Subversion Repositories Kolibri OS

Rev

Rev 4560 | Rev 5128 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2332 Serge 1
/*
2
 * Copyright © 2008-2010 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eric Anholt 
25
 *    Zou Nan hai 
26
 *    Xiang Hai hao
27
 *
28
 */
29
 
3031 serge 30
#include 
2332 Serge 31
#include "i915_drv.h"
3031 serge 32
#include 
2351 Serge 33
#include "i915_trace.h"
2332 Serge 34
#include "intel_drv.h"
35
 
5060 serge 36
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
37
 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
38
 * to give some inclination as to some of the magic values used in the various
39
 * workarounds!
40
 */
41
#define CACHELINE_BYTES 64
42
 
43
static inline int __ring_space(int head, int tail, int size)
2332 Serge 44
{
5060 serge 45
	int space = head - (tail + I915_RING_FREE_SPACE);
2332 Serge 46
	if (space < 0)
5060 serge 47
		space += size;
2332 Serge 48
	return space;
49
}
50
 
5060 serge 51
static inline int ring_space(struct intel_ringbuffer *ringbuf)
4560 Serge 52
{
5060 serge 53
	return __ring_space(ringbuf->head & HEAD_ADDR, ringbuf->tail, ringbuf->size);
54
}
55
 
56
static bool intel_ring_stopped(struct intel_engine_cs *ring)
57
{
4560 Serge 58
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
5060 serge 59
	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
60
}
4560 Serge 61
 
5060 serge 62
void __intel_ring_advance(struct intel_engine_cs *ring)
63
{
64
	struct intel_ringbuffer *ringbuf = ring->buffer;
65
	ringbuf->tail &= ringbuf->size - 1;
66
	if (intel_ring_stopped(ring))
4560 Serge 67
		return;
5060 serge 68
	ring->write_tail(ring, ringbuf->tail);
4560 Serge 69
}
70
 
3031 serge 71
static int
5060 serge 72
gen2_render_ring_flush(struct intel_engine_cs *ring,
3031 serge 73
		       u32	invalidate_domains,
74
		       u32	flush_domains)
2332 Serge 75
{
3031 serge 76
	u32 cmd;
77
	int ret;
2332 Serge 78
 
3031 serge 79
	cmd = MI_FLUSH;
80
	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
81
		cmd |= MI_NO_WRITE_FLUSH;
2332 Serge 82
 
3031 serge 83
	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
84
		cmd |= MI_READ_FLUSH;
2332 Serge 85
 
3031 serge 86
	ret = intel_ring_begin(ring, 2);
87
	if (ret)
88
		return ret;
89
 
90
	intel_ring_emit(ring, cmd);
91
	intel_ring_emit(ring, MI_NOOP);
92
	intel_ring_advance(ring);
93
 
94
	return 0;
2332 Serge 95
}
96
 
97
static int
5060 serge 98
gen4_render_ring_flush(struct intel_engine_cs *ring,
2332 Serge 99
		  u32	invalidate_domains,
100
		  u32	flush_domains)
101
{
102
	struct drm_device *dev = ring->dev;
103
	u32 cmd;
104
	int ret;
105
 
106
	/*
107
	 * read/write caches:
108
	 *
109
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
110
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
111
	 * also flushed at 2d versus 3d pipeline switches.
112
	 *
113
	 * read-only caches:
114
	 *
115
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
116
	 * MI_READ_FLUSH is set, and is always flushed on 965.
117
	 *
118
	 * I915_GEM_DOMAIN_COMMAND may not exist?
119
	 *
120
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
121
	 * invalidated when MI_EXE_FLUSH is set.
122
	 *
123
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
124
	 * invalidated with every MI_FLUSH.
125
	 *
126
	 * TLBs:
127
	 *
128
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
129
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
130
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
131
	 * are flushed at any MI_FLUSH.
132
	 */
133
 
134
	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
3031 serge 135
	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
2332 Serge 136
		cmd &= ~MI_NO_WRITE_FLUSH;
137
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
138
		cmd |= MI_EXE_FLUSH;
139
 
140
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
141
	    (IS_G4X(dev) || IS_GEN5(dev)))
142
		cmd |= MI_INVALIDATE_ISP;
143
 
144
	ret = intel_ring_begin(ring, 2);
145
	if (ret)
146
		return ret;
147
 
148
	intel_ring_emit(ring, cmd);
149
	intel_ring_emit(ring, MI_NOOP);
150
	intel_ring_advance(ring);
151
 
152
	return 0;
153
}
154
 
2342 Serge 155
/**
156
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
157
 * implementing two workarounds on gen6.  From section 1.4.7.1
158
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
159
 *
160
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
161
 * produced by non-pipelined state commands), software needs to first
162
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
163
 * 0.
164
 *
165
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
166
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
167
 *
168
 * And the workaround for these two requires this workaround first:
169
 *
170
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
171
 * BEFORE the pipe-control with a post-sync op and no write-cache
172
 * flushes.
173
 *
174
 * And this last workaround is tricky because of the requirements on
175
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
176
 * volume 2 part 1:
177
 *
178
 *     "1 of the following must also be set:
179
 *      - Render Target Cache Flush Enable ([12] of DW1)
180
 *      - Depth Cache Flush Enable ([0] of DW1)
181
 *      - Stall at Pixel Scoreboard ([1] of DW1)
182
 *      - Depth Stall ([13] of DW1)
183
 *      - Post-Sync Operation ([13] of DW1)
184
 *      - Notify Enable ([8] of DW1)"
185
 *
186
 * The cache flushes require the workaround flush that triggered this
187
 * one, so we can't use it.  Depth stall would trigger the same.
188
 * Post-sync nonzero is what triggered this second workaround, so we
189
 * can't use that one either.  Notify enable is IRQs, which aren't
190
 * really our business.  That leaves only stall at scoreboard.
191
 */
192
static int
5060 serge 193
intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
2342 Serge 194
{
5060 serge 195
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
2342 Serge 196
	int ret;
197
 
198
 
199
	ret = intel_ring_begin(ring, 6);
200
	if (ret)
201
		return ret;
202
 
203
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
204
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
205
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
206
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
207
	intel_ring_emit(ring, 0); /* low dword */
208
	intel_ring_emit(ring, 0); /* high dword */
209
	intel_ring_emit(ring, MI_NOOP);
210
	intel_ring_advance(ring);
211
 
212
	ret = intel_ring_begin(ring, 6);
213
	if (ret)
214
		return ret;
215
 
216
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
217
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
218
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
219
	intel_ring_emit(ring, 0);
220
	intel_ring_emit(ring, 0);
221
	intel_ring_emit(ring, MI_NOOP);
222
	intel_ring_advance(ring);
223
 
224
	return 0;
225
}
226
 
227
static int
5060 serge 228
gen6_render_ring_flush(struct intel_engine_cs *ring,
2342 Serge 229
                         u32 invalidate_domains, u32 flush_domains)
230
{
231
	u32 flags = 0;
5060 serge 232
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
2342 Serge 233
	int ret;
234
 
235
	/* Force SNB workarounds for PIPE_CONTROL flushes */
3031 serge 236
	ret = intel_emit_post_sync_nonzero_flush(ring);
237
	if (ret)
238
		return ret;
2342 Serge 239
 
240
	/* Just flush everything.  Experiments have shown that reducing the
241
	 * number of bits based on the write domains has little performance
242
	 * impact.
243
	 */
3031 serge 244
	if (flush_domains) {
245
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
246
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
247
		/*
248
		 * Ensure that any following seqno writes only happen
249
		 * when the render cache is indeed flushed.
250
		 */
251
		flags |= PIPE_CONTROL_CS_STALL;
252
	}
253
	if (invalidate_domains) {
254
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
255
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
256
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
257
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
258
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
259
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
260
		/*
261
		 * TLB invalidate requires a post-sync write.
262
		 */
3243 Serge 263
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
3031 serge 264
	}
265
 
266
	ret = intel_ring_begin(ring, 4);
267
	if (ret)
268
		return ret;
269
 
270
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
271
	intel_ring_emit(ring, flags);
272
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
273
	intel_ring_emit(ring, 0);
274
	intel_ring_advance(ring);
275
 
276
	return 0;
277
}
278
 
279
static int
5060 serge 280
gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
3031 serge 281
{
282
	int ret;
283
 
284
	ret = intel_ring_begin(ring, 4);
285
	if (ret)
286
		return ret;
287
 
288
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
289
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
290
			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
291
	intel_ring_emit(ring, 0);
292
	intel_ring_emit(ring, 0);
293
	intel_ring_advance(ring);
294
 
295
	return 0;
296
}
297
 
5060 serge 298
static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
4104 Serge 299
{
300
	int ret;
301
 
302
	if (!ring->fbc_dirty)
303
		return 0;
304
 
4560 Serge 305
	ret = intel_ring_begin(ring, 6);
4104 Serge 306
	if (ret)
307
		return ret;
308
	/* WaFbcNukeOn3DBlt:ivb/hsw */
309
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
310
	intel_ring_emit(ring, MSG_FBC_REND_STATE);
311
	intel_ring_emit(ring, value);
4560 Serge 312
	intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
313
	intel_ring_emit(ring, MSG_FBC_REND_STATE);
314
	intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
4104 Serge 315
	intel_ring_advance(ring);
316
 
317
	ring->fbc_dirty = false;
318
	return 0;
319
}
320
 
3031 serge 321
static int
5060 serge 322
gen7_render_ring_flush(struct intel_engine_cs *ring,
3031 serge 323
		       u32 invalidate_domains, u32 flush_domains)
324
{
325
	u32 flags = 0;
5060 serge 326
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
3031 serge 327
	int ret;
328
 
329
	/*
330
	 * Ensure that any following seqno writes only happen when the render
331
	 * cache is indeed flushed.
332
	 *
333
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
334
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
335
	 * don't try to be clever and just set it unconditionally.
336
	 */
337
	flags |= PIPE_CONTROL_CS_STALL;
338
 
339
	/* Just flush everything.  Experiments have shown that reducing the
340
	 * number of bits based on the write domains has little performance
341
	 * impact.
342
	 */
343
	if (flush_domains) {
2342 Serge 344
	flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
3031 serge 345
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
346
	}
347
	if (invalidate_domains) {
348
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
2342 Serge 349
	flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
350
	flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
351
	flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
352
	flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
353
	flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
3031 serge 354
		/*
355
		 * TLB invalidate requires a post-sync write.
356
		 */
357
		flags |= PIPE_CONTROL_QW_WRITE;
3480 Serge 358
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2342 Serge 359
 
3031 serge 360
		/* Workaround: we must issue a pipe_control with CS-stall bit
361
		 * set before a pipe_control command that has the state cache
362
		 * invalidate bit set. */
363
		gen7_render_ring_cs_stall_wa(ring);
364
	}
365
 
366
	ret = intel_ring_begin(ring, 4);
2342 Serge 367
	if (ret)
368
		return ret;
369
 
3031 serge 370
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
2342 Serge 371
	intel_ring_emit(ring, flags);
3480 Serge 372
	intel_ring_emit(ring, scratch_addr);
3031 serge 373
	intel_ring_emit(ring, 0);
2342 Serge 374
	intel_ring_advance(ring);
375
 
4560 Serge 376
	if (!invalidate_domains && flush_domains)
4104 Serge 377
		return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
378
 
2342 Serge 379
	return 0;
380
}
381
 
4560 Serge 382
static int
5060 serge 383
gen8_emit_pipe_control(struct intel_engine_cs *ring,
384
		       u32 flags, u32 scratch_addr)
385
{
386
	int ret;
387
 
388
	ret = intel_ring_begin(ring, 6);
389
	if (ret)
390
		return ret;
391
 
392
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
393
	intel_ring_emit(ring, flags);
394
	intel_ring_emit(ring, scratch_addr);
395
	intel_ring_emit(ring, 0);
396
	intel_ring_emit(ring, 0);
397
	intel_ring_emit(ring, 0);
398
	intel_ring_advance(ring);
399
 
400
	return 0;
401
}
402
 
403
static int
404
gen8_render_ring_flush(struct intel_engine_cs *ring,
4560 Serge 405
		       u32 invalidate_domains, u32 flush_domains)
406
{
407
	u32 flags = 0;
5060 serge 408
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
4560 Serge 409
	int ret;
410
 
411
	flags |= PIPE_CONTROL_CS_STALL;
412
 
413
	if (flush_domains) {
414
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
415
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
416
	}
417
	if (invalidate_domains) {
418
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
419
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
420
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
421
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
422
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
423
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
424
		flags |= PIPE_CONTROL_QW_WRITE;
425
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
426
 
5060 serge 427
		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
428
		ret = gen8_emit_pipe_control(ring,
429
					     PIPE_CONTROL_CS_STALL |
430
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
431
					     0);
4560 Serge 432
	if (ret)
433
		return ret;
5060 serge 434
	}
4560 Serge 435
 
5060 serge 436
	return gen8_emit_pipe_control(ring, flags, scratch_addr);
4560 Serge 437
}
438
 
5060 serge 439
static void ring_write_tail(struct intel_engine_cs *ring,
2332 Serge 440
			    u32 value)
441
{
5060 serge 442
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2332 Serge 443
	I915_WRITE_TAIL(ring, value);
444
}
445
 
5060 serge 446
u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
2332 Serge 447
{
5060 serge 448
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
449
	u64 acthd;
2332 Serge 450
 
5060 serge 451
	if (INTEL_INFO(ring->dev)->gen >= 8)
452
		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
453
					 RING_ACTHD_UDW(ring->mmio_base));
454
	else if (INTEL_INFO(ring->dev)->gen >= 4)
455
		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
456
	else
457
		acthd = I915_READ(ACTHD);
458
 
459
	return acthd;
2332 Serge 460
}
461
 
5060 serge 462
static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
4104 Serge 463
{
464
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
465
	u32 addr;
466
 
467
	addr = dev_priv->status_page_dmah->busaddr;
468
	if (INTEL_INFO(ring->dev)->gen >= 4)
469
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
470
	I915_WRITE(HWS_PGA, addr);
471
}
472
 
5060 serge 473
static bool stop_ring(struct intel_engine_cs *ring)
2332 Serge 474
{
5060 serge 475
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
2332 Serge 476
 
5060 serge 477
	if (!IS_GEN2(ring->dev)) {
478
		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
479
		if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
480
			DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
481
			return false;
482
		}
483
	}
3031 serge 484
 
2332 Serge 485
	I915_WRITE_CTL(ring, 0);
486
	I915_WRITE_HEAD(ring, 0);
487
	ring->write_tail(ring, 0);
488
 
5060 serge 489
	if (!IS_GEN2(ring->dev)) {
490
		(void)I915_READ_CTL(ring);
491
		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
492
	}
2332 Serge 493
 
5060 serge 494
	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
495
}
496
 
497
static int init_ring_common(struct intel_engine_cs *ring)
498
{
499
	struct drm_device *dev = ring->dev;
500
	struct drm_i915_private *dev_priv = dev->dev_private;
501
	struct intel_ringbuffer *ringbuf = ring->buffer;
502
	struct drm_i915_gem_object *obj = ringbuf->obj;
503
	int ret = 0;
504
 
505
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
506
 
507
	if (!stop_ring(ring)) {
508
		/* G45 ring initialization often fails to reset head to zero */
2332 Serge 509
		DRM_DEBUG_KMS("%s head not reset to zero "
510
			      "ctl %08x head %08x tail %08x start %08x\n",
511
			      ring->name,
512
			      I915_READ_CTL(ring),
513
			      I915_READ_HEAD(ring),
514
			      I915_READ_TAIL(ring),
515
			      I915_READ_START(ring));
516
 
5060 serge 517
		if (!stop_ring(ring)) {
2332 Serge 518
			DRM_ERROR("failed to set %s head to zero "
519
				  "ctl %08x head %08x tail %08x start %08x\n",
520
				  ring->name,
521
				  I915_READ_CTL(ring),
522
				  I915_READ_HEAD(ring),
523
				  I915_READ_TAIL(ring),
524
				  I915_READ_START(ring));
5060 serge 525
			ret = -EIO;
526
			goto out;
2332 Serge 527
		}
528
	}
529
 
5060 serge 530
	if (I915_NEED_GFX_HWS(dev))
531
		intel_ring_setup_status_page(ring);
532
	else
533
		ring_setup_phys_status_page(ring);
534
 
535
	/* Enforce ordering by reading HEAD register back */
536
	I915_READ_HEAD(ring);
537
 
3031 serge 538
	/* Initialize the ring. This must happen _after_ we've cleared the ring
539
	 * registers with the above sequence (the readback of the HEAD registers
540
	 * also enforces ordering), otherwise the hw might lose the new ring
541
	 * register values. */
4104 Serge 542
	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
2332 Serge 543
	I915_WRITE_CTL(ring,
5060 serge 544
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
3031 serge 545
			| RING_VALID);
2332 Serge 546
 
547
	/* If the head is still not zero, the ring is dead */
3031 serge 548
	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
4104 Serge 549
		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
3031 serge 550
		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
2332 Serge 551
		DRM_ERROR("%s initialization failed "
5060 serge 552
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
2332 Serge 553
				ring->name,
5060 serge 554
			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
555
			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
556
			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
3031 serge 557
		ret = -EIO;
558
		goto out;
2332 Serge 559
	}
560
 
561
 
5060 serge 562
		ringbuf->head = I915_READ_HEAD(ring);
563
		ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
564
		ringbuf->space = ring_space(ringbuf);
565
		ringbuf->last_retired_head = -1;
566
 
4104 Serge 567
	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
568
 
3031 serge 569
out:
4560 Serge 570
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
2332 Serge 571
 
3031 serge 572
	return ret;
2332 Serge 573
}
574
 
575
static int
5060 serge 576
init_pipe_control(struct intel_engine_cs *ring)
2332 Serge 577
{
578
	int ret;
579
 
4104 Serge 580
	if (ring->scratch.obj)
2332 Serge 581
		return 0;
582
 
4104 Serge 583
	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
584
	if (ring->scratch.obj == NULL) {
2332 Serge 585
		DRM_ERROR("Failed to allocate seqno page\n");
586
		ret = -ENOMEM;
587
		goto err;
588
	}
589
 
5060 serge 590
	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
591
	if (ret)
592
		goto err_unref;
2332 Serge 593
 
5060 serge 594
	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
2332 Serge 595
	if (ret)
596
		goto err_unref;
597
 
4104 Serge 598
	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
4539 Serge 599
    ring->scratch.cpu_page = (void*)MapIoMem((addr_t)sg_page(ring->scratch.obj->pages->sgl),4096, PG_SW|0x100);
4104 Serge 600
	if (ring->scratch.cpu_page == NULL) {
601
		ret = -ENOMEM;
2332 Serge 602
		goto err_unpin;
4104 Serge 603
	}
2332 Serge 604
 
3480 Serge 605
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
4104 Serge 606
			 ring->name, ring->scratch.gtt_offset);
2332 Serge 607
	return 0;
608
 
609
err_unpin:
5060 serge 610
	i915_gem_object_ggtt_unpin(ring->scratch.obj);
2332 Serge 611
err_unref:
4104 Serge 612
	drm_gem_object_unreference(&ring->scratch.obj->base);
2332 Serge 613
err:
614
	return ret;
615
}
616
 
5060 serge 617
static int init_render_ring(struct intel_engine_cs *ring)
2332 Serge 618
{
619
	struct drm_device *dev = ring->dev;
620
	struct drm_i915_private *dev_priv = dev->dev_private;
621
	int ret = init_ring_common(ring);
5060 serge 622
	if (ret)
623
		return ret;
2332 Serge 624
 
5060 serge 625
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
626
	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
3031 serge 627
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
3243 Serge 628
 
629
	/* We need to disable the AsyncFlip performance optimisations in order
630
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
631
	 * programmed to '1' on all products.
4104 Serge 632
	 *
5060 serge 633
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
3243 Serge 634
	 */
635
	if (INTEL_INFO(dev)->gen >= 6)
636
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
637
 
638
	/* Required for the hardware to program scanline values for waiting */
5060 serge 639
	/* WaEnableFlushTlbInvalidationMode:snb */
3243 Serge 640
	if (INTEL_INFO(dev)->gen == 6)
641
		I915_WRITE(GFX_MODE,
5060 serge 642
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
3243 Serge 643
 
5060 serge 644
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
2332 Serge 645
		if (IS_GEN7(dev))
646
			I915_WRITE(GFX_MODE_GEN7,
5060 serge 647
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
3031 serge 648
				   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
2332 Serge 649
 
2342 Serge 650
	if (INTEL_INFO(dev)->gen >= 5) {
2339 Serge 651
		ret = init_pipe_control(ring);
2332 Serge 652
		if (ret)
653
			return ret;
654
	}
655
 
3031 serge 656
	if (IS_GEN6(dev)) {
657
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
658
		 * "If this bit is set, STCunit will have LRA as replacement
659
		 *  policy. [...] This bit must be reset.  LRA replacement
660
		 *  policy is not supported."
661
		 */
662
		I915_WRITE(CACHE_MODE_0,
663
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
2342 Serge 664
	}
665
 
3031 serge 666
	if (INTEL_INFO(dev)->gen >= 6)
667
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
668
 
4560 Serge 669
	if (HAS_L3_DPF(dev))
670
		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
3031 serge 671
 
2332 Serge 672
	return ret;
673
}
674
 
5060 serge 675
static void render_ring_cleanup(struct intel_engine_cs *ring)
2332 Serge 676
{
3480 Serge 677
	struct drm_device *dev = ring->dev;
678
 
4104 Serge 679
	if (ring->scratch.obj == NULL)
2332 Serge 680
		return;
681
 
4104 Serge 682
	if (INTEL_INFO(dev)->gen >= 5) {
5060 serge 683
//		kunmap(sg_page(ring->scratch.obj->pages->sgl));
684
		i915_gem_object_ggtt_unpin(ring->scratch.obj);
4104 Serge 685
	}
686
 
687
	drm_gem_object_unreference(&ring->scratch.obj->base);
688
	ring->scratch.obj = NULL;
2332 Serge 689
}
690
 
5060 serge 691
static int gen8_rcs_signal(struct intel_engine_cs *signaller,
692
			   unsigned int num_dwords)
2332 Serge 693
{
5060 serge 694
#define MBOX_UPDATE_DWORDS 8
695
	struct drm_device *dev = signaller->dev;
696
	struct drm_i915_private *dev_priv = dev->dev_private;
697
	struct intel_engine_cs *waiter;
698
	int i, ret, num_rings;
699
 
700
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
701
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
702
#undef MBOX_UPDATE_DWORDS
703
 
704
	ret = intel_ring_begin(signaller, num_dwords);
705
	if (ret)
706
		return ret;
707
 
708
	for_each_ring(waiter, dev_priv, i) {
709
		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
710
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
711
			continue;
712
 
713
		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
714
		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
715
					   PIPE_CONTROL_QW_WRITE |
716
					   PIPE_CONTROL_FLUSH_ENABLE);
717
		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
718
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
719
		intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
720
		intel_ring_emit(signaller, 0);
721
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
722
					   MI_SEMAPHORE_TARGET(waiter->id));
723
		intel_ring_emit(signaller, 0);
724
	}
725
 
726
	return 0;
2332 Serge 727
}
728
 
5060 serge 729
static int gen8_xcs_signal(struct intel_engine_cs *signaller,
730
			   unsigned int num_dwords)
731
{
732
#define MBOX_UPDATE_DWORDS 6
733
	struct drm_device *dev = signaller->dev;
734
	struct drm_i915_private *dev_priv = dev->dev_private;
735
	struct intel_engine_cs *waiter;
736
	int i, ret, num_rings;
737
 
738
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
739
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
740
#undef MBOX_UPDATE_DWORDS
741
 
742
	ret = intel_ring_begin(signaller, num_dwords);
743
	if (ret)
744
		return ret;
745
 
746
	for_each_ring(waiter, dev_priv, i) {
747
		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
748
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
749
			continue;
750
 
751
		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
752
					   MI_FLUSH_DW_OP_STOREDW);
753
		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
754
					   MI_FLUSH_DW_USE_GTT);
755
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
756
		intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
757
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
758
					   MI_SEMAPHORE_TARGET(waiter->id));
759
		intel_ring_emit(signaller, 0);
760
	}
761
 
762
	return 0;
763
}
764
 
765
static int gen6_signal(struct intel_engine_cs *signaller,
766
		       unsigned int num_dwords)
767
{
768
	struct drm_device *dev = signaller->dev;
769
	struct drm_i915_private *dev_priv = dev->dev_private;
770
	struct intel_engine_cs *useless;
771
	int i, ret, num_rings;
772
 
773
#define MBOX_UPDATE_DWORDS 3
774
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
775
	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
776
#undef MBOX_UPDATE_DWORDS
777
 
778
	ret = intel_ring_begin(signaller, num_dwords);
779
	if (ret)
780
		return ret;
781
 
782
	for_each_ring(useless, dev_priv, i) {
783
		u32 mbox_reg = signaller->semaphore.mbox.signal[i];
784
		if (mbox_reg != GEN6_NOSYNC) {
785
			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
786
			intel_ring_emit(signaller, mbox_reg);
787
			intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
788
		}
789
	}
790
 
791
	/* If num_dwords was rounded, make sure the tail pointer is correct */
792
	if (num_rings % 2 == 0)
793
		intel_ring_emit(signaller, MI_NOOP);
794
 
795
	return 0;
796
}
797
 
2342 Serge 798
/**
799
 * gen6_add_request - Update the semaphore mailbox registers
800
 *
801
 * @ring - ring that is adding a request
802
 * @seqno - return seqno stuck into the ring
803
 *
804
 * Update the mailbox registers in the *other* rings with the current seqno.
805
 * This acts like a signal in the canonical semaphore.
806
 */
2332 Serge 807
static int
5060 serge 808
gen6_add_request(struct intel_engine_cs *ring)
2332 Serge 809
{
5060 serge 810
	int ret;
2332 Serge 811
 
5060 serge 812
	if (ring->semaphore.signal)
813
	ret = ring->semaphore.signal(ring, 4);
814
	else
815
		ret = intel_ring_begin(ring, 4);
4560 Serge 816
 
2332 Serge 817
	if (ret)
818
		return ret;
819
 
820
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
821
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
4560 Serge 822
	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
2332 Serge 823
	intel_ring_emit(ring, MI_USER_INTERRUPT);
4560 Serge 824
	__intel_ring_advance(ring);
2332 Serge 825
 
826
	return 0;
827
}
828
 
3480 Serge 829
static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
830
					      u32 seqno)
831
{
832
	struct drm_i915_private *dev_priv = dev->dev_private;
833
	return dev_priv->last_seqno < seqno;
834
}
835
 
2342 Serge 836
/**
837
 * intel_ring_sync - sync the waiter to the signaller on seqno
838
 *
839
 * @waiter - ring that is waiting
840
 * @signaller - ring which has, or will signal
841
 * @seqno - seqno which the waiter will block on
842
 */
5060 serge 843
 
2342 Serge 844
static int
5060 serge 845
gen8_ring_sync(struct intel_engine_cs *waiter,
846
	       struct intel_engine_cs *signaller,
847
	       u32 seqno)
848
{
849
	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
850
	int ret;
851
 
852
	ret = intel_ring_begin(waiter, 4);
853
	if (ret)
854
		return ret;
855
 
856
	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
857
				MI_SEMAPHORE_GLOBAL_GTT |
858
				MI_SEMAPHORE_POLL |
859
				MI_SEMAPHORE_SAD_GTE_SDD);
860
	intel_ring_emit(waiter, seqno);
861
	intel_ring_emit(waiter,
862
			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
863
	intel_ring_emit(waiter,
864
			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
865
	intel_ring_advance(waiter);
866
	return 0;
867
}
868
 
869
static int
870
gen6_ring_sync(struct intel_engine_cs *waiter,
871
	       struct intel_engine_cs *signaller,
2332 Serge 872
		u32 seqno)
873
{
2342 Serge 874
	u32 dw1 = MI_SEMAPHORE_MBOX |
875
		  MI_SEMAPHORE_COMPARE |
876
		  MI_SEMAPHORE_REGISTER;
5060 serge 877
	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
878
	int ret;
2332 Serge 879
 
3031 serge 880
	/* Throughout all of the GEM code, seqno passed implies our current
881
	 * seqno is >= the last seqno executed. However for hardware the
882
	 * comparison is strictly greater than.
883
	 */
884
	seqno -= 1;
885
 
5060 serge 886
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
3031 serge 887
 
2342 Serge 888
	ret = intel_ring_begin(waiter, 4);
2332 Serge 889
	if (ret)
890
		return ret;
891
 
3480 Serge 892
	/* If seqno wrap happened, omit the wait with no-ops */
893
	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
5060 serge 894
		intel_ring_emit(waiter, dw1 | wait_mbox);
2342 Serge 895
	intel_ring_emit(waiter, seqno);
896
	intel_ring_emit(waiter, 0);
897
	intel_ring_emit(waiter, MI_NOOP);
3480 Serge 898
	} else {
899
		intel_ring_emit(waiter, MI_NOOP);
900
		intel_ring_emit(waiter, MI_NOOP);
901
		intel_ring_emit(waiter, MI_NOOP);
902
		intel_ring_emit(waiter, MI_NOOP);
903
	}
2342 Serge 904
	intel_ring_advance(waiter);
2332 Serge 905
 
906
	return 0;
907
}
908
 
909
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
910
do {									\
2342 Serge 911
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
912
		 PIPE_CONTROL_DEPTH_STALL);				\
2332 Serge 913
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
914
	intel_ring_emit(ring__, 0);							\
915
	intel_ring_emit(ring__, 0);							\
916
} while (0)
917
 
918
static int
5060 serge 919
pc_render_add_request(struct intel_engine_cs *ring)
2332 Serge 920
{
5060 serge 921
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
2332 Serge 922
	int ret;
923
 
924
	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
925
	 * incoherent with writes to memory, i.e. completely fubar,
926
	 * so we need to use PIPE_NOTIFY instead.
927
	 *
928
	 * However, we also need to workaround the qword write
929
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
930
	 * memory before requesting an interrupt.
931
	 */
932
	ret = intel_ring_begin(ring, 32);
933
	if (ret)
934
		return ret;
935
 
2342 Serge 936
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
937
			PIPE_CONTROL_WRITE_FLUSH |
938
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
4104 Serge 939
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
4560 Serge 940
	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
2332 Serge 941
	intel_ring_emit(ring, 0);
942
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 943
	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
2332 Serge 944
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 945
	scratch_addr += 2 * CACHELINE_BYTES;
2332 Serge 946
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 947
	scratch_addr += 2 * CACHELINE_BYTES;
2332 Serge 948
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 949
	scratch_addr += 2 * CACHELINE_BYTES;
2332 Serge 950
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
5060 serge 951
	scratch_addr += 2 * CACHELINE_BYTES;
2332 Serge 952
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
3031 serge 953
 
2342 Serge 954
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
955
			PIPE_CONTROL_WRITE_FLUSH |
956
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
2332 Serge 957
			PIPE_CONTROL_NOTIFY);
4104 Serge 958
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
4560 Serge 959
	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
2332 Serge 960
	intel_ring_emit(ring, 0);
4560 Serge 961
	__intel_ring_advance(ring);
2332 Serge 962
 
963
	return 0;
964
}
965
 
966
static u32
5060 serge 967
gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
2342 Serge 968
{
969
	/* Workaround to force correct ordering between irq and seqno writes on
970
	 * ivb (and maybe also on snb) by reading from a CS register (like
971
	 * ACTHD) before reading the status page. */
5060 serge 972
	if (!lazy_coherency) {
973
		struct drm_i915_private *dev_priv = ring->dev->dev_private;
974
		POSTING_READ(RING_ACTHD(ring->mmio_base));
975
	}
976
 
2342 Serge 977
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
978
}
979
 
980
static u32
5060 serge 981
ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
2332 Serge 982
{
983
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
984
}
985
 
3480 Serge 986
static void
5060 serge 987
ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
3480 Serge 988
{
989
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
990
}
991
 
2332 Serge 992
static u32
5060 serge 993
pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
2332 Serge 994
{
4104 Serge 995
	return ring->scratch.cpu_page[0];
2332 Serge 996
}
997
 
3480 Serge 998
static void
5060 serge 999
pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
3480 Serge 1000
{
4104 Serge 1001
	ring->scratch.cpu_page[0] = seqno;
3480 Serge 1002
}
1003
 
3031 serge 1004
static bool
5060 serge 1005
gen5_ring_get_irq(struct intel_engine_cs *ring)
2332 Serge 1006
{
3031 serge 1007
	struct drm_device *dev = ring->dev;
5060 serge 1008
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1009
	unsigned long flags;
1010
 
1011
	if (!dev->irq_enabled)
1012
		return false;
1013
 
1014
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
4104 Serge 1015
	if (ring->irq_refcount++ == 0)
5060 serge 1016
		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
3031 serge 1017
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1018
 
1019
	return true;
2332 Serge 1020
}
1021
 
1022
static void
5060 serge 1023
gen5_ring_put_irq(struct intel_engine_cs *ring)
2332 Serge 1024
{
3031 serge 1025
	struct drm_device *dev = ring->dev;
5060 serge 1026
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1027
	unsigned long flags;
1028
 
1029
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
4104 Serge 1030
	if (--ring->irq_refcount == 0)
5060 serge 1031
		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
3031 serge 1032
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1033
}
1034
 
3031 serge 1035
static bool
5060 serge 1036
i9xx_ring_get_irq(struct intel_engine_cs *ring)
2332 Serge 1037
{
3031 serge 1038
	struct drm_device *dev = ring->dev;
5060 serge 1039
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1040
	unsigned long flags;
1041
 
1042
	if (!dev->irq_enabled)
1043
		return false;
1044
 
1045
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1046
	if (ring->irq_refcount++ == 0) {
1047
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
2332 Serge 1048
	I915_WRITE(IMR, dev_priv->irq_mask);
1049
	POSTING_READ(IMR);
3031 serge 1050
	}
1051
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1052
 
1053
	return true;
2332 Serge 1054
}
1055
 
1056
static void
5060 serge 1057
i9xx_ring_put_irq(struct intel_engine_cs *ring)
2332 Serge 1058
{
3031 serge 1059
	struct drm_device *dev = ring->dev;
5060 serge 1060
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1061
	unsigned long flags;
1062
 
1063
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1064
	if (--ring->irq_refcount == 0) {
1065
		dev_priv->irq_mask |= ring->irq_enable_mask;
2332 Serge 1066
	I915_WRITE(IMR, dev_priv->irq_mask);
1067
	POSTING_READ(IMR);
3031 serge 1068
	}
1069
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1070
}
1071
 
1072
static bool
5060 serge 1073
i8xx_ring_get_irq(struct intel_engine_cs *ring)
2332 Serge 1074
{
1075
	struct drm_device *dev = ring->dev;
5060 serge 1076
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1077
	unsigned long flags;
2332 Serge 1078
 
1079
	if (!dev->irq_enabled)
1080
		return false;
1081
 
3031 serge 1082
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 1083
	if (ring->irq_refcount++ == 0) {
3031 serge 1084
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1085
		I915_WRITE16(IMR, dev_priv->irq_mask);
1086
		POSTING_READ16(IMR);
2332 Serge 1087
	}
3031 serge 1088
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1089
 
1090
	return true;
1091
}
1092
 
1093
static void
5060 serge 1094
i8xx_ring_put_irq(struct intel_engine_cs *ring)
2332 Serge 1095
{
1096
	struct drm_device *dev = ring->dev;
5060 serge 1097
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1098
	unsigned long flags;
2332 Serge 1099
 
3031 serge 1100
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 1101
	if (--ring->irq_refcount == 0) {
3031 serge 1102
		dev_priv->irq_mask |= ring->irq_enable_mask;
1103
		I915_WRITE16(IMR, dev_priv->irq_mask);
1104
		POSTING_READ16(IMR);
2332 Serge 1105
	}
3031 serge 1106
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1107
}
1108
 
5060 serge 1109
void intel_ring_setup_status_page(struct intel_engine_cs *ring)
2332 Serge 1110
{
1111
	struct drm_device *dev = ring->dev;
5060 serge 1112
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2332 Serge 1113
	u32 mmio = 0;
1114
 
1115
	/* The ring status page addresses are no longer next to the rest of
1116
	 * the ring registers as of gen7.
1117
	 */
1118
	if (IS_GEN7(dev)) {
1119
		switch (ring->id) {
3031 serge 1120
		case RCS:
2332 Serge 1121
			mmio = RENDER_HWS_PGA_GEN7;
1122
			break;
3031 serge 1123
		case BCS:
2332 Serge 1124
			mmio = BLT_HWS_PGA_GEN7;
1125
			break;
5060 serge 1126
		/*
1127
		 * VCS2 actually doesn't exist on Gen7. Only shut up
1128
		 * gcc switch check warning
1129
		 */
1130
		case VCS2:
3031 serge 1131
		case VCS:
2332 Serge 1132
			mmio = BSD_HWS_PGA_GEN7;
1133
			break;
4104 Serge 1134
		case VECS:
1135
			mmio = VEBOX_HWS_PGA_GEN7;
1136
			break;
2332 Serge 1137
		}
1138
	} else if (IS_GEN6(ring->dev)) {
1139
		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1140
	} else {
4560 Serge 1141
		/* XXX: gen8 returns to sanity */
2332 Serge 1142
		mmio = RING_HWS_PGA(ring->mmio_base);
1143
	}
1144
 
1145
	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1146
	POSTING_READ(mmio);
3746 Serge 1147
 
5060 serge 1148
	/*
1149
	 * Flush the TLB for this page
1150
	 *
1151
	 * FIXME: These two bits have disappeared on gen8, so a question
1152
	 * arises: do we still need this and if so how should we go about
1153
	 * invalidating the TLB?
1154
	 */
1155
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
4104 Serge 1156
		u32 reg = RING_INSTPM(ring->mmio_base);
5060 serge 1157
 
1158
		/* ring should be idle before issuing a sync flush*/
1159
		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1160
 
4104 Serge 1161
		I915_WRITE(reg,
1162
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1163
					      INSTPM_SYNC_FLUSH));
1164
		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1165
			     1000))
1166
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1167
				  ring->name);
1168
	}
2332 Serge 1169
}
1170
 
1171
static int
5060 serge 1172
bsd_ring_flush(struct intel_engine_cs *ring,
2332 Serge 1173
	       u32     invalidate_domains,
1174
	       u32     flush_domains)
1175
{
1176
	int ret;
1177
 
1178
	ret = intel_ring_begin(ring, 2);
1179
	if (ret)
1180
		return ret;
1181
 
1182
	intel_ring_emit(ring, MI_FLUSH);
1183
	intel_ring_emit(ring, MI_NOOP);
1184
	intel_ring_advance(ring);
1185
	return 0;
1186
}
1187
 
1188
static int
5060 serge 1189
i9xx_add_request(struct intel_engine_cs *ring)
2332 Serge 1190
{
1191
	int ret;
1192
 
1193
	ret = intel_ring_begin(ring, 4);
1194
	if (ret)
1195
		return ret;
1196
 
1197
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1198
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
4560 Serge 1199
	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
2332 Serge 1200
	intel_ring_emit(ring, MI_USER_INTERRUPT);
4560 Serge 1201
	__intel_ring_advance(ring);
2332 Serge 1202
 
1203
	return 0;
1204
}
1205
 
1206
static bool
5060 serge 1207
gen6_ring_get_irq(struct intel_engine_cs *ring)
2332 Serge 1208
{
1209
	struct drm_device *dev = ring->dev;
5060 serge 1210
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1211
	unsigned long flags;
2332 Serge 1212
 
1213
	if (!dev->irq_enabled)
1214
	       return false;
1215
 
3031 serge 1216
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 1217
	if (ring->irq_refcount++ == 0) {
4560 Serge 1218
		if (HAS_L3_DPF(dev) && ring->id == RCS)
4104 Serge 1219
			I915_WRITE_IMR(ring,
1220
				       ~(ring->irq_enable_mask |
4560 Serge 1221
					 GT_PARITY_ERROR(dev)));
3031 serge 1222
		else
1223
			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
5060 serge 1224
		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
2332 Serge 1225
	}
3031 serge 1226
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1227
 
2351 Serge 1228
    return true;
2332 Serge 1229
}
1230
 
1231
static void
5060 serge 1232
gen6_ring_put_irq(struct intel_engine_cs *ring)
2332 Serge 1233
{
1234
	struct drm_device *dev = ring->dev;
5060 serge 1235
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1236
	unsigned long flags;
2332 Serge 1237
 
3031 serge 1238
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 1239
	if (--ring->irq_refcount == 0) {
4560 Serge 1240
		if (HAS_L3_DPF(dev) && ring->id == RCS)
1241
			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
3031 serge 1242
		else
1243
			I915_WRITE_IMR(ring, ~0);
5060 serge 1244
		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
2332 Serge 1245
	}
3031 serge 1246
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 1247
}
1248
 
4104 Serge 1249
static bool
5060 serge 1250
hsw_vebox_get_irq(struct intel_engine_cs *ring)
4104 Serge 1251
{
1252
	struct drm_device *dev = ring->dev;
1253
	struct drm_i915_private *dev_priv = dev->dev_private;
1254
	unsigned long flags;
1255
 
1256
	if (!dev->irq_enabled)
1257
		return false;
1258
 
1259
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1260
	if (ring->irq_refcount++ == 0) {
1261
		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
5060 serge 1262
		gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
4104 Serge 1263
	}
1264
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1265
 
1266
	return true;
1267
}
1268
 
1269
static void
5060 serge 1270
hsw_vebox_put_irq(struct intel_engine_cs *ring)
4104 Serge 1271
{
1272
	struct drm_device *dev = ring->dev;
1273
	struct drm_i915_private *dev_priv = dev->dev_private;
1274
	unsigned long flags;
1275
 
1276
	if (!dev->irq_enabled)
1277
		return;
1278
 
1279
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1280
	if (--ring->irq_refcount == 0) {
1281
		I915_WRITE_IMR(ring, ~0);
5060 serge 1282
		gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
4104 Serge 1283
	}
1284
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1285
}
1286
 
4560 Serge 1287
static bool
5060 serge 1288
gen8_ring_get_irq(struct intel_engine_cs *ring)
4560 Serge 1289
{
1290
	struct drm_device *dev = ring->dev;
1291
	struct drm_i915_private *dev_priv = dev->dev_private;
1292
	unsigned long flags;
1293
 
1294
	if (!dev->irq_enabled)
1295
		return false;
1296
 
1297
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1298
	if (ring->irq_refcount++ == 0) {
1299
		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1300
			I915_WRITE_IMR(ring,
1301
				       ~(ring->irq_enable_mask |
1302
					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1303
		} else {
1304
			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1305
		}
1306
		POSTING_READ(RING_IMR(ring->mmio_base));
1307
	}
1308
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1309
 
1310
	return true;
1311
}
1312
 
1313
static void
5060 serge 1314
gen8_ring_put_irq(struct intel_engine_cs *ring)
4560 Serge 1315
{
1316
	struct drm_device *dev = ring->dev;
1317
	struct drm_i915_private *dev_priv = dev->dev_private;
1318
	unsigned long flags;
1319
 
1320
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1321
	if (--ring->irq_refcount == 0) {
1322
		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1323
			I915_WRITE_IMR(ring,
1324
				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1325
		} else {
1326
			I915_WRITE_IMR(ring, ~0);
1327
		}
1328
		POSTING_READ(RING_IMR(ring->mmio_base));
1329
	}
1330
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1331
}
1332
 
2332 Serge 1333
static int
5060 serge 1334
i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1335
			 u64 offset, u32 length,
3243 Serge 1336
			 unsigned flags)
2332 Serge 1337
{
1338
	int ret;
1339
 
1340
	ret = intel_ring_begin(ring, 2);
1341
	if (ret)
1342
		return ret;
1343
 
1344
	intel_ring_emit(ring,
3031 serge 1345
			MI_BATCH_BUFFER_START |
1346
			MI_BATCH_GTT |
3243 Serge 1347
			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2332 Serge 1348
	intel_ring_emit(ring, offset);
1349
	intel_ring_advance(ring);
1350
 
1351
	return 0;
1352
}
1353
 
3243 Serge 1354
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1355
#define I830_BATCH_LIMIT (256*1024)
2332 Serge 1356
static int
5060 serge 1357
i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1358
				u64 offset, u32 len,
3243 Serge 1359
				unsigned flags)
2332 Serge 1360
{
1361
	int ret;
1362
 
3243 Serge 1363
	if (flags & I915_DISPATCH_PINNED) {
2332 Serge 1364
		ret = intel_ring_begin(ring, 4);
1365
		if (ret)
1366
			return ret;
1367
 
1368
		intel_ring_emit(ring, MI_BATCH_BUFFER);
3243 Serge 1369
		intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
2332 Serge 1370
		intel_ring_emit(ring, offset + len - 8);
3243 Serge 1371
		intel_ring_emit(ring, MI_NOOP);
1372
		intel_ring_advance(ring);
1373
	} else {
4104 Serge 1374
		u32 cs_offset = ring->scratch.gtt_offset;
3243 Serge 1375
 
1376
		if (len > I830_BATCH_LIMIT)
1377
			return -ENOSPC;
1378
 
1379
		ret = intel_ring_begin(ring, 9+3);
1380
		if (ret)
1381
			return ret;
1382
		/* Blit the batch (which has now all relocs applied) to the stable batch
1383
		 * scratch bo area (so that the CS never stumbles over its tlb
1384
		 * invalidation bug) ... */
1385
		intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1386
				XY_SRC_COPY_BLT_WRITE_ALPHA |
1387
				XY_SRC_COPY_BLT_WRITE_RGB);
1388
		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
2332 Serge 1389
		intel_ring_emit(ring, 0);
3243 Serge 1390
		intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1391
		intel_ring_emit(ring, cs_offset);
1392
		intel_ring_emit(ring, 0);
1393
		intel_ring_emit(ring, 4096);
1394
		intel_ring_emit(ring, offset);
1395
		intel_ring_emit(ring, MI_FLUSH);
1396
 
1397
		/* ... and execute it. */
1398
		intel_ring_emit(ring, MI_BATCH_BUFFER);
1399
		intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1400
		intel_ring_emit(ring, cs_offset + len - 8);
3031 serge 1401
	intel_ring_advance(ring);
3243 Serge 1402
	}
3031 serge 1403
 
1404
	return 0;
1405
}
1406
 
1407
static int
5060 serge 1408
i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1409
			 u64 offset, u32 len,
3243 Serge 1410
			 unsigned flags)
3031 serge 1411
{
1412
	int ret;
1413
 
2332 Serge 1414
		ret = intel_ring_begin(ring, 2);
1415
		if (ret)
1416
			return ret;
1417
 
3031 serge 1418
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
3243 Serge 1419
	intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
2332 Serge 1420
	intel_ring_advance(ring);
1421
 
1422
	return 0;
1423
}
1424
 
5060 serge 1425
static void cleanup_status_page(struct intel_engine_cs *ring)
2332 Serge 1426
{
1427
	struct drm_i915_gem_object *obj;
1428
 
1429
	obj = ring->status_page.obj;
1430
	if (obj == NULL)
1431
		return;
1432
 
5060 serge 1433
//	kunmap(sg_page(obj->pages->sgl));
1434
	i915_gem_object_ggtt_unpin(obj);
2344 Serge 1435
	drm_gem_object_unreference(&obj->base);
2332 Serge 1436
	ring->status_page.obj = NULL;
1437
}
1438
 
5060 serge 1439
static int init_status_page(struct intel_engine_cs *ring)
2332 Serge 1440
{
1441
	struct drm_i915_gem_object *obj;
5060 serge 1442
 
1443
	if ((obj = ring->status_page.obj) == NULL) {
1444
		unsigned flags;
2332 Serge 1445
	int ret;
1446
 
5060 serge 1447
		obj = i915_gem_alloc_object(ring->dev, 4096);
2332 Serge 1448
	if (obj == NULL) {
1449
		DRM_ERROR("Failed to allocate status page\n");
5060 serge 1450
			return -ENOMEM;
2332 Serge 1451
	}
1452
 
5060 serge 1453
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1454
	if (ret)
1455
		goto err_unref;
2332 Serge 1456
 
5060 serge 1457
		flags = 0;
1458
		if (!HAS_LLC(ring->dev))
1459
			/* On g33, we cannot place HWS above 256MiB, so
1460
			 * restrict its pinning to the low mappable arena.
1461
			 * Though this restriction is not documented for
1462
			 * gen4, gen5, or byt, they also behave similarly
1463
			 * and hang if the HWS is placed at the top of the
1464
			 * GTT. To generalise, it appears that all !llc
1465
			 * platforms have issues with us placing the HWS
1466
			 * above the mappable region (even though we never
1467
			 * actualy map it).
1468
			 */
1469
			flags |= PIN_MAPPABLE;
1470
		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1471
		if (ret) {
1472
err_unref:
1473
			drm_gem_object_unreference(&obj->base);
1474
			return ret;
1475
		}
1476
 
1477
		ring->status_page.obj = obj;
2332 Serge 1478
	}
1479
 
4104 Serge 1480
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
4539 Serge 1481
    ring->status_page.page_addr = (void*)MapIoMem((addr_t)sg_page(obj->pages->sgl),4096,PG_SW|0x100);
2332 Serge 1482
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1483
 
1484
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1485
			ring->name, ring->status_page.gfx_addr);
1486
 
1487
	return 0;
1488
}
1489
 
5060 serge 1490
static int init_phys_status_page(struct intel_engine_cs *ring)
3243 Serge 1491
{
1492
    struct drm_i915_private *dev_priv = ring->dev->dev_private;
1493
 
1494
    if (!dev_priv->status_page_dmah) {
1495
        dev_priv->status_page_dmah =
1496
            drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1497
        if (!dev_priv->status_page_dmah)
1498
            return -ENOMEM;
1499
    }
1500
 
1501
    ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1502
    memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1503
 
1504
    return 0;
1505
}
1506
 
5060 serge 1507
static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2332 Serge 1508
{
5060 serge 1509
	if (!ringbuf->obj)
1510
		return;
1511
 
1512
	iounmap(ringbuf->virtual_start);
1513
	i915_gem_object_ggtt_unpin(ringbuf->obj);
1514
	drm_gem_object_unreference(&ringbuf->obj->base);
1515
	ringbuf->obj = NULL;
1516
}
1517
 
1518
static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1519
				      struct intel_ringbuffer *ringbuf)
1520
{
1521
	struct drm_i915_private *dev_priv = to_i915(dev);
2340 Serge 1522
	struct drm_i915_gem_object *obj;
2332 Serge 1523
	int ret;
2340 Serge 1524
 
5060 serge 1525
	if (ringbuf->obj)
1526
		return 0;
2332 Serge 1527
 
3480 Serge 1528
	obj = NULL;
4371 Serge 1529
	if (!HAS_LLC(dev))
5060 serge 1530
		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
3480 Serge 1531
	if (obj == NULL)
5060 serge 1532
		obj = i915_gem_alloc_object(dev, ringbuf->size);
1533
	if (obj == NULL)
1534
		return -ENOMEM;
2332 Serge 1535
 
5060 serge 1536
	/* mark ring buffers as read-only from GPU side by default */
1537
	obj->gt_ro = 1;
2332 Serge 1538
 
5060 serge 1539
	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2332 Serge 1540
	if (ret)
1541
		goto err_unref;
1542
 
3031 serge 1543
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1544
	if (ret)
1545
		goto err_unpin;
2332 Serge 1546
 
5060 serge 1547
	ringbuf->virtual_start =
4104 Serge 1548
		ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
5060 serge 1549
				ringbuf->size);
1550
	if (ringbuf->virtual_start == NULL) {
2332 Serge 1551
		ret = -EINVAL;
1552
		goto err_unpin;
1553
	}
1554
 
5060 serge 1555
	ringbuf->obj = obj;
1556
	return 0;
1557
 
1558
err_unpin:
1559
	i915_gem_object_ggtt_unpin(obj);
1560
err_unref:
1561
	drm_gem_object_unreference(&obj->base);
1562
	return ret;
1563
}
1564
 
1565
static int intel_init_ring_buffer(struct drm_device *dev,
1566
				  struct intel_engine_cs *ring)
1567
{
1568
	struct intel_ringbuffer *ringbuf = ring->buffer;
1569
	int ret;
1570
 
1571
	if (ringbuf == NULL) {
1572
		ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1573
		if (!ringbuf)
1574
			return -ENOMEM;
1575
		ring->buffer = ringbuf;
1576
	}
1577
 
1578
	ring->dev = dev;
1579
	INIT_LIST_HEAD(&ring->active_list);
1580
	INIT_LIST_HEAD(&ring->request_list);
1581
	ringbuf->size = 32 * PAGE_SIZE;
1582
	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1583
 
1584
	init_waitqueue_head(&ring->irq_queue);
1585
 
1586
	if (I915_NEED_GFX_HWS(dev)) {
1587
		ret = init_status_page(ring);
1588
		if (ret)
1589
			goto error;
1590
	} else {
1591
		BUG_ON(ring->id != RCS);
1592
		ret = init_phys_status_page(ring);
2332 Serge 1593
	if (ret)
5060 serge 1594
			goto error;
1595
	}
2332 Serge 1596
 
5060 serge 1597
	ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1598
	if (ret) {
1599
		DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1600
		goto error;
1601
	}
1602
 
2332 Serge 1603
	/* Workaround an erratum on the i830 which causes a hang if
1604
	 * the TAIL pointer points to within the last 2 cachelines
1605
	 * of the buffer.
1606
	 */
5060 serge 1607
	ringbuf->effective_size = ringbuf->size;
1608
	if (IS_I830(dev) || IS_845G(dev))
1609
		ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2340 Serge 1610
 
5060 serge 1611
	ret = i915_cmd_parser_init_ring(ring);
1612
	if (ret)
1613
		goto error;
1614
 
1615
	ret = ring->init(ring);
1616
	if (ret)
1617
		goto error;
1618
 
2332 Serge 1619
	return 0;
1620
 
5060 serge 1621
error:
1622
	kfree(ringbuf);
1623
	ring->buffer = NULL;
2332 Serge 1624
	return ret;
1625
}
1626
 
5060 serge 1627
void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2332 Serge 1628
{
5060 serge 1629
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
1630
	struct intel_ringbuffer *ringbuf = ring->buffer;
2332 Serge 1631
 
5060 serge 1632
	if (!intel_ring_initialized(ring))
2332 Serge 1633
		return;
1634
 
5060 serge 1635
	intel_stop_ring_buffer(ring);
1636
	WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2332 Serge 1637
 
5060 serge 1638
	intel_destroy_ringbuffer_obj(ringbuf);
4560 Serge 1639
	ring->preallocated_lazy_request = NULL;
1640
	ring->outstanding_lazy_seqno = 0;
2332 Serge 1641
 
1642
	if (ring->cleanup)
1643
		ring->cleanup(ring);
1644
 
5060 serge 1645
//	cleanup_status_page(ring);
2332 Serge 1646
 
5060 serge 1647
	i915_cmd_parser_fini_ring(ring);
2332 Serge 1648
 
5060 serge 1649
	kfree(ringbuf);
1650
	ring->buffer = NULL;
3031 serge 1651
}
1652
 
5060 serge 1653
static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
3031 serge 1654
{
5060 serge 1655
	struct intel_ringbuffer *ringbuf = ring->buffer;
3031 serge 1656
	struct drm_i915_gem_request *request;
1657
	u32 seqno = 0;
1658
	int ret;
1659
 
5060 serge 1660
	if (ringbuf->last_retired_head != -1) {
1661
		ringbuf->head = ringbuf->last_retired_head;
1662
		ringbuf->last_retired_head = -1;
3031 serge 1663
 
5060 serge 1664
		ringbuf->space = ring_space(ringbuf);
1665
		if (ringbuf->space >= n)
2332 Serge 1666
			return 0;
1667
	}
1668
 
3031 serge 1669
	list_for_each_entry(request, &ring->request_list, list) {
5060 serge 1670
		if (__ring_space(request->tail, ringbuf->tail, ringbuf->size) >= n) {
3031 serge 1671
			seqno = request->seqno;
1672
			break;
1673
		}
1674
	}
1675
 
1676
	if (seqno == 0)
1677
		return -ENOSPC;
1678
 
5060 serge 1679
	ret = i915_wait_seqno(ring, seqno);
3031 serge 1680
	if (ret)
1681
		return ret;
1682
 
5060 serge 1683
	i915_gem_retire_requests_ring(ring);
1684
	ringbuf->head = ringbuf->last_retired_head;
1685
	ringbuf->last_retired_head = -1;
3031 serge 1686
 
5060 serge 1687
	ringbuf->space = ring_space(ringbuf);
3031 serge 1688
	return 0;
1689
}
1690
 
5060 serge 1691
static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
3031 serge 1692
{
1693
	struct drm_device *dev = ring->dev;
1694
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 1695
	struct intel_ringbuffer *ringbuf = ring->buffer;
3031 serge 1696
	unsigned long end;
1697
	int ret;
1698
 
1699
	ret = intel_ring_wait_request(ring, n);
1700
	if (ret != -ENOSPC)
1701
		return ret;
1702
 
4560 Serge 1703
	/* force the tail write in case we have been skipping them */
1704
	__intel_ring_advance(ring);
1705
 
3031 serge 1706
	/* With GEM the hangcheck timer should kick us out of the loop,
1707
	 * leaving it early runs the risk of corrupting GEM state (due
1708
	 * to running on almost untested codepaths). But on resume
1709
	 * timers don't work yet, so prevent a complete hang in that
1710
	 * case by choosing an insanely large timeout. */
5060 serge 1711
	end = jiffies + 60 * HZ;
3031 serge 1712
 
5060 serge 1713
	trace_i915_ring_wait_begin(ring);
2332 Serge 1714
	do {
5060 serge 1715
		ringbuf->head = I915_READ_HEAD(ring);
1716
		ringbuf->space = ring_space(ringbuf);
1717
		if (ringbuf->space >= n) {
1718
			ret = 0;
1719
			break;
2332 Serge 1720
		}
1721
 
5060 serge 1722
 
2332 Serge 1723
		msleep(1);
3031 serge 1724
 
3480 Serge 1725
		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1726
					   dev_priv->mm.interruptible);
3031 serge 1727
		if (ret)
5060 serge 1728
			break;
1729
 
1730
		if (time_after(jiffies, end)) {
1731
			ret = -EBUSY;
1732
			break;
1733
		}
1734
	} while (1);
1735
	trace_i915_ring_wait_end(ring);
3031 serge 1736
			return ret;
2332 Serge 1737
}
1738
 
5060 serge 1739
static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
3243 Serge 1740
{
1741
	uint32_t __iomem *virt;
5060 serge 1742
	struct intel_ringbuffer *ringbuf = ring->buffer;
1743
	int rem = ringbuf->size - ringbuf->tail;
3243 Serge 1744
 
5060 serge 1745
	if (ringbuf->space < rem) {
3243 Serge 1746
		int ret = ring_wait_for_space(ring, rem);
1747
		if (ret)
1748
			return ret;
1749
	}
1750
 
5060 serge 1751
	virt = ringbuf->virtual_start + ringbuf->tail;
3243 Serge 1752
	rem /= 4;
1753
	while (rem--)
1754
		iowrite32(MI_NOOP, virt++);
1755
 
5060 serge 1756
	ringbuf->tail = 0;
1757
	ringbuf->space = ring_space(ringbuf);
3243 Serge 1758
 
1759
	return 0;
1760
}
1761
 
5060 serge 1762
int intel_ring_idle(struct intel_engine_cs *ring)
3243 Serge 1763
{
1764
	u32 seqno;
1765
	int ret;
1766
 
1767
	/* We need to add any requests required to flush the objects and ring */
4560 Serge 1768
	if (ring->outstanding_lazy_seqno) {
4104 Serge 1769
		ret = i915_add_request(ring, NULL);
3243 Serge 1770
		if (ret)
1771
			return ret;
1772
	}
1773
 
1774
	/* Wait upon the last request to be completed */
1775
	if (list_empty(&ring->request_list))
1776
		return 0;
1777
 
1778
	seqno = list_entry(ring->request_list.prev,
1779
			   struct drm_i915_gem_request,
1780
			   list)->seqno;
1781
 
1782
	return i915_wait_seqno(ring, seqno);
1783
}
1784
 
1785
static int
5060 serge 1786
intel_ring_alloc_seqno(struct intel_engine_cs *ring)
3243 Serge 1787
{
4560 Serge 1788
	if (ring->outstanding_lazy_seqno)
3243 Serge 1789
		return 0;
1790
 
4560 Serge 1791
	if (ring->preallocated_lazy_request == NULL) {
1792
		struct drm_i915_gem_request *request;
1793
 
1794
		request = kmalloc(sizeof(*request), GFP_KERNEL);
1795
		if (request == NULL)
1796
			return -ENOMEM;
1797
 
1798
		ring->preallocated_lazy_request = request;
1799
	}
1800
 
1801
	return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
3243 Serge 1802
}
1803
 
5060 serge 1804
static int __intel_ring_prepare(struct intel_engine_cs *ring,
3480 Serge 1805
			      int bytes)
1806
{
5060 serge 1807
	struct intel_ringbuffer *ringbuf = ring->buffer;
3480 Serge 1808
	int ret;
1809
 
5060 serge 1810
	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
3480 Serge 1811
		ret = intel_wrap_ring_buffer(ring);
1812
		if (unlikely(ret))
1813
			return ret;
1814
	}
1815
 
5060 serge 1816
	if (unlikely(ringbuf->space < bytes)) {
3480 Serge 1817
		ret = ring_wait_for_space(ring, bytes);
1818
		if (unlikely(ret))
1819
			return ret;
1820
	}
1821
 
1822
	return 0;
1823
}
1824
 
5060 serge 1825
int intel_ring_begin(struct intel_engine_cs *ring,
2332 Serge 1826
		     int num_dwords)
1827
{
5060 serge 1828
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2332 Serge 1829
	int ret;
1830
 
3480 Serge 1831
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1832
				   dev_priv->mm.interruptible);
3031 serge 1833
	if (ret)
1834
		return ret;
2332 Serge 1835
 
4560 Serge 1836
	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1837
	if (ret)
1838
		return ret;
1839
 
3243 Serge 1840
	/* Preallocate the olr before touching the ring */
1841
	ret = intel_ring_alloc_seqno(ring);
1842
	if (ret)
1843
		return ret;
1844
 
5060 serge 1845
	ring->buffer->space -= num_dwords * sizeof(uint32_t);
4560 Serge 1846
	return 0;
3480 Serge 1847
}
2332 Serge 1848
 
5060 serge 1849
/* Align the ring tail to a cacheline boundary */
1850
int intel_ring_cacheline_align(struct intel_engine_cs *ring)
3480 Serge 1851
{
5060 serge 1852
	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1853
	int ret;
3480 Serge 1854
 
5060 serge 1855
	if (num_dwords == 0)
1856
		return 0;
1857
 
1858
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1859
	ret = intel_ring_begin(ring, num_dwords);
1860
	if (ret)
1861
		return ret;
1862
 
1863
	while (num_dwords--)
1864
		intel_ring_emit(ring, MI_NOOP);
1865
 
1866
	intel_ring_advance(ring);
1867
 
1868
	return 0;
1869
}
1870
 
1871
void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
1872
{
1873
	struct drm_device *dev = ring->dev;
1874
	struct drm_i915_private *dev_priv = dev->dev_private;
1875
 
4560 Serge 1876
	BUG_ON(ring->outstanding_lazy_seqno);
3480 Serge 1877
 
5060 serge 1878
	if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
3480 Serge 1879
		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1880
		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
5060 serge 1881
		if (HAS_VEBOX(dev))
4104 Serge 1882
			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2332 Serge 1883
	}
1884
 
3480 Serge 1885
	ring->set_seqno(ring, seqno);
4104 Serge 1886
	ring->hangcheck.seqno = seqno;
2332 Serge 1887
}
1888
 
5060 serge 1889
static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2332 Serge 1890
				     u32 value)
1891
{
5060 serge 1892
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2332 Serge 1893
 
1894
       /* Every tail move must follow the sequence below */
3031 serge 1895
 
1896
	/* Disable notification that the ring is IDLE. The GT
1897
	 * will then assume that it is busy and bring it out of rc6.
1898
	 */
2332 Serge 1899
       I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
3031 serge 1900
		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2332 Serge 1901
 
3031 serge 1902
	/* Clear the context id. Here be magic! */
1903
	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1904
 
1905
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2332 Serge 1906
       if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
3031 serge 1907
		      GEN6_BSD_SLEEP_INDICATOR) == 0,
2332 Serge 1908
                       50))
3031 serge 1909
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2332 Serge 1910
 
3031 serge 1911
	/* Now that the ring is fully powered up, update the tail */
2332 Serge 1912
       I915_WRITE_TAIL(ring, value);
3031 serge 1913
	POSTING_READ(RING_TAIL(ring->mmio_base));
1914
 
1915
	/* Let the ring send IDLE messages to the GT again,
1916
	 * and so let it sleep to conserve power when idle.
1917
	 */
2332 Serge 1918
       I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
3031 serge 1919
		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2332 Serge 1920
}
1921
 
5060 serge 1922
static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2332 Serge 1923
			   u32 invalidate, u32 flush)
1924
{
1925
	uint32_t cmd;
1926
	int ret;
1927
 
1928
	ret = intel_ring_begin(ring, 4);
1929
	if (ret)
1930
		return ret;
1931
 
1932
	cmd = MI_FLUSH_DW;
4560 Serge 1933
	if (INTEL_INFO(ring->dev)->gen >= 8)
1934
		cmd += 1;
3243 Serge 1935
	/*
1936
	 * Bspec vol 1c.5 - video engine command streamer:
1937
	 * "If ENABLED, all TLBs will be invalidated once the flush
1938
	 * operation is complete. This bit is only valid when the
1939
	 * Post-Sync Operation field is a value of 1h or 3h."
1940
	 */
2332 Serge 1941
	if (invalidate & I915_GEM_GPU_DOMAINS)
3243 Serge 1942
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1943
			MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2332 Serge 1944
	intel_ring_emit(ring, cmd);
3243 Serge 1945
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
4560 Serge 1946
	if (INTEL_INFO(ring->dev)->gen >= 8) {
1947
		intel_ring_emit(ring, 0); /* upper addr */
1948
		intel_ring_emit(ring, 0); /* value */
1949
	} else  {
2332 Serge 1950
	intel_ring_emit(ring, 0);
1951
	intel_ring_emit(ring, MI_NOOP);
4560 Serge 1952
	}
2332 Serge 1953
	intel_ring_advance(ring);
1954
	return 0;
1955
}
1956
 
1957
static int
5060 serge 1958
gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1959
			      u64 offset, u32 len,
4560 Serge 1960
			      unsigned flags)
1961
{
1962
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1963
	bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1964
		!(flags & I915_DISPATCH_SECURE);
1965
	int ret;
1966
 
1967
	ret = intel_ring_begin(ring, 4);
1968
	if (ret)
1969
		return ret;
1970
 
1971
	/* FIXME(BDW): Address space and security selectors. */
1972
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
5060 serge 1973
	intel_ring_emit(ring, lower_32_bits(offset));
1974
	intel_ring_emit(ring, upper_32_bits(offset));
4560 Serge 1975
	intel_ring_emit(ring, MI_NOOP);
1976
	intel_ring_advance(ring);
1977
 
1978
	return 0;
1979
}
1980
 
1981
static int
5060 serge 1982
hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1983
			      u64 offset, u32 len,
3243 Serge 1984
			      unsigned flags)
1985
{
1986
	int ret;
1987
 
1988
	ret = intel_ring_begin(ring, 2);
1989
	if (ret)
1990
		return ret;
1991
 
1992
	intel_ring_emit(ring,
1993
			MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1994
			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1995
	/* bit0-7 is the length on GEN6+ */
1996
	intel_ring_emit(ring, offset);
1997
	intel_ring_advance(ring);
1998
 
1999
	return 0;
2000
}
2001
 
2002
static int
5060 serge 2003
gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2004
			      u64 offset, u32 len,
3243 Serge 2005
			      unsigned flags)
2332 Serge 2006
{
2007
       int ret;
2008
 
2009
       ret = intel_ring_begin(ring, 2);
2010
       if (ret)
2011
	       return ret;
2012
 
3243 Serge 2013
	intel_ring_emit(ring,
2014
			MI_BATCH_BUFFER_START |
2015
			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2332 Serge 2016
       /* bit0-7 is the length on GEN6+ */
2017
       intel_ring_emit(ring, offset);
2018
       intel_ring_advance(ring);
2019
 
2020
       return 0;
2021
}
2022
 
2023
/* Blitter support (SandyBridge+) */
2024
 
5060 serge 2025
static int gen6_ring_flush(struct intel_engine_cs *ring,
2332 Serge 2026
			  u32 invalidate, u32 flush)
2027
{
4104 Serge 2028
	struct drm_device *dev = ring->dev;
2332 Serge 2029
	uint32_t cmd;
2030
	int ret;
2031
 
3031 serge 2032
	ret = intel_ring_begin(ring, 4);
2332 Serge 2033
	if (ret)
2034
		return ret;
2035
 
2036
	cmd = MI_FLUSH_DW;
4560 Serge 2037
	if (INTEL_INFO(ring->dev)->gen >= 8)
2038
		cmd += 1;
3243 Serge 2039
	/*
2040
	 * Bspec vol 1c.3 - blitter engine command streamer:
2041
	 * "If ENABLED, all TLBs will be invalidated once the flush
2042
	 * operation is complete. This bit is only valid when the
2043
	 * Post-Sync Operation field is a value of 1h or 3h."
2044
	 */
2332 Serge 2045
	if (invalidate & I915_GEM_DOMAIN_RENDER)
3243 Serge 2046
		cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2047
			MI_FLUSH_DW_OP_STOREDW;
2332 Serge 2048
	intel_ring_emit(ring, cmd);
3243 Serge 2049
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
4560 Serge 2050
	if (INTEL_INFO(ring->dev)->gen >= 8) {
2051
		intel_ring_emit(ring, 0); /* upper addr */
2052
		intel_ring_emit(ring, 0); /* value */
2053
	} else  {
2332 Serge 2054
	intel_ring_emit(ring, 0);
2055
	intel_ring_emit(ring, MI_NOOP);
4560 Serge 2056
	}
2332 Serge 2057
	intel_ring_advance(ring);
4104 Serge 2058
 
4560 Serge 2059
	if (IS_GEN7(dev) && !invalidate && flush)
4104 Serge 2060
		return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2061
 
2332 Serge 2062
	return 0;
2063
}
2064
 
2065
int intel_init_render_ring_buffer(struct drm_device *dev)
2066
{
5060 serge 2067
	struct drm_i915_private *dev_priv = dev->dev_private;
2068
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2069
	struct drm_i915_gem_object *obj;
2070
	int ret;
2340 Serge 2071
 
3031 serge 2072
	ring->name = "render ring";
2073
	ring->id = RCS;
2074
	ring->mmio_base = RENDER_RING_BASE;
2075
 
5060 serge 2076
	if (INTEL_INFO(dev)->gen >= 8) {
2077
		if (i915_semaphore_is_enabled(dev)) {
2078
			obj = i915_gem_alloc_object(dev, 4096);
2079
			if (obj == NULL) {
2080
				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2081
				i915.semaphores = 0;
2082
			} else {
2083
				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2084
				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2085
				if (ret != 0) {
2086
					drm_gem_object_unreference(&obj->base);
2087
					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2088
					i915.semaphores = 0;
2089
				} else
2090
					dev_priv->semaphore_obj = obj;
2091
			}
2092
		}
2093
		ring->add_request = gen6_add_request;
2094
		ring->flush = gen8_render_ring_flush;
2095
		ring->irq_get = gen8_ring_get_irq;
2096
		ring->irq_put = gen8_ring_put_irq;
2097
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2098
		ring->get_seqno = gen6_ring_get_seqno;
2099
		ring->set_seqno = ring_set_seqno;
2100
		if (i915_semaphore_is_enabled(dev)) {
2101
			WARN_ON(!dev_priv->semaphore_obj);
2102
			ring->semaphore.sync_to = gen8_ring_sync;
2103
			ring->semaphore.signal = gen8_rcs_signal;
2104
			GEN8_RING_SEMAPHORE_INIT;
2105
		}
2106
	} else if (INTEL_INFO(dev)->gen >= 6) {
2339 Serge 2107
       ring->add_request = gen6_add_request;
3031 serge 2108
		ring->flush = gen7_render_ring_flush;
2109
		if (INTEL_INFO(dev)->gen == 6)
2342 Serge 2110
		ring->flush = gen6_render_ring_flush;
3031 serge 2111
		ring->irq_get = gen6_ring_get_irq;
2112
		ring->irq_put = gen6_ring_put_irq;
4104 Serge 2113
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2342 Serge 2114
		ring->get_seqno = gen6_ring_get_seqno;
3480 Serge 2115
		ring->set_seqno = ring_set_seqno;
5060 serge 2116
		if (i915_semaphore_is_enabled(dev)) {
2117
		ring->semaphore.sync_to = gen6_ring_sync;
2118
		ring->semaphore.signal = gen6_signal;
2119
		/*
2120
			 * The current semaphore is only applied on pre-gen8
2121
			 * platform.  And there is no VCS2 ring on the pre-gen8
2122
			 * platform. So the semaphore between RCS and VCS2 is
2123
			 * initialized as INVALID.  Gen8 will initialize the
2124
			 * sema between VCS2 and RCS later.
2125
		 */
2126
		ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2127
		ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2128
		ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2129
		ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2130
		ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2131
		ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2132
		ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2133
		ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2134
		ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2135
		ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2136
		}
2332 Serge 2137
	} else if (IS_GEN5(dev)) {
2339 Serge 2138
       ring->add_request = pc_render_add_request;
3031 serge 2139
		ring->flush = gen4_render_ring_flush;
2342 Serge 2140
		ring->get_seqno = pc_render_get_seqno;
3480 Serge 2141
		ring->set_seqno = pc_render_set_seqno;
3031 serge 2142
		ring->irq_get = gen5_ring_get_irq;
2143
		ring->irq_put = gen5_ring_put_irq;
4104 Serge 2144
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2145
					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
3031 serge 2146
	} else {
2147
		ring->add_request = i9xx_add_request;
2148
		if (INTEL_INFO(dev)->gen < 4)
2149
			ring->flush = gen2_render_ring_flush;
2150
		else
2151
			ring->flush = gen4_render_ring_flush;
2152
		ring->get_seqno = ring_get_seqno;
3480 Serge 2153
		ring->set_seqno = ring_set_seqno;
3031 serge 2154
		if (IS_GEN2(dev)) {
2155
			ring->irq_get = i8xx_ring_get_irq;
2156
			ring->irq_put = i8xx_ring_put_irq;
2157
		} else {
2158
			ring->irq_get = i9xx_ring_get_irq;
2159
			ring->irq_put = i9xx_ring_put_irq;
2160
		}
2161
		ring->irq_enable_mask = I915_USER_INTERRUPT;
2332 Serge 2162
	}
3031 serge 2163
	ring->write_tail = ring_write_tail;
5060 serge 2164
 
3243 Serge 2165
	if (IS_HASWELL(dev))
2166
		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
4560 Serge 2167
	else if (IS_GEN8(dev))
2168
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3243 Serge 2169
	else if (INTEL_INFO(dev)->gen >= 6)
3031 serge 2170
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2171
	else if (INTEL_INFO(dev)->gen >= 4)
2172
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2173
	else if (IS_I830(dev) || IS_845G(dev))
2174
		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2175
	else
2176
		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2177
	ring->init = init_render_ring;
2178
	ring->cleanup = render_ring_cleanup;
2332 Serge 2179
 
3243 Serge 2180
	/* Workaround batchbuffer to combat CS tlb bug. */
2181
	if (HAS_BROKEN_CS_TLB(dev)) {
2182
		obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
2183
		if (obj == NULL) {
2184
			DRM_ERROR("Failed to allocate batch bo\n");
2185
			return -ENOMEM;
2186
		}
2187
 
5060 serge 2188
		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
3243 Serge 2189
		if (ret != 0) {
2190
			drm_gem_object_unreference(&obj->base);
2191
			DRM_ERROR("Failed to ping batch bo\n");
2192
			return ret;
2193
		}
2194
 
4104 Serge 2195
		ring->scratch.obj = obj;
2196
		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2332 Serge 2197
	}
2340 Serge 2198
 
2332 Serge 2199
	return intel_init_ring_buffer(dev, ring);
2200
}
2201
 
3243 Serge 2202
#if 0
2203
int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2204
{
5060 serge 2205
	struct drm_i915_private *dev_priv = dev->dev_private;
2206
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2207
	struct intel_ringbuffer *ringbuf = ring->buffer;
3243 Serge 2208
	int ret;
2332 Serge 2209
 
5060 serge 2210
	if (ringbuf == NULL) {
2211
		ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2212
		if (!ringbuf)
2213
			return -ENOMEM;
2214
		ring->buffer = ringbuf;
2215
	}
2216
 
3243 Serge 2217
	ring->name = "render ring";
2218
	ring->id = RCS;
2219
	ring->mmio_base = RENDER_RING_BASE;
2220
 
2221
	if (INTEL_INFO(dev)->gen >= 6) {
2222
		/* non-kms not supported on gen6+ */
5060 serge 2223
		ret = -ENODEV;
2224
		goto err_ringbuf;
3243 Serge 2225
	}
2226
 
2227
	/* Note: gem is not supported on gen5/ilk without kms (the corresponding
2228
	 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2229
	 * the special gen5 functions. */
2230
	ring->add_request = i9xx_add_request;
2231
	if (INTEL_INFO(dev)->gen < 4)
2232
		ring->flush = gen2_render_ring_flush;
2233
	else
2234
		ring->flush = gen4_render_ring_flush;
2235
	ring->get_seqno = ring_get_seqno;
3480 Serge 2236
	ring->set_seqno = ring_set_seqno;
3243 Serge 2237
	if (IS_GEN2(dev)) {
2238
		ring->irq_get = i8xx_ring_get_irq;
2239
		ring->irq_put = i8xx_ring_put_irq;
2240
	} else {
2241
		ring->irq_get = i9xx_ring_get_irq;
2242
		ring->irq_put = i9xx_ring_put_irq;
2243
	}
2244
	ring->irq_enable_mask = I915_USER_INTERRUPT;
2245
	ring->write_tail = ring_write_tail;
2246
	if (INTEL_INFO(dev)->gen >= 4)
2247
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2248
	else if (IS_I830(dev) || IS_845G(dev))
2249
		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2250
	else
2251
		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2252
	ring->init = init_render_ring;
2253
	ring->cleanup = render_ring_cleanup;
2254
 
2255
	ring->dev = dev;
2256
	INIT_LIST_HEAD(&ring->active_list);
2257
	INIT_LIST_HEAD(&ring->request_list);
2258
 
5060 serge 2259
	ringbuf->size = size;
2260
	ringbuf->effective_size = ringbuf->size;
3243 Serge 2261
	if (IS_I830(ring->dev) || IS_845G(ring->dev))
5060 serge 2262
		ringbuf->effective_size -= 2 * CACHELINE_BYTES;
3243 Serge 2263
 
5060 serge 2264
	ringbuf->virtual_start = ioremap_wc(start, size);
2265
	if (ringbuf->virtual_start == NULL) {
3243 Serge 2266
		DRM_ERROR("can not ioremap virtual address for"
2267
			  " ring buffer\n");
5060 serge 2268
		ret = -ENOMEM;
2269
		goto err_ringbuf;
3243 Serge 2270
	}
2271
 
2272
	if (!I915_NEED_GFX_HWS(dev)) {
4104 Serge 2273
		ret = init_phys_status_page(ring);
3243 Serge 2274
		if (ret)
5060 serge 2275
			goto err_vstart;
3243 Serge 2276
	}
2277
 
2278
	return 0;
5060 serge 2279
 
2280
err_vstart:
2281
	iounmap(ringbuf->virtual_start);
2282
err_ringbuf:
2283
	kfree(ringbuf);
2284
	ring->buffer = NULL;
2285
	return ret;
3243 Serge 2286
}
2287
#endif
2288
 
2332 Serge 2289
int intel_init_bsd_ring_buffer(struct drm_device *dev)
2290
{
5060 serge 2291
	struct drm_i915_private *dev_priv = dev->dev_private;
2292
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2332 Serge 2293
 
3031 serge 2294
	ring->name = "bsd ring";
2295
	ring->id = VCS;
2332 Serge 2296
 
3031 serge 2297
	ring->write_tail = ring_write_tail;
4560 Serge 2298
	if (INTEL_INFO(dev)->gen >= 6) {
3031 serge 2299
		ring->mmio_base = GEN6_BSD_RING_BASE;
2300
		/* gen6 bsd needs a special wa for tail updates */
2301
		if (IS_GEN6(dev))
2302
			ring->write_tail = gen6_bsd_ring_write_tail;
4104 Serge 2303
		ring->flush = gen6_bsd_ring_flush;
3031 serge 2304
		ring->add_request = gen6_add_request;
2305
		ring->get_seqno = gen6_ring_get_seqno;
3480 Serge 2306
		ring->set_seqno = ring_set_seqno;
4560 Serge 2307
		if (INTEL_INFO(dev)->gen >= 8) {
2308
			ring->irq_enable_mask =
2309
				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2310
			ring->irq_get = gen8_ring_get_irq;
2311
			ring->irq_put = gen8_ring_put_irq;
2312
			ring->dispatch_execbuffer =
2313
				gen8_ring_dispatch_execbuffer;
5060 serge 2314
			if (i915_semaphore_is_enabled(dev)) {
2315
				ring->semaphore.sync_to = gen8_ring_sync;
2316
				ring->semaphore.signal = gen8_xcs_signal;
2317
				GEN8_RING_SEMAPHORE_INIT;
2318
			}
4560 Serge 2319
		} else {
4104 Serge 2320
		ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
3031 serge 2321
		ring->irq_get = gen6_ring_get_irq;
2322
		ring->irq_put = gen6_ring_put_irq;
4560 Serge 2323
			ring->dispatch_execbuffer =
2324
				gen6_ring_dispatch_execbuffer;
5060 serge 2325
			if (i915_semaphore_is_enabled(dev)) {
2326
		ring->semaphore.sync_to = gen6_ring_sync;
2327
		ring->semaphore.signal = gen6_signal;
2328
		ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2329
		ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2330
		ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2331
		ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2332
		ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2333
		ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2334
		ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2335
		ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2336
		ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2337
		ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2338
			}
4560 Serge 2339
		}
3031 serge 2340
	} else {
2341
		ring->mmio_base = BSD_RING_BASE;
2342
		ring->flush = bsd_ring_flush;
2343
		ring->add_request = i9xx_add_request;
2344
		ring->get_seqno = ring_get_seqno;
3480 Serge 2345
		ring->set_seqno = ring_set_seqno;
3031 serge 2346
		if (IS_GEN5(dev)) {
4104 Serge 2347
			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
3031 serge 2348
			ring->irq_get = gen5_ring_get_irq;
2349
			ring->irq_put = gen5_ring_put_irq;
2350
		} else {
2351
			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2352
			ring->irq_get = i9xx_ring_get_irq;
2353
			ring->irq_put = i9xx_ring_put_irq;
2354
		}
2355
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2356
	}
2357
	ring->init = init_ring_common;
2358
 
2332 Serge 2359
	return intel_init_ring_buffer(dev, ring);
2360
}
2361
 
5060 serge 2362
/**
2363
 * Initialize the second BSD ring for Broadwell GT3.
2364
 * It is noted that this only exists on Broadwell GT3.
2365
 */
2366
int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2367
{
2368
	struct drm_i915_private *dev_priv = dev->dev_private;
2369
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2370
 
2371
	if ((INTEL_INFO(dev)->gen != 8)) {
2372
		DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2373
		return -EINVAL;
2374
	}
2375
 
2376
	ring->name = "bsd2 ring";
2377
	ring->id = VCS2;
2378
 
2379
	ring->write_tail = ring_write_tail;
2380
	ring->mmio_base = GEN8_BSD2_RING_BASE;
2381
	ring->flush = gen6_bsd_ring_flush;
2382
	ring->add_request = gen6_add_request;
2383
	ring->get_seqno = gen6_ring_get_seqno;
2384
	ring->set_seqno = ring_set_seqno;
2385
	ring->irq_enable_mask =
2386
			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2387
	ring->irq_get = gen8_ring_get_irq;
2388
	ring->irq_put = gen8_ring_put_irq;
2389
	ring->dispatch_execbuffer =
2390
			gen8_ring_dispatch_execbuffer;
2391
	if (i915_semaphore_is_enabled(dev)) {
2392
		ring->semaphore.sync_to = gen8_ring_sync;
2393
		ring->semaphore.signal = gen8_xcs_signal;
2394
		GEN8_RING_SEMAPHORE_INIT;
2395
	}
2396
	ring->init = init_ring_common;
2397
 
2398
	return intel_init_ring_buffer(dev, ring);
2399
}
2400
 
2332 Serge 2401
int intel_init_blt_ring_buffer(struct drm_device *dev)
2402
{
5060 serge 2403
	struct drm_i915_private *dev_priv = dev->dev_private;
2404
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2332 Serge 2405
 
3031 serge 2406
	ring->name = "blitter ring";
2407
	ring->id = BCS;
2332 Serge 2408
 
3031 serge 2409
	ring->mmio_base = BLT_RING_BASE;
2410
	ring->write_tail = ring_write_tail;
4104 Serge 2411
	ring->flush = gen6_ring_flush;
3031 serge 2412
	ring->add_request = gen6_add_request;
2413
	ring->get_seqno = gen6_ring_get_seqno;
3480 Serge 2414
	ring->set_seqno = ring_set_seqno;
4560 Serge 2415
	if (INTEL_INFO(dev)->gen >= 8) {
2416
		ring->irq_enable_mask =
2417
			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2418
		ring->irq_get = gen8_ring_get_irq;
2419
		ring->irq_put = gen8_ring_put_irq;
2420
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
5060 serge 2421
		if (i915_semaphore_is_enabled(dev)) {
2422
			ring->semaphore.sync_to = gen8_ring_sync;
2423
			ring->semaphore.signal = gen8_xcs_signal;
2424
			GEN8_RING_SEMAPHORE_INIT;
2425
		}
4560 Serge 2426
	} else {
4104 Serge 2427
	ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3031 serge 2428
	ring->irq_get = gen6_ring_get_irq;
2429
	ring->irq_put = gen6_ring_put_irq;
2430
	ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
5060 serge 2431
		if (i915_semaphore_is_enabled(dev)) {
2432
			ring->semaphore.signal = gen6_signal;
2433
	ring->semaphore.sync_to = gen6_ring_sync;
2434
	/*
2435
			 * The current semaphore is only applied on pre-gen8
2436
			 * platform.  And there is no VCS2 ring on the pre-gen8
2437
			 * platform. So the semaphore between BCS and VCS2 is
2438
			 * initialized as INVALID.  Gen8 will initialize the
2439
			 * sema between BCS and VCS2 later.
2440
	 */
2441
	ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2442
	ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2443
	ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2444
	ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2445
	ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2446
	ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2447
	ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2448
	ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2449
	ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2450
	ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2451
		}
4560 Serge 2452
	}
3031 serge 2453
	ring->init = init_ring_common;
2454
 
2332 Serge 2455
	return intel_init_ring_buffer(dev, ring);
2456
}
3031 serge 2457
 
4104 Serge 2458
int intel_init_vebox_ring_buffer(struct drm_device *dev)
2459
{
5060 serge 2460
	struct drm_i915_private *dev_priv = dev->dev_private;
2461
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
4104 Serge 2462
 
2463
	ring->name = "video enhancement ring";
2464
	ring->id = VECS;
2465
 
2466
	ring->mmio_base = VEBOX_RING_BASE;
2467
	ring->write_tail = ring_write_tail;
2468
	ring->flush = gen6_ring_flush;
2469
	ring->add_request = gen6_add_request;
2470
	ring->get_seqno = gen6_ring_get_seqno;
2471
	ring->set_seqno = ring_set_seqno;
4560 Serge 2472
 
2473
	if (INTEL_INFO(dev)->gen >= 8) {
2474
		ring->irq_enable_mask =
2475
			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2476
		ring->irq_get = gen8_ring_get_irq;
2477
		ring->irq_put = gen8_ring_put_irq;
2478
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
5060 serge 2479
		if (i915_semaphore_is_enabled(dev)) {
2480
			ring->semaphore.sync_to = gen8_ring_sync;
2481
			ring->semaphore.signal = gen8_xcs_signal;
2482
			GEN8_RING_SEMAPHORE_INIT;
2483
		}
4560 Serge 2484
	} else {
4104 Serge 2485
	ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2486
	ring->irq_get = hsw_vebox_get_irq;
2487
	ring->irq_put = hsw_vebox_put_irq;
2488
	ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
5060 serge 2489
		if (i915_semaphore_is_enabled(dev)) {
2490
	ring->semaphore.sync_to = gen6_ring_sync;
2491
	ring->semaphore.signal = gen6_signal;
2492
	ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2493
	ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2494
	ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2495
	ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2496
	ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2497
	ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2498
	ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2499
	ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2500
	ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2501
	ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2502
		}
4560 Serge 2503
	}
4104 Serge 2504
	ring->init = init_ring_common;
2505
 
2506
	return intel_init_ring_buffer(dev, ring);
2507
}
2508
 
3031 serge 2509
int
5060 serge 2510
intel_ring_flush_all_caches(struct intel_engine_cs *ring)
3031 serge 2511
{
2512
	int ret;
2513
 
2514
	if (!ring->gpu_caches_dirty)
2515
		return 0;
2516
 
2517
	ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2518
	if (ret)
2519
		return ret;
2520
 
2521
	trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2522
 
2523
	ring->gpu_caches_dirty = false;
2524
	return 0;
2525
}
2526
 
2527
int
5060 serge 2528
intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
3031 serge 2529
{
2530
	uint32_t flush_domains;
2531
	int ret;
2532
 
2533
	flush_domains = 0;
2534
	if (ring->gpu_caches_dirty)
2535
		flush_domains = I915_GEM_GPU_DOMAINS;
2536
 
2537
	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2538
	if (ret)
2539
		return ret;
2540
 
2541
	trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2542
 
2543
	ring->gpu_caches_dirty = false;
2544
	return 0;
2545
}
5060 serge 2546
 
2547
void
2548
intel_stop_ring_buffer(struct intel_engine_cs *ring)
2549
{
2550
	int ret;
2551
 
2552
	if (!intel_ring_initialized(ring))
2553
		return;
2554
 
2555
	ret = intel_ring_idle(ring);
2556
	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2557
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2558
			  ring->name, ret);
2559
 
2560
	stop_ring(ring);
2561
}