781
	ret = intel_init_ring_buffer(dev, ring);
2782
	if (ret)
2783
		return ret;
2784
 
2785
	if (INTEL_INFO(dev)->gen >= 5) {
2786
		ret = intel_init_pipe_control(ring);
2787
		if (ret)
2788
			return ret;
2789
	}
2790
 
2791
	return 0;
2332 Serge 2792
}
2793
 
2794
int intel_init_bsd_ring_buffer(struct drm_device *dev)
2795
{
5060 serge 2796
	struct drm_i915_private *dev_priv = dev->dev_private;
2797
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2332 Serge 2798
 
3031 serge 2799
	ring->name = "bsd ring";
2800
	ring->id = VCS;
2332 Serge 2801
 
3031 serge 2802
	ring->write_tail = ring_write_tail;
4560 Serge 2803
	if (INTEL_INFO(dev)->gen >= 6) {
3031 serge 2804
		ring->mmio_base = GEN6_BSD_RING_BASE;
2805
		/* gen6 bsd needs a special wa for tail updates */
2806
		if (IS_GEN6(dev))
2807
			ring->write_tail = gen6_bsd_ring_write_tail;
4104 Serge 2808
		ring->flush = gen6_bsd_ring_flush;
3031 serge 2809
		ring->add_request = gen6_add_request;
2810
		ring->get_seqno = gen6_ring_get_seqno;
3480 Serge 2811
		ring->set_seqno = ring_set_seqno;
4560 Serge 2812
		if (INTEL_INFO(dev)->gen >= 8) {
2813
			ring->irq_enable_mask =
2814
				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2815
			ring->irq_get = gen8_ring_get_irq;
2816
			ring->irq_put = gen8_ring_put_irq;
2817
			ring->dispatch_execbuffer =
2818
				gen8_ring_dispatch_execbuffer;
5060 serge 2819
			if (i915_semaphore_is_enabled(dev)) {
2820
				ring->semaphore.sync_to = gen8_ring_sync;
2821
				ring->semaphore.signal = gen8_xcs_signal;
2822
				GEN8_RING_SEMAPHORE_INIT;
2823
			}
4560 Serge 2824
		} else {
6084 serge 2825
			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2826
			ring->irq_get = gen6_ring_get_irq;
2827
			ring->irq_put = gen6_ring_put_irq;
4560 Serge 2828
			ring->dispatch_execbuffer =
2829
				gen6_ring_dispatch_execbuffer;
5060 serge 2830
			if (i915_semaphore_is_enabled(dev)) {
6084 serge 2831
				ring->semaphore.sync_to = gen6_ring_sync;
2832
				ring->semaphore.signal = gen6_signal;
2833
				ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2834
				ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2835
				ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2836
				ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2837
				ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2838
				ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2839
				ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2840
				ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2841
				ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2842
				ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
5060 serge 2843
			}
4560 Serge 2844
		}
3031 serge 2845
	} else {
2846
		ring->mmio_base = BSD_RING_BASE;
2847
		ring->flush = bsd_ring_flush;
2848
		ring->add_request = i9xx_add_request;
2849
		ring->get_seqno = ring_get_seqno;
3480 Serge 2850
		ring->set_seqno = ring_set_seqno;
3031 serge 2851
		if (IS_GEN5(dev)) {
4104 Serge 2852
			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
3031 serge 2853
			ring->irq_get = gen5_ring_get_irq;
2854
			ring->irq_put = gen5_ring_put_irq;
2855
		} else {
2856
			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2857
			ring->irq_get = i9xx_ring_get_irq;
2858
			ring->irq_put = i9xx_ring_put_irq;
2859
		}
2860
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2861
	}
6084 serge 2862
	ring->init_hw = init_ring_common;
3031 serge 2863
 
2332 Serge 2864
	return intel_init_ring_buffer(dev, ring);
2865
}
2866
 
5060 serge 2867
/**
6084 serge 2868
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
5060 serge 2869
 */
2870
int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2871
{
2872
	struct drm_i915_private *dev_priv = dev->dev_private;
2873
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2874
 
2875
	ring->name = "bsd2 ring";
2876
	ring->id = VCS2;
2877
 
2878
	ring->write_tail = ring_write_tail;
2879
	ring->mmio_base = GEN8_BSD2_RING_BASE;
2880
	ring->flush = gen6_bsd_ring_flush;
2881
	ring->add_request = gen6_add_request;
2882
	ring->get_seqno = gen6_ring_get_seqno;
2883
	ring->set_seqno = ring_set_seqno;
2884
	ring->irq_enable_mask =
2885
			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2886
	ring->irq_get = gen8_ring_get_irq;
2887
	ring->irq_put = gen8_ring_put_irq;
2888
	ring->dispatch_execbuffer =
2889
			gen8_ring_dispatch_execbuffer;
2890
	if (i915_semaphore_is_enabled(dev)) {
2891
		ring->semaphore.sync_to = gen8_ring_sync;
2892
		ring->semaphore.signal = gen8_xcs_signal;
2893
		GEN8_RING_SEMAPHORE_INIT;
2894
	}
6084 serge 2895
	ring->init_hw = init_ring_common;
5060 serge 2896
 
2897
	return intel_init_ring_buffer(dev, ring);
2898
}
2899
 
2332 Serge 2900
int intel_init_blt_ring_buffer(struct drm_device *dev)
2901
{
5060 serge 2902
	struct drm_i915_private *dev_priv = dev->dev_private;
2903
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2332 Serge 2904
 
3031 serge 2905
	ring->name = "blitter ring";
2906
	ring->id = BCS;
2332 Serge 2907
 
3031 serge 2908
	ring->mmio_base = BLT_RING_BASE;
2909
	ring->write_tail = ring_write_tail;
4104 Serge 2910
	ring->flush = gen6_ring_flush;
3031 serge 2911
	ring->add_request = gen6_add_request;
2912
	ring->get_seqno = gen6_ring_get_seqno;
3480 Serge 2913
	ring->set_seqno = ring_set_seqno;
4560 Serge 2914
	if (INTEL_INFO(dev)->gen >= 8) {
2915
		ring->irq_enable_mask =
2916
			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2917
		ring->irq_get = gen8_ring_get_irq;
2918
		ring->irq_put = gen8_ring_put_irq;
2919
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
5060 serge 2920
		if (i915_semaphore_is_enabled(dev)) {
2921
			ring->semaphore.sync_to = gen8_ring_sync;
2922
			ring->semaphore.signal = gen8_xcs_signal;
2923
			GEN8_RING_SEMAPHORE_INIT;
2924
		}
4560 Serge 2925
	} else {
6084 serge 2926
		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2927
		ring->irq_get = gen6_ring_get_irq;
2928
		ring->irq_put = gen6_ring_put_irq;
2929
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
5060 serge 2930
		if (i915_semaphore_is_enabled(dev)) {
2931
			ring->semaphore.signal = gen6_signal;
6084 serge 2932
			ring->semaphore.sync_to = gen6_ring_sync;
2933
			/*
5060 serge 2934
			 * The current semaphore is only applied on pre-gen8
2935
			 * platform.  And there is no VCS2 ring on the pre-gen8
2936
			 * platform. So the semaphore between BCS and VCS2 is
2937
			 * initialized as INVALID.  Gen8 will initialize the
2938
			 * sema between BCS and VCS2 later.
6084 serge 2939
			 */
2940
			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2941
			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2942
			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2943
			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2944
			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2945
			ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2946
			ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2947
			ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2948
			ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2949
			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
5060 serge 2950
		}
4560 Serge 2951
	}
6084 serge 2952
	ring->init_hw = init_ring_common;
3031 serge 2953
 
2332 Serge 2954
	return intel_init_ring_buffer(dev, ring);
2955
}
3031 serge 2956
 
4104 Serge 2957
int intel_init_vebox_ring_buffer(struct drm_device *dev)
2958
{
5060 serge 2959
	struct drm_i915_private *dev_priv = dev->dev_private;
2960
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
4104 Serge 2961
 
2962
	ring->name = "video enhancement ring";
2963
	ring->id = VECS;
2964
 
2965
	ring->mmio_base = VEBOX_RING_BASE;
2966
	ring->write_tail = ring_write_tail;
2967
	ring->flush = gen6_ring_flush;
2968
	ring->add_request = gen6_add_request;
2969
	ring->get_seqno = gen6_ring_get_seqno;
2970
	ring->set_seqno = ring_set_seqno;
4560 Serge 2971
 
2972
	if (INTEL_INFO(dev)->gen >= 8) {
2973
		ring->irq_enable_mask =
2974
			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2975
		ring->irq_get = gen8_ring_get_irq;
2976
		ring->irq_put = gen8_ring_put_irq;
2977
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
5060 serge 2978
		if (i915_semaphore_is_enabled(dev)) {
2979
			ring->semaphore.sync_to = gen8_ring_sync;
2980
			ring->semaphore.signal = gen8_xcs_signal;
2981
			GEN8_RING_SEMAPHORE_INIT;
2982
		}
4560 Serge 2983
	} else {
6084 serge 2984
		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2985
		ring->irq_get = hsw_vebox_get_irq;
2986
		ring->irq_put = hsw_vebox_put_irq;
2987
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
5060 serge 2988
		if (i915_semaphore_is_enabled(dev)) {
6084 serge 2989
			ring->semaphore.sync_to = gen6_ring_sync;
2990
			ring->semaphore.signal = gen6_signal;
2991
			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2992
			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2993
			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2994
			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2995
			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2996
			ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2997
			ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2998
			ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2999
			ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3000
			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
5060 serge 3001
		}
4560 Serge 3002
	}
6084 serge 3003
	ring->init_hw = init_ring_common;
4104 Serge 3004
 
3005
	return intel_init_ring_buffer(dev, ring);
3006
}
3007
 
3031 serge 3008
int
6084 serge 3009
intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3031 serge 3010
{
6084 serge 3011
	struct intel_engine_cs *ring = req->ring;
3031 serge 3012
	int ret;
3013
 
3014
	if (!ring->gpu_caches_dirty)
3015
		return 0;
3016
 
6084 serge 3017
	ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3031 serge 3018
	if (ret)
3019
		return ret;
3020
 
6084 serge 3021
	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3031 serge 3022
 
3023
	ring->gpu_caches_dirty = false;
3024
	return 0;
3025
}
3026
 
3027
int
6084 serge 3028
intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3031 serge 3029
{
6084 serge 3030
	struct intel_engine_cs *ring = req->ring;
3031 serge 3031
	uint32_t flush_domains;
3032
	int ret;
3033
 
3034
	flush_domains = 0;
3035
	if (ring->gpu_caches_dirty)
3036
		flush_domains = I915_GEM_GPU_DOMAINS;
3037
 
6084 serge 3038
	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3031 serge 3039
	if (ret)
3040
		return ret;
3041
 
6084 serge 3042
	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3031 serge 3043
 
3044
	ring->gpu_caches_dirty = false;
3045
	return 0;
3046
}
5060 serge 3047
 
3048
void
3049
intel_stop_ring_buffer(struct intel_engine_cs *ring)
3050
{
3051
	int ret;
3052
 
3053
	if (!intel_ring_initialized(ring))
3054
		return;
3055
 
3056
	ret = intel_ring_idle(ring);
3057
	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3058
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3059
			  ring->name, ret);
3060
 
3061
	stop_ring(ring);
3062
}