Subversion Repositories Kolibri OS

Rev

Rev 5060 | Rev 5139 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2332 Serge 1
/*
2
 * Copyright © 2008-2010 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eric Anholt 
25
 *    Zou Nan hai 
26
 *    Xiang Hai hao
27
 *
28
 */
29
 
3031 serge 30
#include 
2332 Serge 31
#include "i915_drv.h"
3031 serge 32
#include 
2351 Serge 33
#include "i915_trace.h"
2332 Serge 34
#include "intel_drv.h"
35
 
5060 serge 36
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
37
 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
38
 * to give some inclination as to some of the magic values used in the various
39
 * workarounds!
40
 */
41
#define CACHELINE_BYTES 64
42
 
43
static inline int __ring_space(int head, int tail, int size)
2332 Serge 44
{
5060 serge 45
	int space = head - (tail + I915_RING_FREE_SPACE);
2332 Serge 46
	if (space < 0)
5060 serge 47
		space += size;
2332 Serge 48
	return space;
49
}
50
 
5060 serge 51
static inline int ring_space(struct intel_ringbuffer *ringbuf)
4560 Serge 52
{
5060 serge 53
	return __ring_space(ringbuf->head & HEAD_ADDR, ringbuf->tail, ringbuf->size);
54
}
55
 
56
static bool intel_ring_stopped(struct intel_engine_cs *ring)
57
{
4560 Serge 58
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
5060 serge 59
	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
60
}
4560 Serge 61
 
5060 serge 62
void __intel_ring_advance(struct intel_engine_cs *ring)
63
{
64
	struct intel_ringbuffer *ringbuf = ring->buffer;
65
	ringbuf->tail &= ringbuf->size - 1;
66
	if (intel_ring_stopped(ring))
4560 Serge 67
		return;
5060 serge 68
	ring->write_tail(ring, ringbuf->tail);
4560 Serge 69
}
70
 
3031 serge 71
static int
5060 serge 72
gen2_render_ring_flush(struct intel_engine_cs *ring,
3031 serge 73
		       u32	invalidate_domains,
74
		       u32	flush_domains)
2332 Serge 75
{
3031 serge 76
	u32 cmd;
77
	int ret;
2332 Serge 78
 
3031 serge 79
	cmd = MI_FLUSH;
80
	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
81
		cmd |= MI_NO_WRITE_FLUSH;
2332 Serge 82
 
3031 serge 83
	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
84
		cmd |= MI_READ_FLUSH;
2332 Serge 85
 
3031 serge 86
	ret = intel_ring_begin(ring, 2);
87
	if (ret)
88
		return ret;
89
 
90
	intel_ring_emit(ring, cmd);
91
	intel_ring_emit(ring, MI_NOOP);
92
	intel_ring_advance(ring);
93
 
94
	return 0;
2332 Serge 95
}
96
 
97
static int
5060 serge 98
gen4_render_ring_flush(struct intel_engine_cs *ring,
2332 Serge 99
		  u32	invalidate_domains,
100
		  u32	flush_domains)
101
{
102
	struct drm_device *dev = ring->dev;
103
	u32 cmd;
104
	int ret;
105
 
106
	/*
107
	 * read/write caches:
108
	 *
109
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
110
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
111
	 * also flushed at 2d versus 3d pipeline switches.
112
	 *
113
	 * read-only caches:
114
	 *
115
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
116
	 * MI_READ_FLUSH is set, and is always flushed on 965.
117
	 *
118
	 * I915_GEM_DOMAIN_COMMAND may not exist?
119
	 *
120
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
121
	 * invalidated when MI_EXE_FLUSH is set.
122
	 *
123
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
124
	 * invalidated with every MI_FLUSH.
125
	 *
126
	 * TLBs:
127
	 *
128
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
129
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
130
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
131
	 * are flushed at any MI_FLUSH.
132
	 */
133
 
134
	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
3031 serge 135
	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
2332 Serge 136
		cmd &= ~MI_NO_WRITE_FLUSH;
137
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
138
		cmd |= MI_EXE_FLUSH;
139
 
140
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
141
	    (IS_G4X(dev) || IS_GEN5(dev)))
142
		cmd |= MI_INVALIDATE_ISP;
143
 
144
	ret = intel_ring_begin(ring, 2);
145
	if (ret)
146
		return ret;
147
 
148
	intel_ring_emit(ring, cmd);
149
	intel_ring_emit(ring, MI_NOOP);
150
	intel_ring_advance(ring);
151
 
152
	return 0;
153
}
154
 
2342 Serge 155
/**
156
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
157
 * implementing two workarounds on gen6.  From section 1.4.7.1
158
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
159
 *
160
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
161
 * produced by non-pipelined state commands), software needs to first
162
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
163
 * 0.
164
 *
165
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
166
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
167
 *
168
 * And the workaround for these two requires this workaround first:
169
 *
170
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
171
 * BEFORE the pipe-control with a post-sync op and no write-cache
172
 * flushes.
173
 *
174
 * And this last workaround is tricky because of the requirements on
175
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
176
 * volume 2 part 1:
177
 *
178
 *     "1 of the following must also be set:
179
 *      - Render Target Cache Flush Enable ([12] of DW1)
180
 *      - Depth Cache Flush Enable ([0] of DW1)
181
 *      - Stall at Pixel Scoreboard ([1] of DW1)
182
 *      - Depth Stall ([13] of DW1)
183
 *      - Post-Sync Operation ([13] of DW1)
184
 *      - Notify Enable ([8] of DW1)"
185
 *
186
 * The cache flushes require the workaround flush that triggered this
187
 * one, so we can't use it.  Depth stall would trigger the same.
188
 * Post-sync nonzero is what triggered this second workaround, so we
189
 * can't use that one either.  Notify enable is IRQs, which aren't
190
 * really our business.  That leaves only stall at scoreboard.
191
 */
192
static int
5060 serge 193
intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
2342 Serge 194
{
5060 serge 195
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
2342 Serge 196
	int ret;
197
 
198
 
199
	ret = intel_ring_begin(ring, 6);
200
	if (ret)
201
		return ret;
202
 
203
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
204
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
205
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
206
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
207
	intel_ring_emit(ring, 0); /* low dword */
208
	intel_ring_emit(ring, 0); /* high dword */
209
	intel_ring_emit(ring, MI_NOOP);
210
	intel_ring_advance(ring);
211
 
212
	ret = intel_ring_begin(ring, 6);
213
	if (ret)
214
		return ret;
215
 
216
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
217
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
218
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
219
	intel_ring_emit(ring, 0);
220
	intel_ring_emit(ring, 0);
221
	intel_ring_emit(ring, MI_NOOP);
222
	intel_ring_advance(ring);
223
 
224
	return 0;
225
}
226
 
227
static int
5060 serge 228
gen6_render_ring_flush(struct intel_engine_cs *ring,
2342 Serge 229
                         u32 invalidate_domains, u32 flush_domains)
230
{
231
	u32 flags = 0;
5060 serge 232
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
2342 Serge 233
	int ret;
234
 
235
	/* Force SNB workarounds for PIPE_CONTROL flushes */
3031 serge 236
	ret = intel_emit_post_sync_nonzero_flush(ring);
237
	if (ret)
238
		return ret;
2342 Serge 239
 
240
	/* Just flush everything.  Experiments have shown that reducing the
241
	 * number of bits based on the write domains has little performance
242
	 * impact.
243
	 */
3031 serge 244
	if (flush_domains) {
245
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
246
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
247
		/*
248
		 * Ensure that any following seqno writes only happen
249
		 * when the render cache is indeed flushed.
250
		 */
251
		flags |= PIPE_CONTROL_CS_STALL;
252
	}
253
	if (invalidate_domains) {
254
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
255
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
256
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
257
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
258
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
259
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
260
		/*
261
		 * TLB invalidate requires a post-sync write.
262
		 */
3243 Serge 263
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
3031 serge 264
	}
265
 
266
	ret = intel_ring_begin(ring, 4);
267
	if (ret)
268
		return ret;
269
 
270
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
271
	intel_ring_emit(ring, flags);
272
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
273
	intel_ring_emit(ring, 0);
274
	intel_ring_advance(ring);
275
 
276
	return 0;
277
}
278
 
279
static int
5060 serge 280
gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
3031 serge 281
{
282
	int ret;
283
 
284
	ret = intel_ring_begin(ring, 4);
285
	if (ret)
286
		return ret;
287
 
288
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
289
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
290
			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
291
	intel_ring_emit(ring, 0);
292
	intel_ring_emit(ring, 0);
293
	intel_ring_advance(ring);
294
 
295
	return 0;
296
}
297
 
5060 serge 298
static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
4104 Serge 299
{
300
	int ret;
301
 
302
	if (!ring->fbc_dirty)
303
		return 0;
304
 
4560 Serge 305
	ret = intel_ring_begin(ring, 6);
4104 Serge 306
	if (ret)
307
		return ret;
308
	/* WaFbcNukeOn3DBlt:ivb/hsw */
309
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
310
	intel_ring_emit(ring, MSG_FBC_REND_STATE);
311
	intel_ring_emit(ring, value);
4560 Serge 312
	intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
313
	intel_ring_emit(ring, MSG_FBC_REND_STATE);
314
	intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
4104 Serge 315
	intel_ring_advance(ring);
316
 
317
	ring->fbc_dirty = false;
318
	return 0;
319
}
320
 
3031 serge 321
static int
5060 serge 322
gen7_render_ring_flush(struct intel_engine_cs *ring,
3031 serge 323
		       u32 invalidate_domains, u32 flush_domains)
324
{
325
	u32 flags = 0;
5060 serge 326
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
3031 serge 327
	int ret;
328
 
329
	/*
330
	 * Ensure that any following seqno writes only happen when the render
331
	 * cache is indeed flushed.
332
	 *
333
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
334
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
335
	 * don't try to be clever and just set it unconditionally.
336
	 */
337
	flags |= PIPE_CONTROL_CS_STALL;
338
 
339
	/* Just flush everything.  Experiments have shown that reducing the
340
	 * number of bits based on the write domains has little performance
341
	 * impact.
342
	 */
343
	if (flush_domains) {
2342 Serge 344
	flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
3031 serge 345
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
346
	}
347
	if (invalidate_domains) {
348
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
2342 Serge 349
	flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
350
	flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
351
	flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
352
	flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
353
	flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
3031 serge 354
		/*
355
		 * TLB invalidate requires a post-sync write.
356
		 */
357
		flags |= PIPE_CONTROL_QW_WRITE;
3480 Serge 358
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2342 Serge 359
 
3031 serge 360
		/* Workaround: we must issue a pipe_control with CS-stall bit
361
		 * set before a pipe_control command that has the state cache
362
		 * invalidate bit set. */
363
		gen7_render_ring_cs_stall_wa(ring);
364
	}
365
 
366
	ret = intel_ring_begin(ring, 4);
2342 Serge 367
	if (ret)
368
		return ret;
369
 
3031 serge 370
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
2342 Serge 371
	intel_ring_emit(ring, flags);
3480 Serge 372
	intel_ring_emit(ring, scratch_addr);
3031 serge 373
	intel_ring_emit(ring, 0);
2342 Serge 374
	intel_ring_advance(ring);
375
 
4560 Serge 376
	if (!invalidate_domains && flush_domains)
4104 Serge 377
		return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
378
 
2342 Serge 379
	return 0;
380
}
381
 
4560 Serge 382
static int
5060 serge 383
gen8_emit_pipe_control(struct intel_engine_cs *ring,
384
		       u32 flags, u32 scratch_addr)
385
{
386
	int ret;
387
 
388
	ret = intel_ring_begin(ring, 6);
389
	if (ret)
390
		return ret;
391
 
392
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
393
	intel_ring_emit(ring, flags);
394
	intel_ring_emit(ring, scratch_addr);
395
	intel_ring_emit(ring, 0);
396
	intel_ring_emit(ring, 0);
397
	intel_ring_emit(ring, 0);
398
	intel_ring_advance(ring);
399
 
400
	return 0;
401
}
402
 
403
static int
404
gen8_render_ring_flush(struct intel_engine_cs *ring,
4560 Serge 405
		       u32 invalidate_domains, u32 flush_domains)
406
{
407
	u32 flags = 0;
5060 serge 408
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
4560 Serge 409
	int ret;
410
 
411
	flags |= PIPE_CONTROL_CS_STALL;
412
 
413
	if (flush_domains) {
414
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
415
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
416
	}
417
	if (invalidate_domains) {
418
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
419
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
420
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
421
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
422
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
423
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
424
		flags |= PIPE_CONTROL_QW_WRITE;
425
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
426
 
5060 serge 427
		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
428
		ret = gen8_emit_pipe_control(ring,
429
					     PIPE_CONTROL_CS_STALL |
430
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
431
					     0);
4560 Serge 432
	if (ret)
433
		return ret;
5060 serge 434
	}
4560 Serge 435
 
5060 serge 436
	return gen8_emit_pipe_control(ring, flags, scratch_addr);
4560 Serge 437
}
438
 
5060 serge 439
static void ring_write_tail(struct intel_engine_cs *ring,
2332 Serge 440
			    u32 value)
441
{
5060 serge 442
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2332 Serge 443
	I915_WRITE_TAIL(ring, value);
444
}
445
 
5060 serge 446
u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
2332 Serge 447
{
5060 serge 448
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
449
	u64 acthd;
2332 Serge 450
 
5060 serge 451
	if (INTEL_INFO(ring->dev)->gen >= 8)
452
		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
453
					 RING_ACTHD_UDW(ring->mmio_base));
454
	else if (INTEL_INFO(ring->dev)->gen >= 4)
455
		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
456
	else
457
		acthd = I915_READ(ACTHD);
458
 
459
	return acthd;
2332 Serge 460
}
461
 
5060 serge 462
static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
4104 Serge 463
{
464
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
465
	u32 addr;
466
 
467
	addr = dev_priv->status_page_dmah->busaddr;
468
	if (INTEL_INFO(ring->dev)->gen >= 4)
469
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
470
	I915_WRITE(HWS_PGA, addr);
471
}
472
 
5060 serge 473
static bool stop_ring(struct intel_engine_cs *ring)
2332 Serge 474
{
5060 serge 475
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
2332 Serge 476
 
5060 serge 477
	if (!IS_GEN2(ring->dev)) {
478
		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
479
		if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
480
			DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
481
			return false;
482
		}
483
	}
3031 serge 484
 
2332 Serge 485
	I915_WRITE_CTL(ring, 0);
486
	I915_WRITE_HEAD(ring, 0);
487
	ring->write_tail(ring, 0);
488
 
5060 serge 489
	if (!IS_GEN2(ring->dev)) {
490
		(void)I915_READ_CTL(ring);
491
		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
492
	}
2332 Serge 493
 
5060 serge 494
	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
495
}
496
 
497
static int init_ring_common(struct intel_engine_cs *ring)
498
{
499
	struct drm_device *dev = ring->dev;
500
	struct drm_i915_private *dev_priv = dev->dev_private;
501
	struct intel_ringbuffer *ringbuf = ring->buffer;
502
	struct drm_i915_gem_object *obj = ringbuf->obj;
503
	int ret = 0;
504
 
505
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
506
 
507
	if (!stop_ring(ring)) {
508
		/* G45 ring initialization often fails to reset head to zero */
2332 Serge 509
		DRM_DEBUG_KMS("%s head not reset to zero "
510
			      "ctl %08x head %08x tail %08x start %08x\n",
511
			      ring->name,
512
			      I915_READ_CTL(ring),
513
			      I915_READ_HEAD(ring),
514
			      I915_READ_TAIL(ring),
515
			      I915_READ_START(ring));
516
 
5060 serge 517
		if (!stop_ring(ring)) {
2332 Serge 518
			DRM_ERROR("failed to set %s head to zero "
519
				  "ctl %08x head %08x tail %08x start %08x\n",
520
				  ring->name,
521
				  I915_READ_CTL(ring),
522
				  I915_READ_HEAD(ring),
523
				  I915_READ_TAIL(ring),
524
				  I915_READ_START(ring));
5060 serge 525
			ret = -EIO;
526
			goto out;
2332 Serge 527
		}
528
	}
529
 
5060 serge 530
	if (I915_NEED_GFX_HWS(dev))
531
		intel_ring_setup_status_page(ring);
532
	else
533
		ring_setup_phys_status_page(ring);
534
 
535
	/* Enforce ordering by reading HEAD register back */
536
	I915_READ_HEAD(ring);
537
 
3031 serge 538
	/* Initialize the ring. This must happen _after_ we've cleared the ring
539
	 * registers with the above sequence (the readback of the HEAD registers
540
	 * also enforces ordering), otherwise the hw might lose the new ring
541
	 * register values. */
4104 Serge 542
	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
2332 Serge 543
	I915_WRITE_CTL(ring,
5060 serge 544
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
3031 serge 545
			| RING_VALID);
2332 Serge 546
 
547
	/* If the head is still not zero, the ring is dead */
3031 serge 548
	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
4104 Serge 549
		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
3031 serge 550
		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
2332 Serge 551
		DRM_ERROR("%s initialization failed "
5060 serge 552
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
2332 Serge 553
				ring->name,
5060 serge 554
			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
555
			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
556
			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
3031 serge 557
		ret = -EIO;
558
		goto out;
2332 Serge 559
	}
560
 
561
 
5060 serge 562
		ringbuf->head = I915_READ_HEAD(ring);
563
		ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
564
		ringbuf->space = ring_space(ringbuf);
565
		ringbuf->last_retired_head = -1;
566
 
4104 Serge 567
	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
568
 
3031 serge 569
out:
4560 Serge 570
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
2332 Serge 571
 
3031 serge 572
	return ret;
2332 Serge 573
}
574
 
575
static int
5060 serge 576
init_pipe_control(struct intel_engine_cs *ring)
2332 Serge 577
{
578
	int ret;
579
 
4104 Serge 580
	if (ring->scratch.obj)
2332 Serge 581
		return 0;
582
 
4104 Serge 583
	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
584
	if (ring->scratch.obj == NULL) {
2332 Serge 585
		DRM_ERROR("Failed to allocate seqno page\n");
586
		ret = -ENOMEM;
587
		goto err;
588
	}
589
 
5060 serge 590
	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
591
	if (ret)
592
		goto err_unref;
2332 Serge 593
 
5060 serge 594
	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
2332 Serge 595
	if (ret)
596
		goto err_unref;
597
 
4104 Serge 598
	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
4539 Serge 599
    ring->scratch.cpu_page = (void*)MapIoMem((addr_t)sg_page(ring->scratch.obj->pages->sgl),4096, PG_SW|0x100);
4104 Serge 600
	if (ring->scratch.cpu_page == NULL) {
601
		ret = -ENOMEM;
2332 Serge 602
		goto err_unpin;
4104 Serge 603
	}
2332 Serge 604
 
3480 Serge 605
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
4104 Serge 606
			 ring->name, ring->scratch.gtt_offset);
2332 Serge 607
	return 0;
608
 
609
err_unpin:
5060 serge 610
	i915_gem_object_ggtt_unpin(ring->scratch.obj);
2332 Serge 611
err_unref:
4104 Serge 612
	drm_gem_object_unreference(&ring->scratch.obj->base);
2332 Serge 613
err:
614
	return ret;
615
}
616
 
5060 serge 617
static int init_render_ring(struct intel_engine_cs *ring)
2332 Serge 618
{
619
	struct drm_device *dev = ring->dev;
620
	struct drm_i915_private *dev_priv = dev->dev_private;
621
	int ret = init_ring_common(ring);
5060 serge 622
	if (ret)
623
		return ret;
2332 Serge 624
 
5060 serge 625
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
626
	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
3031 serge 627
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
3243 Serge 628
 
629
	/* We need to disable the AsyncFlip performance optimisations in order
630
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
631
	 * programmed to '1' on all products.
4104 Serge 632
	 *
5060 serge 633
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
3243 Serge 634
	 */
635
	if (INTEL_INFO(dev)->gen >= 6)
636
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
637
 
638
	/* Required for the hardware to program scanline values for waiting */
5060 serge 639
	/* WaEnableFlushTlbInvalidationMode:snb */
3243 Serge 640
	if (INTEL_INFO(dev)->gen == 6)
641
		I915_WRITE(GFX_MODE,
5060 serge 642
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
3243 Serge 643
 
5060 serge 644
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
2332 Serge 645
		if (IS_GEN7(dev))
646
			I915_WRITE(GFX_MODE_GEN7,
5060 serge 647
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
3031 serge 648
				   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
2332 Serge 649
 
2342 Serge 650
	if (INTEL_INFO(dev)->gen >= 5) {
2339 Serge 651
		ret = init_pipe_control(ring);
2332 Serge 652
		if (ret)
653
			return ret;
654
	}
655
 
3031 serge 656
	if (IS_GEN6(dev)) {
657
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
658
		 * "If this bit is set, STCunit will have LRA as replacement
659
		 *  policy. [...] This bit must be reset.  LRA replacement
660
		 *  policy is not supported."
661
		 */
662
		I915_WRITE(CACHE_MODE_0,
663
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
2342 Serge 664
	}
665
 
3031 serge 666
	if (INTEL_INFO(dev)->gen >= 6)
667
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
668
 
4560 Serge 669
	if (HAS_L3_DPF(dev))
670
		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
3031 serge 671
 
2332 Serge 672
	return ret;
673
}
674
 
5060 serge 675
static void render_ring_cleanup(struct intel_engine_cs *ring)
2332 Serge 676
{
3480 Serge 677
	struct drm_device *dev = ring->dev;
5128 serge 678
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 679
 
5128 serge 680
	if (dev_priv->semaphore_obj) {
681
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
682
		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
683
		dev_priv->semaphore_obj = NULL;
684
	}
685
 
4104 Serge 686
	if (ring->scratch.obj == NULL)
2332 Serge 687
		return;
688
 
4104 Serge 689
	if (INTEL_INFO(dev)->gen >= 5) {
5060 serge 690
//		kunmap(sg_page(ring->scratch.obj->pages->sgl));
691
		i915_gem_object_ggtt_unpin(ring->scratch.obj);
4104 Serge 692
	}
693
 
694
	drm_gem_object_unreference(&ring->scratch.obj->base);
695
	ring->scratch.obj = NULL;
2332 Serge 696
}
697
 
5060 serge 698
static int gen8_rcs_signal(struct intel_engine_cs *signaller,
699
			   unsigned int num_dwords)
2332 Serge 700
{
5060 serge 701
#define MBOX_UPDATE_DWORDS 8
702
	struct drm_device *dev = signaller->dev;
703
	struct drm_i915_private *dev_priv = dev->dev_private;
704
	struct intel_engine_cs *waiter;
705
	int i, ret, num_rings;
706
 
707
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
708
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
709
#undef MBOX_UPDATE_DWORDS
710
 
711
	ret = intel_ring_begin(signaller, num_dwords);
712
	if (ret)
713
		return ret;
714
 
715
	for_each_ring(waiter, dev_priv, i) {
716
		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
717
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
718
			continue;
719
 
720
		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
721
		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
722
					   PIPE_CONTROL_QW_WRITE |
723
					   PIPE_CONTROL_FLUSH_ENABLE);
724
		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
725
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
726
		intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
727
		intel_ring_emit(signaller, 0);
728
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
729
					   MI_SEMAPHORE_TARGET(waiter->id));
730
		intel_ring_emit(signaller, 0);
731
	}
732
 
733
	return 0;
2332 Serge 734
}
735
 
5060 serge 736
static int gen8_xcs_signal(struct intel_engine_cs *signaller,
737
			   unsigned int num_dwords)
738
{
739
#define MBOX_UPDATE_DWORDS 6
740
	struct drm_device *dev = signaller->dev;
741
	struct drm_i915_private *dev_priv = dev->dev_private;
742
	struct intel_engine_cs *waiter;
743
	int i, ret, num_rings;
744
 
745
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
746
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
747
#undef MBOX_UPDATE_DWORDS
748
 
749
	ret = intel_ring_begin(signaller, num_dwords);
750
	if (ret)
751
		return ret;
752
 
753
	for_each_ring(waiter, dev_priv, i) {
754
		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
755
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
756
			continue;
757
 
758
		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
759
					   MI_FLUSH_DW_OP_STOREDW);
760
		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
761
					   MI_FLUSH_DW_USE_GTT);
762
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
763
		intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
764
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
765
					   MI_SEMAPHORE_TARGET(waiter->id));
766
		intel_ring_emit(signaller, 0);
767
	}
768
 
769
	return 0;
770
}
771
 
772
static int gen6_signal(struct intel_engine_cs *signaller,
773
		       unsigned int num_dwords)
774
{
775
	struct drm_device *dev = signaller->dev;
776
	struct drm_i915_private *dev_priv = dev->dev_private;
777
	struct intel_engine_cs *useless;
778
	int i, ret, num_rings;
779
 
780
#define MBOX_UPDATE_DWORDS 3
781
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
782
	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
783
#undef MBOX_UPDATE_DWORDS
784
 
785
	ret = intel_ring_begin(signaller, num_dwords);
786
	if (ret)
787
		return ret;
788
 
789
	for_each_ring(useless, dev_priv, i) {
790
		u32 mbox_reg = signaller->semaphore.mbox.signal[i];
791
		if (mbox_reg != GEN6_NOSYNC) {
792
			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
793
			intel_ring_emit(signaller, mbox_reg);
794
			intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
795
		}
796
	}
797
 
798
	/* If num_dwords was rounded, make sure the tail pointer is correct */
799
	if (num_rings % 2 == 0)
800
		intel_ring_emit(signaller, MI_NOOP);
801
 
802
	return 0;
803
}
804
 
2342 Serge 805
/**
806
 * gen6_add_request - Update the semaphore mailbox registers
807
 *
808
 * @ring - ring that is adding a request
809
 * @seqno - return seqno stuck into the ring
810
 *
811
 * Update the mailbox registers in the *other* rings with the current seqno.
812
 * This acts like a signal in the canonical semaphore.
813
 */
2332 Serge 814
static int
5060 serge 815
gen6_add_request(struct intel_engine_cs *ring)
2332 Serge 816
{
5060 serge 817
	int ret;
2332 Serge 818
 
5060 serge 819
	if (ring->semaphore.signal)
820
	ret = ring->semaphore.signal(ring, 4);
821
	else
822
		ret = intel_ring_begin(ring, 4);
4560 Serge 823
 
2332 Serge 824
	if (ret)
825
		return ret;
826
 
827
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
828
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
4560 Serge 829
	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
2332 Serge 830
	intel_ring_emit(ring, MI_USER_INTERRUPT);
4560 Serge 831
	__intel_ring_advance(ring);
2332 Serge 832
 
833
	return 0;
834
}
835
 
3480 Serge 836
static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
837
					      u32 seqno)
838
{
839
	struct drm_i915_private *dev_priv = dev->dev_private;
840
	return dev_priv->last_seqno < seqno;
841
}
842
 
2342 Serge 843
/**
844
 * intel_ring_sync - sync the waiter to the signaller on seqno
845
 *
846
 * @waiter - ring that is waiting
847
 * @signaller - ring which has, or will signal
848
 * @seqno - seqno which the waiter will block on
849
 */
5060 serge 850
 
2342 Serge 851
static int
5060 serge 852
gen8_ring_sync(struct intel_engine_cs *waiter,
853
	       struct intel_engine_cs *signaller,
854
	       u32 seqno)
855
{
856
	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
857
	int ret;
858
 
859
	ret = intel_ring_begin(waiter, 4);
860
	if (ret)
861
		return ret;
862
 
863
	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
864
				MI_SEMAPHORE_GLOBAL_GTT |
865
				MI_SEMAPHORE_POLL |
866
				MI_SEMAPHORE_SAD_GTE_SDD);
867
	intel_ring_emit(waiter, seqno);
868
	intel_ring_emit(waiter,
869
			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
870
	intel_ring_emit(waiter,
871
			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
872
	intel_ring_advance(waiter);
873
	return 0;
874
}
875
 
876
static int
877
gen6_ring_sync(struct intel_engine_cs *waiter,
878
	       struct intel_engine_cs *signaller,
2332 Serge 879
		u32 seqno)
880
{
2342 Serge 881
	u32 dw1 = MI_SEMAPHORE_MBOX |
882
		  MI_SEMAPHORE_COMPARE |
883
		  MI_SEMAPHORE_REGISTER;
5060 serge 884
	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
885
	int ret;
2332 Serge 886
 
3031 serge 887
	/* Throughout all of the GEM code, seqno passed implies our current
888
	 * seqno is >= the last seqno executed. However for hardware the
889
	 * comparison is strictly greater than.
890
	 */
891
	seqno -= 1;
892
 
5060 serge 893
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
3031 serge 894
 
2342 Serge 895
	ret = intel_ring_begin(waiter, 4);
2332 Serge 896
	if (ret)
897
		return ret;
898
 
3480 Serge 899
	/* If seqno wrap happened, omit the wait with no-ops */
900
	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
5060 serge 901
		intel_ring_emit(waiter, dw1 | wait_mbox);
2342 Serge 902
	intel_ring_emit(waiter, seqno);
903
	intel_ring_emit(waiter, 0);
904
	intel_ring_emit(waiter, MI_NOOP);
3480 Serge 905
	} else {
906
		intel_ring_emit(waiter, MI_NOOP);
907
		intel_ring_emit(waiter, MI_NOOP);
908
		intel_ring_emit(waiter, MI_NOOP);
909
		intel_ring_emit(waiter, MI_NOOP);
910
	}
2342 Serge 911
	intel_ring_advance(waiter);
2332 Serge 912
 
913
	return 0;
914
}
915
 
916
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
917
do {									\
2342 Serge 918
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
919
		 PIPE_CONTROL_DEPTH_STALL);				\
2332 Serge 920
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
921
	intel_ring_emit(ring__, 0);							\
922
	intel_ring_emit(ring__, 0);							\
923
} while (0)
924
 
925
static int
5060 serge 926
pc_render_add_request(struct intel_engine_cs *ring)
2332 Serge 927
{
5060 serge 928
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
2332 Serge 929
	int ret;
930
 
931
	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
932
	 * incoherent with writes to memory, i.e. completely fubar,
933
	 * so we need to use PIPE_NOTIFY instead.
934
	 *
935
	 * However, we also need to workaround the qword write
936
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
937
	 * memory before requesting an interrupt.
938
	 */
939
	ret = intel_ring_begin(ring, 32);
940
	if (ret)
941
		return ret;
942
 
2342 Serge 943
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
944
			PIPE_CONTROL_WRITE_FLUSH |
945
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
4104 Serge 946
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
4560 Serge 947
	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
2332 Serge 948
	intel_ring_emit(ring, 0);
949
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 950
	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
2332 Serge 951
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 952
	scratch_addr += 2 * CACHELINE_BYTES;
2332 Serge 953
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 954
	scratch_addr += 2 * CACHELINE_BYTES;
2332 Serge 955
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 956
	scratch_addr += 2 * CACHELINE_BYTES;
2332 Serge 957
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 958
	scratch_addr += 2 * CACHELINE_BYTES;
2332 Serge 959
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
3031 serge 960
 
2342 Serge 961
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
962
			PIPE_CONTROL_WRITE_FLUSH |
963
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
2332 Serge 964
			PIPE_CONTROL_NOTIFY);
4104 Serge 965
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
4560 Serge 966
	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
2332 Serge 967
	intel_ring_emit(ring, 0);
4560 Serge 968
	__intel_ring_advance(ring);
2332 Serge 969
 
970
	return 0;
971
}
972
 
973
static u32
5060 serge 974
gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
2342 Serge 975
{
976
	/* Workaround to force correct ordering between irq and seqno writes on
977
	 * ivb (and maybe also on snb) by reading from a CS register (like
978
	 * ACTHD) before reading the status page. */
5060 serge 979
	if (!lazy_coherency) {
980
		struct drm_i915_private *dev_priv = ring->dev->dev_private;
981
		POSTING_READ(RING_ACTHD(ring->mmio_base));
982
	}
983
 
2342 Serge 984
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
985
}
986
 
987
static u32
5060 serge 988
ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
2332 Serge 989
{
990
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
991
}
992
 
3480 Serge 993
static void
5060 serge 994
ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
3480 Serge 995
{
996
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
997
}
998
 
2332 Serge 999
static u32
5060 serge 1000
pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
2332 Serge 1001
{
4104 Serge 1002
	return ring->scratch.cpu_page[0];
2332 Serge 1003
}
1004
 
3480 Serge 1005
static void
5060 serge 1006
pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
3480 Serge 1007
{
4104 Serge 1008
	ring->scratch.cpu_page[0] = seqno;
3480 Serge 1009
}
1010
 
3031 serge 1011
static bool
5060 serge 1012
gen5_ring_get_irq(struct intel_engine_cs *ring)
2332 Serge 1013
{
3031 serge 1014
	struct drm_device *dev = ring->dev;
5060 serge 1015
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1016
	unsigned long flags;
1017
 
1018
	if (!dev->irq_enabled)
1019
		return false;
1020
 
1021
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
4104 Serge 1022
	if (ring->irq_refcount++ == 0)
5060 serge 1023
		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
3031 serge 1024
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1025
 
1026
	return true;
2332 Serge 1027
}
1028
 
1029
static void
5060 serge 1030
gen5_ring_put_irq(struct intel_engine_cs *ring)
2332 Serge 1031
{
3031 serge 1032
	struct drm_device *dev = ring->dev;
5060 serge 1033
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1034
	unsigned long flags;
1035
 
1036
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
4104 Serge 1037
	if (--ring->irq_refcount == 0)
5060 serge 1038
		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
3031 serge 1039
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1040
}
1041
 
3031 serge 1042
static bool
5060 serge 1043
i9xx_ring_get_irq(struct intel_engine_cs *ring)
2332 Serge 1044
{
3031 serge 1045
	struct drm_device *dev = ring->dev;
5060 serge 1046
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1047
	unsigned long flags;
1048
 
1049
	if (!dev->irq_enabled)
1050
		return false;
1051
 
1052
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1053
	if (ring->irq_refcount++ == 0) {
1054
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
2332 Serge 1055
	I915_WRITE(IMR, dev_priv->irq_mask);
1056
	POSTING_READ(IMR);
3031 serge 1057
	}
1058
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1059
 
1060
	return true;
2332 Serge 1061
}
1062
 
1063
static void
5060 serge 1064
i9xx_ring_put_irq(struct intel_engine_cs *ring)
2332 Serge 1065
{
3031 serge 1066
	struct drm_device *dev = ring->dev;
5060 serge 1067
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1068
	unsigned long flags;
1069
 
1070
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1071
	if (--ring->irq_refcount == 0) {
1072
		dev_priv->irq_mask |= ring->irq_enable_mask;
2332 Serge 1073
	I915_WRITE(IMR, dev_priv->irq_mask);
1074
	POSTING_READ(IMR);
3031 serge 1075
	}
1076
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1077
}
1078
 
1079
static bool
5060 serge 1080
i8xx_ring_get_irq(struct intel_engine_cs *ring)
2332 Serge 1081
{
1082
	struct drm_device *dev = ring->dev;
5060 serge 1083
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1084
	unsigned long flags;
2332 Serge 1085
 
1086
	if (!dev->irq_enabled)
1087
		return false;
1088
 
3031 serge 1089
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 1090
	if (ring->irq_refcount++ == 0) {
3031 serge 1091
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1092
		I915_WRITE16(IMR, dev_priv->irq_mask);
1093
		POSTING_READ16(IMR);
2332 Serge 1094
	}
3031 serge 1095
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1096
 
1097
	return true;
1098
}
1099
 
1100
static void
5060 serge 1101
i8xx_ring_put_irq(struct intel_engine_cs *ring)
2332 Serge 1102
{
1103
	struct drm_device *dev = ring->dev;
5060 serge 1104
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1105
	unsigned long flags;
2332 Serge 1106
 
3031 serge 1107
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 1108
	if (--ring->irq_refcount == 0) {
3031 serge 1109
		dev_priv->irq_mask |= ring->irq_enable_mask;
1110
		I915_WRITE16(IMR, dev_priv->irq_mask);
1111
		POSTING_READ16(IMR);
2332 Serge 1112
	}
3031 serge 1113
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1114
}
1115
 
5060 serge 1116
void intel_ring_setup_status_page(struct intel_engine_cs *ring)
2332 Serge 1117
{
1118
	struct drm_device *dev = ring->dev;
5060 serge 1119
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2332 Serge 1120
	u32 mmio = 0;
1121
 
1122
	/* The ring status page addresses are no longer next to the rest of
1123
	 * the ring registers as of gen7.
1124
	 */
1125
	if (IS_GEN7(dev)) {
1126
		switch (ring->id) {
3031 serge 1127
		case RCS:
2332 Serge 1128
			mmio = RENDER_HWS_PGA_GEN7;
1129
			break;
3031 serge 1130
		case BCS:
2332 Serge 1131
			mmio = BLT_HWS_PGA_GEN7;
1132
			break;
5060 serge 1133
		/*
1134
		 * VCS2 actually doesn't exist on Gen7. Only shut up
1135
		 * gcc switch check warning
1136
		 */
1137
		case VCS2:
3031 serge 1138
		case VCS:
2332 Serge 1139
			mmio = BSD_HWS_PGA_GEN7;
1140
			break;
4104 Serge 1141
		case VECS:
1142
			mmio = VEBOX_HWS_PGA_GEN7;
1143
			break;
2332 Serge 1144
		}
1145
	} else if (IS_GEN6(ring->dev)) {
1146
		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1147
	} else {
4560 Serge 1148
		/* XXX: gen8 returns to sanity */
2332 Serge 1149
		mmio = RING_HWS_PGA(ring->mmio_base);
1150
	}
1151
 
1152
	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1153
	POSTING_READ(mmio);
3746 Serge 1154
 
5060 serge 1155
	/*
1156
	 * Flush the TLB for this page
1157
	 *
1158
	 * FIXME: These two bits have disappeared on gen8, so a question
1159
	 * arises: do we still need this and if so how should we go about
1160
	 * invalidating the TLB?
1161
	 */
1162
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
4104 Serge 1163
		u32 reg = RING_INSTPM(ring->mmio_base);
5060 serge 1164
 
1165
		/* ring should be idle before issuing a sync flush*/
1166
		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1167
 
4104 Serge 1168
		I915_WRITE(reg,
1169
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1170
					      INSTPM_SYNC_FLUSH));
1171
		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1172
			     1000))
1173
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1174
				  ring->name);
1175
	}
2332 Serge 1176
}
1177
 
1178
static int
5060 serge 1179
bsd_ring_flush(struct intel_engine_cs *ring,
2332 Serge 1180
	       u32     invalidate_domains,
1181
	       u32     flush_domains)
1182
{
1183
	int ret;
1184
 
1185
	ret = intel_ring_begin(ring, 2);
1186
	if (ret)
1187
		return ret;
1188
 
1189
	intel_ring_emit(ring, MI_FLUSH);
1190
	intel_ring_emit(ring, MI_NOOP);
1191
	intel_ring_advance(ring);
1192
	return 0;
1193
}
1194
 
1195
static int
5060 serge 1196
i9xx_add_request(struct intel_engine_cs *ring)
2332 Serge 1197
{
1198
	int ret;
1199
 
1200
	ret = intel_ring_begin(ring, 4);
1201
	if (ret)
1202
		return ret;
1203
 
1204
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1205
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
4560 Serge 1206
	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
2332 Serge 1207
	intel_ring_emit(ring, MI_USER_INTERRUPT);
4560 Serge 1208
	__intel_ring_advance(ring);
2332 Serge 1209
 
1210
	return 0;
1211
}
1212
 
1213
static bool
5060 serge 1214
gen6_ring_get_irq(struct intel_engine_cs *ring)
2332 Serge 1215
{
1216
	struct drm_device *dev = ring->dev;
5060 serge 1217
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1218
	unsigned long flags;
2332 Serge 1219
 
1220
	if (!dev->irq_enabled)
1221
	       return false;
1222
 
3031 serge 1223
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 1224
	if (ring->irq_refcount++ == 0) {
4560 Serge 1225
		if (HAS_L3_DPF(dev) && ring->id == RCS)
4104 Serge 1226
			I915_WRITE_IMR(ring,
1227
				       ~(ring->irq_enable_mask |
4560 Serge 1228
					 GT_PARITY_ERROR(dev)));
3031 serge 1229
		else
1230
			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
5060 serge 1231
		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
2332 Serge 1232
	}
3031 serge 1233
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1234
 
2351 Serge 1235
    return true;
2332 Serge 1236
}
1237
 
1238
static void
5060 serge 1239
gen6_ring_put_irq(struct intel_engine_cs *ring)
2332 Serge 1240
{
1241
	struct drm_device *dev = ring->dev;
5060 serge 1242
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1243
	unsigned long flags;
2332 Serge 1244
 
3031 serge 1245
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 1246
	if (--ring->irq_refcount == 0) {
4560 Serge 1247
		if (HAS_L3_DPF(dev) && ring->id == RCS)
1248
			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
3031 serge 1249
		else
1250
			I915_WRITE_IMR(ring, ~0);
5060 serge 1251
		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
2332 Serge 1252
	}
3031 serge 1253
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1254
}
1255
 
4104 Serge 1256
static bool
5060 serge 1257
hsw_vebox_get_irq(struct intel_engine_cs *ring)
4104 Serge 1258
{
1259
	struct drm_device *dev = ring->dev;
1260
	struct drm_i915_private *dev_priv = dev->dev_private;
1261
	unsigned long flags;
1262
 
1263
	if (!dev->irq_enabled)
1264
		return false;
1265
 
1266
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1267
	if (ring->irq_refcount++ == 0) {
1268
		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
5060 serge 1269
		gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
4104 Serge 1270
	}
1271
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1272
 
1273
	return true;
1274
}
1275
 
1276
static void
5060 serge 1277
hsw_vebox_put_irq(struct intel_engine_cs *ring)
4104 Serge 1278
{
1279
	struct drm_device *dev = ring->dev;
1280
	struct drm_i915_private *dev_priv = dev->dev_private;
1281
	unsigned long flags;
1282
 
1283
	if (!dev->irq_enabled)
1284
		return;
1285
 
1286
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1287
	if (--ring->irq_refcount == 0) {
1288
		I915_WRITE_IMR(ring, ~0);
5060 serge 1289
		gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
4104 Serge 1290
	}
1291
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1292
}
1293
 
4560 Serge 1294
static bool
5060 serge 1295
gen8_ring_get_irq(struct intel_engine_cs *ring)
4560 Serge 1296
{
1297
	struct drm_device *dev = ring->dev;
1298
	struct drm_i915_private *dev_priv = dev->dev_private;
1299
	unsigned long flags;
1300
 
1301
	if (!dev->irq_enabled)
1302
		return false;
1303
 
1304
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1305
	if (ring->irq_refcount++ == 0) {
1306
		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1307
			I915_WRITE_IMR(ring,
1308
				       ~(ring->irq_enable_mask |
1309
					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1310
		} else {
1311
			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1312
		}
1313
		POSTING_READ(RING_IMR(ring->mmio_base));
1314
	}
1315
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1316
 
1317
	return true;
1318
}
1319
 
1320
static void
5060 serge 1321
gen8_ring_put_irq(struct intel_engine_cs *ring)
4560 Serge 1322
{
1323
	struct drm_device *dev = ring->dev;
1324
	struct drm_i915_private *dev_priv = dev->dev_private;
1325
	unsigned long flags;
1326
 
1327
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1328
	if (--ring->irq_refcount == 0) {
1329
		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1330
			I915_WRITE_IMR(ring,
1331
				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1332
		} else {
1333
			I915_WRITE_IMR(ring, ~0);
1334
		}
1335
		POSTING_READ(RING_IMR(ring->mmio_base));
1336
	}
1337
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1338
}
1339
 
2332 Serge 1340
static int
5060 serge 1341
i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1342
			 u64 offset, u32 length,
3243 Serge 1343
			 unsigned flags)
2332 Serge 1344
{
1345
	int ret;
1346
 
1347
	ret = intel_ring_begin(ring, 2);
1348
	if (ret)
1349
		return ret;
1350
 
1351
	intel_ring_emit(ring,
3031 serge 1352
			MI_BATCH_BUFFER_START |
1353
			MI_BATCH_GTT |
3243 Serge 1354
			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2332 Serge 1355
	intel_ring_emit(ring, offset);
1356
	intel_ring_advance(ring);
1357
 
1358
	return 0;
1359
}
1360
 
3243 Serge 1361
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1362
#define I830_BATCH_LIMIT (256*1024)
5128 serge 1363
#define I830_TLB_ENTRIES (2)
1364
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
2332 Serge 1365
static int
5060 serge 1366
i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1367
				u64 offset, u32 len,
3243 Serge 1368
				unsigned flags)
2332 Serge 1369
{
5128 serge 1370
	u32 cs_offset = ring->scratch.gtt_offset;
2332 Serge 1371
	int ret;
1372
 
5128 serge 1373
	ret = intel_ring_begin(ring, 6);
2332 Serge 1374
		if (ret)
1375
			return ret;
1376
 
5128 serge 1377
	/* Evict the invalid PTE TLBs */
1378
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1379
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1380
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1381
	intel_ring_emit(ring, cs_offset);
1382
	intel_ring_emit(ring, 0xdeadbeef);
3243 Serge 1383
		intel_ring_emit(ring, MI_NOOP);
1384
		intel_ring_advance(ring);
1385
 
5128 serge 1386
	if ((flags & I915_DISPATCH_PINNED) == 0) {
3243 Serge 1387
		if (len > I830_BATCH_LIMIT)
1388
			return -ENOSPC;
1389
 
5128 serge 1390
		ret = intel_ring_begin(ring, 6 + 2);
3243 Serge 1391
		if (ret)
1392
			return ret;
5128 serge 1393
 
1394
		/* Blit the batch (which has now all relocs applied) to the
1395
		 * stable batch scratch bo area (so that the CS never
1396
		 * stumbles over its tlb invalidation bug) ...
1397
		 */
1398
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1399
		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1400
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 1024);
3243 Serge 1401
		intel_ring_emit(ring, cs_offset);
1402
		intel_ring_emit(ring, 4096);
1403
		intel_ring_emit(ring, offset);
5128 serge 1404
 
3243 Serge 1405
		intel_ring_emit(ring, MI_FLUSH);
5128 serge 1406
		intel_ring_emit(ring, MI_NOOP);
1407
		intel_ring_advance(ring);
3243 Serge 1408
 
1409
		/* ... and execute it. */
5128 serge 1410
		offset = cs_offset;
1411
	}
1412
 
1413
	ret = intel_ring_begin(ring, 4);
1414
	if (ret)
1415
		return ret;
1416
 
3243 Serge 1417
		intel_ring_emit(ring, MI_BATCH_BUFFER);
5128 serge 1418
	intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1419
	intel_ring_emit(ring, offset + len - 8);
1420
	intel_ring_emit(ring, MI_NOOP);
3031 serge 1421
	intel_ring_advance(ring);
1422
 
1423
	return 0;
1424
}
1425
 
1426
static int
5060 serge 1427
i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1428
			 u64 offset, u32 len,
3243 Serge 1429
			 unsigned flags)
3031 serge 1430
{
1431
	int ret;
1432
 
2332 Serge 1433
		ret = intel_ring_begin(ring, 2);
1434
		if (ret)
1435
			return ret;
1436
 
3031 serge 1437
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
3243 Serge 1438
	intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
2332 Serge 1439
	intel_ring_advance(ring);
1440
 
1441
	return 0;
1442
}
1443
 
5060 serge 1444
static void cleanup_status_page(struct intel_engine_cs *ring)
2332 Serge 1445
{
1446
	struct drm_i915_gem_object *obj;
1447
 
1448
	obj = ring->status_page.obj;
1449
	if (obj == NULL)
1450
		return;
1451
 
5060 serge 1452
//	kunmap(sg_page(obj->pages->sgl));
1453
	i915_gem_object_ggtt_unpin(obj);
2344 Serge 1454
	drm_gem_object_unreference(&obj->base);
2332 Serge 1455
	ring->status_page.obj = NULL;
1456
}
1457
 
5060 serge 1458
static int init_status_page(struct intel_engine_cs *ring)
2332 Serge 1459
{
1460
	struct drm_i915_gem_object *obj;
5060 serge 1461
 
1462
	if ((obj = ring->status_page.obj) == NULL) {
1463
		unsigned flags;
2332 Serge 1464
	int ret;
1465
 
5060 serge 1466
		obj = i915_gem_alloc_object(ring->dev, 4096);
2332 Serge 1467
	if (obj == NULL) {
1468
		DRM_ERROR("Failed to allocate status page\n");
5060 serge 1469
			return -ENOMEM;
2332 Serge 1470
	}
1471
 
5060 serge 1472
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1473
	if (ret)
1474
		goto err_unref;
2332 Serge 1475
 
5060 serge 1476
		flags = 0;
1477
		if (!HAS_LLC(ring->dev))
1478
			/* On g33, we cannot place HWS above 256MiB, so
1479
			 * restrict its pinning to the low mappable arena.
1480
			 * Though this restriction is not documented for
1481
			 * gen4, gen5, or byt, they also behave similarly
1482
			 * and hang if the HWS is placed at the top of the
1483
			 * GTT. To generalise, it appears that all !llc
1484
			 * platforms have issues with us placing the HWS
1485
			 * above the mappable region (even though we never
1486
			 * actualy map it).
1487
			 */
1488
			flags |= PIN_MAPPABLE;
1489
		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1490
		if (ret) {
1491
err_unref:
1492
			drm_gem_object_unreference(&obj->base);
1493
			return ret;
1494
		}
1495
 
1496
		ring->status_page.obj = obj;
2332 Serge 1497
	}
1498
 
4104 Serge 1499
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
4539 Serge 1500
    ring->status_page.page_addr = (void*)MapIoMem((addr_t)sg_page(obj->pages->sgl),4096,PG_SW|0x100);
2332 Serge 1501
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1502
 
1503
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1504
			ring->name, ring->status_page.gfx_addr);
1505
 
1506
	return 0;
1507
}
1508
 
5060 serge 1509
static int init_phys_status_page(struct intel_engine_cs *ring)
3243 Serge 1510
{
1511
    struct drm_i915_private *dev_priv = ring->dev->dev_private;
1512
 
1513
    if (!dev_priv->status_page_dmah) {
1514
        dev_priv->status_page_dmah =
1515
            drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1516
        if (!dev_priv->status_page_dmah)
1517
            return -ENOMEM;
1518
    }
1519
 
1520
    ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1521
    memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1522
 
1523
    return 0;
1524
}
1525
 
5060 serge 1526
static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2332 Serge 1527
{
5060 serge 1528
	if (!ringbuf->obj)
1529
		return;
1530
 
1531
	iounmap(ringbuf->virtual_start);
1532
	i915_gem_object_ggtt_unpin(ringbuf->obj);
1533
	drm_gem_object_unreference(&ringbuf->obj->base);
1534
	ringbuf->obj = NULL;
1535
}
1536
 
1537
static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1538
				      struct intel_ringbuffer *ringbuf)
1539
{
1540
	struct drm_i915_private *dev_priv = to_i915(dev);
2340 Serge 1541
	struct drm_i915_gem_object *obj;
2332 Serge 1542
	int ret;
2340 Serge 1543
 
5060 serge 1544
	if (ringbuf->obj)
1545
		return 0;
2332 Serge 1546
 
3480 Serge 1547
	obj = NULL;
4371 Serge 1548
	if (!HAS_LLC(dev))
5060 serge 1549
		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
3480 Serge 1550
	if (obj == NULL)
5060 serge 1551
		obj = i915_gem_alloc_object(dev, ringbuf->size);
1552
	if (obj == NULL)
1553
		return -ENOMEM;
2332 Serge 1554
 
5060 serge 1555
	/* mark ring buffers as read-only from GPU side by default */
1556
	obj->gt_ro = 1;
2332 Serge 1557
 
5060 serge 1558
	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2332 Serge 1559
	if (ret)
1560
		goto err_unref;
1561
 
3031 serge 1562
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1563
	if (ret)
1564
		goto err_unpin;
2332 Serge 1565
 
5060 serge 1566
	ringbuf->virtual_start =
4104 Serge 1567
		ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
5060 serge 1568
				ringbuf->size);
1569
	if (ringbuf->virtual_start == NULL) {
2332 Serge 1570
		ret = -EINVAL;
1571
		goto err_unpin;
1572
	}
1573
 
5060 serge 1574
	ringbuf->obj = obj;
1575
	return 0;
1576
 
1577
err_unpin:
1578
	i915_gem_object_ggtt_unpin(obj);
1579
err_unref:
1580
	drm_gem_object_unreference(&obj->base);
1581
	return ret;
1582
}
1583
 
1584
static int intel_init_ring_buffer(struct drm_device *dev,
1585
				  struct intel_engine_cs *ring)
1586
{
1587
	struct intel_ringbuffer *ringbuf = ring->buffer;
1588
	int ret;
1589
 
1590
	if (ringbuf == NULL) {
1591
		ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1592
		if (!ringbuf)
1593
			return -ENOMEM;
1594
		ring->buffer = ringbuf;
1595
	}
1596
 
1597
	ring->dev = dev;
1598
	INIT_LIST_HEAD(&ring->active_list);
1599
	INIT_LIST_HEAD(&ring->request_list);
1600
	ringbuf->size = 32 * PAGE_SIZE;
1601
	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1602
 
1603
	init_waitqueue_head(&ring->irq_queue);
1604
 
1605
	if (I915_NEED_GFX_HWS(dev)) {
1606
		ret = init_status_page(ring);
1607
		if (ret)
1608
			goto error;
1609
	} else {
1610
		BUG_ON(ring->id != RCS);
1611
		ret = init_phys_status_page(ring);
2332 Serge 1612
	if (ret)
5060 serge 1613
			goto error;
1614
	}
2332 Serge 1615
 
5060 serge 1616
	ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1617
	if (ret) {
1618
		DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1619
		goto error;
1620
	}
1621
 
2332 Serge 1622
	/* Workaround an erratum on the i830 which causes a hang if
1623
	 * the TAIL pointer points to within the last 2 cachelines
1624
	 * of the buffer.
1625
	 */
5060 serge 1626
	ringbuf->effective_size = ringbuf->size;
1627
	if (IS_I830(dev) || IS_845G(dev))
1628
		ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2340 Serge 1629
 
5060 serge 1630
	ret = i915_cmd_parser_init_ring(ring);
1631
	if (ret)
1632
		goto error;
1633
 
1634
	ret = ring->init(ring);
1635
	if (ret)
1636
		goto error;
1637
 
2332 Serge 1638
	return 0;
1639
 
5060 serge 1640
error:
1641
	kfree(ringbuf);
1642
	ring->buffer = NULL;
2332 Serge 1643
	return ret;
1644
}
1645
 
5060 serge 1646
void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2332 Serge 1647
{
5060 serge 1648
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
1649
	struct intel_ringbuffer *ringbuf = ring->buffer;
2332 Serge 1650
 
5060 serge 1651
	if (!intel_ring_initialized(ring))
2332 Serge 1652
		return;
1653
 
5060 serge 1654
	intel_stop_ring_buffer(ring);
1655
	WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2332 Serge 1656
 
5060 serge 1657
	intel_destroy_ringbuffer_obj(ringbuf);
4560 Serge 1658
	ring->preallocated_lazy_request = NULL;
1659
	ring->outstanding_lazy_seqno = 0;
2332 Serge 1660
 
1661
	if (ring->cleanup)
1662
		ring->cleanup(ring);
1663
 
5060 serge 1664
//	cleanup_status_page(ring);
2332 Serge 1665
 
5060 serge 1666
	i915_cmd_parser_fini_ring(ring);
2332 Serge 1667
 
5060 serge 1668
	kfree(ringbuf);
1669
	ring->buffer = NULL;
3031 serge 1670
}
1671
 
5060 serge 1672
static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
3031 serge 1673
{
5060 serge 1674
	struct intel_ringbuffer *ringbuf = ring->buffer;
3031 serge 1675
	struct drm_i915_gem_request *request;
1676
	u32 seqno = 0;
1677
	int ret;
1678
 
5060 serge 1679
	if (ringbuf->last_retired_head != -1) {
1680
		ringbuf->head = ringbuf->last_retired_head;
1681
		ringbuf->last_retired_head = -1;
3031 serge 1682
 
5060 serge 1683
		ringbuf->space = ring_space(ringbuf);
1684
		if (ringbuf->space >= n)
2332 Serge 1685
			return 0;
1686
	}
1687
 
3031 serge 1688
	list_for_each_entry(request, &ring->request_list, list) {
5060 serge 1689
		if (__ring_space(request->tail, ringbuf->tail, ringbuf->size) >= n) {
3031 serge 1690
			seqno = request->seqno;
1691
			break;
1692
		}
1693
	}
1694
 
1695
	if (seqno == 0)
1696
		return -ENOSPC;
1697
 
5060 serge 1698
	ret = i915_wait_seqno(ring, seqno);
3031 serge 1699
	if (ret)
1700
		return ret;
1701
 
5060 serge 1702
	i915_gem_retire_requests_ring(ring);
1703
	ringbuf->head = ringbuf->last_retired_head;
1704
	ringbuf->last_retired_head = -1;
3031 serge 1705
 
5060 serge 1706
	ringbuf->space = ring_space(ringbuf);
3031 serge 1707
	return 0;
1708
}
1709
 
5060 serge 1710
static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
3031 serge 1711
{
1712
	struct drm_device *dev = ring->dev;
1713
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 1714
	struct intel_ringbuffer *ringbuf = ring->buffer;
3031 serge 1715
	unsigned long end;
1716
	int ret;
1717
 
1718
	ret = intel_ring_wait_request(ring, n);
1719
	if (ret != -ENOSPC)
1720
		return ret;
1721
 
4560 Serge 1722
	/* force the tail write in case we have been skipping them */
1723
	__intel_ring_advance(ring);
1724
 
3031 serge 1725
	/* With GEM the hangcheck timer should kick us out of the loop,
1726
	 * leaving it early runs the risk of corrupting GEM state (due
1727
	 * to running on almost untested codepaths). But on resume
1728
	 * timers don't work yet, so prevent a complete hang in that
1729
	 * case by choosing an insanely large timeout. */
5060 serge 1730
	end = jiffies + 60 * HZ;
3031 serge 1731
 
5060 serge 1732
	trace_i915_ring_wait_begin(ring);
2332 Serge 1733
	do {
5060 serge 1734
		ringbuf->head = I915_READ_HEAD(ring);
1735
		ringbuf->space = ring_space(ringbuf);
1736
		if (ringbuf->space >= n) {
1737
			ret = 0;
1738
			break;
2332 Serge 1739
		}
1740
 
5060 serge 1741
 
2332 Serge 1742
		msleep(1);
3031 serge 1743
 
3480 Serge 1744
		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1745
					   dev_priv->mm.interruptible);
3031 serge 1746
		if (ret)
5060 serge 1747
			break;
1748
 
1749
		if (time_after(jiffies, end)) {
1750
			ret = -EBUSY;
1751
			break;
1752
		}
1753
	} while (1);
1754
	trace_i915_ring_wait_end(ring);
3031 serge 1755
			return ret;
2332 Serge 1756
}
1757
 
5060 serge 1758
static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
3243 Serge 1759
{
1760
	uint32_t __iomem *virt;
5060 serge 1761
	struct intel_ringbuffer *ringbuf = ring->buffer;
1762
	int rem = ringbuf->size - ringbuf->tail;
3243 Serge 1763
 
5060 serge 1764
	if (ringbuf->space < rem) {
3243 Serge 1765
		int ret = ring_wait_for_space(ring, rem);
1766
		if (ret)
1767
			return ret;
1768
	}
1769
 
5060 serge 1770
	virt = ringbuf->virtual_start + ringbuf->tail;
3243 Serge 1771
	rem /= 4;
1772
	while (rem--)
1773
		iowrite32(MI_NOOP, virt++);
1774
 
5060 serge 1775
	ringbuf->tail = 0;
1776
	ringbuf->space = ring_space(ringbuf);
3243 Serge 1777
 
1778
	return 0;
1779
}
1780
 
5060 serge 1781
int intel_ring_idle(struct intel_engine_cs *ring)
3243 Serge 1782
{
1783
	u32 seqno;
1784
	int ret;
1785
 
1786
	/* We need to add any requests required to flush the objects and ring */
4560 Serge 1787
	if (ring->outstanding_lazy_seqno) {
4104 Serge 1788
		ret = i915_add_request(ring, NULL);
3243 Serge 1789
		if (ret)
1790
			return ret;
1791
	}
1792
 
1793
	/* Wait upon the last request to be completed */
1794
	if (list_empty(&ring->request_list))
1795
		return 0;
1796
 
1797
	seqno = list_entry(ring->request_list.prev,
1798
			   struct drm_i915_gem_request,
1799
			   list)->seqno;
1800
 
1801
	return i915_wait_seqno(ring, seqno);
1802
}
1803
 
1804
static int
5060 serge 1805
intel_ring_alloc_seqno(struct intel_engine_cs *ring)
3243 Serge 1806
{
4560 Serge 1807
	if (ring->outstanding_lazy_seqno)
3243 Serge 1808
		return 0;
1809
 
4560 Serge 1810
	if (ring->preallocated_lazy_request == NULL) {
1811
		struct drm_i915_gem_request *request;
1812
 
1813
		request = kmalloc(sizeof(*request), GFP_KERNEL);
1814
		if (request == NULL)
1815
			return -ENOMEM;
1816
 
1817
		ring->preallocated_lazy_request = request;
1818
	}
1819
 
1820
	return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
3243 Serge 1821
}
1822
 
5060 serge 1823
static int __intel_ring_prepare(struct intel_engine_cs *ring,
3480 Serge 1824
			      int bytes)
1825
{
5060 serge 1826
	struct intel_ringbuffer *ringbuf = ring->buffer;
3480 Serge 1827
	int ret;
1828
 
5060 serge 1829
	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
3480 Serge 1830
		ret = intel_wrap_ring_buffer(ring);
1831
		if (unlikely(ret))
1832
			return ret;
1833
	}
1834
 
5060 serge 1835
	if (unlikely(ringbuf->space < bytes)) {
3480 Serge 1836
		ret = ring_wait_for_space(ring, bytes);
1837
		if (unlikely(ret))
1838
			return ret;
1839
	}
1840
 
1841
	return 0;
1842
}
1843
 
5060 serge 1844
int intel_ring_begin(struct intel_engine_cs *ring,
2332 Serge 1845
		     int num_dwords)
1846
{
5060 serge 1847
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2332 Serge 1848
	int ret;
1849
 
3480 Serge 1850
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1851
				   dev_priv->mm.interruptible);
3031 serge 1852
	if (ret)
1853
		return ret;
2332 Serge 1854
 
4560 Serge 1855
	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1856
	if (ret)
1857
		return ret;
1858
 
3243 Serge 1859
	/* Preallocate the olr before touching the ring */
1860
	ret = intel_ring_alloc_seqno(ring);
1861
	if (ret)
1862
		return ret;
1863
 
5060 serge 1864
	ring->buffer->space -= num_dwords * sizeof(uint32_t);
4560 Serge 1865
	return 0;
3480 Serge 1866
}
2332 Serge 1867
 
5060 serge 1868
/* Align the ring tail to a cacheline boundary */
1869
int intel_ring_cacheline_align(struct intel_engine_cs *ring)
3480 Serge 1870
{
5060 serge 1871
	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1872
	int ret;
3480 Serge 1873
 
5060 serge 1874
	if (num_dwords == 0)
1875
		return 0;
1876
 
1877
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1878
	ret = intel_ring_begin(ring, num_dwords);
1879
	if (ret)
1880
		return ret;
1881
 
1882
	while (num_dwords--)
1883
		intel_ring_emit(ring, MI_NOOP);
1884
 
1885
	intel_ring_advance(ring);
1886
 
1887
	return 0;
1888
}
1889
 
1890
void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
1891
{
1892
	struct drm_device *dev = ring->dev;
1893
	struct drm_i915_private *dev_priv = dev->dev_private;
1894
 
4560 Serge 1895
	BUG_ON(ring->outstanding_lazy_seqno);
3480 Serge 1896
 
5060 serge 1897
	if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
3480 Serge 1898
		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1899
		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
5060 serge 1900
		if (HAS_VEBOX(dev))
4104 Serge 1901
			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2332 Serge 1902
	}
1903
 
3480 Serge 1904
	ring->set_seqno(ring, seqno);
4104 Serge 1905
	ring->hangcheck.seqno = seqno;
2332 Serge 1906
}
1907
 
5060 serge 1908
static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2332 Serge 1909
				     u32 value)
1910
{
5060 serge 1911
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2332 Serge 1912
 
1913
       /* Every tail move must follow the sequence below */
3031 serge 1914
 
1915
	/* Disable notification that the ring is IDLE. The GT
1916
	 * will then assume that it is busy and bring it out of rc6.
1917
	 */
2332 Serge 1918
       I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
3031 serge 1919
		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2332 Serge 1920
 
3031 serge 1921
	/* Clear the context id. Here be magic! */
1922
	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1923
 
1924
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2332 Serge 1925
       if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
3031 serge 1926
		      GEN6_BSD_SLEEP_INDICATOR) == 0,
2332 Serge 1927
                       50))
3031 serge 1928
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2332 Serge 1929
 
3031 serge 1930
	/* Now that the ring is fully powered up, update the tail */
2332 Serge 1931
       I915_WRITE_TAIL(ring, value);
3031 serge 1932
	POSTING_READ(RING_TAIL(ring->mmio_base));
1933
 
1934
	/* Let the ring send IDLE messages to the GT again,
1935
	 * and so let it sleep to conserve power when idle.
1936
	 */
2332 Serge 1937
       I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
3031 serge 1938
		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2332 Serge 1939
}
1940
 
5060 serge 1941
static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2332 Serge 1942
			   u32 invalidate, u32 flush)
1943
{
1944
	uint32_t cmd;
1945
	int ret;
1946
 
1947
	ret = intel_ring_begin(ring, 4);
1948
	if (ret)
1949
		return ret;
1950
 
1951
	cmd = MI_FLUSH_DW;
4560 Serge 1952
	if (INTEL_INFO(ring->dev)->gen >= 8)
1953
		cmd += 1;
3243 Serge 1954
	/*
1955
	 * Bspec vol 1c.5 - video engine command streamer:
1956
	 * "If ENABLED, all TLBs will be invalidated once the flush
1957
	 * operation is complete. This bit is only valid when the
1958
	 * Post-Sync Operation field is a value of 1h or 3h."
1959
	 */
2332 Serge 1960
	if (invalidate & I915_GEM_GPU_DOMAINS)
3243 Serge 1961
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1962
			MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2332 Serge 1963
	intel_ring_emit(ring, cmd);
3243 Serge 1964
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
4560 Serge 1965
	if (INTEL_INFO(ring->dev)->gen >= 8) {
1966
		intel_ring_emit(ring, 0); /* upper addr */
1967
		intel_ring_emit(ring, 0); /* value */
1968
	} else  {
2332 Serge 1969
	intel_ring_emit(ring, 0);
1970
	intel_ring_emit(ring, MI_NOOP);
4560 Serge 1971
	}
2332 Serge 1972
	intel_ring_advance(ring);
1973
	return 0;
1974
}
1975
 
1976
static int
5060 serge 1977
gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1978
			      u64 offset, u32 len,
4560 Serge 1979
			      unsigned flags)
1980
{
1981
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1982
	bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1983
		!(flags & I915_DISPATCH_SECURE);
1984
	int ret;
1985
 
1986
	ret = intel_ring_begin(ring, 4);
1987
	if (ret)
1988
		return ret;
1989
 
1990
	/* FIXME(BDW): Address space and security selectors. */
1991
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
5060 serge 1992
	intel_ring_emit(ring, lower_32_bits(offset));
1993
	intel_ring_emit(ring, upper_32_bits(offset));
4560 Serge 1994
	intel_ring_emit(ring, MI_NOOP);
1995
	intel_ring_advance(ring);
1996
 
1997
	return 0;
1998
}
1999
 
2000
static int
5060 serge 2001
hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2002
			      u64 offset, u32 len,
3243 Serge 2003
			      unsigned flags)
2004
{
2005
	int ret;
2006
 
2007
	ret = intel_ring_begin(ring, 2);
2008
	if (ret)
2009
		return ret;
2010
 
2011
	intel_ring_emit(ring,
2012
			MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
2013
			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
2014
	/* bit0-7 is the length on GEN6+ */
2015
	intel_ring_emit(ring, offset);
2016
	intel_ring_advance(ring);
2017
 
2018
	return 0;
2019
}
2020
 
2021
static int
5060 serge 2022
gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2023
			      u64 offset, u32 len,
3243 Serge 2024
			      unsigned flags)
2332 Serge 2025
{
2026
       int ret;
2027
 
2028
       ret = intel_ring_begin(ring, 2);
2029
       if (ret)
2030
	       return ret;
2031
 
3243 Serge 2032
	intel_ring_emit(ring,
2033
			MI_BATCH_BUFFER_START |
2034
			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2332 Serge 2035
       /* bit0-7 is the length on GEN6+ */
2036
       intel_ring_emit(ring, offset);
2037
       intel_ring_advance(ring);
2038
 
2039
       return 0;
2040
}
2041
 
2042
/* Blitter support (SandyBridge+) */
2043
 
5060 serge 2044
static int gen6_ring_flush(struct intel_engine_cs *ring,
2332 Serge 2045
			  u32 invalidate, u32 flush)
2046
{
4104 Serge 2047
	struct drm_device *dev = ring->dev;
2332 Serge 2048
	uint32_t cmd;
2049
	int ret;
2050
 
3031 serge 2051
	ret = intel_ring_begin(ring, 4);
2332 Serge 2052
	if (ret)
2053
		return ret;
2054
 
2055
	cmd = MI_FLUSH_DW;
4560 Serge 2056
	if (INTEL_INFO(ring->dev)->gen >= 8)
2057
		cmd += 1;
3243 Serge 2058
	/*
2059
	 * Bspec vol 1c.3 - blitter engine command streamer:
2060
	 * "If ENABLED, all TLBs will be invalidated once the flush
2061
	 * operation is complete. This bit is only valid when the
2062
	 * Post-Sync Operation field is a value of 1h or 3h."
2063
	 */
2332 Serge 2064
	if (invalidate & I915_GEM_DOMAIN_RENDER)
3243 Serge 2065
		cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2066
			MI_FLUSH_DW_OP_STOREDW;
2332 Serge 2067
	intel_ring_emit(ring, cmd);
3243 Serge 2068
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
4560 Serge 2069
	if (INTEL_INFO(ring->dev)->gen >= 8) {
2070
		intel_ring_emit(ring, 0); /* upper addr */
2071
		intel_ring_emit(ring, 0); /* value */
2072
	} else  {
2332 Serge 2073
	intel_ring_emit(ring, 0);
2074
	intel_ring_emit(ring, MI_NOOP);
4560 Serge 2075
	}
2332 Serge 2076
	intel_ring_advance(ring);
4104 Serge 2077
 
4560 Serge 2078
	if (IS_GEN7(dev) && !invalidate && flush)
4104 Serge 2079
		return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2080
 
2332 Serge 2081
	return 0;
2082
}
2083
 
2084
int intel_init_render_ring_buffer(struct drm_device *dev)
2085
{
5060 serge 2086
	struct drm_i915_private *dev_priv = dev->dev_private;
2087
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2088
	struct drm_i915_gem_object *obj;
2089
	int ret;
2340 Serge 2090
 
3031 serge 2091
	ring->name = "render ring";
2092
	ring->id = RCS;
2093
	ring->mmio_base = RENDER_RING_BASE;
2094
 
5060 serge 2095
	if (INTEL_INFO(dev)->gen >= 8) {
2096
		if (i915_semaphore_is_enabled(dev)) {
2097
			obj = i915_gem_alloc_object(dev, 4096);
2098
			if (obj == NULL) {
2099
				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2100
				i915.semaphores = 0;
2101
			} else {
2102
				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2103
				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2104
				if (ret != 0) {
2105
					drm_gem_object_unreference(&obj->base);
2106
					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2107
					i915.semaphores = 0;
2108
				} else
2109
					dev_priv->semaphore_obj = obj;
2110
			}
2111
		}
2112
		ring->add_request = gen6_add_request;
2113
		ring->flush = gen8_render_ring_flush;
2114
		ring->irq_get = gen8_ring_get_irq;
2115
		ring->irq_put = gen8_ring_put_irq;
2116
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2117
		ring->get_seqno = gen6_ring_get_seqno;
2118
		ring->set_seqno = ring_set_seqno;
2119
		if (i915_semaphore_is_enabled(dev)) {
2120
			WARN_ON(!dev_priv->semaphore_obj);
2121
			ring->semaphore.sync_to = gen8_ring_sync;
2122
			ring->semaphore.signal = gen8_rcs_signal;
2123
			GEN8_RING_SEMAPHORE_INIT;
2124
		}
2125
	} else if (INTEL_INFO(dev)->gen >= 6) {
2339 Serge 2126
       ring->add_request = gen6_add_request;
3031 serge 2127
		ring->flush = gen7_render_ring_flush;
2128
		if (INTEL_INFO(dev)->gen == 6)
2342 Serge 2129
		ring->flush = gen6_render_ring_flush;
3031 serge 2130
		ring->irq_get = gen6_ring_get_irq;
2131
		ring->irq_put = gen6_ring_put_irq;
4104 Serge 2132
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2342 Serge 2133
		ring->get_seqno = gen6_ring_get_seqno;
3480 Serge 2134
		ring->set_seqno = ring_set_seqno;
5060 serge 2135
		if (i915_semaphore_is_enabled(dev)) {
2136
		ring->semaphore.sync_to = gen6_ring_sync;
2137
		ring->semaphore.signal = gen6_signal;
2138
		/*
2139
			 * The current semaphore is only applied on pre-gen8
2140
			 * platform.  And there is no VCS2 ring on the pre-gen8
2141
			 * platform. So the semaphore between RCS and VCS2 is
2142
			 * initialized as INVALID.  Gen8 will initialize the
2143
			 * sema between VCS2 and RCS later.
2144
		 */
2145
		ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2146
		ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2147
		ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2148
		ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2149
		ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2150
		ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2151
		ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2152
		ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2153
		ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2154
		ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2155
		}
2332 Serge 2156
	} else if (IS_GEN5(dev)) {
2339 Serge 2157
       ring->add_request = pc_render_add_request;
3031 serge 2158
		ring->flush = gen4_render_ring_flush;
2342 Serge 2159
		ring->get_seqno = pc_render_get_seqno;
3480 Serge 2160
		ring->set_seqno = pc_render_set_seqno;
3031 serge 2161
		ring->irq_get = gen5_ring_get_irq;
2162
		ring->irq_put = gen5_ring_put_irq;
4104 Serge 2163
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2164
					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
3031 serge 2165
	} else {
2166
		ring->add_request = i9xx_add_request;
2167
		if (INTEL_INFO(dev)->gen < 4)
2168
			ring->flush = gen2_render_ring_flush;
2169
		else
2170
			ring->flush = gen4_render_ring_flush;
2171
		ring->get_seqno = ring_get_seqno;
3480 Serge 2172
		ring->set_seqno = ring_set_seqno;
3031 serge 2173
		if (IS_GEN2(dev)) {
2174
			ring->irq_get = i8xx_ring_get_irq;
2175
			ring->irq_put = i8xx_ring_put_irq;
2176
		} else {
2177
			ring->irq_get = i9xx_ring_get_irq;
2178
			ring->irq_put = i9xx_ring_put_irq;
2179
		}
2180
		ring->irq_enable_mask = I915_USER_INTERRUPT;
2332 Serge 2181
	}
3031 serge 2182
	ring->write_tail = ring_write_tail;
5060 serge 2183
 
3243 Serge 2184
	if (IS_HASWELL(dev))
2185
		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
4560 Serge 2186
	else if (IS_GEN8(dev))
2187
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3243 Serge 2188
	else if (INTEL_INFO(dev)->gen >= 6)
3031 serge 2189
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2190
	else if (INTEL_INFO(dev)->gen >= 4)
2191
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2192
	else if (IS_I830(dev) || IS_845G(dev))
2193
		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2194
	else
2195
		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2196
	ring->init = init_render_ring;
2197
	ring->cleanup = render_ring_cleanup;
2332 Serge 2198
 
3243 Serge 2199
	/* Workaround batchbuffer to combat CS tlb bug. */
2200
	if (HAS_BROKEN_CS_TLB(dev)) {
5128 serge 2201
		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
3243 Serge 2202
		if (obj == NULL) {
2203
			DRM_ERROR("Failed to allocate batch bo\n");
2204
			return -ENOMEM;
2205
		}
2206
 
5060 serge 2207
		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
3243 Serge 2208
		if (ret != 0) {
2209
			drm_gem_object_unreference(&obj->base);
2210
			DRM_ERROR("Failed to ping batch bo\n");
2211
			return ret;
2212
		}
2213
 
4104 Serge 2214
		ring->scratch.obj = obj;
2215
		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2332 Serge 2216
	}
2340 Serge 2217
 
2332 Serge 2218
	return intel_init_ring_buffer(dev, ring);
2219
}
2220
 
3243 Serge 2221
#if 0
2222
int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2223
{
5060 serge 2224
	struct drm_i915_private *dev_priv = dev->dev_private;
2225
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2226
	struct intel_ringbuffer *ringbuf = ring->buffer;
3243 Serge 2227
	int ret;
2332 Serge 2228
 
5060 serge 2229
	if (ringbuf == NULL) {
2230
		ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2231
		if (!ringbuf)
2232
			return -ENOMEM;
2233
		ring->buffer = ringbuf;
2234
	}
2235
 
3243 Serge 2236
	ring->name = "render ring";
2237
	ring->id = RCS;
2238
	ring->mmio_base = RENDER_RING_BASE;
2239
 
2240
	if (INTEL_INFO(dev)->gen >= 6) {
2241
		/* non-kms not supported on gen6+ */
5060 serge 2242
		ret = -ENODEV;
2243
		goto err_ringbuf;
3243 Serge 2244
	}
2245
 
2246
	/* Note: gem is not supported on gen5/ilk without kms (the corresponding
2247
	 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2248
	 * the special gen5 functions. */
2249
	ring->add_request = i9xx_add_request;
2250
	if (INTEL_INFO(dev)->gen < 4)
2251
		ring->flush = gen2_render_ring_flush;
2252
	else
2253
		ring->flush = gen4_render_ring_flush;
2254
	ring->get_seqno = ring_get_seqno;
3480 Serge 2255
	ring->set_seqno = ring_set_seqno;
3243 Serge 2256
	if (IS_GEN2(dev)) {
2257
		ring->irq_get = i8xx_ring_get_irq;
2258
		ring->irq_put = i8xx_ring_put_irq;
2259
	} else {
2260
		ring->irq_get = i9xx_ring_get_irq;
2261
		ring->irq_put = i9xx_ring_put_irq;
2262
	}
2263
	ring->irq_enable_mask = I915_USER_INTERRUPT;
2264
	ring->write_tail = ring_write_tail;
2265
	if (INTEL_INFO(dev)->gen >= 4)
2266
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2267
	else if (IS_I830(dev) || IS_845G(dev))
2268
		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2269
	else
2270
		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2271
	ring->init = init_render_ring;
2272
	ring->cleanup = render_ring_cleanup;
2273
 
2274
	ring->dev = dev;
2275
	INIT_LIST_HEAD(&ring->active_list);
2276
	INIT_LIST_HEAD(&ring->request_list);
2277
 
5060 serge 2278
	ringbuf->size = size;
2279
	ringbuf->effective_size = ringbuf->size;
3243 Serge 2280
	if (IS_I830(ring->dev) || IS_845G(ring->dev))
5060 serge 2281
		ringbuf->effective_size -= 2 * CACHELINE_BYTES;
3243 Serge 2282
 
5060 serge 2283
	ringbuf->virtual_start = ioremap_wc(start, size);
2284
	if (ringbuf->virtual_start == NULL) {
3243 Serge 2285
		DRM_ERROR("can not ioremap virtual address for"
2286
			  " ring buffer\n");
5060 serge 2287
		ret = -ENOMEM;
2288
		goto err_ringbuf;
3243 Serge 2289
	}
2290
 
2291
	if (!I915_NEED_GFX_HWS(dev)) {
4104 Serge 2292
		ret = init_phys_status_page(ring);
3243 Serge 2293
		if (ret)
5060 serge 2294
			goto err_vstart;
3243 Serge 2295
	}
2296
 
2297
	return 0;
5060 serge 2298
 
2299
err_vstart:
2300
	iounmap(ringbuf->virtual_start);
2301
err_ringbuf:
2302
	kfree(ringbuf);
2303
	ring->buffer = NULL;
2304
	return ret;
3243 Serge 2305
}
2306
#endif
2307
 
2332 Serge 2308
int intel_init_bsd_ring_buffer(struct drm_device *dev)
2309
{
5060 serge 2310
	struct drm_i915_private *dev_priv = dev->dev_private;
2311
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2332 Serge 2312
 
3031 serge 2313
	ring->name = "bsd ring";
2314
	ring->id = VCS;
2332 Serge 2315
 
3031 serge 2316
	ring->write_tail = ring_write_tail;
4560 Serge 2317
	if (INTEL_INFO(dev)->gen >= 6) {
3031 serge 2318
		ring->mmio_base = GEN6_BSD_RING_BASE;
2319
		/* gen6 bsd needs a special wa for tail updates */
2320
		if (IS_GEN6(dev))
2321
			ring->write_tail = gen6_bsd_ring_write_tail;
4104 Serge 2322
		ring->flush = gen6_bsd_ring_flush;
3031 serge 2323
		ring->add_request = gen6_add_request;
2324
		ring->get_seqno = gen6_ring_get_seqno;
3480 Serge 2325
		ring->set_seqno = ring_set_seqno;
4560 Serge 2326
		if (INTEL_INFO(dev)->gen >= 8) {
2327
			ring->irq_enable_mask =
2328
				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2329
			ring->irq_get = gen8_ring_get_irq;
2330
			ring->irq_put = gen8_ring_put_irq;
2331
			ring->dispatch_execbuffer =
2332
				gen8_ring_dispatch_execbuffer;
5060 serge 2333
			if (i915_semaphore_is_enabled(dev)) {
2334
				ring->semaphore.sync_to = gen8_ring_sync;
2335
				ring->semaphore.signal = gen8_xcs_signal;
2336
				GEN8_RING_SEMAPHORE_INIT;
2337
			}
4560 Serge 2338
		} else {
4104 Serge 2339
		ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
3031 serge 2340
		ring->irq_get = gen6_ring_get_irq;
2341
		ring->irq_put = gen6_ring_put_irq;
4560 Serge 2342
			ring->dispatch_execbuffer =
2343
				gen6_ring_dispatch_execbuffer;
5060 serge 2344
			if (i915_semaphore_is_enabled(dev)) {
2345
		ring->semaphore.sync_to = gen6_ring_sync;
2346
		ring->semaphore.signal = gen6_signal;
2347
		ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2348
		ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2349
		ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2350
		ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2351
		ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2352
		ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2353
		ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2354
		ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2355
		ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2356
		ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2357
			}
4560 Serge 2358
		}
3031 serge 2359
	} else {
2360
		ring->mmio_base = BSD_RING_BASE;
2361
		ring->flush = bsd_ring_flush;
2362
		ring->add_request = i9xx_add_request;
2363
		ring->get_seqno = ring_get_seqno;
3480 Serge 2364
		ring->set_seqno = ring_set_seqno;
3031 serge 2365
		if (IS_GEN5(dev)) {
4104 Serge 2366
			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
3031 serge 2367
			ring->irq_get = gen5_ring_get_irq;
2368
			ring->irq_put = gen5_ring_put_irq;
2369
		} else {
2370
			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2371
			ring->irq_get = i9xx_ring_get_irq;
2372
			ring->irq_put = i9xx_ring_put_irq;
2373
		}
2374
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2375
	}
2376
	ring->init = init_ring_common;
2377
 
2332 Serge 2378
	return intel_init_ring_buffer(dev, ring);
2379
}
2380
 
5060 serge 2381
/**
2382
 * Initialize the second BSD ring for Broadwell GT3.
2383
 * It is noted that this only exists on Broadwell GT3.
2384
 */
2385
int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2386
{
2387
	struct drm_i915_private *dev_priv = dev->dev_private;
2388
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2389
 
2390
	if ((INTEL_INFO(dev)->gen != 8)) {
2391
		DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2392
		return -EINVAL;
2393
	}
2394
 
2395
	ring->name = "bsd2 ring";
2396
	ring->id = VCS2;
2397
 
2398
	ring->write_tail = ring_write_tail;
2399
	ring->mmio_base = GEN8_BSD2_RING_BASE;
2400
	ring->flush = gen6_bsd_ring_flush;
2401
	ring->add_request = gen6_add_request;
2402
	ring->get_seqno = gen6_ring_get_seqno;
2403
	ring->set_seqno = ring_set_seqno;
2404
	ring->irq_enable_mask =
2405
			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2406
	ring->irq_get = gen8_ring_get_irq;
2407
	ring->irq_put = gen8_ring_put_irq;
2408
	ring->dispatch_execbuffer =
2409
			gen8_ring_dispatch_execbuffer;
2410
	if (i915_semaphore_is_enabled(dev)) {
2411
		ring->semaphore.sync_to = gen8_ring_sync;
2412
		ring->semaphore.signal = gen8_xcs_signal;
2413
		GEN8_RING_SEMAPHORE_INIT;
2414
	}
2415
	ring->init = init_ring_common;
2416
 
2417
	return intel_init_ring_buffer(dev, ring);
2418
}
2419
 
2332 Serge 2420
int intel_init_blt_ring_buffer(struct drm_device *dev)
2421
{
5060 serge 2422
	struct drm_i915_private *dev_priv = dev->dev_private;
2423
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2332 Serge 2424
 
3031 serge 2425
	ring->name = "blitter ring";
2426
	ring->id = BCS;
2332 Serge 2427
 
3031 serge 2428
	ring->mmio_base = BLT_RING_BASE;
2429
	ring->write_tail = ring_write_tail;
4104 Serge 2430
	ring->flush = gen6_ring_flush;
3031 serge 2431
	ring->add_request = gen6_add_request;
2432
	ring->get_seqno = gen6_ring_get_seqno;
3480 Serge 2433
	ring->set_seqno = ring_set_seqno;
4560 Serge 2434
	if (INTEL_INFO(dev)->gen >= 8) {
2435
		ring->irq_enable_mask =
2436
			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2437
		ring->irq_get = gen8_ring_get_irq;
2438
		ring->irq_put = gen8_ring_put_irq;
2439
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
5060 serge 2440
		if (i915_semaphore_is_enabled(dev)) {
2441
			ring->semaphore.sync_to = gen8_ring_sync;
2442
			ring->semaphore.signal = gen8_xcs_signal;
2443
			GEN8_RING_SEMAPHORE_INIT;
2444
		}
4560 Serge 2445
	} else {
4104 Serge 2446
	ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3031 serge 2447
	ring->irq_get = gen6_ring_get_irq;
2448
	ring->irq_put = gen6_ring_put_irq;
2449
	ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
5060 serge 2450
		if (i915_semaphore_is_enabled(dev)) {
2451
			ring->semaphore.signal = gen6_signal;
2452
	ring->semaphore.sync_to = gen6_ring_sync;
2453
	/*
2454
			 * The current semaphore is only applied on pre-gen8
2455
			 * platform.  And there is no VCS2 ring on the pre-gen8
2456
			 * platform. So the semaphore between BCS and VCS2 is
2457
			 * initialized as INVALID.  Gen8 will initialize the
2458
			 * sema between BCS and VCS2 later.
2459
	 */
2460
	ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2461
	ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2462
	ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2463
	ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2464
	ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2465
	ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2466
	ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2467
	ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2468
	ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2469
	ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2470
		}
4560 Serge 2471
	}
3031 serge 2472
	ring->init = init_ring_common;
2473
 
2332 Serge 2474
	return intel_init_ring_buffer(dev, ring);
2475
}
3031 serge 2476
 
4104 Serge 2477
int intel_init_vebox_ring_buffer(struct drm_device *dev)
2478
{
5060 serge 2479
	struct drm_i915_private *dev_priv = dev->dev_private;
2480
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
4104 Serge 2481
 
2482
	ring->name = "video enhancement ring";
2483
	ring->id = VECS;
2484
 
2485
	ring->mmio_base = VEBOX_RING_BASE;
2486
	ring->write_tail = ring_write_tail;
2487
	ring->flush = gen6_ring_flush;
2488
	ring->add_request = gen6_add_request;
2489
	ring->get_seqno = gen6_ring_get_seqno;
2490
	ring->set_seqno = ring_set_seqno;
4560 Serge 2491
 
2492
	if (INTEL_INFO(dev)->gen >= 8) {
2493
		ring->irq_enable_mask =
2494
			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2495
		ring->irq_get = gen8_ring_get_irq;
2496
		ring->irq_put = gen8_ring_put_irq;
2497
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
5060 serge 2498
		if (i915_semaphore_is_enabled(dev)) {
2499
			ring->semaphore.sync_to = gen8_ring_sync;
2500
			ring->semaphore.signal = gen8_xcs_signal;
2501
			GEN8_RING_SEMAPHORE_INIT;
2502
		}
4560 Serge 2503
	} else {
4104 Serge 2504
	ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2505
	ring->irq_get = hsw_vebox_get_irq;
2506
	ring->irq_put = hsw_vebox_put_irq;
2507
	ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
5060 serge 2508
		if (i915_semaphore_is_enabled(dev)) {
2509
	ring->semaphore.sync_to = gen6_ring_sync;
2510
	ring->semaphore.signal = gen6_signal;
2511
	ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2512
	ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2513
	ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2514
	ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2515
	ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2516
	ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2517
	ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2518
	ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2519
	ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2520
	ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2521
		}
4560 Serge 2522
	}
4104 Serge 2523
	ring->init = init_ring_common;
2524
 
2525
	return intel_init_ring_buffer(dev, ring);
2526
}
2527
 
3031 serge 2528
int
5060 serge 2529
intel_ring_flush_all_caches(struct intel_engine_cs *ring)
3031 serge 2530
{
2531
	int ret;
2532
 
2533
	if (!ring->gpu_caches_dirty)
2534
		return 0;
2535
 
2536
	ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2537
	if (ret)
2538
		return ret;
2539
 
2540
	trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2541
 
2542
	ring->gpu_caches_dirty = false;
2543
	return 0;
2544
}
2545
 
2546
int
5060 serge 2547
intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
3031 serge 2548
{
2549
	uint32_t flush_domains;
2550
	int ret;
2551
 
2552
	flush_domains = 0;
2553
	if (ring->gpu_caches_dirty)
2554
		flush_domains = I915_GEM_GPU_DOMAINS;
2555
 
2556
	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2557
	if (ret)
2558
		return ret;
2559
 
2560
	trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2561
 
2562
	ring->gpu_caches_dirty = false;
2563
	return 0;
2564
}
5060 serge 2565
 
2566
void
2567
intel_stop_ring_buffer(struct intel_engine_cs *ring)
2568
{
2569
	int ret;
2570
 
2571
	if (!intel_ring_initialized(ring))
2572
		return;
2573
 
2574
	ret = intel_ring_idle(ring);
2575
	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2576
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2577
			  ring->name, ret);
2578
 
2579
	stop_ring(ring);
2580
}