Subversion Repositories Kolibri OS

Rev

Rev 6935 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
3031 serge 1
/*
2
 * Copyright © 2012 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eugeni Dodonov 
25
 *
26
 */
27
 
28
//#include 
29
#include "i915_drv.h"
30
#include "intel_drv.h"
31
//#include "../../../platform/x86/intel_ips.h"
32
#include 
33
 
4560 Serge 34
 
3031 serge 35
#define FORCEWAKE_ACK_TIMEOUT_MS 2
36
 
37
void getrawmonotonic(struct timespec *ts);
38
 
4560 Serge 39
/**
40
 * RC6 is a special power stage which allows the GPU to enter an very
41
 * low-voltage mode when idle, using down to 0V while at this stage.  This
42
 * stage is entered automatically when the GPU is idle when RC6 support is
43
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
44
 *
45
 * There are different RC6 modes available in Intel GPU, which differentiate
46
 * among each other with the latency required to enter and leave RC6 and
47
 * voltage consumed by the GPU in different states.
48
 *
49
 * The combination of the following flags define which states GPU is allowed
50
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
51
 * RC6pp is deepest RC6. Their support by hardware varies according to the
52
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
53
 * which brings the most power savings; deeper states save more power, but
54
 * require higher latency to switch to and wake up.
55
 */
56
#define INTEL_RC6_ENABLE			(1<<0)
57
#define INTEL_RC6p_ENABLE			(1<<1)
58
#define INTEL_RC6pp_ENABLE			(1<<2)
59
 
6084 serge 60
static void bxt_init_clock_gating(struct drm_device *dev)
5354 serge 61
{
62
	struct drm_i915_private *dev_priv = dev->dev_private;
63
 
6084 serge 64
	/* WaDisableSDEUnitClockGating:bxt */
5354 serge 65
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
66
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
67
 
68
	/*
6084 serge 69
	 * FIXME:
70
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
5354 serge 71
	 */
6084 serge 72
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
73
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
6937 serge 74
 
75
	/*
76
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
77
	 * to stay fully on.
78
	 */
79
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
80
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
81
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
5354 serge 82
}
83
 
3031 serge 84
static void i915_pineview_get_mem_freq(struct drm_device *dev)
85
{
5060 serge 86
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 87
	u32 tmp;
88
 
89
	tmp = I915_READ(CLKCFG);
90
 
91
	switch (tmp & CLKCFG_FSB_MASK) {
92
	case CLKCFG_FSB_533:
93
		dev_priv->fsb_freq = 533; /* 133*4 */
94
		break;
95
	case CLKCFG_FSB_800:
96
		dev_priv->fsb_freq = 800; /* 200*4 */
97
		break;
98
	case CLKCFG_FSB_667:
99
		dev_priv->fsb_freq =  667; /* 167*4 */
100
		break;
101
	case CLKCFG_FSB_400:
102
		dev_priv->fsb_freq = 400; /* 100*4 */
103
		break;
104
	}
105
 
106
	switch (tmp & CLKCFG_MEM_MASK) {
107
	case CLKCFG_MEM_533:
108
		dev_priv->mem_freq = 533;
109
		break;
110
	case CLKCFG_MEM_667:
111
		dev_priv->mem_freq = 667;
112
		break;
113
	case CLKCFG_MEM_800:
114
		dev_priv->mem_freq = 800;
115
		break;
116
	}
117
 
118
	/* detect pineview DDR3 setting */
119
	tmp = I915_READ(CSHRDDR3CTL);
120
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
121
}
122
 
123
static void i915_ironlake_get_mem_freq(struct drm_device *dev)
124
{
5060 serge 125
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 126
	u16 ddrpll, csipll;
127
 
128
	ddrpll = I915_READ16(DDRMPLL1);
129
	csipll = I915_READ16(CSIPLL0);
130
 
131
	switch (ddrpll & 0xff) {
132
	case 0xc:
133
		dev_priv->mem_freq = 800;
134
		break;
135
	case 0x10:
136
		dev_priv->mem_freq = 1066;
137
		break;
138
	case 0x14:
139
		dev_priv->mem_freq = 1333;
140
		break;
141
	case 0x18:
142
		dev_priv->mem_freq = 1600;
143
		break;
144
	default:
145
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
146
				 ddrpll & 0xff);
147
		dev_priv->mem_freq = 0;
148
		break;
149
	}
150
 
151
	dev_priv->ips.r_t = dev_priv->mem_freq;
152
 
153
	switch (csipll & 0x3ff) {
154
	case 0x00c:
155
		dev_priv->fsb_freq = 3200;
156
		break;
157
	case 0x00e:
158
		dev_priv->fsb_freq = 3733;
159
		break;
160
	case 0x010:
161
		dev_priv->fsb_freq = 4266;
162
		break;
163
	case 0x012:
164
		dev_priv->fsb_freq = 4800;
165
		break;
166
	case 0x014:
167
		dev_priv->fsb_freq = 5333;
168
		break;
169
	case 0x016:
170
		dev_priv->fsb_freq = 5866;
171
		break;
172
	case 0x018:
173
		dev_priv->fsb_freq = 6400;
174
		break;
175
	default:
176
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
177
				 csipll & 0x3ff);
178
		dev_priv->fsb_freq = 0;
179
		break;
180
	}
181
 
182
	if (dev_priv->fsb_freq == 3200) {
183
		dev_priv->ips.c_m = 0;
184
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
185
		dev_priv->ips.c_m = 1;
186
	} else {
187
		dev_priv->ips.c_m = 2;
188
	}
189
}
190
 
191
static const struct cxsr_latency cxsr_latency_table[] = {
192
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
193
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
194
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
195
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
196
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
197
 
198
	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
199
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
200
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
201
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
202
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
203
 
204
	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
205
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
206
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
207
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
208
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
209
 
210
	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
211
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
212
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
213
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
214
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
215
 
216
	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
217
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
218
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
219
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
220
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
221
 
222
	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
223
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
224
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
225
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
226
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
227
};
228
 
229
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
230
							 int is_ddr3,
231
							 int fsb,
232
							 int mem)
233
{
234
	const struct cxsr_latency *latency;
235
	int i;
236
 
237
	if (fsb == 0 || mem == 0)
238
		return NULL;
239
 
240
	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
241
		latency = &cxsr_latency_table[i];
242
		if (is_desktop == latency->is_desktop &&
243
		    is_ddr3 == latency->is_ddr3 &&
244
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
245
			return latency;
246
	}
247
 
248
	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
249
 
250
	return NULL;
251
}
252
 
6084 serge 253
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
254
{
255
	u32 val;
256
 
257
	mutex_lock(&dev_priv->rps.hw_lock);
258
 
259
	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
260
	if (enable)
261
		val &= ~FORCE_DDR_HIGH_FREQ;
262
	else
263
		val |= FORCE_DDR_HIGH_FREQ;
264
	val &= ~FORCE_DDR_LOW_FREQ;
265
	val |= FORCE_DDR_FREQ_REQ_ACK;
266
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
267
 
268
	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
269
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
270
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
271
 
272
	mutex_unlock(&dev_priv->rps.hw_lock);
273
}
274
 
275
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
276
{
277
	u32 val;
278
 
279
	mutex_lock(&dev_priv->rps.hw_lock);
280
 
281
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
282
	if (enable)
283
		val |= DSP_MAXFIFO_PM5_ENABLE;
284
	else
285
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
286
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
287
 
288
	mutex_unlock(&dev_priv->rps.hw_lock);
289
}
290
 
291
#define FW_WM(value, plane) \
292
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
293
 
5060 serge 294
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
3031 serge 295
{
5060 serge 296
	struct drm_device *dev = dev_priv->dev;
297
	u32 val;
3031 serge 298
 
6937 serge 299
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5060 serge 300
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
6084 serge 301
		POSTING_READ(FW_BLC_SELF_VLV);
302
		dev_priv->wm.vlv.cxsr = enable;
5060 serge 303
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
304
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
6084 serge 305
		POSTING_READ(FW_BLC_SELF);
5060 serge 306
	} else if (IS_PINEVIEW(dev)) {
307
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
308
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
309
		I915_WRITE(DSPFW3, val);
6084 serge 310
		POSTING_READ(DSPFW3);
5060 serge 311
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
312
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
313
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
314
		I915_WRITE(FW_BLC_SELF, val);
6084 serge 315
		POSTING_READ(FW_BLC_SELF);
5060 serge 316
	} else if (IS_I915GM(dev)) {
317
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
318
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
319
		I915_WRITE(INSTPM, val);
6084 serge 320
		POSTING_READ(INSTPM);
5060 serge 321
	} else {
322
		return;
323
	}
324
 
325
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
326
		      enable ? "enabled" : "disabled");
3031 serge 327
}
328
 
6084 serge 329
 
3031 serge 330
/*
331
 * Latency for FIFO fetches is dependent on several factors:
332
 *   - memory configuration (speed, channels)
333
 *   - chipset
334
 *   - current MCH state
335
 * It can be fairly high in some situations, so here we assume a fairly
336
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
337
 * set this value too high, the FIFO will fetch frequently to stay full)
338
 * and power consumption (set it too low to save power and we might see
339
 * FIFO underruns and display "flicker").
340
 *
341
 * A value of 5us seems to be a good balance; safe for very low end
342
 * platforms but not overly aggressive on lower latency configs.
343
 */
5354 serge 344
static const int pessimal_latency_ns = 5000;
3031 serge 345
 
6084 serge 346
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
347
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
348
 
349
static int vlv_get_fifo_size(struct drm_device *dev,
350
			      enum pipe pipe, int plane)
351
{
352
	struct drm_i915_private *dev_priv = dev->dev_private;
353
	int sprite0_start, sprite1_start, size;
354
 
355
	switch (pipe) {
356
		uint32_t dsparb, dsparb2, dsparb3;
357
	case PIPE_A:
358
		dsparb = I915_READ(DSPARB);
359
		dsparb2 = I915_READ(DSPARB2);
360
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
361
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
362
		break;
363
	case PIPE_B:
364
		dsparb = I915_READ(DSPARB);
365
		dsparb2 = I915_READ(DSPARB2);
366
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
367
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
368
		break;
369
	case PIPE_C:
370
		dsparb2 = I915_READ(DSPARB2);
371
		dsparb3 = I915_READ(DSPARB3);
372
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
373
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
374
		break;
375
	default:
376
		return 0;
377
	}
378
 
379
	switch (plane) {
380
	case 0:
381
		size = sprite0_start;
382
		break;
383
	case 1:
384
		size = sprite1_start - sprite0_start;
385
		break;
386
	case 2:
387
		size = 512 - 1 - sprite1_start;
388
		break;
389
	default:
390
		return 0;
391
	}
392
 
393
	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
394
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
395
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
396
		      size);
397
 
398
	return size;
399
}
400
 
3031 serge 401
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
402
{
403
	struct drm_i915_private *dev_priv = dev->dev_private;
404
	uint32_t dsparb = I915_READ(DSPARB);
405
	int size;
406
 
407
	size = dsparb & 0x7f;
408
	if (plane)
409
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
410
 
411
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
412
		      plane ? "B" : "A", size);
413
 
414
	return size;
415
}
416
 
4560 Serge 417
static int i830_get_fifo_size(struct drm_device *dev, int plane)
3031 serge 418
{
419
	struct drm_i915_private *dev_priv = dev->dev_private;
420
	uint32_t dsparb = I915_READ(DSPARB);
421
	int size;
422
 
423
	size = dsparb & 0x1ff;
424
	if (plane)
425
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
426
	size >>= 1; /* Convert to cachelines */
427
 
428
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
429
		      plane ? "B" : "A", size);
430
 
431
	return size;
432
}
433
 
434
static int i845_get_fifo_size(struct drm_device *dev, int plane)
435
{
436
	struct drm_i915_private *dev_priv = dev->dev_private;
437
	uint32_t dsparb = I915_READ(DSPARB);
438
	int size;
439
 
440
	size = dsparb & 0x7f;
441
	size >>= 2; /* Convert to cachelines */
442
 
443
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
444
		      plane ? "B" : "A",
445
		      size);
446
 
447
	return size;
448
}
449
 
450
/* Pineview has different values for various configs */
451
static const struct intel_watermark_params pineview_display_wm = {
5060 serge 452
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
453
	.max_wm = PINEVIEW_MAX_WM,
454
	.default_wm = PINEVIEW_DFT_WM,
455
	.guard_size = PINEVIEW_GUARD_WM,
456
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
3031 serge 457
};
458
static const struct intel_watermark_params pineview_display_hplloff_wm = {
5060 serge 459
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
460
	.max_wm = PINEVIEW_MAX_WM,
461
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
462
	.guard_size = PINEVIEW_GUARD_WM,
463
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
3031 serge 464
};
465
static const struct intel_watermark_params pineview_cursor_wm = {
5060 serge 466
	.fifo_size = PINEVIEW_CURSOR_FIFO,
467
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
468
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
469
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
470
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
3031 serge 471
};
472
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
5060 serge 473
	.fifo_size = PINEVIEW_CURSOR_FIFO,
474
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
475
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
476
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
477
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
3031 serge 478
};
479
static const struct intel_watermark_params g4x_wm_info = {
5060 serge 480
	.fifo_size = G4X_FIFO_SIZE,
481
	.max_wm = G4X_MAX_WM,
482
	.default_wm = G4X_MAX_WM,
483
	.guard_size = 2,
484
	.cacheline_size = G4X_FIFO_LINE_SIZE,
3031 serge 485
};
486
static const struct intel_watermark_params g4x_cursor_wm_info = {
5060 serge 487
	.fifo_size = I965_CURSOR_FIFO,
488
	.max_wm = I965_CURSOR_MAX_WM,
489
	.default_wm = I965_CURSOR_DFT_WM,
490
	.guard_size = 2,
491
	.cacheline_size = G4X_FIFO_LINE_SIZE,
3031 serge 492
};
493
static const struct intel_watermark_params valleyview_wm_info = {
5060 serge 494
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
495
	.max_wm = VALLEYVIEW_MAX_WM,
496
	.default_wm = VALLEYVIEW_MAX_WM,
497
	.guard_size = 2,
498
	.cacheline_size = G4X_FIFO_LINE_SIZE,
3031 serge 499
};
500
static const struct intel_watermark_params valleyview_cursor_wm_info = {
5060 serge 501
	.fifo_size = I965_CURSOR_FIFO,
502
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
503
	.default_wm = I965_CURSOR_DFT_WM,
504
	.guard_size = 2,
505
	.cacheline_size = G4X_FIFO_LINE_SIZE,
3031 serge 506
};
507
static const struct intel_watermark_params i965_cursor_wm_info = {
5060 serge 508
	.fifo_size = I965_CURSOR_FIFO,
509
	.max_wm = I965_CURSOR_MAX_WM,
510
	.default_wm = I965_CURSOR_DFT_WM,
511
	.guard_size = 2,
512
	.cacheline_size = I915_FIFO_LINE_SIZE,
3031 serge 513
};
514
static const struct intel_watermark_params i945_wm_info = {
5060 serge 515
	.fifo_size = I945_FIFO_SIZE,
516
	.max_wm = I915_MAX_WM,
517
	.default_wm = 1,
518
	.guard_size = 2,
519
	.cacheline_size = I915_FIFO_LINE_SIZE,
3031 serge 520
};
521
static const struct intel_watermark_params i915_wm_info = {
5060 serge 522
	.fifo_size = I915_FIFO_SIZE,
523
	.max_wm = I915_MAX_WM,
524
	.default_wm = 1,
525
	.guard_size = 2,
526
	.cacheline_size = I915_FIFO_LINE_SIZE,
3031 serge 527
};
5354 serge 528
static const struct intel_watermark_params i830_a_wm_info = {
5060 serge 529
	.fifo_size = I855GM_FIFO_SIZE,
530
	.max_wm = I915_MAX_WM,
531
	.default_wm = 1,
532
	.guard_size = 2,
533
	.cacheline_size = I830_FIFO_LINE_SIZE,
3031 serge 534
};
5354 serge 535
static const struct intel_watermark_params i830_bc_wm_info = {
536
	.fifo_size = I855GM_FIFO_SIZE,
537
	.max_wm = I915_MAX_WM/2,
538
	.default_wm = 1,
539
	.guard_size = 2,
540
	.cacheline_size = I830_FIFO_LINE_SIZE,
541
};
4560 Serge 542
static const struct intel_watermark_params i845_wm_info = {
5060 serge 543
	.fifo_size = I830_FIFO_SIZE,
544
	.max_wm = I915_MAX_WM,
545
	.default_wm = 1,
546
	.guard_size = 2,
547
	.cacheline_size = I830_FIFO_LINE_SIZE,
3031 serge 548
};
549
 
550
/**
551
 * intel_calculate_wm - calculate watermark level
552
 * @clock_in_khz: pixel clock
553
 * @wm: chip FIFO params
554
 * @pixel_size: display pixel size
555
 * @latency_ns: memory latency for the platform
556
 *
557
 * Calculate the watermark level (the level at which the display plane will
558
 * start fetching from memory again).  Each chip has a different display
559
 * FIFO size and allocation, so the caller needs to figure that out and pass
560
 * in the correct intel_watermark_params structure.
561
 *
562
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
563
 * on the pixel size.  When it reaches the watermark level, it'll start
564
 * fetching FIFO line sized based chunks from memory until the FIFO fills
565
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
566
 * will occur, and a display engine hang could result.
567
 */
568
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
569
					const struct intel_watermark_params *wm,
570
					int fifo_size,
571
					int pixel_size,
572
					unsigned long latency_ns)
573
{
574
	long entries_required, wm_size;
575
 
576
	/*
577
	 * Note: we need to make sure we don't overflow for various clock &
578
	 * latency values.
579
	 * clocks go from a few thousand to several hundred thousand.
580
	 * latency is usually a few thousand
581
	 */
582
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
583
		1000;
584
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
585
 
586
	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
587
 
588
	wm_size = fifo_size - (entries_required + wm->guard_size);
589
 
590
	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
591
 
592
	/* Don't promote wm_size to unsigned... */
593
	if (wm_size > (long)wm->max_wm)
594
		wm_size = wm->max_wm;
595
	if (wm_size <= 0)
596
		wm_size = wm->default_wm;
5354 serge 597
 
598
	/*
599
	 * Bspec seems to indicate that the value shouldn't be lower than
600
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
601
	 * Lets go for 8 which is the burst size since certain platforms
602
	 * already use a hardcoded 8 (which is what the spec says should be
603
	 * done).
604
	 */
605
	if (wm_size <= 8)
606
		wm_size = 8;
607
 
3031 serge 608
	return wm_size;
609
}
610
 
611
static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
612
{
613
	struct drm_crtc *crtc, *enabled = NULL;
614
 
5060 serge 615
	for_each_crtc(dev, crtc) {
3243 Serge 616
		if (intel_crtc_active(crtc)) {
3031 serge 617
			if (enabled)
618
				return NULL;
619
			enabled = crtc;
620
		}
621
	}
622
 
623
	return enabled;
624
}
625
 
4560 Serge 626
static void pineview_update_wm(struct drm_crtc *unused_crtc)
3031 serge 627
{
4560 Serge 628
	struct drm_device *dev = unused_crtc->dev;
3031 serge 629
	struct drm_i915_private *dev_priv = dev->dev_private;
630
	struct drm_crtc *crtc;
631
	const struct cxsr_latency *latency;
632
	u32 reg;
633
	unsigned long wm;
634
 
635
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
636
					 dev_priv->fsb_freq, dev_priv->mem_freq);
637
	if (!latency) {
638
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
5060 serge 639
		intel_set_memory_cxsr(dev_priv, false);
3031 serge 640
		return;
641
	}
642
 
643
	crtc = single_enabled_crtc(dev);
644
	if (crtc) {
6084 serge 645
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
646
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
647
		int clock = adjusted_mode->crtc_clock;
3031 serge 648
 
649
		/* Display SR */
650
		wm = intel_calculate_wm(clock, &pineview_display_wm,
651
					pineview_display_wm.fifo_size,
652
					pixel_size, latency->display_sr);
653
		reg = I915_READ(DSPFW1);
654
		reg &= ~DSPFW_SR_MASK;
6084 serge 655
		reg |= FW_WM(wm, SR);
3031 serge 656
		I915_WRITE(DSPFW1, reg);
657
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
658
 
659
		/* cursor SR */
660
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
661
					pineview_display_wm.fifo_size,
662
					pixel_size, latency->cursor_sr);
663
		reg = I915_READ(DSPFW3);
664
		reg &= ~DSPFW_CURSOR_SR_MASK;
6084 serge 665
		reg |= FW_WM(wm, CURSOR_SR);
3031 serge 666
		I915_WRITE(DSPFW3, reg);
667
 
668
		/* Display HPLL off SR */
669
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
670
					pineview_display_hplloff_wm.fifo_size,
671
					pixel_size, latency->display_hpll_disable);
672
		reg = I915_READ(DSPFW3);
673
		reg &= ~DSPFW_HPLL_SR_MASK;
6084 serge 674
		reg |= FW_WM(wm, HPLL_SR);
3031 serge 675
		I915_WRITE(DSPFW3, reg);
676
 
677
		/* cursor HPLL off SR */
678
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
679
					pineview_display_hplloff_wm.fifo_size,
680
					pixel_size, latency->cursor_hpll_disable);
681
		reg = I915_READ(DSPFW3);
682
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
6084 serge 683
		reg |= FW_WM(wm, HPLL_CURSOR);
3031 serge 684
		I915_WRITE(DSPFW3, reg);
685
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
686
 
5060 serge 687
		intel_set_memory_cxsr(dev_priv, true);
3031 serge 688
	} else {
5060 serge 689
		intel_set_memory_cxsr(dev_priv, false);
3031 serge 690
	}
691
}
692
 
693
static bool g4x_compute_wm0(struct drm_device *dev,
694
			    int plane,
695
			    const struct intel_watermark_params *display,
696
			    int display_latency_ns,
697
			    const struct intel_watermark_params *cursor,
698
			    int cursor_latency_ns,
699
			    int *plane_wm,
700
			    int *cursor_wm)
701
{
702
	struct drm_crtc *crtc;
4560 Serge 703
	const struct drm_display_mode *adjusted_mode;
3031 serge 704
	int htotal, hdisplay, clock, pixel_size;
705
	int line_time_us, line_count;
706
	int entries, tlb_miss;
707
 
708
	crtc = intel_get_crtc_for_plane(dev, plane);
3243 Serge 709
	if (!intel_crtc_active(crtc)) {
3031 serge 710
		*cursor_wm = cursor->guard_size;
711
		*plane_wm = display->guard_size;
6084 serge 712
		return false;
3031 serge 713
	}
714
 
6084 serge 715
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 716
	clock = adjusted_mode->crtc_clock;
717
	htotal = adjusted_mode->crtc_htotal;
6084 serge 718
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
719
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
3031 serge 720
 
721
	/* Use the small buffer method to calculate plane watermark */
722
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
723
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
724
	if (tlb_miss > 0)
725
		entries += tlb_miss;
726
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
727
	*plane_wm = entries + display->guard_size;
728
	if (*plane_wm > (int)display->max_wm)
729
		*plane_wm = display->max_wm;
730
 
731
	/* Use the large buffer method to calculate cursor watermark */
5060 serge 732
	line_time_us = max(htotal * 1000 / clock, 1);
3031 serge 733
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
6084 serge 734
	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
3031 serge 735
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
736
	if (tlb_miss > 0)
737
		entries += tlb_miss;
738
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
739
	*cursor_wm = entries + cursor->guard_size;
740
	if (*cursor_wm > (int)cursor->max_wm)
741
		*cursor_wm = (int)cursor->max_wm;
742
 
743
	return true;
744
}
745
 
746
/*
747
 * Check the wm result.
748
 *
749
 * If any calculated watermark values is larger than the maximum value that
750
 * can be programmed into the associated watermark register, that watermark
751
 * must be disabled.
752
 */
753
static bool g4x_check_srwm(struct drm_device *dev,
754
			   int display_wm, int cursor_wm,
755
			   const struct intel_watermark_params *display,
756
			   const struct intel_watermark_params *cursor)
757
{
758
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
759
		      display_wm, cursor_wm);
760
 
761
	if (display_wm > display->max_wm) {
762
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
763
			      display_wm, display->max_wm);
764
		return false;
765
	}
766
 
767
	if (cursor_wm > cursor->max_wm) {
768
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
769
			      cursor_wm, cursor->max_wm);
770
		return false;
771
	}
772
 
773
	if (!(display_wm || cursor_wm)) {
774
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
775
		return false;
776
	}
777
 
778
	return true;
779
}
780
 
781
static bool g4x_compute_srwm(struct drm_device *dev,
782
			     int plane,
783
			     int latency_ns,
784
			     const struct intel_watermark_params *display,
785
			     const struct intel_watermark_params *cursor,
786
			     int *display_wm, int *cursor_wm)
787
{
788
	struct drm_crtc *crtc;
4560 Serge 789
	const struct drm_display_mode *adjusted_mode;
3031 serge 790
	int hdisplay, htotal, pixel_size, clock;
791
	unsigned long line_time_us;
792
	int line_count, line_size;
793
	int small, large;
794
	int entries;
795
 
796
	if (!latency_ns) {
797
		*display_wm = *cursor_wm = 0;
798
		return false;
799
	}
800
 
801
	crtc = intel_get_crtc_for_plane(dev, plane);
6084 serge 802
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 803
	clock = adjusted_mode->crtc_clock;
804
	htotal = adjusted_mode->crtc_htotal;
6084 serge 805
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
806
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
3031 serge 807
 
5060 serge 808
	line_time_us = max(htotal * 1000 / clock, 1);
3031 serge 809
	line_count = (latency_ns / line_time_us + 1000) / 1000;
810
	line_size = hdisplay * pixel_size;
811
 
812
	/* Use the minimum of the small and large buffer method for primary */
813
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
814
	large = line_count * line_size;
815
 
816
	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
817
	*display_wm = entries + display->guard_size;
818
 
819
	/* calculate the self-refresh watermark for display cursor */
6084 serge 820
	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
3031 serge 821
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
822
	*cursor_wm = entries + cursor->guard_size;
823
 
824
	return g4x_check_srwm(dev,
825
			      *display_wm, *cursor_wm,
826
			      display, cursor);
827
}
828
 
6084 serge 829
#define FW_WM_VLV(value, plane) \
830
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
831
 
832
static void vlv_write_wm_values(struct intel_crtc *crtc,
833
				const struct vlv_wm_values *wm)
3031 serge 834
{
6084 serge 835
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
836
	enum pipe pipe = crtc->pipe;
3031 serge 837
 
6084 serge 838
	I915_WRITE(VLV_DDL(pipe),
839
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
840
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
841
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
842
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
3031 serge 843
 
6084 serge 844
	I915_WRITE(DSPFW1,
845
		   FW_WM(wm->sr.plane, SR) |
846
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
847
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
848
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
849
	I915_WRITE(DSPFW2,
850
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
851
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
852
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
853
	I915_WRITE(DSPFW3,
854
		   FW_WM(wm->sr.cursor, CURSOR_SR));
3031 serge 855
 
6084 serge 856
	if (IS_CHERRYVIEW(dev_priv)) {
857
		I915_WRITE(DSPFW7_CHV,
858
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
859
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
860
		I915_WRITE(DSPFW8_CHV,
861
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
862
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
863
		I915_WRITE(DSPFW9_CHV,
864
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
865
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
866
		I915_WRITE(DSPHOWM,
867
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
868
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
869
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
870
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
871
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
872
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
873
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
874
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
875
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
876
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
877
	} else {
878
		I915_WRITE(DSPFW7,
879
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
880
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
881
		I915_WRITE(DSPHOWM,
882
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
883
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
884
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
885
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
886
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
887
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
888
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
889
	}
3031 serge 890
 
6084 serge 891
	/* zero (unused) WM1 watermarks */
892
	I915_WRITE(DSPFW4, 0);
893
	I915_WRITE(DSPFW5, 0);
894
	I915_WRITE(DSPFW6, 0);
895
	I915_WRITE(DSPHOWM1, 0);
3031 serge 896
 
6084 serge 897
	POSTING_READ(DSPFW1);
3031 serge 898
}
899
 
6084 serge 900
#undef FW_WM_VLV
3031 serge 901
 
6084 serge 902
enum vlv_wm_level {
903
	VLV_WM_LEVEL_PM2,
904
	VLV_WM_LEVEL_PM5,
905
	VLV_WM_LEVEL_DDR_DVFS,
906
};
907
 
908
/* latency must be in 0.1us units. */
909
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
910
				   unsigned int pipe_htotal,
911
				   unsigned int horiz_pixels,
912
				   unsigned int bytes_per_pixel,
913
				   unsigned int latency)
3031 serge 914
{
6084 serge 915
	unsigned int ret;
916
 
917
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
918
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
919
	ret = DIV_ROUND_UP(ret, 64);
920
 
921
	return ret;
922
}
923
 
924
static void vlv_setup_wm_latency(struct drm_device *dev)
925
{
3031 serge 926
	struct drm_i915_private *dev_priv = dev->dev_private;
927
 
6084 serge 928
	/* all latencies in usec */
929
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
3031 serge 930
 
6084 serge 931
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
932
 
933
	if (IS_CHERRYVIEW(dev_priv)) {
934
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
935
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
936
 
937
		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
3031 serge 938
	}
6084 serge 939
}
3031 serge 940
 
6084 serge 941
static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
942
				     struct intel_crtc *crtc,
943
				     const struct intel_plane_state *state,
944
				     int level)
945
{
946
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
947
	int clock, htotal, pixel_size, width, wm;
948
 
949
	if (dev_priv->wm.pri_latency[level] == 0)
950
		return USHRT_MAX;
951
 
952
	if (!state->visible)
953
		return 0;
954
 
955
	pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
956
	clock = crtc->config->base.adjusted_mode.crtc_clock;
957
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
958
	width = crtc->config->pipe_src_w;
959
	if (WARN_ON(htotal == 0))
960
		htotal = 1;
961
 
962
	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
963
		/*
964
		 * FIXME the formula gives values that are
965
		 * too big for the cursor FIFO, and hence we
966
		 * would never be able to use cursors. For
967
		 * now just hardcode the watermark.
968
		 */
969
		wm = 63;
970
	} else {
971
		wm = vlv_wm_method2(clock, htotal, width, pixel_size,
972
				    dev_priv->wm.pri_latency[level] * 10);
5354 serge 973
	}
3031 serge 974
 
6084 serge 975
	return min_t(int, wm, USHRT_MAX);
976
}
5354 serge 977
 
6084 serge 978
static void vlv_compute_fifo(struct intel_crtc *crtc)
979
{
980
	struct drm_device *dev = crtc->base.dev;
981
	struct vlv_wm_state *wm_state = &crtc->wm_state;
982
	struct intel_plane *plane;
983
	unsigned int total_rate = 0;
984
	const int fifo_size = 512 - 1;
985
	int fifo_extra, fifo_left = fifo_size;
986
 
987
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
988
		struct intel_plane_state *state =
989
			to_intel_plane_state(plane->base.state);
990
 
991
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
992
			continue;
993
 
994
		if (state->visible) {
995
			wm_state->num_active_planes++;
996
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
997
		}
3031 serge 998
	}
5354 serge 999
 
6084 serge 1000
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1001
		struct intel_plane_state *state =
1002
			to_intel_plane_state(plane->base.state);
1003
		unsigned int rate;
1004
 
1005
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1006
			plane->wm.fifo_size = 63;
1007
			continue;
1008
		}
1009
 
1010
		if (!state->visible) {
1011
			plane->wm.fifo_size = 0;
1012
			continue;
1013
		}
1014
 
1015
		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1016
		plane->wm.fifo_size = fifo_size * rate / total_rate;
1017
		fifo_left -= plane->wm.fifo_size;
1018
	}
1019
 
1020
	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1021
 
1022
	/* spread the remainder evenly */
1023
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1024
		int plane_extra;
1025
 
1026
		if (fifo_left == 0)
1027
			break;
1028
 
1029
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1030
			continue;
1031
 
1032
		/* give it all to the first plane if none are active */
1033
		if (plane->wm.fifo_size == 0 &&
1034
		    wm_state->num_active_planes)
1035
			continue;
1036
 
1037
		plane_extra = min(fifo_extra, fifo_left);
1038
		plane->wm.fifo_size += plane_extra;
1039
		fifo_left -= plane_extra;
1040
	}
1041
 
1042
	WARN_ON(fifo_left != 0);
3031 serge 1043
}
1044
 
6084 serge 1045
static void vlv_invert_wms(struct intel_crtc *crtc)
1046
{
1047
	struct vlv_wm_state *wm_state = &crtc->wm_state;
1048
	int level;
3031 serge 1049
 
6084 serge 1050
	for (level = 0; level < wm_state->num_levels; level++) {
1051
		struct drm_device *dev = crtc->base.dev;
1052
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1053
		struct intel_plane *plane;
1054
 
1055
		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1056
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1057
 
1058
		for_each_intel_plane_on_crtc(dev, crtc, plane) {
1059
			switch (plane->base.type) {
1060
				int sprite;
1061
			case DRM_PLANE_TYPE_CURSOR:
1062
				wm_state->wm[level].cursor = plane->wm.fifo_size -
1063
					wm_state->wm[level].cursor;
1064
				break;
1065
			case DRM_PLANE_TYPE_PRIMARY:
1066
				wm_state->wm[level].primary = plane->wm.fifo_size -
1067
					wm_state->wm[level].primary;
1068
				break;
1069
			case DRM_PLANE_TYPE_OVERLAY:
1070
				sprite = plane->plane;
1071
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1072
					wm_state->wm[level].sprite[sprite];
1073
				break;
1074
			}
1075
		}
1076
	}
1077
}
1078
 
1079
static void vlv_compute_wm(struct intel_crtc *crtc)
3031 serge 1080
{
6084 serge 1081
	struct drm_device *dev = crtc->base.dev;
1082
	struct vlv_wm_state *wm_state = &crtc->wm_state;
1083
	struct intel_plane *plane;
1084
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1085
	int level;
3031 serge 1086
 
6084 serge 1087
	memset(wm_state, 0, sizeof(*wm_state));
3031 serge 1088
 
6084 serge 1089
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1090
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
3031 serge 1091
 
6084 serge 1092
	wm_state->num_active_planes = 0;
3031 serge 1093
 
6084 serge 1094
	vlv_compute_fifo(crtc);
1095
 
1096
	if (wm_state->num_active_planes != 1)
1097
		wm_state->cxsr = false;
1098
 
1099
	if (wm_state->cxsr) {
1100
		for (level = 0; level < wm_state->num_levels; level++) {
1101
			wm_state->sr[level].plane = sr_fifo_size;
1102
			wm_state->sr[level].cursor = 63;
1103
		}
3243 Serge 1104
	}
3031 serge 1105
 
6084 serge 1106
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1107
		struct intel_plane_state *state =
1108
			to_intel_plane_state(plane->base.state);
3031 serge 1109
 
6084 serge 1110
		if (!state->visible)
1111
			continue;
5060 serge 1112
 
6084 serge 1113
		/* normal watermarks */
1114
		for (level = 0; level < wm_state->num_levels; level++) {
1115
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
1116
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1117
 
1118
			/* hack */
1119
			if (WARN_ON(level == 0 && wm > max_wm))
1120
				wm = max_wm;
1121
 
1122
			if (wm > plane->wm.fifo_size)
1123
				break;
1124
 
1125
			switch (plane->base.type) {
1126
				int sprite;
1127
			case DRM_PLANE_TYPE_CURSOR:
1128
				wm_state->wm[level].cursor = wm;
1129
				break;
1130
			case DRM_PLANE_TYPE_PRIMARY:
1131
				wm_state->wm[level].primary = wm;
1132
				break;
1133
			case DRM_PLANE_TYPE_OVERLAY:
1134
				sprite = plane->plane;
1135
				wm_state->wm[level].sprite[sprite] = wm;
1136
				break;
1137
			}
1138
		}
1139
 
1140
		wm_state->num_levels = level;
1141
 
1142
		if (!wm_state->cxsr)
1143
			continue;
1144
 
1145
		/* maxfifo watermarks */
1146
		switch (plane->base.type) {
1147
			int sprite, level;
1148
		case DRM_PLANE_TYPE_CURSOR:
1149
			for (level = 0; level < wm_state->num_levels; level++)
1150
				wm_state->sr[level].cursor =
1151
					wm_state->wm[level].cursor;
1152
			break;
1153
		case DRM_PLANE_TYPE_PRIMARY:
1154
			for (level = 0; level < wm_state->num_levels; level++)
1155
				wm_state->sr[level].plane =
1156
					min(wm_state->sr[level].plane,
1157
					    wm_state->wm[level].primary);
1158
			break;
1159
		case DRM_PLANE_TYPE_OVERLAY:
1160
			sprite = plane->plane;
1161
			for (level = 0; level < wm_state->num_levels; level++)
1162
				wm_state->sr[level].plane =
1163
					min(wm_state->sr[level].plane,
1164
					    wm_state->wm[level].sprite[sprite]);
1165
			break;
1166
		}
1167
	}
1168
 
1169
	/* clear any (partially) filled invalid levels */
1170
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1171
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1172
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1173
	}
1174
 
1175
	vlv_invert_wms(crtc);
3031 serge 1176
}
1177
 
6084 serge 1178
#define VLV_FIFO(plane, value) \
1179
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1180
 
1181
static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
5354 serge 1182
{
6084 serge 1183
	struct drm_device *dev = crtc->base.dev;
1184
	struct drm_i915_private *dev_priv = to_i915(dev);
1185
	struct intel_plane *plane;
1186
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
5354 serge 1187
 
6084 serge 1188
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1189
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1190
			WARN_ON(plane->wm.fifo_size != 63);
1191
			continue;
1192
		}
5354 serge 1193
 
6084 serge 1194
		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1195
			sprite0_start = plane->wm.fifo_size;
1196
		else if (plane->plane == 0)
1197
			sprite1_start = sprite0_start + plane->wm.fifo_size;
1198
		else
1199
			fifo_size = sprite1_start + plane->wm.fifo_size;
1200
	}
5354 serge 1201
 
6084 serge 1202
	WARN_ON(fifo_size != 512 - 1);
5354 serge 1203
 
6084 serge 1204
	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1205
		      pipe_name(crtc->pipe), sprite0_start,
1206
		      sprite1_start, fifo_size);
5354 serge 1207
 
6084 serge 1208
	switch (crtc->pipe) {
1209
		uint32_t dsparb, dsparb2, dsparb3;
1210
	case PIPE_A:
1211
		dsparb = I915_READ(DSPARB);
1212
		dsparb2 = I915_READ(DSPARB2);
1213
 
1214
		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1215
			    VLV_FIFO(SPRITEB, 0xff));
1216
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1217
			   VLV_FIFO(SPRITEB, sprite1_start));
1218
 
1219
		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1220
			     VLV_FIFO(SPRITEB_HI, 0x1));
1221
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1222
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1223
 
1224
		I915_WRITE(DSPARB, dsparb);
1225
		I915_WRITE(DSPARB2, dsparb2);
1226
		break;
1227
	case PIPE_B:
1228
		dsparb = I915_READ(DSPARB);
1229
		dsparb2 = I915_READ(DSPARB2);
1230
 
1231
		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1232
			    VLV_FIFO(SPRITED, 0xff));
1233
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1234
			   VLV_FIFO(SPRITED, sprite1_start));
1235
 
1236
		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1237
			     VLV_FIFO(SPRITED_HI, 0xff));
1238
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1239
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1240
 
1241
		I915_WRITE(DSPARB, dsparb);
1242
		I915_WRITE(DSPARB2, dsparb2);
1243
		break;
1244
	case PIPE_C:
1245
		dsparb3 = I915_READ(DSPARB3);
1246
		dsparb2 = I915_READ(DSPARB2);
1247
 
1248
		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1249
			     VLV_FIFO(SPRITEF, 0xff));
1250
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1251
			    VLV_FIFO(SPRITEF, sprite1_start));
1252
 
1253
		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1254
			     VLV_FIFO(SPRITEF_HI, 0xff));
1255
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1256
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1257
 
1258
		I915_WRITE(DSPARB3, dsparb3);
1259
		I915_WRITE(DSPARB2, dsparb2);
1260
		break;
1261
	default:
1262
		break;
5354 serge 1263
	}
6084 serge 1264
}
5354 serge 1265
 
6084 serge 1266
#undef VLV_FIFO
5354 serge 1267
 
6084 serge 1268
static void vlv_merge_wm(struct drm_device *dev,
1269
			 struct vlv_wm_values *wm)
1270
{
1271
	struct intel_crtc *crtc;
1272
	int num_active_crtcs = 0;
5354 serge 1273
 
6084 serge 1274
	wm->level = to_i915(dev)->wm.max_level;
1275
	wm->cxsr = true;
1276
 
1277
	for_each_intel_crtc(dev, crtc) {
1278
		const struct vlv_wm_state *wm_state = &crtc->wm_state;
1279
 
1280
		if (!crtc->active)
1281
			continue;
1282
 
1283
		if (!wm_state->cxsr)
1284
			wm->cxsr = false;
1285
 
1286
		num_active_crtcs++;
1287
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1288
	}
1289
 
1290
	if (num_active_crtcs != 1)
1291
		wm->cxsr = false;
1292
 
1293
	if (num_active_crtcs > 1)
1294
		wm->level = VLV_WM_LEVEL_PM2;
1295
 
1296
	for_each_intel_crtc(dev, crtc) {
1297
		struct vlv_wm_state *wm_state = &crtc->wm_state;
1298
		enum pipe pipe = crtc->pipe;
1299
 
1300
		if (!crtc->active)
1301
			continue;
1302
 
1303
		wm->pipe[pipe] = wm_state->wm[wm->level];
1304
		if (wm->cxsr)
1305
			wm->sr = wm_state->sr[wm->level];
1306
 
1307
		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1308
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1309
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1310
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1311
	}
5354 serge 1312
}
1313
 
6084 serge 1314
static void vlv_update_wm(struct drm_crtc *crtc)
5354 serge 1315
{
1316
	struct drm_device *dev = crtc->dev;
1317
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 1318
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1319
	enum pipe pipe = intel_crtc->pipe;
1320
	struct vlv_wm_values wm = {};
5354 serge 1321
 
6084 serge 1322
	vlv_compute_wm(intel_crtc);
1323
	vlv_merge_wm(dev, &wm);
5354 serge 1324
 
6084 serge 1325
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1326
		/* FIXME should be part of crtc atomic commit */
1327
		vlv_pipe_set_fifo_size(intel_crtc);
1328
		return;
5354 serge 1329
	}
1330
 
6084 serge 1331
	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1332
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1333
		chv_set_memory_dvfs(dev_priv, false);
1334
 
1335
	if (wm.level < VLV_WM_LEVEL_PM5 &&
1336
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1337
		chv_set_memory_pm5(dev_priv, false);
1338
 
1339
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1340
		intel_set_memory_cxsr(dev_priv, false);
1341
 
1342
	/* FIXME should be part of crtc atomic commit */
1343
	vlv_pipe_set_fifo_size(intel_crtc);
1344
 
1345
	vlv_write_wm_values(intel_crtc, &wm);
1346
 
1347
	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1348
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1349
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1350
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1351
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1352
 
1353
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1354
		intel_set_memory_cxsr(dev_priv, true);
1355
 
1356
	if (wm.level >= VLV_WM_LEVEL_PM5 &&
1357
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1358
		chv_set_memory_pm5(dev_priv, true);
1359
 
1360
	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1361
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1362
		chv_set_memory_dvfs(dev_priv, true);
1363
 
1364
	dev_priv->wm.vlv = wm;
5354 serge 1365
}
1366
 
6084 serge 1367
#define single_plane_enabled(mask) is_power_of_2(mask)
1368
 
4560 Serge 1369
static void g4x_update_wm(struct drm_crtc *crtc)
3031 serge 1370
{
4560 Serge 1371
	struct drm_device *dev = crtc->dev;
3031 serge 1372
	static const int sr_latency_ns = 12000;
1373
	struct drm_i915_private *dev_priv = dev->dev_private;
1374
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1375
	int plane_sr, cursor_sr;
1376
	unsigned int enabled = 0;
5060 serge 1377
	bool cxsr_enabled;
3031 serge 1378
 
3746 Serge 1379
	if (g4x_compute_wm0(dev, PIPE_A,
5354 serge 1380
			    &g4x_wm_info, pessimal_latency_ns,
1381
			    &g4x_cursor_wm_info, pessimal_latency_ns,
3031 serge 1382
			    &planea_wm, &cursora_wm))
3746 Serge 1383
		enabled |= 1 << PIPE_A;
3031 serge 1384
 
3746 Serge 1385
	if (g4x_compute_wm0(dev, PIPE_B,
5354 serge 1386
			    &g4x_wm_info, pessimal_latency_ns,
1387
			    &g4x_cursor_wm_info, pessimal_latency_ns,
3031 serge 1388
			    &planeb_wm, &cursorb_wm))
3746 Serge 1389
		enabled |= 1 << PIPE_B;
3031 serge 1390
 
1391
	if (single_plane_enabled(enabled) &&
1392
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1393
			     sr_latency_ns,
1394
			     &g4x_wm_info,
1395
			     &g4x_cursor_wm_info,
3243 Serge 1396
			     &plane_sr, &cursor_sr)) {
5060 serge 1397
		cxsr_enabled = true;
3243 Serge 1398
	} else {
5060 serge 1399
		cxsr_enabled = false;
1400
		intel_set_memory_cxsr(dev_priv, false);
3243 Serge 1401
		plane_sr = cursor_sr = 0;
1402
	}
3031 serge 1403
 
5354 serge 1404
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1405
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
3031 serge 1406
		      planea_wm, cursora_wm,
1407
		      planeb_wm, cursorb_wm,
1408
		      plane_sr, cursor_sr);
1409
 
1410
	I915_WRITE(DSPFW1,
6084 serge 1411
		   FW_WM(plane_sr, SR) |
1412
		   FW_WM(cursorb_wm, CURSORB) |
1413
		   FW_WM(planeb_wm, PLANEB) |
1414
		   FW_WM(planea_wm, PLANEA));
3031 serge 1415
	I915_WRITE(DSPFW2,
3243 Serge 1416
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
6084 serge 1417
		   FW_WM(cursora_wm, CURSORA));
3031 serge 1418
	/* HPLL off in SR has some issues on G4x... disable it */
1419
	I915_WRITE(DSPFW3,
3243 Serge 1420
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
6084 serge 1421
		   FW_WM(cursor_sr, CURSOR_SR));
5060 serge 1422
 
1423
	if (cxsr_enabled)
1424
		intel_set_memory_cxsr(dev_priv, true);
3031 serge 1425
}
1426
 
4560 Serge 1427
static void i965_update_wm(struct drm_crtc *unused_crtc)
3031 serge 1428
{
4560 Serge 1429
	struct drm_device *dev = unused_crtc->dev;
3031 serge 1430
	struct drm_i915_private *dev_priv = dev->dev_private;
1431
	struct drm_crtc *crtc;
1432
	int srwm = 1;
1433
	int cursor_sr = 16;
5060 serge 1434
	bool cxsr_enabled;
3031 serge 1435
 
1436
	/* Calc sr entries for one plane configs */
1437
	crtc = single_enabled_crtc(dev);
1438
	if (crtc) {
1439
		/* self-refresh has much higher latency */
1440
		static const int sr_latency_ns = 12000;
6084 serge 1441
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 1442
		int clock = adjusted_mode->crtc_clock;
1443
		int htotal = adjusted_mode->crtc_htotal;
6084 serge 1444
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1445
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
3031 serge 1446
		unsigned long line_time_us;
1447
		int entries;
1448
 
5060 serge 1449
		line_time_us = max(htotal * 1000 / clock, 1);
3031 serge 1450
 
1451
		/* Use ns/us then divide to preserve precision */
1452
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1453
			pixel_size * hdisplay;
1454
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1455
		srwm = I965_FIFO_SIZE - entries;
1456
		if (srwm < 0)
1457
			srwm = 1;
1458
		srwm &= 0x1ff;
1459
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1460
			      entries, srwm);
1461
 
1462
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
6084 serge 1463
			pixel_size * crtc->cursor->state->crtc_w;
3031 serge 1464
		entries = DIV_ROUND_UP(entries,
1465
					  i965_cursor_wm_info.cacheline_size);
1466
		cursor_sr = i965_cursor_wm_info.fifo_size -
1467
			(entries + i965_cursor_wm_info.guard_size);
1468
 
1469
		if (cursor_sr > i965_cursor_wm_info.max_wm)
1470
			cursor_sr = i965_cursor_wm_info.max_wm;
1471
 
1472
		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1473
			      "cursor %d\n", srwm, cursor_sr);
1474
 
5060 serge 1475
		cxsr_enabled = true;
3031 serge 1476
	} else {
5060 serge 1477
		cxsr_enabled = false;
3031 serge 1478
		/* Turn off self refresh if both pipes are enabled */
5060 serge 1479
		intel_set_memory_cxsr(dev_priv, false);
3031 serge 1480
	}
1481
 
1482
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1483
		      srwm);
1484
 
1485
	/* 965 has limitations... */
6084 serge 1486
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1487
		   FW_WM(8, CURSORB) |
1488
		   FW_WM(8, PLANEB) |
1489
		   FW_WM(8, PLANEA));
1490
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1491
		   FW_WM(8, PLANEC_OLD));
3031 serge 1492
	/* update cursor SR watermark */
6084 serge 1493
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
5060 serge 1494
 
1495
	if (cxsr_enabled)
1496
		intel_set_memory_cxsr(dev_priv, true);
3031 serge 1497
}
1498
 
6084 serge 1499
#undef FW_WM
1500
 
4560 Serge 1501
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
3031 serge 1502
{
4560 Serge 1503
	struct drm_device *dev = unused_crtc->dev;
3031 serge 1504
	struct drm_i915_private *dev_priv = dev->dev_private;
1505
	const struct intel_watermark_params *wm_info;
1506
	uint32_t fwater_lo;
1507
	uint32_t fwater_hi;
1508
	int cwm, srwm = 1;
1509
	int fifo_size;
1510
	int planea_wm, planeb_wm;
1511
	struct drm_crtc *crtc, *enabled = NULL;
1512
 
1513
	if (IS_I945GM(dev))
1514
		wm_info = &i945_wm_info;
1515
	else if (!IS_GEN2(dev))
1516
		wm_info = &i915_wm_info;
1517
	else
5354 serge 1518
		wm_info = &i830_a_wm_info;
3031 serge 1519
 
1520
	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1521
	crtc = intel_get_crtc_for_plane(dev, 0);
3243 Serge 1522
	if (intel_crtc_active(crtc)) {
4560 Serge 1523
		const struct drm_display_mode *adjusted_mode;
6084 serge 1524
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
3243 Serge 1525
		if (IS_GEN2(dev))
1526
			cpp = 4;
1527
 
6084 serge 1528
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 1529
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
3243 Serge 1530
					       wm_info, fifo_size, cpp,
5354 serge 1531
					       pessimal_latency_ns);
3031 serge 1532
		enabled = crtc;
5354 serge 1533
	} else {
3031 serge 1534
		planea_wm = fifo_size - wm_info->guard_size;
5354 serge 1535
		if (planea_wm > (long)wm_info->max_wm)
1536
			planea_wm = wm_info->max_wm;
1537
	}
3031 serge 1538
 
5354 serge 1539
	if (IS_GEN2(dev))
1540
		wm_info = &i830_bc_wm_info;
1541
 
3031 serge 1542
	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1543
	crtc = intel_get_crtc_for_plane(dev, 1);
3243 Serge 1544
	if (intel_crtc_active(crtc)) {
4560 Serge 1545
		const struct drm_display_mode *adjusted_mode;
6084 serge 1546
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
3243 Serge 1547
		if (IS_GEN2(dev))
1548
			cpp = 4;
1549
 
6084 serge 1550
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 1551
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
3243 Serge 1552
					       wm_info, fifo_size, cpp,
5354 serge 1553
					       pessimal_latency_ns);
3031 serge 1554
		if (enabled == NULL)
1555
			enabled = crtc;
1556
		else
1557
			enabled = NULL;
5354 serge 1558
	} else {
3031 serge 1559
		planeb_wm = fifo_size - wm_info->guard_size;
5354 serge 1560
		if (planeb_wm > (long)wm_info->max_wm)
1561
			planeb_wm = wm_info->max_wm;
1562
	}
3031 serge 1563
 
1564
	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1565
 
5060 serge 1566
	if (IS_I915GM(dev) && enabled) {
1567
		struct drm_i915_gem_object *obj;
1568
 
6084 serge 1569
		obj = intel_fb_obj(enabled->primary->state->fb);
5060 serge 1570
 
1571
		/* self-refresh seems busted with untiled */
1572
		if (obj->tiling_mode == I915_TILING_NONE)
1573
			enabled = NULL;
1574
	}
1575
 
3031 serge 1576
	/*
1577
	 * Overlay gets an aggressive default since video jitter is bad.
1578
	 */
1579
	cwm = 2;
1580
 
1581
	/* Play safe and disable self-refresh before adjusting watermarks. */
5060 serge 1582
	intel_set_memory_cxsr(dev_priv, false);
3031 serge 1583
 
1584
	/* Calc sr entries for one plane configs */
1585
	if (HAS_FW_BLC(dev) && enabled) {
1586
		/* self-refresh has much higher latency */
1587
		static const int sr_latency_ns = 6000;
6084 serge 1588
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
4560 Serge 1589
		int clock = adjusted_mode->crtc_clock;
1590
		int htotal = adjusted_mode->crtc_htotal;
6084 serge 1591
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1592
		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
3031 serge 1593
		unsigned long line_time_us;
1594
		int entries;
1595
 
5060 serge 1596
		line_time_us = max(htotal * 1000 / clock, 1);
3031 serge 1597
 
1598
		/* Use ns/us then divide to preserve precision */
1599
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1600
			pixel_size * hdisplay;
1601
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1602
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1603
		srwm = wm_info->fifo_size - entries;
1604
		if (srwm < 0)
1605
			srwm = 1;
1606
 
1607
		if (IS_I945G(dev) || IS_I945GM(dev))
1608
			I915_WRITE(FW_BLC_SELF,
1609
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1610
		else if (IS_I915GM(dev))
1611
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1612
	}
1613
 
1614
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1615
		      planea_wm, planeb_wm, cwm, srwm);
1616
 
1617
	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1618
	fwater_hi = (cwm & 0x1f);
1619
 
1620
	/* Set request length to 8 cachelines per fetch */
1621
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1622
	fwater_hi = fwater_hi | (1 << 8);
1623
 
1624
	I915_WRITE(FW_BLC, fwater_lo);
1625
	I915_WRITE(FW_BLC2, fwater_hi);
1626
 
5060 serge 1627
	if (enabled)
1628
		intel_set_memory_cxsr(dev_priv, true);
3031 serge 1629
}
1630
 
4560 Serge 1631
static void i845_update_wm(struct drm_crtc *unused_crtc)
3031 serge 1632
{
4560 Serge 1633
	struct drm_device *dev = unused_crtc->dev;
3031 serge 1634
	struct drm_i915_private *dev_priv = dev->dev_private;
1635
	struct drm_crtc *crtc;
4560 Serge 1636
	const struct drm_display_mode *adjusted_mode;
3031 serge 1637
	uint32_t fwater_lo;
1638
	int planea_wm;
1639
 
1640
	crtc = single_enabled_crtc(dev);
1641
	if (crtc == NULL)
1642
		return;
1643
 
6084 serge 1644
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 1645
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1646
				       &i845_wm_info,
3031 serge 1647
				       dev_priv->display.get_fifo_size(dev, 0),
5354 serge 1648
				       4, pessimal_latency_ns);
3031 serge 1649
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1650
	fwater_lo |= (3<<8) | planea_wm;
1651
 
1652
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1653
 
1654
	I915_WRITE(FW_BLC, fwater_lo);
1655
}
1656
 
6084 serge 1657
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
3031 serge 1658
{
4104 Serge 1659
	uint32_t pixel_rate;
1660
 
6084 serge 1661
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
4104 Serge 1662
 
1663
	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1664
	 * adjust the pixel_rate here. */
1665
 
6084 serge 1666
	if (pipe_config->pch_pfit.enabled) {
4104 Serge 1667
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
6084 serge 1668
		uint32_t pfit_size = pipe_config->pch_pfit.size;
4104 Serge 1669
 
6084 serge 1670
		pipe_w = pipe_config->pipe_src_w;
1671
		pipe_h = pipe_config->pipe_src_h;
1672
 
4104 Serge 1673
		pfit_w = (pfit_size >> 16) & 0xFFFF;
1674
		pfit_h = pfit_size & 0xFFFF;
1675
		if (pipe_w < pfit_w)
1676
			pipe_w = pfit_w;
1677
		if (pipe_h < pfit_h)
1678
			pipe_h = pfit_h;
1679
 
1680
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1681
				     pfit_w * pfit_h);
1682
	}
1683
 
1684
	return pixel_rate;
1685
}
1686
 
1687
/* latency must be in 0.1us units. */
1688
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1689
			       uint32_t latency)
1690
{
1691
	uint64_t ret;
1692
 
1693
	if (WARN(latency == 0, "Latency value missing\n"))
1694
		return UINT_MAX;
1695
 
1696
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1697
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1698
 
1699
	return ret;
1700
}
1701
 
1702
/* latency must be in 0.1us units. */
1703
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1704
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1705
			       uint32_t latency)
1706
{
1707
	uint32_t ret;
1708
 
1709
	if (WARN(latency == 0, "Latency value missing\n"))
1710
		return UINT_MAX;
1711
 
1712
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1713
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1714
	ret = DIV_ROUND_UP(ret, 64) + 2;
1715
	return ret;
1716
}
1717
 
1718
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1719
			   uint8_t bytes_per_pixel)
1720
{
1721
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1722
}
1723
 
4560 Serge 1724
struct ilk_wm_maximums {
4104 Serge 1725
	uint16_t pri;
1726
	uint16_t spr;
1727
	uint16_t cur;
1728
	uint16_t fbc;
1729
};
1730
 
1731
/*
1732
 * For both WM_PIPE and WM_LP.
1733
 * mem_value must be in 0.1us units.
1734
 */
6084 serge 1735
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1736
				   const struct intel_plane_state *pstate,
4104 Serge 1737
				   uint32_t mem_value,
1738
				   bool is_lp)
1739
{
6084 serge 1740
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
4104 Serge 1741
	uint32_t method1, method2;
1742
 
6084 serge 1743
	if (!cstate->base.active || !pstate->visible)
4104 Serge 1744
		return 0;
1745
 
6084 serge 1746
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
4104 Serge 1747
 
1748
	if (!is_lp)
1749
		return method1;
1750
 
6084 serge 1751
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1752
				 cstate->base.adjusted_mode.crtc_htotal,
1753
				 drm_rect_width(&pstate->dst),
1754
				 bpp,
4104 Serge 1755
				 mem_value);
1756
 
1757
	return min(method1, method2);
1758
}
1759
 
1760
/*
1761
 * For both WM_PIPE and WM_LP.
1762
 * mem_value must be in 0.1us units.
1763
 */
6084 serge 1764
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1765
				   const struct intel_plane_state *pstate,
4104 Serge 1766
				   uint32_t mem_value)
1767
{
6084 serge 1768
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
4104 Serge 1769
	uint32_t method1, method2;
1770
 
6084 serge 1771
	if (!cstate->base.active || !pstate->visible)
4104 Serge 1772
		return 0;
1773
 
6084 serge 1774
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1775
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1776
				 cstate->base.adjusted_mode.crtc_htotal,
1777
				 drm_rect_width(&pstate->dst),
1778
				 bpp,
4104 Serge 1779
				 mem_value);
1780
	return min(method1, method2);
1781
}
1782
 
1783
/*
1784
 * For both WM_PIPE and WM_LP.
1785
 * mem_value must be in 0.1us units.
1786
 */
6084 serge 1787
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1788
				   const struct intel_plane_state *pstate,
4104 Serge 1789
				   uint32_t mem_value)
1790
{
6660 serge 1791
	/*
1792
	 * We treat the cursor plane as always-on for the purposes of watermark
1793
	 * calculation.  Until we have two-stage watermark programming merged,
1794
	 * this is necessary to avoid flickering.
1795
	 */
1796
	int cpp = 4;
1797
	int width = pstate->visible ? pstate->base.crtc_w : 64;
6084 serge 1798
 
6660 serge 1799
	if (!cstate->base.active)
4104 Serge 1800
		return 0;
1801
 
6084 serge 1802
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1803
			      cstate->base.adjusted_mode.crtc_htotal,
6660 serge 1804
			      width, cpp, mem_value);
4104 Serge 1805
}
1806
 
1807
/* Only for WM_LP. */
6084 serge 1808
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1809
				   const struct intel_plane_state *pstate,
4104 Serge 1810
				   uint32_t pri_val)
1811
{
6084 serge 1812
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1813
 
1814
	if (!cstate->base.active || !pstate->visible)
4104 Serge 1815
		return 0;
1816
 
6084 serge 1817
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
4104 Serge 1818
}
1819
 
1820
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1821
{
4560 Serge 1822
	if (INTEL_INFO(dev)->gen >= 8)
1823
		return 3072;
1824
	else if (INTEL_INFO(dev)->gen >= 7)
4104 Serge 1825
		return 768;
1826
	else
1827
		return 512;
1828
}
1829
 
5060 serge 1830
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1831
					 int level, bool is_sprite)
1832
{
1833
	if (INTEL_INFO(dev)->gen >= 8)
1834
		/* BDW primary/sprite plane watermarks */
1835
		return level == 0 ? 255 : 2047;
1836
	else if (INTEL_INFO(dev)->gen >= 7)
1837
		/* IVB/HSW primary/sprite plane watermarks */
1838
		return level == 0 ? 127 : 1023;
1839
	else if (!is_sprite)
1840
		/* ILK/SNB primary plane watermarks */
1841
		return level == 0 ? 127 : 511;
1842
	else
1843
		/* ILK/SNB sprite plane watermarks */
1844
		return level == 0 ? 63 : 255;
1845
}
1846
 
1847
static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1848
					  int level)
1849
{
1850
	if (INTEL_INFO(dev)->gen >= 7)
1851
		return level == 0 ? 63 : 255;
1852
	else
1853
		return level == 0 ? 31 : 63;
1854
}
1855
 
1856
static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1857
{
1858
	if (INTEL_INFO(dev)->gen >= 8)
1859
		return 31;
1860
	else
1861
		return 15;
1862
}
1863
 
4104 Serge 1864
/* Calculate the maximum primary/sprite plane watermark */
1865
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1866
				     int level,
1867
				     const struct intel_wm_config *config,
1868
				     enum intel_ddb_partitioning ddb_partitioning,
1869
				     bool is_sprite)
1870
{
1871
	unsigned int fifo_size = ilk_display_fifo_size(dev);
1872
 
1873
	/* if sprites aren't enabled, sprites get nothing */
1874
	if (is_sprite && !config->sprites_enabled)
1875
		return 0;
1876
 
1877
	/* HSW allows LP1+ watermarks even with multiple pipes */
1878
	if (level == 0 || config->num_pipes_active > 1) {
1879
		fifo_size /= INTEL_INFO(dev)->num_pipes;
1880
 
1881
		/*
1882
		 * For some reason the non self refresh
1883
		 * FIFO size is only half of the self
1884
		 * refresh FIFO size on ILK/SNB.
1885
		 */
1886
		if (INTEL_INFO(dev)->gen <= 6)
1887
			fifo_size /= 2;
1888
	}
1889
 
1890
	if (config->sprites_enabled) {
1891
		/* level 0 is always calculated with 1:1 split */
1892
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1893
			if (is_sprite)
1894
				fifo_size *= 5;
1895
			fifo_size /= 6;
1896
		} else {
1897
			fifo_size /= 2;
1898
		}
1899
	}
1900
 
1901
	/* clamp to max that the registers can hold */
5060 serge 1902
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
4104 Serge 1903
}
1904
 
1905
/* Calculate the maximum cursor plane watermark */
1906
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1907
				      int level,
1908
				      const struct intel_wm_config *config)
1909
{
1910
	/* HSW LP1+ watermarks w/ multiple pipes */
1911
	if (level > 0 && config->num_pipes_active > 1)
1912
		return 64;
1913
 
1914
	/* otherwise just report max that registers can hold */
5060 serge 1915
	return ilk_cursor_wm_reg_max(dev, level);
4539 Serge 1916
}
4104 Serge 1917
 
5060 serge 1918
static void ilk_compute_wm_maximums(const struct drm_device *dev,
6084 serge 1919
				    int level,
1920
				    const struct intel_wm_config *config,
1921
				    enum intel_ddb_partitioning ddb_partitioning,
4560 Serge 1922
				    struct ilk_wm_maximums *max)
4104 Serge 1923
{
1924
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1925
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1926
	max->cur = ilk_cursor_wm_max(dev, level, config);
5060 serge 1927
	max->fbc = ilk_fbc_wm_reg_max(dev);
4539 Serge 1928
}
4104 Serge 1929
 
5060 serge 1930
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1931
					int level,
1932
					struct ilk_wm_maximums *max)
1933
{
1934
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
1935
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
1936
	max->cur = ilk_cursor_wm_reg_max(dev, level);
1937
	max->fbc = ilk_fbc_wm_reg_max(dev);
1938
}
1939
 
4560 Serge 1940
static bool ilk_validate_wm_level(int level,
1941
				  const struct ilk_wm_maximums *max,
6084 serge 1942
				  struct intel_wm_level *result)
4104 Serge 1943
{
1944
	bool ret;
1945
 
1946
	/* already determined to be invalid? */
1947
	if (!result->enable)
1948
		return false;
1949
 
1950
	result->enable = result->pri_val <= max->pri &&
1951
			 result->spr_val <= max->spr &&
1952
			 result->cur_val <= max->cur;
1953
 
1954
	ret = result->enable;
1955
 
1956
	/*
1957
	 * HACK until we can pre-compute everything,
1958
	 * and thus fail gracefully if LP0 watermarks
1959
	 * are exceeded...
1960
	 */
1961
	if (level == 0 && !result->enable) {
1962
		if (result->pri_val > max->pri)
1963
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1964
				      level, result->pri_val, max->pri);
1965
		if (result->spr_val > max->spr)
1966
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1967
				      level, result->spr_val, max->spr);
1968
		if (result->cur_val > max->cur)
1969
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1970
				      level, result->cur_val, max->cur);
1971
 
1972
		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1973
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1974
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1975
		result->enable = true;
1976
	}
1977
 
1978
	return ret;
1979
}
1980
 
5060 serge 1981
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
6084 serge 1982
				 const struct intel_crtc *intel_crtc,
4104 Serge 1983
				 int level,
6084 serge 1984
				 struct intel_crtc_state *cstate,
6937 serge 1985
				 struct intel_plane_state *pristate,
1986
				 struct intel_plane_state *sprstate,
1987
				 struct intel_plane_state *curstate,
4104 Serge 1988
				 struct intel_wm_level *result)
1989
{
1990
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1991
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1992
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1993
 
1994
	/* WM1+ latency values stored in 0.5us units */
1995
	if (level > 0) {
1996
		pri_latency *= 5;
1997
		spr_latency *= 5;
1998
		cur_latency *= 5;
1999
	}
2000
 
6937 serge 2001
	result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2002
					     pri_latency, level);
2003
	result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2004
	result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2005
	result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
4104 Serge 2006
	result->enable = true;
2007
}
2008
 
2009
static uint32_t
2010
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2011
{
3031 serge 2012
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 2013
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6084 serge 2014
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
4104 Serge 2015
	u32 linetime, ips_linetime;
3031 serge 2016
 
6084 serge 2017
	if (!intel_crtc->active)
4104 Serge 2018
		return 0;
3031 serge 2019
 
2020
	/* The WM are computed with base on how long it takes to fill a single
2021
	 * row at the given clock rate, multiplied by 8.
2022
	 * */
6084 serge 2023
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2024
				     adjusted_mode->crtc_clock);
2025
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2026
					 dev_priv->cdclk_freq);
3031 serge 2027
 
4104 Serge 2028
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2029
	       PIPE_WM_LINETIME_TIME(linetime);
2030
}
2031
 
5354 serge 2032
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
4104 Serge 2033
{
2034
	struct drm_i915_private *dev_priv = dev->dev_private;
2035
 
5354 serge 2036
	if (IS_GEN9(dev)) {
2037
		uint32_t val;
2038
		int ret, i;
2039
		int level, max_level = ilk_wm_max_level(dev);
2040
 
2041
		/* read the first set of memory latencies[0:3] */
2042
		val = 0; /* data0 to be programmed to 0 for first set */
2043
		mutex_lock(&dev_priv->rps.hw_lock);
2044
		ret = sandybridge_pcode_read(dev_priv,
2045
					     GEN9_PCODE_READ_MEM_LATENCY,
2046
					     &val);
2047
		mutex_unlock(&dev_priv->rps.hw_lock);
2048
 
2049
		if (ret) {
2050
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2051
			return;
2052
		}
2053
 
2054
		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2055
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2056
				GEN9_MEM_LATENCY_LEVEL_MASK;
2057
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2058
				GEN9_MEM_LATENCY_LEVEL_MASK;
2059
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2060
				GEN9_MEM_LATENCY_LEVEL_MASK;
2061
 
2062
		/* read the second set of memory latencies[4:7] */
2063
		val = 1; /* data0 to be programmed to 1 for second set */
2064
		mutex_lock(&dev_priv->rps.hw_lock);
2065
		ret = sandybridge_pcode_read(dev_priv,
2066
					     GEN9_PCODE_READ_MEM_LATENCY,
2067
					     &val);
2068
		mutex_unlock(&dev_priv->rps.hw_lock);
2069
		if (ret) {
2070
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2071
			return;
2072
		}
2073
 
2074
		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2075
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2076
				GEN9_MEM_LATENCY_LEVEL_MASK;
2077
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2078
				GEN9_MEM_LATENCY_LEVEL_MASK;
2079
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2080
				GEN9_MEM_LATENCY_LEVEL_MASK;
2081
 
2082
		/*
6084 serge 2083
		 * WaWmMemoryReadLatency:skl
2084
		 *
5354 serge 2085
		 * punit doesn't take into account the read latency so we need
6937 serge 2086
		 * to add 2us to the various latency levels we retrieve from
2087
		 * the punit.
2088
		 *   - W0 is a bit special in that it's the only level that
2089
		 *   can't be disabled if we want to have display working, so
2090
		 *   we always add 2us there.
2091
		 *   - For levels >=1, punit returns 0us latency when they are
2092
		 *   disabled, so we respect that and don't add 2us then
2093
		 *
2094
		 * Additionally, if a level n (n > 1) has a 0us latency, all
2095
		 * levels m (m >= n) need to be disabled. We make sure to
2096
		 * sanitize the values out of the punit to satisfy this
2097
		 * requirement.
5354 serge 2098
		 */
2099
		wm[0] += 2;
6937 serge 2100
		for (level = 1; level <= max_level; level++)
2101
			if (wm[level] != 0)
2102
				wm[level] += 2;
2103
			else {
2104
				for (i = level + 1; i <= max_level; i++)
2105
					wm[i] = 0;
2106
 
6935 serge 2107
					break;
2108
			}
5354 serge 2109
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4104 Serge 2110
		uint64_t sskpd = I915_READ64(MCH_SSKPD);
2111
 
2112
		wm[0] = (sskpd >> 56) & 0xFF;
2113
		if (wm[0] == 0)
2114
			wm[0] = sskpd & 0xF;
2115
		wm[1] = (sskpd >> 4) & 0xFF;
2116
		wm[2] = (sskpd >> 12) & 0xFF;
2117
		wm[3] = (sskpd >> 20) & 0x1FF;
2118
		wm[4] = (sskpd >> 32) & 0x1FF;
2119
	} else if (INTEL_INFO(dev)->gen >= 6) {
2120
		uint32_t sskpd = I915_READ(MCH_SSKPD);
2121
 
2122
		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2123
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2124
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2125
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2126
	} else if (INTEL_INFO(dev)->gen >= 5) {
2127
		uint32_t mltr = I915_READ(MLTR_ILK);
2128
 
2129
		/* ILK primary LP0 latency is 700 ns */
2130
		wm[0] = 7;
2131
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2132
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2133
	}
2134
}
2135
 
2136
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2137
{
2138
	/* ILK sprite LP0 latency is 1300 ns */
2139
	if (INTEL_INFO(dev)->gen == 5)
2140
		wm[0] = 13;
2141
}
2142
 
2143
static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2144
{
2145
	/* ILK cursor LP0 latency is 1300 ns */
2146
	if (INTEL_INFO(dev)->gen == 5)
2147
		wm[0] = 13;
2148
 
2149
	/* WaDoubleCursorLP3Latency:ivb */
2150
	if (IS_IVYBRIDGE(dev))
2151
		wm[3] *= 2;
2152
}
2153
 
5060 serge 2154
int ilk_wm_max_level(const struct drm_device *dev)
4560 Serge 2155
{
2156
	/* how many WM levels are we expecting */
6084 serge 2157
	if (INTEL_INFO(dev)->gen >= 9)
5354 serge 2158
		return 7;
2159
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4560 Serge 2160
		return 4;
2161
	else if (INTEL_INFO(dev)->gen >= 6)
2162
		return 3;
2163
	else
2164
		return 2;
2165
}
2166
 
4104 Serge 2167
static void intel_print_wm_latency(struct drm_device *dev,
2168
				   const char *name,
5354 serge 2169
				   const uint16_t wm[8])
4104 Serge 2170
{
4560 Serge 2171
	int level, max_level = ilk_wm_max_level(dev);
4104 Serge 2172
 
2173
	for (level = 0; level <= max_level; level++) {
2174
		unsigned int latency = wm[level];
2175
 
2176
		if (latency == 0) {
2177
			DRM_ERROR("%s WM%d latency not provided\n",
2178
				  name, level);
2179
			continue;
2180
		}
2181
 
5354 serge 2182
		/*
2183
		 * - latencies are in us on gen9.
2184
		 * - before then, WM1+ latency values are in 0.5us units
2185
		 */
2186
		if (IS_GEN9(dev))
2187
			latency *= 10;
2188
		else if (level > 0)
4104 Serge 2189
			latency *= 5;
2190
 
2191
		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2192
			      name, level, wm[level],
2193
			      latency / 10, latency % 10);
2194
	}
2195
}
2196
 
5060 serge 2197
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2198
				    uint16_t wm[5], uint16_t min)
4104 Serge 2199
{
5060 serge 2200
	int level, max_level = ilk_wm_max_level(dev_priv->dev);
2201
 
2202
	if (wm[0] >= min)
2203
		return false;
2204
 
2205
	wm[0] = max(wm[0], min);
2206
	for (level = 1; level <= max_level; level++)
2207
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2208
 
2209
	return true;
2210
}
2211
 
2212
static void snb_wm_latency_quirk(struct drm_device *dev)
2213
{
4104 Serge 2214
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 2215
	bool changed;
4104 Serge 2216
 
5060 serge 2217
	/*
2218
	 * The BIOS provided WM memory latency values are often
2219
	 * inadequate for high resolution displays. Adjust them.
2220
	 */
2221
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2222
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2223
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2224
 
2225
	if (!changed)
2226
		return;
2227
 
2228
	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2229
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2230
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2231
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2232
}
2233
 
2234
static void ilk_setup_wm_latency(struct drm_device *dev)
2235
{
2236
	struct drm_i915_private *dev_priv = dev->dev_private;
2237
 
4104 Serge 2238
	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2239
 
2240
	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2241
	       sizeof(dev_priv->wm.pri_latency));
2242
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2243
	       sizeof(dev_priv->wm.pri_latency));
2244
 
2245
	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2246
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2247
 
2248
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2249
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2250
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
5060 serge 2251
 
2252
	if (IS_GEN6(dev))
2253
		snb_wm_latency_quirk(dev);
4104 Serge 2254
}
2255
 
5354 serge 2256
static void skl_setup_wm_latency(struct drm_device *dev)
2257
{
2258
	struct drm_i915_private *dev_priv = dev->dev_private;
2259
 
2260
	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2261
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2262
}
2263
 
4560 Serge 2264
/* Compute new watermarks for the pipe */
6937 serge 2265
static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
2266
			       struct drm_atomic_state *state)
4560 Serge 2267
{
6937 serge 2268
	struct intel_pipe_wm *pipe_wm;
2269
	struct drm_device *dev = intel_crtc->base.dev;
5060 serge 2270
	const struct drm_i915_private *dev_priv = dev->dev_private;
6937 serge 2271
	struct intel_crtc_state *cstate = NULL;
6084 serge 2272
	struct intel_plane *intel_plane;
6937 serge 2273
	struct drm_plane_state *ps;
2274
	struct intel_plane_state *pristate = NULL;
6084 serge 2275
	struct intel_plane_state *sprstate = NULL;
6937 serge 2276
	struct intel_plane_state *curstate = NULL;
4560 Serge 2277
	int level, max_level = ilk_wm_max_level(dev);
2278
	/* LP0 watermark maximums depend on this pipe alone */
2279
	struct intel_wm_config config = {
2280
		.num_pipes_active = 1,
2281
	};
2282
	struct ilk_wm_maximums max;
4104 Serge 2283
 
6937 serge 2284
	cstate = intel_atomic_get_crtc_state(state, intel_crtc);
2285
	if (IS_ERR(cstate))
2286
		return PTR_ERR(cstate);
2287
 
2288
	pipe_wm = &cstate->wm.optimal.ilk;
2289
	memset(pipe_wm, 0, sizeof(*pipe_wm));
2290
 
6084 serge 2291
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
6937 serge 2292
		ps = drm_atomic_get_plane_state(state,
2293
						&intel_plane->base);
2294
		if (IS_ERR(ps))
2295
			return PTR_ERR(ps);
2296
 
2297
		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2298
			pristate = to_intel_plane_state(ps);
2299
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2300
			sprstate = to_intel_plane_state(ps);
2301
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2302
			curstate = to_intel_plane_state(ps);
6084 serge 2303
	}
4560 Serge 2304
 
6084 serge 2305
	config.sprites_enabled = sprstate->visible;
2306
	config.sprites_scaled = sprstate->visible &&
2307
		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2308
		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2309
 
2310
	pipe_wm->pipe_enabled = cstate->base.active;
6937 serge 2311
	pipe_wm->sprites_enabled = config.sprites_enabled;
6084 serge 2312
	pipe_wm->sprites_scaled = config.sprites_scaled;
2313
 
4560 Serge 2314
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
6084 serge 2315
	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
4560 Serge 2316
		max_level = 1;
2317
 
2318
	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
6084 serge 2319
	if (config.sprites_scaled)
4560 Serge 2320
		max_level = 0;
2321
 
6937 serge 2322
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2323
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
4560 Serge 2324
 
2325
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
6937 serge 2326
		pipe_wm->linetime = hsw_compute_linetime_wm(dev,
2327
							    &intel_crtc->base);
4560 Serge 2328
 
5060 serge 2329
	/* LP0 watermarks always use 1/2 DDB partitioning */
2330
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2331
 
4560 Serge 2332
	/* At least LP0 must be valid */
5060 serge 2333
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
6937 serge 2334
		return -EINVAL;
5060 serge 2335
 
2336
	ilk_compute_wm_reg_maximums(dev, 1, &max);
2337
 
2338
	for (level = 1; level <= max_level; level++) {
2339
		struct intel_wm_level wm = {};
2340
 
6937 serge 2341
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2342
				     pristate, sprstate, curstate, &wm);
5060 serge 2343
 
2344
		/*
2345
		 * Disable any watermark level that exceeds the
2346
		 * register maximums since such watermarks are
2347
		 * always invalid.
2348
		 */
2349
		if (!ilk_validate_wm_level(level, &max, &wm))
2350
			break;
2351
 
2352
		pipe_wm->wm[level] = wm;
2353
	}
2354
 
6937 serge 2355
	return 0;
4104 Serge 2356
}
2357
 
4560 Serge 2358
/*
2359
 * Merge the watermarks from all active pipes for a specific level.
2360
 */
2361
static void ilk_merge_wm_level(struct drm_device *dev,
2362
			       int level,
2363
			       struct intel_wm_level *ret_wm)
4104 Serge 2364
{
4560 Serge 2365
	const struct intel_crtc *intel_crtc;
4104 Serge 2366
 
5060 serge 2367
	ret_wm->enable = true;
4104 Serge 2368
 
5060 serge 2369
	for_each_intel_crtc(dev, intel_crtc) {
6937 serge 2370
		const struct intel_crtc_state *cstate =
2371
			to_intel_crtc_state(intel_crtc->base.state);
2372
		const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
5060 serge 2373
		const struct intel_wm_level *wm = &active->wm[level];
2374
 
2375
		if (!active->pipe_enabled)
2376
			continue;
2377
 
2378
		/*
2379
		 * The watermark values may have been used in the past,
2380
		 * so we must maintain them in the registers for some
2381
		 * time even if the level is now disabled.
2382
		 */
4560 Serge 2383
		if (!wm->enable)
5060 serge 2384
			ret_wm->enable = false;
4104 Serge 2385
 
4560 Serge 2386
		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2387
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2388
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2389
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2390
	}
2391
}
2392
 
2393
/*
2394
 * Merge all low power watermarks for all active pipes.
2395
 */
2396
static void ilk_wm_merge(struct drm_device *dev,
2397
			 const struct intel_wm_config *config,
2398
			 const struct ilk_wm_maximums *max,
2399
			 struct intel_pipe_wm *merged)
2400
{
6084 serge 2401
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 2402
	int level, max_level = ilk_wm_max_level(dev);
5060 serge 2403
	int last_enabled_level = max_level;
4560 Serge 2404
 
2405
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2406
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2407
	    config->num_pipes_active > 1)
2408
		return;
2409
 
2410
	/* ILK: FBC WM must be disabled always */
2411
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2412
 
2413
	/* merge each WM1+ level */
4104 Serge 2414
	for (level = 1; level <= max_level; level++) {
4560 Serge 2415
		struct intel_wm_level *wm = &merged->wm[level];
2416
 
2417
		ilk_merge_wm_level(dev, level, wm);
2418
 
5060 serge 2419
		if (level > last_enabled_level)
2420
			wm->enable = false;
2421
		else if (!ilk_validate_wm_level(level, max, wm))
2422
			/* make sure all following levels get disabled */
2423
			last_enabled_level = level - 1;
4560 Serge 2424
 
2425
		/*
2426
		 * The spec says it is preferred to disable
2427
		 * FBC WMs instead of disabling a WM level.
2428
		 */
2429
		if (wm->fbc_val > max->fbc) {
5060 serge 2430
			if (wm->enable)
6084 serge 2431
				merged->fbc_wm_enabled = false;
4560 Serge 2432
			wm->fbc_val = 0;
4104 Serge 2433
		}
2434
	}
2435
 
4560 Serge 2436
	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2437
	/*
2438
	 * FIXME this is racy. FBC might get enabled later.
2439
	 * What we should check here is whether FBC can be
2440
	 * enabled sometime later.
2441
	 */
6084 serge 2442
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
6937 serge 2443
	    intel_fbc_is_active(dev_priv)) {
4560 Serge 2444
		for (level = 2; level <= max_level; level++) {
2445
			struct intel_wm_level *wm = &merged->wm[level];
2446
 
2447
			wm->enable = false;
2448
		}
2449
	}
2450
}
2451
 
2452
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2453
{
2454
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2455
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2456
}
2457
 
2458
/* The value we need to program into the WM_LPx latency field */
2459
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2460
{
2461
	struct drm_i915_private *dev_priv = dev->dev_private;
2462
 
2463
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2464
		return 2 * level;
2465
	else
2466
		return dev_priv->wm.pri_latency[level];
2467
}
2468
 
2469
static void ilk_compute_wm_results(struct drm_device *dev,
2470
				   const struct intel_pipe_wm *merged,
2471
				   enum intel_ddb_partitioning partitioning,
2472
				   struct ilk_wm_values *results)
2473
{
2474
	struct intel_crtc *intel_crtc;
2475
	int level, wm_lp;
2476
 
2477
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2478
	results->partitioning = partitioning;
2479
 
2480
	/* LP1+ register values */
4104 Serge 2481
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2482
		const struct intel_wm_level *r;
2483
 
4560 Serge 2484
		level = ilk_wm_lp_to_level(wm_lp, merged);
2485
 
2486
		r = &merged->wm[level];
4104 Serge 2487
 
5060 serge 2488
		/*
2489
		 * Maintain the watermark values even if the level is
2490
		 * disabled. Doing otherwise could cause underruns.
2491
		 */
2492
		results->wm_lp[wm_lp - 1] =
4560 Serge 2493
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2494
			(r->pri_val << WM1_LP_SR_SHIFT) |
2495
			r->cur_val;
2496
 
5060 serge 2497
		if (r->enable)
2498
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2499
 
4560 Serge 2500
		if (INTEL_INFO(dev)->gen >= 8)
2501
			results->wm_lp[wm_lp - 1] |=
2502
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2503
		else
2504
			results->wm_lp[wm_lp - 1] |=
2505
				r->fbc_val << WM1_LP_FBC_SHIFT;
2506
 
5060 serge 2507
		/*
2508
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
2509
		 * level is disabled. Doing otherwise could cause underruns.
2510
		 */
4560 Serge 2511
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2512
			WARN_ON(wm_lp != 1);
2513
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2514
		} else
6084 serge 2515
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
4104 Serge 2516
	}
2517
 
4560 Serge 2518
	/* LP0 register values */
5060 serge 2519
	for_each_intel_crtc(dev, intel_crtc) {
6937 serge 2520
		const struct intel_crtc_state *cstate =
2521
			to_intel_crtc_state(intel_crtc->base.state);
4560 Serge 2522
		enum pipe pipe = intel_crtc->pipe;
6937 serge 2523
		const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
4104 Serge 2524
 
4560 Serge 2525
		if (WARN_ON(!r->enable))
2526
			continue;
2527
 
6937 serge 2528
		results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
4560 Serge 2529
 
2530
		results->wm_pipe[pipe] =
2531
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2532
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2533
			r->cur_val;
4104 Serge 2534
	}
2535
}
2536
 
2537
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2538
 * case both are at the same level. Prefer r1 in case they're the same. */
4560 Serge 2539
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2540
						  struct intel_pipe_wm *r1,
2541
						  struct intel_pipe_wm *r2)
4104 Serge 2542
{
4560 Serge 2543
	int level, max_level = ilk_wm_max_level(dev);
2544
	int level1 = 0, level2 = 0;
4104 Serge 2545
 
4560 Serge 2546
	for (level = 1; level <= max_level; level++) {
2547
		if (r1->wm[level].enable)
2548
			level1 = level;
2549
		if (r2->wm[level].enable)
2550
			level2 = level;
4104 Serge 2551
	}
2552
 
4560 Serge 2553
	if (level1 == level2) {
2554
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
4104 Serge 2555
			return r2;
2556
		else
2557
			return r1;
4560 Serge 2558
	} else if (level1 > level2) {
4104 Serge 2559
		return r1;
2560
	} else {
2561
		return r2;
2562
	}
2563
}
2564
 
4560 Serge 2565
/* dirty bits used to track which watermarks need changes */
2566
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2567
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2568
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2569
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2570
#define WM_DIRTY_FBC (1 << 24)
2571
#define WM_DIRTY_DDB (1 << 25)
2572
 
5354 serge 2573
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
4560 Serge 2574
					 const struct ilk_wm_values *old,
2575
					 const struct ilk_wm_values *new)
2576
{
2577
	unsigned int dirty = 0;
2578
	enum pipe pipe;
2579
	int wm_lp;
2580
 
5354 serge 2581
	for_each_pipe(dev_priv, pipe) {
4560 Serge 2582
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2583
			dirty |= WM_DIRTY_LINETIME(pipe);
2584
			/* Must disable LP1+ watermarks too */
2585
			dirty |= WM_DIRTY_LP_ALL;
2586
		}
2587
 
2588
		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2589
			dirty |= WM_DIRTY_PIPE(pipe);
2590
			/* Must disable LP1+ watermarks too */
2591
			dirty |= WM_DIRTY_LP_ALL;
2592
		}
2593
	}
2594
 
2595
	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2596
		dirty |= WM_DIRTY_FBC;
2597
		/* Must disable LP1+ watermarks too */
2598
		dirty |= WM_DIRTY_LP_ALL;
2599
	}
2600
 
2601
	if (old->partitioning != new->partitioning) {
2602
		dirty |= WM_DIRTY_DDB;
2603
		/* Must disable LP1+ watermarks too */
2604
		dirty |= WM_DIRTY_LP_ALL;
2605
	}
2606
 
2607
	/* LP1+ watermarks already deemed dirty, no need to continue */
2608
	if (dirty & WM_DIRTY_LP_ALL)
2609
		return dirty;
2610
 
2611
	/* Find the lowest numbered LP1+ watermark in need of an update... */
2612
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2613
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2614
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2615
			break;
2616
	}
2617
 
2618
	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2619
	for (; wm_lp <= 3; wm_lp++)
2620
		dirty |= WM_DIRTY_LP(wm_lp);
2621
 
2622
	return dirty;
2623
}
2624
 
2625
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2626
			       unsigned int dirty)
2627
{
2628
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2629
	bool changed = false;
2630
 
2631
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2632
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2633
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2634
		changed = true;
2635
	}
2636
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2637
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2638
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2639
		changed = true;
2640
	}
2641
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2642
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2643
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2644
		changed = true;
2645
	}
2646
 
2647
	/*
2648
	 * Don't touch WM1S_LP_EN here.
2649
	 * Doing so could cause underruns.
2650
	 */
2651
 
2652
	return changed;
2653
}
2654
 
4104 Serge 2655
/*
2656
 * The spec says we shouldn't write when we don't need, because every write
2657
 * causes WMs to be re-evaluated, expending some power.
6084 serge 2658
 */
4560 Serge 2659
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2660
				struct ilk_wm_values *results)
4104 Serge 2661
{
4560 Serge 2662
	struct drm_device *dev = dev_priv->dev;
2663
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2664
	unsigned int dirty;
4104 Serge 2665
	uint32_t val;
3031 serge 2666
 
5354 serge 2667
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
4560 Serge 2668
	if (!dirty)
4104 Serge 2669
		return;
2670
 
4560 Serge 2671
	_ilk_disable_lp_wm(dev_priv, dirty);
4104 Serge 2672
 
4560 Serge 2673
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
4104 Serge 2674
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
4560 Serge 2675
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
4104 Serge 2676
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
4560 Serge 2677
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
4104 Serge 2678
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2679
 
4560 Serge 2680
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
4104 Serge 2681
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
4560 Serge 2682
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
4104 Serge 2683
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
4560 Serge 2684
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
4104 Serge 2685
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2686
 
4560 Serge 2687
	if (dirty & WM_DIRTY_DDB) {
2688
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6084 serge 2689
			val = I915_READ(WM_MISC);
4560 Serge 2690
			if (results->partitioning == INTEL_DDB_PART_1_2)
6084 serge 2691
				val &= ~WM_MISC_DATA_PARTITION_5_6;
2692
			else
2693
				val |= WM_MISC_DATA_PARTITION_5_6;
2694
			I915_WRITE(WM_MISC, val);
4560 Serge 2695
		} else {
2696
			val = I915_READ(DISP_ARB_CTL2);
2697
			if (results->partitioning == INTEL_DDB_PART_1_2)
2698
				val &= ~DISP_DATA_PARTITION_5_6;
2699
			else
2700
				val |= DISP_DATA_PARTITION_5_6;
2701
			I915_WRITE(DISP_ARB_CTL2, val);
2702
		}
4104 Serge 2703
	}
2704
 
4560 Serge 2705
	if (dirty & WM_DIRTY_FBC) {
4104 Serge 2706
		val = I915_READ(DISP_ARB_CTL);
2707
		if (results->enable_fbc_wm)
2708
			val &= ~DISP_FBC_WM_DIS;
2709
		else
2710
			val |= DISP_FBC_WM_DIS;
2711
		I915_WRITE(DISP_ARB_CTL, val);
2712
	}
2713
 
4560 Serge 2714
	if (dirty & WM_DIRTY_LP(1) &&
2715
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
4104 Serge 2716
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
4560 Serge 2717
 
2718
	if (INTEL_INFO(dev)->gen >= 7) {
2719
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
6084 serge 2720
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
4560 Serge 2721
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
6084 serge 2722
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
4560 Serge 2723
	}
4104 Serge 2724
 
4560 Serge 2725
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
4104 Serge 2726
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
4560 Serge 2727
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
4104 Serge 2728
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
4560 Serge 2729
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
4104 Serge 2730
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
4560 Serge 2731
 
2732
	dev_priv->wm.hw = *results;
3031 serge 2733
}
2734
 
4560 Serge 2735
static bool ilk_disable_lp_wm(struct drm_device *dev)
4104 Serge 2736
{
2737
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 2738
 
2739
	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2740
}
2741
 
5354 serge 2742
/*
2743
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2744
 * different active planes.
2745
 */
2746
 
2747
#define SKL_DDB_SIZE		896	/* in blocks */
6084 serge 2748
#define BXT_DDB_SIZE		512
5354 serge 2749
 
6937 serge 2750
/*
2751
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2752
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2753
 * other universal planes are in indices 1..n.  Note that this may leave unused
2754
 * indices between the top "sprite" plane and the cursor.
2755
 */
2756
static int
2757
skl_wm_plane_id(const struct intel_plane *plane)
2758
{
2759
	switch (plane->base.type) {
2760
	case DRM_PLANE_TYPE_PRIMARY:
2761
		return 0;
2762
	case DRM_PLANE_TYPE_CURSOR:
2763
		return PLANE_CURSOR;
2764
	case DRM_PLANE_TYPE_OVERLAY:
2765
		return plane->plane + 1;
2766
	default:
2767
		MISSING_CASE(plane->base.type);
2768
		return plane->plane;
2769
	}
2770
}
2771
 
5354 serge 2772
static void
2773
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
6937 serge 2774
				   const struct intel_crtc_state *cstate,
5354 serge 2775
				   const struct intel_wm_config *config,
2776
				   struct skl_ddb_entry *alloc /* out */)
2777
{
6937 serge 2778
	struct drm_crtc *for_crtc = cstate->base.crtc;
5354 serge 2779
	struct drm_crtc *crtc;
2780
	unsigned int pipe_size, ddb_size;
2781
	int nth_active_pipe;
2782
 
6937 serge 2783
	if (!cstate->base.active) {
5354 serge 2784
		alloc->start = 0;
2785
		alloc->end = 0;
2786
		return;
2787
	}
2788
 
6084 serge 2789
	if (IS_BROXTON(dev))
2790
		ddb_size = BXT_DDB_SIZE;
2791
	else
2792
		ddb_size = SKL_DDB_SIZE;
5354 serge 2793
 
2794
	ddb_size -= 4; /* 4 blocks for bypass path allocation */
2795
 
2796
	nth_active_pipe = 0;
2797
	for_each_crtc(dev, crtc) {
6084 serge 2798
		if (!to_intel_crtc(crtc)->active)
5354 serge 2799
			continue;
2800
 
2801
		if (crtc == for_crtc)
2802
			break;
2803
 
2804
		nth_active_pipe++;
2805
	}
2806
 
2807
	pipe_size = ddb_size / config->num_pipes_active;
2808
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2809
	alloc->end = alloc->start + pipe_size;
2810
}
2811
 
2812
static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2813
{
2814
	if (config->num_pipes_active == 1)
2815
		return 32;
2816
 
2817
	return 8;
2818
}
2819
 
2820
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2821
{
2822
	entry->start = reg & 0x3ff;
2823
	entry->end = (reg >> 16) & 0x3ff;
2824
	if (entry->end)
2825
		entry->end += 1;
2826
}
2827
 
2828
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2829
			  struct skl_ddb_allocation *ddb /* out */)
2830
{
2831
	enum pipe pipe;
2832
	int plane;
2833
	u32 val;
2834
 
6084 serge 2835
	memset(ddb, 0, sizeof(*ddb));
2836
 
5354 serge 2837
	for_each_pipe(dev_priv, pipe) {
6937 serge 2838
		enum intel_display_power_domain power_domain;
2839
 
2840
		power_domain = POWER_DOMAIN_PIPE(pipe);
2841
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
6084 serge 2842
			continue;
2843
 
2844
		for_each_plane(dev_priv, pipe, plane) {
5354 serge 2845
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2846
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2847
						   val);
2848
		}
2849
 
2850
		val = I915_READ(CUR_BUF_CFG(pipe));
6084 serge 2851
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2852
					   val);
6937 serge 2853
 
2854
		intel_display_power_put(dev_priv, power_domain);
5354 serge 2855
	}
2856
}
2857
 
2858
static unsigned int
6937 serge 2859
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
2860
			     const struct drm_plane_state *pstate,
2861
			     int y)
5354 serge 2862
{
6937 serge 2863
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2864
	struct drm_framebuffer *fb = pstate->fb;
6084 serge 2865
 
2866
	/* for planar format */
6937 serge 2867
	if (fb->pixel_format == DRM_FORMAT_NV12) {
6084 serge 2868
		if (y)  /* y-plane data rate */
6937 serge 2869
			return intel_crtc->config->pipe_src_w *
2870
				intel_crtc->config->pipe_src_h *
2871
				drm_format_plane_cpp(fb->pixel_format, 0);
6084 serge 2872
		else    /* uv-plane data rate */
6937 serge 2873
			return (intel_crtc->config->pipe_src_w/2) *
2874
				(intel_crtc->config->pipe_src_h/2) *
2875
				drm_format_plane_cpp(fb->pixel_format, 1);
6084 serge 2876
	}
2877
 
2878
	/* for packed formats */
6937 serge 2879
	return intel_crtc->config->pipe_src_w *
2880
		intel_crtc->config->pipe_src_h *
2881
		drm_format_plane_cpp(fb->pixel_format, 0);
5354 serge 2882
}
2883
 
2884
/*
2885
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2886
 * a 8192x4096@32bpp framebuffer:
2887
 *   3 * 4096 * 8192  * 4 < 2^32
2888
 */
2889
static unsigned int
6937 serge 2890
skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
5354 serge 2891
{
6937 serge 2892
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2893
	struct drm_device *dev = intel_crtc->base.dev;
2894
	const struct intel_plane *intel_plane;
5354 serge 2895
	unsigned int total_data_rate = 0;
2896
 
6937 serge 2897
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2898
		const struct drm_plane_state *pstate = intel_plane->base.state;
5354 serge 2899
 
6937 serge 2900
		if (pstate->fb == NULL)
5354 serge 2901
			continue;
2902
 
6937 serge 2903
		if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2904
			continue;
2905
 
2906
		/* packed/uv */
2907
		total_data_rate += skl_plane_relative_data_rate(cstate,
2908
								pstate,
2909
								0);
2910
 
2911
		if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
2912
			/* y-plane */
2913
			total_data_rate += skl_plane_relative_data_rate(cstate,
2914
									pstate,
2915
									1);
5354 serge 2916
	}
2917
 
2918
	return total_data_rate;
2919
}
2920
 
2921
static void
6937 serge 2922
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
5354 serge 2923
		      struct skl_ddb_allocation *ddb /* out */)
2924
{
6937 serge 2925
	struct drm_crtc *crtc = cstate->base.crtc;
5354 serge 2926
	struct drm_device *dev = crtc->dev;
6937 serge 2927
	struct drm_i915_private *dev_priv = to_i915(dev);
2928
	struct intel_wm_config *config = &dev_priv->wm.config;
5354 serge 2929
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6937 serge 2930
	struct intel_plane *intel_plane;
5354 serge 2931
	enum pipe pipe = intel_crtc->pipe;
2932
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2933
	uint16_t alloc_size, start, cursor_blocks;
6084 serge 2934
	uint16_t minimum[I915_MAX_PLANES];
2935
	uint16_t y_minimum[I915_MAX_PLANES];
5354 serge 2936
	unsigned int total_data_rate;
2937
 
6937 serge 2938
	skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
5354 serge 2939
	alloc_size = skl_ddb_entry_size(alloc);
2940
	if (alloc_size == 0) {
2941
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
6084 serge 2942
		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2943
		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
5354 serge 2944
		return;
2945
	}
2946
 
2947
	cursor_blocks = skl_cursor_allocation(config);
6084 serge 2948
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2949
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
5354 serge 2950
 
2951
	alloc_size -= cursor_blocks;
2952
	alloc->end -= cursor_blocks;
2953
 
6084 serge 2954
	/* 1. Allocate the mininum required blocks for each active plane */
6937 serge 2955
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2956
		struct drm_plane *plane = &intel_plane->base;
2957
		struct drm_framebuffer *fb = plane->state->fb;
2958
		int id = skl_wm_plane_id(intel_plane);
6084 serge 2959
 
6937 serge 2960
		if (fb == NULL)
6084 serge 2961
			continue;
6937 serge 2962
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
2963
			continue;
6084 serge 2964
 
6937 serge 2965
		minimum[id] = 8;
2966
		alloc_size -= minimum[id];
2967
		y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
2968
		alloc_size -= y_minimum[id];
6084 serge 2969
	}
2970
 
2971
	/*
2972
	 * 2. Distribute the remaining space in proportion to the amount of
2973
	 * data each plane needs to fetch from memory.
5354 serge 2974
	 *
2975
	 * FIXME: we may not allocate every single block here.
6084 serge 2976
	 */
6937 serge 2977
	total_data_rate = skl_get_total_relative_data_rate(cstate);
5354 serge 2978
 
2979
	start = alloc->start;
6937 serge 2980
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2981
		struct drm_plane *plane = &intel_plane->base;
2982
		struct drm_plane_state *pstate = intel_plane->base.state;
6084 serge 2983
		unsigned int data_rate, y_data_rate;
2984
		uint16_t plane_blocks, y_plane_blocks = 0;
6937 serge 2985
		int id = skl_wm_plane_id(intel_plane);
5354 serge 2986
 
6937 serge 2987
		if (pstate->fb == NULL)
5354 serge 2988
			continue;
6937 serge 2989
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
2990
			continue;
5354 serge 2991
 
6937 serge 2992
		data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
5354 serge 2993
 
2994
		/*
6084 serge 2995
		 * allocation for (packed formats) or (uv-plane part of planar format):
5354 serge 2996
		 * promote the expression to 64 bits to avoid overflowing, the
2997
		 * result is < available as data_rate / total_data_rate < 1
2998
		 */
6937 serge 2999
		plane_blocks = minimum[id];
6084 serge 3000
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3001
					total_data_rate);
5354 serge 3002
 
6937 serge 3003
		ddb->plane[pipe][id].start = start;
3004
		ddb->plane[pipe][id].end = start + plane_blocks;
5354 serge 3005
 
3006
		start += plane_blocks;
6084 serge 3007
 
3008
		/*
3009
		 * allocation for y_plane part of planar format:
3010
		 */
6937 serge 3011
		if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
3012
			y_data_rate = skl_plane_relative_data_rate(cstate,
3013
								   pstate,
3014
								   1);
3015
			y_plane_blocks = y_minimum[id];
6084 serge 3016
			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3017
						total_data_rate);
3018
 
6937 serge 3019
			ddb->y_plane[pipe][id].start = start;
3020
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
6084 serge 3021
 
3022
			start += y_plane_blocks;
3023
		}
3024
 
5354 serge 3025
	}
3026
 
3027
}
3028
 
6084 serge 3029
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
5354 serge 3030
{
3031
	/* TODO: Take into account the scalers once we support them */
6084 serge 3032
	return config->base.adjusted_mode.crtc_clock;
5354 serge 3033
}
3034
 
3035
/*
3036
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3037
 * for the read latency) and bytes_per_pixel should always be <= 8, so that
3038
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3039
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3040
*/
3041
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3042
			       uint32_t latency)
3043
{
3044
	uint32_t wm_intermediate_val, ret;
3045
 
3046
	if (latency == 0)
3047
		return UINT_MAX;
3048
 
6084 serge 3049
	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
5354 serge 3050
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3051
 
3052
	return ret;
3053
}
3054
 
3055
static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3056
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
6084 serge 3057
			       uint64_t tiling, uint32_t latency)
5354 serge 3058
{
6084 serge 3059
	uint32_t ret;
3060
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3061
	uint32_t wm_intermediate_val;
5354 serge 3062
 
3063
	if (latency == 0)
3064
		return UINT_MAX;
3065
 
3066
	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
6084 serge 3067
 
3068
	if (tiling == I915_FORMAT_MOD_Y_TILED ||
3069
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
3070
		plane_bytes_per_line *= 4;
3071
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3072
		plane_blocks_per_line /= 4;
3073
	} else {
3074
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3075
	}
3076
 
5354 serge 3077
	wm_intermediate_val = latency * pixel_rate;
3078
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
6084 serge 3079
				plane_blocks_per_line;
5354 serge 3080
 
3081
	return ret;
3082
}
3083
 
3084
static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3085
				       const struct intel_crtc *intel_crtc)
3086
{
3087
	struct drm_device *dev = intel_crtc->base.dev;
3088
	struct drm_i915_private *dev_priv = dev->dev_private;
3089
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3090
 
6937 serge 3091
	/*
3092
	 * If ddb allocation of pipes changed, it may require recalculation of
3093
	 * watermarks
3094
	 */
3095
	if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
5354 serge 3096
		return true;
3097
 
3098
	return false;
3099
}
3100
 
6084 serge 3101
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
6937 serge 3102
				 struct intel_crtc_state *cstate,
3103
				 struct intel_plane *intel_plane,
5354 serge 3104
				 uint16_t ddb_allocation,
6084 serge 3105
				 int level,
5354 serge 3106
				 uint16_t *out_blocks, /* out */
3107
				 uint8_t *out_lines /* out */)
3108
{
6937 serge 3109
	struct drm_plane *plane = &intel_plane->base;
3110
	struct drm_framebuffer *fb = plane->state->fb;
6084 serge 3111
	uint32_t latency = dev_priv->wm.skl_latency[level];
3112
	uint32_t method1, method2;
3113
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3114
	uint32_t res_blocks, res_lines;
3115
	uint32_t selected_result;
3116
	uint8_t bytes_per_pixel;
5354 serge 3117
 
6937 serge 3118
	if (latency == 0 || !cstate->base.active || !fb)
5354 serge 3119
		return false;
3120
 
6937 serge 3121
	bytes_per_pixel = drm_format_plane_cpp(fb->pixel_format, 0);
3122
	method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
6084 serge 3123
				 bytes_per_pixel,
3124
				 latency);
6937 serge 3125
	method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
3126
				 cstate->base.adjusted_mode.crtc_htotal,
3127
				 cstate->pipe_src_w,
6084 serge 3128
				 bytes_per_pixel,
6937 serge 3129
				 fb->modifier[0],
6084 serge 3130
				 latency);
5354 serge 3131
 
6937 serge 3132
	plane_bytes_per_line = cstate->pipe_src_w * bytes_per_pixel;
6084 serge 3133
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
5354 serge 3134
 
6937 serge 3135
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3136
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
6084 serge 3137
		uint32_t min_scanlines = 4;
3138
		uint32_t y_tile_minimum;
6937 serge 3139
		if (intel_rotation_90_or_270(plane->state->rotation)) {
3140
			int bpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3141
				drm_format_plane_cpp(fb->pixel_format, 1) :
3142
				drm_format_plane_cpp(fb->pixel_format, 0);
3143
 
3144
			switch (bpp) {
6084 serge 3145
			case 1:
3146
				min_scanlines = 16;
3147
				break;
3148
			case 2:
3149
				min_scanlines = 8;
3150
				break;
3151
			case 8:
3152
				WARN(1, "Unsupported pixel depth for rotation");
3153
			}
3154
		}
3155
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3156
		selected_result = max(method2, y_tile_minimum);
3157
	} else {
3158
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
3159
			selected_result = min(method1, method2);
3160
		else
3161
			selected_result = method1;
3162
	}
5354 serge 3163
 
6084 serge 3164
	res_blocks = selected_result + 1;
3165
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
5354 serge 3166
 
6084 serge 3167
	if (level >= 1 && level <= 7) {
6937 serge 3168
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3169
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
6084 serge 3170
			res_lines += 4;
3171
		else
3172
			res_blocks++;
3173
	}
3174
 
3175
	if (res_blocks >= ddb_allocation || res_lines > 31)
5354 serge 3176
		return false;
3177
 
3178
	*out_blocks = res_blocks;
3179
	*out_lines = res_lines;
3180
 
3181
	return true;
3182
}
3183
 
3184
static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3185
				 struct skl_ddb_allocation *ddb,
6937 serge 3186
				 struct intel_crtc_state *cstate,
5354 serge 3187
				 int level,
3188
				 struct skl_wm_level *result)
3189
{
6937 serge 3190
	struct drm_device *dev = dev_priv->dev;
3191
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3192
	struct intel_plane *intel_plane;
5354 serge 3193
	uint16_t ddb_blocks;
6937 serge 3194
	enum pipe pipe = intel_crtc->pipe;
5354 serge 3195
 
6937 serge 3196
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3197
		int i = skl_wm_plane_id(intel_plane);
3198
 
5354 serge 3199
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3200
 
6084 serge 3201
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
6937 serge 3202
						cstate,
3203
						intel_plane,
5354 serge 3204
						ddb_blocks,
6084 serge 3205
						level,
5354 serge 3206
						&result->plane_res_b[i],
3207
						&result->plane_res_l[i]);
3208
	}
3209
}
3210
 
3211
static uint32_t
6937 serge 3212
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
5354 serge 3213
{
6937 serge 3214
	if (!cstate->base.active)
5354 serge 3215
		return 0;
3216
 
6937 serge 3217
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
6084 serge 3218
		return 0;
3219
 
6937 serge 3220
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3221
			    skl_pipe_pixel_rate(cstate));
5354 serge 3222
}
3223
 
6937 serge 3224
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
5354 serge 3225
				      struct skl_wm_level *trans_wm /* out */)
3226
{
6937 serge 3227
	struct drm_crtc *crtc = cstate->base.crtc;
5354 serge 3228
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6937 serge 3229
	struct intel_plane *intel_plane;
5354 serge 3230
 
6937 serge 3231
	if (!cstate->base.active)
5354 serge 3232
		return;
3233
 
3234
	/* Until we know more, just disable transition WMs */
6937 serge 3235
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3236
		int i = skl_wm_plane_id(intel_plane);
3237
 
5354 serge 3238
		trans_wm->plane_en[i] = false;
6937 serge 3239
	}
5354 serge 3240
}
3241
 
6937 serge 3242
static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
5354 serge 3243
				struct skl_ddb_allocation *ddb,
3244
				struct skl_pipe_wm *pipe_wm)
3245
{
6937 serge 3246
	struct drm_device *dev = cstate->base.crtc->dev;
5354 serge 3247
	const struct drm_i915_private *dev_priv = dev->dev_private;
3248
	int level, max_level = ilk_wm_max_level(dev);
3249
 
3250
	for (level = 0; level <= max_level; level++) {
6937 serge 3251
		skl_compute_wm_level(dev_priv, ddb, cstate,
3252
				     level, &pipe_wm->wm[level]);
5354 serge 3253
	}
6937 serge 3254
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
5354 serge 3255
 
6937 serge 3256
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
5354 serge 3257
}
3258
 
3259
static void skl_compute_wm_results(struct drm_device *dev,
3260
				   struct skl_pipe_wm *p_wm,
3261
				   struct skl_wm_values *r,
3262
				   struct intel_crtc *intel_crtc)
3263
{
3264
	int level, max_level = ilk_wm_max_level(dev);
3265
	enum pipe pipe = intel_crtc->pipe;
3266
	uint32_t temp;
3267
	int i;
3268
 
3269
	for (level = 0; level <= max_level; level++) {
3270
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3271
			temp = 0;
3272
 
3273
			temp |= p_wm->wm[level].plane_res_l[i] <<
3274
					PLANE_WM_LINES_SHIFT;
3275
			temp |= p_wm->wm[level].plane_res_b[i];
3276
			if (p_wm->wm[level].plane_en[i])
3277
				temp |= PLANE_WM_EN;
3278
 
3279
			r->plane[pipe][i][level] = temp;
3280
		}
3281
 
3282
		temp = 0;
3283
 
6084 serge 3284
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3285
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
5354 serge 3286
 
6084 serge 3287
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
5354 serge 3288
			temp |= PLANE_WM_EN;
3289
 
6084 serge 3290
		r->plane[pipe][PLANE_CURSOR][level] = temp;
5354 serge 3291
 
3292
	}
3293
 
3294
	/* transition WMs */
3295
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3296
		temp = 0;
3297
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3298
		temp |= p_wm->trans_wm.plane_res_b[i];
3299
		if (p_wm->trans_wm.plane_en[i])
3300
			temp |= PLANE_WM_EN;
3301
 
3302
		r->plane_trans[pipe][i] = temp;
3303
	}
3304
 
3305
	temp = 0;
6084 serge 3306
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3307
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3308
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
5354 serge 3309
		temp |= PLANE_WM_EN;
3310
 
6084 serge 3311
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
5354 serge 3312
 
3313
	r->wm_linetime[pipe] = p_wm->linetime;
3314
}
3315
 
6937 serge 3316
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3317
				i915_reg_t reg,
5354 serge 3318
				const struct skl_ddb_entry *entry)
3319
{
3320
	if (entry->end)
3321
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3322
	else
3323
		I915_WRITE(reg, 0);
3324
}
3325
 
3326
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3327
				const struct skl_wm_values *new)
3328
{
3329
	struct drm_device *dev = dev_priv->dev;
3330
	struct intel_crtc *crtc;
3331
 
6937 serge 3332
	for_each_intel_crtc(dev, crtc) {
5354 serge 3333
		int i, level, max_level = ilk_wm_max_level(dev);
3334
		enum pipe pipe = crtc->pipe;
3335
 
3336
		if (!new->dirty[pipe])
3337
			continue;
3338
 
3339
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3340
 
3341
		for (level = 0; level <= max_level; level++) {
3342
			for (i = 0; i < intel_num_planes(crtc); i++)
3343
				I915_WRITE(PLANE_WM(pipe, i, level),
3344
					   new->plane[pipe][i][level]);
3345
			I915_WRITE(CUR_WM(pipe, level),
6084 serge 3346
				   new->plane[pipe][PLANE_CURSOR][level]);
5354 serge 3347
		}
3348
		for (i = 0; i < intel_num_planes(crtc); i++)
3349
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
3350
				   new->plane_trans[pipe][i]);
6084 serge 3351
		I915_WRITE(CUR_WM_TRANS(pipe),
3352
			   new->plane_trans[pipe][PLANE_CURSOR]);
5354 serge 3353
 
6084 serge 3354
		for (i = 0; i < intel_num_planes(crtc); i++) {
5354 serge 3355
			skl_ddb_entry_write(dev_priv,
3356
					    PLANE_BUF_CFG(pipe, i),
3357
					    &new->ddb.plane[pipe][i]);
6084 serge 3358
			skl_ddb_entry_write(dev_priv,
3359
					    PLANE_NV12_BUF_CFG(pipe, i),
3360
					    &new->ddb.y_plane[pipe][i]);
3361
		}
5354 serge 3362
 
3363
		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
6084 serge 3364
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
5354 serge 3365
	}
3366
}
3367
 
3368
/*
3369
 * When setting up a new DDB allocation arrangement, we need to correctly
3370
 * sequence the times at which the new allocations for the pipes are taken into
3371
 * account or we'll have pipes fetching from space previously allocated to
3372
 * another pipe.
3373
 *
3374
 * Roughly the sequence looks like:
3375
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
3376
 *     overlapping with a previous light-up pipe (another way to put it is:
3377
 *     pipes with their new allocation strickly included into their old ones).
3378
 *  2. re-allocate the other pipes that get their allocation reduced
3379
 *  3. allocate the pipes having their allocation increased
3380
 *
3381
 * Steps 1. and 2. are here to take care of the following case:
3382
 * - Initially DDB looks like this:
3383
 *     |   B    |   C    |
3384
 * - enable pipe A.
3385
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3386
 *   allocation
3387
 *     |  A  |  B  |  C  |
3388
 *
3389
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3390
 */
3391
 
3392
static void
3393
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3394
{
3395
	int plane;
3396
 
3397
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3398
 
6084 serge 3399
	for_each_plane(dev_priv, pipe, plane) {
5354 serge 3400
		I915_WRITE(PLANE_SURF(pipe, plane),
3401
			   I915_READ(PLANE_SURF(pipe, plane)));
3402
	}
3403
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3404
}
3405
 
3406
static bool
3407
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3408
			    const struct skl_ddb_allocation *new,
3409
			    enum pipe pipe)
3410
{
3411
	uint16_t old_size, new_size;
3412
 
3413
	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3414
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3415
 
3416
	return old_size != new_size &&
3417
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
3418
	       new->pipe[pipe].end <= old->pipe[pipe].end;
3419
}
3420
 
3421
static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3422
				struct skl_wm_values *new_values)
3423
{
3424
	struct drm_device *dev = dev_priv->dev;
3425
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
6084 serge 3426
	bool reallocated[I915_MAX_PIPES] = {};
5354 serge 3427
	struct intel_crtc *crtc;
3428
	enum pipe pipe;
3429
 
3430
	new_ddb = &new_values->ddb;
3431
	cur_ddb = &dev_priv->wm.skl_hw.ddb;
3432
 
3433
	/*
3434
	 * First pass: flush the pipes with the new allocation contained into
3435
	 * the old space.
3436
	 *
3437
	 * We'll wait for the vblank on those pipes to ensure we can safely
3438
	 * re-allocate the freed space without this pipe fetching from it.
3439
	 */
3440
	for_each_intel_crtc(dev, crtc) {
3441
		if (!crtc->active)
3442
			continue;
3443
 
3444
		pipe = crtc->pipe;
3445
 
3446
		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3447
			continue;
3448
 
3449
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3450
		intel_wait_for_vblank(dev, pipe);
3451
 
3452
		reallocated[pipe] = true;
3453
	}
3454
 
3455
 
3456
	/*
3457
	 * Second pass: flush the pipes that are having their allocation
3458
	 * reduced, but overlapping with a previous allocation.
3459
	 *
3460
	 * Here as well we need to wait for the vblank to make sure the freed
3461
	 * space is not used anymore.
3462
	 */
3463
	for_each_intel_crtc(dev, crtc) {
3464
		if (!crtc->active)
3465
			continue;
3466
 
3467
		pipe = crtc->pipe;
3468
 
3469
		if (reallocated[pipe])
3470
			continue;
3471
 
3472
		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3473
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3474
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3475
			intel_wait_for_vblank(dev, pipe);
6084 serge 3476
			reallocated[pipe] = true;
5354 serge 3477
		}
3478
	}
3479
 
3480
	/*
3481
	 * Third pass: flush the pipes that got more space allocated.
3482
	 *
3483
	 * We don't need to actively wait for the update here, next vblank
3484
	 * will just get more DDB space with the correct WM values.
3485
	 */
3486
	for_each_intel_crtc(dev, crtc) {
3487
		if (!crtc->active)
3488
			continue;
3489
 
3490
		pipe = crtc->pipe;
3491
 
3492
		/*
3493
		 * At this point, only the pipes more space than before are
3494
		 * left to re-allocate.
3495
		 */
3496
		if (reallocated[pipe])
3497
			continue;
3498
 
3499
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3500
	}
3501
}
3502
 
3503
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3504
			       struct skl_ddb_allocation *ddb, /* out */
3505
			       struct skl_pipe_wm *pipe_wm /* out */)
3506
{
3507
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6937 serge 3508
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5354 serge 3509
 
6937 serge 3510
	skl_allocate_pipe_ddb(cstate, ddb);
3511
	skl_compute_pipe_wm(cstate, ddb, pipe_wm);
5354 serge 3512
 
6937 serge 3513
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
5354 serge 3514
		return false;
3515
 
6937 serge 3516
	intel_crtc->wm.active.skl = *pipe_wm;
6084 serge 3517
 
5354 serge 3518
	return true;
3519
}
3520
 
3521
static void skl_update_other_pipe_wm(struct drm_device *dev,
3522
				     struct drm_crtc *crtc,
3523
				     struct skl_wm_values *r)
3524
{
3525
	struct intel_crtc *intel_crtc;
3526
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3527
 
3528
	/*
3529
	 * If the WM update hasn't changed the allocation for this_crtc (the
3530
	 * crtc we are currently computing the new WM values for), other
3531
	 * enabled crtcs will keep the same allocation and we don't need to
3532
	 * recompute anything for them.
3533
	 */
3534
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3535
		return;
3536
 
3537
	/*
3538
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3539
	 * other active pipes need new DDB allocation and WM values.
3540
	 */
6937 serge 3541
	for_each_intel_crtc(dev, intel_crtc) {
5354 serge 3542
		struct skl_pipe_wm pipe_wm = {};
3543
		bool wm_changed;
3544
 
3545
		if (this_crtc->pipe == intel_crtc->pipe)
3546
			continue;
3547
 
3548
		if (!intel_crtc->active)
3549
			continue;
3550
 
3551
		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3552
						&r->ddb, &pipe_wm);
3553
 
3554
		/*
3555
		 * If we end up re-computing the other pipe WM values, it's
3556
		 * because it was really needed, so we expect the WM values to
3557
		 * be different.
6084 serge 3558
		 */
5354 serge 3559
		WARN_ON(!wm_changed);
3560
 
6937 serge 3561
		skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
5354 serge 3562
		r->dirty[intel_crtc->pipe] = true;
3563
	}
3564
}
3565
 
6084 serge 3566
static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3567
{
3568
	watermarks->wm_linetime[pipe] = 0;
3569
	memset(watermarks->plane[pipe], 0,
3570
	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3571
	memset(watermarks->plane_trans[pipe],
3572
	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3573
	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3574
 
3575
	/* Clear ddb entries for pipe */
3576
	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3577
	memset(&watermarks->ddb.plane[pipe], 0,
3578
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3579
	memset(&watermarks->ddb.y_plane[pipe], 0,
3580
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3581
	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3582
	       sizeof(struct skl_ddb_entry));
3583
 
3584
}
3585
 
5354 serge 3586
static void skl_update_wm(struct drm_crtc *crtc)
3587
{
3588
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3589
	struct drm_device *dev = crtc->dev;
3590
	struct drm_i915_private *dev_priv = dev->dev_private;
3591
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
6937 serge 3592
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3593
	struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
5354 serge 3594
 
3595
 
6084 serge 3596
	/* Clear all dirty flags */
3597
	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3598
 
3599
	skl_clear_wm(results, intel_crtc->pipe);
3600
 
6937 serge 3601
	if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
5354 serge 3602
		return;
3603
 
6937 serge 3604
	skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
5354 serge 3605
	results->dirty[intel_crtc->pipe] = true;
3606
 
6937 serge 3607
	skl_update_other_pipe_wm(dev, crtc, results);
5354 serge 3608
	skl_write_wm_values(dev_priv, results);
3609
	skl_flush_wm_values(dev_priv, results);
3610
 
3611
	/* store the new configuration */
3612
	dev_priv->wm.skl_hw = *results;
3613
}
3614
 
6937 serge 3615
static void ilk_compute_wm_config(struct drm_device *dev,
3616
				  struct intel_wm_config *config)
5354 serge 3617
{
6937 serge 3618
	struct intel_crtc *crtc;
5354 serge 3619
 
6937 serge 3620
	/* Compute the currently _active_ config */
3621
	for_each_intel_crtc(dev, crtc) {
3622
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5354 serge 3623
 
6937 serge 3624
		if (!wm->pipe_enabled)
3625
			continue;
6084 serge 3626
 
6937 serge 3627
		config->sprites_enabled |= wm->sprites_enabled;
3628
		config->sprites_scaled |= wm->sprites_scaled;
3629
		config->num_pipes_active++;
3630
	}
5354 serge 3631
}
3632
 
6937 serge 3633
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4560 Serge 3634
{
6937 serge 3635
	struct drm_device *dev = dev_priv->dev;
3636
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4560 Serge 3637
	struct ilk_wm_maximums max;
6937 serge 3638
	struct intel_wm_config config = {};
4560 Serge 3639
	struct ilk_wm_values results = {};
4104 Serge 3640
	enum intel_ddb_partitioning partitioning;
3641
 
5060 serge 3642
	ilk_compute_wm_config(dev, &config);
3643
 
4560 Serge 3644
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3645
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3646
 
3647
	/* 5/6 split only in single pipe config on IVB+ */
3648
	if (INTEL_INFO(dev)->gen >= 7 &&
3649
	    config.num_pipes_active == 1 && config.sprites_enabled) {
3650
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3651
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3652
 
3653
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4104 Serge 3654
	} else {
4560 Serge 3655
		best_lp_wm = &lp_wm_1_2;
4104 Serge 3656
	}
3657
 
4560 Serge 3658
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4104 Serge 3659
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3660
 
4560 Serge 3661
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3662
 
3663
	ilk_write_wm_values(dev_priv, &results);
4104 Serge 3664
}
3665
 
6937 serge 3666
static void ilk_update_wm(struct drm_crtc *crtc)
4104 Serge 3667
{
6937 serge 3668
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3669
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3670
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4104 Serge 3671
 
6937 serge 3672
	WARN_ON(cstate->base.active != intel_crtc->active);
3673
 
4560 Serge 3674
	/*
3675
	 * IVB workaround: must disable low power watermarks for at least
3676
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
3677
	 * when scaling is disabled.
3678
	 *
3679
	 * WaCxSRDisabledForSpriteScaling:ivb
3680
	 */
6937 serge 3681
	if (cstate->disable_lp_wm) {
3682
		ilk_disable_lp_wm(crtc->dev);
3683
		intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
3684
	}
4560 Serge 3685
 
6937 serge 3686
	intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
3687
 
3688
	ilk_program_watermarks(dev_priv);
4104 Serge 3689
}
3690
 
5354 serge 3691
static void skl_pipe_wm_active_state(uint32_t val,
3692
				     struct skl_pipe_wm *active,
3693
				     bool is_transwm,
3694
				     bool is_cursor,
3695
				     int i,
3696
				     int level)
3697
{
3698
	bool is_enabled = (val & PLANE_WM_EN) != 0;
3699
 
3700
	if (!is_transwm) {
3701
		if (!is_cursor) {
3702
			active->wm[level].plane_en[i] = is_enabled;
3703
			active->wm[level].plane_res_b[i] =
3704
					val & PLANE_WM_BLOCKS_MASK;
3705
			active->wm[level].plane_res_l[i] =
3706
					(val >> PLANE_WM_LINES_SHIFT) &
3707
						PLANE_WM_LINES_MASK;
3708
		} else {
6084 serge 3709
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3710
			active->wm[level].plane_res_b[PLANE_CURSOR] =
5354 serge 3711
					val & PLANE_WM_BLOCKS_MASK;
6084 serge 3712
			active->wm[level].plane_res_l[PLANE_CURSOR] =
5354 serge 3713
					(val >> PLANE_WM_LINES_SHIFT) &
3714
						PLANE_WM_LINES_MASK;
3715
		}
3716
	} else {
3717
		if (!is_cursor) {
3718
			active->trans_wm.plane_en[i] = is_enabled;
3719
			active->trans_wm.plane_res_b[i] =
3720
					val & PLANE_WM_BLOCKS_MASK;
3721
			active->trans_wm.plane_res_l[i] =
3722
					(val >> PLANE_WM_LINES_SHIFT) &
3723
						PLANE_WM_LINES_MASK;
3724
		} else {
6084 serge 3725
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3726
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
5354 serge 3727
					val & PLANE_WM_BLOCKS_MASK;
6084 serge 3728
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
5354 serge 3729
					(val >> PLANE_WM_LINES_SHIFT) &
3730
						PLANE_WM_LINES_MASK;
3731
		}
3732
	}
3733
}
3734
 
3735
static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3736
{
3737
	struct drm_device *dev = crtc->dev;
3738
	struct drm_i915_private *dev_priv = dev->dev_private;
3739
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3740
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6937 serge 3741
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3742
	struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
5354 serge 3743
	enum pipe pipe = intel_crtc->pipe;
3744
	int level, i, max_level;
3745
	uint32_t temp;
3746
 
3747
	max_level = ilk_wm_max_level(dev);
3748
 
3749
	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3750
 
3751
	for (level = 0; level <= max_level; level++) {
3752
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
3753
			hw->plane[pipe][i][level] =
3754
					I915_READ(PLANE_WM(pipe, i, level));
6084 serge 3755
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
5354 serge 3756
	}
3757
 
3758
	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3759
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
6084 serge 3760
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
5354 serge 3761
 
6084 serge 3762
	if (!intel_crtc->active)
5354 serge 3763
		return;
3764
 
3765
	hw->dirty[pipe] = true;
3766
 
3767
	active->linetime = hw->wm_linetime[pipe];
3768
 
3769
	for (level = 0; level <= max_level; level++) {
3770
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3771
			temp = hw->plane[pipe][i][level];
3772
			skl_pipe_wm_active_state(temp, active, false,
3773
						false, i, level);
3774
		}
6084 serge 3775
		temp = hw->plane[pipe][PLANE_CURSOR][level];
5354 serge 3776
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
3777
	}
3778
 
3779
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3780
		temp = hw->plane_trans[pipe][i];
3781
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3782
	}
3783
 
6084 serge 3784
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
5354 serge 3785
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
6937 serge 3786
 
3787
	intel_crtc->wm.active.skl = *active;
5354 serge 3788
}
3789
 
3790
void skl_wm_get_hw_state(struct drm_device *dev)
3791
{
3792
	struct drm_i915_private *dev_priv = dev->dev_private;
3793
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3794
	struct drm_crtc *crtc;
3795
 
3796
	skl_ddb_get_hw_state(dev_priv, ddb);
3797
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3798
		skl_pipe_wm_get_hw_state(crtc);
3799
}
3800
 
4560 Serge 3801
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3031 serge 3802
{
4560 Serge 3803
	struct drm_device *dev = crtc->dev;
3804
	struct drm_i915_private *dev_priv = dev->dev_private;
3805
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3806
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6937 serge 3807
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3808
	struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
4560 Serge 3809
	enum pipe pipe = intel_crtc->pipe;
6937 serge 3810
	static const i915_reg_t wm0_pipe_reg[] = {
4560 Serge 3811
		[PIPE_A] = WM0_PIPEA_ILK,
3812
		[PIPE_B] = WM0_PIPEB_ILK,
3813
		[PIPE_C] = WM0_PIPEC_IVB,
3814
	};
3031 serge 3815
 
4560 Serge 3816
	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3817
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3818
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3031 serge 3819
 
6660 serge 3820
	memset(active, 0, sizeof(*active));
3821
 
6084 serge 3822
	active->pipe_enabled = intel_crtc->active;
5060 serge 3823
 
3824
	if (active->pipe_enabled) {
4560 Serge 3825
		u32 tmp = hw->wm_pipe[pipe];
3031 serge 3826
 
4560 Serge 3827
		/*
3828
		 * For active pipes LP0 watermark is marked as
3829
		 * enabled, and LP1+ watermaks as disabled since
3830
		 * we can't really reverse compute them in case
3831
		 * multiple pipes are active.
3832
		 */
3833
		active->wm[0].enable = true;
3834
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3835
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3836
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3837
		active->linetime = hw->wm_linetime[pipe];
3838
	} else {
3839
		int level, max_level = ilk_wm_max_level(dev);
3031 serge 3840
 
4560 Serge 3841
		/*
3842
		 * For inactive pipes, all watermark levels
3843
		 * should be marked as enabled but zeroed,
3844
		 * which is what we'd compute them to.
3845
		 */
3846
		for (level = 0; level <= max_level; level++)
3847
			active->wm[level].enable = true;
3031 serge 3848
	}
6937 serge 3849
 
3850
	intel_crtc->wm.active.ilk = *active;
3031 serge 3851
}
3852
 
6084 serge 3853
#define _FW_WM(value, plane) \
3854
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3855
#define _FW_WM_VLV(value, plane) \
3856
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3857
 
3858
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3859
			       struct vlv_wm_values *wm)
3860
{
3861
	enum pipe pipe;
3862
	uint32_t tmp;
3863
 
3864
	for_each_pipe(dev_priv, pipe) {
3865
		tmp = I915_READ(VLV_DDL(pipe));
3866
 
3867
		wm->ddl[pipe].primary =
3868
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3869
		wm->ddl[pipe].cursor =
3870
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3871
		wm->ddl[pipe].sprite[0] =
3872
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3873
		wm->ddl[pipe].sprite[1] =
3874
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3875
	}
3876
 
3877
	tmp = I915_READ(DSPFW1);
3878
	wm->sr.plane = _FW_WM(tmp, SR);
3879
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3880
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3881
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3882
 
3883
	tmp = I915_READ(DSPFW2);
3884
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3885
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3886
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3887
 
3888
	tmp = I915_READ(DSPFW3);
3889
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3890
 
3891
	if (IS_CHERRYVIEW(dev_priv)) {
3892
		tmp = I915_READ(DSPFW7_CHV);
3893
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3894
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3895
 
3896
		tmp = I915_READ(DSPFW8_CHV);
3897
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3898
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3899
 
3900
		tmp = I915_READ(DSPFW9_CHV);
3901
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3902
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3903
 
3904
		tmp = I915_READ(DSPHOWM);
3905
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3906
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3907
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3908
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3909
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3910
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3911
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3912
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3913
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3914
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3915
	} else {
3916
		tmp = I915_READ(DSPFW7);
3917
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3918
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3919
 
3920
		tmp = I915_READ(DSPHOWM);
3921
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3922
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3923
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3924
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3925
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3926
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3927
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3928
	}
3929
}
3930
 
3931
#undef _FW_WM
3932
#undef _FW_WM_VLV
3933
 
3934
void vlv_wm_get_hw_state(struct drm_device *dev)
3935
{
3936
	struct drm_i915_private *dev_priv = to_i915(dev);
3937
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
3938
	struct intel_plane *plane;
3939
	enum pipe pipe;
3940
	u32 val;
3941
 
3942
	vlv_read_wm_values(dev_priv, wm);
3943
 
3944
	for_each_intel_plane(dev, plane) {
3945
		switch (plane->base.type) {
3946
			int sprite;
3947
		case DRM_PLANE_TYPE_CURSOR:
3948
			plane->wm.fifo_size = 63;
3949
			break;
3950
		case DRM_PLANE_TYPE_PRIMARY:
3951
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
3952
			break;
3953
		case DRM_PLANE_TYPE_OVERLAY:
3954
			sprite = plane->plane;
3955
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
3956
			break;
3957
		}
3958
	}
3959
 
3960
	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
3961
	wm->level = VLV_WM_LEVEL_PM2;
3962
 
3963
	if (IS_CHERRYVIEW(dev_priv)) {
3964
		mutex_lock(&dev_priv->rps.hw_lock);
3965
 
3966
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
3967
		if (val & DSP_MAXFIFO_PM5_ENABLE)
3968
			wm->level = VLV_WM_LEVEL_PM5;
3969
 
3970
		/*
3971
		 * If DDR DVFS is disabled in the BIOS, Punit
3972
		 * will never ack the request. So if that happens
3973
		 * assume we don't have to enable/disable DDR DVFS
3974
		 * dynamically. To test that just set the REQ_ACK
3975
		 * bit to poke the Punit, but don't change the
3976
		 * HIGH/LOW bits so that we don't actually change
3977
		 * the current state.
3978
		 */
3979
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3980
		val |= FORCE_DDR_FREQ_REQ_ACK;
3981
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
3982
 
3983
		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
3984
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
3985
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
3986
				      "assuming DDR DVFS is disabled\n");
3987
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
3988
		} else {
3989
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3990
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
3991
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
3992
		}
3993
 
3994
		mutex_unlock(&dev_priv->rps.hw_lock);
3995
	}
3996
 
3997
	for_each_pipe(dev_priv, pipe)
3998
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
3999
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4000
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4001
 
4002
	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4003
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4004
}
4005
 
4560 Serge 4006
void ilk_wm_get_hw_state(struct drm_device *dev)
3031 serge 4007
{
4008
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 4009
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4010
	struct drm_crtc *crtc;
3031 serge 4011
 
5060 serge 4012
	for_each_crtc(dev, crtc)
4560 Serge 4013
		ilk_pipe_wm_get_hw_state(crtc);
4104 Serge 4014
 
4560 Serge 4015
	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4016
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4017
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3031 serge 4018
 
4560 Serge 4019
	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5060 serge 4020
	if (INTEL_INFO(dev)->gen >= 7) {
5354 serge 4021
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4022
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
5060 serge 4023
	}
3031 serge 4024
 
4560 Serge 4025
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4026
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4027
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4028
	else if (IS_IVYBRIDGE(dev))
4029
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4030
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3031 serge 4031
 
4560 Serge 4032
	hw->enable_fbc_wm =
4033
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3031 serge 4034
}
4035
 
4036
/**
4037
 * intel_update_watermarks - update FIFO watermark values based on current modes
4038
 *
4039
 * Calculate watermark values for the various WM regs based on current mode
4040
 * and plane configuration.
4041
 *
4042
 * There are several cases to deal with here:
4043
 *   - normal (i.e. non-self-refresh)
4044
 *   - self-refresh (SR) mode
4045
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
4046
 *   - lines are small relative to FIFO size (buffer can hold more than 2
4047
 *     lines), so need to account for TLB latency
4048
 *
4049
 *   The normal calculation is:
4050
 *     watermark = dotclock * bytes per pixel * latency
4051
 *   where latency is platform & configuration dependent (we assume pessimal
4052
 *   values here).
4053
 *
4054
 *   The SR calculation is:
4055
 *     watermark = (trunc(latency/line time)+1) * surface width *
4056
 *       bytes per pixel
4057
 *   where
4058
 *     line time = htotal / dotclock
4059
 *     surface width = hdisplay for normal plane and 64 for cursor
4060
 *   and latency is assumed to be high, as above.
4061
 *
4062
 * The final value programmed to the register should always be rounded up,
4063
 * and include an extra 2 entries to account for clock crossings.
4064
 *
4065
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
4066
 * to set the non-SR watermarks to 8.
4067
 */
4560 Serge 4068
void intel_update_watermarks(struct drm_crtc *crtc)
3031 serge 4069
{
4560 Serge 4070
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3031 serge 4071
 
4072
	if (dev_priv->display.update_wm)
4560 Serge 4073
		dev_priv->display.update_wm(crtc);
3031 serge 4074
}
4075
 
4076
/**
4077
 * Lock protecting IPS related data structures
4078
 */
4079
DEFINE_SPINLOCK(mchdev_lock);
4080
 
4081
/* Global for IPS driver to get at the current i915 device. Protected by
4082
 * mchdev_lock. */
4083
static struct drm_i915_private *i915_mch_dev;
4084
 
4085
bool ironlake_set_drps(struct drm_device *dev, u8 val)
4086
{
4087
	struct drm_i915_private *dev_priv = dev->dev_private;
4088
	u16 rgvswctl;
4089
 
4090
	assert_spin_locked(&mchdev_lock);
4091
 
4092
	rgvswctl = I915_READ16(MEMSWCTL);
4093
	if (rgvswctl & MEMCTL_CMD_STS) {
4094
		DRM_DEBUG("gpu busy, RCS change rejected\n");
4095
		return false; /* still busy with another command */
4096
	}
4097
 
4098
	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4099
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4100
	I915_WRITE16(MEMSWCTL, rgvswctl);
4101
	POSTING_READ16(MEMSWCTL);
4102
 
4103
	rgvswctl |= MEMCTL_CMD_STS;
4104
	I915_WRITE16(MEMSWCTL, rgvswctl);
4105
 
4106
	return true;
4107
}
4108
 
4109
static void ironlake_enable_drps(struct drm_device *dev)
4110
{
4111
	struct drm_i915_private *dev_priv = dev->dev_private;
4112
	u32 rgvmodectl = I915_READ(MEMMODECTL);
4113
	u8 fmax, fmin, fstart, vstart;
4114
 
4115
	spin_lock_irq(&mchdev_lock);
4116
 
4117
	/* Enable temp reporting */
4118
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4119
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4120
 
4121
	/* 100ms RC evaluation intervals */
4122
	I915_WRITE(RCUPEI, 100000);
4123
	I915_WRITE(RCDNEI, 100000);
4124
 
4125
	/* Set max/min thresholds to 90ms and 80ms respectively */
4126
	I915_WRITE(RCBMAXAVG, 90000);
4127
	I915_WRITE(RCBMINAVG, 80000);
4128
 
4129
	I915_WRITE(MEMIHYST, 1);
4130
 
4131
	/* Set up min, max, and cur for interrupt handling */
4132
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4133
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4134
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4135
		MEMMODE_FSTART_SHIFT;
4136
 
6084 serge 4137
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
3031 serge 4138
		PXVFREQ_PX_SHIFT;
4139
 
4140
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4141
	dev_priv->ips.fstart = fstart;
4142
 
4143
	dev_priv->ips.max_delay = fstart;
4144
	dev_priv->ips.min_delay = fmin;
4145
	dev_priv->ips.cur_delay = fstart;
4146
 
4147
	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4148
			 fmax, fmin, fstart);
4149
 
4150
	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4151
 
4152
	/*
4153
	 * Interrupts will be enabled in ironlake_irq_postinstall
4154
	 */
4155
 
4156
	I915_WRITE(VIDSTART, vstart);
4157
	POSTING_READ(VIDSTART);
4158
 
4159
	rgvmodectl |= MEMMODE_SWMODE_EN;
4160
	I915_WRITE(MEMMODECTL, rgvmodectl);
4161
 
4162
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4163
		DRM_ERROR("stuck trying to change perf mode\n");
4164
	mdelay(1);
4165
 
4166
	ironlake_set_drps(dev, fstart);
4167
 
6084 serge 4168
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4169
		I915_READ(DDREC) + I915_READ(CSIEC);
5060 serge 4170
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6084 serge 4171
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
5060 serge 4172
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
3031 serge 4173
 
4174
	spin_unlock_irq(&mchdev_lock);
4175
}
4176
 
4177
static void ironlake_disable_drps(struct drm_device *dev)
4178
{
4179
	struct drm_i915_private *dev_priv = dev->dev_private;
4180
	u16 rgvswctl;
4181
 
4182
	spin_lock_irq(&mchdev_lock);
4183
 
4184
	rgvswctl = I915_READ16(MEMSWCTL);
4185
 
4186
	/* Ack interrupts, disable EFC interrupt */
4187
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4188
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4189
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4190
	I915_WRITE(DEIIR, DE_PCU_EVENT);
4191
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4192
 
4193
	/* Go back to the starting frequency */
4194
	ironlake_set_drps(dev, dev_priv->ips.fstart);
4195
	mdelay(1);
4196
	rgvswctl |= MEMCTL_CMD_STS;
4197
	I915_WRITE(MEMSWCTL, rgvswctl);
4198
	mdelay(1);
4199
 
4200
	spin_unlock_irq(&mchdev_lock);
4201
}
4202
 
4203
/* There's a funny hw issue where the hw returns all 0 when reading from
4204
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4205
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4206
 * all limits and the gpu stuck at whatever frequency it is at atm).
4207
 */
6084 serge 4208
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3031 serge 4209
{
4210
	u32 limits;
4211
 
4212
	/* Only set the down limit when we've reached the lowest level to avoid
4213
	 * getting more interrupts, otherwise leave this clear. This prevents a
4214
	 * race in the hw when coming out of rc6: There's a tiny window where
4215
	 * the hw runs at the minimal clock before selecting the desired
4216
	 * frequency, if the down threshold expires in that window we will not
4217
	 * receive a down interrupt. */
6084 serge 4218
	if (IS_GEN9(dev_priv->dev)) {
4219
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
4220
		if (val <= dev_priv->rps.min_freq_softlimit)
4221
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4222
	} else {
4223
		limits = dev_priv->rps.max_freq_softlimit << 24;
4224
		if (val <= dev_priv->rps.min_freq_softlimit)
4225
			limits |= dev_priv->rps.min_freq_softlimit << 16;
4226
	}
3031 serge 4227
 
4228
	return limits;
4229
}
4230
 
4560 Serge 4231
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4232
{
4233
	int new_power;
6084 serge 4234
	u32 threshold_up = 0, threshold_down = 0; /* in % */
4235
	u32 ei_up = 0, ei_down = 0;
4560 Serge 4236
 
4237
	new_power = dev_priv->rps.power;
4238
	switch (dev_priv->rps.power) {
4239
	case LOW_POWER:
5060 serge 4240
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4560 Serge 4241
			new_power = BETWEEN;
4242
		break;
4243
 
4244
	case BETWEEN:
5060 serge 4245
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4560 Serge 4246
			new_power = LOW_POWER;
5060 serge 4247
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4560 Serge 4248
			new_power = HIGH_POWER;
4249
		break;
4250
 
4251
	case HIGH_POWER:
5060 serge 4252
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4560 Serge 4253
			new_power = BETWEEN;
4254
		break;
4255
	}
4256
	/* Max/min bins are special */
6084 serge 4257
	if (val <= dev_priv->rps.min_freq_softlimit)
4560 Serge 4258
		new_power = LOW_POWER;
6084 serge 4259
	if (val >= dev_priv->rps.max_freq_softlimit)
4560 Serge 4260
		new_power = HIGH_POWER;
4261
	if (new_power == dev_priv->rps.power)
4262
		return;
4263
 
4264
	/* Note the units here are not exactly 1us, but 1280ns. */
4265
	switch (new_power) {
4266
	case LOW_POWER:
4267
		/* Upclock if more than 95% busy over 16ms */
6084 serge 4268
		ei_up = 16000;
4269
		threshold_up = 95;
4560 Serge 4270
 
4271
		/* Downclock if less than 85% busy over 32ms */
6084 serge 4272
		ei_down = 32000;
4273
		threshold_down = 85;
4560 Serge 4274
		break;
4275
 
4276
	case BETWEEN:
4277
		/* Upclock if more than 90% busy over 13ms */
6084 serge 4278
		ei_up = 13000;
4279
		threshold_up = 90;
4560 Serge 4280
 
4281
		/* Downclock if less than 75% busy over 32ms */
6084 serge 4282
		ei_down = 32000;
4283
		threshold_down = 75;
4560 Serge 4284
		break;
4285
 
4286
	case HIGH_POWER:
4287
		/* Upclock if more than 85% busy over 10ms */
6084 serge 4288
		ei_up = 10000;
4289
		threshold_up = 85;
4560 Serge 4290
 
4291
		/* Downclock if less than 60% busy over 32ms */
6084 serge 4292
		ei_down = 32000;
4293
		threshold_down = 60;
4560 Serge 4294
		break;
4295
	}
4296
 
6084 serge 4297
	I915_WRITE(GEN6_RP_UP_EI,
4298
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
4299
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4300
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4301
 
4302
	I915_WRITE(GEN6_RP_DOWN_EI,
4303
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
4304
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4305
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4306
 
4307
	 I915_WRITE(GEN6_RP_CONTROL,
4308
		    GEN6_RP_MEDIA_TURBO |
4309
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4310
		    GEN6_RP_MEDIA_IS_GFX |
4311
		    GEN6_RP_ENABLE |
4312
		    GEN6_RP_UP_BUSY_AVG |
4313
		    GEN6_RP_DOWN_IDLE_AVG);
4314
 
4560 Serge 4315
	dev_priv->rps.power = new_power;
6084 serge 4316
	dev_priv->rps.up_threshold = threshold_up;
4317
	dev_priv->rps.down_threshold = threshold_down;
4560 Serge 4318
	dev_priv->rps.last_adj = 0;
4319
}
4320
 
5060 serge 4321
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4322
{
4323
	u32 mask = 0;
4324
 
4325
	if (val > dev_priv->rps.min_freq_softlimit)
6937 serge 4326
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
5060 serge 4327
	if (val < dev_priv->rps.max_freq_softlimit)
6084 serge 4328
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
5060 serge 4329
 
4330
	mask &= dev_priv->pm_rps_events;
4331
 
6084 serge 4332
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
5060 serge 4333
}
4334
 
4335
/* gen6_set_rps is called to update the frequency request, but should also be
4336
 * called when the range (min_delay and max_delay) is modified so that we can
4337
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6084 serge 4338
static void gen6_set_rps(struct drm_device *dev, u8 val)
3031 serge 4339
{
4340
	struct drm_i915_private *dev_priv = dev->dev_private;
4341
 
6084 serge 4342
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
6937 serge 4343
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
6084 serge 4344
		return;
4345
 
3243 Serge 4346
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6084 serge 4347
	WARN_ON(val > dev_priv->rps.max_freq);
4348
	WARN_ON(val < dev_priv->rps.min_freq);
3031 serge 4349
 
5060 serge 4350
	/* min/max delay may still have been modified so be sure to
4351
	 * write the limits value.
4352
	 */
4353
	if (val != dev_priv->rps.cur_freq) {
5354 serge 4354
		gen6_set_rps_thresholds(dev_priv, val);
4560 Serge 4355
 
6084 serge 4356
		if (IS_GEN9(dev))
5354 serge 4357
			I915_WRITE(GEN6_RPNSWREQ,
6084 serge 4358
				   GEN9_FREQUENCY(val));
4359
		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4360
			I915_WRITE(GEN6_RPNSWREQ,
5354 serge 4361
				   HSW_FREQUENCY(val));
4362
		else
4363
			I915_WRITE(GEN6_RPNSWREQ,
4364
				   GEN6_FREQUENCY(val) |
4365
				   GEN6_OFFSET(0) |
4366
				   GEN6_AGGRESSIVE_TURBO);
5060 serge 4367
	}
3031 serge 4368
 
4369
	/* Make sure we continue to get interrupts
4370
	 * until we hit the minimum or maximum frequencies.
4371
	 */
6084 serge 4372
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
5060 serge 4373
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3031 serge 4374
 
4375
	POSTING_READ(GEN6_RPNSWREQ);
4376
 
5060 serge 4377
	dev_priv->rps.cur_freq = val;
6084 serge 4378
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
3031 serge 4379
}
4380
 
6084 serge 4381
static void valleyview_set_rps(struct drm_device *dev, u8 val)
5060 serge 4382
{
6084 serge 4383
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 4384
 
6084 serge 4385
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4386
	WARN_ON(val > dev_priv->rps.max_freq);
4387
	WARN_ON(val < dev_priv->rps.min_freq);
5060 serge 4388
 
6084 serge 4389
	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4390
		      "Odd GPU freq value\n"))
4391
		val &= ~1;
5060 serge 4392
 
6084 serge 4393
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5060 serge 4394
 
6084 serge 4395
	if (val != dev_priv->rps.cur_freq) {
4396
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4397
		if (!IS_CHERRYVIEW(dev_priv))
4398
			gen6_set_rps_thresholds(dev_priv, val);
4399
	}
5060 serge 4400
 
6084 serge 4401
	dev_priv->rps.cur_freq = val;
4402
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4403
}
5060 serge 4404
 
6084 serge 4405
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4406
 *
4407
 * * If Gfx is Idle, then
4408
 * 1. Forcewake Media well.
4409
 * 2. Request idle freq.
4410
 * 3. Release Forcewake of Media well.
4411
*/
4412
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4413
{
4414
	u32 val = dev_priv->rps.idle_freq;
5060 serge 4415
 
6084 serge 4416
	if (dev_priv->rps.cur_freq <= val)
4417
		return;
5060 serge 4418
 
6084 serge 4419
	/* Wake up the media well, as that takes a lot less
4420
	 * power than the Render well. */
4421
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4422
	valleyview_set_rps(dev_priv->dev, val);
4423
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5060 serge 4424
}
4425
 
6084 serge 4426
void gen6_rps_busy(struct drm_i915_private *dev_priv)
3031 serge 4427
{
4560 Serge 4428
	mutex_lock(&dev_priv->rps.hw_lock);
4429
	if (dev_priv->rps.enabled) {
6937 serge 4430
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
6084 serge 4431
			gen6_rps_reset_ei(dev_priv);
4432
		I915_WRITE(GEN6_PMINTRMSK,
4433
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4560 Serge 4434
	}
4435
	mutex_unlock(&dev_priv->rps.hw_lock);
4436
}
4104 Serge 4437
 
6084 serge 4438
void gen6_rps_idle(struct drm_i915_private *dev_priv)
4560 Serge 4439
{
4440
	struct drm_device *dev = dev_priv->dev;
4104 Serge 4441
 
4560 Serge 4442
	mutex_lock(&dev_priv->rps.hw_lock);
4443
	if (dev_priv->rps.enabled) {
6937 serge 4444
		if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
6084 serge 4445
			vlv_set_rps_idle(dev_priv);
4560 Serge 4446
		else
6084 serge 4447
			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4560 Serge 4448
		dev_priv->rps.last_adj = 0;
6937 serge 4449
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4560 Serge 4450
	}
4451
	mutex_unlock(&dev_priv->rps.hw_lock);
6084 serge 4452
 
4453
	spin_lock(&dev_priv->rps.client_lock);
4454
	while (!list_empty(&dev_priv->rps.clients))
4455
		list_del_init(dev_priv->rps.clients.next);
4456
	spin_unlock(&dev_priv->rps.client_lock);
4104 Serge 4457
}
4458
 
6084 serge 4459
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4460
		    struct intel_rps_client *rps,
4461
		    unsigned long submitted)
4104 Serge 4462
{
6084 serge 4463
	/* This is intentionally racy! We peek at the state here, then
4464
	 * validate inside the RPS worker.
4465
	 */
4466
	if (!(dev_priv->mm.busy &&
4467
	      dev_priv->rps.enabled &&
4468
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4469
		return;
3031 serge 4470
 
6084 serge 4471
	/* Force a RPS boost (and don't count it against the client) if
4472
	 * the GPU is severely congested.
4473
	 */
4474
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4475
		rps = NULL;
4104 Serge 4476
 
6084 serge 4477
	spin_lock(&dev_priv->rps.client_lock);
4478
	if (rps == NULL || list_empty(&rps->link)) {
4479
		spin_lock_irq(&dev_priv->irq_lock);
4480
		if (dev_priv->rps.interrupts_enabled) {
4481
			dev_priv->rps.client_boost = true;
4482
			queue_work(dev_priv->wq, &dev_priv->rps.work);
4483
		}
4484
		spin_unlock_irq(&dev_priv->irq_lock);
4104 Serge 4485
 
6084 serge 4486
		if (rps != NULL) {
4487
			list_add(&rps->link, &dev_priv->rps.clients);
4488
			rps->boosts++;
4489
		} else
4490
			dev_priv->rps.boosts++;
4491
	}
4492
	spin_unlock(&dev_priv->rps.client_lock);
4493
}
4104 Serge 4494
 
6084 serge 4495
void intel_set_rps(struct drm_device *dev, u8 val)
4496
{
6937 serge 4497
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
6084 serge 4498
		valleyview_set_rps(dev, val);
4499
	else
4500
		gen6_set_rps(dev, val);
4104 Serge 4501
}
4502
 
5354 serge 4503
static void gen9_disable_rps(struct drm_device *dev)
5060 serge 4504
{
4505
	struct drm_i915_private *dev_priv = dev->dev_private;
4506
 
5354 serge 4507
	I915_WRITE(GEN6_RC_CONTROL, 0);
6084 serge 4508
	I915_WRITE(GEN9_PG_ENABLE, 0);
5060 serge 4509
}
4510
 
4104 Serge 4511
static void gen6_disable_rps(struct drm_device *dev)
4512
{
4513
	struct drm_i915_private *dev_priv = dev->dev_private;
4514
 
4515
	I915_WRITE(GEN6_RC_CONTROL, 0);
4516
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4517
}
4518
 
5060 serge 4519
static void cherryview_disable_rps(struct drm_device *dev)
4520
{
4521
	struct drm_i915_private *dev_priv = dev->dev_private;
4522
 
4523
	I915_WRITE(GEN6_RC_CONTROL, 0);
4524
}
4525
 
4104 Serge 4526
static void valleyview_disable_rps(struct drm_device *dev)
4527
{
4528
	struct drm_i915_private *dev_priv = dev->dev_private;
4529
 
5354 serge 4530
	/* we're doing forcewake before Disabling RC6,
4531
	 * This what the BIOS expects when going into suspend */
6084 serge 4532
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5354 serge 4533
 
4104 Serge 4534
	I915_WRITE(GEN6_RC_CONTROL, 0);
4535
 
6084 serge 4536
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4104 Serge 4537
}
4538
 
4560 Serge 4539
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4540
{
6937 serge 4541
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5060 serge 4542
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4543
			mode = GEN6_RC_CTL_RC6_ENABLE;
4544
		else
4545
			mode = 0;
4546
	}
5354 serge 4547
	if (HAS_RC6p(dev))
4548
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
6084 serge 4549
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4550
			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4551
			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
5354 serge 4552
 
4553
	else
4554
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4555
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4560 Serge 4556
}
4557
 
5060 serge 4558
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3031 serge 4559
{
6084 serge 4560
	/* No RC6 before Ironlake and code is gone for ilk. */
4561
	if (INTEL_INFO(dev)->gen < 6)
4104 Serge 4562
		return 0;
4563
 
3031 serge 4564
	/* Respect the kernel parameter if it is set */
5060 serge 4565
	if (enable_rc6 >= 0) {
4566
		int mask;
3031 serge 4567
 
5354 serge 4568
		if (HAS_RC6p(dev))
5060 serge 4569
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4570
			       INTEL_RC6pp_ENABLE;
4571
		else
4572
			mask = INTEL_RC6_ENABLE;
4573
 
4574
		if ((enable_rc6 & mask) != enable_rc6)
4575
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
6084 serge 4576
				      enable_rc6 & mask, enable_rc6, mask);
5060 serge 4577
 
4578
		return enable_rc6 & mask;
4579
	}
4580
 
4581
	if (IS_IVYBRIDGE(dev))
4582
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3031 serge 4583
 
6084 serge 4584
	return INTEL_RC6_ENABLE;
5060 serge 4585
}
3031 serge 4586
 
5060 serge 4587
int intel_enable_rc6(const struct drm_device *dev)
4588
{
4589
	return i915.enable_rc6;
3031 serge 4590
}
4591
 
5354 serge 4592
static void gen6_init_rps_frequencies(struct drm_device *dev)
5060 serge 4593
{
4594
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 4595
	uint32_t rp_state_cap;
4596
	u32 ddcc_status = 0;
4597
	int ret;
5060 serge 4598
 
4599
	/* All of these values are in units of 50MHz */
4600
	dev_priv->rps.cur_freq		= 0;
5354 serge 4601
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6084 serge 4602
	if (IS_BROXTON(dev)) {
4603
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4604
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4605
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4606
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4607
	} else {
4608
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4609
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4610
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4611
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4612
	}
4613
 
5060 serge 4614
	/* hw_max = RP0 until we check for overclocking */
4615
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
4104 Serge 4616
 
5354 serge 4617
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
6937 serge 4618
	if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
4619
	    IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5354 serge 4620
		ret = sandybridge_pcode_read(dev_priv,
4621
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4622
					&ddcc_status);
4623
		if (0 == ret)
4624
			dev_priv->rps.efficient_freq =
6084 serge 4625
				clamp_t(u8,
4626
					((ddcc_status >> 8) & 0xff),
4627
					dev_priv->rps.min_freq,
4628
					dev_priv->rps.max_freq);
5354 serge 4629
	}
4630
 
6937 serge 4631
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
6084 serge 4632
		/* Store the frequency values in 16.66 MHZ units, which is
4633
		   the natural hardware unit for SKL */
4634
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4635
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4636
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4637
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4638
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4639
	}
4640
 
4641
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4642
 
5060 serge 4643
	/* Preserve min/max settings in case of re-init */
4644
	if (dev_priv->rps.max_freq_softlimit == 0)
4645
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4104 Serge 4646
 
5354 serge 4647
	if (dev_priv->rps.min_freq_softlimit == 0) {
4648
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4649
			dev_priv->rps.min_freq_softlimit =
6084 serge 4650
				max_t(int, dev_priv->rps.efficient_freq,
4651
				      intel_freq_opcode(dev_priv, 450));
5354 serge 4652
		else
4653
			dev_priv->rps.min_freq_softlimit =
4654
				dev_priv->rps.min_freq;
4655
	}
4104 Serge 4656
}
4657
 
6084 serge 4658
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5354 serge 4659
static void gen9_enable_rps(struct drm_device *dev)
4660
{
4661
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 4662
 
4663
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4664
 
4665
	gen6_init_rps_frequencies(dev);
4666
 
4667
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
6937 serge 4668
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
6084 serge 4669
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4670
		return;
4671
	}
4672
 
4673
	/* Program defaults and thresholds for RPS*/
4674
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4675
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4676
 
4677
	/* 1 second timeout*/
4678
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4679
		GT_INTERVAL_FROM_US(dev_priv, 1000000));
4680
 
4681
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4682
 
4683
	/* Leaning on the below call to gen6_set_rps to program/setup the
4684
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4685
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4686
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4687
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4688
 
4689
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4690
}
4691
 
4692
static void gen9_enable_rc6(struct drm_device *dev)
4693
{
4694
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 4695
	struct intel_engine_cs *ring;
4696
	uint32_t rc6_mask = 0;
4697
	int unused;
4698
 
4699
	/* 1a: Software RC state - RC0 */
4700
	I915_WRITE(GEN6_RC_STATE, 0);
4701
 
4702
	/* 1b: Get forcewake during program sequence. Although the driver
4703
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6084 serge 4704
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5354 serge 4705
 
4706
	/* 2a: Disable RC states. */
4707
	I915_WRITE(GEN6_RC_CONTROL, 0);
4708
 
4709
	/* 2b: Program RC6 thresholds.*/
6084 serge 4710
 
4711
	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4712
	if (IS_SKYLAKE(dev))
4713
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4714
	else
4715
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5354 serge 4716
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4717
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4718
	for_each_ring(ring, dev_priv, unused)
4719
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
6084 serge 4720
 
4721
	if (HAS_GUC_UCODE(dev))
4722
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4723
 
5354 serge 4724
	I915_WRITE(GEN6_RC_SLEEP, 0);
4725
 
6084 serge 4726
	/* 2c: Program Coarse Power Gating Policies. */
4727
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4728
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4729
 
5354 serge 4730
	/* 3a: Enable RC6 */
4731
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4732
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4733
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4734
			"on" : "off");
6084 serge 4735
	/* WaRsUseTimeoutMode */
6937 serge 4736
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
4737
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
6084 serge 4738
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4739
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4740
			   GEN7_RC_CTL_TO_MODE |
4741
			   rc6_mask);
4742
	} else {
4743
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4744
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4745
			   GEN6_RC_CTL_EI_MODE(1) |
4746
			   rc6_mask);
4747
	}
5354 serge 4748
 
6084 serge 4749
	/*
4750
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4751
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4752
	 */
4753
	if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
4754
	    ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_F0)))
4755
		I915_WRITE(GEN9_PG_ENABLE, 0);
4756
	else
4757
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4758
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5354 serge 4759
 
6084 serge 4760
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4761
 
5354 serge 4762
}
4763
 
4560 Serge 4764
static void gen8_enable_rps(struct drm_device *dev)
4765
{
4766
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 4767
	struct intel_engine_cs *ring;
5354 serge 4768
	uint32_t rc6_mask = 0;
4560 Serge 4769
	int unused;
4770
 
4771
	/* 1a: Software RC state - RC0 */
4772
	I915_WRITE(GEN6_RC_STATE, 0);
4773
 
4774
	/* 1c & 1d: Get forcewake during program sequence. Although the driver
4775
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6084 serge 4776
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4560 Serge 4777
 
4778
	/* 2a: Disable RC states. */
4779
	I915_WRITE(GEN6_RC_CONTROL, 0);
4780
 
5354 serge 4781
	/* Initialize rps frequencies */
4782
	gen6_init_rps_frequencies(dev);
4560 Serge 4783
 
4784
	/* 2b: Program RC6 thresholds.*/
4785
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4786
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4787
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4788
	for_each_ring(ring, dev_priv, unused)
4789
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4790
	I915_WRITE(GEN6_RC_SLEEP, 0);
5060 serge 4791
	if (IS_BROADWELL(dev))
4792
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4793
	else
6084 serge 4794
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4560 Serge 4795
 
4796
	/* 3: Enable RC6 */
4797
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4798
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5060 serge 4799
	intel_print_rc6_info(dev, rc6_mask);
4800
	if (IS_BROADWELL(dev))
4801
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4802
				GEN7_RC_CTL_TO_MODE |
4803
				rc6_mask);
4804
	else
6084 serge 4805
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4806
				GEN6_RC_CTL_EI_MODE(1) |
4807
				rc6_mask);
4560 Serge 4808
 
4809
	/* 4 Program defaults and thresholds for RPS*/
5060 serge 4810
	I915_WRITE(GEN6_RPNSWREQ,
4811
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4812
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4813
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4560 Serge 4814
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4815
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4816
 
4817
	/* Docs recommend 900MHz, and 300 MHz respectively */
4818
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5060 serge 4819
		   dev_priv->rps.max_freq_softlimit << 24 |
4820
		   dev_priv->rps.min_freq_softlimit << 16);
4560 Serge 4821
 
4822
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4823
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4824
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4825
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4826
 
4827
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4828
 
4829
	/* 5: Enable RPS */
4830
	I915_WRITE(GEN6_RP_CONTROL,
4831
		   GEN6_RP_MEDIA_TURBO |
4832
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4833
		   GEN6_RP_MEDIA_IS_GFX |
4834
		   GEN6_RP_ENABLE |
4835
		   GEN6_RP_UP_BUSY_AVG |
4836
		   GEN6_RP_DOWN_IDLE_AVG);
4837
 
4838
	/* 6: Ring frequency + overclocking (our driver does this later */
4839
 
5354 serge 4840
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
6084 serge 4841
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4560 Serge 4842
 
6084 serge 4843
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4560 Serge 4844
}
4845
 
3031 serge 4846
static void gen6_enable_rps(struct drm_device *dev)
4847
{
4848
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 4849
	struct intel_engine_cs *ring;
4850
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3031 serge 4851
	u32 gtfifodbg;
4852
	int rc6_mode;
3243 Serge 4853
	int i, ret;
3031 serge 4854
 
3243 Serge 4855
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 4856
 
4857
	/* Here begins a magic sequence of register writes to enable
4858
	 * auto-downclocking.
4859
	 *
4860
	 * Perhaps there might be some value in exposing these to
4861
	 * userspace...
4862
	 */
4863
	I915_WRITE(GEN6_RC_STATE, 0);
4864
 
4865
	/* Clear the DBG now so we don't confuse earlier errors */
4866
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4867
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4868
		I915_WRITE(GTFIFODBG, gtfifodbg);
4869
	}
4870
 
6084 serge 4871
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
3031 serge 4872
 
5354 serge 4873
	/* Initialize rps frequencies */
4874
	gen6_init_rps_frequencies(dev);
3031 serge 4875
 
4876
	/* disable the counters and set deterministic thresholds */
4877
	I915_WRITE(GEN6_RC_CONTROL, 0);
4878
 
4879
	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4880
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4881
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4882
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4883
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4884
 
4885
	for_each_ring(ring, dev_priv, i)
4886
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4887
 
4888
	I915_WRITE(GEN6_RC_SLEEP, 0);
4889
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4560 Serge 4890
	if (IS_IVYBRIDGE(dev))
4104 Serge 4891
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4892
	else
6084 serge 4893
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3480 Serge 4894
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3031 serge 4895
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4896
 
4897
	/* Check if we are enabling RC6 */
4898
	rc6_mode = intel_enable_rc6(dev_priv->dev);
4899
	if (rc6_mode & INTEL_RC6_ENABLE)
4900
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4901
 
4902
	/* We don't use those on Haswell */
4903
	if (!IS_HASWELL(dev)) {
4904
		if (rc6_mode & INTEL_RC6p_ENABLE)
4905
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4906
 
4907
		if (rc6_mode & INTEL_RC6pp_ENABLE)
4908
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4909
	}
4910
 
4560 Serge 4911
	intel_print_rc6_info(dev, rc6_mask);
3031 serge 4912
 
4913
	I915_WRITE(GEN6_RC_CONTROL,
4914
		   rc6_mask |
4915
		   GEN6_RC_CTL_EI_MODE(1) |
4916
		   GEN6_RC_CTL_HW_ENABLE);
4917
 
4560 Serge 4918
	/* Power down if completely idle for over 50ms */
4919
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3031 serge 4920
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4921
 
3243 Serge 4922
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5060 serge 4923
	if (ret)
4924
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4925
 
6084 serge 4926
	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
4927
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
4928
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5060 serge 4929
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
6084 serge 4930
				 (pcu_mbox & 0xff) * 50);
5060 serge 4931
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
3031 serge 4932
	}
4933
 
4560 Serge 4934
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
6084 serge 4935
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
3031 serge 4936
 
3243 Serge 4937
	rc6vids = 0;
4938
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4939
	if (IS_GEN6(dev) && ret) {
4940
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4941
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4942
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4943
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4944
		rc6vids &= 0xffff00;
4945
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
4946
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4947
		if (ret)
4948
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4949
	}
4950
 
6084 serge 4951
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
3031 serge 4952
}
4953
 
5060 serge 4954
static void __gen6_update_ring_freq(struct drm_device *dev)
3031 serge 4955
{
4956
	struct drm_i915_private *dev_priv = dev->dev_private;
4957
	int min_freq = 15;
3746 Serge 4958
	unsigned int gpu_freq;
4959
	unsigned int max_ia_freq, min_ring_freq;
6084 serge 4960
	unsigned int max_gpu_freq, min_gpu_freq;
3031 serge 4961
	int scaling_factor = 180;
4560 Serge 4962
	struct cpufreq_policy *policy;
3031 serge 4963
 
3243 Serge 4964
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 4965
 
4966
	max_ia_freq = cpufreq_quick_get_max(0);
4967
	/*
5060 serge 4968
		 * Default to measured freq if none found, PCU will ensure we
4969
		 * don't go over
3031 serge 4970
	 */
4971
		max_ia_freq = tsc_khz;
4972
 
4973
	/* Convert from kHz to MHz */
4974
	max_ia_freq /= 1000;
4975
 
4560 Serge 4976
	min_ring_freq = I915_READ(DCLK) & 0xf;
4977
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
4978
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3746 Serge 4979
 
6937 serge 4980
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
6084 serge 4981
		/* Convert GT frequency to 50 HZ units */
4982
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
4983
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
4984
	} else {
4985
		min_gpu_freq = dev_priv->rps.min_freq;
4986
		max_gpu_freq = dev_priv->rps.max_freq;
4987
	}
4988
 
3031 serge 4989
	/*
4990
	 * For each potential GPU frequency, load a ring frequency we'd like
4991
	 * to use for memory access.  We do this by specifying the IA frequency
4992
	 * the PCU should use as a reference to determine the ring frequency.
4993
	 */
6084 serge 4994
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
4995
		int diff = max_gpu_freq - gpu_freq;
3746 Serge 4996
		unsigned int ia_freq = 0, ring_freq = 0;
3031 serge 4997
 
6937 serge 4998
		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
6084 serge 4999
			/*
5000
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5001
			 * No floor required for ring frequency on SKL.
5002
			 */
5003
			ring_freq = gpu_freq;
5004
		} else if (INTEL_INFO(dev)->gen >= 8) {
4560 Serge 5005
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
5006
			ring_freq = max(min_ring_freq, gpu_freq);
5007
		} else if (IS_HASWELL(dev)) {
5008
			ring_freq = mult_frac(gpu_freq, 5, 4);
3746 Serge 5009
			ring_freq = max(min_ring_freq, ring_freq);
5010
			/* leave ia_freq as the default, chosen by cpufreq */
5011
		} else {
5012
			/* On older processors, there is no separate ring
5013
			 * clock domain, so in order to boost the bandwidth
5014
			 * of the ring, we need to upclock the CPU (ia_freq).
5015
			 *
5016
			 * For GPU frequencies less than 750MHz,
5017
			 * just use the lowest ring freq.
6084 serge 5018
			 */
5019
			if (gpu_freq < min_freq)
5020
				ia_freq = 800;
5021
			else
5022
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5023
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3746 Serge 5024
		}
3031 serge 5025
 
3243 Serge 5026
		sandybridge_pcode_write(dev_priv,
5027
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3746 Serge 5028
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5029
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5030
					gpu_freq);
3031 serge 5031
	}
5032
}
5033
 
5060 serge 5034
void gen6_update_ring_freq(struct drm_device *dev)
4104 Serge 5035
{
5060 serge 5036
	struct drm_i915_private *dev_priv = dev->dev_private;
5037
 
6084 serge 5038
	if (!HAS_CORE_RING_FREQ(dev))
5060 serge 5039
		return;
5040
 
5041
	mutex_lock(&dev_priv->rps.hw_lock);
5042
	__gen6_update_ring_freq(dev);
5043
	mutex_unlock(&dev_priv->rps.hw_lock);
5044
}
5045
 
5046
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5047
{
6084 serge 5048
	struct drm_device *dev = dev_priv->dev;
4104 Serge 5049
	u32 val, rp0;
5050
 
6084 serge 5051
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5060 serge 5052
 
6084 serge 5053
	switch (INTEL_INFO(dev)->eu_total) {
5054
	case 8:
5055
		/* (2 * 4) config */
5056
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5057
		break;
5058
	case 12:
5059
		/* (2 * 6) config */
5060
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5061
		break;
5062
	case 16:
5063
		/* (2 * 8) config */
5064
	default:
5065
		/* Setting (2 * 8) Min RP0 for any other combination */
5066
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5067
		break;
5068
	}
5069
 
5070
	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5071
 
5060 serge 5072
	return rp0;
5073
}
5074
 
5075
static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5076
{
5077
	u32 val, rpe;
5078
 
5079
	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5080
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5081
 
5082
	return rpe;
5083
}
5084
 
5085
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5086
{
5087
	u32 val, rp1;
5088
 
6084 serge 5089
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5090
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5060 serge 5091
 
5092
	return rp1;
5093
}
5094
 
5095
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5096
{
5097
	u32 val, rp1;
5098
 
4104 Serge 5099
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5100
 
5060 serge 5101
	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5102
 
5103
	return rp1;
5104
}
5105
 
5106
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5107
{
5108
	u32 val, rp0;
5109
 
5110
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5111
 
4104 Serge 5112
	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5113
	/* Clamp to max */
5114
	rp0 = min_t(u32, rp0, 0xea);
5115
 
5116
	return rp0;
5117
}
5118
 
5119
static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5120
{
5121
	u32 val, rpe;
5122
 
5123
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5124
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5125
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5126
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5127
 
5128
	return rpe;
5129
}
5130
 
5060 serge 5131
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4104 Serge 5132
{
6937 serge 5133
	u32 val;
5134
 
5135
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5136
	/*
5137
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5138
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5139
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5140
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5141
	 * to make sure it matches what Punit accepts.
5142
	 */
5143
	return max_t(u32, val, 0xc0);
4104 Serge 5144
}
5145
 
5060 serge 5146
/* Check that the pctx buffer wasn't move under us. */
5147
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5148
{
5149
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5150
 
5151
	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5152
			     dev_priv->vlv_pctx->stolen->start);
5153
}
5154
 
5155
 
5156
/* Check that the pcbr address is not empty. */
5157
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5158
{
5159
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5160
 
5161
	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5162
}
5163
 
5164
static void cherryview_setup_pctx(struct drm_device *dev)
5165
{
5166
	struct drm_i915_private *dev_priv = dev->dev_private;
5167
	unsigned long pctx_paddr, paddr;
5168
	struct i915_gtt *gtt = &dev_priv->gtt;
5169
	u32 pcbr;
5170
	int pctx_size = 32*1024;
5171
 
5172
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5173
 
5174
	pcbr = I915_READ(VLV_PCBR);
5175
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5354 serge 5176
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5060 serge 5177
		paddr = (dev_priv->mm.stolen_base +
5178
			 (gtt->stolen_size - pctx_size));
5179
 
5180
		pctx_paddr = (paddr & (~4095));
5181
		I915_WRITE(VLV_PCBR, pctx_paddr);
5182
	}
5354 serge 5183
 
5184
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5060 serge 5185
}
5186
 
4104 Serge 5187
static void valleyview_setup_pctx(struct drm_device *dev)
5188
{
5189
	struct drm_i915_private *dev_priv = dev->dev_private;
5190
	struct drm_i915_gem_object *pctx;
5191
	unsigned long pctx_paddr;
5192
	u32 pcbr;
5193
	int pctx_size = 24*1024;
5194
 
5060 serge 5195
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5196
 
4104 Serge 5197
	pcbr = I915_READ(VLV_PCBR);
5198
	if (pcbr) {
5199
		/* BIOS set it up already, grab the pre-alloc'd space */
5200
		int pcbr_offset;
5201
 
5202
		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5203
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5204
								      pcbr_offset,
5205
								      I915_GTT_OFFSET_NONE,
5206
								      pctx_size);
5207
		goto out;
5208
	}
5209
 
5354 serge 5210
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5211
 
4104 Serge 5212
	/*
5213
	 * From the Gunit register HAS:
5214
	 * The Gfx driver is expected to program this register and ensure
5215
	 * proper allocation within Gfx stolen memory.  For example, this
5216
	 * register should be programmed such than the PCBR range does not
5217
	 * overlap with other ranges, such as the frame buffer, protected
5218
	 * memory, or any other relevant ranges.
5219
	 */
5220
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
5221
	if (!pctx) {
5222
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5223
		return;
5224
	}
5225
 
5226
	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5227
	I915_WRITE(VLV_PCBR, pctx_paddr);
5228
 
5229
out:
5354 serge 5230
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4104 Serge 5231
	dev_priv->vlv_pctx = pctx;
5232
}
5233
 
5060 serge 5234
static void valleyview_cleanup_pctx(struct drm_device *dev)
5235
{
5236
	struct drm_i915_private *dev_priv = dev->dev_private;
5237
 
5238
	if (WARN_ON(!dev_priv->vlv_pctx))
5239
		return;
5240
 
5241
	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5242
	dev_priv->vlv_pctx = NULL;
5243
}
5244
 
5245
static void valleyview_init_gt_powersave(struct drm_device *dev)
5246
{
5247
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 5248
	u32 val;
5060 serge 5249
 
5250
	valleyview_setup_pctx(dev);
5251
 
5252
	mutex_lock(&dev_priv->rps.hw_lock);
5253
 
5354 serge 5254
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5255
	switch ((val >> 6) & 3) {
5256
	case 0:
5257
	case 1:
5258
		dev_priv->mem_freq = 800;
5259
		break;
5260
	case 2:
5261
		dev_priv->mem_freq = 1066;
5262
		break;
5263
	case 3:
5264
		dev_priv->mem_freq = 1333;
5265
		break;
5266
	}
5267
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5268
 
5060 serge 5269
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5270
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5271
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6084 serge 5272
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5060 serge 5273
			 dev_priv->rps.max_freq);
5274
 
5275
	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5276
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6084 serge 5277
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5060 serge 5278
			 dev_priv->rps.efficient_freq);
5279
 
5280
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5281
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
6084 serge 5282
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5060 serge 5283
			 dev_priv->rps.rp1_freq);
5284
 
5285
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5286
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6084 serge 5287
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5060 serge 5288
			 dev_priv->rps.min_freq);
5289
 
6084 serge 5290
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5291
 
5060 serge 5292
	/* Preserve min/max settings in case of re-init */
5293
	if (dev_priv->rps.max_freq_softlimit == 0)
5294
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5295
 
5296
	if (dev_priv->rps.min_freq_softlimit == 0)
5297
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5298
 
5299
	mutex_unlock(&dev_priv->rps.hw_lock);
5300
}
5301
 
5302
static void cherryview_init_gt_powersave(struct drm_device *dev)
5303
{
5304
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 5305
	u32 val;
5060 serge 5306
 
5307
	cherryview_setup_pctx(dev);
5308
 
5309
	mutex_lock(&dev_priv->rps.hw_lock);
5310
 
6084 serge 5311
	mutex_lock(&dev_priv->sb_lock);
5354 serge 5312
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
6084 serge 5313
	mutex_unlock(&dev_priv->sb_lock);
5354 serge 5314
 
5315
	switch ((val >> 2) & 0x7) {
5316
	case 3:
5317
		dev_priv->mem_freq = 2000;
5318
		break;
6084 serge 5319
	default:
5354 serge 5320
		dev_priv->mem_freq = 1600;
5321
		break;
5322
	}
5323
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5324
 
5060 serge 5325
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5326
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5327
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6084 serge 5328
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5060 serge 5329
			 dev_priv->rps.max_freq);
5330
 
5331
	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5332
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6084 serge 5333
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5060 serge 5334
			 dev_priv->rps.efficient_freq);
5335
 
5336
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5337
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
6084 serge 5338
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5060 serge 5339
			 dev_priv->rps.rp1_freq);
5340
 
6084 serge 5341
	/* PUnit validated range is only [RPe, RP0] */
5342
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5060 serge 5343
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6084 serge 5344
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5060 serge 5345
			 dev_priv->rps.min_freq);
5346
 
5354 serge 5347
	WARN_ONCE((dev_priv->rps.max_freq |
5348
		   dev_priv->rps.efficient_freq |
5349
		   dev_priv->rps.rp1_freq |
5350
		   dev_priv->rps.min_freq) & 1,
5351
		  "Odd GPU freq values\n");
5352
 
6084 serge 5353
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5354
 
5060 serge 5355
	/* Preserve min/max settings in case of re-init */
5356
	if (dev_priv->rps.max_freq_softlimit == 0)
5357
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5358
 
5359
	if (dev_priv->rps.min_freq_softlimit == 0)
5360
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5361
 
5362
	mutex_unlock(&dev_priv->rps.hw_lock);
5363
}
5364
 
5365
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5366
{
5367
	valleyview_cleanup_pctx(dev);
5368
}
5369
 
5370
static void cherryview_enable_rps(struct drm_device *dev)
5371
{
5372
	struct drm_i915_private *dev_priv = dev->dev_private;
5373
	struct intel_engine_cs *ring;
5374
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5375
	int i;
5376
 
5377
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5378
 
5379
	gtfifodbg = I915_READ(GTFIFODBG);
5380
	if (gtfifodbg) {
5381
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5382
				 gtfifodbg);
5383
		I915_WRITE(GTFIFODBG, gtfifodbg);
5384
	}
5385
 
5386
	cherryview_check_pctx(dev_priv);
5387
 
5388
	/* 1a & 1b: Get forcewake during program sequence. Although the driver
5389
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6084 serge 5390
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5060 serge 5391
 
6084 serge 5392
	/*  Disable RC states. */
5393
	I915_WRITE(GEN6_RC_CONTROL, 0);
5394
 
5060 serge 5395
	/* 2a: Program RC6 thresholds.*/
5396
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5397
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5398
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5399
 
5400
	for_each_ring(ring, dev_priv, i)
5401
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5402
	I915_WRITE(GEN6_RC_SLEEP, 0);
5403
 
6084 serge 5404
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5405
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5060 serge 5406
 
5407
	/* allows RC6 residency counter to work */
5408
	I915_WRITE(VLV_COUNTER_CONTROL,
5409
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5410
				      VLV_MEDIA_RC6_COUNT_EN |
5411
				      VLV_RENDER_RC6_COUNT_EN));
5412
 
5413
	/* For now we assume BIOS is allocating and populating the PCBR  */
5414
	pcbr = I915_READ(VLV_PCBR);
5415
 
5416
	/* 3: Enable RC6 */
5417
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5418
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
6084 serge 5419
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5060 serge 5420
 
5421
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5422
 
5423
	/* 4 Program defaults and thresholds for RPS*/
6084 serge 5424
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5060 serge 5425
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5426
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5427
	I915_WRITE(GEN6_RP_UP_EI, 66000);
5428
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5429
 
5430
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5431
 
5432
	/* 5: Enable RPS */
5433
	I915_WRITE(GEN6_RP_CONTROL,
5434
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6084 serge 5435
		   GEN6_RP_MEDIA_IS_GFX |
5060 serge 5436
		   GEN6_RP_ENABLE |
5437
		   GEN6_RP_UP_BUSY_AVG |
5438
		   GEN6_RP_DOWN_IDLE_AVG);
5439
 
6084 serge 5440
	/* Setting Fixed Bias */
5441
	val = VLV_OVERRIDE_EN |
5442
		  VLV_SOC_TDP_EN |
5443
		  CHV_BIAS_CPU_50_SOC_50;
5444
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5445
 
5060 serge 5446
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5447
 
5354 serge 5448
	/* RPS code assumes GPLL is used */
5449
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5450
 
6084 serge 5451
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5060 serge 5452
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5453
 
5454
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5455
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
6084 serge 5456
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5060 serge 5457
			 dev_priv->rps.cur_freq);
5458
 
5459
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
6084 serge 5460
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5060 serge 5461
			 dev_priv->rps.efficient_freq);
5462
 
5463
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5464
 
6084 serge 5465
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5060 serge 5466
}
5467
 
4104 Serge 5468
static void valleyview_enable_rps(struct drm_device *dev)
5469
{
5470
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 5471
	struct intel_engine_cs *ring;
4560 Serge 5472
	u32 gtfifodbg, val, rc6_mode = 0;
4104 Serge 5473
	int i;
5474
 
5475
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5476
 
5060 serge 5477
	valleyview_check_pctx(dev_priv);
5478
 
4104 Serge 5479
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4560 Serge 5480
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5481
				 gtfifodbg);
4104 Serge 5482
		I915_WRITE(GTFIFODBG, gtfifodbg);
5483
	}
5484
 
4560 Serge 5485
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6084 serge 5486
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4104 Serge 5487
 
6084 serge 5488
	/*  Disable RC states. */
5489
	I915_WRITE(GEN6_RC_CONTROL, 0);
5490
 
5491
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4104 Serge 5492
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5493
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5494
	I915_WRITE(GEN6_RP_UP_EI, 66000);
5495
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5496
 
5497
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5498
 
5499
	I915_WRITE(GEN6_RP_CONTROL,
5500
		   GEN6_RP_MEDIA_TURBO |
5501
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5502
		   GEN6_RP_MEDIA_IS_GFX |
5503
		   GEN6_RP_ENABLE |
5504
		   GEN6_RP_UP_BUSY_AVG |
5505
		   GEN6_RP_DOWN_IDLE_CONT);
5506
 
5507
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5508
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5509
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5510
 
5511
	for_each_ring(ring, dev_priv, i)
5512
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5513
 
4560 Serge 5514
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4104 Serge 5515
 
5516
	/* allows RC6 residency counter to work */
4560 Serge 5517
	I915_WRITE(VLV_COUNTER_CONTROL,
5060 serge 5518
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5519
				      VLV_RENDER_RC0_COUNT_EN |
4560 Serge 5520
				      VLV_MEDIA_RC6_COUNT_EN |
5521
				      VLV_RENDER_RC6_COUNT_EN));
5060 serge 5522
 
4560 Serge 5523
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5524
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4104 Serge 5525
 
4560 Serge 5526
	intel_print_rc6_info(dev, rc6_mode);
5527
 
5528
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5529
 
6084 serge 5530
	/* Setting Fixed Bias */
5531
	val = VLV_OVERRIDE_EN |
5532
		  VLV_SOC_TDP_EN |
5533
		  VLV_BIAS_CPU_125_SOC_875;
5534
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5535
 
4104 Serge 5536
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5537
 
5354 serge 5538
	/* RPS code assumes GPLL is used */
5539
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5540
 
6084 serge 5541
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
4104 Serge 5542
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5543
 
5060 serge 5544
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4104 Serge 5545
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
6084 serge 5546
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5060 serge 5547
			 dev_priv->rps.cur_freq);
4104 Serge 5548
 
5549
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
6084 serge 5550
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5060 serge 5551
			 dev_priv->rps.efficient_freq);
4104 Serge 5552
 
5060 serge 5553
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4104 Serge 5554
 
6084 serge 5555
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4104 Serge 5556
}
5557
 
3031 serge 5558
static unsigned long intel_pxfreq(u32 vidfreq)
5559
{
5560
	unsigned long freq;
5561
	int div = (vidfreq & 0x3f0000) >> 16;
5562
	int post = (vidfreq & 0x3000) >> 12;
5563
	int pre = (vidfreq & 0x7);
5564
 
5565
	if (!pre)
5566
		return 0;
5567
 
5568
	freq = ((div * 133333) / ((1<
5569
 
5570
	return freq;
5571
}
5572
 
5573
static const struct cparams {
5574
	u16 i;
5575
	u16 t;
5576
	u16 m;
5577
	u16 c;
5578
} cparams[] = {
5579
	{ 1, 1333, 301, 28664 },
5580
	{ 1, 1066, 294, 24460 },
5581
	{ 1, 800, 294, 25192 },
5582
	{ 0, 1333, 276, 27605 },
5583
	{ 0, 1066, 276, 27605 },
5584
	{ 0, 800, 231, 23784 },
5585
};
5586
 
5587
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5588
{
5589
	u64 total_count, diff, ret;
5590
	u32 count1, count2, count3, m = 0, c = 0;
5060 serge 5591
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
3031 serge 5592
	int i;
5593
 
5594
	assert_spin_locked(&mchdev_lock);
5595
 
5596
	diff1 = now - dev_priv->ips.last_time1;
5597
 
5598
	/* Prevent division-by-zero if we are asking too fast.
5599
	 * Also, we don't get interesting results if we are polling
5600
	 * faster than once in 10ms, so just return the saved value
5601
	 * in such cases.
5602
	 */
5603
	if (diff1 <= 10)
5604
		return dev_priv->ips.chipset_power;
5605
 
5606
	count1 = I915_READ(DMIEC);
5607
	count2 = I915_READ(DDREC);
5608
	count3 = I915_READ(CSIEC);
5609
 
5610
	total_count = count1 + count2 + count3;
5611
 
5612
	/* FIXME: handle per-counter overflow */
5613
	if (total_count < dev_priv->ips.last_count1) {
5614
		diff = ~0UL - dev_priv->ips.last_count1;
5615
		diff += total_count;
5616
	} else {
5617
		diff = total_count - dev_priv->ips.last_count1;
5618
	}
5619
 
5620
	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5621
		if (cparams[i].i == dev_priv->ips.c_m &&
5622
		    cparams[i].t == dev_priv->ips.r_t) {
5623
			m = cparams[i].m;
5624
			c = cparams[i].c;
5625
			break;
5626
		}
5627
	}
5628
 
5629
	diff = div_u64(diff, diff1);
5630
	ret = ((m * diff) + c);
5631
	ret = div_u64(ret, 10);
5632
 
5633
	dev_priv->ips.last_count1 = total_count;
5634
	dev_priv->ips.last_time1 = now;
5635
 
5636
	dev_priv->ips.chipset_power = ret;
5637
 
5638
	return ret;
5639
}
5640
 
5641
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5642
{
5060 serge 5643
	struct drm_device *dev = dev_priv->dev;
3031 serge 5644
	unsigned long val;
5645
 
5060 serge 5646
	if (INTEL_INFO(dev)->gen != 5)
3031 serge 5647
		return 0;
5648
 
5649
	spin_lock_irq(&mchdev_lock);
5650
 
5651
	val = __i915_chipset_val(dev_priv);
5652
 
5653
	spin_unlock_irq(&mchdev_lock);
5654
 
5655
	return val;
5656
}
5657
 
5658
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5659
{
5660
	unsigned long m, x, b;
5661
	u32 tsfs;
5662
 
5663
	tsfs = I915_READ(TSFS);
5664
 
5665
	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5666
	x = I915_READ8(TR1);
5667
 
5668
	b = tsfs & TSFS_INTR_MASK;
5669
 
5670
	return ((m * x) / 127) - b;
5671
}
5672
 
6084 serge 5673
static int _pxvid_to_vd(u8 pxvid)
3031 serge 5674
{
6084 serge 5675
	if (pxvid == 0)
5676
		return 0;
5677
 
5678
	if (pxvid >= 8 && pxvid < 31)
5679
		pxvid = 31;
5680
 
5681
	return (pxvid + 2) * 125;
5682
}
5683
 
5684
static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5685
{
5060 serge 5686
	struct drm_device *dev = dev_priv->dev;
6084 serge 5687
	const int vd = _pxvid_to_vd(pxvid);
5688
	const int vm = vd - 1125;
5689
 
5060 serge 5690
	if (INTEL_INFO(dev)->is_mobile)
6084 serge 5691
		return vm > 0 ? vm : 0;
5692
 
5693
	return vd;
3031 serge 5694
}
5695
 
5696
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5697
{
5060 serge 5698
	u64 now, diff, diffms;
3031 serge 5699
	u32 count;
5700
 
5701
	assert_spin_locked(&mchdev_lock);
5702
 
5060 serge 5703
	now = ktime_get_raw_ns();
5704
	diffms = now - dev_priv->ips.last_time2;
5705
	do_div(diffms, NSEC_PER_MSEC);
3031 serge 5706
 
5707
	/* Don't divide by 0 */
5708
	if (!diffms)
5709
		return;
5710
 
5711
	count = I915_READ(GFXEC);
5712
 
5713
	if (count < dev_priv->ips.last_count2) {
5714
		diff = ~0UL - dev_priv->ips.last_count2;
5715
		diff += count;
5716
	} else {
5717
		diff = count - dev_priv->ips.last_count2;
5718
	}
5719
 
5720
	dev_priv->ips.last_count2 = count;
5721
	dev_priv->ips.last_time2 = now;
5722
 
5723
	/* More magic constants... */
5724
	diff = diff * 1181;
5725
	diff = div_u64(diff, diffms * 10);
5726
	dev_priv->ips.gfx_power = diff;
5727
}
5728
 
5729
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5730
{
5060 serge 5731
	struct drm_device *dev = dev_priv->dev;
5732
 
5733
	if (INTEL_INFO(dev)->gen != 5)
3031 serge 5734
		return;
5735
 
5736
	spin_lock_irq(&mchdev_lock);
5737
 
5738
	__i915_update_gfx_val(dev_priv);
5739
 
5740
	spin_unlock_irq(&mchdev_lock);
5741
}
5742
 
5743
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5744
{
5745
	unsigned long t, corr, state1, corr2, state2;
5746
	u32 pxvid, ext_v;
5747
 
5748
	assert_spin_locked(&mchdev_lock);
5749
 
6084 serge 5750
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
3031 serge 5751
	pxvid = (pxvid >> 24) & 0x7f;
5752
	ext_v = pvid_to_extvid(dev_priv, pxvid);
5753
 
5754
	state1 = ext_v;
5755
 
5756
	t = i915_mch_val(dev_priv);
5757
 
5758
	/* Revel in the empirically derived constants */
5759
 
5760
	/* Correction factor in 1/100000 units */
5761
	if (t > 80)
5762
		corr = ((t * 2349) + 135940);
5763
	else if (t >= 50)
5764
		corr = ((t * 964) + 29317);
5765
	else /* < 50 */
5766
		corr = ((t * 301) + 1004);
5767
 
5768
	corr = corr * ((150142 * state1) / 10000 - 78642);
5769
	corr /= 100000;
5770
	corr2 = (corr * dev_priv->ips.corr);
5771
 
5772
	state2 = (corr2 * state1) / 10000;
5773
	state2 /= 100; /* convert to mW */
5774
 
5775
	__i915_update_gfx_val(dev_priv);
5776
 
5777
	return dev_priv->ips.gfx_power + state2;
5778
}
5779
 
5780
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5781
{
5060 serge 5782
	struct drm_device *dev = dev_priv->dev;
3031 serge 5783
	unsigned long val;
5784
 
5060 serge 5785
	if (INTEL_INFO(dev)->gen != 5)
3031 serge 5786
		return 0;
5787
 
5788
	spin_lock_irq(&mchdev_lock);
5789
 
5790
	val = __i915_gfx_val(dev_priv);
5791
 
5792
	spin_unlock_irq(&mchdev_lock);
5793
 
5794
	return val;
5795
}
5796
 
5797
/**
5798
 * i915_read_mch_val - return value for IPS use
5799
 *
5800
 * Calculate and return a value for the IPS driver to use when deciding whether
5801
 * we have thermal and power headroom to increase CPU or GPU power budget.
5802
 */
5803
unsigned long i915_read_mch_val(void)
5804
{
5805
	struct drm_i915_private *dev_priv;
5806
	unsigned long chipset_val, graphics_val, ret = 0;
5807
 
5808
	spin_lock_irq(&mchdev_lock);
5809
	if (!i915_mch_dev)
5810
		goto out_unlock;
5811
	dev_priv = i915_mch_dev;
5812
 
5813
	chipset_val = __i915_chipset_val(dev_priv);
5814
	graphics_val = __i915_gfx_val(dev_priv);
5815
 
5816
	ret = chipset_val + graphics_val;
5817
 
5818
out_unlock:
5819
	spin_unlock_irq(&mchdev_lock);
5820
 
5821
	return ret;
5822
}
5823
EXPORT_SYMBOL_GPL(i915_read_mch_val);
5824
 
5825
/**
5826
 * i915_gpu_raise - raise GPU frequency limit
5827
 *
5828
 * Raise the limit; IPS indicates we have thermal headroom.
5829
 */
5830
bool i915_gpu_raise(void)
5831
{
5832
	struct drm_i915_private *dev_priv;
5833
	bool ret = true;
5834
 
5835
	spin_lock_irq(&mchdev_lock);
5836
	if (!i915_mch_dev) {
5837
		ret = false;
5838
		goto out_unlock;
5839
	}
5840
	dev_priv = i915_mch_dev;
5841
 
5842
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5843
		dev_priv->ips.max_delay--;
5844
 
5845
out_unlock:
5846
	spin_unlock_irq(&mchdev_lock);
5847
 
5848
	return ret;
5849
}
5850
EXPORT_SYMBOL_GPL(i915_gpu_raise);
5851
 
5852
/**
5853
 * i915_gpu_lower - lower GPU frequency limit
5854
 *
5855
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5856
 * frequency maximum.
5857
 */
5858
bool i915_gpu_lower(void)
5859
{
5860
	struct drm_i915_private *dev_priv;
5861
	bool ret = true;
5862
 
5863
	spin_lock_irq(&mchdev_lock);
5864
	if (!i915_mch_dev) {
5865
		ret = false;
5866
		goto out_unlock;
5867
	}
5868
	dev_priv = i915_mch_dev;
5869
 
5870
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5871
		dev_priv->ips.max_delay++;
5872
 
5873
out_unlock:
5874
	spin_unlock_irq(&mchdev_lock);
5875
 
5876
	return ret;
5877
}
5878
EXPORT_SYMBOL_GPL(i915_gpu_lower);
5879
 
5880
/**
5881
 * i915_gpu_busy - indicate GPU business to IPS
5882
 *
5883
 * Tell the IPS driver whether or not the GPU is busy.
5884
 */
5885
bool i915_gpu_busy(void)
5886
{
5887
	struct drm_i915_private *dev_priv;
5060 serge 5888
	struct intel_engine_cs *ring;
3031 serge 5889
	bool ret = false;
5890
	int i;
5891
 
5892
	spin_lock_irq(&mchdev_lock);
5893
	if (!i915_mch_dev)
5894
		goto out_unlock;
5895
	dev_priv = i915_mch_dev;
5896
 
5897
	for_each_ring(ring, dev_priv, i)
5898
		ret |= !list_empty(&ring->request_list);
5899
 
5900
out_unlock:
5901
	spin_unlock_irq(&mchdev_lock);
5902
 
5903
	return ret;
5904
}
5905
EXPORT_SYMBOL_GPL(i915_gpu_busy);
5906
 
5907
/**
5908
 * i915_gpu_turbo_disable - disable graphics turbo
5909
 *
5910
 * Disable graphics turbo by resetting the max frequency and setting the
5911
 * current frequency to the default.
5912
 */
5913
bool i915_gpu_turbo_disable(void)
5914
{
5915
	struct drm_i915_private *dev_priv;
5916
	bool ret = true;
5917
 
5918
	spin_lock_irq(&mchdev_lock);
5919
	if (!i915_mch_dev) {
5920
		ret = false;
5921
		goto out_unlock;
5922
	}
5923
	dev_priv = i915_mch_dev;
5924
 
5925
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5926
 
5927
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5928
		ret = false;
5929
 
5930
out_unlock:
5931
	spin_unlock_irq(&mchdev_lock);
5932
 
5933
	return ret;
5934
}
5935
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5936
 
5937
/**
5938
 * Tells the intel_ips driver that the i915 driver is now loaded, if
5939
 * IPS got loaded first.
5940
 *
5941
 * This awkward dance is so that neither module has to depend on the
5942
 * other in order for IPS to do the appropriate communication of
5943
 * GPU turbo limits to i915.
5944
 */
5945
static void
5946
ips_ping_for_i915_load(void)
5947
{
5948
	void (*link)(void);
5949
 
5950
//   link = symbol_get(ips_link_to_i915_driver);
5951
//   if (link) {
5952
//       link();
5953
//       symbol_put(ips_link_to_i915_driver);
5954
//   }
5955
}
5956
 
5957
void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5958
{
5959
	/* We only register the i915 ips part with intel-ips once everything is
5960
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5961
	spin_lock_irq(&mchdev_lock);
5962
	i915_mch_dev = dev_priv;
5963
	spin_unlock_irq(&mchdev_lock);
5964
 
5965
	ips_ping_for_i915_load();
5966
}
5967
 
5968
void intel_gpu_ips_teardown(void)
5969
{
5970
	spin_lock_irq(&mchdev_lock);
5971
	i915_mch_dev = NULL;
5972
	spin_unlock_irq(&mchdev_lock);
5973
}
5060 serge 5974
 
3031 serge 5975
static void intel_init_emon(struct drm_device *dev)
5976
{
5977
	struct drm_i915_private *dev_priv = dev->dev_private;
5978
	u32 lcfuse;
5979
	u8 pxw[16];
5980
	int i;
5981
 
5982
	/* Disable to program */
5983
	I915_WRITE(ECR, 0);
5984
	POSTING_READ(ECR);
5985
 
5986
	/* Program energy weights for various events */
5987
	I915_WRITE(SDEW, 0x15040d00);
5988
	I915_WRITE(CSIEW0, 0x007f0000);
5989
	I915_WRITE(CSIEW1, 0x1e220004);
5990
	I915_WRITE(CSIEW2, 0x04000004);
5991
 
5992
	for (i = 0; i < 5; i++)
6084 serge 5993
		I915_WRITE(PEW(i), 0);
3031 serge 5994
	for (i = 0; i < 3; i++)
6084 serge 5995
		I915_WRITE(DEW(i), 0);
3031 serge 5996
 
5997
	/* Program P-state weights to account for frequency power adjustment */
5998
	for (i = 0; i < 16; i++) {
6084 serge 5999
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
3031 serge 6000
		unsigned long freq = intel_pxfreq(pxvidfreq);
6001
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6002
			PXVFREQ_PX_SHIFT;
6003
		unsigned long val;
6004
 
6005
		val = vid * vid;
6006
		val *= (freq / 1000);
6007
		val *= 255;
6008
		val /= (127*127*900);
6009
		if (val > 0xff)
6010
			DRM_ERROR("bad pxval: %ld\n", val);
6011
		pxw[i] = val;
6012
	}
6013
	/* Render standby states get 0 weight */
6014
	pxw[14] = 0;
6015
	pxw[15] = 0;
6016
 
6017
	for (i = 0; i < 4; i++) {
6018
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6019
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6084 serge 6020
		I915_WRITE(PXW(i), val);
3031 serge 6021
	}
6022
 
6023
	/* Adjust magic regs to magic values (more experimental results) */
6024
	I915_WRITE(OGW0, 0);
6025
	I915_WRITE(OGW1, 0);
6026
	I915_WRITE(EG0, 0x00007f00);
6027
	I915_WRITE(EG1, 0x0000000e);
6028
	I915_WRITE(EG2, 0x000e0000);
6029
	I915_WRITE(EG3, 0x68000300);
6030
	I915_WRITE(EG4, 0x42000000);
6031
	I915_WRITE(EG5, 0x00140031);
6032
	I915_WRITE(EG6, 0);
6033
	I915_WRITE(EG7, 0);
6034
 
6035
	for (i = 0; i < 8; i++)
6084 serge 6036
		I915_WRITE(PXWL(i), 0);
3031 serge 6037
 
6038
	/* Enable PMON + select events */
6039
	I915_WRITE(ECR, 0x80000019);
6040
 
6041
	lcfuse = I915_READ(LCFUSE02);
6042
 
6043
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6044
}
6045
 
5060 serge 6046
void intel_init_gt_powersave(struct drm_device *dev)
6047
{
6937 serge 6048
	struct drm_i915_private *dev_priv = dev->dev_private;
6049
 
5060 serge 6050
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6937 serge 6051
	/*
6052
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6053
	 * requirement.
6054
	 */
6055
	if (!i915.enable_rc6) {
6056
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6057
		intel_runtime_pm_get(dev_priv);
6058
	}
5060 serge 6059
 
6060
	if (IS_CHERRYVIEW(dev))
6061
		cherryview_init_gt_powersave(dev);
6062
	else if (IS_VALLEYVIEW(dev))
6063
		valleyview_init_gt_powersave(dev);
6064
}
6065
 
6066
void intel_cleanup_gt_powersave(struct drm_device *dev)
6067
{
6937 serge 6068
	struct drm_i915_private *dev_priv = dev->dev_private;
6069
 
5060 serge 6070
	if (IS_CHERRYVIEW(dev))
6071
		return;
6072
	else if (IS_VALLEYVIEW(dev))
6073
		valleyview_cleanup_gt_powersave(dev);
6937 serge 6074
 
6075
	if (!i915.enable_rc6)
6076
		intel_runtime_pm_put(dev_priv);
5060 serge 6077
}
6078
 
5354 serge 6079
static void gen6_suspend_rps(struct drm_device *dev)
6080
{
6081
	struct drm_i915_private *dev_priv = dev->dev_private;
6082
 
6083
//   flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6084
 
6084 serge 6085
	gen6_disable_rps_interrupts(dev);
5354 serge 6086
}
6087
 
5060 serge 6088
/**
6089
 * intel_suspend_gt_powersave - suspend PM work and helper threads
6090
 * @dev: drm device
6091
 *
6092
 * We don't want to disable RC6 or other features here, we just want
6093
 * to make sure any work we've queued has finished and won't bother
6094
 * us while we're suspended.
6095
 */
6096
void intel_suspend_gt_powersave(struct drm_device *dev)
6097
{
6098
	struct drm_i915_private *dev_priv = dev->dev_private;
6099
 
5354 serge 6100
	if (INTEL_INFO(dev)->gen < 6)
6101
		return;
5060 serge 6102
 
5354 serge 6103
	gen6_suspend_rps(dev);
5060 serge 6104
 
6105
	/* Force GPU to min freq during suspend */
6106
	gen6_rps_idle(dev_priv);
6107
}
6108
 
3031 serge 6109
void intel_disable_gt_powersave(struct drm_device *dev)
6110
{
3243 Serge 6111
	struct drm_i915_private *dev_priv = dev->dev_private;
6112
 
3031 serge 6113
	if (IS_IRONLAKE_M(dev)) {
6114
		ironlake_disable_drps(dev);
4293 Serge 6115
	} else if (INTEL_INFO(dev)->gen >= 6) {
5060 serge 6116
		intel_suspend_gt_powersave(dev);
6117
 
3482 Serge 6118
		mutex_lock(&dev_priv->rps.hw_lock);
5354 serge 6119
		if (INTEL_INFO(dev)->gen >= 9)
6120
			gen9_disable_rps(dev);
6121
		else if (IS_CHERRYVIEW(dev))
5060 serge 6122
			cherryview_disable_rps(dev);
6123
		else if (IS_VALLEYVIEW(dev))
4104 Serge 6124
			valleyview_disable_rps(dev);
6125
		else
6084 serge 6126
			gen6_disable_rps(dev);
5354 serge 6127
 
4560 Serge 6128
		dev_priv->rps.enabled = false;
3480 Serge 6129
		mutex_unlock(&dev_priv->rps.hw_lock);
3031 serge 6130
	}
6131
}
6132
 
3482 Serge 6133
static void intel_gen6_powersave_work(struct work_struct *work)
6134
{
6135
	struct drm_i915_private *dev_priv =
6136
		container_of(work, struct drm_i915_private,
6137
			     rps.delayed_resume_work.work);
6138
	struct drm_device *dev = dev_priv->dev;
6139
 
6140
	mutex_lock(&dev_priv->rps.hw_lock);
4104 Serge 6141
 
6084 serge 6142
	gen6_reset_rps_interrupts(dev);
5354 serge 6143
 
5060 serge 6144
	if (IS_CHERRYVIEW(dev)) {
6145
		cherryview_enable_rps(dev);
6146
	} else if (IS_VALLEYVIEW(dev)) {
4104 Serge 6147
		valleyview_enable_rps(dev);
5354 serge 6148
	} else if (INTEL_INFO(dev)->gen >= 9) {
6084 serge 6149
		gen9_enable_rc6(dev);
5354 serge 6150
		gen9_enable_rps(dev);
6937 serge 6151
		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6084 serge 6152
			__gen6_update_ring_freq(dev);
4560 Serge 6153
	} else if (IS_BROADWELL(dev)) {
6154
		gen8_enable_rps(dev);
5060 serge 6155
		__gen6_update_ring_freq(dev);
4104 Serge 6156
	} else {
6084 serge 6157
		gen6_enable_rps(dev);
5060 serge 6158
		__gen6_update_ring_freq(dev);
4104 Serge 6159
	}
6084 serge 6160
 
6161
	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6162
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6163
 
6164
	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6165
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6166
 
4560 Serge 6167
	dev_priv->rps.enabled = true;
5354 serge 6168
 
6084 serge 6169
	gen6_enable_rps_interrupts(dev);
5354 serge 6170
 
3482 Serge 6171
	mutex_unlock(&dev_priv->rps.hw_lock);
5060 serge 6172
 
6173
	intel_runtime_pm_put(dev_priv);
3482 Serge 6174
}
6175
 
3031 serge 6176
void intel_enable_gt_powersave(struct drm_device *dev)
6177
{
3243 Serge 6178
	struct drm_i915_private *dev_priv = dev->dev_private;
6179
 
6084 serge 6180
	/* Powersaving is controlled by the host when inside a VM */
6181
	if (intel_vgpu_active(dev))
6182
		return;
6183
 
3031 serge 6184
	if (IS_IRONLAKE_M(dev)) {
5060 serge 6185
		mutex_lock(&dev->struct_mutex);
3031 serge 6186
		ironlake_enable_drps(dev);
6187
		intel_init_emon(dev);
5060 serge 6188
		mutex_unlock(&dev->struct_mutex);
6189
	} else if (INTEL_INFO(dev)->gen >= 6) {
3243 Serge 6190
		/*
6191
		 * PCU communication is slow and this doesn't need to be
6192
		 * done at any specific time, so do this out of our fast path
6193
		 * to make resume and init faster.
5060 serge 6194
		 *
6195
		 * We depend on the HW RC6 power context save/restore
6196
		 * mechanism when entering D3 through runtime PM suspend. So
6197
		 * disable RPM until RPS/RC6 is properly setup. We can only
6198
		 * get here via the driver load/system resume/runtime resume
6199
		 * paths, so the _noresume version is enough (and in case of
6200
		 * runtime resume it's necessary).
3243 Serge 6201
		 */
5060 serge 6202
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6203
					   round_jiffies_up_relative(HZ)))
6204
			intel_runtime_pm_get_noresume(dev_priv);
3031 serge 6205
	}
6206
}
6207
 
5060 serge 6208
void intel_reset_gt_powersave(struct drm_device *dev)
6209
{
6210
	struct drm_i915_private *dev_priv = dev->dev_private;
6211
 
5354 serge 6212
	if (INTEL_INFO(dev)->gen < 6)
6213
		return;
6214
 
6215
	gen6_suspend_rps(dev);
5060 serge 6216
	dev_priv->rps.enabled = false;
6217
}
6218
 
3243 Serge 6219
static void ibx_init_clock_gating(struct drm_device *dev)
6220
{
6221
	struct drm_i915_private *dev_priv = dev->dev_private;
6222
 
6223
	/*
6224
	 * On Ibex Peak and Cougar Point, we need to disable clock
6225
	 * gating for the panel power sequencer or it will fail to
6226
	 * start up when no ports are active.
6227
	 */
6228
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6229
}
6230
 
4104 Serge 6231
static void g4x_disable_trickle_feed(struct drm_device *dev)
6232
{
6233
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 6234
	enum pipe pipe;
4104 Serge 6235
 
5354 serge 6236
	for_each_pipe(dev_priv, pipe) {
4104 Serge 6237
		I915_WRITE(DSPCNTR(pipe),
6238
			   I915_READ(DSPCNTR(pipe)) |
6239
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6084 serge 6240
 
6241
		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6242
		POSTING_READ(DSPSURF(pipe));
4104 Serge 6243
	}
6244
}
6245
 
4560 Serge 6246
static void ilk_init_lp_watermarks(struct drm_device *dev)
6247
{
6248
	struct drm_i915_private *dev_priv = dev->dev_private;
6249
 
6250
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6251
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6252
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6253
 
6254
	/*
6255
	 * Don't touch WM1S_LP_EN here.
6256
	 * Doing so could cause underruns.
6257
	 */
6258
}
6259
 
3031 serge 6260
static void ironlake_init_clock_gating(struct drm_device *dev)
6261
{
6262
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 6263
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3031 serge 6264
 
4104 Serge 6265
	/*
6266
	 * Required for FBC
6267
	 * WaFbcDisableDpfcClockGating:ilk
6268
	 */
3243 Serge 6269
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6270
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6271
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3031 serge 6272
 
6273
	I915_WRITE(PCH_3DCGDIS0,
6274
		   MARIUNIT_CLOCK_GATE_DISABLE |
6275
		   SVSMUNIT_CLOCK_GATE_DISABLE);
6276
	I915_WRITE(PCH_3DCGDIS1,
6277
		   VFMUNIT_CLOCK_GATE_DISABLE);
6278
 
6279
	/*
6280
	 * According to the spec the following bits should be set in
6281
	 * order to enable memory self-refresh
6282
	 * The bit 22/21 of 0x42004
6283
	 * The bit 5 of 0x42020
6284
	 * The bit 15 of 0x45000
6285
	 */
6286
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6287
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
6288
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3243 Serge 6289
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3031 serge 6290
	I915_WRITE(DISP_ARB_CTL,
6291
		   (I915_READ(DISP_ARB_CTL) |
6292
		    DISP_FBC_WM_DIS));
6293
 
4560 Serge 6294
	ilk_init_lp_watermarks(dev);
6295
 
3031 serge 6296
	/*
6297
	 * Based on the document from hardware guys the following bits
6298
	 * should be set unconditionally in order to enable FBC.
6299
	 * The bit 22 of 0x42000
6300
	 * The bit 22 of 0x42004
6301
	 * The bit 7,8,9 of 0x42020.
6302
	 */
6303
	if (IS_IRONLAKE_M(dev)) {
4104 Serge 6304
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
3031 serge 6305
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
6306
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
6307
			   ILK_FBCQ_DIS);
6308
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
6309
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
6310
			   ILK_DPARB_GATE);
6311
	}
6312
 
3243 Serge 6313
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6314
 
3031 serge 6315
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6316
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6317
		   ILK_ELPIN_409_SELECT);
6318
	I915_WRITE(_3D_CHICKEN2,
6319
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6320
		   _3D_CHICKEN2_WM_READ_PIPELINED);
3243 Serge 6321
 
4104 Serge 6322
	/* WaDisableRenderCachePipelinedFlush:ilk */
3243 Serge 6323
	I915_WRITE(CACHE_MODE_0,
6324
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6325
 
5060 serge 6326
	/* WaDisable_RenderCache_OperationalFlush:ilk */
6327
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6328
 
4104 Serge 6329
	g4x_disable_trickle_feed(dev);
6330
 
3243 Serge 6331
	ibx_init_clock_gating(dev);
3031 serge 6332
}
6333
 
3243 Serge 6334
static void cpt_init_clock_gating(struct drm_device *dev)
6335
{
6336
	struct drm_i915_private *dev_priv = dev->dev_private;
6337
	int pipe;
3746 Serge 6338
	uint32_t val;
3243 Serge 6339
 
6340
	/*
6341
	 * On Ibex Peak and Cougar Point, we need to disable clock
6342
	 * gating for the panel power sequencer or it will fail to
6343
	 * start up when no ports are active.
6344
	 */
4280 Serge 6345
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6346
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6347
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
3243 Serge 6348
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6349
		   DPLS_EDP_PPS_FIX_DIS);
6350
	/* The below fixes the weird display corruption, a few pixels shifted
6351
	 * downward, on (only) LVDS of some HP laptops with IVY.
6352
	 */
5354 serge 6353
	for_each_pipe(dev_priv, pipe) {
3746 Serge 6354
		val = I915_READ(TRANS_CHICKEN2(pipe));
6355
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6356
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4104 Serge 6357
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
3746 Serge 6358
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6359
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6360
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6361
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6362
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
6363
	}
3243 Serge 6364
	/* WADP0ClockGatingDisable */
5354 serge 6365
	for_each_pipe(dev_priv, pipe) {
3243 Serge 6366
		I915_WRITE(TRANS_CHICKEN1(pipe),
6367
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6368
	}
6369
}
6370
 
3480 Serge 6371
static void gen6_check_mch_setup(struct drm_device *dev)
6372
{
6373
	struct drm_i915_private *dev_priv = dev->dev_private;
6374
	uint32_t tmp;
6375
 
6376
	tmp = I915_READ(MCH_SSKPD);
5060 serge 6377
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6378
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6379
			      tmp);
3480 Serge 6380
}
6381
 
3031 serge 6382
static void gen6_init_clock_gating(struct drm_device *dev)
6383
{
6384
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 6385
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3031 serge 6386
 
3243 Serge 6387
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3031 serge 6388
 
6389
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6390
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6391
		   ILK_ELPIN_409_SELECT);
6392
 
4104 Serge 6393
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
3243 Serge 6394
	I915_WRITE(_3D_CHICKEN,
6395
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6396
 
5060 serge 6397
	/* WaDisable_RenderCache_OperationalFlush:snb */
6398
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6399
 
6400
	/*
6401
	 * BSpec recoomends 8x4 when MSAA is used,
6402
	 * however in practice 16x4 seems fastest.
6403
	 *
6404
	 * Note that PS/WM thread counts depend on the WIZ hashing
6405
	 * disable bit, which we don't touch here, but it's good
6406
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6407
	 */
6408
	I915_WRITE(GEN6_GT_MODE,
5354 serge 6409
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5060 serge 6410
 
4560 Serge 6411
	ilk_init_lp_watermarks(dev);
3031 serge 6412
 
6413
	I915_WRITE(CACHE_MODE_0,
6414
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6415
 
6416
	I915_WRITE(GEN6_UCGCTL1,
6417
		   I915_READ(GEN6_UCGCTL1) |
6418
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6419
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6420
 
6421
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6422
	 * gating disable must be set.  Failure to set it results in
6423
	 * flickering pixels due to Z write ordering failures after
6424
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
6425
	 * Sanctuary and Tropics, and apparently anything else with
6426
	 * alpha test or pixel discard.
6427
	 *
6428
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
6429
	 * but we didn't debug actual testcases to find it out.
6430
	 *
5060 serge 6431
	 * WaDisableRCCUnitClockGating:snb
6432
	 * WaDisableRCPBUnitClockGating:snb
3031 serge 6433
	 */
6434
	I915_WRITE(GEN6_UCGCTL2,
6435
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6436
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6437
 
5060 serge 6438
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6439
	I915_WRITE(_3D_CHICKEN3,
6440
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
3031 serge 6441
 
6442
	/*
5060 serge 6443
	 * Bspec says:
6444
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6445
	 * 3DSTATE_SF number of SF output attributes is more than 16."
6446
	 */
6447
	I915_WRITE(_3D_CHICKEN3,
6448
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6449
 
6450
	/*
3031 serge 6451
	 * According to the spec the following bits should be
6452
	 * set in order to enable memory self-refresh and fbc:
6453
	 * The bit21 and bit22 of 0x42000
6454
	 * The bit21 and bit22 of 0x42004
6455
	 * The bit5 and bit7 of 0x42020
6456
	 * The bit14 of 0x70180
6457
	 * The bit14 of 0x71180
4104 Serge 6458
	 *
6459
	 * WaFbcAsynchFlipDisableFbcQueue:snb
3031 serge 6460
	 */
6461
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
6462
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
6463
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6464
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6465
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6466
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3243 Serge 6467
	I915_WRITE(ILK_DSPCLK_GATE_D,
6468
		   I915_READ(ILK_DSPCLK_GATE_D) |
6469
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6470
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3031 serge 6471
 
4104 Serge 6472
	g4x_disable_trickle_feed(dev);
3031 serge 6473
 
3243 Serge 6474
	cpt_init_clock_gating(dev);
3480 Serge 6475
 
6476
	gen6_check_mch_setup(dev);
3031 serge 6477
}
6478
 
6479
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6480
{
6481
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6482
 
5060 serge 6483
	/*
6484
	 * WaVSThreadDispatchOverride:ivb,vlv
6485
	 *
6486
	 * This actually overrides the dispatch
6487
	 * mode for all thread types.
6488
	 */
3031 serge 6489
	reg &= ~GEN7_FF_SCHED_MASK;
6490
	reg |= GEN7_FF_TS_SCHED_HW;
6491
	reg |= GEN7_FF_VS_SCHED_HW;
6492
	reg |= GEN7_FF_DS_SCHED_HW;
6493
 
6494
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6495
}
6496
 
3243 Serge 6497
static void lpt_init_clock_gating(struct drm_device *dev)
6498
{
6499
	struct drm_i915_private *dev_priv = dev->dev_private;
6500
 
6501
	/*
6502
	 * TODO: this bit should only be enabled when really needed, then
6503
	 * disabled when not needed anymore in order to save power.
6504
	 */
6084 serge 6505
	if (HAS_PCH_LPT_LP(dev))
3243 Serge 6506
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
6507
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
6508
			   PCH_LP_PARTITION_LEVEL_DISABLE);
4104 Serge 6509
 
6510
	/* WADPOClockGatingDisable:hsw */
6084 serge 6511
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6512
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
4104 Serge 6513
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3243 Serge 6514
}
6515
 
4104 Serge 6516
static void lpt_suspend_hw(struct drm_device *dev)
6517
{
6518
	struct drm_i915_private *dev_priv = dev->dev_private;
6519
 
6084 serge 6520
	if (HAS_PCH_LPT_LP(dev)) {
4104 Serge 6521
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6522
 
6523
		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6524
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6525
	}
6526
}
6527
 
5354 serge 6528
static void broadwell_init_clock_gating(struct drm_device *dev)
3031 serge 6529
{
6530
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 6531
	enum pipe pipe;
6084 serge 6532
	uint32_t misccpctl;
3031 serge 6533
 
6084 serge 6534
	ilk_init_lp_watermarks(dev);
3031 serge 6535
 
4560 Serge 6536
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6537
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6538
 
6539
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6540
	I915_WRITE(CHICKEN_PAR1_1,
6541
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6542
 
6543
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5354 serge 6544
	for_each_pipe(dev_priv, pipe) {
5060 serge 6545
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6546
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6547
			   BDW_DPRS_MASK_VBLANK_SRD);
4560 Serge 6548
	}
6549
 
6550
	/* WaVSRefCountFullforceMissDisable:bdw */
6551
	/* WaDSRefCountFullforceMissDisable:bdw */
6552
	I915_WRITE(GEN7_FF_THREAD_MODE,
6553
		   I915_READ(GEN7_FF_THREAD_MODE) &
6554
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5060 serge 6555
 
6556
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6557
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6558
 
6559
	/* WaDisableSDEUnitClockGating:bdw */
6560
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6561
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6562
 
6084 serge 6563
	/*
6564
	 * WaProgramL3SqcReg1Default:bdw
6565
	 * WaTempDisableDOPClkGating:bdw
6566
	 */
6567
	misccpctl = I915_READ(GEN7_MISCCPCTL);
6568
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6569
	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6660 serge 6570
	/*
6571
	 * Wait at least 100 clocks before re-enabling clock gating. See
6572
	 * the definition of L3SQCREG1 in BSpec.
6573
	 */
6574
	POSTING_READ(GEN8_L3SQCREG1);
6575
	udelay(1);
6084 serge 6576
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6577
 
6578
	/*
6579
	 * WaGttCachingOffByDefault:bdw
6580
	 * GTT cache may not work with big pages, so if those
6581
	 * are ever enabled GTT cache may need to be disabled.
6582
	 */
6583
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6584
 
5354 serge 6585
	lpt_init_clock_gating(dev);
4560 Serge 6586
}
6587
 
6588
static void haswell_init_clock_gating(struct drm_device *dev)
6589
{
6590
	struct drm_i915_private *dev_priv = dev->dev_private;
6591
 
6592
	ilk_init_lp_watermarks(dev);
6593
 
4104 Serge 6594
	/* L3 caching of data atomics doesn't work -- disable it. */
6595
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6596
	I915_WRITE(HSW_ROW_CHICKEN3,
6597
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6598
 
6599
	/* This is required by WaCatErrorRejectionIssue:hsw */
3031 serge 6600
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6601
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6602
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6603
 
4104 Serge 6604
	/* WaVSRefCountFullforceMissDisable:hsw */
5060 serge 6605
	I915_WRITE(GEN7_FF_THREAD_MODE,
6606
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
3031 serge 6607
 
5060 serge 6608
	/* WaDisable_RenderCache_OperationalFlush:hsw */
6609
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6610
 
6611
	/* enable HiZ Raw Stall Optimization */
6612
	I915_WRITE(CACHE_MODE_0_GEN7,
6613
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6614
 
4104 Serge 6615
	/* WaDisable4x2SubspanOptimization:hsw */
3031 serge 6616
	I915_WRITE(CACHE_MODE_1,
6617
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6618
 
5060 serge 6619
	/*
6620
	 * BSpec recommends 8x4 when MSAA is used,
6621
	 * however in practice 16x4 seems fastest.
6622
	 *
6623
	 * Note that PS/WM thread counts depend on the WIZ hashing
6624
	 * disable bit, which we don't touch here, but it's good
6625
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6626
	 */
6627
	I915_WRITE(GEN7_GT_MODE,
5354 serge 6628
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5060 serge 6629
 
6084 serge 6630
	/* WaSampleCChickenBitEnable:hsw */
6631
	I915_WRITE(HALF_SLICE_CHICKEN3,
6632
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6633
 
4104 Serge 6634
	/* WaSwitchSolVfFArbitrationPriority:hsw */
3746 Serge 6635
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6636
 
4104 Serge 6637
	/* WaRsPkgCStateDisplayPMReq:hsw */
6638
	I915_WRITE(CHICKEN_PAR1_1,
6639
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
3031 serge 6640
 
3243 Serge 6641
	lpt_init_clock_gating(dev);
3031 serge 6642
}
6643
 
6644
static void ivybridge_init_clock_gating(struct drm_device *dev)
6645
{
6646
	struct drm_i915_private *dev_priv = dev->dev_private;
6647
	uint32_t snpcr;
6648
 
4560 Serge 6649
	ilk_init_lp_watermarks(dev);
3031 serge 6650
 
3243 Serge 6651
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3031 serge 6652
 
4104 Serge 6653
	/* WaDisableEarlyCull:ivb */
3243 Serge 6654
	I915_WRITE(_3D_CHICKEN3,
6655
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6656
 
4104 Serge 6657
	/* WaDisableBackToBackFlipFix:ivb */
3031 serge 6658
	I915_WRITE(IVB_CHICKEN3,
6659
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6660
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6661
 
4104 Serge 6662
	/* WaDisablePSDDualDispatchEnable:ivb */
3243 Serge 6663
	if (IS_IVB_GT1(dev))
6664
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6665
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6666
 
5060 serge 6667
	/* WaDisable_RenderCache_OperationalFlush:ivb */
6668
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6669
 
4104 Serge 6670
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
3031 serge 6671
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6672
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6673
 
4104 Serge 6674
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
3031 serge 6675
	I915_WRITE(GEN7_L3CNTLREG1,
6676
			GEN7_WA_FOR_GEN7_L3_CONTROL);
6677
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6084 serge 6678
		   GEN7_WA_L3_CHICKEN_MODE);
3243 Serge 6679
	if (IS_IVB_GT1(dev))
6680
		I915_WRITE(GEN7_ROW_CHICKEN2,
6681
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5060 serge 6682
	else {
6683
		/* must write both registers */
6684
		I915_WRITE(GEN7_ROW_CHICKEN2,
6685
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3243 Serge 6686
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6687
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5060 serge 6688
	}
3031 serge 6689
 
4104 Serge 6690
	/* WaForceL3Serialization:ivb */
3243 Serge 6691
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6692
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6693
 
5060 serge 6694
	/*
3031 serge 6695
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4104 Serge 6696
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
3031 serge 6697
	 */
6698
	I915_WRITE(GEN6_UCGCTL2,
5060 serge 6699
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3031 serge 6700
 
4104 Serge 6701
	/* This is required by WaCatErrorRejectionIssue:ivb */
3031 serge 6702
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6703
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6704
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6705
 
4104 Serge 6706
	g4x_disable_trickle_feed(dev);
3031 serge 6707
 
6708
	gen7_setup_fixed_func_scheduler(dev_priv);
6709
 
5060 serge 6710
	if (0) { /* causes HiZ corruption on ivb:gt1 */
6711
		/* enable HiZ Raw Stall Optimization */
6712
		I915_WRITE(CACHE_MODE_0_GEN7,
6713
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6714
	}
6715
 
4104 Serge 6716
	/* WaDisable4x2SubspanOptimization:ivb */
3031 serge 6717
	I915_WRITE(CACHE_MODE_1,
6718
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6719
 
5060 serge 6720
	/*
6721
	 * BSpec recommends 8x4 when MSAA is used,
6722
	 * however in practice 16x4 seems fastest.
6723
	 *
6724
	 * Note that PS/WM thread counts depend on the WIZ hashing
6725
	 * disable bit, which we don't touch here, but it's good
6726
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6727
	 */
6728
	I915_WRITE(GEN7_GT_MODE,
5354 serge 6729
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5060 serge 6730
 
3031 serge 6731
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6732
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
6733
	snpcr |= GEN6_MBC_SNPCR_MED;
6734
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3243 Serge 6735
 
3746 Serge 6736
	if (!HAS_PCH_NOP(dev))
6084 serge 6737
		cpt_init_clock_gating(dev);
3480 Serge 6738
 
6739
	gen6_check_mch_setup(dev);
3031 serge 6740
}
6741
 
6084 serge 6742
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6743
{
6937 serge 6744
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6084 serge 6745
 
6746
	/*
6747
	 * Disable trickle feed and enable pnd deadline calculation
6748
	 */
6749
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6750
	I915_WRITE(CBR1_VLV, 0);
6751
}
6752
 
3031 serge 6753
static void valleyview_init_clock_gating(struct drm_device *dev)
6754
{
6755
	struct drm_i915_private *dev_priv = dev->dev_private;
6756
 
6084 serge 6757
	vlv_init_display_clock_gating(dev_priv);
3031 serge 6758
 
4104 Serge 6759
	/* WaDisableEarlyCull:vlv */
3243 Serge 6760
	I915_WRITE(_3D_CHICKEN3,
6761
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6762
 
4104 Serge 6763
	/* WaDisableBackToBackFlipFix:vlv */
3031 serge 6764
	I915_WRITE(IVB_CHICKEN3,
6765
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6766
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6767
 
5060 serge 6768
	/* WaPsdDispatchEnable:vlv */
4104 Serge 6769
	/* WaDisablePSDDualDispatchEnable:vlv */
3243 Serge 6770
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3746 Serge 6771
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6772
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3243 Serge 6773
 
5060 serge 6774
	/* WaDisable_RenderCache_OperationalFlush:vlv */
6775
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
3031 serge 6776
 
4104 Serge 6777
	/* WaForceL3Serialization:vlv */
3243 Serge 6778
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6779
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6780
 
4104 Serge 6781
	/* WaDisableDopClockGating:vlv */
3243 Serge 6782
	I915_WRITE(GEN7_ROW_CHICKEN2,
6783
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6784
 
4104 Serge 6785
	/* This is required by WaCatErrorRejectionIssue:vlv */
3031 serge 6786
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6787
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6788
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6789
 
5060 serge 6790
	gen7_setup_fixed_func_scheduler(dev_priv);
6791
 
6792
	/*
3031 serge 6793
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4104 Serge 6794
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
3031 serge 6795
	 */
6796
	I915_WRITE(GEN6_UCGCTL2,
5060 serge 6797
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3031 serge 6798
 
5060 serge 6799
	/* WaDisableL3Bank2xClockGate:vlv
6800
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
6801
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6802
	I915_WRITE(GEN7_UCGCTL4,
6803
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3031 serge 6804
 
5060 serge 6805
	/*
6806
	 * BSpec says this must be set, even though
6807
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6808
	 */
3031 serge 6809
	I915_WRITE(CACHE_MODE_1,
6810
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6811
 
6812
	/*
6084 serge 6813
	 * BSpec recommends 8x4 when MSAA is used,
6814
	 * however in practice 16x4 seems fastest.
6815
	 *
6816
	 * Note that PS/WM thread counts depend on the WIZ hashing
6817
	 * disable bit, which we don't touch here, but it's good
6818
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6819
	 */
6820
	I915_WRITE(GEN7_GT_MODE,
6821
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6822
 
6823
	/*
5060 serge 6824
	 * WaIncreaseL3CreditsForVLVB0:vlv
6825
	 * This is the hardware default actually.
6826
	 */
6827
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6828
 
6829
	/*
4104 Serge 6830
	 * WaDisableVLVClockGating_VBIIssue:vlv
3243 Serge 6831
	 * Disable clock gating on th GCFG unit to prevent a delay
6832
	 * in the reporting of vblank events.
6833
	 */
5060 serge 6834
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6835
}
3746 Serge 6836
 
5060 serge 6837
static void cherryview_init_clock_gating(struct drm_device *dev)
6838
{
6839
	struct drm_i915_private *dev_priv = dev->dev_private;
6840
 
6084 serge 6841
	vlv_init_display_clock_gating(dev_priv);
5060 serge 6842
 
6843
	/* WaVSRefCountFullforceMissDisable:chv */
6844
	/* WaDSRefCountFullforceMissDisable:chv */
6845
	I915_WRITE(GEN7_FF_THREAD_MODE,
6846
		   I915_READ(GEN7_FF_THREAD_MODE) &
6847
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6848
 
6849
	/* WaDisableSemaphoreAndSyncFlipWait:chv */
6850
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6851
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6852
 
6853
	/* WaDisableCSUnitClockGating:chv */
6854
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6855
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6856
 
6857
	/* WaDisableSDEUnitClockGating:chv */
6858
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6859
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6084 serge 6860
 
6861
	/*
6862
	 * GTT cache may not work with big pages, so if those
6863
	 * are ever enabled GTT cache may need to be disabled.
6864
	 */
6865
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
3031 serge 6866
}
6867
 
6868
static void g4x_init_clock_gating(struct drm_device *dev)
6869
{
6870
	struct drm_i915_private *dev_priv = dev->dev_private;
6871
	uint32_t dspclk_gate;
6872
 
6873
	I915_WRITE(RENCLK_GATE_D1, 0);
6874
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6875
		   GS_UNIT_CLOCK_GATE_DISABLE |
6876
		   CL_UNIT_CLOCK_GATE_DISABLE);
6877
	I915_WRITE(RAMCLK_GATE_D, 0);
6878
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6879
		OVRUNIT_CLOCK_GATE_DISABLE |
6880
		OVCUNIT_CLOCK_GATE_DISABLE;
6881
	if (IS_GM45(dev))
6882
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6883
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3243 Serge 6884
 
6885
	/* WaDisableRenderCachePipelinedFlush */
6886
	I915_WRITE(CACHE_MODE_0,
6887
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4104 Serge 6888
 
5060 serge 6889
	/* WaDisable_RenderCache_OperationalFlush:g4x */
6890
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6891
 
4104 Serge 6892
	g4x_disable_trickle_feed(dev);
3031 serge 6893
}
6894
 
6895
static void crestline_init_clock_gating(struct drm_device *dev)
6896
{
6897
	struct drm_i915_private *dev_priv = dev->dev_private;
6898
 
6899
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6900
	I915_WRITE(RENCLK_GATE_D2, 0);
6901
	I915_WRITE(DSPCLK_GATE_D, 0);
6902
	I915_WRITE(RAMCLK_GATE_D, 0);
6903
	I915_WRITE16(DEUC, 0);
4104 Serge 6904
	I915_WRITE(MI_ARB_STATE,
6905
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5060 serge 6906
 
6907
	/* WaDisable_RenderCache_OperationalFlush:gen4 */
6908
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
3031 serge 6909
}
6910
 
6911
static void broadwater_init_clock_gating(struct drm_device *dev)
6912
{
6913
	struct drm_i915_private *dev_priv = dev->dev_private;
6914
 
6915
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6916
		   I965_RCC_CLOCK_GATE_DISABLE |
6917
		   I965_RCPB_CLOCK_GATE_DISABLE |
6918
		   I965_ISC_CLOCK_GATE_DISABLE |
6919
		   I965_FBC_CLOCK_GATE_DISABLE);
6920
	I915_WRITE(RENCLK_GATE_D2, 0);
4104 Serge 6921
	I915_WRITE(MI_ARB_STATE,
6922
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5060 serge 6923
 
6924
	/* WaDisable_RenderCache_OperationalFlush:gen4 */
6925
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
3031 serge 6926
}
6927
 
6928
static void gen3_init_clock_gating(struct drm_device *dev)
6929
{
6930
	struct drm_i915_private *dev_priv = dev->dev_private;
6931
	u32 dstate = I915_READ(D_STATE);
6932
 
6933
	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6934
		DSTATE_DOT_CLOCK_GATING;
6935
	I915_WRITE(D_STATE, dstate);
6936
 
6937
	if (IS_PINEVIEW(dev))
6938
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6939
 
6940
	/* IIR "flip pending" means done if this bit is set */
6941
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5060 serge 6942
 
6943
	/* interrupts should cause a wake up from C3 */
6944
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6945
 
6946
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6947
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5354 serge 6948
 
6949
	I915_WRITE(MI_ARB_STATE,
6950
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
3031 serge 6951
}
6952
 
6953
static void i85x_init_clock_gating(struct drm_device *dev)
6954
{
6955
	struct drm_i915_private *dev_priv = dev->dev_private;
6956
 
6957
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5060 serge 6958
 
6959
	/* interrupts should cause a wake up from C3 */
6960
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6961
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
5354 serge 6962
 
6963
	I915_WRITE(MEM_MODE,
6964
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
3031 serge 6965
}
6966
 
6967
static void i830_init_clock_gating(struct drm_device *dev)
6968
{
6969
	struct drm_i915_private *dev_priv = dev->dev_private;
6970
 
6971
	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5354 serge 6972
 
6973
	I915_WRITE(MEM_MODE,
6974
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6975
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
3031 serge 6976
}
6977
 
6978
void intel_init_clock_gating(struct drm_device *dev)
6979
{
6980
	struct drm_i915_private *dev_priv = dev->dev_private;
6981
 
6084 serge 6982
	if (dev_priv->display.init_clock_gating)
6983
		dev_priv->display.init_clock_gating(dev);
3031 serge 6984
}
6985
 
4104 Serge 6986
void intel_suspend_hw(struct drm_device *dev)
6987
{
6988
	if (HAS_PCH_LPT(dev))
6989
		lpt_suspend_hw(dev);
6990
}
6991
 
5354 serge 6992
/* Set up chip specific power management-related functions */
6993
void intel_init_pm(struct drm_device *dev)
6994
{
6995
	struct drm_i915_private *dev_priv = dev->dev_private;
6996
 
6084 serge 6997
	intel_fbc_init(dev_priv);
5354 serge 6998
 
3031 serge 6999
	/* For cxsr */
7000
	if (IS_PINEVIEW(dev))
7001
		i915_pineview_get_mem_freq(dev);
7002
	else if (IS_GEN5(dev))
7003
		i915_ironlake_get_mem_freq(dev);
7004
 
7005
	/* For FIFO watermark updates */
5354 serge 7006
	if (INTEL_INFO(dev)->gen >= 9) {
7007
		skl_setup_wm_latency(dev);
7008
 
6084 serge 7009
		if (IS_BROXTON(dev))
7010
			dev_priv->display.init_clock_gating =
7011
				bxt_init_clock_gating;
5354 serge 7012
		dev_priv->display.update_wm = skl_update_wm;
7013
	} else if (HAS_PCH_SPLIT(dev)) {
5060 serge 7014
		ilk_setup_wm_latency(dev);
4104 Serge 7015
 
4560 Serge 7016
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7017
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7018
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7019
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7020
			dev_priv->display.update_wm = ilk_update_wm;
6937 serge 7021
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
6084 serge 7022
		} else {
7023
			DRM_DEBUG_KMS("Failed to read display plane latency. "
7024
				      "Disable CxSR\n");
7025
		}
4560 Serge 7026
 
7027
		if (IS_GEN5(dev))
7028
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7029
		else if (IS_GEN6(dev))
3031 serge 7030
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4560 Serge 7031
		else if (IS_IVYBRIDGE(dev))
3031 serge 7032
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4560 Serge 7033
		else if (IS_HASWELL(dev))
3031 serge 7034
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4560 Serge 7035
		else if (INTEL_INFO(dev)->gen == 8)
5354 serge 7036
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
5060 serge 7037
	} else if (IS_CHERRYVIEW(dev)) {
6084 serge 7038
		vlv_setup_wm_latency(dev);
7039
 
7040
		dev_priv->display.update_wm = vlv_update_wm;
5060 serge 7041
		dev_priv->display.init_clock_gating =
7042
			cherryview_init_clock_gating;
3031 serge 7043
	} else if (IS_VALLEYVIEW(dev)) {
6084 serge 7044
		vlv_setup_wm_latency(dev);
7045
 
7046
		dev_priv->display.update_wm = vlv_update_wm;
3031 serge 7047
		dev_priv->display.init_clock_gating =
7048
			valleyview_init_clock_gating;
7049
	} else if (IS_PINEVIEW(dev)) {
7050
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7051
					    dev_priv->is_ddr3,
7052
					    dev_priv->fsb_freq,
7053
					    dev_priv->mem_freq)) {
7054
			DRM_INFO("failed to find known CxSR latency "
7055
				 "(found ddr%s fsb freq %d, mem freq %d), "
7056
				 "disabling CxSR\n",
7057
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7058
				 dev_priv->fsb_freq, dev_priv->mem_freq);
7059
			/* Disable CxSR and never update its watermark again */
5060 serge 7060
			intel_set_memory_cxsr(dev_priv, false);
3031 serge 7061
			dev_priv->display.update_wm = NULL;
7062
		} else
7063
			dev_priv->display.update_wm = pineview_update_wm;
7064
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7065
	} else if (IS_G4X(dev)) {
7066
		dev_priv->display.update_wm = g4x_update_wm;
7067
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7068
	} else if (IS_GEN4(dev)) {
7069
		dev_priv->display.update_wm = i965_update_wm;
7070
		if (IS_CRESTLINE(dev))
7071
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7072
		else if (IS_BROADWATER(dev))
7073
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7074
	} else if (IS_GEN3(dev)) {
7075
		dev_priv->display.update_wm = i9xx_update_wm;
7076
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7077
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4560 Serge 7078
	} else if (IS_GEN2(dev)) {
7079
		if (INTEL_INFO(dev)->num_pipes == 1) {
7080
			dev_priv->display.update_wm = i845_update_wm;
7081
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7082
		} else {
7083
			dev_priv->display.update_wm = i9xx_update_wm;
6084 serge 7084
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
4560 Serge 7085
		}
7086
 
7087
		if (IS_I85X(dev) || IS_I865G(dev))
6084 serge 7088
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4560 Serge 7089
		else
7090
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
3031 serge 7091
	} else {
4560 Serge 7092
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
3031 serge 7093
	}
7094
}
7095
 
5354 serge 7096
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
3243 Serge 7097
{
7098
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 7099
 
3243 Serge 7100
	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7101
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7102
		return -EAGAIN;
7103
	}
3031 serge 7104
 
3243 Serge 7105
	I915_WRITE(GEN6_PCODE_DATA, *val);
5354 serge 7106
	I915_WRITE(GEN6_PCODE_DATA1, 0);
3243 Serge 7107
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7108
 
7109
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7110
		     500)) {
7111
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7112
		return -ETIMEDOUT;
6084 serge 7113
	}
3243 Serge 7114
 
7115
	*val = I915_READ(GEN6_PCODE_DATA);
7116
	I915_WRITE(GEN6_PCODE_DATA, 0);
7117
 
7118
	return 0;
7119
}
7120
 
5354 serge 7121
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
3243 Serge 7122
{
7123
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7124
 
7125
	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7126
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7127
		return -EAGAIN;
6084 serge 7128
	}
3243 Serge 7129
 
7130
	I915_WRITE(GEN6_PCODE_DATA, val);
7131
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7132
 
7133
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7134
		     500)) {
7135
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7136
		return -ETIMEDOUT;
3031 serge 7137
	}
3243 Serge 7138
 
7139
	I915_WRITE(GEN6_PCODE_DATA, 0);
7140
 
7141
	return 0;
3031 serge 7142
}
3746 Serge 7143
 
5354 serge 7144
static int vlv_gpu_freq_div(unsigned int czclk_freq)
3746 Serge 7145
{
5354 serge 7146
	switch (czclk_freq) {
7147
	case 200:
7148
		return 10;
7149
	case 267:
7150
		return 12;
7151
	case 320:
7152
	case 333:
7153
		return 16;
7154
	case 400:
7155
		return 20;
4104 Serge 7156
	default:
7157
		return -1;
7158
	}
5354 serge 7159
}
3746 Serge 7160
 
5354 serge 7161
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7162
{
6084 serge 7163
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
5354 serge 7164
 
7165
	div = vlv_gpu_freq_div(czclk_freq);
7166
	if (div < 0)
7167
		return div;
7168
 
7169
	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
4104 Serge 7170
}
3746 Serge 7171
 
5060 serge 7172
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
4104 Serge 7173
{
6084 serge 7174
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
3746 Serge 7175
 
5354 serge 7176
	mul = vlv_gpu_freq_div(czclk_freq);
7177
	if (mul < 0)
7178
		return mul;
3746 Serge 7179
 
5354 serge 7180
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
3746 Serge 7181
}
7182
 
5060 serge 7183
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7184
{
6084 serge 7185
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
5060 serge 7186
 
5354 serge 7187
	div = vlv_gpu_freq_div(czclk_freq) / 2;
7188
	if (div < 0)
7189
		return div;
5060 serge 7190
 
5354 serge 7191
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
5060 serge 7192
}
7193
 
7194
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7195
{
6084 serge 7196
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
5060 serge 7197
 
5354 serge 7198
	mul = vlv_gpu_freq_div(czclk_freq) / 2;
7199
	if (mul < 0)
7200
		return mul;
5060 serge 7201
 
5354 serge 7202
	/* CHV needs even values */
7203
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
5060 serge 7204
}
7205
 
6084 serge 7206
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
5060 serge 7207
{
6084 serge 7208
	if (IS_GEN9(dev_priv->dev))
7209
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7210
					 GEN9_FREQ_SCALER);
7211
	else if (IS_CHERRYVIEW(dev_priv->dev))
7212
		return chv_gpu_freq(dev_priv, val);
7213
	else if (IS_VALLEYVIEW(dev_priv->dev))
7214
		return byt_gpu_freq(dev_priv, val);
7215
	else
7216
		return val * GT_FREQUENCY_MULTIPLIER;
7217
}
5060 serge 7218
 
6084 serge 7219
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7220
{
7221
	if (IS_GEN9(dev_priv->dev))
7222
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7223
					 GT_FREQUENCY_MULTIPLIER);
7224
	else if (IS_CHERRYVIEW(dev_priv->dev))
7225
		return chv_freq_opcode(dev_priv, val);
5060 serge 7226
	else if (IS_VALLEYVIEW(dev_priv->dev))
6084 serge 7227
		return byt_freq_opcode(dev_priv, val);
7228
	else
7229
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7230
}
5060 serge 7231
 
6084 serge 7232
struct request_boost {
7233
	struct work_struct work;
7234
	struct drm_i915_gem_request *req;
7235
};
7236
 
7237
static void __intel_rps_boost_work(struct work_struct *work)
7238
{
7239
	struct request_boost *boost = container_of(work, struct request_boost, work);
7240
	struct drm_i915_gem_request *req = boost->req;
7241
 
7242
	if (!i915_gem_request_completed(req, true))
7243
		gen6_rps_boost(to_i915(req->ring->dev), NULL,
7244
			       req->emitted_jiffies);
7245
 
7246
	i915_gem_request_unreference__unlocked(req);
7247
	kfree(boost);
5060 serge 7248
}
7249
 
6084 serge 7250
void intel_queue_rps_boost_for_request(struct drm_device *dev,
7251
				       struct drm_i915_gem_request *req)
5060 serge 7252
{
6084 serge 7253
	struct request_boost *boost;
5060 serge 7254
 
6084 serge 7255
	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7256
		return;
5060 serge 7257
 
6084 serge 7258
	if (i915_gem_request_completed(req, true))
7259
		return;
7260
 
7261
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7262
	if (boost == NULL)
7263
		return;
7264
 
7265
	i915_gem_request_reference(req);
7266
	boost->req = req;
7267
 
7268
	INIT_WORK(&boost->work, __intel_rps_boost_work);
7269
	queue_work(to_i915(dev)->wq, &boost->work);
5060 serge 7270
}
7271
 
4560 Serge 7272
void intel_pm_setup(struct drm_device *dev)
3746 Serge 7273
{
4104 Serge 7274
	struct drm_i915_private *dev_priv = dev->dev_private;
7275
 
4560 Serge 7276
	mutex_init(&dev_priv->rps.hw_lock);
6084 serge 7277
	spin_lock_init(&dev_priv->rps.client_lock);
4560 Serge 7278
 
4104 Serge 7279
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7280
			  intel_gen6_powersave_work);
6084 serge 7281
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7282
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7283
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
5060 serge 7284
 
7285
	dev_priv->pm.suspended = false;
6937 serge 7286
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7287
	atomic_set(&dev_priv->pm.atomic_seq, 0);
3746 Serge 7288
}