Subversion Repositories Kolibri OS

Rev

Rev 6937 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
3031 serge 1
/*
2
 * Copyright © 2012 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eugeni Dodonov 
25
 *
26
 */
27
 
28
//#include 
29
#include "i915_drv.h"
30
#include "intel_drv.h"
31
//#include "../../../platform/x86/intel_ips.h"
32
#include 
33
 
4560 Serge 34
 
3031 serge 35
#define FORCEWAKE_ACK_TIMEOUT_MS 2
36
 
37
void getrawmonotonic(struct timespec *ts);
38
 
4560 Serge 39
/**
7144 serge 40
 * DOC: RC6
41
 *
4560 Serge 42
 * RC6 is a special power stage which allows the GPU to enter an very
43
 * low-voltage mode when idle, using down to 0V while at this stage.  This
44
 * stage is entered automatically when the GPU is idle when RC6 support is
45
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
46
 *
47
 * There are different RC6 modes available in Intel GPU, which differentiate
48
 * among each other with the latency required to enter and leave RC6 and
49
 * voltage consumed by the GPU in different states.
50
 *
51
 * The combination of the following flags define which states GPU is allowed
52
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
53
 * RC6pp is deepest RC6. Their support by hardware varies according to the
54
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
55
 * which brings the most power savings; deeper states save more power, but
56
 * require higher latency to switch to and wake up.
57
 */
58
#define INTEL_RC6_ENABLE			(1<<0)
59
#define INTEL_RC6p_ENABLE			(1<<1)
60
#define INTEL_RC6pp_ENABLE			(1<<2)
61
 
6084 serge 62
static void bxt_init_clock_gating(struct drm_device *dev)
5354 serge 63
{
64
	struct drm_i915_private *dev_priv = dev->dev_private;
65
 
6084 serge 66
	/* WaDisableSDEUnitClockGating:bxt */
5354 serge 67
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
68
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
69
 
70
	/*
6084 serge 71
	 * FIXME:
72
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
5354 serge 73
	 */
6084 serge 74
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
75
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
6937 serge 76
 
77
	/*
78
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
79
	 * to stay fully on.
80
	 */
81
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
82
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
83
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
5354 serge 84
}
85
 
3031 serge 86
static void i915_pineview_get_mem_freq(struct drm_device *dev)
87
{
5060 serge 88
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 89
	u32 tmp;
90
 
91
	tmp = I915_READ(CLKCFG);
92
 
93
	switch (tmp & CLKCFG_FSB_MASK) {
94
	case CLKCFG_FSB_533:
95
		dev_priv->fsb_freq = 533; /* 133*4 */
96
		break;
97
	case CLKCFG_FSB_800:
98
		dev_priv->fsb_freq = 800; /* 200*4 */
99
		break;
100
	case CLKCFG_FSB_667:
101
		dev_priv->fsb_freq =  667; /* 167*4 */
102
		break;
103
	case CLKCFG_FSB_400:
104
		dev_priv->fsb_freq = 400; /* 100*4 */
105
		break;
106
	}
107
 
108
	switch (tmp & CLKCFG_MEM_MASK) {
109
	case CLKCFG_MEM_533:
110
		dev_priv->mem_freq = 533;
111
		break;
112
	case CLKCFG_MEM_667:
113
		dev_priv->mem_freq = 667;
114
		break;
115
	case CLKCFG_MEM_800:
116
		dev_priv->mem_freq = 800;
117
		break;
118
	}
119
 
120
	/* detect pineview DDR3 setting */
121
	tmp = I915_READ(CSHRDDR3CTL);
122
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
123
}
124
 
125
static void i915_ironlake_get_mem_freq(struct drm_device *dev)
126
{
5060 serge 127
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 128
	u16 ddrpll, csipll;
129
 
130
	ddrpll = I915_READ16(DDRMPLL1);
131
	csipll = I915_READ16(CSIPLL0);
132
 
133
	switch (ddrpll & 0xff) {
134
	case 0xc:
135
		dev_priv->mem_freq = 800;
136
		break;
137
	case 0x10:
138
		dev_priv->mem_freq = 1066;
139
		break;
140
	case 0x14:
141
		dev_priv->mem_freq = 1333;
142
		break;
143
	case 0x18:
144
		dev_priv->mem_freq = 1600;
145
		break;
146
	default:
147
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
148
				 ddrpll & 0xff);
149
		dev_priv->mem_freq = 0;
150
		break;
151
	}
152
 
153
	dev_priv->ips.r_t = dev_priv->mem_freq;
154
 
155
	switch (csipll & 0x3ff) {
156
	case 0x00c:
157
		dev_priv->fsb_freq = 3200;
158
		break;
159
	case 0x00e:
160
		dev_priv->fsb_freq = 3733;
161
		break;
162
	case 0x010:
163
		dev_priv->fsb_freq = 4266;
164
		break;
165
	case 0x012:
166
		dev_priv->fsb_freq = 4800;
167
		break;
168
	case 0x014:
169
		dev_priv->fsb_freq = 5333;
170
		break;
171
	case 0x016:
172
		dev_priv->fsb_freq = 5866;
173
		break;
174
	case 0x018:
175
		dev_priv->fsb_freq = 6400;
176
		break;
177
	default:
178
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
179
				 csipll & 0x3ff);
180
		dev_priv->fsb_freq = 0;
181
		break;
182
	}
183
 
184
	if (dev_priv->fsb_freq == 3200) {
185
		dev_priv->ips.c_m = 0;
186
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
187
		dev_priv->ips.c_m = 1;
188
	} else {
189
		dev_priv->ips.c_m = 2;
190
	}
191
}
192
 
193
static const struct cxsr_latency cxsr_latency_table[] = {
194
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
195
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
196
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
197
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
198
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
199
 
200
	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
201
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
202
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
203
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
204
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
205
 
206
	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
207
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
208
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
209
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
210
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
211
 
212
	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
213
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
214
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
215
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
216
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
217
 
218
	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
219
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
220
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
221
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
222
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
223
 
224
	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
225
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
226
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
227
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
228
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
229
};
230
 
231
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
232
							 int is_ddr3,
233
							 int fsb,
234
							 int mem)
235
{
236
	const struct cxsr_latency *latency;
237
	int i;
238
 
239
	if (fsb == 0 || mem == 0)
240
		return NULL;
241
 
242
	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
243
		latency = &cxsr_latency_table[i];
244
		if (is_desktop == latency->is_desktop &&
245
		    is_ddr3 == latency->is_ddr3 &&
246
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
247
			return latency;
248
	}
249
 
250
	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
251
 
252
	return NULL;
253
}
254
 
6084 serge 255
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
256
{
257
	u32 val;
258
 
259
	mutex_lock(&dev_priv->rps.hw_lock);
260
 
261
	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
262
	if (enable)
263
		val &= ~FORCE_DDR_HIGH_FREQ;
264
	else
265
		val |= FORCE_DDR_HIGH_FREQ;
266
	val &= ~FORCE_DDR_LOW_FREQ;
267
	val |= FORCE_DDR_FREQ_REQ_ACK;
268
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
269
 
270
	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
271
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
272
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
273
 
274
	mutex_unlock(&dev_priv->rps.hw_lock);
275
}
276
 
277
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
278
{
279
	u32 val;
280
 
281
	mutex_lock(&dev_priv->rps.hw_lock);
282
 
283
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
284
	if (enable)
285
		val |= DSP_MAXFIFO_PM5_ENABLE;
286
	else
287
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
288
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
289
 
290
	mutex_unlock(&dev_priv->rps.hw_lock);
291
}
292
 
293
#define FW_WM(value, plane) \
294
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
295
 
5060 serge 296
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
3031 serge 297
{
5060 serge 298
	struct drm_device *dev = dev_priv->dev;
299
	u32 val;
3031 serge 300
 
6937 serge 301
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5060 serge 302
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
6084 serge 303
		POSTING_READ(FW_BLC_SELF_VLV);
304
		dev_priv->wm.vlv.cxsr = enable;
5060 serge 305
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
306
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
6084 serge 307
		POSTING_READ(FW_BLC_SELF);
5060 serge 308
	} else if (IS_PINEVIEW(dev)) {
309
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
310
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
311
		I915_WRITE(DSPFW3, val);
6084 serge 312
		POSTING_READ(DSPFW3);
5060 serge 313
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
314
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
315
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
316
		I915_WRITE(FW_BLC_SELF, val);
6084 serge 317
		POSTING_READ(FW_BLC_SELF);
5060 serge 318
	} else if (IS_I915GM(dev)) {
319
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
320
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
321
		I915_WRITE(INSTPM, val);
6084 serge 322
		POSTING_READ(INSTPM);
5060 serge 323
	} else {
324
		return;
325
	}
326
 
327
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
328
		      enable ? "enabled" : "disabled");
3031 serge 329
}
330
 
6084 serge 331
 
3031 serge 332
/*
333
 * Latency for FIFO fetches is dependent on several factors:
334
 *   - memory configuration (speed, channels)
335
 *   - chipset
336
 *   - current MCH state
337
 * It can be fairly high in some situations, so here we assume a fairly
338
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
339
 * set this value too high, the FIFO will fetch frequently to stay full)
340
 * and power consumption (set it too low to save power and we might see
341
 * FIFO underruns and display "flicker").
342
 *
343
 * A value of 5us seems to be a good balance; safe for very low end
344
 * platforms but not overly aggressive on lower latency configs.
345
 */
5354 serge 346
static const int pessimal_latency_ns = 5000;
3031 serge 347
 
6084 serge 348
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
349
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
350
 
351
static int vlv_get_fifo_size(struct drm_device *dev,
352
			      enum pipe pipe, int plane)
353
{
354
	struct drm_i915_private *dev_priv = dev->dev_private;
355
	int sprite0_start, sprite1_start, size;
356
 
357
	switch (pipe) {
358
		uint32_t dsparb, dsparb2, dsparb3;
359
	case PIPE_A:
360
		dsparb = I915_READ(DSPARB);
361
		dsparb2 = I915_READ(DSPARB2);
362
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
363
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
364
		break;
365
	case PIPE_B:
366
		dsparb = I915_READ(DSPARB);
367
		dsparb2 = I915_READ(DSPARB2);
368
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
369
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
370
		break;
371
	case PIPE_C:
372
		dsparb2 = I915_READ(DSPARB2);
373
		dsparb3 = I915_READ(DSPARB3);
374
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
375
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
376
		break;
377
	default:
378
		return 0;
379
	}
380
 
381
	switch (plane) {
382
	case 0:
383
		size = sprite0_start;
384
		break;
385
	case 1:
386
		size = sprite1_start - sprite0_start;
387
		break;
388
	case 2:
389
		size = 512 - 1 - sprite1_start;
390
		break;
391
	default:
392
		return 0;
393
	}
394
 
395
	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
396
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
397
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
398
		      size);
399
 
400
	return size;
401
}
402
 
3031 serge 403
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
404
{
405
	struct drm_i915_private *dev_priv = dev->dev_private;
406
	uint32_t dsparb = I915_READ(DSPARB);
407
	int size;
408
 
409
	size = dsparb & 0x7f;
410
	if (plane)
411
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
412
 
413
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
414
		      plane ? "B" : "A", size);
415
 
416
	return size;
417
}
418
 
4560 Serge 419
static int i830_get_fifo_size(struct drm_device *dev, int plane)
3031 serge 420
{
421
	struct drm_i915_private *dev_priv = dev->dev_private;
422
	uint32_t dsparb = I915_READ(DSPARB);
423
	int size;
424
 
425
	size = dsparb & 0x1ff;
426
	if (plane)
427
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
428
	size >>= 1; /* Convert to cachelines */
429
 
430
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
431
		      plane ? "B" : "A", size);
432
 
433
	return size;
434
}
435
 
436
static int i845_get_fifo_size(struct drm_device *dev, int plane)
437
{
438
	struct drm_i915_private *dev_priv = dev->dev_private;
439
	uint32_t dsparb = I915_READ(DSPARB);
440
	int size;
441
 
442
	size = dsparb & 0x7f;
443
	size >>= 2; /* Convert to cachelines */
444
 
445
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
446
		      plane ? "B" : "A",
447
		      size);
448
 
449
	return size;
450
}
451
 
452
/* Pineview has different values for various configs */
453
static const struct intel_watermark_params pineview_display_wm = {
5060 serge 454
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
455
	.max_wm = PINEVIEW_MAX_WM,
456
	.default_wm = PINEVIEW_DFT_WM,
457
	.guard_size = PINEVIEW_GUARD_WM,
458
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
3031 serge 459
};
460
static const struct intel_watermark_params pineview_display_hplloff_wm = {
5060 serge 461
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
462
	.max_wm = PINEVIEW_MAX_WM,
463
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
464
	.guard_size = PINEVIEW_GUARD_WM,
465
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
3031 serge 466
};
467
static const struct intel_watermark_params pineview_cursor_wm = {
5060 serge 468
	.fifo_size = PINEVIEW_CURSOR_FIFO,
469
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
470
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
471
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
472
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
3031 serge 473
};
474
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
5060 serge 475
	.fifo_size = PINEVIEW_CURSOR_FIFO,
476
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
477
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
478
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
479
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
3031 serge 480
};
481
static const struct intel_watermark_params g4x_wm_info = {
5060 serge 482
	.fifo_size = G4X_FIFO_SIZE,
483
	.max_wm = G4X_MAX_WM,
484
	.default_wm = G4X_MAX_WM,
485
	.guard_size = 2,
486
	.cacheline_size = G4X_FIFO_LINE_SIZE,
3031 serge 487
};
488
static const struct intel_watermark_params g4x_cursor_wm_info = {
5060 serge 489
	.fifo_size = I965_CURSOR_FIFO,
490
	.max_wm = I965_CURSOR_MAX_WM,
491
	.default_wm = I965_CURSOR_DFT_WM,
492
	.guard_size = 2,
493
	.cacheline_size = G4X_FIFO_LINE_SIZE,
3031 serge 494
};
495
static const struct intel_watermark_params valleyview_wm_info = {
5060 serge 496
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
497
	.max_wm = VALLEYVIEW_MAX_WM,
498
	.default_wm = VALLEYVIEW_MAX_WM,
499
	.guard_size = 2,
500
	.cacheline_size = G4X_FIFO_LINE_SIZE,
3031 serge 501
};
502
static const struct intel_watermark_params valleyview_cursor_wm_info = {
5060 serge 503
	.fifo_size = I965_CURSOR_FIFO,
504
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
505
	.default_wm = I965_CURSOR_DFT_WM,
506
	.guard_size = 2,
507
	.cacheline_size = G4X_FIFO_LINE_SIZE,
3031 serge 508
};
509
static const struct intel_watermark_params i965_cursor_wm_info = {
5060 serge 510
	.fifo_size = I965_CURSOR_FIFO,
511
	.max_wm = I965_CURSOR_MAX_WM,
512
	.default_wm = I965_CURSOR_DFT_WM,
513
	.guard_size = 2,
514
	.cacheline_size = I915_FIFO_LINE_SIZE,
3031 serge 515
};
516
static const struct intel_watermark_params i945_wm_info = {
5060 serge 517
	.fifo_size = I945_FIFO_SIZE,
518
	.max_wm = I915_MAX_WM,
519
	.default_wm = 1,
520
	.guard_size = 2,
521
	.cacheline_size = I915_FIFO_LINE_SIZE,
3031 serge 522
};
523
static const struct intel_watermark_params i915_wm_info = {
5060 serge 524
	.fifo_size = I915_FIFO_SIZE,
525
	.max_wm = I915_MAX_WM,
526
	.default_wm = 1,
527
	.guard_size = 2,
528
	.cacheline_size = I915_FIFO_LINE_SIZE,
3031 serge 529
};
5354 serge 530
static const struct intel_watermark_params i830_a_wm_info = {
5060 serge 531
	.fifo_size = I855GM_FIFO_SIZE,
532
	.max_wm = I915_MAX_WM,
533
	.default_wm = 1,
534
	.guard_size = 2,
535
	.cacheline_size = I830_FIFO_LINE_SIZE,
3031 serge 536
};
5354 serge 537
static const struct intel_watermark_params i830_bc_wm_info = {
538
	.fifo_size = I855GM_FIFO_SIZE,
539
	.max_wm = I915_MAX_WM/2,
540
	.default_wm = 1,
541
	.guard_size = 2,
542
	.cacheline_size = I830_FIFO_LINE_SIZE,
543
};
4560 Serge 544
static const struct intel_watermark_params i845_wm_info = {
5060 serge 545
	.fifo_size = I830_FIFO_SIZE,
546
	.max_wm = I915_MAX_WM,
547
	.default_wm = 1,
548
	.guard_size = 2,
549
	.cacheline_size = I830_FIFO_LINE_SIZE,
3031 serge 550
};
551
 
552
/**
553
 * intel_calculate_wm - calculate watermark level
554
 * @clock_in_khz: pixel clock
555
 * @wm: chip FIFO params
7144 serge 556
 * @cpp: bytes per pixel
3031 serge 557
 * @latency_ns: memory latency for the platform
558
 *
559
 * Calculate the watermark level (the level at which the display plane will
560
 * start fetching from memory again).  Each chip has a different display
561
 * FIFO size and allocation, so the caller needs to figure that out and pass
562
 * in the correct intel_watermark_params structure.
563
 *
564
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
565
 * on the pixel size.  When it reaches the watermark level, it'll start
566
 * fetching FIFO line sized based chunks from memory until the FIFO fills
567
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
568
 * will occur, and a display engine hang could result.
569
 */
570
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
571
					const struct intel_watermark_params *wm,
7144 serge 572
					int fifo_size, int cpp,
3031 serge 573
					unsigned long latency_ns)
574
{
575
	long entries_required, wm_size;
576
 
577
	/*
578
	 * Note: we need to make sure we don't overflow for various clock &
579
	 * latency values.
580
	 * clocks go from a few thousand to several hundred thousand.
581
	 * latency is usually a few thousand
582
	 */
7144 serge 583
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
3031 serge 584
		1000;
585
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
586
 
587
	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
588
 
589
	wm_size = fifo_size - (entries_required + wm->guard_size);
590
 
591
	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
592
 
593
	/* Don't promote wm_size to unsigned... */
594
	if (wm_size > (long)wm->max_wm)
595
		wm_size = wm->max_wm;
596
	if (wm_size <= 0)
597
		wm_size = wm->default_wm;
5354 serge 598
 
599
	/*
600
	 * Bspec seems to indicate that the value shouldn't be lower than
601
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
602
	 * Lets go for 8 which is the burst size since certain platforms
603
	 * already use a hardcoded 8 (which is what the spec says should be
604
	 * done).
605
	 */
606
	if (wm_size <= 8)
607
		wm_size = 8;
608
 
3031 serge 609
	return wm_size;
610
}
611
 
612
static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
613
{
614
	struct drm_crtc *crtc, *enabled = NULL;
615
 
5060 serge 616
	for_each_crtc(dev, crtc) {
3243 Serge 617
		if (intel_crtc_active(crtc)) {
3031 serge 618
			if (enabled)
619
				return NULL;
620
			enabled = crtc;
621
		}
622
	}
623
 
624
	return enabled;
625
}
626
 
4560 Serge 627
static void pineview_update_wm(struct drm_crtc *unused_crtc)
3031 serge 628
{
4560 Serge 629
	struct drm_device *dev = unused_crtc->dev;
3031 serge 630
	struct drm_i915_private *dev_priv = dev->dev_private;
631
	struct drm_crtc *crtc;
632
	const struct cxsr_latency *latency;
633
	u32 reg;
634
	unsigned long wm;
635
 
636
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
637
					 dev_priv->fsb_freq, dev_priv->mem_freq);
638
	if (!latency) {
639
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
5060 serge 640
		intel_set_memory_cxsr(dev_priv, false);
3031 serge 641
		return;
642
	}
643
 
644
	crtc = single_enabled_crtc(dev);
645
	if (crtc) {
6084 serge 646
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
7144 serge 647
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
6084 serge 648
		int clock = adjusted_mode->crtc_clock;
3031 serge 649
 
650
		/* Display SR */
651
		wm = intel_calculate_wm(clock, &pineview_display_wm,
652
					pineview_display_wm.fifo_size,
7144 serge 653
					cpp, latency->display_sr);
3031 serge 654
		reg = I915_READ(DSPFW1);
655
		reg &= ~DSPFW_SR_MASK;
6084 serge 656
		reg |= FW_WM(wm, SR);
3031 serge 657
		I915_WRITE(DSPFW1, reg);
658
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
659
 
660
		/* cursor SR */
661
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
662
					pineview_display_wm.fifo_size,
7144 serge 663
					cpp, latency->cursor_sr);
3031 serge 664
		reg = I915_READ(DSPFW3);
665
		reg &= ~DSPFW_CURSOR_SR_MASK;
6084 serge 666
		reg |= FW_WM(wm, CURSOR_SR);
3031 serge 667
		I915_WRITE(DSPFW3, reg);
668
 
669
		/* Display HPLL off SR */
670
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
671
					pineview_display_hplloff_wm.fifo_size,
7144 serge 672
					cpp, latency->display_hpll_disable);
3031 serge 673
		reg = I915_READ(DSPFW3);
674
		reg &= ~DSPFW_HPLL_SR_MASK;
6084 serge 675
		reg |= FW_WM(wm, HPLL_SR);
3031 serge 676
		I915_WRITE(DSPFW3, reg);
677
 
678
		/* cursor HPLL off SR */
679
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
680
					pineview_display_hplloff_wm.fifo_size,
7144 serge 681
					cpp, latency->cursor_hpll_disable);
3031 serge 682
		reg = I915_READ(DSPFW3);
683
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
6084 serge 684
		reg |= FW_WM(wm, HPLL_CURSOR);
3031 serge 685
		I915_WRITE(DSPFW3, reg);
686
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
687
 
5060 serge 688
		intel_set_memory_cxsr(dev_priv, true);
3031 serge 689
	} else {
5060 serge 690
		intel_set_memory_cxsr(dev_priv, false);
3031 serge 691
	}
692
}
693
 
694
static bool g4x_compute_wm0(struct drm_device *dev,
695
			    int plane,
696
			    const struct intel_watermark_params *display,
697
			    int display_latency_ns,
698
			    const struct intel_watermark_params *cursor,
699
			    int cursor_latency_ns,
700
			    int *plane_wm,
701
			    int *cursor_wm)
702
{
703
	struct drm_crtc *crtc;
4560 Serge 704
	const struct drm_display_mode *adjusted_mode;
7144 serge 705
	int htotal, hdisplay, clock, cpp;
3031 serge 706
	int line_time_us, line_count;
707
	int entries, tlb_miss;
708
 
709
	crtc = intel_get_crtc_for_plane(dev, plane);
3243 Serge 710
	if (!intel_crtc_active(crtc)) {
3031 serge 711
		*cursor_wm = cursor->guard_size;
712
		*plane_wm = display->guard_size;
6084 serge 713
		return false;
3031 serge 714
	}
715
 
6084 serge 716
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 717
	clock = adjusted_mode->crtc_clock;
718
	htotal = adjusted_mode->crtc_htotal;
6084 serge 719
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
7144 serge 720
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
3031 serge 721
 
722
	/* Use the small buffer method to calculate plane watermark */
7144 serge 723
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
3031 serge 724
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
725
	if (tlb_miss > 0)
726
		entries += tlb_miss;
727
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
728
	*plane_wm = entries + display->guard_size;
729
	if (*plane_wm > (int)display->max_wm)
730
		*plane_wm = display->max_wm;
731
 
732
	/* Use the large buffer method to calculate cursor watermark */
5060 serge 733
	line_time_us = max(htotal * 1000 / clock, 1);
3031 serge 734
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
7144 serge 735
	entries = line_count * crtc->cursor->state->crtc_w * cpp;
3031 serge 736
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
737
	if (tlb_miss > 0)
738
		entries += tlb_miss;
739
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
740
	*cursor_wm = entries + cursor->guard_size;
741
	if (*cursor_wm > (int)cursor->max_wm)
742
		*cursor_wm = (int)cursor->max_wm;
743
 
744
	return true;
745
}
746
 
747
/*
748
 * Check the wm result.
749
 *
750
 * If any calculated watermark values is larger than the maximum value that
751
 * can be programmed into the associated watermark register, that watermark
752
 * must be disabled.
753
 */
754
static bool g4x_check_srwm(struct drm_device *dev,
755
			   int display_wm, int cursor_wm,
756
			   const struct intel_watermark_params *display,
757
			   const struct intel_watermark_params *cursor)
758
{
759
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
760
		      display_wm, cursor_wm);
761
 
762
	if (display_wm > display->max_wm) {
763
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
764
			      display_wm, display->max_wm);
765
		return false;
766
	}
767
 
768
	if (cursor_wm > cursor->max_wm) {
769
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
770
			      cursor_wm, cursor->max_wm);
771
		return false;
772
	}
773
 
774
	if (!(display_wm || cursor_wm)) {
775
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
776
		return false;
777
	}
778
 
779
	return true;
780
}
781
 
782
static bool g4x_compute_srwm(struct drm_device *dev,
783
			     int plane,
784
			     int latency_ns,
785
			     const struct intel_watermark_params *display,
786
			     const struct intel_watermark_params *cursor,
787
			     int *display_wm, int *cursor_wm)
788
{
789
	struct drm_crtc *crtc;
4560 Serge 790
	const struct drm_display_mode *adjusted_mode;
7144 serge 791
	int hdisplay, htotal, cpp, clock;
3031 serge 792
	unsigned long line_time_us;
793
	int line_count, line_size;
794
	int small, large;
795
	int entries;
796
 
797
	if (!latency_ns) {
798
		*display_wm = *cursor_wm = 0;
799
		return false;
800
	}
801
 
802
	crtc = intel_get_crtc_for_plane(dev, plane);
6084 serge 803
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 804
	clock = adjusted_mode->crtc_clock;
805
	htotal = adjusted_mode->crtc_htotal;
6084 serge 806
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
7144 serge 807
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
3031 serge 808
 
5060 serge 809
	line_time_us = max(htotal * 1000 / clock, 1);
3031 serge 810
	line_count = (latency_ns / line_time_us + 1000) / 1000;
7144 serge 811
	line_size = hdisplay * cpp;
3031 serge 812
 
813
	/* Use the minimum of the small and large buffer method for primary */
7144 serge 814
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
3031 serge 815
	large = line_count * line_size;
816
 
817
	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
818
	*display_wm = entries + display->guard_size;
819
 
820
	/* calculate the self-refresh watermark for display cursor */
7144 serge 821
	entries = line_count * cpp * crtc->cursor->state->crtc_w;
3031 serge 822
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
823
	*cursor_wm = entries + cursor->guard_size;
824
 
825
	return g4x_check_srwm(dev,
826
			      *display_wm, *cursor_wm,
827
			      display, cursor);
828
}
829
 
6084 serge 830
#define FW_WM_VLV(value, plane) \
831
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
832
 
833
static void vlv_write_wm_values(struct intel_crtc *crtc,
834
				const struct vlv_wm_values *wm)
3031 serge 835
{
6084 serge 836
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
837
	enum pipe pipe = crtc->pipe;
3031 serge 838
 
6084 serge 839
	I915_WRITE(VLV_DDL(pipe),
840
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
841
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
842
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
843
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
3031 serge 844
 
6084 serge 845
	I915_WRITE(DSPFW1,
846
		   FW_WM(wm->sr.plane, SR) |
847
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
848
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
849
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
850
	I915_WRITE(DSPFW2,
851
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
852
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
853
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
854
	I915_WRITE(DSPFW3,
855
		   FW_WM(wm->sr.cursor, CURSOR_SR));
3031 serge 856
 
6084 serge 857
	if (IS_CHERRYVIEW(dev_priv)) {
858
		I915_WRITE(DSPFW7_CHV,
859
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
860
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
861
		I915_WRITE(DSPFW8_CHV,
862
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
863
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
864
		I915_WRITE(DSPFW9_CHV,
865
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
866
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
867
		I915_WRITE(DSPHOWM,
868
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
869
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
870
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
871
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
872
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
873
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
874
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
875
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
876
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
877
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
878
	} else {
879
		I915_WRITE(DSPFW7,
880
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
881
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
882
		I915_WRITE(DSPHOWM,
883
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
884
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
885
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
886
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
887
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
888
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
889
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
890
	}
3031 serge 891
 
6084 serge 892
	/* zero (unused) WM1 watermarks */
893
	I915_WRITE(DSPFW4, 0);
894
	I915_WRITE(DSPFW5, 0);
895
	I915_WRITE(DSPFW6, 0);
896
	I915_WRITE(DSPHOWM1, 0);
3031 serge 897
 
6084 serge 898
	POSTING_READ(DSPFW1);
3031 serge 899
}
900
 
6084 serge 901
#undef FW_WM_VLV
3031 serge 902
 
6084 serge 903
enum vlv_wm_level {
904
	VLV_WM_LEVEL_PM2,
905
	VLV_WM_LEVEL_PM5,
906
	VLV_WM_LEVEL_DDR_DVFS,
907
};
908
 
909
/* latency must be in 0.1us units. */
910
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
911
				   unsigned int pipe_htotal,
912
				   unsigned int horiz_pixels,
7144 serge 913
				   unsigned int cpp,
6084 serge 914
				   unsigned int latency)
3031 serge 915
{
6084 serge 916
	unsigned int ret;
917
 
918
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
7144 serge 919
	ret = (ret + 1) * horiz_pixels * cpp;
6084 serge 920
	ret = DIV_ROUND_UP(ret, 64);
921
 
922
	return ret;
923
}
924
 
925
static void vlv_setup_wm_latency(struct drm_device *dev)
926
{
3031 serge 927
	struct drm_i915_private *dev_priv = dev->dev_private;
928
 
6084 serge 929
	/* all latencies in usec */
930
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
3031 serge 931
 
6084 serge 932
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
933
 
934
	if (IS_CHERRYVIEW(dev_priv)) {
935
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
936
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
937
 
938
		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
3031 serge 939
	}
6084 serge 940
}
3031 serge 941
 
6084 serge 942
static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
943
				     struct intel_crtc *crtc,
944
				     const struct intel_plane_state *state,
945
				     int level)
946
{
947
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
7144 serge 948
	int clock, htotal, cpp, width, wm;
6084 serge 949
 
950
	if (dev_priv->wm.pri_latency[level] == 0)
951
		return USHRT_MAX;
952
 
953
	if (!state->visible)
954
		return 0;
955
 
7144 serge 956
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
6084 serge 957
	clock = crtc->config->base.adjusted_mode.crtc_clock;
958
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
959
	width = crtc->config->pipe_src_w;
960
	if (WARN_ON(htotal == 0))
961
		htotal = 1;
962
 
963
	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
964
		/*
965
		 * FIXME the formula gives values that are
966
		 * too big for the cursor FIFO, and hence we
967
		 * would never be able to use cursors. For
968
		 * now just hardcode the watermark.
969
		 */
970
		wm = 63;
971
	} else {
7144 serge 972
		wm = vlv_wm_method2(clock, htotal, width, cpp,
6084 serge 973
				    dev_priv->wm.pri_latency[level] * 10);
5354 serge 974
	}
3031 serge 975
 
6084 serge 976
	return min_t(int, wm, USHRT_MAX);
977
}
5354 serge 978
 
6084 serge 979
static void vlv_compute_fifo(struct intel_crtc *crtc)
980
{
981
	struct drm_device *dev = crtc->base.dev;
982
	struct vlv_wm_state *wm_state = &crtc->wm_state;
983
	struct intel_plane *plane;
984
	unsigned int total_rate = 0;
985
	const int fifo_size = 512 - 1;
986
	int fifo_extra, fifo_left = fifo_size;
987
 
988
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
989
		struct intel_plane_state *state =
990
			to_intel_plane_state(plane->base.state);
991
 
992
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
993
			continue;
994
 
995
		if (state->visible) {
996
			wm_state->num_active_planes++;
997
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
998
		}
3031 serge 999
	}
5354 serge 1000
 
6084 serge 1001
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1002
		struct intel_plane_state *state =
1003
			to_intel_plane_state(plane->base.state);
1004
		unsigned int rate;
1005
 
1006
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1007
			plane->wm.fifo_size = 63;
1008
			continue;
1009
		}
1010
 
1011
		if (!state->visible) {
1012
			plane->wm.fifo_size = 0;
1013
			continue;
1014
		}
1015
 
1016
		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1017
		plane->wm.fifo_size = fifo_size * rate / total_rate;
1018
		fifo_left -= plane->wm.fifo_size;
1019
	}
1020
 
1021
	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1022
 
1023
	/* spread the remainder evenly */
1024
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1025
		int plane_extra;
1026
 
1027
		if (fifo_left == 0)
1028
			break;
1029
 
1030
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1031
			continue;
1032
 
1033
		/* give it all to the first plane if none are active */
1034
		if (plane->wm.fifo_size == 0 &&
1035
		    wm_state->num_active_planes)
1036
			continue;
1037
 
1038
		plane_extra = min(fifo_extra, fifo_left);
1039
		plane->wm.fifo_size += plane_extra;
1040
		fifo_left -= plane_extra;
1041
	}
1042
 
1043
	WARN_ON(fifo_left != 0);
3031 serge 1044
}
1045
 
6084 serge 1046
static void vlv_invert_wms(struct intel_crtc *crtc)
1047
{
1048
	struct vlv_wm_state *wm_state = &crtc->wm_state;
1049
	int level;
3031 serge 1050
 
6084 serge 1051
	for (level = 0; level < wm_state->num_levels; level++) {
1052
		struct drm_device *dev = crtc->base.dev;
1053
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1054
		struct intel_plane *plane;
1055
 
1056
		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1057
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1058
 
1059
		for_each_intel_plane_on_crtc(dev, crtc, plane) {
1060
			switch (plane->base.type) {
1061
				int sprite;
1062
			case DRM_PLANE_TYPE_CURSOR:
1063
				wm_state->wm[level].cursor = plane->wm.fifo_size -
1064
					wm_state->wm[level].cursor;
1065
				break;
1066
			case DRM_PLANE_TYPE_PRIMARY:
1067
				wm_state->wm[level].primary = plane->wm.fifo_size -
1068
					wm_state->wm[level].primary;
1069
				break;
1070
			case DRM_PLANE_TYPE_OVERLAY:
1071
				sprite = plane->plane;
1072
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1073
					wm_state->wm[level].sprite[sprite];
1074
				break;
1075
			}
1076
		}
1077
	}
1078
}
1079
 
1080
static void vlv_compute_wm(struct intel_crtc *crtc)
3031 serge 1081
{
6084 serge 1082
	struct drm_device *dev = crtc->base.dev;
1083
	struct vlv_wm_state *wm_state = &crtc->wm_state;
1084
	struct intel_plane *plane;
1085
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1086
	int level;
3031 serge 1087
 
6084 serge 1088
	memset(wm_state, 0, sizeof(*wm_state));
3031 serge 1089
 
6084 serge 1090
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1091
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
3031 serge 1092
 
6084 serge 1093
	wm_state->num_active_planes = 0;
3031 serge 1094
 
6084 serge 1095
	vlv_compute_fifo(crtc);
1096
 
1097
	if (wm_state->num_active_planes != 1)
1098
		wm_state->cxsr = false;
1099
 
1100
	if (wm_state->cxsr) {
1101
		for (level = 0; level < wm_state->num_levels; level++) {
1102
			wm_state->sr[level].plane = sr_fifo_size;
1103
			wm_state->sr[level].cursor = 63;
1104
		}
3243 Serge 1105
	}
3031 serge 1106
 
6084 serge 1107
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1108
		struct intel_plane_state *state =
1109
			to_intel_plane_state(plane->base.state);
3031 serge 1110
 
6084 serge 1111
		if (!state->visible)
1112
			continue;
5060 serge 1113
 
6084 serge 1114
		/* normal watermarks */
1115
		for (level = 0; level < wm_state->num_levels; level++) {
1116
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
1117
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1118
 
1119
			/* hack */
1120
			if (WARN_ON(level == 0 && wm > max_wm))
1121
				wm = max_wm;
1122
 
1123
			if (wm > plane->wm.fifo_size)
1124
				break;
1125
 
1126
			switch (plane->base.type) {
1127
				int sprite;
1128
			case DRM_PLANE_TYPE_CURSOR:
1129
				wm_state->wm[level].cursor = wm;
1130
				break;
1131
			case DRM_PLANE_TYPE_PRIMARY:
1132
				wm_state->wm[level].primary = wm;
1133
				break;
1134
			case DRM_PLANE_TYPE_OVERLAY:
1135
				sprite = plane->plane;
1136
				wm_state->wm[level].sprite[sprite] = wm;
1137
				break;
1138
			}
1139
		}
1140
 
1141
		wm_state->num_levels = level;
1142
 
1143
		if (!wm_state->cxsr)
1144
			continue;
1145
 
1146
		/* maxfifo watermarks */
1147
		switch (plane->base.type) {
1148
			int sprite, level;
1149
		case DRM_PLANE_TYPE_CURSOR:
1150
			for (level = 0; level < wm_state->num_levels; level++)
1151
				wm_state->sr[level].cursor =
1152
					wm_state->wm[level].cursor;
1153
			break;
1154
		case DRM_PLANE_TYPE_PRIMARY:
1155
			for (level = 0; level < wm_state->num_levels; level++)
1156
				wm_state->sr[level].plane =
1157
					min(wm_state->sr[level].plane,
1158
					    wm_state->wm[level].primary);
1159
			break;
1160
		case DRM_PLANE_TYPE_OVERLAY:
1161
			sprite = plane->plane;
1162
			for (level = 0; level < wm_state->num_levels; level++)
1163
				wm_state->sr[level].plane =
1164
					min(wm_state->sr[level].plane,
1165
					    wm_state->wm[level].sprite[sprite]);
1166
			break;
1167
		}
1168
	}
1169
 
1170
	/* clear any (partially) filled invalid levels */
1171
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1172
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1173
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1174
	}
1175
 
1176
	vlv_invert_wms(crtc);
3031 serge 1177
}
1178
 
6084 serge 1179
#define VLV_FIFO(plane, value) \
1180
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1181
 
1182
static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
5354 serge 1183
{
6084 serge 1184
	struct drm_device *dev = crtc->base.dev;
1185
	struct drm_i915_private *dev_priv = to_i915(dev);
1186
	struct intel_plane *plane;
1187
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
5354 serge 1188
 
6084 serge 1189
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1190
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1191
			WARN_ON(plane->wm.fifo_size != 63);
1192
			continue;
1193
		}
5354 serge 1194
 
6084 serge 1195
		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1196
			sprite0_start = plane->wm.fifo_size;
1197
		else if (plane->plane == 0)
1198
			sprite1_start = sprite0_start + plane->wm.fifo_size;
1199
		else
1200
			fifo_size = sprite1_start + plane->wm.fifo_size;
1201
	}
5354 serge 1202
 
6084 serge 1203
	WARN_ON(fifo_size != 512 - 1);
5354 serge 1204
 
6084 serge 1205
	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1206
		      pipe_name(crtc->pipe), sprite0_start,
1207
		      sprite1_start, fifo_size);
5354 serge 1208
 
6084 serge 1209
	switch (crtc->pipe) {
1210
		uint32_t dsparb, dsparb2, dsparb3;
1211
	case PIPE_A:
1212
		dsparb = I915_READ(DSPARB);
1213
		dsparb2 = I915_READ(DSPARB2);
1214
 
1215
		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1216
			    VLV_FIFO(SPRITEB, 0xff));
1217
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1218
			   VLV_FIFO(SPRITEB, sprite1_start));
1219
 
1220
		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1221
			     VLV_FIFO(SPRITEB_HI, 0x1));
1222
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1223
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1224
 
1225
		I915_WRITE(DSPARB, dsparb);
1226
		I915_WRITE(DSPARB2, dsparb2);
1227
		break;
1228
	case PIPE_B:
1229
		dsparb = I915_READ(DSPARB);
1230
		dsparb2 = I915_READ(DSPARB2);
1231
 
1232
		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1233
			    VLV_FIFO(SPRITED, 0xff));
1234
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1235
			   VLV_FIFO(SPRITED, sprite1_start));
1236
 
1237
		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1238
			     VLV_FIFO(SPRITED_HI, 0xff));
1239
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1240
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1241
 
1242
		I915_WRITE(DSPARB, dsparb);
1243
		I915_WRITE(DSPARB2, dsparb2);
1244
		break;
1245
	case PIPE_C:
1246
		dsparb3 = I915_READ(DSPARB3);
1247
		dsparb2 = I915_READ(DSPARB2);
1248
 
1249
		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1250
			     VLV_FIFO(SPRITEF, 0xff));
1251
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1252
			    VLV_FIFO(SPRITEF, sprite1_start));
1253
 
1254
		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1255
			     VLV_FIFO(SPRITEF_HI, 0xff));
1256
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1257
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1258
 
1259
		I915_WRITE(DSPARB3, dsparb3);
1260
		I915_WRITE(DSPARB2, dsparb2);
1261
		break;
1262
	default:
1263
		break;
5354 serge 1264
	}
6084 serge 1265
}
5354 serge 1266
 
6084 serge 1267
#undef VLV_FIFO
5354 serge 1268
 
6084 serge 1269
static void vlv_merge_wm(struct drm_device *dev,
1270
			 struct vlv_wm_values *wm)
1271
{
1272
	struct intel_crtc *crtc;
1273
	int num_active_crtcs = 0;
5354 serge 1274
 
6084 serge 1275
	wm->level = to_i915(dev)->wm.max_level;
1276
	wm->cxsr = true;
1277
 
1278
	for_each_intel_crtc(dev, crtc) {
1279
		const struct vlv_wm_state *wm_state = &crtc->wm_state;
1280
 
1281
		if (!crtc->active)
1282
			continue;
1283
 
1284
		if (!wm_state->cxsr)
1285
			wm->cxsr = false;
1286
 
1287
		num_active_crtcs++;
1288
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1289
	}
1290
 
1291
	if (num_active_crtcs != 1)
1292
		wm->cxsr = false;
1293
 
1294
	if (num_active_crtcs > 1)
1295
		wm->level = VLV_WM_LEVEL_PM2;
1296
 
1297
	for_each_intel_crtc(dev, crtc) {
1298
		struct vlv_wm_state *wm_state = &crtc->wm_state;
1299
		enum pipe pipe = crtc->pipe;
1300
 
1301
		if (!crtc->active)
1302
			continue;
1303
 
1304
		wm->pipe[pipe] = wm_state->wm[wm->level];
1305
		if (wm->cxsr)
1306
			wm->sr = wm_state->sr[wm->level];
1307
 
1308
		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1309
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1310
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1311
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1312
	}
5354 serge 1313
}
1314
 
6084 serge 1315
static void vlv_update_wm(struct drm_crtc *crtc)
5354 serge 1316
{
1317
	struct drm_device *dev = crtc->dev;
1318
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 1319
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1320
	enum pipe pipe = intel_crtc->pipe;
1321
	struct vlv_wm_values wm = {};
5354 serge 1322
 
6084 serge 1323
	vlv_compute_wm(intel_crtc);
1324
	vlv_merge_wm(dev, &wm);
5354 serge 1325
 
6084 serge 1326
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1327
		/* FIXME should be part of crtc atomic commit */
1328
		vlv_pipe_set_fifo_size(intel_crtc);
1329
		return;
5354 serge 1330
	}
1331
 
6084 serge 1332
	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1333
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1334
		chv_set_memory_dvfs(dev_priv, false);
1335
 
1336
	if (wm.level < VLV_WM_LEVEL_PM5 &&
1337
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1338
		chv_set_memory_pm5(dev_priv, false);
1339
 
1340
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1341
		intel_set_memory_cxsr(dev_priv, false);
1342
 
1343
	/* FIXME should be part of crtc atomic commit */
1344
	vlv_pipe_set_fifo_size(intel_crtc);
1345
 
1346
	vlv_write_wm_values(intel_crtc, &wm);
1347
 
1348
	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1349
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1350
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1351
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1352
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1353
 
1354
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1355
		intel_set_memory_cxsr(dev_priv, true);
1356
 
1357
	if (wm.level >= VLV_WM_LEVEL_PM5 &&
1358
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1359
		chv_set_memory_pm5(dev_priv, true);
1360
 
1361
	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1362
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1363
		chv_set_memory_dvfs(dev_priv, true);
1364
 
1365
	dev_priv->wm.vlv = wm;
5354 serge 1366
}
1367
 
6084 serge 1368
#define single_plane_enabled(mask) is_power_of_2(mask)
1369
 
4560 Serge 1370
static void g4x_update_wm(struct drm_crtc *crtc)
3031 serge 1371
{
4560 Serge 1372
	struct drm_device *dev = crtc->dev;
3031 serge 1373
	static const int sr_latency_ns = 12000;
1374
	struct drm_i915_private *dev_priv = dev->dev_private;
1375
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1376
	int plane_sr, cursor_sr;
1377
	unsigned int enabled = 0;
5060 serge 1378
	bool cxsr_enabled;
3031 serge 1379
 
3746 Serge 1380
	if (g4x_compute_wm0(dev, PIPE_A,
5354 serge 1381
			    &g4x_wm_info, pessimal_latency_ns,
1382
			    &g4x_cursor_wm_info, pessimal_latency_ns,
3031 serge 1383
			    &planea_wm, &cursora_wm))
3746 Serge 1384
		enabled |= 1 << PIPE_A;
3031 serge 1385
 
3746 Serge 1386
	if (g4x_compute_wm0(dev, PIPE_B,
5354 serge 1387
			    &g4x_wm_info, pessimal_latency_ns,
1388
			    &g4x_cursor_wm_info, pessimal_latency_ns,
3031 serge 1389
			    &planeb_wm, &cursorb_wm))
3746 Serge 1390
		enabled |= 1 << PIPE_B;
3031 serge 1391
 
1392
	if (single_plane_enabled(enabled) &&
1393
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1394
			     sr_latency_ns,
1395
			     &g4x_wm_info,
1396
			     &g4x_cursor_wm_info,
3243 Serge 1397
			     &plane_sr, &cursor_sr)) {
5060 serge 1398
		cxsr_enabled = true;
3243 Serge 1399
	} else {
5060 serge 1400
		cxsr_enabled = false;
1401
		intel_set_memory_cxsr(dev_priv, false);
3243 Serge 1402
		plane_sr = cursor_sr = 0;
1403
	}
3031 serge 1404
 
5354 serge 1405
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1406
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
3031 serge 1407
		      planea_wm, cursora_wm,
1408
		      planeb_wm, cursorb_wm,
1409
		      plane_sr, cursor_sr);
1410
 
1411
	I915_WRITE(DSPFW1,
6084 serge 1412
		   FW_WM(plane_sr, SR) |
1413
		   FW_WM(cursorb_wm, CURSORB) |
1414
		   FW_WM(planeb_wm, PLANEB) |
1415
		   FW_WM(planea_wm, PLANEA));
3031 serge 1416
	I915_WRITE(DSPFW2,
3243 Serge 1417
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
6084 serge 1418
		   FW_WM(cursora_wm, CURSORA));
3031 serge 1419
	/* HPLL off in SR has some issues on G4x... disable it */
1420
	I915_WRITE(DSPFW3,
3243 Serge 1421
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
6084 serge 1422
		   FW_WM(cursor_sr, CURSOR_SR));
5060 serge 1423
 
1424
	if (cxsr_enabled)
1425
		intel_set_memory_cxsr(dev_priv, true);
3031 serge 1426
}
1427
 
4560 Serge 1428
static void i965_update_wm(struct drm_crtc *unused_crtc)
3031 serge 1429
{
4560 Serge 1430
	struct drm_device *dev = unused_crtc->dev;
3031 serge 1431
	struct drm_i915_private *dev_priv = dev->dev_private;
1432
	struct drm_crtc *crtc;
1433
	int srwm = 1;
1434
	int cursor_sr = 16;
5060 serge 1435
	bool cxsr_enabled;
3031 serge 1436
 
1437
	/* Calc sr entries for one plane configs */
1438
	crtc = single_enabled_crtc(dev);
1439
	if (crtc) {
1440
		/* self-refresh has much higher latency */
1441
		static const int sr_latency_ns = 12000;
6084 serge 1442
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 1443
		int clock = adjusted_mode->crtc_clock;
1444
		int htotal = adjusted_mode->crtc_htotal;
6084 serge 1445
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
7144 serge 1446
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
3031 serge 1447
		unsigned long line_time_us;
1448
		int entries;
1449
 
5060 serge 1450
		line_time_us = max(htotal * 1000 / clock, 1);
3031 serge 1451
 
1452
		/* Use ns/us then divide to preserve precision */
1453
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
7144 serge 1454
			cpp * hdisplay;
3031 serge 1455
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1456
		srwm = I965_FIFO_SIZE - entries;
1457
		if (srwm < 0)
1458
			srwm = 1;
1459
		srwm &= 0x1ff;
1460
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1461
			      entries, srwm);
1462
 
1463
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
7144 serge 1464
			cpp * crtc->cursor->state->crtc_w;
3031 serge 1465
		entries = DIV_ROUND_UP(entries,
1466
					  i965_cursor_wm_info.cacheline_size);
1467
		cursor_sr = i965_cursor_wm_info.fifo_size -
1468
			(entries + i965_cursor_wm_info.guard_size);
1469
 
1470
		if (cursor_sr > i965_cursor_wm_info.max_wm)
1471
			cursor_sr = i965_cursor_wm_info.max_wm;
1472
 
1473
		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1474
			      "cursor %d\n", srwm, cursor_sr);
1475
 
5060 serge 1476
		cxsr_enabled = true;
3031 serge 1477
	} else {
5060 serge 1478
		cxsr_enabled = false;
3031 serge 1479
		/* Turn off self refresh if both pipes are enabled */
5060 serge 1480
		intel_set_memory_cxsr(dev_priv, false);
3031 serge 1481
	}
1482
 
1483
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1484
		      srwm);
1485
 
1486
	/* 965 has limitations... */
6084 serge 1487
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1488
		   FW_WM(8, CURSORB) |
1489
		   FW_WM(8, PLANEB) |
1490
		   FW_WM(8, PLANEA));
1491
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1492
		   FW_WM(8, PLANEC_OLD));
3031 serge 1493
	/* update cursor SR watermark */
6084 serge 1494
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
5060 serge 1495
 
1496
	if (cxsr_enabled)
1497
		intel_set_memory_cxsr(dev_priv, true);
3031 serge 1498
}
1499
 
6084 serge 1500
#undef FW_WM
1501
 
4560 Serge 1502
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
3031 serge 1503
{
4560 Serge 1504
	struct drm_device *dev = unused_crtc->dev;
3031 serge 1505
	struct drm_i915_private *dev_priv = dev->dev_private;
1506
	const struct intel_watermark_params *wm_info;
1507
	uint32_t fwater_lo;
1508
	uint32_t fwater_hi;
1509
	int cwm, srwm = 1;
1510
	int fifo_size;
1511
	int planea_wm, planeb_wm;
1512
	struct drm_crtc *crtc, *enabled = NULL;
1513
 
1514
	if (IS_I945GM(dev))
1515
		wm_info = &i945_wm_info;
1516
	else if (!IS_GEN2(dev))
1517
		wm_info = &i915_wm_info;
1518
	else
5354 serge 1519
		wm_info = &i830_a_wm_info;
3031 serge 1520
 
1521
	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1522
	crtc = intel_get_crtc_for_plane(dev, 0);
3243 Serge 1523
	if (intel_crtc_active(crtc)) {
4560 Serge 1524
		const struct drm_display_mode *adjusted_mode;
7144 serge 1525
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
3243 Serge 1526
		if (IS_GEN2(dev))
1527
			cpp = 4;
1528
 
6084 serge 1529
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 1530
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
3243 Serge 1531
					       wm_info, fifo_size, cpp,
5354 serge 1532
					       pessimal_latency_ns);
3031 serge 1533
		enabled = crtc;
5354 serge 1534
	} else {
3031 serge 1535
		planea_wm = fifo_size - wm_info->guard_size;
5354 serge 1536
		if (planea_wm > (long)wm_info->max_wm)
1537
			planea_wm = wm_info->max_wm;
1538
	}
3031 serge 1539
 
5354 serge 1540
	if (IS_GEN2(dev))
1541
		wm_info = &i830_bc_wm_info;
1542
 
3031 serge 1543
	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1544
	crtc = intel_get_crtc_for_plane(dev, 1);
3243 Serge 1545
	if (intel_crtc_active(crtc)) {
4560 Serge 1546
		const struct drm_display_mode *adjusted_mode;
7144 serge 1547
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
3243 Serge 1548
		if (IS_GEN2(dev))
1549
			cpp = 4;
1550
 
6084 serge 1551
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 1552
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
3243 Serge 1553
					       wm_info, fifo_size, cpp,
5354 serge 1554
					       pessimal_latency_ns);
3031 serge 1555
		if (enabled == NULL)
1556
			enabled = crtc;
1557
		else
1558
			enabled = NULL;
5354 serge 1559
	} else {
3031 serge 1560
		planeb_wm = fifo_size - wm_info->guard_size;
5354 serge 1561
		if (planeb_wm > (long)wm_info->max_wm)
1562
			planeb_wm = wm_info->max_wm;
1563
	}
3031 serge 1564
 
1565
	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1566
 
5060 serge 1567
	if (IS_I915GM(dev) && enabled) {
1568
		struct drm_i915_gem_object *obj;
1569
 
6084 serge 1570
		obj = intel_fb_obj(enabled->primary->state->fb);
5060 serge 1571
 
1572
		/* self-refresh seems busted with untiled */
1573
		if (obj->tiling_mode == I915_TILING_NONE)
1574
			enabled = NULL;
1575
	}
1576
 
3031 serge 1577
	/*
1578
	 * Overlay gets an aggressive default since video jitter is bad.
1579
	 */
1580
	cwm = 2;
1581
 
1582
	/* Play safe and disable self-refresh before adjusting watermarks. */
5060 serge 1583
	intel_set_memory_cxsr(dev_priv, false);
3031 serge 1584
 
1585
	/* Calc sr entries for one plane configs */
1586
	if (HAS_FW_BLC(dev) && enabled) {
1587
		/* self-refresh has much higher latency */
1588
		static const int sr_latency_ns = 6000;
6084 serge 1589
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
4560 Serge 1590
		int clock = adjusted_mode->crtc_clock;
1591
		int htotal = adjusted_mode->crtc_htotal;
6084 serge 1592
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
7144 serge 1593
		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
3031 serge 1594
		unsigned long line_time_us;
1595
		int entries;
1596
 
5060 serge 1597
		line_time_us = max(htotal * 1000 / clock, 1);
3031 serge 1598
 
1599
		/* Use ns/us then divide to preserve precision */
1600
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
7144 serge 1601
			cpp * hdisplay;
3031 serge 1602
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1603
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1604
		srwm = wm_info->fifo_size - entries;
1605
		if (srwm < 0)
1606
			srwm = 1;
1607
 
1608
		if (IS_I945G(dev) || IS_I945GM(dev))
1609
			I915_WRITE(FW_BLC_SELF,
1610
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1611
		else if (IS_I915GM(dev))
1612
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1613
	}
1614
 
1615
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1616
		      planea_wm, planeb_wm, cwm, srwm);
1617
 
1618
	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1619
	fwater_hi = (cwm & 0x1f);
1620
 
1621
	/* Set request length to 8 cachelines per fetch */
1622
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1623
	fwater_hi = fwater_hi | (1 << 8);
1624
 
1625
	I915_WRITE(FW_BLC, fwater_lo);
1626
	I915_WRITE(FW_BLC2, fwater_hi);
1627
 
5060 serge 1628
	if (enabled)
1629
		intel_set_memory_cxsr(dev_priv, true);
3031 serge 1630
}
1631
 
4560 Serge 1632
static void i845_update_wm(struct drm_crtc *unused_crtc)
3031 serge 1633
{
4560 Serge 1634
	struct drm_device *dev = unused_crtc->dev;
3031 serge 1635
	struct drm_i915_private *dev_priv = dev->dev_private;
1636
	struct drm_crtc *crtc;
4560 Serge 1637
	const struct drm_display_mode *adjusted_mode;
3031 serge 1638
	uint32_t fwater_lo;
1639
	int planea_wm;
1640
 
1641
	crtc = single_enabled_crtc(dev);
1642
	if (crtc == NULL)
1643
		return;
1644
 
6084 serge 1645
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 1646
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1647
				       &i845_wm_info,
3031 serge 1648
				       dev_priv->display.get_fifo_size(dev, 0),
5354 serge 1649
				       4, pessimal_latency_ns);
3031 serge 1650
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1651
	fwater_lo |= (3<<8) | planea_wm;
1652
 
1653
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1654
 
1655
	I915_WRITE(FW_BLC, fwater_lo);
1656
}
1657
 
6084 serge 1658
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
3031 serge 1659
{
4104 Serge 1660
	uint32_t pixel_rate;
1661
 
6084 serge 1662
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
4104 Serge 1663
 
1664
	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1665
	 * adjust the pixel_rate here. */
1666
 
6084 serge 1667
	if (pipe_config->pch_pfit.enabled) {
4104 Serge 1668
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
6084 serge 1669
		uint32_t pfit_size = pipe_config->pch_pfit.size;
4104 Serge 1670
 
6084 serge 1671
		pipe_w = pipe_config->pipe_src_w;
1672
		pipe_h = pipe_config->pipe_src_h;
1673
 
4104 Serge 1674
		pfit_w = (pfit_size >> 16) & 0xFFFF;
1675
		pfit_h = pfit_size & 0xFFFF;
1676
		if (pipe_w < pfit_w)
1677
			pipe_w = pfit_w;
1678
		if (pipe_h < pfit_h)
1679
			pipe_h = pfit_h;
1680
 
7144 serge 1681
		if (WARN_ON(!pfit_w || !pfit_h))
1682
			return pixel_rate;
1683
 
4104 Serge 1684
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1685
				     pfit_w * pfit_h);
1686
	}
1687
 
1688
	return pixel_rate;
1689
}
1690
 
1691
/* latency must be in 0.1us units. */
7144 serge 1692
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
4104 Serge 1693
{
1694
	uint64_t ret;
1695
 
1696
	if (WARN(latency == 0, "Latency value missing\n"))
1697
		return UINT_MAX;
1698
 
7144 serge 1699
	ret = (uint64_t) pixel_rate * cpp * latency;
4104 Serge 1700
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1701
 
1702
	return ret;
1703
}
1704
 
1705
/* latency must be in 0.1us units. */
1706
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
7144 serge 1707
			       uint32_t horiz_pixels, uint8_t cpp,
4104 Serge 1708
			       uint32_t latency)
1709
{
1710
	uint32_t ret;
1711
 
1712
	if (WARN(latency == 0, "Latency value missing\n"))
1713
		return UINT_MAX;
7144 serge 1714
	if (WARN_ON(!pipe_htotal))
1715
		return UINT_MAX;
4104 Serge 1716
 
1717
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
7144 serge 1718
	ret = (ret + 1) * horiz_pixels * cpp;
4104 Serge 1719
	ret = DIV_ROUND_UP(ret, 64) + 2;
1720
	return ret;
1721
}
1722
 
1723
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
7144 serge 1724
			   uint8_t cpp)
4104 Serge 1725
{
7144 serge 1726
	/*
1727
	 * Neither of these should be possible since this function shouldn't be
1728
	 * called if the CRTC is off or the plane is invisible.  But let's be
1729
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
1730
	 * elsewhere in the driver.
1731
	 */
1732
	if (WARN_ON(!cpp))
1733
		return 0;
1734
	if (WARN_ON(!horiz_pixels))
1735
		return 0;
1736
 
1737
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
4104 Serge 1738
}
1739
 
4560 Serge 1740
struct ilk_wm_maximums {
4104 Serge 1741
	uint16_t pri;
1742
	uint16_t spr;
1743
	uint16_t cur;
1744
	uint16_t fbc;
1745
};
1746
 
1747
/*
1748
 * For both WM_PIPE and WM_LP.
1749
 * mem_value must be in 0.1us units.
1750
 */
6084 serge 1751
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1752
				   const struct intel_plane_state *pstate,
4104 Serge 1753
				   uint32_t mem_value,
1754
				   bool is_lp)
1755
{
7144 serge 1756
	int cpp = pstate->base.fb ?
1757
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
4104 Serge 1758
	uint32_t method1, method2;
1759
 
6084 serge 1760
	if (!cstate->base.active || !pstate->visible)
4104 Serge 1761
		return 0;
1762
 
7144 serge 1763
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
4104 Serge 1764
 
1765
	if (!is_lp)
1766
		return method1;
1767
 
6084 serge 1768
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1769
				 cstate->base.adjusted_mode.crtc_htotal,
1770
				 drm_rect_width(&pstate->dst),
7144 serge 1771
				 cpp, mem_value);
4104 Serge 1772
 
1773
	return min(method1, method2);
1774
}
1775
 
1776
/*
1777
 * For both WM_PIPE and WM_LP.
1778
 * mem_value must be in 0.1us units.
1779
 */
6084 serge 1780
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1781
				   const struct intel_plane_state *pstate,
4104 Serge 1782
				   uint32_t mem_value)
1783
{
7144 serge 1784
	int cpp = pstate->base.fb ?
1785
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
4104 Serge 1786
	uint32_t method1, method2;
1787
 
6084 serge 1788
	if (!cstate->base.active || !pstate->visible)
4104 Serge 1789
		return 0;
1790
 
7144 serge 1791
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
6084 serge 1792
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1793
				 cstate->base.adjusted_mode.crtc_htotal,
1794
				 drm_rect_width(&pstate->dst),
7144 serge 1795
				 cpp, mem_value);
4104 Serge 1796
	return min(method1, method2);
1797
}
1798
 
1799
/*
1800
 * For both WM_PIPE and WM_LP.
1801
 * mem_value must be in 0.1us units.
1802
 */
6084 serge 1803
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1804
				   const struct intel_plane_state *pstate,
4104 Serge 1805
				   uint32_t mem_value)
1806
{
6660 serge 1807
	/*
1808
	 * We treat the cursor plane as always-on for the purposes of watermark
1809
	 * calculation.  Until we have two-stage watermark programming merged,
1810
	 * this is necessary to avoid flickering.
1811
	 */
1812
	int cpp = 4;
1813
	int width = pstate->visible ? pstate->base.crtc_w : 64;
6084 serge 1814
 
6660 serge 1815
	if (!cstate->base.active)
4104 Serge 1816
		return 0;
1817
 
6084 serge 1818
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1819
			      cstate->base.adjusted_mode.crtc_htotal,
6660 serge 1820
			      width, cpp, mem_value);
4104 Serge 1821
}
1822
 
1823
/* Only for WM_LP. */
6084 serge 1824
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1825
				   const struct intel_plane_state *pstate,
4104 Serge 1826
				   uint32_t pri_val)
1827
{
7144 serge 1828
	int cpp = pstate->base.fb ?
1829
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
6084 serge 1830
 
1831
	if (!cstate->base.active || !pstate->visible)
4104 Serge 1832
		return 0;
1833
 
7144 serge 1834
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
4104 Serge 1835
}
1836
 
1837
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1838
{
4560 Serge 1839
	if (INTEL_INFO(dev)->gen >= 8)
1840
		return 3072;
1841
	else if (INTEL_INFO(dev)->gen >= 7)
4104 Serge 1842
		return 768;
1843
	else
1844
		return 512;
1845
}
1846
 
5060 serge 1847
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1848
					 int level, bool is_sprite)
1849
{
1850
	if (INTEL_INFO(dev)->gen >= 8)
1851
		/* BDW primary/sprite plane watermarks */
1852
		return level == 0 ? 255 : 2047;
1853
	else if (INTEL_INFO(dev)->gen >= 7)
1854
		/* IVB/HSW primary/sprite plane watermarks */
1855
		return level == 0 ? 127 : 1023;
1856
	else if (!is_sprite)
1857
		/* ILK/SNB primary plane watermarks */
1858
		return level == 0 ? 127 : 511;
1859
	else
1860
		/* ILK/SNB sprite plane watermarks */
1861
		return level == 0 ? 63 : 255;
1862
}
1863
 
1864
static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1865
					  int level)
1866
{
1867
	if (INTEL_INFO(dev)->gen >= 7)
1868
		return level == 0 ? 63 : 255;
1869
	else
1870
		return level == 0 ? 31 : 63;
1871
}
1872
 
1873
static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1874
{
1875
	if (INTEL_INFO(dev)->gen >= 8)
1876
		return 31;
1877
	else
1878
		return 15;
1879
}
1880
 
4104 Serge 1881
/* Calculate the maximum primary/sprite plane watermark */
1882
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1883
				     int level,
1884
				     const struct intel_wm_config *config,
1885
				     enum intel_ddb_partitioning ddb_partitioning,
1886
				     bool is_sprite)
1887
{
1888
	unsigned int fifo_size = ilk_display_fifo_size(dev);
1889
 
1890
	/* if sprites aren't enabled, sprites get nothing */
1891
	if (is_sprite && !config->sprites_enabled)
1892
		return 0;
1893
 
1894
	/* HSW allows LP1+ watermarks even with multiple pipes */
1895
	if (level == 0 || config->num_pipes_active > 1) {
1896
		fifo_size /= INTEL_INFO(dev)->num_pipes;
1897
 
1898
		/*
1899
		 * For some reason the non self refresh
1900
		 * FIFO size is only half of the self
1901
		 * refresh FIFO size on ILK/SNB.
1902
		 */
1903
		if (INTEL_INFO(dev)->gen <= 6)
1904
			fifo_size /= 2;
1905
	}
1906
 
1907
	if (config->sprites_enabled) {
1908
		/* level 0 is always calculated with 1:1 split */
1909
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1910
			if (is_sprite)
1911
				fifo_size *= 5;
1912
			fifo_size /= 6;
1913
		} else {
1914
			fifo_size /= 2;
1915
		}
1916
	}
1917
 
1918
	/* clamp to max that the registers can hold */
5060 serge 1919
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
4104 Serge 1920
}
1921
 
1922
/* Calculate the maximum cursor plane watermark */
1923
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1924
				      int level,
1925
				      const struct intel_wm_config *config)
1926
{
1927
	/* HSW LP1+ watermarks w/ multiple pipes */
1928
	if (level > 0 && config->num_pipes_active > 1)
1929
		return 64;
1930
 
1931
	/* otherwise just report max that registers can hold */
5060 serge 1932
	return ilk_cursor_wm_reg_max(dev, level);
4539 Serge 1933
}
4104 Serge 1934
 
5060 serge 1935
static void ilk_compute_wm_maximums(const struct drm_device *dev,
6084 serge 1936
				    int level,
1937
				    const struct intel_wm_config *config,
1938
				    enum intel_ddb_partitioning ddb_partitioning,
4560 Serge 1939
				    struct ilk_wm_maximums *max)
4104 Serge 1940
{
1941
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1942
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1943
	max->cur = ilk_cursor_wm_max(dev, level, config);
5060 serge 1944
	max->fbc = ilk_fbc_wm_reg_max(dev);
4539 Serge 1945
}
4104 Serge 1946
 
5060 serge 1947
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1948
					int level,
1949
					struct ilk_wm_maximums *max)
1950
{
1951
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
1952
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
1953
	max->cur = ilk_cursor_wm_reg_max(dev, level);
1954
	max->fbc = ilk_fbc_wm_reg_max(dev);
1955
}
1956
 
4560 Serge 1957
static bool ilk_validate_wm_level(int level,
1958
				  const struct ilk_wm_maximums *max,
6084 serge 1959
				  struct intel_wm_level *result)
4104 Serge 1960
{
1961
	bool ret;
1962
 
1963
	/* already determined to be invalid? */
1964
	if (!result->enable)
1965
		return false;
1966
 
1967
	result->enable = result->pri_val <= max->pri &&
1968
			 result->spr_val <= max->spr &&
1969
			 result->cur_val <= max->cur;
1970
 
1971
	ret = result->enable;
1972
 
1973
	/*
1974
	 * HACK until we can pre-compute everything,
1975
	 * and thus fail gracefully if LP0 watermarks
1976
	 * are exceeded...
1977
	 */
1978
	if (level == 0 && !result->enable) {
1979
		if (result->pri_val > max->pri)
1980
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1981
				      level, result->pri_val, max->pri);
1982
		if (result->spr_val > max->spr)
1983
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1984
				      level, result->spr_val, max->spr);
1985
		if (result->cur_val > max->cur)
1986
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1987
				      level, result->cur_val, max->cur);
1988
 
1989
		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1990
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1991
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1992
		result->enable = true;
1993
	}
1994
 
1995
	return ret;
1996
}
1997
 
5060 serge 1998
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
6084 serge 1999
				 const struct intel_crtc *intel_crtc,
4104 Serge 2000
				 int level,
6084 serge 2001
				 struct intel_crtc_state *cstate,
6937 serge 2002
				 struct intel_plane_state *pristate,
2003
				 struct intel_plane_state *sprstate,
2004
				 struct intel_plane_state *curstate,
4104 Serge 2005
				 struct intel_wm_level *result)
2006
{
2007
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2008
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2009
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2010
 
2011
	/* WM1+ latency values stored in 0.5us units */
2012
	if (level > 0) {
2013
		pri_latency *= 5;
2014
		spr_latency *= 5;
2015
		cur_latency *= 5;
2016
	}
2017
 
6937 serge 2018
	result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2019
					     pri_latency, level);
2020
	result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2021
	result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2022
	result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
4104 Serge 2023
	result->enable = true;
2024
}
2025
 
2026
static uint32_t
7144 serge 2027
hsw_compute_linetime_wm(struct drm_device *dev,
2028
			struct intel_crtc_state *cstate)
4104 Serge 2029
{
3031 serge 2030
	struct drm_i915_private *dev_priv = dev->dev_private;
7144 serge 2031
	const struct drm_display_mode *adjusted_mode =
2032
		&cstate->base.adjusted_mode;
4104 Serge 2033
	u32 linetime, ips_linetime;
3031 serge 2034
 
7144 serge 2035
	if (!cstate->base.active)
4104 Serge 2036
		return 0;
7144 serge 2037
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
2038
		return 0;
2039
	if (WARN_ON(dev_priv->cdclk_freq == 0))
2040
		return 0;
3031 serge 2041
 
2042
	/* The WM are computed with base on how long it takes to fill a single
2043
	 * row at the given clock rate, multiplied by 8.
2044
	 * */
6084 serge 2045
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2046
				     adjusted_mode->crtc_clock);
2047
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2048
					 dev_priv->cdclk_freq);
3031 serge 2049
 
4104 Serge 2050
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2051
	       PIPE_WM_LINETIME_TIME(linetime);
2052
}
2053
 
5354 serge 2054
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
4104 Serge 2055
{
2056
	struct drm_i915_private *dev_priv = dev->dev_private;
2057
 
5354 serge 2058
	if (IS_GEN9(dev)) {
2059
		uint32_t val;
2060
		int ret, i;
2061
		int level, max_level = ilk_wm_max_level(dev);
2062
 
2063
		/* read the first set of memory latencies[0:3] */
2064
		val = 0; /* data0 to be programmed to 0 for first set */
2065
		mutex_lock(&dev_priv->rps.hw_lock);
2066
		ret = sandybridge_pcode_read(dev_priv,
2067
					     GEN9_PCODE_READ_MEM_LATENCY,
2068
					     &val);
2069
		mutex_unlock(&dev_priv->rps.hw_lock);
2070
 
2071
		if (ret) {
2072
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2073
			return;
2074
		}
2075
 
2076
		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2077
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2078
				GEN9_MEM_LATENCY_LEVEL_MASK;
2079
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2080
				GEN9_MEM_LATENCY_LEVEL_MASK;
2081
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2082
				GEN9_MEM_LATENCY_LEVEL_MASK;
2083
 
2084
		/* read the second set of memory latencies[4:7] */
2085
		val = 1; /* data0 to be programmed to 1 for second set */
2086
		mutex_lock(&dev_priv->rps.hw_lock);
2087
		ret = sandybridge_pcode_read(dev_priv,
2088
					     GEN9_PCODE_READ_MEM_LATENCY,
2089
					     &val);
2090
		mutex_unlock(&dev_priv->rps.hw_lock);
2091
		if (ret) {
2092
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2093
			return;
2094
		}
2095
 
2096
		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2097
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2098
				GEN9_MEM_LATENCY_LEVEL_MASK;
2099
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2100
				GEN9_MEM_LATENCY_LEVEL_MASK;
2101
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2102
				GEN9_MEM_LATENCY_LEVEL_MASK;
2103
 
2104
		/*
6084 serge 2105
		 * WaWmMemoryReadLatency:skl
2106
		 *
5354 serge 2107
		 * punit doesn't take into account the read latency so we need
6937 serge 2108
		 * to add 2us to the various latency levels we retrieve from
2109
		 * the punit.
2110
		 *   - W0 is a bit special in that it's the only level that
2111
		 *   can't be disabled if we want to have display working, so
2112
		 *   we always add 2us there.
2113
		 *   - For levels >=1, punit returns 0us latency when they are
2114
		 *   disabled, so we respect that and don't add 2us then
2115
		 *
2116
		 * Additionally, if a level n (n > 1) has a 0us latency, all
2117
		 * levels m (m >= n) need to be disabled. We make sure to
2118
		 * sanitize the values out of the punit to satisfy this
2119
		 * requirement.
5354 serge 2120
		 */
2121
		wm[0] += 2;
6937 serge 2122
		for (level = 1; level <= max_level; level++)
2123
			if (wm[level] != 0)
2124
				wm[level] += 2;
2125
			else {
2126
				for (i = level + 1; i <= max_level; i++)
2127
					wm[i] = 0;
2128
 
7144 serge 2129
				break;
6935 serge 2130
			}
5354 serge 2131
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4104 Serge 2132
		uint64_t sskpd = I915_READ64(MCH_SSKPD);
2133
 
2134
		wm[0] = (sskpd >> 56) & 0xFF;
2135
		if (wm[0] == 0)
2136
			wm[0] = sskpd & 0xF;
2137
		wm[1] = (sskpd >> 4) & 0xFF;
2138
		wm[2] = (sskpd >> 12) & 0xFF;
2139
		wm[3] = (sskpd >> 20) & 0x1FF;
2140
		wm[4] = (sskpd >> 32) & 0x1FF;
2141
	} else if (INTEL_INFO(dev)->gen >= 6) {
2142
		uint32_t sskpd = I915_READ(MCH_SSKPD);
2143
 
2144
		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2145
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2146
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2147
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2148
	} else if (INTEL_INFO(dev)->gen >= 5) {
2149
		uint32_t mltr = I915_READ(MLTR_ILK);
2150
 
2151
		/* ILK primary LP0 latency is 700 ns */
2152
		wm[0] = 7;
2153
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2154
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2155
	}
2156
}
2157
 
2158
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2159
{
2160
	/* ILK sprite LP0 latency is 1300 ns */
2161
	if (INTEL_INFO(dev)->gen == 5)
2162
		wm[0] = 13;
2163
}
2164
 
2165
static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2166
{
2167
	/* ILK cursor LP0 latency is 1300 ns */
2168
	if (INTEL_INFO(dev)->gen == 5)
2169
		wm[0] = 13;
2170
 
2171
	/* WaDoubleCursorLP3Latency:ivb */
2172
	if (IS_IVYBRIDGE(dev))
2173
		wm[3] *= 2;
2174
}
2175
 
5060 serge 2176
int ilk_wm_max_level(const struct drm_device *dev)
4560 Serge 2177
{
2178
	/* how many WM levels are we expecting */
6084 serge 2179
	if (INTEL_INFO(dev)->gen >= 9)
5354 serge 2180
		return 7;
2181
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4560 Serge 2182
		return 4;
2183
	else if (INTEL_INFO(dev)->gen >= 6)
2184
		return 3;
2185
	else
2186
		return 2;
2187
}
2188
 
4104 Serge 2189
static void intel_print_wm_latency(struct drm_device *dev,
2190
				   const char *name,
5354 serge 2191
				   const uint16_t wm[8])
4104 Serge 2192
{
4560 Serge 2193
	int level, max_level = ilk_wm_max_level(dev);
4104 Serge 2194
 
2195
	for (level = 0; level <= max_level; level++) {
2196
		unsigned int latency = wm[level];
2197
 
2198
		if (latency == 0) {
2199
			DRM_ERROR("%s WM%d latency not provided\n",
2200
				  name, level);
2201
			continue;
2202
		}
2203
 
5354 serge 2204
		/*
2205
		 * - latencies are in us on gen9.
2206
		 * - before then, WM1+ latency values are in 0.5us units
2207
		 */
2208
		if (IS_GEN9(dev))
2209
			latency *= 10;
2210
		else if (level > 0)
4104 Serge 2211
			latency *= 5;
2212
 
2213
		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2214
			      name, level, wm[level],
2215
			      latency / 10, latency % 10);
2216
	}
2217
}
2218
 
5060 serge 2219
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2220
				    uint16_t wm[5], uint16_t min)
4104 Serge 2221
{
5060 serge 2222
	int level, max_level = ilk_wm_max_level(dev_priv->dev);
2223
 
2224
	if (wm[0] >= min)
2225
		return false;
2226
 
2227
	wm[0] = max(wm[0], min);
2228
	for (level = 1; level <= max_level; level++)
2229
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2230
 
2231
	return true;
2232
}
2233
 
2234
static void snb_wm_latency_quirk(struct drm_device *dev)
2235
{
4104 Serge 2236
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 2237
	bool changed;
4104 Serge 2238
 
5060 serge 2239
	/*
2240
	 * The BIOS provided WM memory latency values are often
2241
	 * inadequate for high resolution displays. Adjust them.
2242
	 */
2243
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2244
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2245
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2246
 
2247
	if (!changed)
2248
		return;
2249
 
2250
	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2251
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2252
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2253
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2254
}
2255
 
2256
static void ilk_setup_wm_latency(struct drm_device *dev)
2257
{
2258
	struct drm_i915_private *dev_priv = dev->dev_private;
2259
 
4104 Serge 2260
	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2261
 
2262
	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2263
	       sizeof(dev_priv->wm.pri_latency));
2264
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2265
	       sizeof(dev_priv->wm.pri_latency));
2266
 
2267
	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2268
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2269
 
2270
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2271
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2272
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
5060 serge 2273
 
2274
	if (IS_GEN6(dev))
2275
		snb_wm_latency_quirk(dev);
4104 Serge 2276
}
2277
 
5354 serge 2278
static void skl_setup_wm_latency(struct drm_device *dev)
2279
{
2280
	struct drm_i915_private *dev_priv = dev->dev_private;
2281
 
2282
	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2283
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2284
}
2285
 
4560 Serge 2286
/* Compute new watermarks for the pipe */
6937 serge 2287
static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
2288
			       struct drm_atomic_state *state)
4560 Serge 2289
{
6937 serge 2290
	struct intel_pipe_wm *pipe_wm;
2291
	struct drm_device *dev = intel_crtc->base.dev;
5060 serge 2292
	const struct drm_i915_private *dev_priv = dev->dev_private;
6937 serge 2293
	struct intel_crtc_state *cstate = NULL;
6084 serge 2294
	struct intel_plane *intel_plane;
6937 serge 2295
	struct drm_plane_state *ps;
2296
	struct intel_plane_state *pristate = NULL;
6084 serge 2297
	struct intel_plane_state *sprstate = NULL;
6937 serge 2298
	struct intel_plane_state *curstate = NULL;
4560 Serge 2299
	int level, max_level = ilk_wm_max_level(dev);
2300
	/* LP0 watermark maximums depend on this pipe alone */
2301
	struct intel_wm_config config = {
2302
		.num_pipes_active = 1,
2303
	};
2304
	struct ilk_wm_maximums max;
4104 Serge 2305
 
6937 serge 2306
	cstate = intel_atomic_get_crtc_state(state, intel_crtc);
2307
	if (IS_ERR(cstate))
2308
		return PTR_ERR(cstate);
2309
 
2310
	pipe_wm = &cstate->wm.optimal.ilk;
2311
	memset(pipe_wm, 0, sizeof(*pipe_wm));
2312
 
6084 serge 2313
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
6937 serge 2314
		ps = drm_atomic_get_plane_state(state,
2315
						&intel_plane->base);
2316
		if (IS_ERR(ps))
2317
			return PTR_ERR(ps);
2318
 
2319
		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2320
			pristate = to_intel_plane_state(ps);
2321
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2322
			sprstate = to_intel_plane_state(ps);
2323
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2324
			curstate = to_intel_plane_state(ps);
6084 serge 2325
	}
4560 Serge 2326
 
6084 serge 2327
	config.sprites_enabled = sprstate->visible;
2328
	config.sprites_scaled = sprstate->visible &&
2329
		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2330
		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2331
 
2332
	pipe_wm->pipe_enabled = cstate->base.active;
6937 serge 2333
	pipe_wm->sprites_enabled = config.sprites_enabled;
6084 serge 2334
	pipe_wm->sprites_scaled = config.sprites_scaled;
2335
 
4560 Serge 2336
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
6084 serge 2337
	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
4560 Serge 2338
		max_level = 1;
2339
 
2340
	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
6084 serge 2341
	if (config.sprites_scaled)
4560 Serge 2342
		max_level = 0;
2343
 
6937 serge 2344
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2345
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
4560 Serge 2346
 
2347
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
7144 serge 2348
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
4560 Serge 2349
 
5060 serge 2350
	/* LP0 watermarks always use 1/2 DDB partitioning */
2351
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2352
 
4560 Serge 2353
	/* At least LP0 must be valid */
5060 serge 2354
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
6937 serge 2355
		return -EINVAL;
5060 serge 2356
 
2357
	ilk_compute_wm_reg_maximums(dev, 1, &max);
2358
 
2359
	for (level = 1; level <= max_level; level++) {
2360
		struct intel_wm_level wm = {};
2361
 
6937 serge 2362
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2363
				     pristate, sprstate, curstate, &wm);
5060 serge 2364
 
2365
		/*
2366
		 * Disable any watermark level that exceeds the
2367
		 * register maximums since such watermarks are
2368
		 * always invalid.
2369
		 */
2370
		if (!ilk_validate_wm_level(level, &max, &wm))
2371
			break;
2372
 
2373
		pipe_wm->wm[level] = wm;
2374
	}
2375
 
6937 serge 2376
	return 0;
4104 Serge 2377
}
2378
 
4560 Serge 2379
/*
2380
 * Merge the watermarks from all active pipes for a specific level.
2381
 */
2382
static void ilk_merge_wm_level(struct drm_device *dev,
2383
			       int level,
2384
			       struct intel_wm_level *ret_wm)
4104 Serge 2385
{
4560 Serge 2386
	const struct intel_crtc *intel_crtc;
4104 Serge 2387
 
5060 serge 2388
	ret_wm->enable = true;
4104 Serge 2389
 
5060 serge 2390
	for_each_intel_crtc(dev, intel_crtc) {
6937 serge 2391
		const struct intel_crtc_state *cstate =
2392
			to_intel_crtc_state(intel_crtc->base.state);
2393
		const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
5060 serge 2394
		const struct intel_wm_level *wm = &active->wm[level];
2395
 
2396
		if (!active->pipe_enabled)
2397
			continue;
2398
 
2399
		/*
2400
		 * The watermark values may have been used in the past,
2401
		 * so we must maintain them in the registers for some
2402
		 * time even if the level is now disabled.
2403
		 */
4560 Serge 2404
		if (!wm->enable)
5060 serge 2405
			ret_wm->enable = false;
4104 Serge 2406
 
4560 Serge 2407
		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2408
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2409
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2410
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2411
	}
2412
}
2413
 
2414
/*
2415
 * Merge all low power watermarks for all active pipes.
2416
 */
2417
static void ilk_wm_merge(struct drm_device *dev,
2418
			 const struct intel_wm_config *config,
2419
			 const struct ilk_wm_maximums *max,
2420
			 struct intel_pipe_wm *merged)
2421
{
6084 serge 2422
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 2423
	int level, max_level = ilk_wm_max_level(dev);
5060 serge 2424
	int last_enabled_level = max_level;
4560 Serge 2425
 
2426
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2427
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2428
	    config->num_pipes_active > 1)
2429
		return;
2430
 
2431
	/* ILK: FBC WM must be disabled always */
2432
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2433
 
2434
	/* merge each WM1+ level */
4104 Serge 2435
	for (level = 1; level <= max_level; level++) {
4560 Serge 2436
		struct intel_wm_level *wm = &merged->wm[level];
2437
 
2438
		ilk_merge_wm_level(dev, level, wm);
2439
 
5060 serge 2440
		if (level > last_enabled_level)
2441
			wm->enable = false;
2442
		else if (!ilk_validate_wm_level(level, max, wm))
2443
			/* make sure all following levels get disabled */
2444
			last_enabled_level = level - 1;
4560 Serge 2445
 
2446
		/*
2447
		 * The spec says it is preferred to disable
2448
		 * FBC WMs instead of disabling a WM level.
2449
		 */
2450
		if (wm->fbc_val > max->fbc) {
5060 serge 2451
			if (wm->enable)
6084 serge 2452
				merged->fbc_wm_enabled = false;
4560 Serge 2453
			wm->fbc_val = 0;
4104 Serge 2454
		}
2455
	}
2456
 
4560 Serge 2457
	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2458
	/*
2459
	 * FIXME this is racy. FBC might get enabled later.
2460
	 * What we should check here is whether FBC can be
2461
	 * enabled sometime later.
2462
	 */
6084 serge 2463
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
6937 serge 2464
	    intel_fbc_is_active(dev_priv)) {
4560 Serge 2465
		for (level = 2; level <= max_level; level++) {
2466
			struct intel_wm_level *wm = &merged->wm[level];
2467
 
2468
			wm->enable = false;
2469
		}
2470
	}
2471
}
2472
 
2473
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2474
{
2475
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2476
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2477
}
2478
 
2479
/* The value we need to program into the WM_LPx latency field */
2480
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2481
{
2482
	struct drm_i915_private *dev_priv = dev->dev_private;
2483
 
2484
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2485
		return 2 * level;
2486
	else
2487
		return dev_priv->wm.pri_latency[level];
2488
}
2489
 
2490
static void ilk_compute_wm_results(struct drm_device *dev,
2491
				   const struct intel_pipe_wm *merged,
2492
				   enum intel_ddb_partitioning partitioning,
2493
				   struct ilk_wm_values *results)
2494
{
2495
	struct intel_crtc *intel_crtc;
2496
	int level, wm_lp;
2497
 
2498
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2499
	results->partitioning = partitioning;
2500
 
2501
	/* LP1+ register values */
4104 Serge 2502
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2503
		const struct intel_wm_level *r;
2504
 
4560 Serge 2505
		level = ilk_wm_lp_to_level(wm_lp, merged);
2506
 
2507
		r = &merged->wm[level];
4104 Serge 2508
 
5060 serge 2509
		/*
2510
		 * Maintain the watermark values even if the level is
2511
		 * disabled. Doing otherwise could cause underruns.
2512
		 */
2513
		results->wm_lp[wm_lp - 1] =
4560 Serge 2514
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2515
			(r->pri_val << WM1_LP_SR_SHIFT) |
2516
			r->cur_val;
2517
 
5060 serge 2518
		if (r->enable)
2519
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2520
 
4560 Serge 2521
		if (INTEL_INFO(dev)->gen >= 8)
2522
			results->wm_lp[wm_lp - 1] |=
2523
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2524
		else
2525
			results->wm_lp[wm_lp - 1] |=
2526
				r->fbc_val << WM1_LP_FBC_SHIFT;
2527
 
5060 serge 2528
		/*
2529
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
2530
		 * level is disabled. Doing otherwise could cause underruns.
2531
		 */
4560 Serge 2532
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2533
			WARN_ON(wm_lp != 1);
2534
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2535
		} else
6084 serge 2536
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
4104 Serge 2537
	}
2538
 
4560 Serge 2539
	/* LP0 register values */
5060 serge 2540
	for_each_intel_crtc(dev, intel_crtc) {
6937 serge 2541
		const struct intel_crtc_state *cstate =
2542
			to_intel_crtc_state(intel_crtc->base.state);
4560 Serge 2543
		enum pipe pipe = intel_crtc->pipe;
6937 serge 2544
		const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
4104 Serge 2545
 
4560 Serge 2546
		if (WARN_ON(!r->enable))
2547
			continue;
2548
 
6937 serge 2549
		results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
4560 Serge 2550
 
2551
		results->wm_pipe[pipe] =
2552
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2553
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2554
			r->cur_val;
4104 Serge 2555
	}
2556
}
2557
 
2558
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2559
 * case both are at the same level. Prefer r1 in case they're the same. */
4560 Serge 2560
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2561
						  struct intel_pipe_wm *r1,
2562
						  struct intel_pipe_wm *r2)
4104 Serge 2563
{
4560 Serge 2564
	int level, max_level = ilk_wm_max_level(dev);
2565
	int level1 = 0, level2 = 0;
4104 Serge 2566
 
4560 Serge 2567
	for (level = 1; level <= max_level; level++) {
2568
		if (r1->wm[level].enable)
2569
			level1 = level;
2570
		if (r2->wm[level].enable)
2571
			level2 = level;
4104 Serge 2572
	}
2573
 
4560 Serge 2574
	if (level1 == level2) {
2575
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
4104 Serge 2576
			return r2;
2577
		else
2578
			return r1;
4560 Serge 2579
	} else if (level1 > level2) {
4104 Serge 2580
		return r1;
2581
	} else {
2582
		return r2;
2583
	}
2584
}
2585
 
4560 Serge 2586
/* dirty bits used to track which watermarks need changes */
2587
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2588
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2589
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2590
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2591
#define WM_DIRTY_FBC (1 << 24)
2592
#define WM_DIRTY_DDB (1 << 25)
2593
 
5354 serge 2594
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
4560 Serge 2595
					 const struct ilk_wm_values *old,
2596
					 const struct ilk_wm_values *new)
2597
{
2598
	unsigned int dirty = 0;
2599
	enum pipe pipe;
2600
	int wm_lp;
2601
 
5354 serge 2602
	for_each_pipe(dev_priv, pipe) {
4560 Serge 2603
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2604
			dirty |= WM_DIRTY_LINETIME(pipe);
2605
			/* Must disable LP1+ watermarks too */
2606
			dirty |= WM_DIRTY_LP_ALL;
2607
		}
2608
 
2609
		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2610
			dirty |= WM_DIRTY_PIPE(pipe);
2611
			/* Must disable LP1+ watermarks too */
2612
			dirty |= WM_DIRTY_LP_ALL;
2613
		}
2614
	}
2615
 
2616
	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2617
		dirty |= WM_DIRTY_FBC;
2618
		/* Must disable LP1+ watermarks too */
2619
		dirty |= WM_DIRTY_LP_ALL;
2620
	}
2621
 
2622
	if (old->partitioning != new->partitioning) {
2623
		dirty |= WM_DIRTY_DDB;
2624
		/* Must disable LP1+ watermarks too */
2625
		dirty |= WM_DIRTY_LP_ALL;
2626
	}
2627
 
2628
	/* LP1+ watermarks already deemed dirty, no need to continue */
2629
	if (dirty & WM_DIRTY_LP_ALL)
2630
		return dirty;
2631
 
2632
	/* Find the lowest numbered LP1+ watermark in need of an update... */
2633
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2634
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2635
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2636
			break;
2637
	}
2638
 
2639
	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2640
	for (; wm_lp <= 3; wm_lp++)
2641
		dirty |= WM_DIRTY_LP(wm_lp);
2642
 
2643
	return dirty;
2644
}
2645
 
2646
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2647
			       unsigned int dirty)
2648
{
2649
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2650
	bool changed = false;
2651
 
2652
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2653
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2654
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2655
		changed = true;
2656
	}
2657
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2658
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2659
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2660
		changed = true;
2661
	}
2662
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2663
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2664
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2665
		changed = true;
2666
	}
2667
 
2668
	/*
2669
	 * Don't touch WM1S_LP_EN here.
2670
	 * Doing so could cause underruns.
2671
	 */
2672
 
2673
	return changed;
2674
}
2675
 
4104 Serge 2676
/*
2677
 * The spec says we shouldn't write when we don't need, because every write
2678
 * causes WMs to be re-evaluated, expending some power.
6084 serge 2679
 */
4560 Serge 2680
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2681
				struct ilk_wm_values *results)
4104 Serge 2682
{
4560 Serge 2683
	struct drm_device *dev = dev_priv->dev;
2684
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2685
	unsigned int dirty;
4104 Serge 2686
	uint32_t val;
3031 serge 2687
 
5354 serge 2688
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
4560 Serge 2689
	if (!dirty)
4104 Serge 2690
		return;
2691
 
4560 Serge 2692
	_ilk_disable_lp_wm(dev_priv, dirty);
4104 Serge 2693
 
4560 Serge 2694
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
4104 Serge 2695
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
4560 Serge 2696
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
4104 Serge 2697
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
4560 Serge 2698
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
4104 Serge 2699
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2700
 
4560 Serge 2701
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
4104 Serge 2702
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
4560 Serge 2703
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
4104 Serge 2704
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
4560 Serge 2705
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
4104 Serge 2706
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2707
 
4560 Serge 2708
	if (dirty & WM_DIRTY_DDB) {
2709
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6084 serge 2710
			val = I915_READ(WM_MISC);
4560 Serge 2711
			if (results->partitioning == INTEL_DDB_PART_1_2)
6084 serge 2712
				val &= ~WM_MISC_DATA_PARTITION_5_6;
2713
			else
2714
				val |= WM_MISC_DATA_PARTITION_5_6;
2715
			I915_WRITE(WM_MISC, val);
4560 Serge 2716
		} else {
2717
			val = I915_READ(DISP_ARB_CTL2);
2718
			if (results->partitioning == INTEL_DDB_PART_1_2)
2719
				val &= ~DISP_DATA_PARTITION_5_6;
2720
			else
2721
				val |= DISP_DATA_PARTITION_5_6;
2722
			I915_WRITE(DISP_ARB_CTL2, val);
2723
		}
4104 Serge 2724
	}
2725
 
4560 Serge 2726
	if (dirty & WM_DIRTY_FBC) {
4104 Serge 2727
		val = I915_READ(DISP_ARB_CTL);
2728
		if (results->enable_fbc_wm)
2729
			val &= ~DISP_FBC_WM_DIS;
2730
		else
2731
			val |= DISP_FBC_WM_DIS;
2732
		I915_WRITE(DISP_ARB_CTL, val);
2733
	}
2734
 
4560 Serge 2735
	if (dirty & WM_DIRTY_LP(1) &&
2736
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
4104 Serge 2737
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
4560 Serge 2738
 
2739
	if (INTEL_INFO(dev)->gen >= 7) {
2740
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
6084 serge 2741
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
4560 Serge 2742
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
6084 serge 2743
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
4560 Serge 2744
	}
4104 Serge 2745
 
4560 Serge 2746
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
4104 Serge 2747
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
4560 Serge 2748
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
4104 Serge 2749
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
4560 Serge 2750
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
4104 Serge 2751
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
4560 Serge 2752
 
2753
	dev_priv->wm.hw = *results;
3031 serge 2754
}
2755
 
4560 Serge 2756
static bool ilk_disable_lp_wm(struct drm_device *dev)
4104 Serge 2757
{
2758
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 2759
 
2760
	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2761
}
2762
 
5354 serge 2763
/*
2764
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2765
 * different active planes.
2766
 */
2767
 
2768
#define SKL_DDB_SIZE		896	/* in blocks */
6084 serge 2769
#define BXT_DDB_SIZE		512
5354 serge 2770
 
6937 serge 2771
/*
2772
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2773
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2774
 * other universal planes are in indices 1..n.  Note that this may leave unused
2775
 * indices between the top "sprite" plane and the cursor.
2776
 */
2777
static int
2778
skl_wm_plane_id(const struct intel_plane *plane)
2779
{
2780
	switch (plane->base.type) {
2781
	case DRM_PLANE_TYPE_PRIMARY:
2782
		return 0;
2783
	case DRM_PLANE_TYPE_CURSOR:
2784
		return PLANE_CURSOR;
2785
	case DRM_PLANE_TYPE_OVERLAY:
2786
		return plane->plane + 1;
2787
	default:
2788
		MISSING_CASE(plane->base.type);
2789
		return plane->plane;
2790
	}
2791
}
2792
 
5354 serge 2793
static void
2794
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
6937 serge 2795
				   const struct intel_crtc_state *cstate,
5354 serge 2796
				   const struct intel_wm_config *config,
2797
				   struct skl_ddb_entry *alloc /* out */)
2798
{
6937 serge 2799
	struct drm_crtc *for_crtc = cstate->base.crtc;
5354 serge 2800
	struct drm_crtc *crtc;
2801
	unsigned int pipe_size, ddb_size;
2802
	int nth_active_pipe;
2803
 
6937 serge 2804
	if (!cstate->base.active) {
5354 serge 2805
		alloc->start = 0;
2806
		alloc->end = 0;
2807
		return;
2808
	}
2809
 
6084 serge 2810
	if (IS_BROXTON(dev))
2811
		ddb_size = BXT_DDB_SIZE;
2812
	else
2813
		ddb_size = SKL_DDB_SIZE;
5354 serge 2814
 
2815
	ddb_size -= 4; /* 4 blocks for bypass path allocation */
2816
 
2817
	nth_active_pipe = 0;
2818
	for_each_crtc(dev, crtc) {
6084 serge 2819
		if (!to_intel_crtc(crtc)->active)
5354 serge 2820
			continue;
2821
 
2822
		if (crtc == for_crtc)
2823
			break;
2824
 
2825
		nth_active_pipe++;
2826
	}
2827
 
2828
	pipe_size = ddb_size / config->num_pipes_active;
2829
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2830
	alloc->end = alloc->start + pipe_size;
2831
}
2832
 
2833
static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2834
{
2835
	if (config->num_pipes_active == 1)
2836
		return 32;
2837
 
2838
	return 8;
2839
}
2840
 
2841
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2842
{
2843
	entry->start = reg & 0x3ff;
2844
	entry->end = (reg >> 16) & 0x3ff;
2845
	if (entry->end)
2846
		entry->end += 1;
2847
}
2848
 
2849
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2850
			  struct skl_ddb_allocation *ddb /* out */)
2851
{
2852
	enum pipe pipe;
2853
	int plane;
2854
	u32 val;
2855
 
6084 serge 2856
	memset(ddb, 0, sizeof(*ddb));
2857
 
5354 serge 2858
	for_each_pipe(dev_priv, pipe) {
6937 serge 2859
		enum intel_display_power_domain power_domain;
2860
 
2861
		power_domain = POWER_DOMAIN_PIPE(pipe);
2862
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
6084 serge 2863
			continue;
2864
 
2865
		for_each_plane(dev_priv, pipe, plane) {
5354 serge 2866
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2867
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2868
						   val);
2869
		}
2870
 
2871
		val = I915_READ(CUR_BUF_CFG(pipe));
6084 serge 2872
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2873
					   val);
6937 serge 2874
 
2875
		intel_display_power_put(dev_priv, power_domain);
5354 serge 2876
	}
2877
}
2878
 
2879
static unsigned int
6937 serge 2880
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
2881
			     const struct drm_plane_state *pstate,
2882
			     int y)
5354 serge 2883
{
7144 serge 2884
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
6937 serge 2885
	struct drm_framebuffer *fb = pstate->fb;
7144 serge 2886
	uint32_t width = 0, height = 0;
6084 serge 2887
 
7144 serge 2888
	width = drm_rect_width(&intel_pstate->src) >> 16;
2889
	height = drm_rect_height(&intel_pstate->src) >> 16;
2890
 
2891
	if (intel_rotation_90_or_270(pstate->rotation))
2892
		swap(width, height);
2893
 
6084 serge 2894
	/* for planar format */
6937 serge 2895
	if (fb->pixel_format == DRM_FORMAT_NV12) {
6084 serge 2896
		if (y)  /* y-plane data rate */
7144 serge 2897
			return width * height *
6937 serge 2898
				drm_format_plane_cpp(fb->pixel_format, 0);
6084 serge 2899
		else    /* uv-plane data rate */
7144 serge 2900
			return (width / 2) * (height / 2) *
6937 serge 2901
				drm_format_plane_cpp(fb->pixel_format, 1);
6084 serge 2902
	}
2903
 
2904
	/* for packed formats */
7144 serge 2905
	return width * height * drm_format_plane_cpp(fb->pixel_format, 0);
5354 serge 2906
}
2907
 
2908
/*
2909
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2910
 * a 8192x4096@32bpp framebuffer:
2911
 *   3 * 4096 * 8192  * 4 < 2^32
2912
 */
2913
static unsigned int
6937 serge 2914
skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
5354 serge 2915
{
6937 serge 2916
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2917
	struct drm_device *dev = intel_crtc->base.dev;
2918
	const struct intel_plane *intel_plane;
5354 serge 2919
	unsigned int total_data_rate = 0;
2920
 
6937 serge 2921
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2922
		const struct drm_plane_state *pstate = intel_plane->base.state;
5354 serge 2923
 
6937 serge 2924
		if (pstate->fb == NULL)
5354 serge 2925
			continue;
2926
 
6937 serge 2927
		if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2928
			continue;
2929
 
2930
		/* packed/uv */
2931
		total_data_rate += skl_plane_relative_data_rate(cstate,
2932
								pstate,
2933
								0);
2934
 
2935
		if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
2936
			/* y-plane */
2937
			total_data_rate += skl_plane_relative_data_rate(cstate,
2938
									pstate,
2939
									1);
5354 serge 2940
	}
2941
 
2942
	return total_data_rate;
2943
}
2944
 
2945
static void
6937 serge 2946
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
5354 serge 2947
		      struct skl_ddb_allocation *ddb /* out */)
2948
{
6937 serge 2949
	struct drm_crtc *crtc = cstate->base.crtc;
5354 serge 2950
	struct drm_device *dev = crtc->dev;
6937 serge 2951
	struct drm_i915_private *dev_priv = to_i915(dev);
2952
	struct intel_wm_config *config = &dev_priv->wm.config;
5354 serge 2953
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6937 serge 2954
	struct intel_plane *intel_plane;
5354 serge 2955
	enum pipe pipe = intel_crtc->pipe;
2956
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2957
	uint16_t alloc_size, start, cursor_blocks;
6084 serge 2958
	uint16_t minimum[I915_MAX_PLANES];
2959
	uint16_t y_minimum[I915_MAX_PLANES];
5354 serge 2960
	unsigned int total_data_rate;
2961
 
6937 serge 2962
	skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
5354 serge 2963
	alloc_size = skl_ddb_entry_size(alloc);
2964
	if (alloc_size == 0) {
2965
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
6084 serge 2966
		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2967
		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
5354 serge 2968
		return;
2969
	}
2970
 
2971
	cursor_blocks = skl_cursor_allocation(config);
6084 serge 2972
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2973
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
5354 serge 2974
 
2975
	alloc_size -= cursor_blocks;
2976
	alloc->end -= cursor_blocks;
2977
 
6084 serge 2978
	/* 1. Allocate the mininum required blocks for each active plane */
6937 serge 2979
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2980
		struct drm_plane *plane = &intel_plane->base;
2981
		struct drm_framebuffer *fb = plane->state->fb;
2982
		int id = skl_wm_plane_id(intel_plane);
6084 serge 2983
 
7144 serge 2984
		if (!to_intel_plane_state(plane->state)->visible)
6084 serge 2985
			continue;
7144 serge 2986
 
6937 serge 2987
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
2988
			continue;
6084 serge 2989
 
6937 serge 2990
		minimum[id] = 8;
2991
		alloc_size -= minimum[id];
2992
		y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
2993
		alloc_size -= y_minimum[id];
6084 serge 2994
	}
2995
 
2996
	/*
2997
	 * 2. Distribute the remaining space in proportion to the amount of
2998
	 * data each plane needs to fetch from memory.
5354 serge 2999
	 *
3000
	 * FIXME: we may not allocate every single block here.
6084 serge 3001
	 */
6937 serge 3002
	total_data_rate = skl_get_total_relative_data_rate(cstate);
5354 serge 3003
 
3004
	start = alloc->start;
6937 serge 3005
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3006
		struct drm_plane *plane = &intel_plane->base;
3007
		struct drm_plane_state *pstate = intel_plane->base.state;
6084 serge 3008
		unsigned int data_rate, y_data_rate;
3009
		uint16_t plane_blocks, y_plane_blocks = 0;
6937 serge 3010
		int id = skl_wm_plane_id(intel_plane);
5354 serge 3011
 
7144 serge 3012
		if (!to_intel_plane_state(pstate)->visible)
5354 serge 3013
			continue;
6937 serge 3014
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
3015
			continue;
5354 serge 3016
 
6937 serge 3017
		data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
5354 serge 3018
 
3019
		/*
6084 serge 3020
		 * allocation for (packed formats) or (uv-plane part of planar format):
5354 serge 3021
		 * promote the expression to 64 bits to avoid overflowing, the
3022
		 * result is < available as data_rate / total_data_rate < 1
3023
		 */
6937 serge 3024
		plane_blocks = minimum[id];
6084 serge 3025
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3026
					total_data_rate);
5354 serge 3027
 
6937 serge 3028
		ddb->plane[pipe][id].start = start;
3029
		ddb->plane[pipe][id].end = start + plane_blocks;
5354 serge 3030
 
3031
		start += plane_blocks;
6084 serge 3032
 
3033
		/*
3034
		 * allocation for y_plane part of planar format:
3035
		 */
6937 serge 3036
		if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
3037
			y_data_rate = skl_plane_relative_data_rate(cstate,
3038
								   pstate,
3039
								   1);
3040
			y_plane_blocks = y_minimum[id];
6084 serge 3041
			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3042
						total_data_rate);
3043
 
6937 serge 3044
			ddb->y_plane[pipe][id].start = start;
3045
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
6084 serge 3046
 
3047
			start += y_plane_blocks;
3048
		}
3049
 
5354 serge 3050
	}
3051
 
3052
}
3053
 
6084 serge 3054
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
5354 serge 3055
{
3056
	/* TODO: Take into account the scalers once we support them */
6084 serge 3057
	return config->base.adjusted_mode.crtc_clock;
5354 serge 3058
}
3059
 
3060
/*
3061
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
7144 serge 3062
 * for the read latency) and cpp should always be <= 8, so that
5354 serge 3063
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3064
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3065
*/
7144 serge 3066
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
5354 serge 3067
{
3068
	uint32_t wm_intermediate_val, ret;
3069
 
3070
	if (latency == 0)
3071
		return UINT_MAX;
3072
 
7144 serge 3073
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
5354 serge 3074
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3075
 
3076
	return ret;
3077
}
3078
 
3079
static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
7144 serge 3080
			       uint32_t horiz_pixels, uint8_t cpp,
6084 serge 3081
			       uint64_t tiling, uint32_t latency)
5354 serge 3082
{
6084 serge 3083
	uint32_t ret;
3084
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3085
	uint32_t wm_intermediate_val;
5354 serge 3086
 
3087
	if (latency == 0)
3088
		return UINT_MAX;
3089
 
7144 serge 3090
	plane_bytes_per_line = horiz_pixels * cpp;
6084 serge 3091
 
3092
	if (tiling == I915_FORMAT_MOD_Y_TILED ||
3093
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
3094
		plane_bytes_per_line *= 4;
3095
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3096
		plane_blocks_per_line /= 4;
3097
	} else {
3098
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3099
	}
3100
 
5354 serge 3101
	wm_intermediate_val = latency * pixel_rate;
3102
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
6084 serge 3103
				plane_blocks_per_line;
5354 serge 3104
 
3105
	return ret;
3106
}
3107
 
3108
static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3109
				       const struct intel_crtc *intel_crtc)
3110
{
3111
	struct drm_device *dev = intel_crtc->base.dev;
3112
	struct drm_i915_private *dev_priv = dev->dev_private;
3113
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3114
 
6937 serge 3115
	/*
3116
	 * If ddb allocation of pipes changed, it may require recalculation of
3117
	 * watermarks
3118
	 */
3119
	if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
5354 serge 3120
		return true;
3121
 
3122
	return false;
3123
}
3124
 
6084 serge 3125
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
6937 serge 3126
				 struct intel_crtc_state *cstate,
3127
				 struct intel_plane *intel_plane,
5354 serge 3128
				 uint16_t ddb_allocation,
6084 serge 3129
				 int level,
5354 serge 3130
				 uint16_t *out_blocks, /* out */
3131
				 uint8_t *out_lines /* out */)
3132
{
6937 serge 3133
	struct drm_plane *plane = &intel_plane->base;
3134
	struct drm_framebuffer *fb = plane->state->fb;
7144 serge 3135
	struct intel_plane_state *intel_pstate =
3136
					to_intel_plane_state(plane->state);
6084 serge 3137
	uint32_t latency = dev_priv->wm.skl_latency[level];
3138
	uint32_t method1, method2;
3139
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3140
	uint32_t res_blocks, res_lines;
3141
	uint32_t selected_result;
7144 serge 3142
	uint8_t cpp;
3143
	uint32_t width = 0, height = 0;
5354 serge 3144
 
7144 serge 3145
	if (latency == 0 || !cstate->base.active || !intel_pstate->visible)
5354 serge 3146
		return false;
3147
 
7144 serge 3148
	width = drm_rect_width(&intel_pstate->src) >> 16;
3149
	height = drm_rect_height(&intel_pstate->src) >> 16;
3150
 
3151
	if (intel_rotation_90_or_270(plane->state->rotation))
3152
		swap(width, height);
3153
 
3154
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
6937 serge 3155
	method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
7144 serge 3156
				 cpp, latency);
6937 serge 3157
	method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
3158
				 cstate->base.adjusted_mode.crtc_htotal,
7144 serge 3159
				 width,
3160
				 cpp,
6937 serge 3161
				 fb->modifier[0],
6084 serge 3162
				 latency);
5354 serge 3163
 
7144 serge 3164
	plane_bytes_per_line = width * cpp;
6084 serge 3165
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
5354 serge 3166
 
6937 serge 3167
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3168
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
6084 serge 3169
		uint32_t min_scanlines = 4;
3170
		uint32_t y_tile_minimum;
6937 serge 3171
		if (intel_rotation_90_or_270(plane->state->rotation)) {
7144 serge 3172
			int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
6937 serge 3173
				drm_format_plane_cpp(fb->pixel_format, 1) :
3174
				drm_format_plane_cpp(fb->pixel_format, 0);
3175
 
7144 serge 3176
			switch (cpp) {
6084 serge 3177
			case 1:
3178
				min_scanlines = 16;
3179
				break;
3180
			case 2:
3181
				min_scanlines = 8;
3182
				break;
3183
			case 8:
3184
				WARN(1, "Unsupported pixel depth for rotation");
3185
			}
3186
		}
3187
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3188
		selected_result = max(method2, y_tile_minimum);
3189
	} else {
3190
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
3191
			selected_result = min(method1, method2);
3192
		else
3193
			selected_result = method1;
3194
	}
5354 serge 3195
 
6084 serge 3196
	res_blocks = selected_result + 1;
3197
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
5354 serge 3198
 
6084 serge 3199
	if (level >= 1 && level <= 7) {
6937 serge 3200
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3201
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
6084 serge 3202
			res_lines += 4;
3203
		else
3204
			res_blocks++;
3205
	}
3206
 
3207
	if (res_blocks >= ddb_allocation || res_lines > 31)
5354 serge 3208
		return false;
3209
 
3210
	*out_blocks = res_blocks;
3211
	*out_lines = res_lines;
3212
 
3213
	return true;
3214
}
3215
 
3216
static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3217
				 struct skl_ddb_allocation *ddb,
6937 serge 3218
				 struct intel_crtc_state *cstate,
5354 serge 3219
				 int level,
3220
				 struct skl_wm_level *result)
3221
{
6937 serge 3222
	struct drm_device *dev = dev_priv->dev;
3223
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3224
	struct intel_plane *intel_plane;
5354 serge 3225
	uint16_t ddb_blocks;
6937 serge 3226
	enum pipe pipe = intel_crtc->pipe;
5354 serge 3227
 
6937 serge 3228
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3229
		int i = skl_wm_plane_id(intel_plane);
3230
 
5354 serge 3231
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3232
 
6084 serge 3233
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
6937 serge 3234
						cstate,
3235
						intel_plane,
5354 serge 3236
						ddb_blocks,
6084 serge 3237
						level,
5354 serge 3238
						&result->plane_res_b[i],
3239
						&result->plane_res_l[i]);
3240
	}
3241
}
3242
 
3243
static uint32_t
6937 serge 3244
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
5354 serge 3245
{
6937 serge 3246
	if (!cstate->base.active)
5354 serge 3247
		return 0;
3248
 
6937 serge 3249
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
6084 serge 3250
		return 0;
3251
 
6937 serge 3252
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3253
			    skl_pipe_pixel_rate(cstate));
5354 serge 3254
}
3255
 
6937 serge 3256
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
5354 serge 3257
				      struct skl_wm_level *trans_wm /* out */)
3258
{
6937 serge 3259
	struct drm_crtc *crtc = cstate->base.crtc;
5354 serge 3260
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6937 serge 3261
	struct intel_plane *intel_plane;
5354 serge 3262
 
6937 serge 3263
	if (!cstate->base.active)
5354 serge 3264
		return;
3265
 
3266
	/* Until we know more, just disable transition WMs */
6937 serge 3267
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3268
		int i = skl_wm_plane_id(intel_plane);
3269
 
5354 serge 3270
		trans_wm->plane_en[i] = false;
6937 serge 3271
	}
5354 serge 3272
}
3273
 
6937 serge 3274
static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
5354 serge 3275
				struct skl_ddb_allocation *ddb,
3276
				struct skl_pipe_wm *pipe_wm)
3277
{
6937 serge 3278
	struct drm_device *dev = cstate->base.crtc->dev;
5354 serge 3279
	const struct drm_i915_private *dev_priv = dev->dev_private;
3280
	int level, max_level = ilk_wm_max_level(dev);
3281
 
3282
	for (level = 0; level <= max_level; level++) {
6937 serge 3283
		skl_compute_wm_level(dev_priv, ddb, cstate,
3284
				     level, &pipe_wm->wm[level]);
5354 serge 3285
	}
6937 serge 3286
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
5354 serge 3287
 
6937 serge 3288
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
5354 serge 3289
}
3290
 
3291
static void skl_compute_wm_results(struct drm_device *dev,
3292
				   struct skl_pipe_wm *p_wm,
3293
				   struct skl_wm_values *r,
3294
				   struct intel_crtc *intel_crtc)
3295
{
3296
	int level, max_level = ilk_wm_max_level(dev);
3297
	enum pipe pipe = intel_crtc->pipe;
3298
	uint32_t temp;
3299
	int i;
3300
 
3301
	for (level = 0; level <= max_level; level++) {
3302
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3303
			temp = 0;
3304
 
3305
			temp |= p_wm->wm[level].plane_res_l[i] <<
3306
					PLANE_WM_LINES_SHIFT;
3307
			temp |= p_wm->wm[level].plane_res_b[i];
3308
			if (p_wm->wm[level].plane_en[i])
3309
				temp |= PLANE_WM_EN;
3310
 
3311
			r->plane[pipe][i][level] = temp;
3312
		}
3313
 
3314
		temp = 0;
3315
 
6084 serge 3316
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3317
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
5354 serge 3318
 
6084 serge 3319
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
5354 serge 3320
			temp |= PLANE_WM_EN;
3321
 
6084 serge 3322
		r->plane[pipe][PLANE_CURSOR][level] = temp;
5354 serge 3323
 
3324
	}
3325
 
3326
	/* transition WMs */
3327
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3328
		temp = 0;
3329
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3330
		temp |= p_wm->trans_wm.plane_res_b[i];
3331
		if (p_wm->trans_wm.plane_en[i])
3332
			temp |= PLANE_WM_EN;
3333
 
3334
		r->plane_trans[pipe][i] = temp;
3335
	}
3336
 
3337
	temp = 0;
6084 serge 3338
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3339
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3340
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
5354 serge 3341
		temp |= PLANE_WM_EN;
3342
 
6084 serge 3343
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
5354 serge 3344
 
3345
	r->wm_linetime[pipe] = p_wm->linetime;
3346
}
3347
 
6937 serge 3348
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3349
				i915_reg_t reg,
5354 serge 3350
				const struct skl_ddb_entry *entry)
3351
{
3352
	if (entry->end)
3353
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3354
	else
3355
		I915_WRITE(reg, 0);
3356
}
3357
 
3358
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3359
				const struct skl_wm_values *new)
3360
{
3361
	struct drm_device *dev = dev_priv->dev;
3362
	struct intel_crtc *crtc;
3363
 
6937 serge 3364
	for_each_intel_crtc(dev, crtc) {
5354 serge 3365
		int i, level, max_level = ilk_wm_max_level(dev);
3366
		enum pipe pipe = crtc->pipe;
3367
 
3368
		if (!new->dirty[pipe])
3369
			continue;
3370
 
3371
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3372
 
3373
		for (level = 0; level <= max_level; level++) {
3374
			for (i = 0; i < intel_num_planes(crtc); i++)
3375
				I915_WRITE(PLANE_WM(pipe, i, level),
3376
					   new->plane[pipe][i][level]);
3377
			I915_WRITE(CUR_WM(pipe, level),
6084 serge 3378
				   new->plane[pipe][PLANE_CURSOR][level]);
5354 serge 3379
		}
3380
		for (i = 0; i < intel_num_planes(crtc); i++)
3381
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
3382
				   new->plane_trans[pipe][i]);
6084 serge 3383
		I915_WRITE(CUR_WM_TRANS(pipe),
3384
			   new->plane_trans[pipe][PLANE_CURSOR]);
5354 serge 3385
 
6084 serge 3386
		for (i = 0; i < intel_num_planes(crtc); i++) {
5354 serge 3387
			skl_ddb_entry_write(dev_priv,
3388
					    PLANE_BUF_CFG(pipe, i),
3389
					    &new->ddb.plane[pipe][i]);
6084 serge 3390
			skl_ddb_entry_write(dev_priv,
3391
					    PLANE_NV12_BUF_CFG(pipe, i),
3392
					    &new->ddb.y_plane[pipe][i]);
3393
		}
5354 serge 3394
 
3395
		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
6084 serge 3396
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
5354 serge 3397
	}
3398
}
3399
 
3400
/*
3401
 * When setting up a new DDB allocation arrangement, we need to correctly
3402
 * sequence the times at which the new allocations for the pipes are taken into
3403
 * account or we'll have pipes fetching from space previously allocated to
3404
 * another pipe.
3405
 *
3406
 * Roughly the sequence looks like:
3407
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
3408
 *     overlapping with a previous light-up pipe (another way to put it is:
3409
 *     pipes with their new allocation strickly included into their old ones).
3410
 *  2. re-allocate the other pipes that get their allocation reduced
3411
 *  3. allocate the pipes having their allocation increased
3412
 *
3413
 * Steps 1. and 2. are here to take care of the following case:
3414
 * - Initially DDB looks like this:
3415
 *     |   B    |   C    |
3416
 * - enable pipe A.
3417
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3418
 *   allocation
3419
 *     |  A  |  B  |  C  |
3420
 *
3421
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3422
 */
3423
 
3424
static void
3425
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3426
{
3427
	int plane;
3428
 
3429
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3430
 
6084 serge 3431
	for_each_plane(dev_priv, pipe, plane) {
5354 serge 3432
		I915_WRITE(PLANE_SURF(pipe, plane),
3433
			   I915_READ(PLANE_SURF(pipe, plane)));
3434
	}
3435
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3436
}
3437
 
3438
static bool
3439
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3440
			    const struct skl_ddb_allocation *new,
3441
			    enum pipe pipe)
3442
{
3443
	uint16_t old_size, new_size;
3444
 
3445
	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3446
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3447
 
3448
	return old_size != new_size &&
3449
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
3450
	       new->pipe[pipe].end <= old->pipe[pipe].end;
3451
}
3452
 
3453
static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3454
				struct skl_wm_values *new_values)
3455
{
3456
	struct drm_device *dev = dev_priv->dev;
3457
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
6084 serge 3458
	bool reallocated[I915_MAX_PIPES] = {};
5354 serge 3459
	struct intel_crtc *crtc;
3460
	enum pipe pipe;
3461
 
3462
	new_ddb = &new_values->ddb;
3463
	cur_ddb = &dev_priv->wm.skl_hw.ddb;
3464
 
3465
	/*
3466
	 * First pass: flush the pipes with the new allocation contained into
3467
	 * the old space.
3468
	 *
3469
	 * We'll wait for the vblank on those pipes to ensure we can safely
3470
	 * re-allocate the freed space without this pipe fetching from it.
3471
	 */
3472
	for_each_intel_crtc(dev, crtc) {
3473
		if (!crtc->active)
3474
			continue;
3475
 
3476
		pipe = crtc->pipe;
3477
 
3478
		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3479
			continue;
3480
 
3481
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3482
		intel_wait_for_vblank(dev, pipe);
3483
 
3484
		reallocated[pipe] = true;
3485
	}
3486
 
3487
 
3488
	/*
3489
	 * Second pass: flush the pipes that are having their allocation
3490
	 * reduced, but overlapping with a previous allocation.
3491
	 *
3492
	 * Here as well we need to wait for the vblank to make sure the freed
3493
	 * space is not used anymore.
3494
	 */
3495
	for_each_intel_crtc(dev, crtc) {
3496
		if (!crtc->active)
3497
			continue;
3498
 
3499
		pipe = crtc->pipe;
3500
 
3501
		if (reallocated[pipe])
3502
			continue;
3503
 
3504
		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3505
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3506
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3507
			intel_wait_for_vblank(dev, pipe);
6084 serge 3508
			reallocated[pipe] = true;
5354 serge 3509
		}
3510
	}
3511
 
3512
	/*
3513
	 * Third pass: flush the pipes that got more space allocated.
3514
	 *
3515
	 * We don't need to actively wait for the update here, next vblank
3516
	 * will just get more DDB space with the correct WM values.
3517
	 */
3518
	for_each_intel_crtc(dev, crtc) {
3519
		if (!crtc->active)
3520
			continue;
3521
 
3522
		pipe = crtc->pipe;
3523
 
3524
		/*
3525
		 * At this point, only the pipes more space than before are
3526
		 * left to re-allocate.
3527
		 */
3528
		if (reallocated[pipe])
3529
			continue;
3530
 
3531
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3532
	}
3533
}
3534
 
3535
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3536
			       struct skl_ddb_allocation *ddb, /* out */
3537
			       struct skl_pipe_wm *pipe_wm /* out */)
3538
{
3539
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6937 serge 3540
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5354 serge 3541
 
6937 serge 3542
	skl_allocate_pipe_ddb(cstate, ddb);
3543
	skl_compute_pipe_wm(cstate, ddb, pipe_wm);
5354 serge 3544
 
6937 serge 3545
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
5354 serge 3546
		return false;
3547
 
6937 serge 3548
	intel_crtc->wm.active.skl = *pipe_wm;
6084 serge 3549
 
5354 serge 3550
	return true;
3551
}
3552
 
3553
static void skl_update_other_pipe_wm(struct drm_device *dev,
3554
				     struct drm_crtc *crtc,
3555
				     struct skl_wm_values *r)
3556
{
3557
	struct intel_crtc *intel_crtc;
3558
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3559
 
3560
	/*
3561
	 * If the WM update hasn't changed the allocation for this_crtc (the
3562
	 * crtc we are currently computing the new WM values for), other
3563
	 * enabled crtcs will keep the same allocation and we don't need to
3564
	 * recompute anything for them.
3565
	 */
3566
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3567
		return;
3568
 
3569
	/*
3570
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3571
	 * other active pipes need new DDB allocation and WM values.
3572
	 */
6937 serge 3573
	for_each_intel_crtc(dev, intel_crtc) {
5354 serge 3574
		struct skl_pipe_wm pipe_wm = {};
3575
		bool wm_changed;
3576
 
3577
		if (this_crtc->pipe == intel_crtc->pipe)
3578
			continue;
3579
 
3580
		if (!intel_crtc->active)
3581
			continue;
3582
 
3583
		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3584
						&r->ddb, &pipe_wm);
3585
 
3586
		/*
3587
		 * If we end up re-computing the other pipe WM values, it's
3588
		 * because it was really needed, so we expect the WM values to
3589
		 * be different.
6084 serge 3590
		 */
5354 serge 3591
		WARN_ON(!wm_changed);
3592
 
6937 serge 3593
		skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
5354 serge 3594
		r->dirty[intel_crtc->pipe] = true;
3595
	}
3596
}
3597
 
6084 serge 3598
static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3599
{
3600
	watermarks->wm_linetime[pipe] = 0;
3601
	memset(watermarks->plane[pipe], 0,
3602
	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3603
	memset(watermarks->plane_trans[pipe],
3604
	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3605
	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3606
 
3607
	/* Clear ddb entries for pipe */
3608
	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3609
	memset(&watermarks->ddb.plane[pipe], 0,
3610
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3611
	memset(&watermarks->ddb.y_plane[pipe], 0,
3612
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3613
	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3614
	       sizeof(struct skl_ddb_entry));
3615
 
3616
}
3617
 
5354 serge 3618
static void skl_update_wm(struct drm_crtc *crtc)
3619
{
3620
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3621
	struct drm_device *dev = crtc->dev;
3622
	struct drm_i915_private *dev_priv = dev->dev_private;
3623
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
6937 serge 3624
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3625
	struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
5354 serge 3626
 
3627
 
6084 serge 3628
	/* Clear all dirty flags */
3629
	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3630
 
3631
	skl_clear_wm(results, intel_crtc->pipe);
3632
 
6937 serge 3633
	if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
5354 serge 3634
		return;
3635
 
6937 serge 3636
	skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
5354 serge 3637
	results->dirty[intel_crtc->pipe] = true;
3638
 
6937 serge 3639
	skl_update_other_pipe_wm(dev, crtc, results);
5354 serge 3640
	skl_write_wm_values(dev_priv, results);
3641
	skl_flush_wm_values(dev_priv, results);
3642
 
3643
	/* store the new configuration */
3644
	dev_priv->wm.skl_hw = *results;
3645
}
3646
 
6937 serge 3647
static void ilk_compute_wm_config(struct drm_device *dev,
3648
				  struct intel_wm_config *config)
5354 serge 3649
{
6937 serge 3650
	struct intel_crtc *crtc;
5354 serge 3651
 
6937 serge 3652
	/* Compute the currently _active_ config */
3653
	for_each_intel_crtc(dev, crtc) {
3654
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5354 serge 3655
 
6937 serge 3656
		if (!wm->pipe_enabled)
3657
			continue;
6084 serge 3658
 
6937 serge 3659
		config->sprites_enabled |= wm->sprites_enabled;
3660
		config->sprites_scaled |= wm->sprites_scaled;
3661
		config->num_pipes_active++;
3662
	}
5354 serge 3663
}
3664
 
7144 serge 3665
static void ilk_program_watermarks(struct intel_crtc_state *cstate)
4560 Serge 3666
{
7144 serge 3667
	struct drm_crtc *crtc = cstate->base.crtc;
3668
	struct drm_device *dev = crtc->dev;
3669
	struct drm_i915_private *dev_priv = to_i915(dev);
6937 serge 3670
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4560 Serge 3671
	struct ilk_wm_maximums max;
6937 serge 3672
	struct intel_wm_config config = {};
4560 Serge 3673
	struct ilk_wm_values results = {};
4104 Serge 3674
	enum intel_ddb_partitioning partitioning;
3675
 
5060 serge 3676
	ilk_compute_wm_config(dev, &config);
3677
 
4560 Serge 3678
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3679
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3680
 
3681
	/* 5/6 split only in single pipe config on IVB+ */
3682
	if (INTEL_INFO(dev)->gen >= 7 &&
3683
	    config.num_pipes_active == 1 && config.sprites_enabled) {
3684
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3685
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3686
 
3687
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4104 Serge 3688
	} else {
4560 Serge 3689
		best_lp_wm = &lp_wm_1_2;
4104 Serge 3690
	}
3691
 
4560 Serge 3692
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4104 Serge 3693
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3694
 
4560 Serge 3695
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3696
 
3697
	ilk_write_wm_values(dev_priv, &results);
4104 Serge 3698
}
3699
 
6937 serge 3700
static void ilk_update_wm(struct drm_crtc *crtc)
4104 Serge 3701
{
6937 serge 3702
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3703
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4104 Serge 3704
 
6937 serge 3705
	WARN_ON(cstate->base.active != intel_crtc->active);
3706
 
4560 Serge 3707
	/*
3708
	 * IVB workaround: must disable low power watermarks for at least
3709
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
3710
	 * when scaling is disabled.
3711
	 *
3712
	 * WaCxSRDisabledForSpriteScaling:ivb
3713
	 */
6937 serge 3714
	if (cstate->disable_lp_wm) {
3715
		ilk_disable_lp_wm(crtc->dev);
3716
		intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
3717
	}
4560 Serge 3718
 
6937 serge 3719
	intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
3720
 
7144 serge 3721
	ilk_program_watermarks(cstate);
4104 Serge 3722
}
3723
 
5354 serge 3724
static void skl_pipe_wm_active_state(uint32_t val,
3725
				     struct skl_pipe_wm *active,
3726
				     bool is_transwm,
3727
				     bool is_cursor,
3728
				     int i,
3729
				     int level)
3730
{
3731
	bool is_enabled = (val & PLANE_WM_EN) != 0;
3732
 
3733
	if (!is_transwm) {
3734
		if (!is_cursor) {
3735
			active->wm[level].plane_en[i] = is_enabled;
3736
			active->wm[level].plane_res_b[i] =
3737
					val & PLANE_WM_BLOCKS_MASK;
3738
			active->wm[level].plane_res_l[i] =
3739
					(val >> PLANE_WM_LINES_SHIFT) &
3740
						PLANE_WM_LINES_MASK;
3741
		} else {
6084 serge 3742
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3743
			active->wm[level].plane_res_b[PLANE_CURSOR] =
5354 serge 3744
					val & PLANE_WM_BLOCKS_MASK;
6084 serge 3745
			active->wm[level].plane_res_l[PLANE_CURSOR] =
5354 serge 3746
					(val >> PLANE_WM_LINES_SHIFT) &
3747
						PLANE_WM_LINES_MASK;
3748
		}
3749
	} else {
3750
		if (!is_cursor) {
3751
			active->trans_wm.plane_en[i] = is_enabled;
3752
			active->trans_wm.plane_res_b[i] =
3753
					val & PLANE_WM_BLOCKS_MASK;
3754
			active->trans_wm.plane_res_l[i] =
3755
					(val >> PLANE_WM_LINES_SHIFT) &
3756
						PLANE_WM_LINES_MASK;
3757
		} else {
6084 serge 3758
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3759
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
5354 serge 3760
					val & PLANE_WM_BLOCKS_MASK;
6084 serge 3761
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
5354 serge 3762
					(val >> PLANE_WM_LINES_SHIFT) &
3763
						PLANE_WM_LINES_MASK;
3764
		}
3765
	}
3766
}
3767
 
3768
static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3769
{
3770
	struct drm_device *dev = crtc->dev;
3771
	struct drm_i915_private *dev_priv = dev->dev_private;
3772
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3773
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6937 serge 3774
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3775
	struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
5354 serge 3776
	enum pipe pipe = intel_crtc->pipe;
3777
	int level, i, max_level;
3778
	uint32_t temp;
3779
 
3780
	max_level = ilk_wm_max_level(dev);
3781
 
3782
	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3783
 
3784
	for (level = 0; level <= max_level; level++) {
3785
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
3786
			hw->plane[pipe][i][level] =
3787
					I915_READ(PLANE_WM(pipe, i, level));
6084 serge 3788
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
5354 serge 3789
	}
3790
 
3791
	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3792
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
6084 serge 3793
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
5354 serge 3794
 
6084 serge 3795
	if (!intel_crtc->active)
5354 serge 3796
		return;
3797
 
3798
	hw->dirty[pipe] = true;
3799
 
3800
	active->linetime = hw->wm_linetime[pipe];
3801
 
3802
	for (level = 0; level <= max_level; level++) {
3803
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3804
			temp = hw->plane[pipe][i][level];
3805
			skl_pipe_wm_active_state(temp, active, false,
3806
						false, i, level);
3807
		}
6084 serge 3808
		temp = hw->plane[pipe][PLANE_CURSOR][level];
5354 serge 3809
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
3810
	}
3811
 
3812
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3813
		temp = hw->plane_trans[pipe][i];
3814
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3815
	}
3816
 
6084 serge 3817
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
5354 serge 3818
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
6937 serge 3819
 
3820
	intel_crtc->wm.active.skl = *active;
5354 serge 3821
}
3822
 
3823
void skl_wm_get_hw_state(struct drm_device *dev)
3824
{
3825
	struct drm_i915_private *dev_priv = dev->dev_private;
3826
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3827
	struct drm_crtc *crtc;
3828
 
3829
	skl_ddb_get_hw_state(dev_priv, ddb);
3830
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3831
		skl_pipe_wm_get_hw_state(crtc);
3832
}
3833
 
4560 Serge 3834
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3031 serge 3835
{
4560 Serge 3836
	struct drm_device *dev = crtc->dev;
3837
	struct drm_i915_private *dev_priv = dev->dev_private;
3838
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3839
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6937 serge 3840
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3841
	struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
4560 Serge 3842
	enum pipe pipe = intel_crtc->pipe;
6937 serge 3843
	static const i915_reg_t wm0_pipe_reg[] = {
4560 Serge 3844
		[PIPE_A] = WM0_PIPEA_ILK,
3845
		[PIPE_B] = WM0_PIPEB_ILK,
3846
		[PIPE_C] = WM0_PIPEC_IVB,
3847
	};
3031 serge 3848
 
4560 Serge 3849
	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3850
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3851
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3031 serge 3852
 
6660 serge 3853
	memset(active, 0, sizeof(*active));
3854
 
6084 serge 3855
	active->pipe_enabled = intel_crtc->active;
5060 serge 3856
 
3857
	if (active->pipe_enabled) {
4560 Serge 3858
		u32 tmp = hw->wm_pipe[pipe];
3031 serge 3859
 
4560 Serge 3860
		/*
3861
		 * For active pipes LP0 watermark is marked as
3862
		 * enabled, and LP1+ watermaks as disabled since
3863
		 * we can't really reverse compute them in case
3864
		 * multiple pipes are active.
3865
		 */
3866
		active->wm[0].enable = true;
3867
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3868
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3869
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3870
		active->linetime = hw->wm_linetime[pipe];
3871
	} else {
3872
		int level, max_level = ilk_wm_max_level(dev);
3031 serge 3873
 
4560 Serge 3874
		/*
3875
		 * For inactive pipes, all watermark levels
3876
		 * should be marked as enabled but zeroed,
3877
		 * which is what we'd compute them to.
3878
		 */
3879
		for (level = 0; level <= max_level; level++)
3880
			active->wm[level].enable = true;
3031 serge 3881
	}
6937 serge 3882
 
3883
	intel_crtc->wm.active.ilk = *active;
3031 serge 3884
}
3885
 
6084 serge 3886
#define _FW_WM(value, plane) \
3887
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3888
#define _FW_WM_VLV(value, plane) \
3889
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3890
 
3891
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3892
			       struct vlv_wm_values *wm)
3893
{
3894
	enum pipe pipe;
3895
	uint32_t tmp;
3896
 
3897
	for_each_pipe(dev_priv, pipe) {
3898
		tmp = I915_READ(VLV_DDL(pipe));
3899
 
3900
		wm->ddl[pipe].primary =
3901
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3902
		wm->ddl[pipe].cursor =
3903
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3904
		wm->ddl[pipe].sprite[0] =
3905
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3906
		wm->ddl[pipe].sprite[1] =
3907
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3908
	}
3909
 
3910
	tmp = I915_READ(DSPFW1);
3911
	wm->sr.plane = _FW_WM(tmp, SR);
3912
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3913
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3914
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3915
 
3916
	tmp = I915_READ(DSPFW2);
3917
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3918
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3919
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3920
 
3921
	tmp = I915_READ(DSPFW3);
3922
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3923
 
3924
	if (IS_CHERRYVIEW(dev_priv)) {
3925
		tmp = I915_READ(DSPFW7_CHV);
3926
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3927
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3928
 
3929
		tmp = I915_READ(DSPFW8_CHV);
3930
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3931
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3932
 
3933
		tmp = I915_READ(DSPFW9_CHV);
3934
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3935
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3936
 
3937
		tmp = I915_READ(DSPHOWM);
3938
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3939
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3940
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3941
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3942
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3943
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3944
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3945
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3946
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3947
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3948
	} else {
3949
		tmp = I915_READ(DSPFW7);
3950
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3951
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3952
 
3953
		tmp = I915_READ(DSPHOWM);
3954
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3955
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3956
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3957
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3958
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3959
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3960
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3961
	}
3962
}
3963
 
3964
#undef _FW_WM
3965
#undef _FW_WM_VLV
3966
 
3967
void vlv_wm_get_hw_state(struct drm_device *dev)
3968
{
3969
	struct drm_i915_private *dev_priv = to_i915(dev);
3970
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
3971
	struct intel_plane *plane;
3972
	enum pipe pipe;
3973
	u32 val;
3974
 
3975
	vlv_read_wm_values(dev_priv, wm);
3976
 
3977
	for_each_intel_plane(dev, plane) {
3978
		switch (plane->base.type) {
3979
			int sprite;
3980
		case DRM_PLANE_TYPE_CURSOR:
3981
			plane->wm.fifo_size = 63;
3982
			break;
3983
		case DRM_PLANE_TYPE_PRIMARY:
3984
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
3985
			break;
3986
		case DRM_PLANE_TYPE_OVERLAY:
3987
			sprite = plane->plane;
3988
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
3989
			break;
3990
		}
3991
	}
3992
 
3993
	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
3994
	wm->level = VLV_WM_LEVEL_PM2;
3995
 
3996
	if (IS_CHERRYVIEW(dev_priv)) {
3997
		mutex_lock(&dev_priv->rps.hw_lock);
3998
 
3999
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4000
		if (val & DSP_MAXFIFO_PM5_ENABLE)
4001
			wm->level = VLV_WM_LEVEL_PM5;
4002
 
4003
		/*
4004
		 * If DDR DVFS is disabled in the BIOS, Punit
4005
		 * will never ack the request. So if that happens
4006
		 * assume we don't have to enable/disable DDR DVFS
4007
		 * dynamically. To test that just set the REQ_ACK
4008
		 * bit to poke the Punit, but don't change the
4009
		 * HIGH/LOW bits so that we don't actually change
4010
		 * the current state.
4011
		 */
4012
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4013
		val |= FORCE_DDR_FREQ_REQ_ACK;
4014
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4015
 
4016
		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4017
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4018
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4019
				      "assuming DDR DVFS is disabled\n");
4020
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4021
		} else {
4022
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4023
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4024
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
4025
		}
4026
 
4027
		mutex_unlock(&dev_priv->rps.hw_lock);
4028
	}
4029
 
4030
	for_each_pipe(dev_priv, pipe)
4031
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4032
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4033
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4034
 
4035
	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4036
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4037
}
4038
 
4560 Serge 4039
void ilk_wm_get_hw_state(struct drm_device *dev)
3031 serge 4040
{
4041
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 4042
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4043
	struct drm_crtc *crtc;
3031 serge 4044
 
5060 serge 4045
	for_each_crtc(dev, crtc)
4560 Serge 4046
		ilk_pipe_wm_get_hw_state(crtc);
4104 Serge 4047
 
4560 Serge 4048
	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4049
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4050
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3031 serge 4051
 
4560 Serge 4052
	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5060 serge 4053
	if (INTEL_INFO(dev)->gen >= 7) {
5354 serge 4054
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4055
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
5060 serge 4056
	}
3031 serge 4057
 
4560 Serge 4058
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4059
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4060
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4061
	else if (IS_IVYBRIDGE(dev))
4062
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4063
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3031 serge 4064
 
4560 Serge 4065
	hw->enable_fbc_wm =
4066
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3031 serge 4067
}
4068
 
4069
/**
4070
 * intel_update_watermarks - update FIFO watermark values based on current modes
4071
 *
4072
 * Calculate watermark values for the various WM regs based on current mode
4073
 * and plane configuration.
4074
 *
4075
 * There are several cases to deal with here:
4076
 *   - normal (i.e. non-self-refresh)
4077
 *   - self-refresh (SR) mode
4078
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
4079
 *   - lines are small relative to FIFO size (buffer can hold more than 2
4080
 *     lines), so need to account for TLB latency
4081
 *
4082
 *   The normal calculation is:
4083
 *     watermark = dotclock * bytes per pixel * latency
4084
 *   where latency is platform & configuration dependent (we assume pessimal
4085
 *   values here).
4086
 *
4087
 *   The SR calculation is:
4088
 *     watermark = (trunc(latency/line time)+1) * surface width *
4089
 *       bytes per pixel
4090
 *   where
4091
 *     line time = htotal / dotclock
4092
 *     surface width = hdisplay for normal plane and 64 for cursor
4093
 *   and latency is assumed to be high, as above.
4094
 *
4095
 * The final value programmed to the register should always be rounded up,
4096
 * and include an extra 2 entries to account for clock crossings.
4097
 *
4098
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
4099
 * to set the non-SR watermarks to 8.
4100
 */
4560 Serge 4101
void intel_update_watermarks(struct drm_crtc *crtc)
3031 serge 4102
{
4560 Serge 4103
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3031 serge 4104
 
4105
	if (dev_priv->display.update_wm)
4560 Serge 4106
		dev_priv->display.update_wm(crtc);
3031 serge 4107
}
4108
 
7144 serge 4109
/*
3031 serge 4110
 * Lock protecting IPS related data structures
4111
 */
4112
DEFINE_SPINLOCK(mchdev_lock);
4113
 
4114
/* Global for IPS driver to get at the current i915 device. Protected by
4115
 * mchdev_lock. */
4116
static struct drm_i915_private *i915_mch_dev;
4117
 
4118
bool ironlake_set_drps(struct drm_device *dev, u8 val)
4119
{
4120
	struct drm_i915_private *dev_priv = dev->dev_private;
4121
	u16 rgvswctl;
4122
 
4123
	assert_spin_locked(&mchdev_lock);
4124
 
4125
	rgvswctl = I915_READ16(MEMSWCTL);
4126
	if (rgvswctl & MEMCTL_CMD_STS) {
4127
		DRM_DEBUG("gpu busy, RCS change rejected\n");
4128
		return false; /* still busy with another command */
4129
	}
4130
 
4131
	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4132
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4133
	I915_WRITE16(MEMSWCTL, rgvswctl);
4134
	POSTING_READ16(MEMSWCTL);
4135
 
4136
	rgvswctl |= MEMCTL_CMD_STS;
4137
	I915_WRITE16(MEMSWCTL, rgvswctl);
4138
 
4139
	return true;
4140
}
4141
 
4142
static void ironlake_enable_drps(struct drm_device *dev)
4143
{
4144
	struct drm_i915_private *dev_priv = dev->dev_private;
7144 serge 4145
	u32 rgvmodectl;
3031 serge 4146
	u8 fmax, fmin, fstart, vstart;
4147
 
4148
	spin_lock_irq(&mchdev_lock);
4149
 
7144 serge 4150
	rgvmodectl = I915_READ(MEMMODECTL);
4151
 
3031 serge 4152
	/* Enable temp reporting */
4153
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4154
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4155
 
4156
	/* 100ms RC evaluation intervals */
4157
	I915_WRITE(RCUPEI, 100000);
4158
	I915_WRITE(RCDNEI, 100000);
4159
 
4160
	/* Set max/min thresholds to 90ms and 80ms respectively */
4161
	I915_WRITE(RCBMAXAVG, 90000);
4162
	I915_WRITE(RCBMINAVG, 80000);
4163
 
4164
	I915_WRITE(MEMIHYST, 1);
4165
 
4166
	/* Set up min, max, and cur for interrupt handling */
4167
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4168
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4169
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4170
		MEMMODE_FSTART_SHIFT;
4171
 
6084 serge 4172
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
3031 serge 4173
		PXVFREQ_PX_SHIFT;
4174
 
4175
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4176
	dev_priv->ips.fstart = fstart;
4177
 
4178
	dev_priv->ips.max_delay = fstart;
4179
	dev_priv->ips.min_delay = fmin;
4180
	dev_priv->ips.cur_delay = fstart;
4181
 
4182
	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4183
			 fmax, fmin, fstart);
4184
 
4185
	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4186
 
4187
	/*
4188
	 * Interrupts will be enabled in ironlake_irq_postinstall
4189
	 */
4190
 
4191
	I915_WRITE(VIDSTART, vstart);
4192
	POSTING_READ(VIDSTART);
4193
 
4194
	rgvmodectl |= MEMMODE_SWMODE_EN;
4195
	I915_WRITE(MEMMODECTL, rgvmodectl);
4196
 
4197
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4198
		DRM_ERROR("stuck trying to change perf mode\n");
4199
	mdelay(1);
4200
 
4201
	ironlake_set_drps(dev, fstart);
4202
 
6084 serge 4203
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4204
		I915_READ(DDREC) + I915_READ(CSIEC);
5060 serge 4205
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6084 serge 4206
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
5060 serge 4207
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
3031 serge 4208
 
4209
	spin_unlock_irq(&mchdev_lock);
4210
}
4211
 
4212
static void ironlake_disable_drps(struct drm_device *dev)
4213
{
4214
	struct drm_i915_private *dev_priv = dev->dev_private;
4215
	u16 rgvswctl;
4216
 
4217
	spin_lock_irq(&mchdev_lock);
4218
 
4219
	rgvswctl = I915_READ16(MEMSWCTL);
4220
 
4221
	/* Ack interrupts, disable EFC interrupt */
4222
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4223
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4224
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4225
	I915_WRITE(DEIIR, DE_PCU_EVENT);
4226
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4227
 
4228
	/* Go back to the starting frequency */
4229
	ironlake_set_drps(dev, dev_priv->ips.fstart);
4230
	mdelay(1);
4231
	rgvswctl |= MEMCTL_CMD_STS;
4232
	I915_WRITE(MEMSWCTL, rgvswctl);
4233
	mdelay(1);
4234
 
4235
	spin_unlock_irq(&mchdev_lock);
4236
}
4237
 
4238
/* There's a funny hw issue where the hw returns all 0 when reading from
4239
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4240
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4241
 * all limits and the gpu stuck at whatever frequency it is at atm).
4242
 */
6084 serge 4243
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3031 serge 4244
{
4245
	u32 limits;
4246
 
4247
	/* Only set the down limit when we've reached the lowest level to avoid
4248
	 * getting more interrupts, otherwise leave this clear. This prevents a
4249
	 * race in the hw when coming out of rc6: There's a tiny window where
4250
	 * the hw runs at the minimal clock before selecting the desired
4251
	 * frequency, if the down threshold expires in that window we will not
4252
	 * receive a down interrupt. */
6084 serge 4253
	if (IS_GEN9(dev_priv->dev)) {
4254
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
4255
		if (val <= dev_priv->rps.min_freq_softlimit)
4256
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4257
	} else {
4258
		limits = dev_priv->rps.max_freq_softlimit << 24;
4259
		if (val <= dev_priv->rps.min_freq_softlimit)
4260
			limits |= dev_priv->rps.min_freq_softlimit << 16;
4261
	}
3031 serge 4262
 
4263
	return limits;
4264
}
4265
 
4560 Serge 4266
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4267
{
4268
	int new_power;
6084 serge 4269
	u32 threshold_up = 0, threshold_down = 0; /* in % */
4270
	u32 ei_up = 0, ei_down = 0;
4560 Serge 4271
 
4272
	new_power = dev_priv->rps.power;
4273
	switch (dev_priv->rps.power) {
4274
	case LOW_POWER:
5060 serge 4275
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4560 Serge 4276
			new_power = BETWEEN;
4277
		break;
4278
 
4279
	case BETWEEN:
5060 serge 4280
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4560 Serge 4281
			new_power = LOW_POWER;
5060 serge 4282
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4560 Serge 4283
			new_power = HIGH_POWER;
4284
		break;
4285
 
4286
	case HIGH_POWER:
5060 serge 4287
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4560 Serge 4288
			new_power = BETWEEN;
4289
		break;
4290
	}
4291
	/* Max/min bins are special */
6084 serge 4292
	if (val <= dev_priv->rps.min_freq_softlimit)
4560 Serge 4293
		new_power = LOW_POWER;
6084 serge 4294
	if (val >= dev_priv->rps.max_freq_softlimit)
4560 Serge 4295
		new_power = HIGH_POWER;
4296
	if (new_power == dev_priv->rps.power)
4297
		return;
4298
 
4299
	/* Note the units here are not exactly 1us, but 1280ns. */
4300
	switch (new_power) {
4301
	case LOW_POWER:
4302
		/* Upclock if more than 95% busy over 16ms */
6084 serge 4303
		ei_up = 16000;
4304
		threshold_up = 95;
4560 Serge 4305
 
4306
		/* Downclock if less than 85% busy over 32ms */
6084 serge 4307
		ei_down = 32000;
4308
		threshold_down = 85;
4560 Serge 4309
		break;
4310
 
4311
	case BETWEEN:
4312
		/* Upclock if more than 90% busy over 13ms */
6084 serge 4313
		ei_up = 13000;
4314
		threshold_up = 90;
4560 Serge 4315
 
4316
		/* Downclock if less than 75% busy over 32ms */
6084 serge 4317
		ei_down = 32000;
4318
		threshold_down = 75;
4560 Serge 4319
		break;
4320
 
4321
	case HIGH_POWER:
4322
		/* Upclock if more than 85% busy over 10ms */
6084 serge 4323
		ei_up = 10000;
4324
		threshold_up = 85;
4560 Serge 4325
 
4326
		/* Downclock if less than 60% busy over 32ms */
6084 serge 4327
		ei_down = 32000;
4328
		threshold_down = 60;
4560 Serge 4329
		break;
4330
	}
4331
 
6084 serge 4332
	I915_WRITE(GEN6_RP_UP_EI,
4333
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
4334
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4335
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4336
 
4337
	I915_WRITE(GEN6_RP_DOWN_EI,
4338
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
4339
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4340
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4341
 
4342
	 I915_WRITE(GEN6_RP_CONTROL,
4343
		    GEN6_RP_MEDIA_TURBO |
4344
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4345
		    GEN6_RP_MEDIA_IS_GFX |
4346
		    GEN6_RP_ENABLE |
4347
		    GEN6_RP_UP_BUSY_AVG |
4348
		    GEN6_RP_DOWN_IDLE_AVG);
4349
 
4560 Serge 4350
	dev_priv->rps.power = new_power;
6084 serge 4351
	dev_priv->rps.up_threshold = threshold_up;
4352
	dev_priv->rps.down_threshold = threshold_down;
4560 Serge 4353
	dev_priv->rps.last_adj = 0;
4354
}
4355
 
5060 serge 4356
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4357
{
4358
	u32 mask = 0;
4359
 
4360
	if (val > dev_priv->rps.min_freq_softlimit)
6937 serge 4361
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
5060 serge 4362
	if (val < dev_priv->rps.max_freq_softlimit)
6084 serge 4363
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
5060 serge 4364
 
4365
	mask &= dev_priv->pm_rps_events;
4366
 
6084 serge 4367
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
5060 serge 4368
}
4369
 
4370
/* gen6_set_rps is called to update the frequency request, but should also be
4371
 * called when the range (min_delay and max_delay) is modified so that we can
4372
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6084 serge 4373
static void gen6_set_rps(struct drm_device *dev, u8 val)
3031 serge 4374
{
4375
	struct drm_i915_private *dev_priv = dev->dev_private;
4376
 
6084 serge 4377
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
6937 serge 4378
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
6084 serge 4379
		return;
4380
 
3243 Serge 4381
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6084 serge 4382
	WARN_ON(val > dev_priv->rps.max_freq);
4383
	WARN_ON(val < dev_priv->rps.min_freq);
3031 serge 4384
 
5060 serge 4385
	/* min/max delay may still have been modified so be sure to
4386
	 * write the limits value.
4387
	 */
4388
	if (val != dev_priv->rps.cur_freq) {
5354 serge 4389
		gen6_set_rps_thresholds(dev_priv, val);
4560 Serge 4390
 
6084 serge 4391
		if (IS_GEN9(dev))
5354 serge 4392
			I915_WRITE(GEN6_RPNSWREQ,
6084 serge 4393
				   GEN9_FREQUENCY(val));
4394
		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4395
			I915_WRITE(GEN6_RPNSWREQ,
5354 serge 4396
				   HSW_FREQUENCY(val));
4397
		else
4398
			I915_WRITE(GEN6_RPNSWREQ,
4399
				   GEN6_FREQUENCY(val) |
4400
				   GEN6_OFFSET(0) |
4401
				   GEN6_AGGRESSIVE_TURBO);
5060 serge 4402
	}
3031 serge 4403
 
4404
	/* Make sure we continue to get interrupts
4405
	 * until we hit the minimum or maximum frequencies.
4406
	 */
6084 serge 4407
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
5060 serge 4408
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3031 serge 4409
 
4410
	POSTING_READ(GEN6_RPNSWREQ);
4411
 
5060 serge 4412
	dev_priv->rps.cur_freq = val;
6084 serge 4413
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
3031 serge 4414
}
4415
 
6084 serge 4416
static void valleyview_set_rps(struct drm_device *dev, u8 val)
5060 serge 4417
{
6084 serge 4418
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 4419
 
6084 serge 4420
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4421
	WARN_ON(val > dev_priv->rps.max_freq);
4422
	WARN_ON(val < dev_priv->rps.min_freq);
5060 serge 4423
 
6084 serge 4424
	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4425
		      "Odd GPU freq value\n"))
4426
		val &= ~1;
5060 serge 4427
 
6084 serge 4428
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5060 serge 4429
 
6084 serge 4430
	if (val != dev_priv->rps.cur_freq) {
4431
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4432
		if (!IS_CHERRYVIEW(dev_priv))
4433
			gen6_set_rps_thresholds(dev_priv, val);
4434
	}
5060 serge 4435
 
6084 serge 4436
	dev_priv->rps.cur_freq = val;
4437
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4438
}
5060 serge 4439
 
6084 serge 4440
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4441
 *
4442
 * * If Gfx is Idle, then
4443
 * 1. Forcewake Media well.
4444
 * 2. Request idle freq.
4445
 * 3. Release Forcewake of Media well.
4446
*/
4447
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4448
{
4449
	u32 val = dev_priv->rps.idle_freq;
5060 serge 4450
 
6084 serge 4451
	if (dev_priv->rps.cur_freq <= val)
4452
		return;
5060 serge 4453
 
6084 serge 4454
	/* Wake up the media well, as that takes a lot less
4455
	 * power than the Render well. */
4456
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4457
	valleyview_set_rps(dev_priv->dev, val);
4458
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5060 serge 4459
}
4460
 
6084 serge 4461
void gen6_rps_busy(struct drm_i915_private *dev_priv)
3031 serge 4462
{
4560 Serge 4463
	mutex_lock(&dev_priv->rps.hw_lock);
4464
	if (dev_priv->rps.enabled) {
6937 serge 4465
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
6084 serge 4466
			gen6_rps_reset_ei(dev_priv);
4467
		I915_WRITE(GEN6_PMINTRMSK,
4468
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4560 Serge 4469
	}
4470
	mutex_unlock(&dev_priv->rps.hw_lock);
4471
}
4104 Serge 4472
 
6084 serge 4473
void gen6_rps_idle(struct drm_i915_private *dev_priv)
4560 Serge 4474
{
4475
	struct drm_device *dev = dev_priv->dev;
4104 Serge 4476
 
4560 Serge 4477
	mutex_lock(&dev_priv->rps.hw_lock);
4478
	if (dev_priv->rps.enabled) {
6937 serge 4479
		if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
6084 serge 4480
			vlv_set_rps_idle(dev_priv);
4560 Serge 4481
		else
6084 serge 4482
			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4560 Serge 4483
		dev_priv->rps.last_adj = 0;
6937 serge 4484
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4560 Serge 4485
	}
4486
	mutex_unlock(&dev_priv->rps.hw_lock);
6084 serge 4487
 
4488
	spin_lock(&dev_priv->rps.client_lock);
4489
	while (!list_empty(&dev_priv->rps.clients))
4490
		list_del_init(dev_priv->rps.clients.next);
4491
	spin_unlock(&dev_priv->rps.client_lock);
4104 Serge 4492
}
4493
 
6084 serge 4494
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4495
		    struct intel_rps_client *rps,
4496
		    unsigned long submitted)
4104 Serge 4497
{
6084 serge 4498
	/* This is intentionally racy! We peek at the state here, then
4499
	 * validate inside the RPS worker.
4500
	 */
4501
	if (!(dev_priv->mm.busy &&
4502
	      dev_priv->rps.enabled &&
4503
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4504
		return;
3031 serge 4505
 
6084 serge 4506
	/* Force a RPS boost (and don't count it against the client) if
4507
	 * the GPU is severely congested.
4508
	 */
4509
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4510
		rps = NULL;
4104 Serge 4511
 
6084 serge 4512
	spin_lock(&dev_priv->rps.client_lock);
4513
	if (rps == NULL || list_empty(&rps->link)) {
4514
		spin_lock_irq(&dev_priv->irq_lock);
4515
		if (dev_priv->rps.interrupts_enabled) {
4516
			dev_priv->rps.client_boost = true;
4517
			queue_work(dev_priv->wq, &dev_priv->rps.work);
4518
		}
4519
		spin_unlock_irq(&dev_priv->irq_lock);
4104 Serge 4520
 
6084 serge 4521
		if (rps != NULL) {
4522
			list_add(&rps->link, &dev_priv->rps.clients);
4523
			rps->boosts++;
4524
		} else
4525
			dev_priv->rps.boosts++;
4526
	}
4527
	spin_unlock(&dev_priv->rps.client_lock);
4528
}
4104 Serge 4529
 
6084 serge 4530
void intel_set_rps(struct drm_device *dev, u8 val)
4531
{
6937 serge 4532
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
6084 serge 4533
		valleyview_set_rps(dev, val);
4534
	else
4535
		gen6_set_rps(dev, val);
4104 Serge 4536
}
4537
 
5354 serge 4538
static void gen9_disable_rps(struct drm_device *dev)
5060 serge 4539
{
4540
	struct drm_i915_private *dev_priv = dev->dev_private;
4541
 
5354 serge 4542
	I915_WRITE(GEN6_RC_CONTROL, 0);
6084 serge 4543
	I915_WRITE(GEN9_PG_ENABLE, 0);
5060 serge 4544
}
4545
 
4104 Serge 4546
static void gen6_disable_rps(struct drm_device *dev)
4547
{
4548
	struct drm_i915_private *dev_priv = dev->dev_private;
4549
 
4550
	I915_WRITE(GEN6_RC_CONTROL, 0);
4551
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4552
}
4553
 
5060 serge 4554
static void cherryview_disable_rps(struct drm_device *dev)
4555
{
4556
	struct drm_i915_private *dev_priv = dev->dev_private;
4557
 
4558
	I915_WRITE(GEN6_RC_CONTROL, 0);
4559
}
4560
 
4104 Serge 4561
static void valleyview_disable_rps(struct drm_device *dev)
4562
{
4563
	struct drm_i915_private *dev_priv = dev->dev_private;
4564
 
5354 serge 4565
	/* we're doing forcewake before Disabling RC6,
4566
	 * This what the BIOS expects when going into suspend */
6084 serge 4567
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5354 serge 4568
 
4104 Serge 4569
	I915_WRITE(GEN6_RC_CONTROL, 0);
4570
 
6084 serge 4571
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4104 Serge 4572
}
4573
 
4560 Serge 4574
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4575
{
6937 serge 4576
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5060 serge 4577
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4578
			mode = GEN6_RC_CTL_RC6_ENABLE;
4579
		else
4580
			mode = 0;
4581
	}
5354 serge 4582
	if (HAS_RC6p(dev))
4583
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
7144 serge 4584
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
4585
			      onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
4586
			      onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5354 serge 4587
 
4588
	else
4589
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
7144 serge 4590
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
4560 Serge 4591
}
4592
 
7144 serge 4593
static bool bxt_check_bios_rc6_setup(const struct drm_device *dev)
3031 serge 4594
{
7144 serge 4595
	struct drm_i915_private *dev_priv = dev->dev_private;
4596
	bool enable_rc6 = true;
4597
	unsigned long rc6_ctx_base;
4598
 
4599
	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
4600
		DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
4601
		enable_rc6 = false;
4602
	}
4603
 
4604
	/*
4605
	 * The exact context size is not known for BXT, so assume a page size
4606
	 * for this check.
4607
	 */
4608
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4609
	if (!((rc6_ctx_base >= dev_priv->gtt.stolen_reserved_base) &&
4610
	      (rc6_ctx_base + PAGE_SIZE <= dev_priv->gtt.stolen_reserved_base +
4611
					dev_priv->gtt.stolen_reserved_size))) {
4612
		DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
4613
		enable_rc6 = false;
4614
	}
4615
 
4616
	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
4617
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
4618
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
4619
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
4620
		DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
4621
		enable_rc6 = false;
4622
	}
4623
 
4624
	if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
4625
					    GEN6_RC_CTL_HW_ENABLE)) &&
4626
	    ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
4627
	     !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
4628
		DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
4629
		enable_rc6 = false;
4630
	}
4631
 
4632
	return enable_rc6;
4633
}
4634
 
4635
int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4636
{
6084 serge 4637
	/* No RC6 before Ironlake and code is gone for ilk. */
4638
	if (INTEL_INFO(dev)->gen < 6)
4104 Serge 4639
		return 0;
4640
 
7144 serge 4641
	if (!enable_rc6)
4642
		return 0;
4643
 
4644
	if (IS_BROXTON(dev) && !bxt_check_bios_rc6_setup(dev)) {
4645
		DRM_INFO("RC6 disabled by BIOS\n");
4646
		return 0;
4647
	}
4648
 
3031 serge 4649
	/* Respect the kernel parameter if it is set */
5060 serge 4650
	if (enable_rc6 >= 0) {
4651
		int mask;
3031 serge 4652
 
5354 serge 4653
		if (HAS_RC6p(dev))
5060 serge 4654
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4655
			       INTEL_RC6pp_ENABLE;
4656
		else
4657
			mask = INTEL_RC6_ENABLE;
4658
 
4659
		if ((enable_rc6 & mask) != enable_rc6)
4660
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
6084 serge 4661
				      enable_rc6 & mask, enable_rc6, mask);
5060 serge 4662
 
4663
		return enable_rc6 & mask;
4664
	}
4665
 
4666
	if (IS_IVYBRIDGE(dev))
4667
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3031 serge 4668
 
6084 serge 4669
	return INTEL_RC6_ENABLE;
5060 serge 4670
}
3031 serge 4671
 
5060 serge 4672
int intel_enable_rc6(const struct drm_device *dev)
4673
{
4674
	return i915.enable_rc6;
3031 serge 4675
}
4676
 
5354 serge 4677
static void gen6_init_rps_frequencies(struct drm_device *dev)
5060 serge 4678
{
4679
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 4680
	uint32_t rp_state_cap;
4681
	u32 ddcc_status = 0;
4682
	int ret;
5060 serge 4683
 
4684
	/* All of these values are in units of 50MHz */
4685
	dev_priv->rps.cur_freq		= 0;
5354 serge 4686
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6084 serge 4687
	if (IS_BROXTON(dev)) {
4688
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4689
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4690
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4691
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4692
	} else {
4693
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4694
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4695
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4696
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4697
	}
4698
 
5060 serge 4699
	/* hw_max = RP0 until we check for overclocking */
4700
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
4104 Serge 4701
 
5354 serge 4702
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
6937 serge 4703
	if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
4704
	    IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5354 serge 4705
		ret = sandybridge_pcode_read(dev_priv,
4706
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4707
					&ddcc_status);
4708
		if (0 == ret)
4709
			dev_priv->rps.efficient_freq =
6084 serge 4710
				clamp_t(u8,
4711
					((ddcc_status >> 8) & 0xff),
4712
					dev_priv->rps.min_freq,
4713
					dev_priv->rps.max_freq);
5354 serge 4714
	}
4715
 
6937 serge 4716
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
6084 serge 4717
		/* Store the frequency values in 16.66 MHZ units, which is
4718
		   the natural hardware unit for SKL */
4719
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4720
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4721
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4722
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4723
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4724
	}
4725
 
4726
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4727
 
5060 serge 4728
	/* Preserve min/max settings in case of re-init */
4729
	if (dev_priv->rps.max_freq_softlimit == 0)
4730
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4104 Serge 4731
 
5354 serge 4732
	if (dev_priv->rps.min_freq_softlimit == 0) {
4733
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4734
			dev_priv->rps.min_freq_softlimit =
6084 serge 4735
				max_t(int, dev_priv->rps.efficient_freq,
4736
				      intel_freq_opcode(dev_priv, 450));
5354 serge 4737
		else
4738
			dev_priv->rps.min_freq_softlimit =
4739
				dev_priv->rps.min_freq;
4740
	}
4104 Serge 4741
}
4742
 
6084 serge 4743
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5354 serge 4744
static void gen9_enable_rps(struct drm_device *dev)
4745
{
4746
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 4747
 
4748
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4749
 
4750
	gen6_init_rps_frequencies(dev);
4751
 
4752
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
6937 serge 4753
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
6084 serge 4754
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4755
		return;
4756
	}
4757
 
4758
	/* Program defaults and thresholds for RPS*/
4759
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4760
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4761
 
4762
	/* 1 second timeout*/
4763
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4764
		GT_INTERVAL_FROM_US(dev_priv, 1000000));
4765
 
4766
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4767
 
4768
	/* Leaning on the below call to gen6_set_rps to program/setup the
4769
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4770
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4771
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4772
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4773
 
4774
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4775
}
4776
 
4777
static void gen9_enable_rc6(struct drm_device *dev)
4778
{
4779
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 4780
	struct intel_engine_cs *ring;
4781
	uint32_t rc6_mask = 0;
4782
	int unused;
4783
 
4784
	/* 1a: Software RC state - RC0 */
4785
	I915_WRITE(GEN6_RC_STATE, 0);
4786
 
4787
	/* 1b: Get forcewake during program sequence. Although the driver
4788
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6084 serge 4789
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5354 serge 4790
 
4791
	/* 2a: Disable RC states. */
4792
	I915_WRITE(GEN6_RC_CONTROL, 0);
4793
 
4794
	/* 2b: Program RC6 thresholds.*/
6084 serge 4795
 
4796
	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4797
	if (IS_SKYLAKE(dev))
4798
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4799
	else
4800
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5354 serge 4801
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4802
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4803
	for_each_ring(ring, dev_priv, unused)
4804
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
6084 serge 4805
 
4806
	if (HAS_GUC_UCODE(dev))
4807
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4808
 
5354 serge 4809
	I915_WRITE(GEN6_RC_SLEEP, 0);
4810
 
6084 serge 4811
	/* 2c: Program Coarse Power Gating Policies. */
4812
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4813
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4814
 
5354 serge 4815
	/* 3a: Enable RC6 */
4816
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4817
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
7144 serge 4818
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
6084 serge 4819
	/* WaRsUseTimeoutMode */
6937 serge 4820
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
4821
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
6084 serge 4822
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4823
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4824
			   GEN7_RC_CTL_TO_MODE |
4825
			   rc6_mask);
4826
	} else {
4827
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4828
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4829
			   GEN6_RC_CTL_EI_MODE(1) |
4830
			   rc6_mask);
4831
	}
5354 serge 4832
 
6084 serge 4833
	/*
4834
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4835
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4836
	 */
7144 serge 4837
	if (NEEDS_WaRsDisableCoarsePowerGating(dev))
6084 serge 4838
		I915_WRITE(GEN9_PG_ENABLE, 0);
4839
	else
4840
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4841
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5354 serge 4842
 
6084 serge 4843
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4844
 
5354 serge 4845
}
4846
 
4560 Serge 4847
static void gen8_enable_rps(struct drm_device *dev)
4848
{
4849
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 4850
	struct intel_engine_cs *ring;
5354 serge 4851
	uint32_t rc6_mask = 0;
4560 Serge 4852
	int unused;
4853
 
4854
	/* 1a: Software RC state - RC0 */
4855
	I915_WRITE(GEN6_RC_STATE, 0);
4856
 
4857
	/* 1c & 1d: Get forcewake during program sequence. Although the driver
4858
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6084 serge 4859
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4560 Serge 4860
 
4861
	/* 2a: Disable RC states. */
4862
	I915_WRITE(GEN6_RC_CONTROL, 0);
4863
 
5354 serge 4864
	/* Initialize rps frequencies */
4865
	gen6_init_rps_frequencies(dev);
4560 Serge 4866
 
4867
	/* 2b: Program RC6 thresholds.*/
4868
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4869
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4870
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4871
	for_each_ring(ring, dev_priv, unused)
4872
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4873
	I915_WRITE(GEN6_RC_SLEEP, 0);
5060 serge 4874
	if (IS_BROADWELL(dev))
4875
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4876
	else
6084 serge 4877
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4560 Serge 4878
 
4879
	/* 3: Enable RC6 */
4880
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4881
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5060 serge 4882
	intel_print_rc6_info(dev, rc6_mask);
4883
	if (IS_BROADWELL(dev))
4884
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4885
				GEN7_RC_CTL_TO_MODE |
4886
				rc6_mask);
4887
	else
6084 serge 4888
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4889
				GEN6_RC_CTL_EI_MODE(1) |
4890
				rc6_mask);
4560 Serge 4891
 
4892
	/* 4 Program defaults and thresholds for RPS*/
5060 serge 4893
	I915_WRITE(GEN6_RPNSWREQ,
4894
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4895
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4896
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4560 Serge 4897
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4898
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4899
 
4900
	/* Docs recommend 900MHz, and 300 MHz respectively */
4901
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5060 serge 4902
		   dev_priv->rps.max_freq_softlimit << 24 |
4903
		   dev_priv->rps.min_freq_softlimit << 16);
4560 Serge 4904
 
4905
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4906
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4907
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4908
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4909
 
4910
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4911
 
4912
	/* 5: Enable RPS */
4913
	I915_WRITE(GEN6_RP_CONTROL,
4914
		   GEN6_RP_MEDIA_TURBO |
4915
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4916
		   GEN6_RP_MEDIA_IS_GFX |
4917
		   GEN6_RP_ENABLE |
4918
		   GEN6_RP_UP_BUSY_AVG |
4919
		   GEN6_RP_DOWN_IDLE_AVG);
4920
 
4921
	/* 6: Ring frequency + overclocking (our driver does this later */
4922
 
5354 serge 4923
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
6084 serge 4924
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4560 Serge 4925
 
6084 serge 4926
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4560 Serge 4927
}
4928
 
3031 serge 4929
static void gen6_enable_rps(struct drm_device *dev)
4930
{
4931
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 4932
	struct intel_engine_cs *ring;
4933
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3031 serge 4934
	u32 gtfifodbg;
4935
	int rc6_mode;
3243 Serge 4936
	int i, ret;
3031 serge 4937
 
3243 Serge 4938
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 4939
 
4940
	/* Here begins a magic sequence of register writes to enable
4941
	 * auto-downclocking.
4942
	 *
4943
	 * Perhaps there might be some value in exposing these to
4944
	 * userspace...
4945
	 */
4946
	I915_WRITE(GEN6_RC_STATE, 0);
4947
 
4948
	/* Clear the DBG now so we don't confuse earlier errors */
4949
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4950
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4951
		I915_WRITE(GTFIFODBG, gtfifodbg);
4952
	}
4953
 
6084 serge 4954
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
3031 serge 4955
 
5354 serge 4956
	/* Initialize rps frequencies */
4957
	gen6_init_rps_frequencies(dev);
3031 serge 4958
 
4959
	/* disable the counters and set deterministic thresholds */
4960
	I915_WRITE(GEN6_RC_CONTROL, 0);
4961
 
4962
	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4963
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4964
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4965
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4966
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4967
 
4968
	for_each_ring(ring, dev_priv, i)
4969
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4970
 
4971
	I915_WRITE(GEN6_RC_SLEEP, 0);
4972
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4560 Serge 4973
	if (IS_IVYBRIDGE(dev))
4104 Serge 4974
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4975
	else
6084 serge 4976
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3480 Serge 4977
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3031 serge 4978
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4979
 
4980
	/* Check if we are enabling RC6 */
4981
	rc6_mode = intel_enable_rc6(dev_priv->dev);
4982
	if (rc6_mode & INTEL_RC6_ENABLE)
4983
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4984
 
4985
	/* We don't use those on Haswell */
4986
	if (!IS_HASWELL(dev)) {
4987
		if (rc6_mode & INTEL_RC6p_ENABLE)
4988
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4989
 
4990
		if (rc6_mode & INTEL_RC6pp_ENABLE)
4991
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4992
	}
4993
 
4560 Serge 4994
	intel_print_rc6_info(dev, rc6_mask);
3031 serge 4995
 
4996
	I915_WRITE(GEN6_RC_CONTROL,
4997
		   rc6_mask |
4998
		   GEN6_RC_CTL_EI_MODE(1) |
4999
		   GEN6_RC_CTL_HW_ENABLE);
5000
 
4560 Serge 5001
	/* Power down if completely idle for over 50ms */
5002
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3031 serge 5003
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5004
 
3243 Serge 5005
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5060 serge 5006
	if (ret)
5007
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5008
 
6084 serge 5009
	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5010
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5011
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5060 serge 5012
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
6084 serge 5013
				 (pcu_mbox & 0xff) * 50);
5060 serge 5014
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
3031 serge 5015
	}
5016
 
4560 Serge 5017
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
6084 serge 5018
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
3031 serge 5019
 
3243 Serge 5020
	rc6vids = 0;
5021
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5022
	if (IS_GEN6(dev) && ret) {
5023
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5024
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5025
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5026
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5027
		rc6vids &= 0xffff00;
5028
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
5029
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5030
		if (ret)
5031
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5032
	}
5033
 
6084 serge 5034
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
3031 serge 5035
}
5036
 
5060 serge 5037
static void __gen6_update_ring_freq(struct drm_device *dev)
3031 serge 5038
{
5039
	struct drm_i915_private *dev_priv = dev->dev_private;
5040
	int min_freq = 15;
3746 Serge 5041
	unsigned int gpu_freq;
5042
	unsigned int max_ia_freq, min_ring_freq;
6084 serge 5043
	unsigned int max_gpu_freq, min_gpu_freq;
3031 serge 5044
	int scaling_factor = 180;
4560 Serge 5045
	struct cpufreq_policy *policy;
3031 serge 5046
 
3243 Serge 5047
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 5048
 
5049
	max_ia_freq = cpufreq_quick_get_max(0);
5050
	/*
5060 serge 5051
		 * Default to measured freq if none found, PCU will ensure we
5052
		 * don't go over
3031 serge 5053
	 */
5054
		max_ia_freq = tsc_khz;
5055
 
5056
	/* Convert from kHz to MHz */
5057
	max_ia_freq /= 1000;
5058
 
4560 Serge 5059
	min_ring_freq = I915_READ(DCLK) & 0xf;
5060
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
5061
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3746 Serge 5062
 
6937 serge 5063
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
6084 serge 5064
		/* Convert GT frequency to 50 HZ units */
5065
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5066
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5067
	} else {
5068
		min_gpu_freq = dev_priv->rps.min_freq;
5069
		max_gpu_freq = dev_priv->rps.max_freq;
5070
	}
5071
 
3031 serge 5072
	/*
5073
	 * For each potential GPU frequency, load a ring frequency we'd like
5074
	 * to use for memory access.  We do this by specifying the IA frequency
5075
	 * the PCU should use as a reference to determine the ring frequency.
5076
	 */
6084 serge 5077
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5078
		int diff = max_gpu_freq - gpu_freq;
3746 Serge 5079
		unsigned int ia_freq = 0, ring_freq = 0;
3031 serge 5080
 
6937 serge 5081
		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
6084 serge 5082
			/*
5083
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5084
			 * No floor required for ring frequency on SKL.
5085
			 */
5086
			ring_freq = gpu_freq;
5087
		} else if (INTEL_INFO(dev)->gen >= 8) {
4560 Serge 5088
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
5089
			ring_freq = max(min_ring_freq, gpu_freq);
5090
		} else if (IS_HASWELL(dev)) {
5091
			ring_freq = mult_frac(gpu_freq, 5, 4);
3746 Serge 5092
			ring_freq = max(min_ring_freq, ring_freq);
5093
			/* leave ia_freq as the default, chosen by cpufreq */
5094
		} else {
5095
			/* On older processors, there is no separate ring
5096
			 * clock domain, so in order to boost the bandwidth
5097
			 * of the ring, we need to upclock the CPU (ia_freq).
5098
			 *
5099
			 * For GPU frequencies less than 750MHz,
5100
			 * just use the lowest ring freq.
6084 serge 5101
			 */
5102
			if (gpu_freq < min_freq)
5103
				ia_freq = 800;
5104
			else
5105
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5106
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3746 Serge 5107
		}
3031 serge 5108
 
3243 Serge 5109
		sandybridge_pcode_write(dev_priv,
5110
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3746 Serge 5111
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5112
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5113
					gpu_freq);
3031 serge 5114
	}
5115
}
5116
 
5060 serge 5117
void gen6_update_ring_freq(struct drm_device *dev)
4104 Serge 5118
{
5060 serge 5119
	struct drm_i915_private *dev_priv = dev->dev_private;
5120
 
6084 serge 5121
	if (!HAS_CORE_RING_FREQ(dev))
5060 serge 5122
		return;
5123
 
5124
	mutex_lock(&dev_priv->rps.hw_lock);
5125
	__gen6_update_ring_freq(dev);
5126
	mutex_unlock(&dev_priv->rps.hw_lock);
5127
}
5128
 
5129
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5130
{
6084 serge 5131
	struct drm_device *dev = dev_priv->dev;
4104 Serge 5132
	u32 val, rp0;
5133
 
6084 serge 5134
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5060 serge 5135
 
6084 serge 5136
	switch (INTEL_INFO(dev)->eu_total) {
5137
	case 8:
5138
		/* (2 * 4) config */
5139
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5140
		break;
5141
	case 12:
5142
		/* (2 * 6) config */
5143
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5144
		break;
5145
	case 16:
5146
		/* (2 * 8) config */
5147
	default:
5148
		/* Setting (2 * 8) Min RP0 for any other combination */
5149
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5150
		break;
5151
	}
5152
 
5153
	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5154
 
5060 serge 5155
	return rp0;
5156
}
5157
 
5158
static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5159
{
5160
	u32 val, rpe;
5161
 
5162
	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5163
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5164
 
5165
	return rpe;
5166
}
5167
 
5168
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5169
{
5170
	u32 val, rp1;
5171
 
6084 serge 5172
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5173
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5060 serge 5174
 
5175
	return rp1;
5176
}
5177
 
5178
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5179
{
5180
	u32 val, rp1;
5181
 
4104 Serge 5182
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5183
 
5060 serge 5184
	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5185
 
5186
	return rp1;
5187
}
5188
 
5189
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5190
{
5191
	u32 val, rp0;
5192
 
5193
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5194
 
4104 Serge 5195
	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5196
	/* Clamp to max */
5197
	rp0 = min_t(u32, rp0, 0xea);
5198
 
5199
	return rp0;
5200
}
5201
 
5202
static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5203
{
5204
	u32 val, rpe;
5205
 
5206
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5207
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5208
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5209
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5210
 
5211
	return rpe;
5212
}
5213
 
5060 serge 5214
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4104 Serge 5215
{
6937 serge 5216
	u32 val;
5217
 
5218
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5219
	/*
5220
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5221
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5222
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5223
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5224
	 * to make sure it matches what Punit accepts.
5225
	 */
5226
	return max_t(u32, val, 0xc0);
4104 Serge 5227
}
5228
 
5060 serge 5229
/* Check that the pctx buffer wasn't move under us. */
5230
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5231
{
5232
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5233
 
5234
	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5235
			     dev_priv->vlv_pctx->stolen->start);
5236
}
5237
 
5238
 
5239
/* Check that the pcbr address is not empty. */
5240
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5241
{
5242
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5243
 
5244
	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5245
}
5246
 
5247
static void cherryview_setup_pctx(struct drm_device *dev)
5248
{
5249
	struct drm_i915_private *dev_priv = dev->dev_private;
5250
	unsigned long pctx_paddr, paddr;
5251
	struct i915_gtt *gtt = &dev_priv->gtt;
5252
	u32 pcbr;
5253
	int pctx_size = 32*1024;
5254
 
5255
	pcbr = I915_READ(VLV_PCBR);
5256
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5354 serge 5257
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5060 serge 5258
		paddr = (dev_priv->mm.stolen_base +
5259
			 (gtt->stolen_size - pctx_size));
5260
 
5261
		pctx_paddr = (paddr & (~4095));
5262
		I915_WRITE(VLV_PCBR, pctx_paddr);
5263
	}
5354 serge 5264
 
5265
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5060 serge 5266
}
5267
 
4104 Serge 5268
static void valleyview_setup_pctx(struct drm_device *dev)
5269
{
5270
	struct drm_i915_private *dev_priv = dev->dev_private;
5271
	struct drm_i915_gem_object *pctx;
5272
	unsigned long pctx_paddr;
5273
	u32 pcbr;
5274
	int pctx_size = 24*1024;
5275
 
7144 serge 5276
	mutex_lock(&dev->struct_mutex);
5060 serge 5277
 
4104 Serge 5278
	pcbr = I915_READ(VLV_PCBR);
5279
	if (pcbr) {
5280
		/* BIOS set it up already, grab the pre-alloc'd space */
5281
		int pcbr_offset;
5282
 
5283
		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5284
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5285
								      pcbr_offset,
5286
								      I915_GTT_OFFSET_NONE,
5287
								      pctx_size);
5288
		goto out;
5289
	}
5290
 
5354 serge 5291
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5292
 
4104 Serge 5293
	/*
5294
	 * From the Gunit register HAS:
5295
	 * The Gfx driver is expected to program this register and ensure
5296
	 * proper allocation within Gfx stolen memory.  For example, this
5297
	 * register should be programmed such than the PCBR range does not
5298
	 * overlap with other ranges, such as the frame buffer, protected
5299
	 * memory, or any other relevant ranges.
5300
	 */
5301
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
5302
	if (!pctx) {
5303
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7144 serge 5304
		goto out;
4104 Serge 5305
	}
5306
 
5307
	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5308
	I915_WRITE(VLV_PCBR, pctx_paddr);
5309
 
5310
out:
5354 serge 5311
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4104 Serge 5312
	dev_priv->vlv_pctx = pctx;
7144 serge 5313
	mutex_unlock(&dev->struct_mutex);
4104 Serge 5314
}
5315
 
5060 serge 5316
static void valleyview_cleanup_pctx(struct drm_device *dev)
5317
{
5318
	struct drm_i915_private *dev_priv = dev->dev_private;
5319
 
5320
	if (WARN_ON(!dev_priv->vlv_pctx))
5321
		return;
5322
 
7144 serge 5323
	drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5060 serge 5324
	dev_priv->vlv_pctx = NULL;
5325
}
5326
 
5327
static void valleyview_init_gt_powersave(struct drm_device *dev)
5328
{
5329
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 5330
	u32 val;
5060 serge 5331
 
5332
	valleyview_setup_pctx(dev);
5333
 
5334
	mutex_lock(&dev_priv->rps.hw_lock);
5335
 
5354 serge 5336
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5337
	switch ((val >> 6) & 3) {
5338
	case 0:
5339
	case 1:
5340
		dev_priv->mem_freq = 800;
5341
		break;
5342
	case 2:
5343
		dev_priv->mem_freq = 1066;
5344
		break;
5345
	case 3:
5346
		dev_priv->mem_freq = 1333;
5347
		break;
5348
	}
5349
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5350
 
5060 serge 5351
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5352
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5353
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6084 serge 5354
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5060 serge 5355
			 dev_priv->rps.max_freq);
5356
 
5357
	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5358
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6084 serge 5359
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5060 serge 5360
			 dev_priv->rps.efficient_freq);
5361
 
5362
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5363
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
6084 serge 5364
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5060 serge 5365
			 dev_priv->rps.rp1_freq);
5366
 
5367
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5368
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6084 serge 5369
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5060 serge 5370
			 dev_priv->rps.min_freq);
5371
 
6084 serge 5372
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5373
 
5060 serge 5374
	/* Preserve min/max settings in case of re-init */
5375
	if (dev_priv->rps.max_freq_softlimit == 0)
5376
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5377
 
5378
	if (dev_priv->rps.min_freq_softlimit == 0)
5379
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5380
 
5381
	mutex_unlock(&dev_priv->rps.hw_lock);
5382
}
5383
 
5384
static void cherryview_init_gt_powersave(struct drm_device *dev)
5385
{
5386
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 5387
	u32 val;
5060 serge 5388
 
5389
	cherryview_setup_pctx(dev);
5390
 
5391
	mutex_lock(&dev_priv->rps.hw_lock);
5392
 
6084 serge 5393
	mutex_lock(&dev_priv->sb_lock);
5354 serge 5394
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
6084 serge 5395
	mutex_unlock(&dev_priv->sb_lock);
5354 serge 5396
 
5397
	switch ((val >> 2) & 0x7) {
5398
	case 3:
5399
		dev_priv->mem_freq = 2000;
5400
		break;
6084 serge 5401
	default:
5354 serge 5402
		dev_priv->mem_freq = 1600;
5403
		break;
5404
	}
5405
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5406
 
5060 serge 5407
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5408
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5409
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6084 serge 5410
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5060 serge 5411
			 dev_priv->rps.max_freq);
5412
 
5413
	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5414
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6084 serge 5415
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5060 serge 5416
			 dev_priv->rps.efficient_freq);
5417
 
5418
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5419
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
6084 serge 5420
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5060 serge 5421
			 dev_priv->rps.rp1_freq);
5422
 
6084 serge 5423
	/* PUnit validated range is only [RPe, RP0] */
5424
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5060 serge 5425
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6084 serge 5426
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5060 serge 5427
			 dev_priv->rps.min_freq);
5428
 
5354 serge 5429
	WARN_ONCE((dev_priv->rps.max_freq |
5430
		   dev_priv->rps.efficient_freq |
5431
		   dev_priv->rps.rp1_freq |
5432
		   dev_priv->rps.min_freq) & 1,
5433
		  "Odd GPU freq values\n");
5434
 
6084 serge 5435
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5436
 
5060 serge 5437
	/* Preserve min/max settings in case of re-init */
5438
	if (dev_priv->rps.max_freq_softlimit == 0)
5439
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5440
 
5441
	if (dev_priv->rps.min_freq_softlimit == 0)
5442
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5443
 
5444
	mutex_unlock(&dev_priv->rps.hw_lock);
5445
}
5446
 
5447
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5448
{
5449
	valleyview_cleanup_pctx(dev);
5450
}
5451
 
5452
static void cherryview_enable_rps(struct drm_device *dev)
5453
{
5454
	struct drm_i915_private *dev_priv = dev->dev_private;
5455
	struct intel_engine_cs *ring;
5456
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5457
	int i;
5458
 
5459
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5460
 
5461
	gtfifodbg = I915_READ(GTFIFODBG);
5462
	if (gtfifodbg) {
5463
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5464
				 gtfifodbg);
5465
		I915_WRITE(GTFIFODBG, gtfifodbg);
5466
	}
5467
 
5468
	cherryview_check_pctx(dev_priv);
5469
 
5470
	/* 1a & 1b: Get forcewake during program sequence. Although the driver
5471
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6084 serge 5472
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5060 serge 5473
 
6084 serge 5474
	/*  Disable RC states. */
5475
	I915_WRITE(GEN6_RC_CONTROL, 0);
5476
 
5060 serge 5477
	/* 2a: Program RC6 thresholds.*/
5478
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5479
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5480
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5481
 
5482
	for_each_ring(ring, dev_priv, i)
5483
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5484
	I915_WRITE(GEN6_RC_SLEEP, 0);
5485
 
6084 serge 5486
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5487
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5060 serge 5488
 
5489
	/* allows RC6 residency counter to work */
5490
	I915_WRITE(VLV_COUNTER_CONTROL,
5491
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5492
				      VLV_MEDIA_RC6_COUNT_EN |
5493
				      VLV_RENDER_RC6_COUNT_EN));
5494
 
5495
	/* For now we assume BIOS is allocating and populating the PCBR  */
5496
	pcbr = I915_READ(VLV_PCBR);
5497
 
5498
	/* 3: Enable RC6 */
5499
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5500
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
6084 serge 5501
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5060 serge 5502
 
5503
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5504
 
5505
	/* 4 Program defaults and thresholds for RPS*/
6084 serge 5506
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5060 serge 5507
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5508
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5509
	I915_WRITE(GEN6_RP_UP_EI, 66000);
5510
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5511
 
5512
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5513
 
5514
	/* 5: Enable RPS */
5515
	I915_WRITE(GEN6_RP_CONTROL,
5516
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6084 serge 5517
		   GEN6_RP_MEDIA_IS_GFX |
5060 serge 5518
		   GEN6_RP_ENABLE |
5519
		   GEN6_RP_UP_BUSY_AVG |
5520
		   GEN6_RP_DOWN_IDLE_AVG);
5521
 
6084 serge 5522
	/* Setting Fixed Bias */
5523
	val = VLV_OVERRIDE_EN |
5524
		  VLV_SOC_TDP_EN |
5525
		  CHV_BIAS_CPU_50_SOC_50;
5526
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5527
 
5060 serge 5528
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5529
 
5354 serge 5530
	/* RPS code assumes GPLL is used */
5531
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5532
 
6084 serge 5533
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5060 serge 5534
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5535
 
5536
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5537
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
6084 serge 5538
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5060 serge 5539
			 dev_priv->rps.cur_freq);
5540
 
5541
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
6084 serge 5542
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5060 serge 5543
			 dev_priv->rps.efficient_freq);
5544
 
5545
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5546
 
6084 serge 5547
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5060 serge 5548
}
5549
 
4104 Serge 5550
static void valleyview_enable_rps(struct drm_device *dev)
5551
{
5552
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 5553
	struct intel_engine_cs *ring;
4560 Serge 5554
	u32 gtfifodbg, val, rc6_mode = 0;
4104 Serge 5555
	int i;
5556
 
5557
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5558
 
5060 serge 5559
	valleyview_check_pctx(dev_priv);
5560
 
4104 Serge 5561
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4560 Serge 5562
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5563
				 gtfifodbg);
4104 Serge 5564
		I915_WRITE(GTFIFODBG, gtfifodbg);
5565
	}
5566
 
4560 Serge 5567
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6084 serge 5568
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4104 Serge 5569
 
6084 serge 5570
	/*  Disable RC states. */
5571
	I915_WRITE(GEN6_RC_CONTROL, 0);
5572
 
5573
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4104 Serge 5574
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5575
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5576
	I915_WRITE(GEN6_RP_UP_EI, 66000);
5577
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5578
 
5579
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5580
 
5581
	I915_WRITE(GEN6_RP_CONTROL,
5582
		   GEN6_RP_MEDIA_TURBO |
5583
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5584
		   GEN6_RP_MEDIA_IS_GFX |
5585
		   GEN6_RP_ENABLE |
5586
		   GEN6_RP_UP_BUSY_AVG |
5587
		   GEN6_RP_DOWN_IDLE_CONT);
5588
 
5589
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5590
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5591
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5592
 
5593
	for_each_ring(ring, dev_priv, i)
5594
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5595
 
4560 Serge 5596
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4104 Serge 5597
 
5598
	/* allows RC6 residency counter to work */
4560 Serge 5599
	I915_WRITE(VLV_COUNTER_CONTROL,
5060 serge 5600
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5601
				      VLV_RENDER_RC0_COUNT_EN |
4560 Serge 5602
				      VLV_MEDIA_RC6_COUNT_EN |
5603
				      VLV_RENDER_RC6_COUNT_EN));
5060 serge 5604
 
4560 Serge 5605
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5606
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4104 Serge 5607
 
4560 Serge 5608
	intel_print_rc6_info(dev, rc6_mode);
5609
 
5610
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5611
 
6084 serge 5612
	/* Setting Fixed Bias */
5613
	val = VLV_OVERRIDE_EN |
5614
		  VLV_SOC_TDP_EN |
5615
		  VLV_BIAS_CPU_125_SOC_875;
5616
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5617
 
4104 Serge 5618
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5619
 
5354 serge 5620
	/* RPS code assumes GPLL is used */
5621
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5622
 
6084 serge 5623
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
4104 Serge 5624
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5625
 
5060 serge 5626
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4104 Serge 5627
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
6084 serge 5628
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5060 serge 5629
			 dev_priv->rps.cur_freq);
4104 Serge 5630
 
5631
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
6084 serge 5632
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5060 serge 5633
			 dev_priv->rps.efficient_freq);
4104 Serge 5634
 
5060 serge 5635
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4104 Serge 5636
 
6084 serge 5637
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4104 Serge 5638
}
5639
 
3031 serge 5640
static unsigned long intel_pxfreq(u32 vidfreq)
5641
{
5642
	unsigned long freq;
5643
	int div = (vidfreq & 0x3f0000) >> 16;
5644
	int post = (vidfreq & 0x3000) >> 12;
5645
	int pre = (vidfreq & 0x7);
5646
 
5647
	if (!pre)
5648
		return 0;
5649
 
5650
	freq = ((div * 133333) / ((1<
5651
 
5652
	return freq;
5653
}
5654
 
5655
static const struct cparams {
5656
	u16 i;
5657
	u16 t;
5658
	u16 m;
5659
	u16 c;
5660
} cparams[] = {
5661
	{ 1, 1333, 301, 28664 },
5662
	{ 1, 1066, 294, 24460 },
5663
	{ 1, 800, 294, 25192 },
5664
	{ 0, 1333, 276, 27605 },
5665
	{ 0, 1066, 276, 27605 },
5666
	{ 0, 800, 231, 23784 },
5667
};
5668
 
5669
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5670
{
5671
	u64 total_count, diff, ret;
5672
	u32 count1, count2, count3, m = 0, c = 0;
5060 serge 5673
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
3031 serge 5674
	int i;
5675
 
5676
	assert_spin_locked(&mchdev_lock);
5677
 
5678
	diff1 = now - dev_priv->ips.last_time1;
5679
 
5680
	/* Prevent division-by-zero if we are asking too fast.
5681
	 * Also, we don't get interesting results if we are polling
5682
	 * faster than once in 10ms, so just return the saved value
5683
	 * in such cases.
5684
	 */
5685
	if (diff1 <= 10)
5686
		return dev_priv->ips.chipset_power;
5687
 
5688
	count1 = I915_READ(DMIEC);
5689
	count2 = I915_READ(DDREC);
5690
	count3 = I915_READ(CSIEC);
5691
 
5692
	total_count = count1 + count2 + count3;
5693
 
5694
	/* FIXME: handle per-counter overflow */
5695
	if (total_count < dev_priv->ips.last_count1) {
5696
		diff = ~0UL - dev_priv->ips.last_count1;
5697
		diff += total_count;
5698
	} else {
5699
		diff = total_count - dev_priv->ips.last_count1;
5700
	}
5701
 
5702
	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5703
		if (cparams[i].i == dev_priv->ips.c_m &&
5704
		    cparams[i].t == dev_priv->ips.r_t) {
5705
			m = cparams[i].m;
5706
			c = cparams[i].c;
5707
			break;
5708
		}
5709
	}
5710
 
5711
	diff = div_u64(diff, diff1);
5712
	ret = ((m * diff) + c);
5713
	ret = div_u64(ret, 10);
5714
 
5715
	dev_priv->ips.last_count1 = total_count;
5716
	dev_priv->ips.last_time1 = now;
5717
 
5718
	dev_priv->ips.chipset_power = ret;
5719
 
5720
	return ret;
5721
}
5722
 
5723
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5724
{
5060 serge 5725
	struct drm_device *dev = dev_priv->dev;
3031 serge 5726
	unsigned long val;
5727
 
5060 serge 5728
	if (INTEL_INFO(dev)->gen != 5)
3031 serge 5729
		return 0;
5730
 
5731
	spin_lock_irq(&mchdev_lock);
5732
 
5733
	val = __i915_chipset_val(dev_priv);
5734
 
5735
	spin_unlock_irq(&mchdev_lock);
5736
 
5737
	return val;
5738
}
5739
 
5740
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5741
{
5742
	unsigned long m, x, b;
5743
	u32 tsfs;
5744
 
5745
	tsfs = I915_READ(TSFS);
5746
 
5747
	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5748
	x = I915_READ8(TR1);
5749
 
5750
	b = tsfs & TSFS_INTR_MASK;
5751
 
5752
	return ((m * x) / 127) - b;
5753
}
5754
 
6084 serge 5755
static int _pxvid_to_vd(u8 pxvid)
3031 serge 5756
{
6084 serge 5757
	if (pxvid == 0)
5758
		return 0;
5759
 
5760
	if (pxvid >= 8 && pxvid < 31)
5761
		pxvid = 31;
5762
 
5763
	return (pxvid + 2) * 125;
5764
}
5765
 
5766
static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5767
{
5060 serge 5768
	struct drm_device *dev = dev_priv->dev;
6084 serge 5769
	const int vd = _pxvid_to_vd(pxvid);
5770
	const int vm = vd - 1125;
5771
 
5060 serge 5772
	if (INTEL_INFO(dev)->is_mobile)
6084 serge 5773
		return vm > 0 ? vm : 0;
5774
 
5775
	return vd;
3031 serge 5776
}
5777
 
5778
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5779
{
5060 serge 5780
	u64 now, diff, diffms;
3031 serge 5781
	u32 count;
5782
 
5783
	assert_spin_locked(&mchdev_lock);
5784
 
5060 serge 5785
	now = ktime_get_raw_ns();
5786
	diffms = now - dev_priv->ips.last_time2;
5787
	do_div(diffms, NSEC_PER_MSEC);
3031 serge 5788
 
5789
	/* Don't divide by 0 */
5790
	if (!diffms)
5791
		return;
5792
 
5793
	count = I915_READ(GFXEC);
5794
 
5795
	if (count < dev_priv->ips.last_count2) {
5796
		diff = ~0UL - dev_priv->ips.last_count2;
5797
		diff += count;
5798
	} else {
5799
		diff = count - dev_priv->ips.last_count2;
5800
	}
5801
 
5802
	dev_priv->ips.last_count2 = count;
5803
	dev_priv->ips.last_time2 = now;
5804
 
5805
	/* More magic constants... */
5806
	diff = diff * 1181;
5807
	diff = div_u64(diff, diffms * 10);
5808
	dev_priv->ips.gfx_power = diff;
5809
}
5810
 
5811
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5812
{
5060 serge 5813
	struct drm_device *dev = dev_priv->dev;
5814
 
5815
	if (INTEL_INFO(dev)->gen != 5)
3031 serge 5816
		return;
5817
 
5818
	spin_lock_irq(&mchdev_lock);
5819
 
5820
	__i915_update_gfx_val(dev_priv);
5821
 
5822
	spin_unlock_irq(&mchdev_lock);
5823
}
5824
 
5825
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5826
{
5827
	unsigned long t, corr, state1, corr2, state2;
5828
	u32 pxvid, ext_v;
5829
 
5830
	assert_spin_locked(&mchdev_lock);
5831
 
6084 serge 5832
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
3031 serge 5833
	pxvid = (pxvid >> 24) & 0x7f;
5834
	ext_v = pvid_to_extvid(dev_priv, pxvid);
5835
 
5836
	state1 = ext_v;
5837
 
5838
	t = i915_mch_val(dev_priv);
5839
 
5840
	/* Revel in the empirically derived constants */
5841
 
5842
	/* Correction factor in 1/100000 units */
5843
	if (t > 80)
5844
		corr = ((t * 2349) + 135940);
5845
	else if (t >= 50)
5846
		corr = ((t * 964) + 29317);
5847
	else /* < 50 */
5848
		corr = ((t * 301) + 1004);
5849
 
5850
	corr = corr * ((150142 * state1) / 10000 - 78642);
5851
	corr /= 100000;
5852
	corr2 = (corr * dev_priv->ips.corr);
5853
 
5854
	state2 = (corr2 * state1) / 10000;
5855
	state2 /= 100; /* convert to mW */
5856
 
5857
	__i915_update_gfx_val(dev_priv);
5858
 
5859
	return dev_priv->ips.gfx_power + state2;
5860
}
5861
 
5862
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5863
{
5060 serge 5864
	struct drm_device *dev = dev_priv->dev;
3031 serge 5865
	unsigned long val;
5866
 
5060 serge 5867
	if (INTEL_INFO(dev)->gen != 5)
3031 serge 5868
		return 0;
5869
 
5870
	spin_lock_irq(&mchdev_lock);
5871
 
5872
	val = __i915_gfx_val(dev_priv);
5873
 
5874
	spin_unlock_irq(&mchdev_lock);
5875
 
5876
	return val;
5877
}
5878
 
5879
/**
5880
 * i915_read_mch_val - return value for IPS use
5881
 *
5882
 * Calculate and return a value for the IPS driver to use when deciding whether
5883
 * we have thermal and power headroom to increase CPU or GPU power budget.
5884
 */
5885
unsigned long i915_read_mch_val(void)
5886
{
5887
	struct drm_i915_private *dev_priv;
5888
	unsigned long chipset_val, graphics_val, ret = 0;
5889
 
5890
	spin_lock_irq(&mchdev_lock);
5891
	if (!i915_mch_dev)
5892
		goto out_unlock;
5893
	dev_priv = i915_mch_dev;
5894
 
5895
	chipset_val = __i915_chipset_val(dev_priv);
5896
	graphics_val = __i915_gfx_val(dev_priv);
5897
 
5898
	ret = chipset_val + graphics_val;
5899
 
5900
out_unlock:
5901
	spin_unlock_irq(&mchdev_lock);
5902
 
5903
	return ret;
5904
}
5905
EXPORT_SYMBOL_GPL(i915_read_mch_val);
5906
 
5907
/**
5908
 * i915_gpu_raise - raise GPU frequency limit
5909
 *
5910
 * Raise the limit; IPS indicates we have thermal headroom.
5911
 */
5912
bool i915_gpu_raise(void)
5913
{
5914
	struct drm_i915_private *dev_priv;
5915
	bool ret = true;
5916
 
5917
	spin_lock_irq(&mchdev_lock);
5918
	if (!i915_mch_dev) {
5919
		ret = false;
5920
		goto out_unlock;
5921
	}
5922
	dev_priv = i915_mch_dev;
5923
 
5924
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5925
		dev_priv->ips.max_delay--;
5926
 
5927
out_unlock:
5928
	spin_unlock_irq(&mchdev_lock);
5929
 
5930
	return ret;
5931
}
5932
EXPORT_SYMBOL_GPL(i915_gpu_raise);
5933
 
5934
/**
5935
 * i915_gpu_lower - lower GPU frequency limit
5936
 *
5937
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5938
 * frequency maximum.
5939
 */
5940
bool i915_gpu_lower(void)
5941
{
5942
	struct drm_i915_private *dev_priv;
5943
	bool ret = true;
5944
 
5945
	spin_lock_irq(&mchdev_lock);
5946
	if (!i915_mch_dev) {
5947
		ret = false;
5948
		goto out_unlock;
5949
	}
5950
	dev_priv = i915_mch_dev;
5951
 
5952
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5953
		dev_priv->ips.max_delay++;
5954
 
5955
out_unlock:
5956
	spin_unlock_irq(&mchdev_lock);
5957
 
5958
	return ret;
5959
}
5960
EXPORT_SYMBOL_GPL(i915_gpu_lower);
5961
 
5962
/**
5963
 * i915_gpu_busy - indicate GPU business to IPS
5964
 *
5965
 * Tell the IPS driver whether or not the GPU is busy.
5966
 */
5967
bool i915_gpu_busy(void)
5968
{
5969
	struct drm_i915_private *dev_priv;
5060 serge 5970
	struct intel_engine_cs *ring;
3031 serge 5971
	bool ret = false;
5972
	int i;
5973
 
5974
	spin_lock_irq(&mchdev_lock);
5975
	if (!i915_mch_dev)
5976
		goto out_unlock;
5977
	dev_priv = i915_mch_dev;
5978
 
5979
	for_each_ring(ring, dev_priv, i)
5980
		ret |= !list_empty(&ring->request_list);
5981
 
5982
out_unlock:
5983
	spin_unlock_irq(&mchdev_lock);
5984
 
5985
	return ret;
5986
}
5987
EXPORT_SYMBOL_GPL(i915_gpu_busy);
5988
 
5989
/**
5990
 * i915_gpu_turbo_disable - disable graphics turbo
5991
 *
5992
 * Disable graphics turbo by resetting the max frequency and setting the
5993
 * current frequency to the default.
5994
 */
5995
bool i915_gpu_turbo_disable(void)
5996
{
5997
	struct drm_i915_private *dev_priv;
5998
	bool ret = true;
5999
 
6000
	spin_lock_irq(&mchdev_lock);
6001
	if (!i915_mch_dev) {
6002
		ret = false;
6003
		goto out_unlock;
6004
	}
6005
	dev_priv = i915_mch_dev;
6006
 
6007
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6008
 
6009
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6010
		ret = false;
6011
 
6012
out_unlock:
6013
	spin_unlock_irq(&mchdev_lock);
6014
 
6015
	return ret;
6016
}
6017
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6018
 
6019
/**
6020
 * Tells the intel_ips driver that the i915 driver is now loaded, if
6021
 * IPS got loaded first.
6022
 *
6023
 * This awkward dance is so that neither module has to depend on the
6024
 * other in order for IPS to do the appropriate communication of
6025
 * GPU turbo limits to i915.
6026
 */
6027
static void
6028
ips_ping_for_i915_load(void)
6029
{
6030
	void (*link)(void);
6031
 
6032
//   link = symbol_get(ips_link_to_i915_driver);
6033
//   if (link) {
6034
//       link();
6035
//       symbol_put(ips_link_to_i915_driver);
6036
//   }
6037
}
6038
 
6039
void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6040
{
6041
	/* We only register the i915 ips part with intel-ips once everything is
6042
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6043
	spin_lock_irq(&mchdev_lock);
6044
	i915_mch_dev = dev_priv;
6045
	spin_unlock_irq(&mchdev_lock);
6046
 
6047
	ips_ping_for_i915_load();
6048
}
6049
 
6050
void intel_gpu_ips_teardown(void)
6051
{
6052
	spin_lock_irq(&mchdev_lock);
6053
	i915_mch_dev = NULL;
6054
	spin_unlock_irq(&mchdev_lock);
6055
}
5060 serge 6056
 
3031 serge 6057
static void intel_init_emon(struct drm_device *dev)
6058
{
6059
	struct drm_i915_private *dev_priv = dev->dev_private;
6060
	u32 lcfuse;
6061
	u8 pxw[16];
6062
	int i;
6063
 
6064
	/* Disable to program */
6065
	I915_WRITE(ECR, 0);
6066
	POSTING_READ(ECR);
6067
 
6068
	/* Program energy weights for various events */
6069
	I915_WRITE(SDEW, 0x15040d00);
6070
	I915_WRITE(CSIEW0, 0x007f0000);
6071
	I915_WRITE(CSIEW1, 0x1e220004);
6072
	I915_WRITE(CSIEW2, 0x04000004);
6073
 
6074
	for (i = 0; i < 5; i++)
6084 serge 6075
		I915_WRITE(PEW(i), 0);
3031 serge 6076
	for (i = 0; i < 3; i++)
6084 serge 6077
		I915_WRITE(DEW(i), 0);
3031 serge 6078
 
6079
	/* Program P-state weights to account for frequency power adjustment */
6080
	for (i = 0; i < 16; i++) {
6084 serge 6081
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
3031 serge 6082
		unsigned long freq = intel_pxfreq(pxvidfreq);
6083
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6084
			PXVFREQ_PX_SHIFT;
6085
		unsigned long val;
6086
 
6087
		val = vid * vid;
6088
		val *= (freq / 1000);
6089
		val *= 255;
6090
		val /= (127*127*900);
6091
		if (val > 0xff)
6092
			DRM_ERROR("bad pxval: %ld\n", val);
6093
		pxw[i] = val;
6094
	}
6095
	/* Render standby states get 0 weight */
6096
	pxw[14] = 0;
6097
	pxw[15] = 0;
6098
 
6099
	for (i = 0; i < 4; i++) {
6100
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6101
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6084 serge 6102
		I915_WRITE(PXW(i), val);
3031 serge 6103
	}
6104
 
6105
	/* Adjust magic regs to magic values (more experimental results) */
6106
	I915_WRITE(OGW0, 0);
6107
	I915_WRITE(OGW1, 0);
6108
	I915_WRITE(EG0, 0x00007f00);
6109
	I915_WRITE(EG1, 0x0000000e);
6110
	I915_WRITE(EG2, 0x000e0000);
6111
	I915_WRITE(EG3, 0x68000300);
6112
	I915_WRITE(EG4, 0x42000000);
6113
	I915_WRITE(EG5, 0x00140031);
6114
	I915_WRITE(EG6, 0);
6115
	I915_WRITE(EG7, 0);
6116
 
6117
	for (i = 0; i < 8; i++)
6084 serge 6118
		I915_WRITE(PXWL(i), 0);
3031 serge 6119
 
6120
	/* Enable PMON + select events */
6121
	I915_WRITE(ECR, 0x80000019);
6122
 
6123
	lcfuse = I915_READ(LCFUSE02);
6124
 
6125
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6126
}
6127
 
5060 serge 6128
void intel_init_gt_powersave(struct drm_device *dev)
6129
{
6937 serge 6130
	struct drm_i915_private *dev_priv = dev->dev_private;
6131
 
6132
	/*
6133
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6134
	 * requirement.
6135
	 */
6136
	if (!i915.enable_rc6) {
6137
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6138
		intel_runtime_pm_get(dev_priv);
6139
	}
5060 serge 6140
 
6141
	if (IS_CHERRYVIEW(dev))
6142
		cherryview_init_gt_powersave(dev);
6143
	else if (IS_VALLEYVIEW(dev))
6144
		valleyview_init_gt_powersave(dev);
6145
}
6146
 
6147
void intel_cleanup_gt_powersave(struct drm_device *dev)
6148
{
6937 serge 6149
	struct drm_i915_private *dev_priv = dev->dev_private;
6150
 
5060 serge 6151
	if (IS_CHERRYVIEW(dev))
6152
		return;
6153
	else if (IS_VALLEYVIEW(dev))
6154
		valleyview_cleanup_gt_powersave(dev);
6937 serge 6155
 
6156
	if (!i915.enable_rc6)
6157
		intel_runtime_pm_put(dev_priv);
5060 serge 6158
}
6159
 
5354 serge 6160
static void gen6_suspend_rps(struct drm_device *dev)
6161
{
6162
	struct drm_i915_private *dev_priv = dev->dev_private;
6163
 
6164
//   flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6165
 
6084 serge 6166
	gen6_disable_rps_interrupts(dev);
5354 serge 6167
}
6168
 
5060 serge 6169
/**
6170
 * intel_suspend_gt_powersave - suspend PM work and helper threads
6171
 * @dev: drm device
6172
 *
6173
 * We don't want to disable RC6 or other features here, we just want
6174
 * to make sure any work we've queued has finished and won't bother
6175
 * us while we're suspended.
6176
 */
6177
void intel_suspend_gt_powersave(struct drm_device *dev)
6178
{
6179
	struct drm_i915_private *dev_priv = dev->dev_private;
6180
 
5354 serge 6181
	if (INTEL_INFO(dev)->gen < 6)
6182
		return;
5060 serge 6183
 
5354 serge 6184
	gen6_suspend_rps(dev);
5060 serge 6185
 
6186
	/* Force GPU to min freq during suspend */
6187
	gen6_rps_idle(dev_priv);
6188
}
6189
 
3031 serge 6190
void intel_disable_gt_powersave(struct drm_device *dev)
6191
{
3243 Serge 6192
	struct drm_i915_private *dev_priv = dev->dev_private;
6193
 
3031 serge 6194
	if (IS_IRONLAKE_M(dev)) {
6195
		ironlake_disable_drps(dev);
4293 Serge 6196
	} else if (INTEL_INFO(dev)->gen >= 6) {
5060 serge 6197
		intel_suspend_gt_powersave(dev);
6198
 
3482 Serge 6199
		mutex_lock(&dev_priv->rps.hw_lock);
5354 serge 6200
		if (INTEL_INFO(dev)->gen >= 9)
6201
			gen9_disable_rps(dev);
6202
		else if (IS_CHERRYVIEW(dev))
5060 serge 6203
			cherryview_disable_rps(dev);
6204
		else if (IS_VALLEYVIEW(dev))
4104 Serge 6205
			valleyview_disable_rps(dev);
6206
		else
6084 serge 6207
			gen6_disable_rps(dev);
5354 serge 6208
 
4560 Serge 6209
		dev_priv->rps.enabled = false;
3480 Serge 6210
		mutex_unlock(&dev_priv->rps.hw_lock);
3031 serge 6211
	}
6212
}
6213
 
3482 Serge 6214
static void intel_gen6_powersave_work(struct work_struct *work)
6215
{
6216
	struct drm_i915_private *dev_priv =
6217
		container_of(work, struct drm_i915_private,
6218
			     rps.delayed_resume_work.work);
6219
	struct drm_device *dev = dev_priv->dev;
6220
 
6221
	mutex_lock(&dev_priv->rps.hw_lock);
4104 Serge 6222
 
6084 serge 6223
	gen6_reset_rps_interrupts(dev);
5354 serge 6224
 
5060 serge 6225
	if (IS_CHERRYVIEW(dev)) {
6226
		cherryview_enable_rps(dev);
6227
	} else if (IS_VALLEYVIEW(dev)) {
4104 Serge 6228
		valleyview_enable_rps(dev);
5354 serge 6229
	} else if (INTEL_INFO(dev)->gen >= 9) {
6084 serge 6230
		gen9_enable_rc6(dev);
5354 serge 6231
		gen9_enable_rps(dev);
6937 serge 6232
		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6084 serge 6233
			__gen6_update_ring_freq(dev);
4560 Serge 6234
	} else if (IS_BROADWELL(dev)) {
6235
		gen8_enable_rps(dev);
5060 serge 6236
		__gen6_update_ring_freq(dev);
4104 Serge 6237
	} else {
6084 serge 6238
		gen6_enable_rps(dev);
5060 serge 6239
		__gen6_update_ring_freq(dev);
4104 Serge 6240
	}
6084 serge 6241
 
6242
	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6243
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6244
 
6245
	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6246
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6247
 
4560 Serge 6248
	dev_priv->rps.enabled = true;
5354 serge 6249
 
6084 serge 6250
	gen6_enable_rps_interrupts(dev);
5354 serge 6251
 
3482 Serge 6252
	mutex_unlock(&dev_priv->rps.hw_lock);
5060 serge 6253
 
6254
	intel_runtime_pm_put(dev_priv);
3482 Serge 6255
}
6256
 
3031 serge 6257
void intel_enable_gt_powersave(struct drm_device *dev)
6258
{
3243 Serge 6259
	struct drm_i915_private *dev_priv = dev->dev_private;
6260
 
6084 serge 6261
	/* Powersaving is controlled by the host when inside a VM */
6262
	if (intel_vgpu_active(dev))
6263
		return;
6264
 
3031 serge 6265
	if (IS_IRONLAKE_M(dev)) {
7144 serge 6266
		ironlake_enable_drps(dev);
5060 serge 6267
		mutex_lock(&dev->struct_mutex);
3031 serge 6268
		intel_init_emon(dev);
5060 serge 6269
		mutex_unlock(&dev->struct_mutex);
6270
	} else if (INTEL_INFO(dev)->gen >= 6) {
3243 Serge 6271
		/*
6272
		 * PCU communication is slow and this doesn't need to be
6273
		 * done at any specific time, so do this out of our fast path
6274
		 * to make resume and init faster.
5060 serge 6275
		 *
6276
		 * We depend on the HW RC6 power context save/restore
6277
		 * mechanism when entering D3 through runtime PM suspend. So
6278
		 * disable RPM until RPS/RC6 is properly setup. We can only
6279
		 * get here via the driver load/system resume/runtime resume
6280
		 * paths, so the _noresume version is enough (and in case of
6281
		 * runtime resume it's necessary).
3243 Serge 6282
		 */
5060 serge 6283
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6284
					   round_jiffies_up_relative(HZ)))
6285
			intel_runtime_pm_get_noresume(dev_priv);
3031 serge 6286
	}
6287
}
6288
 
5060 serge 6289
void intel_reset_gt_powersave(struct drm_device *dev)
6290
{
6291
	struct drm_i915_private *dev_priv = dev->dev_private;
6292
 
5354 serge 6293
	if (INTEL_INFO(dev)->gen < 6)
6294
		return;
6295
 
6296
	gen6_suspend_rps(dev);
5060 serge 6297
	dev_priv->rps.enabled = false;
6298
}
6299
 
3243 Serge 6300
static void ibx_init_clock_gating(struct drm_device *dev)
6301
{
6302
	struct drm_i915_private *dev_priv = dev->dev_private;
6303
 
6304
	/*
6305
	 * On Ibex Peak and Cougar Point, we need to disable clock
6306
	 * gating for the panel power sequencer or it will fail to
6307
	 * start up when no ports are active.
6308
	 */
6309
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6310
}
6311
 
4104 Serge 6312
static void g4x_disable_trickle_feed(struct drm_device *dev)
6313
{
6314
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 6315
	enum pipe pipe;
4104 Serge 6316
 
5354 serge 6317
	for_each_pipe(dev_priv, pipe) {
4104 Serge 6318
		I915_WRITE(DSPCNTR(pipe),
6319
			   I915_READ(DSPCNTR(pipe)) |
6320
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6084 serge 6321
 
6322
		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6323
		POSTING_READ(DSPSURF(pipe));
4104 Serge 6324
	}
6325
}
6326
 
4560 Serge 6327
static void ilk_init_lp_watermarks(struct drm_device *dev)
6328
{
6329
	struct drm_i915_private *dev_priv = dev->dev_private;
6330
 
6331
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6332
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6333
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6334
 
6335
	/*
6336
	 * Don't touch WM1S_LP_EN here.
6337
	 * Doing so could cause underruns.
6338
	 */
6339
}
6340
 
3031 serge 6341
static void ironlake_init_clock_gating(struct drm_device *dev)
6342
{
6343
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 6344
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3031 serge 6345
 
4104 Serge 6346
	/*
6347
	 * Required for FBC
6348
	 * WaFbcDisableDpfcClockGating:ilk
6349
	 */
3243 Serge 6350
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6351
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6352
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3031 serge 6353
 
6354
	I915_WRITE(PCH_3DCGDIS0,
6355
		   MARIUNIT_CLOCK_GATE_DISABLE |
6356
		   SVSMUNIT_CLOCK_GATE_DISABLE);
6357
	I915_WRITE(PCH_3DCGDIS1,
6358
		   VFMUNIT_CLOCK_GATE_DISABLE);
6359
 
6360
	/*
6361
	 * According to the spec the following bits should be set in
6362
	 * order to enable memory self-refresh
6363
	 * The bit 22/21 of 0x42004
6364
	 * The bit 5 of 0x42020
6365
	 * The bit 15 of 0x45000
6366
	 */
6367
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6368
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
6369
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3243 Serge 6370
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3031 serge 6371
	I915_WRITE(DISP_ARB_CTL,
6372
		   (I915_READ(DISP_ARB_CTL) |
6373
		    DISP_FBC_WM_DIS));
6374
 
4560 Serge 6375
	ilk_init_lp_watermarks(dev);
6376
 
3031 serge 6377
	/*
6378
	 * Based on the document from hardware guys the following bits
6379
	 * should be set unconditionally in order to enable FBC.
6380
	 * The bit 22 of 0x42000
6381
	 * The bit 22 of 0x42004
6382
	 * The bit 7,8,9 of 0x42020.
6383
	 */
6384
	if (IS_IRONLAKE_M(dev)) {
4104 Serge 6385
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
3031 serge 6386
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
6387
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
6388
			   ILK_FBCQ_DIS);
6389
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
6390
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
6391
			   ILK_DPARB_GATE);
6392
	}
6393
 
3243 Serge 6394
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6395
 
3031 serge 6396
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6397
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6398
		   ILK_ELPIN_409_SELECT);
6399
	I915_WRITE(_3D_CHICKEN2,
6400
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6401
		   _3D_CHICKEN2_WM_READ_PIPELINED);
3243 Serge 6402
 
4104 Serge 6403
	/* WaDisableRenderCachePipelinedFlush:ilk */
3243 Serge 6404
	I915_WRITE(CACHE_MODE_0,
6405
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6406
 
5060 serge 6407
	/* WaDisable_RenderCache_OperationalFlush:ilk */
6408
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6409
 
4104 Serge 6410
	g4x_disable_trickle_feed(dev);
6411
 
3243 Serge 6412
	ibx_init_clock_gating(dev);
3031 serge 6413
}
6414
 
3243 Serge 6415
static void cpt_init_clock_gating(struct drm_device *dev)
6416
{
6417
	struct drm_i915_private *dev_priv = dev->dev_private;
6418
	int pipe;
3746 Serge 6419
	uint32_t val;
3243 Serge 6420
 
6421
	/*
6422
	 * On Ibex Peak and Cougar Point, we need to disable clock
6423
	 * gating for the panel power sequencer or it will fail to
6424
	 * start up when no ports are active.
6425
	 */
4280 Serge 6426
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6427
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6428
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
3243 Serge 6429
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6430
		   DPLS_EDP_PPS_FIX_DIS);
6431
	/* The below fixes the weird display corruption, a few pixels shifted
6432
	 * downward, on (only) LVDS of some HP laptops with IVY.
6433
	 */
5354 serge 6434
	for_each_pipe(dev_priv, pipe) {
3746 Serge 6435
		val = I915_READ(TRANS_CHICKEN2(pipe));
6436
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6437
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4104 Serge 6438
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
3746 Serge 6439
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6440
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6441
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6442
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6443
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
6444
	}
3243 Serge 6445
	/* WADP0ClockGatingDisable */
5354 serge 6446
	for_each_pipe(dev_priv, pipe) {
3243 Serge 6447
		I915_WRITE(TRANS_CHICKEN1(pipe),
6448
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6449
	}
6450
}
6451
 
3480 Serge 6452
static void gen6_check_mch_setup(struct drm_device *dev)
6453
{
6454
	struct drm_i915_private *dev_priv = dev->dev_private;
6455
	uint32_t tmp;
6456
 
6457
	tmp = I915_READ(MCH_SSKPD);
5060 serge 6458
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6459
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6460
			      tmp);
3480 Serge 6461
}
6462
 
3031 serge 6463
static void gen6_init_clock_gating(struct drm_device *dev)
6464
{
6465
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 6466
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3031 serge 6467
 
3243 Serge 6468
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3031 serge 6469
 
6470
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6471
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6472
		   ILK_ELPIN_409_SELECT);
6473
 
4104 Serge 6474
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
3243 Serge 6475
	I915_WRITE(_3D_CHICKEN,
6476
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6477
 
5060 serge 6478
	/* WaDisable_RenderCache_OperationalFlush:snb */
6479
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6480
 
6481
	/*
6482
	 * BSpec recoomends 8x4 when MSAA is used,
6483
	 * however in practice 16x4 seems fastest.
6484
	 *
6485
	 * Note that PS/WM thread counts depend on the WIZ hashing
6486
	 * disable bit, which we don't touch here, but it's good
6487
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6488
	 */
6489
	I915_WRITE(GEN6_GT_MODE,
5354 serge 6490
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5060 serge 6491
 
4560 Serge 6492
	ilk_init_lp_watermarks(dev);
3031 serge 6493
 
6494
	I915_WRITE(CACHE_MODE_0,
6495
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6496
 
6497
	I915_WRITE(GEN6_UCGCTL1,
6498
		   I915_READ(GEN6_UCGCTL1) |
6499
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6500
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6501
 
6502
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6503
	 * gating disable must be set.  Failure to set it results in
6504
	 * flickering pixels due to Z write ordering failures after
6505
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
6506
	 * Sanctuary and Tropics, and apparently anything else with
6507
	 * alpha test or pixel discard.
6508
	 *
6509
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
6510
	 * but we didn't debug actual testcases to find it out.
6511
	 *
5060 serge 6512
	 * WaDisableRCCUnitClockGating:snb
6513
	 * WaDisableRCPBUnitClockGating:snb
3031 serge 6514
	 */
6515
	I915_WRITE(GEN6_UCGCTL2,
6516
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6517
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6518
 
5060 serge 6519
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6520
	I915_WRITE(_3D_CHICKEN3,
6521
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
3031 serge 6522
 
6523
	/*
5060 serge 6524
	 * Bspec says:
6525
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6526
	 * 3DSTATE_SF number of SF output attributes is more than 16."
6527
	 */
6528
	I915_WRITE(_3D_CHICKEN3,
6529
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6530
 
6531
	/*
3031 serge 6532
	 * According to the spec the following bits should be
6533
	 * set in order to enable memory self-refresh and fbc:
6534
	 * The bit21 and bit22 of 0x42000
6535
	 * The bit21 and bit22 of 0x42004
6536
	 * The bit5 and bit7 of 0x42020
6537
	 * The bit14 of 0x70180
6538
	 * The bit14 of 0x71180
4104 Serge 6539
	 *
6540
	 * WaFbcAsynchFlipDisableFbcQueue:snb
3031 serge 6541
	 */
6542
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
6543
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
6544
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6545
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6546
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6547
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3243 Serge 6548
	I915_WRITE(ILK_DSPCLK_GATE_D,
6549
		   I915_READ(ILK_DSPCLK_GATE_D) |
6550
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6551
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3031 serge 6552
 
4104 Serge 6553
	g4x_disable_trickle_feed(dev);
3031 serge 6554
 
3243 Serge 6555
	cpt_init_clock_gating(dev);
3480 Serge 6556
 
6557
	gen6_check_mch_setup(dev);
3031 serge 6558
}
6559
 
6560
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6561
{
6562
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6563
 
5060 serge 6564
	/*
6565
	 * WaVSThreadDispatchOverride:ivb,vlv
6566
	 *
6567
	 * This actually overrides the dispatch
6568
	 * mode for all thread types.
6569
	 */
3031 serge 6570
	reg &= ~GEN7_FF_SCHED_MASK;
6571
	reg |= GEN7_FF_TS_SCHED_HW;
6572
	reg |= GEN7_FF_VS_SCHED_HW;
6573
	reg |= GEN7_FF_DS_SCHED_HW;
6574
 
6575
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6576
}
6577
 
3243 Serge 6578
static void lpt_init_clock_gating(struct drm_device *dev)
6579
{
6580
	struct drm_i915_private *dev_priv = dev->dev_private;
6581
 
6582
	/*
6583
	 * TODO: this bit should only be enabled when really needed, then
6584
	 * disabled when not needed anymore in order to save power.
6585
	 */
6084 serge 6586
	if (HAS_PCH_LPT_LP(dev))
3243 Serge 6587
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
6588
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
6589
			   PCH_LP_PARTITION_LEVEL_DISABLE);
4104 Serge 6590
 
6591
	/* WADPOClockGatingDisable:hsw */
6084 serge 6592
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6593
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
4104 Serge 6594
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3243 Serge 6595
}
6596
 
4104 Serge 6597
static void lpt_suspend_hw(struct drm_device *dev)
6598
{
6599
	struct drm_i915_private *dev_priv = dev->dev_private;
6600
 
6084 serge 6601
	if (HAS_PCH_LPT_LP(dev)) {
4104 Serge 6602
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6603
 
6604
		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6605
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6606
	}
6607
}
6608
 
5354 serge 6609
static void broadwell_init_clock_gating(struct drm_device *dev)
3031 serge 6610
{
6611
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 6612
	enum pipe pipe;
6084 serge 6613
	uint32_t misccpctl;
3031 serge 6614
 
6084 serge 6615
	ilk_init_lp_watermarks(dev);
3031 serge 6616
 
4560 Serge 6617
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6618
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6619
 
6620
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6621
	I915_WRITE(CHICKEN_PAR1_1,
6622
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6623
 
6624
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5354 serge 6625
	for_each_pipe(dev_priv, pipe) {
5060 serge 6626
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6627
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6628
			   BDW_DPRS_MASK_VBLANK_SRD);
4560 Serge 6629
	}
6630
 
6631
	/* WaVSRefCountFullforceMissDisable:bdw */
6632
	/* WaDSRefCountFullforceMissDisable:bdw */
6633
	I915_WRITE(GEN7_FF_THREAD_MODE,
6634
		   I915_READ(GEN7_FF_THREAD_MODE) &
6635
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5060 serge 6636
 
6637
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6638
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6639
 
6640
	/* WaDisableSDEUnitClockGating:bdw */
6641
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6642
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6643
 
6084 serge 6644
	/*
6645
	 * WaProgramL3SqcReg1Default:bdw
6646
	 * WaTempDisableDOPClkGating:bdw
6647
	 */
6648
	misccpctl = I915_READ(GEN7_MISCCPCTL);
6649
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6650
	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6660 serge 6651
	/*
6652
	 * Wait at least 100 clocks before re-enabling clock gating. See
6653
	 * the definition of L3SQCREG1 in BSpec.
6654
	 */
6655
	POSTING_READ(GEN8_L3SQCREG1);
6656
	udelay(1);
6084 serge 6657
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6658
 
6659
	/*
6660
	 * WaGttCachingOffByDefault:bdw
6661
	 * GTT cache may not work with big pages, so if those
6662
	 * are ever enabled GTT cache may need to be disabled.
6663
	 */
6664
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6665
 
5354 serge 6666
	lpt_init_clock_gating(dev);
4560 Serge 6667
}
6668
 
6669
static void haswell_init_clock_gating(struct drm_device *dev)
6670
{
6671
	struct drm_i915_private *dev_priv = dev->dev_private;
6672
 
6673
	ilk_init_lp_watermarks(dev);
6674
 
4104 Serge 6675
	/* L3 caching of data atomics doesn't work -- disable it. */
6676
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6677
	I915_WRITE(HSW_ROW_CHICKEN3,
6678
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6679
 
6680
	/* This is required by WaCatErrorRejectionIssue:hsw */
3031 serge 6681
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6682
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6683
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6684
 
4104 Serge 6685
	/* WaVSRefCountFullforceMissDisable:hsw */
5060 serge 6686
	I915_WRITE(GEN7_FF_THREAD_MODE,
6687
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
3031 serge 6688
 
5060 serge 6689
	/* WaDisable_RenderCache_OperationalFlush:hsw */
6690
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6691
 
6692
	/* enable HiZ Raw Stall Optimization */
6693
	I915_WRITE(CACHE_MODE_0_GEN7,
6694
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6695
 
4104 Serge 6696
	/* WaDisable4x2SubspanOptimization:hsw */
3031 serge 6697
	I915_WRITE(CACHE_MODE_1,
6698
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6699
 
5060 serge 6700
	/*
6701
	 * BSpec recommends 8x4 when MSAA is used,
6702
	 * however in practice 16x4 seems fastest.
6703
	 *
6704
	 * Note that PS/WM thread counts depend on the WIZ hashing
6705
	 * disable bit, which we don't touch here, but it's good
6706
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6707
	 */
6708
	I915_WRITE(GEN7_GT_MODE,
5354 serge 6709
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5060 serge 6710
 
6084 serge 6711
	/* WaSampleCChickenBitEnable:hsw */
6712
	I915_WRITE(HALF_SLICE_CHICKEN3,
6713
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6714
 
4104 Serge 6715
	/* WaSwitchSolVfFArbitrationPriority:hsw */
3746 Serge 6716
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6717
 
4104 Serge 6718
	/* WaRsPkgCStateDisplayPMReq:hsw */
6719
	I915_WRITE(CHICKEN_PAR1_1,
6720
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
3031 serge 6721
 
3243 Serge 6722
	lpt_init_clock_gating(dev);
3031 serge 6723
}
6724
 
6725
static void ivybridge_init_clock_gating(struct drm_device *dev)
6726
{
6727
	struct drm_i915_private *dev_priv = dev->dev_private;
6728
	uint32_t snpcr;
6729
 
4560 Serge 6730
	ilk_init_lp_watermarks(dev);
3031 serge 6731
 
3243 Serge 6732
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3031 serge 6733
 
4104 Serge 6734
	/* WaDisableEarlyCull:ivb */
3243 Serge 6735
	I915_WRITE(_3D_CHICKEN3,
6736
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6737
 
4104 Serge 6738
	/* WaDisableBackToBackFlipFix:ivb */
3031 serge 6739
	I915_WRITE(IVB_CHICKEN3,
6740
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6741
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6742
 
4104 Serge 6743
	/* WaDisablePSDDualDispatchEnable:ivb */
3243 Serge 6744
	if (IS_IVB_GT1(dev))
6745
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6746
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6747
 
5060 serge 6748
	/* WaDisable_RenderCache_OperationalFlush:ivb */
6749
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6750
 
4104 Serge 6751
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
3031 serge 6752
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6753
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6754
 
4104 Serge 6755
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
3031 serge 6756
	I915_WRITE(GEN7_L3CNTLREG1,
6757
			GEN7_WA_FOR_GEN7_L3_CONTROL);
6758
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6084 serge 6759
		   GEN7_WA_L3_CHICKEN_MODE);
3243 Serge 6760
	if (IS_IVB_GT1(dev))
6761
		I915_WRITE(GEN7_ROW_CHICKEN2,
6762
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5060 serge 6763
	else {
6764
		/* must write both registers */
6765
		I915_WRITE(GEN7_ROW_CHICKEN2,
6766
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3243 Serge 6767
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6768
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5060 serge 6769
	}
3031 serge 6770
 
4104 Serge 6771
	/* WaForceL3Serialization:ivb */
3243 Serge 6772
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6773
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6774
 
5060 serge 6775
	/*
3031 serge 6776
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4104 Serge 6777
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
3031 serge 6778
	 */
6779
	I915_WRITE(GEN6_UCGCTL2,
5060 serge 6780
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3031 serge 6781
 
4104 Serge 6782
	/* This is required by WaCatErrorRejectionIssue:ivb */
3031 serge 6783
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6784
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6785
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6786
 
4104 Serge 6787
	g4x_disable_trickle_feed(dev);
3031 serge 6788
 
6789
	gen7_setup_fixed_func_scheduler(dev_priv);
6790
 
5060 serge 6791
	if (0) { /* causes HiZ corruption on ivb:gt1 */
6792
		/* enable HiZ Raw Stall Optimization */
6793
		I915_WRITE(CACHE_MODE_0_GEN7,
6794
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6795
	}
6796
 
4104 Serge 6797
	/* WaDisable4x2SubspanOptimization:ivb */
3031 serge 6798
	I915_WRITE(CACHE_MODE_1,
6799
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6800
 
5060 serge 6801
	/*
6802
	 * BSpec recommends 8x4 when MSAA is used,
6803
	 * however in practice 16x4 seems fastest.
6804
	 *
6805
	 * Note that PS/WM thread counts depend on the WIZ hashing
6806
	 * disable bit, which we don't touch here, but it's good
6807
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6808
	 */
6809
	I915_WRITE(GEN7_GT_MODE,
5354 serge 6810
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5060 serge 6811
 
3031 serge 6812
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6813
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
6814
	snpcr |= GEN6_MBC_SNPCR_MED;
6815
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3243 Serge 6816
 
3746 Serge 6817
	if (!HAS_PCH_NOP(dev))
6084 serge 6818
		cpt_init_clock_gating(dev);
3480 Serge 6819
 
6820
	gen6_check_mch_setup(dev);
3031 serge 6821
}
6822
 
6084 serge 6823
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6824
{
6937 serge 6825
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6084 serge 6826
 
6827
	/*
6828
	 * Disable trickle feed and enable pnd deadline calculation
6829
	 */
6830
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6831
	I915_WRITE(CBR1_VLV, 0);
6832
}
6833
 
3031 serge 6834
static void valleyview_init_clock_gating(struct drm_device *dev)
6835
{
6836
	struct drm_i915_private *dev_priv = dev->dev_private;
6837
 
6084 serge 6838
	vlv_init_display_clock_gating(dev_priv);
3031 serge 6839
 
4104 Serge 6840
	/* WaDisableEarlyCull:vlv */
3243 Serge 6841
	I915_WRITE(_3D_CHICKEN3,
6842
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6843
 
4104 Serge 6844
	/* WaDisableBackToBackFlipFix:vlv */
3031 serge 6845
	I915_WRITE(IVB_CHICKEN3,
6846
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6847
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6848
 
5060 serge 6849
	/* WaPsdDispatchEnable:vlv */
4104 Serge 6850
	/* WaDisablePSDDualDispatchEnable:vlv */
3243 Serge 6851
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3746 Serge 6852
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6853
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3243 Serge 6854
 
5060 serge 6855
	/* WaDisable_RenderCache_OperationalFlush:vlv */
6856
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
3031 serge 6857
 
4104 Serge 6858
	/* WaForceL3Serialization:vlv */
3243 Serge 6859
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6860
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6861
 
4104 Serge 6862
	/* WaDisableDopClockGating:vlv */
3243 Serge 6863
	I915_WRITE(GEN7_ROW_CHICKEN2,
6864
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6865
 
4104 Serge 6866
	/* This is required by WaCatErrorRejectionIssue:vlv */
3031 serge 6867
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6868
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6869
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6870
 
5060 serge 6871
	gen7_setup_fixed_func_scheduler(dev_priv);
6872
 
6873
	/*
3031 serge 6874
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4104 Serge 6875
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
3031 serge 6876
	 */
6877
	I915_WRITE(GEN6_UCGCTL2,
5060 serge 6878
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3031 serge 6879
 
5060 serge 6880
	/* WaDisableL3Bank2xClockGate:vlv
6881
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
6882
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6883
	I915_WRITE(GEN7_UCGCTL4,
6884
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3031 serge 6885
 
5060 serge 6886
	/*
6887
	 * BSpec says this must be set, even though
6888
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6889
	 */
3031 serge 6890
	I915_WRITE(CACHE_MODE_1,
6891
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6892
 
6893
	/*
6084 serge 6894
	 * BSpec recommends 8x4 when MSAA is used,
6895
	 * however in practice 16x4 seems fastest.
6896
	 *
6897
	 * Note that PS/WM thread counts depend on the WIZ hashing
6898
	 * disable bit, which we don't touch here, but it's good
6899
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6900
	 */
6901
	I915_WRITE(GEN7_GT_MODE,
6902
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6903
 
6904
	/*
5060 serge 6905
	 * WaIncreaseL3CreditsForVLVB0:vlv
6906
	 * This is the hardware default actually.
6907
	 */
6908
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6909
 
6910
	/*
4104 Serge 6911
	 * WaDisableVLVClockGating_VBIIssue:vlv
3243 Serge 6912
	 * Disable clock gating on th GCFG unit to prevent a delay
6913
	 * in the reporting of vblank events.
6914
	 */
5060 serge 6915
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6916
}
3746 Serge 6917
 
5060 serge 6918
static void cherryview_init_clock_gating(struct drm_device *dev)
6919
{
6920
	struct drm_i915_private *dev_priv = dev->dev_private;
6921
 
6084 serge 6922
	vlv_init_display_clock_gating(dev_priv);
5060 serge 6923
 
6924
	/* WaVSRefCountFullforceMissDisable:chv */
6925
	/* WaDSRefCountFullforceMissDisable:chv */
6926
	I915_WRITE(GEN7_FF_THREAD_MODE,
6927
		   I915_READ(GEN7_FF_THREAD_MODE) &
6928
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6929
 
6930
	/* WaDisableSemaphoreAndSyncFlipWait:chv */
6931
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6932
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6933
 
6934
	/* WaDisableCSUnitClockGating:chv */
6935
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6936
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6937
 
6938
	/* WaDisableSDEUnitClockGating:chv */
6939
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6940
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6084 serge 6941
 
6942
	/*
6943
	 * GTT cache may not work with big pages, so if those
6944
	 * are ever enabled GTT cache may need to be disabled.
6945
	 */
6946
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
3031 serge 6947
}
6948
 
6949
static void g4x_init_clock_gating(struct drm_device *dev)
6950
{
6951
	struct drm_i915_private *dev_priv = dev->dev_private;
6952
	uint32_t dspclk_gate;
6953
 
6954
	I915_WRITE(RENCLK_GATE_D1, 0);
6955
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6956
		   GS_UNIT_CLOCK_GATE_DISABLE |
6957
		   CL_UNIT_CLOCK_GATE_DISABLE);
6958
	I915_WRITE(RAMCLK_GATE_D, 0);
6959
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6960
		OVRUNIT_CLOCK_GATE_DISABLE |
6961
		OVCUNIT_CLOCK_GATE_DISABLE;
6962
	if (IS_GM45(dev))
6963
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6964
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3243 Serge 6965
 
6966
	/* WaDisableRenderCachePipelinedFlush */
6967
	I915_WRITE(CACHE_MODE_0,
6968
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4104 Serge 6969
 
5060 serge 6970
	/* WaDisable_RenderCache_OperationalFlush:g4x */
6971
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6972
 
4104 Serge 6973
	g4x_disable_trickle_feed(dev);
3031 serge 6974
}
6975
 
6976
static void crestline_init_clock_gating(struct drm_device *dev)
6977
{
6978
	struct drm_i915_private *dev_priv = dev->dev_private;
6979
 
6980
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6981
	I915_WRITE(RENCLK_GATE_D2, 0);
6982
	I915_WRITE(DSPCLK_GATE_D, 0);
6983
	I915_WRITE(RAMCLK_GATE_D, 0);
6984
	I915_WRITE16(DEUC, 0);
4104 Serge 6985
	I915_WRITE(MI_ARB_STATE,
6986
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5060 serge 6987
 
6988
	/* WaDisable_RenderCache_OperationalFlush:gen4 */
6989
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
3031 serge 6990
}
6991
 
6992
static void broadwater_init_clock_gating(struct drm_device *dev)
6993
{
6994
	struct drm_i915_private *dev_priv = dev->dev_private;
6995
 
6996
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6997
		   I965_RCC_CLOCK_GATE_DISABLE |
6998
		   I965_RCPB_CLOCK_GATE_DISABLE |
6999
		   I965_ISC_CLOCK_GATE_DISABLE |
7000
		   I965_FBC_CLOCK_GATE_DISABLE);
7001
	I915_WRITE(RENCLK_GATE_D2, 0);
4104 Serge 7002
	I915_WRITE(MI_ARB_STATE,
7003
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5060 serge 7004
 
7005
	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7006
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
3031 serge 7007
}
7008
 
7009
static void gen3_init_clock_gating(struct drm_device *dev)
7010
{
7011
	struct drm_i915_private *dev_priv = dev->dev_private;
7012
	u32 dstate = I915_READ(D_STATE);
7013
 
7014
	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7015
		DSTATE_DOT_CLOCK_GATING;
7016
	I915_WRITE(D_STATE, dstate);
7017
 
7018
	if (IS_PINEVIEW(dev))
7019
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7020
 
7021
	/* IIR "flip pending" means done if this bit is set */
7022
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5060 serge 7023
 
7024
	/* interrupts should cause a wake up from C3 */
7025
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7026
 
7027
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7028
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5354 serge 7029
 
7030
	I915_WRITE(MI_ARB_STATE,
7031
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
3031 serge 7032
}
7033
 
7034
static void i85x_init_clock_gating(struct drm_device *dev)
7035
{
7036
	struct drm_i915_private *dev_priv = dev->dev_private;
7037
 
7038
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5060 serge 7039
 
7040
	/* interrupts should cause a wake up from C3 */
7041
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7042
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
5354 serge 7043
 
7044
	I915_WRITE(MEM_MODE,
7045
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
3031 serge 7046
}
7047
 
7048
static void i830_init_clock_gating(struct drm_device *dev)
7049
{
7050
	struct drm_i915_private *dev_priv = dev->dev_private;
7051
 
7052
	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5354 serge 7053
 
7054
	I915_WRITE(MEM_MODE,
7055
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7056
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
3031 serge 7057
}
7058
 
7059
void intel_init_clock_gating(struct drm_device *dev)
7060
{
7061
	struct drm_i915_private *dev_priv = dev->dev_private;
7062
 
6084 serge 7063
	if (dev_priv->display.init_clock_gating)
7064
		dev_priv->display.init_clock_gating(dev);
3031 serge 7065
}
7066
 
4104 Serge 7067
void intel_suspend_hw(struct drm_device *dev)
7068
{
7069
	if (HAS_PCH_LPT(dev))
7070
		lpt_suspend_hw(dev);
7071
}
7072
 
5354 serge 7073
/* Set up chip specific power management-related functions */
7074
void intel_init_pm(struct drm_device *dev)
7075
{
7076
	struct drm_i915_private *dev_priv = dev->dev_private;
7077
 
6084 serge 7078
	intel_fbc_init(dev_priv);
5354 serge 7079
 
3031 serge 7080
	/* For cxsr */
7081
	if (IS_PINEVIEW(dev))
7082
		i915_pineview_get_mem_freq(dev);
7083
	else if (IS_GEN5(dev))
7084
		i915_ironlake_get_mem_freq(dev);
7085
 
7086
	/* For FIFO watermark updates */
5354 serge 7087
	if (INTEL_INFO(dev)->gen >= 9) {
7088
		skl_setup_wm_latency(dev);
7089
 
6084 serge 7090
		if (IS_BROXTON(dev))
7091
			dev_priv->display.init_clock_gating =
7092
				bxt_init_clock_gating;
5354 serge 7093
		dev_priv->display.update_wm = skl_update_wm;
7094
	} else if (HAS_PCH_SPLIT(dev)) {
5060 serge 7095
		ilk_setup_wm_latency(dev);
4104 Serge 7096
 
4560 Serge 7097
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7098
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7099
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7100
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7101
			dev_priv->display.update_wm = ilk_update_wm;
6937 serge 7102
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7144 serge 7103
			dev_priv->display.program_watermarks = ilk_program_watermarks;
6084 serge 7104
		} else {
7105
			DRM_DEBUG_KMS("Failed to read display plane latency. "
7106
				      "Disable CxSR\n");
7107
		}
4560 Serge 7108
 
7109
		if (IS_GEN5(dev))
7110
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7111
		else if (IS_GEN6(dev))
3031 serge 7112
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4560 Serge 7113
		else if (IS_IVYBRIDGE(dev))
3031 serge 7114
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4560 Serge 7115
		else if (IS_HASWELL(dev))
3031 serge 7116
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4560 Serge 7117
		else if (INTEL_INFO(dev)->gen == 8)
5354 serge 7118
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
5060 serge 7119
	} else if (IS_CHERRYVIEW(dev)) {
6084 serge 7120
		vlv_setup_wm_latency(dev);
7121
 
7122
		dev_priv->display.update_wm = vlv_update_wm;
5060 serge 7123
		dev_priv->display.init_clock_gating =
7124
			cherryview_init_clock_gating;
3031 serge 7125
	} else if (IS_VALLEYVIEW(dev)) {
6084 serge 7126
		vlv_setup_wm_latency(dev);
7127
 
7128
		dev_priv->display.update_wm = vlv_update_wm;
3031 serge 7129
		dev_priv->display.init_clock_gating =
7130
			valleyview_init_clock_gating;
7131
	} else if (IS_PINEVIEW(dev)) {
7132
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7133
					    dev_priv->is_ddr3,
7134
					    dev_priv->fsb_freq,
7135
					    dev_priv->mem_freq)) {
7136
			DRM_INFO("failed to find known CxSR latency "
7137
				 "(found ddr%s fsb freq %d, mem freq %d), "
7138
				 "disabling CxSR\n",
7139
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7140
				 dev_priv->fsb_freq, dev_priv->mem_freq);
7141
			/* Disable CxSR and never update its watermark again */
5060 serge 7142
			intel_set_memory_cxsr(dev_priv, false);
3031 serge 7143
			dev_priv->display.update_wm = NULL;
7144
		} else
7145
			dev_priv->display.update_wm = pineview_update_wm;
7146
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7147
	} else if (IS_G4X(dev)) {
7148
		dev_priv->display.update_wm = g4x_update_wm;
7149
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7150
	} else if (IS_GEN4(dev)) {
7151
		dev_priv->display.update_wm = i965_update_wm;
7152
		if (IS_CRESTLINE(dev))
7153
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7154
		else if (IS_BROADWATER(dev))
7155
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7156
	} else if (IS_GEN3(dev)) {
7157
		dev_priv->display.update_wm = i9xx_update_wm;
7158
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7159
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4560 Serge 7160
	} else if (IS_GEN2(dev)) {
7161
		if (INTEL_INFO(dev)->num_pipes == 1) {
7162
			dev_priv->display.update_wm = i845_update_wm;
7163
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7164
		} else {
7165
			dev_priv->display.update_wm = i9xx_update_wm;
6084 serge 7166
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
4560 Serge 7167
		}
7168
 
7169
		if (IS_I85X(dev) || IS_I865G(dev))
6084 serge 7170
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4560 Serge 7171
		else
7172
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
3031 serge 7173
	} else {
4560 Serge 7174
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
3031 serge 7175
	}
7176
}
7177
 
5354 serge 7178
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
3243 Serge 7179
{
7180
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 7181
 
3243 Serge 7182
	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7183
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7184
		return -EAGAIN;
7185
	}
3031 serge 7186
 
3243 Serge 7187
	I915_WRITE(GEN6_PCODE_DATA, *val);
5354 serge 7188
	I915_WRITE(GEN6_PCODE_DATA1, 0);
3243 Serge 7189
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7190
 
7191
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7192
		     500)) {
7193
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7194
		return -ETIMEDOUT;
6084 serge 7195
	}
3243 Serge 7196
 
7197
	*val = I915_READ(GEN6_PCODE_DATA);
7198
	I915_WRITE(GEN6_PCODE_DATA, 0);
7199
 
7200
	return 0;
7201
}
7202
 
5354 serge 7203
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
3243 Serge 7204
{
7205
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7206
 
7207
	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7208
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7209
		return -EAGAIN;
6084 serge 7210
	}
3243 Serge 7211
 
7212
	I915_WRITE(GEN6_PCODE_DATA, val);
7213
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7214
 
7215
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7216
		     500)) {
7217
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7218
		return -ETIMEDOUT;
3031 serge 7219
	}
3243 Serge 7220
 
7221
	I915_WRITE(GEN6_PCODE_DATA, 0);
7222
 
7223
	return 0;
3031 serge 7224
}
3746 Serge 7225
 
5354 serge 7226
static int vlv_gpu_freq_div(unsigned int czclk_freq)
3746 Serge 7227
{
5354 serge 7228
	switch (czclk_freq) {
7229
	case 200:
7230
		return 10;
7231
	case 267:
7232
		return 12;
7233
	case 320:
7234
	case 333:
7235
		return 16;
7236
	case 400:
7237
		return 20;
4104 Serge 7238
	default:
7239
		return -1;
7240
	}
5354 serge 7241
}
3746 Serge 7242
 
5354 serge 7243
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7244
{
6084 serge 7245
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
5354 serge 7246
 
7247
	div = vlv_gpu_freq_div(czclk_freq);
7248
	if (div < 0)
7249
		return div;
7250
 
7251
	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
4104 Serge 7252
}
3746 Serge 7253
 
5060 serge 7254
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
4104 Serge 7255
{
6084 serge 7256
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
3746 Serge 7257
 
5354 serge 7258
	mul = vlv_gpu_freq_div(czclk_freq);
7259
	if (mul < 0)
7260
		return mul;
3746 Serge 7261
 
5354 serge 7262
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
3746 Serge 7263
}
7264
 
5060 serge 7265
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7266
{
6084 serge 7267
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
5060 serge 7268
 
7144 serge 7269
	div = vlv_gpu_freq_div(czclk_freq);
5354 serge 7270
	if (div < 0)
7271
		return div;
7144 serge 7272
	div /= 2;
5060 serge 7273
 
5354 serge 7274
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
5060 serge 7275
}
7276
 
7277
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7278
{
6084 serge 7279
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
5060 serge 7280
 
7144 serge 7281
	mul = vlv_gpu_freq_div(czclk_freq);
5354 serge 7282
	if (mul < 0)
7283
		return mul;
7144 serge 7284
	mul /= 2;
5060 serge 7285
 
5354 serge 7286
	/* CHV needs even values */
7287
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
5060 serge 7288
}
7289
 
6084 serge 7290
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
5060 serge 7291
{
6084 serge 7292
	if (IS_GEN9(dev_priv->dev))
7293
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7294
					 GEN9_FREQ_SCALER);
7295
	else if (IS_CHERRYVIEW(dev_priv->dev))
7296
		return chv_gpu_freq(dev_priv, val);
7297
	else if (IS_VALLEYVIEW(dev_priv->dev))
7298
		return byt_gpu_freq(dev_priv, val);
7299
	else
7300
		return val * GT_FREQUENCY_MULTIPLIER;
7301
}
5060 serge 7302
 
6084 serge 7303
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7304
{
7305
	if (IS_GEN9(dev_priv->dev))
7306
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7307
					 GT_FREQUENCY_MULTIPLIER);
7308
	else if (IS_CHERRYVIEW(dev_priv->dev))
7309
		return chv_freq_opcode(dev_priv, val);
5060 serge 7310
	else if (IS_VALLEYVIEW(dev_priv->dev))
6084 serge 7311
		return byt_freq_opcode(dev_priv, val);
7312
	else
7313
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7314
}
5060 serge 7315
 
6084 serge 7316
struct request_boost {
7317
	struct work_struct work;
7318
	struct drm_i915_gem_request *req;
7319
};
7320
 
7321
static void __intel_rps_boost_work(struct work_struct *work)
7322
{
7323
	struct request_boost *boost = container_of(work, struct request_boost, work);
7324
	struct drm_i915_gem_request *req = boost->req;
7325
 
7326
	if (!i915_gem_request_completed(req, true))
7327
		gen6_rps_boost(to_i915(req->ring->dev), NULL,
7328
			       req->emitted_jiffies);
7329
 
7330
	i915_gem_request_unreference__unlocked(req);
7331
	kfree(boost);
5060 serge 7332
}
7333
 
6084 serge 7334
void intel_queue_rps_boost_for_request(struct drm_device *dev,
7335
				       struct drm_i915_gem_request *req)
5060 serge 7336
{
6084 serge 7337
	struct request_boost *boost;
5060 serge 7338
 
6084 serge 7339
	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7340
		return;
5060 serge 7341
 
6084 serge 7342
	if (i915_gem_request_completed(req, true))
7343
		return;
7344
 
7345
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7346
	if (boost == NULL)
7347
		return;
7348
 
7349
	i915_gem_request_reference(req);
7350
	boost->req = req;
7351
 
7352
	INIT_WORK(&boost->work, __intel_rps_boost_work);
7353
	queue_work(to_i915(dev)->wq, &boost->work);
5060 serge 7354
}
7355
 
4560 Serge 7356
void intel_pm_setup(struct drm_device *dev)
3746 Serge 7357
{
4104 Serge 7358
	struct drm_i915_private *dev_priv = dev->dev_private;
7359
 
4560 Serge 7360
	mutex_init(&dev_priv->rps.hw_lock);
6084 serge 7361
	spin_lock_init(&dev_priv->rps.client_lock);
4560 Serge 7362
 
4104 Serge 7363
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7364
			  intel_gen6_powersave_work);
6084 serge 7365
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7366
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7367
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
5060 serge 7368
 
7369
	dev_priv->pm.suspended = false;
6937 serge 7370
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7371
	atomic_set(&dev_priv->pm.atomic_seq, 0);
3746 Serge 7372
}