Subversion Repositories Kolibri OS

Rev

Rev 6660 | Rev 6937 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
3031 serge 1
/*
2
 * Copyright © 2012 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eugeni Dodonov 
25
 *
26
 */
27
 
28
//#include 
29
#include "i915_drv.h"
30
#include "intel_drv.h"
31
//#include "../../../platform/x86/intel_ips.h"
32
#include 
33
 
4560 Serge 34
 
3031 serge 35
#define FORCEWAKE_ACK_TIMEOUT_MS 2
36
 
37
void getrawmonotonic(struct timespec *ts);
38
 
4560 Serge 39
/**
40
 * RC6 is a special power stage which allows the GPU to enter an very
41
 * low-voltage mode when idle, using down to 0V while at this stage.  This
42
 * stage is entered automatically when the GPU is idle when RC6 support is
43
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
44
 *
45
 * There are different RC6 modes available in Intel GPU, which differentiate
46
 * among each other with the latency required to enter and leave RC6 and
47
 * voltage consumed by the GPU in different states.
48
 *
49
 * The combination of the following flags define which states GPU is allowed
50
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
51
 * RC6pp is deepest RC6. Their support by hardware varies according to the
52
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
53
 * which brings the most power savings; deeper states save more power, but
54
 * require higher latency to switch to and wake up.
55
 */
56
#define INTEL_RC6_ENABLE			(1<<0)
57
#define INTEL_RC6p_ENABLE			(1<<1)
58
#define INTEL_RC6pp_ENABLE			(1<<2)
59
 
6084 serge 60
static void bxt_init_clock_gating(struct drm_device *dev)
5354 serge 61
{
62
	struct drm_i915_private *dev_priv = dev->dev_private;
63
 
6084 serge 64
	/* WaDisableSDEUnitClockGating:bxt */
5354 serge 65
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
66
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
67
 
68
	/*
6084 serge 69
	 * FIXME:
70
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
5354 serge 71
	 */
6084 serge 72
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
73
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
5354 serge 74
}
75
 
3031 serge 76
static void i915_pineview_get_mem_freq(struct drm_device *dev)
77
{
5060 serge 78
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 79
	u32 tmp;
80
 
81
	tmp = I915_READ(CLKCFG);
82
 
83
	switch (tmp & CLKCFG_FSB_MASK) {
84
	case CLKCFG_FSB_533:
85
		dev_priv->fsb_freq = 533; /* 133*4 */
86
		break;
87
	case CLKCFG_FSB_800:
88
		dev_priv->fsb_freq = 800; /* 200*4 */
89
		break;
90
	case CLKCFG_FSB_667:
91
		dev_priv->fsb_freq =  667; /* 167*4 */
92
		break;
93
	case CLKCFG_FSB_400:
94
		dev_priv->fsb_freq = 400; /* 100*4 */
95
		break;
96
	}
97
 
98
	switch (tmp & CLKCFG_MEM_MASK) {
99
	case CLKCFG_MEM_533:
100
		dev_priv->mem_freq = 533;
101
		break;
102
	case CLKCFG_MEM_667:
103
		dev_priv->mem_freq = 667;
104
		break;
105
	case CLKCFG_MEM_800:
106
		dev_priv->mem_freq = 800;
107
		break;
108
	}
109
 
110
	/* detect pineview DDR3 setting */
111
	tmp = I915_READ(CSHRDDR3CTL);
112
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
113
}
114
 
115
static void i915_ironlake_get_mem_freq(struct drm_device *dev)
116
{
5060 serge 117
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 118
	u16 ddrpll, csipll;
119
 
120
	ddrpll = I915_READ16(DDRMPLL1);
121
	csipll = I915_READ16(CSIPLL0);
122
 
123
	switch (ddrpll & 0xff) {
124
	case 0xc:
125
		dev_priv->mem_freq = 800;
126
		break;
127
	case 0x10:
128
		dev_priv->mem_freq = 1066;
129
		break;
130
	case 0x14:
131
		dev_priv->mem_freq = 1333;
132
		break;
133
	case 0x18:
134
		dev_priv->mem_freq = 1600;
135
		break;
136
	default:
137
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
138
				 ddrpll & 0xff);
139
		dev_priv->mem_freq = 0;
140
		break;
141
	}
142
 
143
	dev_priv->ips.r_t = dev_priv->mem_freq;
144
 
145
	switch (csipll & 0x3ff) {
146
	case 0x00c:
147
		dev_priv->fsb_freq = 3200;
148
		break;
149
	case 0x00e:
150
		dev_priv->fsb_freq = 3733;
151
		break;
152
	case 0x010:
153
		dev_priv->fsb_freq = 4266;
154
		break;
155
	case 0x012:
156
		dev_priv->fsb_freq = 4800;
157
		break;
158
	case 0x014:
159
		dev_priv->fsb_freq = 5333;
160
		break;
161
	case 0x016:
162
		dev_priv->fsb_freq = 5866;
163
		break;
164
	case 0x018:
165
		dev_priv->fsb_freq = 6400;
166
		break;
167
	default:
168
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
169
				 csipll & 0x3ff);
170
		dev_priv->fsb_freq = 0;
171
		break;
172
	}
173
 
174
	if (dev_priv->fsb_freq == 3200) {
175
		dev_priv->ips.c_m = 0;
176
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
177
		dev_priv->ips.c_m = 1;
178
	} else {
179
		dev_priv->ips.c_m = 2;
180
	}
181
}
182
 
183
static const struct cxsr_latency cxsr_latency_table[] = {
184
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
185
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
186
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
187
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
188
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
189
 
190
	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
191
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
192
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
193
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
194
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
195
 
196
	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
197
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
198
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
199
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
200
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
201
 
202
	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
203
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
204
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
205
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
206
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
207
 
208
	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
209
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
210
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
211
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
212
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
213
 
214
	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
215
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
216
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
217
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
218
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
219
};
220
 
221
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
222
							 int is_ddr3,
223
							 int fsb,
224
							 int mem)
225
{
226
	const struct cxsr_latency *latency;
227
	int i;
228
 
229
	if (fsb == 0 || mem == 0)
230
		return NULL;
231
 
232
	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
233
		latency = &cxsr_latency_table[i];
234
		if (is_desktop == latency->is_desktop &&
235
		    is_ddr3 == latency->is_ddr3 &&
236
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
237
			return latency;
238
	}
239
 
240
	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
241
 
242
	return NULL;
243
}
244
 
6084 serge 245
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
246
{
247
	u32 val;
248
 
249
	mutex_lock(&dev_priv->rps.hw_lock);
250
 
251
	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
252
	if (enable)
253
		val &= ~FORCE_DDR_HIGH_FREQ;
254
	else
255
		val |= FORCE_DDR_HIGH_FREQ;
256
	val &= ~FORCE_DDR_LOW_FREQ;
257
	val |= FORCE_DDR_FREQ_REQ_ACK;
258
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
259
 
260
	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
261
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
262
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
263
 
264
	mutex_unlock(&dev_priv->rps.hw_lock);
265
}
266
 
267
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
268
{
269
	u32 val;
270
 
271
	mutex_lock(&dev_priv->rps.hw_lock);
272
 
273
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
274
	if (enable)
275
		val |= DSP_MAXFIFO_PM5_ENABLE;
276
	else
277
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
278
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
279
 
280
	mutex_unlock(&dev_priv->rps.hw_lock);
281
}
282
 
283
#define FW_WM(value, plane) \
284
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
285
 
5060 serge 286
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
3031 serge 287
{
5060 serge 288
	struct drm_device *dev = dev_priv->dev;
289
	u32 val;
3031 serge 290
 
5060 serge 291
	if (IS_VALLEYVIEW(dev)) {
292
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
6084 serge 293
		POSTING_READ(FW_BLC_SELF_VLV);
294
		dev_priv->wm.vlv.cxsr = enable;
5060 serge 295
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
296
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
6084 serge 297
		POSTING_READ(FW_BLC_SELF);
5060 serge 298
	} else if (IS_PINEVIEW(dev)) {
299
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
300
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
301
		I915_WRITE(DSPFW3, val);
6084 serge 302
		POSTING_READ(DSPFW3);
5060 serge 303
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
304
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
305
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
306
		I915_WRITE(FW_BLC_SELF, val);
6084 serge 307
		POSTING_READ(FW_BLC_SELF);
5060 serge 308
	} else if (IS_I915GM(dev)) {
309
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
310
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
311
		I915_WRITE(INSTPM, val);
6084 serge 312
		POSTING_READ(INSTPM);
5060 serge 313
	} else {
314
		return;
315
	}
316
 
317
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
318
		      enable ? "enabled" : "disabled");
3031 serge 319
}
320
 
6084 serge 321
 
3031 serge 322
/*
323
 * Latency for FIFO fetches is dependent on several factors:
324
 *   - memory configuration (speed, channels)
325
 *   - chipset
326
 *   - current MCH state
327
 * It can be fairly high in some situations, so here we assume a fairly
328
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
329
 * set this value too high, the FIFO will fetch frequently to stay full)
330
 * and power consumption (set it too low to save power and we might see
331
 * FIFO underruns and display "flicker").
332
 *
333
 * A value of 5us seems to be a good balance; safe for very low end
334
 * platforms but not overly aggressive on lower latency configs.
335
 */
5354 serge 336
static const int pessimal_latency_ns = 5000;
3031 serge 337
 
6084 serge 338
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
339
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
340
 
341
static int vlv_get_fifo_size(struct drm_device *dev,
342
			      enum pipe pipe, int plane)
343
{
344
	struct drm_i915_private *dev_priv = dev->dev_private;
345
	int sprite0_start, sprite1_start, size;
346
 
347
	switch (pipe) {
348
		uint32_t dsparb, dsparb2, dsparb3;
349
	case PIPE_A:
350
		dsparb = I915_READ(DSPARB);
351
		dsparb2 = I915_READ(DSPARB2);
352
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
353
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
354
		break;
355
	case PIPE_B:
356
		dsparb = I915_READ(DSPARB);
357
		dsparb2 = I915_READ(DSPARB2);
358
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
359
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
360
		break;
361
	case PIPE_C:
362
		dsparb2 = I915_READ(DSPARB2);
363
		dsparb3 = I915_READ(DSPARB3);
364
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
365
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
366
		break;
367
	default:
368
		return 0;
369
	}
370
 
371
	switch (plane) {
372
	case 0:
373
		size = sprite0_start;
374
		break;
375
	case 1:
376
		size = sprite1_start - sprite0_start;
377
		break;
378
	case 2:
379
		size = 512 - 1 - sprite1_start;
380
		break;
381
	default:
382
		return 0;
383
	}
384
 
385
	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
386
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
387
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
388
		      size);
389
 
390
	return size;
391
}
392
 
3031 serge 393
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
394
{
395
	struct drm_i915_private *dev_priv = dev->dev_private;
396
	uint32_t dsparb = I915_READ(DSPARB);
397
	int size;
398
 
399
	size = dsparb & 0x7f;
400
	if (plane)
401
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
402
 
403
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
404
		      plane ? "B" : "A", size);
405
 
406
	return size;
407
}
408
 
4560 Serge 409
static int i830_get_fifo_size(struct drm_device *dev, int plane)
3031 serge 410
{
411
	struct drm_i915_private *dev_priv = dev->dev_private;
412
	uint32_t dsparb = I915_READ(DSPARB);
413
	int size;
414
 
415
	size = dsparb & 0x1ff;
416
	if (plane)
417
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
418
	size >>= 1; /* Convert to cachelines */
419
 
420
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
421
		      plane ? "B" : "A", size);
422
 
423
	return size;
424
}
425
 
426
static int i845_get_fifo_size(struct drm_device *dev, int plane)
427
{
428
	struct drm_i915_private *dev_priv = dev->dev_private;
429
	uint32_t dsparb = I915_READ(DSPARB);
430
	int size;
431
 
432
	size = dsparb & 0x7f;
433
	size >>= 2; /* Convert to cachelines */
434
 
435
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
436
		      plane ? "B" : "A",
437
		      size);
438
 
439
	return size;
440
}
441
 
442
/* Pineview has different values for various configs */
443
static const struct intel_watermark_params pineview_display_wm = {
5060 serge 444
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
445
	.max_wm = PINEVIEW_MAX_WM,
446
	.default_wm = PINEVIEW_DFT_WM,
447
	.guard_size = PINEVIEW_GUARD_WM,
448
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
3031 serge 449
};
450
static const struct intel_watermark_params pineview_display_hplloff_wm = {
5060 serge 451
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
452
	.max_wm = PINEVIEW_MAX_WM,
453
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
454
	.guard_size = PINEVIEW_GUARD_WM,
455
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
3031 serge 456
};
457
static const struct intel_watermark_params pineview_cursor_wm = {
5060 serge 458
	.fifo_size = PINEVIEW_CURSOR_FIFO,
459
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
460
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
461
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
462
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
3031 serge 463
};
464
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
5060 serge 465
	.fifo_size = PINEVIEW_CURSOR_FIFO,
466
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
467
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
468
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
469
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
3031 serge 470
};
471
static const struct intel_watermark_params g4x_wm_info = {
5060 serge 472
	.fifo_size = G4X_FIFO_SIZE,
473
	.max_wm = G4X_MAX_WM,
474
	.default_wm = G4X_MAX_WM,
475
	.guard_size = 2,
476
	.cacheline_size = G4X_FIFO_LINE_SIZE,
3031 serge 477
};
478
static const struct intel_watermark_params g4x_cursor_wm_info = {
5060 serge 479
	.fifo_size = I965_CURSOR_FIFO,
480
	.max_wm = I965_CURSOR_MAX_WM,
481
	.default_wm = I965_CURSOR_DFT_WM,
482
	.guard_size = 2,
483
	.cacheline_size = G4X_FIFO_LINE_SIZE,
3031 serge 484
};
485
static const struct intel_watermark_params valleyview_wm_info = {
5060 serge 486
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
487
	.max_wm = VALLEYVIEW_MAX_WM,
488
	.default_wm = VALLEYVIEW_MAX_WM,
489
	.guard_size = 2,
490
	.cacheline_size = G4X_FIFO_LINE_SIZE,
3031 serge 491
};
492
static const struct intel_watermark_params valleyview_cursor_wm_info = {
5060 serge 493
	.fifo_size = I965_CURSOR_FIFO,
494
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
495
	.default_wm = I965_CURSOR_DFT_WM,
496
	.guard_size = 2,
497
	.cacheline_size = G4X_FIFO_LINE_SIZE,
3031 serge 498
};
499
static const struct intel_watermark_params i965_cursor_wm_info = {
5060 serge 500
	.fifo_size = I965_CURSOR_FIFO,
501
	.max_wm = I965_CURSOR_MAX_WM,
502
	.default_wm = I965_CURSOR_DFT_WM,
503
	.guard_size = 2,
504
	.cacheline_size = I915_FIFO_LINE_SIZE,
3031 serge 505
};
506
static const struct intel_watermark_params i945_wm_info = {
5060 serge 507
	.fifo_size = I945_FIFO_SIZE,
508
	.max_wm = I915_MAX_WM,
509
	.default_wm = 1,
510
	.guard_size = 2,
511
	.cacheline_size = I915_FIFO_LINE_SIZE,
3031 serge 512
};
513
static const struct intel_watermark_params i915_wm_info = {
5060 serge 514
	.fifo_size = I915_FIFO_SIZE,
515
	.max_wm = I915_MAX_WM,
516
	.default_wm = 1,
517
	.guard_size = 2,
518
	.cacheline_size = I915_FIFO_LINE_SIZE,
3031 serge 519
};
5354 serge 520
static const struct intel_watermark_params i830_a_wm_info = {
5060 serge 521
	.fifo_size = I855GM_FIFO_SIZE,
522
	.max_wm = I915_MAX_WM,
523
	.default_wm = 1,
524
	.guard_size = 2,
525
	.cacheline_size = I830_FIFO_LINE_SIZE,
3031 serge 526
};
5354 serge 527
static const struct intel_watermark_params i830_bc_wm_info = {
528
	.fifo_size = I855GM_FIFO_SIZE,
529
	.max_wm = I915_MAX_WM/2,
530
	.default_wm = 1,
531
	.guard_size = 2,
532
	.cacheline_size = I830_FIFO_LINE_SIZE,
533
};
4560 Serge 534
static const struct intel_watermark_params i845_wm_info = {
5060 serge 535
	.fifo_size = I830_FIFO_SIZE,
536
	.max_wm = I915_MAX_WM,
537
	.default_wm = 1,
538
	.guard_size = 2,
539
	.cacheline_size = I830_FIFO_LINE_SIZE,
3031 serge 540
};
541
 
542
/**
543
 * intel_calculate_wm - calculate watermark level
544
 * @clock_in_khz: pixel clock
545
 * @wm: chip FIFO params
546
 * @pixel_size: display pixel size
547
 * @latency_ns: memory latency for the platform
548
 *
549
 * Calculate the watermark level (the level at which the display plane will
550
 * start fetching from memory again).  Each chip has a different display
551
 * FIFO size and allocation, so the caller needs to figure that out and pass
552
 * in the correct intel_watermark_params structure.
553
 *
554
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
555
 * on the pixel size.  When it reaches the watermark level, it'll start
556
 * fetching FIFO line sized based chunks from memory until the FIFO fills
557
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
558
 * will occur, and a display engine hang could result.
559
 */
560
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
561
					const struct intel_watermark_params *wm,
562
					int fifo_size,
563
					int pixel_size,
564
					unsigned long latency_ns)
565
{
566
	long entries_required, wm_size;
567
 
568
	/*
569
	 * Note: we need to make sure we don't overflow for various clock &
570
	 * latency values.
571
	 * clocks go from a few thousand to several hundred thousand.
572
	 * latency is usually a few thousand
573
	 */
574
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
575
		1000;
576
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
577
 
578
	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
579
 
580
	wm_size = fifo_size - (entries_required + wm->guard_size);
581
 
582
	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
583
 
584
	/* Don't promote wm_size to unsigned... */
585
	if (wm_size > (long)wm->max_wm)
586
		wm_size = wm->max_wm;
587
	if (wm_size <= 0)
588
		wm_size = wm->default_wm;
5354 serge 589
 
590
	/*
591
	 * Bspec seems to indicate that the value shouldn't be lower than
592
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
593
	 * Lets go for 8 which is the burst size since certain platforms
594
	 * already use a hardcoded 8 (which is what the spec says should be
595
	 * done).
596
	 */
597
	if (wm_size <= 8)
598
		wm_size = 8;
599
 
3031 serge 600
	return wm_size;
601
}
602
 
603
static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
604
{
605
	struct drm_crtc *crtc, *enabled = NULL;
606
 
5060 serge 607
	for_each_crtc(dev, crtc) {
3243 Serge 608
		if (intel_crtc_active(crtc)) {
3031 serge 609
			if (enabled)
610
				return NULL;
611
			enabled = crtc;
612
		}
613
	}
614
 
615
	return enabled;
616
}
617
 
4560 Serge 618
static void pineview_update_wm(struct drm_crtc *unused_crtc)
3031 serge 619
{
4560 Serge 620
	struct drm_device *dev = unused_crtc->dev;
3031 serge 621
	struct drm_i915_private *dev_priv = dev->dev_private;
622
	struct drm_crtc *crtc;
623
	const struct cxsr_latency *latency;
624
	u32 reg;
625
	unsigned long wm;
626
 
627
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
628
					 dev_priv->fsb_freq, dev_priv->mem_freq);
629
	if (!latency) {
630
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
5060 serge 631
		intel_set_memory_cxsr(dev_priv, false);
3031 serge 632
		return;
633
	}
634
 
635
	crtc = single_enabled_crtc(dev);
636
	if (crtc) {
6084 serge 637
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
638
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
639
		int clock = adjusted_mode->crtc_clock;
3031 serge 640
 
641
		/* Display SR */
642
		wm = intel_calculate_wm(clock, &pineview_display_wm,
643
					pineview_display_wm.fifo_size,
644
					pixel_size, latency->display_sr);
645
		reg = I915_READ(DSPFW1);
646
		reg &= ~DSPFW_SR_MASK;
6084 serge 647
		reg |= FW_WM(wm, SR);
3031 serge 648
		I915_WRITE(DSPFW1, reg);
649
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
650
 
651
		/* cursor SR */
652
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
653
					pineview_display_wm.fifo_size,
654
					pixel_size, latency->cursor_sr);
655
		reg = I915_READ(DSPFW3);
656
		reg &= ~DSPFW_CURSOR_SR_MASK;
6084 serge 657
		reg |= FW_WM(wm, CURSOR_SR);
3031 serge 658
		I915_WRITE(DSPFW3, reg);
659
 
660
		/* Display HPLL off SR */
661
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
662
					pineview_display_hplloff_wm.fifo_size,
663
					pixel_size, latency->display_hpll_disable);
664
		reg = I915_READ(DSPFW3);
665
		reg &= ~DSPFW_HPLL_SR_MASK;
6084 serge 666
		reg |= FW_WM(wm, HPLL_SR);
3031 serge 667
		I915_WRITE(DSPFW3, reg);
668
 
669
		/* cursor HPLL off SR */
670
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
671
					pineview_display_hplloff_wm.fifo_size,
672
					pixel_size, latency->cursor_hpll_disable);
673
		reg = I915_READ(DSPFW3);
674
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
6084 serge 675
		reg |= FW_WM(wm, HPLL_CURSOR);
3031 serge 676
		I915_WRITE(DSPFW3, reg);
677
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
678
 
5060 serge 679
		intel_set_memory_cxsr(dev_priv, true);
3031 serge 680
	} else {
5060 serge 681
		intel_set_memory_cxsr(dev_priv, false);
3031 serge 682
	}
683
}
684
 
685
static bool g4x_compute_wm0(struct drm_device *dev,
686
			    int plane,
687
			    const struct intel_watermark_params *display,
688
			    int display_latency_ns,
689
			    const struct intel_watermark_params *cursor,
690
			    int cursor_latency_ns,
691
			    int *plane_wm,
692
			    int *cursor_wm)
693
{
694
	struct drm_crtc *crtc;
4560 Serge 695
	const struct drm_display_mode *adjusted_mode;
3031 serge 696
	int htotal, hdisplay, clock, pixel_size;
697
	int line_time_us, line_count;
698
	int entries, tlb_miss;
699
 
700
	crtc = intel_get_crtc_for_plane(dev, plane);
3243 Serge 701
	if (!intel_crtc_active(crtc)) {
3031 serge 702
		*cursor_wm = cursor->guard_size;
703
		*plane_wm = display->guard_size;
6084 serge 704
		return false;
3031 serge 705
	}
706
 
6084 serge 707
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 708
	clock = adjusted_mode->crtc_clock;
709
	htotal = adjusted_mode->crtc_htotal;
6084 serge 710
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
711
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
3031 serge 712
 
713
	/* Use the small buffer method to calculate plane watermark */
714
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
715
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
716
	if (tlb_miss > 0)
717
		entries += tlb_miss;
718
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
719
	*plane_wm = entries + display->guard_size;
720
	if (*plane_wm > (int)display->max_wm)
721
		*plane_wm = display->max_wm;
722
 
723
	/* Use the large buffer method to calculate cursor watermark */
5060 serge 724
	line_time_us = max(htotal * 1000 / clock, 1);
3031 serge 725
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
6084 serge 726
	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
3031 serge 727
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
728
	if (tlb_miss > 0)
729
		entries += tlb_miss;
730
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
731
	*cursor_wm = entries + cursor->guard_size;
732
	if (*cursor_wm > (int)cursor->max_wm)
733
		*cursor_wm = (int)cursor->max_wm;
734
 
735
	return true;
736
}
737
 
738
/*
739
 * Check the wm result.
740
 *
741
 * If any calculated watermark values is larger than the maximum value that
742
 * can be programmed into the associated watermark register, that watermark
743
 * must be disabled.
744
 */
745
static bool g4x_check_srwm(struct drm_device *dev,
746
			   int display_wm, int cursor_wm,
747
			   const struct intel_watermark_params *display,
748
			   const struct intel_watermark_params *cursor)
749
{
750
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
751
		      display_wm, cursor_wm);
752
 
753
	if (display_wm > display->max_wm) {
754
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
755
			      display_wm, display->max_wm);
756
		return false;
757
	}
758
 
759
	if (cursor_wm > cursor->max_wm) {
760
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
761
			      cursor_wm, cursor->max_wm);
762
		return false;
763
	}
764
 
765
	if (!(display_wm || cursor_wm)) {
766
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
767
		return false;
768
	}
769
 
770
	return true;
771
}
772
 
773
static bool g4x_compute_srwm(struct drm_device *dev,
774
			     int plane,
775
			     int latency_ns,
776
			     const struct intel_watermark_params *display,
777
			     const struct intel_watermark_params *cursor,
778
			     int *display_wm, int *cursor_wm)
779
{
780
	struct drm_crtc *crtc;
4560 Serge 781
	const struct drm_display_mode *adjusted_mode;
3031 serge 782
	int hdisplay, htotal, pixel_size, clock;
783
	unsigned long line_time_us;
784
	int line_count, line_size;
785
	int small, large;
786
	int entries;
787
 
788
	if (!latency_ns) {
789
		*display_wm = *cursor_wm = 0;
790
		return false;
791
	}
792
 
793
	crtc = intel_get_crtc_for_plane(dev, plane);
6084 serge 794
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 795
	clock = adjusted_mode->crtc_clock;
796
	htotal = adjusted_mode->crtc_htotal;
6084 serge 797
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
798
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
3031 serge 799
 
5060 serge 800
	line_time_us = max(htotal * 1000 / clock, 1);
3031 serge 801
	line_count = (latency_ns / line_time_us + 1000) / 1000;
802
	line_size = hdisplay * pixel_size;
803
 
804
	/* Use the minimum of the small and large buffer method for primary */
805
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
806
	large = line_count * line_size;
807
 
808
	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
809
	*display_wm = entries + display->guard_size;
810
 
811
	/* calculate the self-refresh watermark for display cursor */
6084 serge 812
	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
3031 serge 813
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
814
	*cursor_wm = entries + cursor->guard_size;
815
 
816
	return g4x_check_srwm(dev,
817
			      *display_wm, *cursor_wm,
818
			      display, cursor);
819
}
820
 
6084 serge 821
#define FW_WM_VLV(value, plane) \
822
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
823
 
824
static void vlv_write_wm_values(struct intel_crtc *crtc,
825
				const struct vlv_wm_values *wm)
3031 serge 826
{
6084 serge 827
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
828
	enum pipe pipe = crtc->pipe;
3031 serge 829
 
6084 serge 830
	I915_WRITE(VLV_DDL(pipe),
831
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
832
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
833
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
834
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
3031 serge 835
 
6084 serge 836
	I915_WRITE(DSPFW1,
837
		   FW_WM(wm->sr.plane, SR) |
838
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
839
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
840
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
841
	I915_WRITE(DSPFW2,
842
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
843
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
844
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
845
	I915_WRITE(DSPFW3,
846
		   FW_WM(wm->sr.cursor, CURSOR_SR));
3031 serge 847
 
6084 serge 848
	if (IS_CHERRYVIEW(dev_priv)) {
849
		I915_WRITE(DSPFW7_CHV,
850
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
851
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
852
		I915_WRITE(DSPFW8_CHV,
853
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
854
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
855
		I915_WRITE(DSPFW9_CHV,
856
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
857
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
858
		I915_WRITE(DSPHOWM,
859
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
860
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
861
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
862
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
863
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
864
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
865
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
866
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
867
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
868
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
869
	} else {
870
		I915_WRITE(DSPFW7,
871
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
872
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
873
		I915_WRITE(DSPHOWM,
874
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
875
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
876
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
877
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
878
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
879
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
880
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
881
	}
3031 serge 882
 
6084 serge 883
	/* zero (unused) WM1 watermarks */
884
	I915_WRITE(DSPFW4, 0);
885
	I915_WRITE(DSPFW5, 0);
886
	I915_WRITE(DSPFW6, 0);
887
	I915_WRITE(DSPHOWM1, 0);
3031 serge 888
 
6084 serge 889
	POSTING_READ(DSPFW1);
3031 serge 890
}
891
 
6084 serge 892
#undef FW_WM_VLV
3031 serge 893
 
6084 serge 894
enum vlv_wm_level {
895
	VLV_WM_LEVEL_PM2,
896
	VLV_WM_LEVEL_PM5,
897
	VLV_WM_LEVEL_DDR_DVFS,
898
};
899
 
900
/* latency must be in 0.1us units. */
901
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
902
				   unsigned int pipe_htotal,
903
				   unsigned int horiz_pixels,
904
				   unsigned int bytes_per_pixel,
905
				   unsigned int latency)
3031 serge 906
{
6084 serge 907
	unsigned int ret;
908
 
909
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
910
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
911
	ret = DIV_ROUND_UP(ret, 64);
912
 
913
	return ret;
914
}
915
 
916
static void vlv_setup_wm_latency(struct drm_device *dev)
917
{
3031 serge 918
	struct drm_i915_private *dev_priv = dev->dev_private;
919
 
6084 serge 920
	/* all latencies in usec */
921
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
3031 serge 922
 
6084 serge 923
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
924
 
925
	if (IS_CHERRYVIEW(dev_priv)) {
926
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
927
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
928
 
929
		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
3031 serge 930
	}
6084 serge 931
}
3031 serge 932
 
6084 serge 933
static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
934
				     struct intel_crtc *crtc,
935
				     const struct intel_plane_state *state,
936
				     int level)
937
{
938
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
939
	int clock, htotal, pixel_size, width, wm;
940
 
941
	if (dev_priv->wm.pri_latency[level] == 0)
942
		return USHRT_MAX;
943
 
944
	if (!state->visible)
945
		return 0;
946
 
947
	pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
948
	clock = crtc->config->base.adjusted_mode.crtc_clock;
949
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
950
	width = crtc->config->pipe_src_w;
951
	if (WARN_ON(htotal == 0))
952
		htotal = 1;
953
 
954
	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
955
		/*
956
		 * FIXME the formula gives values that are
957
		 * too big for the cursor FIFO, and hence we
958
		 * would never be able to use cursors. For
959
		 * now just hardcode the watermark.
960
		 */
961
		wm = 63;
962
	} else {
963
		wm = vlv_wm_method2(clock, htotal, width, pixel_size,
964
				    dev_priv->wm.pri_latency[level] * 10);
5354 serge 965
	}
3031 serge 966
 
6084 serge 967
	return min_t(int, wm, USHRT_MAX);
968
}
5354 serge 969
 
6084 serge 970
static void vlv_compute_fifo(struct intel_crtc *crtc)
971
{
972
	struct drm_device *dev = crtc->base.dev;
973
	struct vlv_wm_state *wm_state = &crtc->wm_state;
974
	struct intel_plane *plane;
975
	unsigned int total_rate = 0;
976
	const int fifo_size = 512 - 1;
977
	int fifo_extra, fifo_left = fifo_size;
978
 
979
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
980
		struct intel_plane_state *state =
981
			to_intel_plane_state(plane->base.state);
982
 
983
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
984
			continue;
985
 
986
		if (state->visible) {
987
			wm_state->num_active_planes++;
988
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
989
		}
3031 serge 990
	}
5354 serge 991
 
6084 serge 992
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
993
		struct intel_plane_state *state =
994
			to_intel_plane_state(plane->base.state);
995
		unsigned int rate;
996
 
997
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
998
			plane->wm.fifo_size = 63;
999
			continue;
1000
		}
1001
 
1002
		if (!state->visible) {
1003
			plane->wm.fifo_size = 0;
1004
			continue;
1005
		}
1006
 
1007
		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1008
		plane->wm.fifo_size = fifo_size * rate / total_rate;
1009
		fifo_left -= plane->wm.fifo_size;
1010
	}
1011
 
1012
	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1013
 
1014
	/* spread the remainder evenly */
1015
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1016
		int plane_extra;
1017
 
1018
		if (fifo_left == 0)
1019
			break;
1020
 
1021
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1022
			continue;
1023
 
1024
		/* give it all to the first plane if none are active */
1025
		if (plane->wm.fifo_size == 0 &&
1026
		    wm_state->num_active_planes)
1027
			continue;
1028
 
1029
		plane_extra = min(fifo_extra, fifo_left);
1030
		plane->wm.fifo_size += plane_extra;
1031
		fifo_left -= plane_extra;
1032
	}
1033
 
1034
	WARN_ON(fifo_left != 0);
3031 serge 1035
}
1036
 
6084 serge 1037
static void vlv_invert_wms(struct intel_crtc *crtc)
1038
{
1039
	struct vlv_wm_state *wm_state = &crtc->wm_state;
1040
	int level;
3031 serge 1041
 
6084 serge 1042
	for (level = 0; level < wm_state->num_levels; level++) {
1043
		struct drm_device *dev = crtc->base.dev;
1044
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1045
		struct intel_plane *plane;
1046
 
1047
		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1048
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1049
 
1050
		for_each_intel_plane_on_crtc(dev, crtc, plane) {
1051
			switch (plane->base.type) {
1052
				int sprite;
1053
			case DRM_PLANE_TYPE_CURSOR:
1054
				wm_state->wm[level].cursor = plane->wm.fifo_size -
1055
					wm_state->wm[level].cursor;
1056
				break;
1057
			case DRM_PLANE_TYPE_PRIMARY:
1058
				wm_state->wm[level].primary = plane->wm.fifo_size -
1059
					wm_state->wm[level].primary;
1060
				break;
1061
			case DRM_PLANE_TYPE_OVERLAY:
1062
				sprite = plane->plane;
1063
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1064
					wm_state->wm[level].sprite[sprite];
1065
				break;
1066
			}
1067
		}
1068
	}
1069
}
1070
 
1071
static void vlv_compute_wm(struct intel_crtc *crtc)
3031 serge 1072
{
6084 serge 1073
	struct drm_device *dev = crtc->base.dev;
1074
	struct vlv_wm_state *wm_state = &crtc->wm_state;
1075
	struct intel_plane *plane;
1076
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1077
	int level;
3031 serge 1078
 
6084 serge 1079
	memset(wm_state, 0, sizeof(*wm_state));
3031 serge 1080
 
6084 serge 1081
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1082
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
3031 serge 1083
 
6084 serge 1084
	wm_state->num_active_planes = 0;
3031 serge 1085
 
6084 serge 1086
	vlv_compute_fifo(crtc);
1087
 
1088
	if (wm_state->num_active_planes != 1)
1089
		wm_state->cxsr = false;
1090
 
1091
	if (wm_state->cxsr) {
1092
		for (level = 0; level < wm_state->num_levels; level++) {
1093
			wm_state->sr[level].plane = sr_fifo_size;
1094
			wm_state->sr[level].cursor = 63;
1095
		}
3243 Serge 1096
	}
3031 serge 1097
 
6084 serge 1098
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1099
		struct intel_plane_state *state =
1100
			to_intel_plane_state(plane->base.state);
3031 serge 1101
 
6084 serge 1102
		if (!state->visible)
1103
			continue;
5060 serge 1104
 
6084 serge 1105
		/* normal watermarks */
1106
		for (level = 0; level < wm_state->num_levels; level++) {
1107
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
1108
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1109
 
1110
			/* hack */
1111
			if (WARN_ON(level == 0 && wm > max_wm))
1112
				wm = max_wm;
1113
 
1114
			if (wm > plane->wm.fifo_size)
1115
				break;
1116
 
1117
			switch (plane->base.type) {
1118
				int sprite;
1119
			case DRM_PLANE_TYPE_CURSOR:
1120
				wm_state->wm[level].cursor = wm;
1121
				break;
1122
			case DRM_PLANE_TYPE_PRIMARY:
1123
				wm_state->wm[level].primary = wm;
1124
				break;
1125
			case DRM_PLANE_TYPE_OVERLAY:
1126
				sprite = plane->plane;
1127
				wm_state->wm[level].sprite[sprite] = wm;
1128
				break;
1129
			}
1130
		}
1131
 
1132
		wm_state->num_levels = level;
1133
 
1134
		if (!wm_state->cxsr)
1135
			continue;
1136
 
1137
		/* maxfifo watermarks */
1138
		switch (plane->base.type) {
1139
			int sprite, level;
1140
		case DRM_PLANE_TYPE_CURSOR:
1141
			for (level = 0; level < wm_state->num_levels; level++)
1142
				wm_state->sr[level].cursor =
1143
					wm_state->wm[level].cursor;
1144
			break;
1145
		case DRM_PLANE_TYPE_PRIMARY:
1146
			for (level = 0; level < wm_state->num_levels; level++)
1147
				wm_state->sr[level].plane =
1148
					min(wm_state->sr[level].plane,
1149
					    wm_state->wm[level].primary);
1150
			break;
1151
		case DRM_PLANE_TYPE_OVERLAY:
1152
			sprite = plane->plane;
1153
			for (level = 0; level < wm_state->num_levels; level++)
1154
				wm_state->sr[level].plane =
1155
					min(wm_state->sr[level].plane,
1156
					    wm_state->wm[level].sprite[sprite]);
1157
			break;
1158
		}
1159
	}
1160
 
1161
	/* clear any (partially) filled invalid levels */
1162
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1163
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1164
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1165
	}
1166
 
1167
	vlv_invert_wms(crtc);
3031 serge 1168
}
1169
 
6084 serge 1170
#define VLV_FIFO(plane, value) \
1171
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1172
 
1173
static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
5354 serge 1174
{
6084 serge 1175
	struct drm_device *dev = crtc->base.dev;
1176
	struct drm_i915_private *dev_priv = to_i915(dev);
1177
	struct intel_plane *plane;
1178
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
5354 serge 1179
 
6084 serge 1180
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1181
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1182
			WARN_ON(plane->wm.fifo_size != 63);
1183
			continue;
1184
		}
5354 serge 1185
 
6084 serge 1186
		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1187
			sprite0_start = plane->wm.fifo_size;
1188
		else if (plane->plane == 0)
1189
			sprite1_start = sprite0_start + plane->wm.fifo_size;
1190
		else
1191
			fifo_size = sprite1_start + plane->wm.fifo_size;
1192
	}
5354 serge 1193
 
6084 serge 1194
	WARN_ON(fifo_size != 512 - 1);
5354 serge 1195
 
6084 serge 1196
	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1197
		      pipe_name(crtc->pipe), sprite0_start,
1198
		      sprite1_start, fifo_size);
5354 serge 1199
 
6084 serge 1200
	switch (crtc->pipe) {
1201
		uint32_t dsparb, dsparb2, dsparb3;
1202
	case PIPE_A:
1203
		dsparb = I915_READ(DSPARB);
1204
		dsparb2 = I915_READ(DSPARB2);
1205
 
1206
		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1207
			    VLV_FIFO(SPRITEB, 0xff));
1208
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1209
			   VLV_FIFO(SPRITEB, sprite1_start));
1210
 
1211
		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1212
			     VLV_FIFO(SPRITEB_HI, 0x1));
1213
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1214
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1215
 
1216
		I915_WRITE(DSPARB, dsparb);
1217
		I915_WRITE(DSPARB2, dsparb2);
1218
		break;
1219
	case PIPE_B:
1220
		dsparb = I915_READ(DSPARB);
1221
		dsparb2 = I915_READ(DSPARB2);
1222
 
1223
		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1224
			    VLV_FIFO(SPRITED, 0xff));
1225
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1226
			   VLV_FIFO(SPRITED, sprite1_start));
1227
 
1228
		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1229
			     VLV_FIFO(SPRITED_HI, 0xff));
1230
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1231
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1232
 
1233
		I915_WRITE(DSPARB, dsparb);
1234
		I915_WRITE(DSPARB2, dsparb2);
1235
		break;
1236
	case PIPE_C:
1237
		dsparb3 = I915_READ(DSPARB3);
1238
		dsparb2 = I915_READ(DSPARB2);
1239
 
1240
		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1241
			     VLV_FIFO(SPRITEF, 0xff));
1242
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1243
			    VLV_FIFO(SPRITEF, sprite1_start));
1244
 
1245
		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1246
			     VLV_FIFO(SPRITEF_HI, 0xff));
1247
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1248
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1249
 
1250
		I915_WRITE(DSPARB3, dsparb3);
1251
		I915_WRITE(DSPARB2, dsparb2);
1252
		break;
1253
	default:
1254
		break;
5354 serge 1255
	}
6084 serge 1256
}
5354 serge 1257
 
6084 serge 1258
#undef VLV_FIFO
5354 serge 1259
 
6084 serge 1260
static void vlv_merge_wm(struct drm_device *dev,
1261
			 struct vlv_wm_values *wm)
1262
{
1263
	struct intel_crtc *crtc;
1264
	int num_active_crtcs = 0;
5354 serge 1265
 
6084 serge 1266
	wm->level = to_i915(dev)->wm.max_level;
1267
	wm->cxsr = true;
1268
 
1269
	for_each_intel_crtc(dev, crtc) {
1270
		const struct vlv_wm_state *wm_state = &crtc->wm_state;
1271
 
1272
		if (!crtc->active)
1273
			continue;
1274
 
1275
		if (!wm_state->cxsr)
1276
			wm->cxsr = false;
1277
 
1278
		num_active_crtcs++;
1279
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1280
	}
1281
 
1282
	if (num_active_crtcs != 1)
1283
		wm->cxsr = false;
1284
 
1285
	if (num_active_crtcs > 1)
1286
		wm->level = VLV_WM_LEVEL_PM2;
1287
 
1288
	for_each_intel_crtc(dev, crtc) {
1289
		struct vlv_wm_state *wm_state = &crtc->wm_state;
1290
		enum pipe pipe = crtc->pipe;
1291
 
1292
		if (!crtc->active)
1293
			continue;
1294
 
1295
		wm->pipe[pipe] = wm_state->wm[wm->level];
1296
		if (wm->cxsr)
1297
			wm->sr = wm_state->sr[wm->level];
1298
 
1299
		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1300
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1301
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1302
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1303
	}
5354 serge 1304
}
1305
 
6084 serge 1306
static void vlv_update_wm(struct drm_crtc *crtc)
5354 serge 1307
{
1308
	struct drm_device *dev = crtc->dev;
1309
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 1310
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1311
	enum pipe pipe = intel_crtc->pipe;
1312
	struct vlv_wm_values wm = {};
5354 serge 1313
 
6084 serge 1314
	vlv_compute_wm(intel_crtc);
1315
	vlv_merge_wm(dev, &wm);
5354 serge 1316
 
6084 serge 1317
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1318
		/* FIXME should be part of crtc atomic commit */
1319
		vlv_pipe_set_fifo_size(intel_crtc);
1320
		return;
5354 serge 1321
	}
1322
 
6084 serge 1323
	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1324
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1325
		chv_set_memory_dvfs(dev_priv, false);
1326
 
1327
	if (wm.level < VLV_WM_LEVEL_PM5 &&
1328
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1329
		chv_set_memory_pm5(dev_priv, false);
1330
 
1331
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1332
		intel_set_memory_cxsr(dev_priv, false);
1333
 
1334
	/* FIXME should be part of crtc atomic commit */
1335
	vlv_pipe_set_fifo_size(intel_crtc);
1336
 
1337
	vlv_write_wm_values(intel_crtc, &wm);
1338
 
1339
	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1340
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1341
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1342
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1343
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1344
 
1345
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1346
		intel_set_memory_cxsr(dev_priv, true);
1347
 
1348
	if (wm.level >= VLV_WM_LEVEL_PM5 &&
1349
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1350
		chv_set_memory_pm5(dev_priv, true);
1351
 
1352
	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1353
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1354
		chv_set_memory_dvfs(dev_priv, true);
1355
 
1356
	dev_priv->wm.vlv = wm;
5354 serge 1357
}
1358
 
6084 serge 1359
#define single_plane_enabled(mask) is_power_of_2(mask)
1360
 
4560 Serge 1361
static void g4x_update_wm(struct drm_crtc *crtc)
3031 serge 1362
{
4560 Serge 1363
	struct drm_device *dev = crtc->dev;
3031 serge 1364
	static const int sr_latency_ns = 12000;
1365
	struct drm_i915_private *dev_priv = dev->dev_private;
1366
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1367
	int plane_sr, cursor_sr;
1368
	unsigned int enabled = 0;
5060 serge 1369
	bool cxsr_enabled;
3031 serge 1370
 
3746 Serge 1371
	if (g4x_compute_wm0(dev, PIPE_A,
5354 serge 1372
			    &g4x_wm_info, pessimal_latency_ns,
1373
			    &g4x_cursor_wm_info, pessimal_latency_ns,
3031 serge 1374
			    &planea_wm, &cursora_wm))
3746 Serge 1375
		enabled |= 1 << PIPE_A;
3031 serge 1376
 
3746 Serge 1377
	if (g4x_compute_wm0(dev, PIPE_B,
5354 serge 1378
			    &g4x_wm_info, pessimal_latency_ns,
1379
			    &g4x_cursor_wm_info, pessimal_latency_ns,
3031 serge 1380
			    &planeb_wm, &cursorb_wm))
3746 Serge 1381
		enabled |= 1 << PIPE_B;
3031 serge 1382
 
1383
	if (single_plane_enabled(enabled) &&
1384
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1385
			     sr_latency_ns,
1386
			     &g4x_wm_info,
1387
			     &g4x_cursor_wm_info,
3243 Serge 1388
			     &plane_sr, &cursor_sr)) {
5060 serge 1389
		cxsr_enabled = true;
3243 Serge 1390
	} else {
5060 serge 1391
		cxsr_enabled = false;
1392
		intel_set_memory_cxsr(dev_priv, false);
3243 Serge 1393
		plane_sr = cursor_sr = 0;
1394
	}
3031 serge 1395
 
5354 serge 1396
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1397
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
3031 serge 1398
		      planea_wm, cursora_wm,
1399
		      planeb_wm, cursorb_wm,
1400
		      plane_sr, cursor_sr);
1401
 
1402
	I915_WRITE(DSPFW1,
6084 serge 1403
		   FW_WM(plane_sr, SR) |
1404
		   FW_WM(cursorb_wm, CURSORB) |
1405
		   FW_WM(planeb_wm, PLANEB) |
1406
		   FW_WM(planea_wm, PLANEA));
3031 serge 1407
	I915_WRITE(DSPFW2,
3243 Serge 1408
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
6084 serge 1409
		   FW_WM(cursora_wm, CURSORA));
3031 serge 1410
	/* HPLL off in SR has some issues on G4x... disable it */
1411
	I915_WRITE(DSPFW3,
3243 Serge 1412
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
6084 serge 1413
		   FW_WM(cursor_sr, CURSOR_SR));
5060 serge 1414
 
1415
	if (cxsr_enabled)
1416
		intel_set_memory_cxsr(dev_priv, true);
3031 serge 1417
}
1418
 
4560 Serge 1419
static void i965_update_wm(struct drm_crtc *unused_crtc)
3031 serge 1420
{
4560 Serge 1421
	struct drm_device *dev = unused_crtc->dev;
3031 serge 1422
	struct drm_i915_private *dev_priv = dev->dev_private;
1423
	struct drm_crtc *crtc;
1424
	int srwm = 1;
1425
	int cursor_sr = 16;
5060 serge 1426
	bool cxsr_enabled;
3031 serge 1427
 
1428
	/* Calc sr entries for one plane configs */
1429
	crtc = single_enabled_crtc(dev);
1430
	if (crtc) {
1431
		/* self-refresh has much higher latency */
1432
		static const int sr_latency_ns = 12000;
6084 serge 1433
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 1434
		int clock = adjusted_mode->crtc_clock;
1435
		int htotal = adjusted_mode->crtc_htotal;
6084 serge 1436
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1437
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
3031 serge 1438
		unsigned long line_time_us;
1439
		int entries;
1440
 
5060 serge 1441
		line_time_us = max(htotal * 1000 / clock, 1);
3031 serge 1442
 
1443
		/* Use ns/us then divide to preserve precision */
1444
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1445
			pixel_size * hdisplay;
1446
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1447
		srwm = I965_FIFO_SIZE - entries;
1448
		if (srwm < 0)
1449
			srwm = 1;
1450
		srwm &= 0x1ff;
1451
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1452
			      entries, srwm);
1453
 
1454
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
6084 serge 1455
			pixel_size * crtc->cursor->state->crtc_w;
3031 serge 1456
		entries = DIV_ROUND_UP(entries,
1457
					  i965_cursor_wm_info.cacheline_size);
1458
		cursor_sr = i965_cursor_wm_info.fifo_size -
1459
			(entries + i965_cursor_wm_info.guard_size);
1460
 
1461
		if (cursor_sr > i965_cursor_wm_info.max_wm)
1462
			cursor_sr = i965_cursor_wm_info.max_wm;
1463
 
1464
		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1465
			      "cursor %d\n", srwm, cursor_sr);
1466
 
5060 serge 1467
		cxsr_enabled = true;
3031 serge 1468
	} else {
5060 serge 1469
		cxsr_enabled = false;
3031 serge 1470
		/* Turn off self refresh if both pipes are enabled */
5060 serge 1471
		intel_set_memory_cxsr(dev_priv, false);
3031 serge 1472
	}
1473
 
1474
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1475
		      srwm);
1476
 
1477
	/* 965 has limitations... */
6084 serge 1478
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1479
		   FW_WM(8, CURSORB) |
1480
		   FW_WM(8, PLANEB) |
1481
		   FW_WM(8, PLANEA));
1482
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1483
		   FW_WM(8, PLANEC_OLD));
3031 serge 1484
	/* update cursor SR watermark */
6084 serge 1485
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
5060 serge 1486
 
1487
	if (cxsr_enabled)
1488
		intel_set_memory_cxsr(dev_priv, true);
3031 serge 1489
}
1490
 
6084 serge 1491
#undef FW_WM
1492
 
4560 Serge 1493
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
3031 serge 1494
{
4560 Serge 1495
	struct drm_device *dev = unused_crtc->dev;
3031 serge 1496
	struct drm_i915_private *dev_priv = dev->dev_private;
1497
	const struct intel_watermark_params *wm_info;
1498
	uint32_t fwater_lo;
1499
	uint32_t fwater_hi;
1500
	int cwm, srwm = 1;
1501
	int fifo_size;
1502
	int planea_wm, planeb_wm;
1503
	struct drm_crtc *crtc, *enabled = NULL;
1504
 
1505
	if (IS_I945GM(dev))
1506
		wm_info = &i945_wm_info;
1507
	else if (!IS_GEN2(dev))
1508
		wm_info = &i915_wm_info;
1509
	else
5354 serge 1510
		wm_info = &i830_a_wm_info;
3031 serge 1511
 
1512
	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1513
	crtc = intel_get_crtc_for_plane(dev, 0);
3243 Serge 1514
	if (intel_crtc_active(crtc)) {
4560 Serge 1515
		const struct drm_display_mode *adjusted_mode;
6084 serge 1516
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
3243 Serge 1517
		if (IS_GEN2(dev))
1518
			cpp = 4;
1519
 
6084 serge 1520
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 1521
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
3243 Serge 1522
					       wm_info, fifo_size, cpp,
5354 serge 1523
					       pessimal_latency_ns);
3031 serge 1524
		enabled = crtc;
5354 serge 1525
	} else {
3031 serge 1526
		planea_wm = fifo_size - wm_info->guard_size;
5354 serge 1527
		if (planea_wm > (long)wm_info->max_wm)
1528
			planea_wm = wm_info->max_wm;
1529
	}
3031 serge 1530
 
5354 serge 1531
	if (IS_GEN2(dev))
1532
		wm_info = &i830_bc_wm_info;
1533
 
3031 serge 1534
	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1535
	crtc = intel_get_crtc_for_plane(dev, 1);
3243 Serge 1536
	if (intel_crtc_active(crtc)) {
4560 Serge 1537
		const struct drm_display_mode *adjusted_mode;
6084 serge 1538
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
3243 Serge 1539
		if (IS_GEN2(dev))
1540
			cpp = 4;
1541
 
6084 serge 1542
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 1543
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
3243 Serge 1544
					       wm_info, fifo_size, cpp,
5354 serge 1545
					       pessimal_latency_ns);
3031 serge 1546
		if (enabled == NULL)
1547
			enabled = crtc;
1548
		else
1549
			enabled = NULL;
5354 serge 1550
	} else {
3031 serge 1551
		planeb_wm = fifo_size - wm_info->guard_size;
5354 serge 1552
		if (planeb_wm > (long)wm_info->max_wm)
1553
			planeb_wm = wm_info->max_wm;
1554
	}
3031 serge 1555
 
1556
	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1557
 
5060 serge 1558
	if (IS_I915GM(dev) && enabled) {
1559
		struct drm_i915_gem_object *obj;
1560
 
6084 serge 1561
		obj = intel_fb_obj(enabled->primary->state->fb);
5060 serge 1562
 
1563
		/* self-refresh seems busted with untiled */
1564
		if (obj->tiling_mode == I915_TILING_NONE)
1565
			enabled = NULL;
1566
	}
1567
 
3031 serge 1568
	/*
1569
	 * Overlay gets an aggressive default since video jitter is bad.
1570
	 */
1571
	cwm = 2;
1572
 
1573
	/* Play safe and disable self-refresh before adjusting watermarks. */
5060 serge 1574
	intel_set_memory_cxsr(dev_priv, false);
3031 serge 1575
 
1576
	/* Calc sr entries for one plane configs */
1577
	if (HAS_FW_BLC(dev) && enabled) {
1578
		/* self-refresh has much higher latency */
1579
		static const int sr_latency_ns = 6000;
6084 serge 1580
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
4560 Serge 1581
		int clock = adjusted_mode->crtc_clock;
1582
		int htotal = adjusted_mode->crtc_htotal;
6084 serge 1583
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1584
		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
3031 serge 1585
		unsigned long line_time_us;
1586
		int entries;
1587
 
5060 serge 1588
		line_time_us = max(htotal * 1000 / clock, 1);
3031 serge 1589
 
1590
		/* Use ns/us then divide to preserve precision */
1591
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1592
			pixel_size * hdisplay;
1593
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1594
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1595
		srwm = wm_info->fifo_size - entries;
1596
		if (srwm < 0)
1597
			srwm = 1;
1598
 
1599
		if (IS_I945G(dev) || IS_I945GM(dev))
1600
			I915_WRITE(FW_BLC_SELF,
1601
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1602
		else if (IS_I915GM(dev))
1603
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1604
	}
1605
 
1606
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1607
		      planea_wm, planeb_wm, cwm, srwm);
1608
 
1609
	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1610
	fwater_hi = (cwm & 0x1f);
1611
 
1612
	/* Set request length to 8 cachelines per fetch */
1613
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1614
	fwater_hi = fwater_hi | (1 << 8);
1615
 
1616
	I915_WRITE(FW_BLC, fwater_lo);
1617
	I915_WRITE(FW_BLC2, fwater_hi);
1618
 
5060 serge 1619
	if (enabled)
1620
		intel_set_memory_cxsr(dev_priv, true);
3031 serge 1621
}
1622
 
4560 Serge 1623
static void i845_update_wm(struct drm_crtc *unused_crtc)
3031 serge 1624
{
4560 Serge 1625
	struct drm_device *dev = unused_crtc->dev;
3031 serge 1626
	struct drm_i915_private *dev_priv = dev->dev_private;
1627
	struct drm_crtc *crtc;
4560 Serge 1628
	const struct drm_display_mode *adjusted_mode;
3031 serge 1629
	uint32_t fwater_lo;
1630
	int planea_wm;
1631
 
1632
	crtc = single_enabled_crtc(dev);
1633
	if (crtc == NULL)
1634
		return;
1635
 
6084 serge 1636
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 1637
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1638
				       &i845_wm_info,
3031 serge 1639
				       dev_priv->display.get_fifo_size(dev, 0),
5354 serge 1640
				       4, pessimal_latency_ns);
3031 serge 1641
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1642
	fwater_lo |= (3<<8) | planea_wm;
1643
 
1644
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1645
 
1646
	I915_WRITE(FW_BLC, fwater_lo);
1647
}
1648
 
6084 serge 1649
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
3031 serge 1650
{
4104 Serge 1651
	uint32_t pixel_rate;
1652
 
6084 serge 1653
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
4104 Serge 1654
 
1655
	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1656
	 * adjust the pixel_rate here. */
1657
 
6084 serge 1658
	if (pipe_config->pch_pfit.enabled) {
4104 Serge 1659
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
6084 serge 1660
		uint32_t pfit_size = pipe_config->pch_pfit.size;
4104 Serge 1661
 
6084 serge 1662
		pipe_w = pipe_config->pipe_src_w;
1663
		pipe_h = pipe_config->pipe_src_h;
1664
 
4104 Serge 1665
		pfit_w = (pfit_size >> 16) & 0xFFFF;
1666
		pfit_h = pfit_size & 0xFFFF;
1667
		if (pipe_w < pfit_w)
1668
			pipe_w = pfit_w;
1669
		if (pipe_h < pfit_h)
1670
			pipe_h = pfit_h;
1671
 
1672
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1673
				     pfit_w * pfit_h);
1674
	}
1675
 
1676
	return pixel_rate;
1677
}
1678
 
1679
/* latency must be in 0.1us units. */
1680
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1681
			       uint32_t latency)
1682
{
1683
	uint64_t ret;
1684
 
1685
	if (WARN(latency == 0, "Latency value missing\n"))
1686
		return UINT_MAX;
1687
 
1688
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1689
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1690
 
1691
	return ret;
1692
}
1693
 
1694
/* latency must be in 0.1us units. */
1695
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1696
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1697
			       uint32_t latency)
1698
{
1699
	uint32_t ret;
1700
 
1701
	if (WARN(latency == 0, "Latency value missing\n"))
1702
		return UINT_MAX;
1703
 
1704
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1705
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1706
	ret = DIV_ROUND_UP(ret, 64) + 2;
1707
	return ret;
1708
}
1709
 
1710
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1711
			   uint8_t bytes_per_pixel)
1712
{
1713
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1714
}
1715
 
5354 serge 1716
struct skl_pipe_wm_parameters {
1717
	bool active;
1718
	uint32_t pipe_htotal;
1719
	uint32_t pixel_rate; /* in KHz */
1720
	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1721
};
1722
 
4560 Serge 1723
struct ilk_wm_maximums {
4104 Serge 1724
	uint16_t pri;
1725
	uint16_t spr;
1726
	uint16_t cur;
1727
	uint16_t fbc;
1728
};
1729
 
1730
/* used in computing the new watermarks state */
1731
struct intel_wm_config {
1732
	unsigned int num_pipes_active;
1733
	bool sprites_enabled;
1734
	bool sprites_scaled;
1735
};
1736
 
1737
/*
1738
 * For both WM_PIPE and WM_LP.
1739
 * mem_value must be in 0.1us units.
1740
 */
6084 serge 1741
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1742
				   const struct intel_plane_state *pstate,
4104 Serge 1743
				   uint32_t mem_value,
1744
				   bool is_lp)
1745
{
6084 serge 1746
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
4104 Serge 1747
	uint32_t method1, method2;
1748
 
6084 serge 1749
	if (!cstate->base.active || !pstate->visible)
4104 Serge 1750
		return 0;
1751
 
6084 serge 1752
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
4104 Serge 1753
 
1754
	if (!is_lp)
1755
		return method1;
1756
 
6084 serge 1757
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1758
				 cstate->base.adjusted_mode.crtc_htotal,
1759
				 drm_rect_width(&pstate->dst),
1760
				 bpp,
4104 Serge 1761
				 mem_value);
1762
 
1763
	return min(method1, method2);
1764
}
1765
 
1766
/*
1767
 * For both WM_PIPE and WM_LP.
1768
 * mem_value must be in 0.1us units.
1769
 */
6084 serge 1770
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1771
				   const struct intel_plane_state *pstate,
4104 Serge 1772
				   uint32_t mem_value)
1773
{
6084 serge 1774
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
4104 Serge 1775
	uint32_t method1, method2;
1776
 
6084 serge 1777
	if (!cstate->base.active || !pstate->visible)
4104 Serge 1778
		return 0;
1779
 
6084 serge 1780
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1781
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1782
				 cstate->base.adjusted_mode.crtc_htotal,
1783
				 drm_rect_width(&pstate->dst),
1784
				 bpp,
4104 Serge 1785
				 mem_value);
1786
	return min(method1, method2);
1787
}
1788
 
1789
/*
1790
 * For both WM_PIPE and WM_LP.
1791
 * mem_value must be in 0.1us units.
1792
 */
6084 serge 1793
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1794
				   const struct intel_plane_state *pstate,
4104 Serge 1795
				   uint32_t mem_value)
1796
{
6660 serge 1797
	/*
1798
	 * We treat the cursor plane as always-on for the purposes of watermark
1799
	 * calculation.  Until we have two-stage watermark programming merged,
1800
	 * this is necessary to avoid flickering.
1801
	 */
1802
	int cpp = 4;
1803
	int width = pstate->visible ? pstate->base.crtc_w : 64;
6084 serge 1804
 
6660 serge 1805
	if (!cstate->base.active)
4104 Serge 1806
		return 0;
1807
 
6084 serge 1808
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1809
			      cstate->base.adjusted_mode.crtc_htotal,
6660 serge 1810
			      width, cpp, mem_value);
4104 Serge 1811
}
1812
 
1813
/* Only for WM_LP. */
6084 serge 1814
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1815
				   const struct intel_plane_state *pstate,
4104 Serge 1816
				   uint32_t pri_val)
1817
{
6084 serge 1818
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1819
 
1820
	if (!cstate->base.active || !pstate->visible)
4104 Serge 1821
		return 0;
1822
 
6084 serge 1823
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
4104 Serge 1824
}
1825
 
1826
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1827
{
4560 Serge 1828
	if (INTEL_INFO(dev)->gen >= 8)
1829
		return 3072;
1830
	else if (INTEL_INFO(dev)->gen >= 7)
4104 Serge 1831
		return 768;
1832
	else
1833
		return 512;
1834
}
1835
 
5060 serge 1836
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1837
					 int level, bool is_sprite)
1838
{
1839
	if (INTEL_INFO(dev)->gen >= 8)
1840
		/* BDW primary/sprite plane watermarks */
1841
		return level == 0 ? 255 : 2047;
1842
	else if (INTEL_INFO(dev)->gen >= 7)
1843
		/* IVB/HSW primary/sprite plane watermarks */
1844
		return level == 0 ? 127 : 1023;
1845
	else if (!is_sprite)
1846
		/* ILK/SNB primary plane watermarks */
1847
		return level == 0 ? 127 : 511;
1848
	else
1849
		/* ILK/SNB sprite plane watermarks */
1850
		return level == 0 ? 63 : 255;
1851
}
1852
 
1853
static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1854
					  int level)
1855
{
1856
	if (INTEL_INFO(dev)->gen >= 7)
1857
		return level == 0 ? 63 : 255;
1858
	else
1859
		return level == 0 ? 31 : 63;
1860
}
1861
 
1862
static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1863
{
1864
	if (INTEL_INFO(dev)->gen >= 8)
1865
		return 31;
1866
	else
1867
		return 15;
1868
}
1869
 
4104 Serge 1870
/* Calculate the maximum primary/sprite plane watermark */
1871
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1872
				     int level,
1873
				     const struct intel_wm_config *config,
1874
				     enum intel_ddb_partitioning ddb_partitioning,
1875
				     bool is_sprite)
1876
{
1877
	unsigned int fifo_size = ilk_display_fifo_size(dev);
1878
 
1879
	/* if sprites aren't enabled, sprites get nothing */
1880
	if (is_sprite && !config->sprites_enabled)
1881
		return 0;
1882
 
1883
	/* HSW allows LP1+ watermarks even with multiple pipes */
1884
	if (level == 0 || config->num_pipes_active > 1) {
1885
		fifo_size /= INTEL_INFO(dev)->num_pipes;
1886
 
1887
		/*
1888
		 * For some reason the non self refresh
1889
		 * FIFO size is only half of the self
1890
		 * refresh FIFO size on ILK/SNB.
1891
		 */
1892
		if (INTEL_INFO(dev)->gen <= 6)
1893
			fifo_size /= 2;
1894
	}
1895
 
1896
	if (config->sprites_enabled) {
1897
		/* level 0 is always calculated with 1:1 split */
1898
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1899
			if (is_sprite)
1900
				fifo_size *= 5;
1901
			fifo_size /= 6;
1902
		} else {
1903
			fifo_size /= 2;
1904
		}
1905
	}
1906
 
1907
	/* clamp to max that the registers can hold */
5060 serge 1908
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
4104 Serge 1909
}
1910
 
1911
/* Calculate the maximum cursor plane watermark */
1912
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1913
				      int level,
1914
				      const struct intel_wm_config *config)
1915
{
1916
	/* HSW LP1+ watermarks w/ multiple pipes */
1917
	if (level > 0 && config->num_pipes_active > 1)
1918
		return 64;
1919
 
1920
	/* otherwise just report max that registers can hold */
5060 serge 1921
	return ilk_cursor_wm_reg_max(dev, level);
4539 Serge 1922
}
4104 Serge 1923
 
5060 serge 1924
static void ilk_compute_wm_maximums(const struct drm_device *dev,
6084 serge 1925
				    int level,
1926
				    const struct intel_wm_config *config,
1927
				    enum intel_ddb_partitioning ddb_partitioning,
4560 Serge 1928
				    struct ilk_wm_maximums *max)
4104 Serge 1929
{
1930
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1931
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1932
	max->cur = ilk_cursor_wm_max(dev, level, config);
5060 serge 1933
	max->fbc = ilk_fbc_wm_reg_max(dev);
4539 Serge 1934
}
4104 Serge 1935
 
5060 serge 1936
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1937
					int level,
1938
					struct ilk_wm_maximums *max)
1939
{
1940
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
1941
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
1942
	max->cur = ilk_cursor_wm_reg_max(dev, level);
1943
	max->fbc = ilk_fbc_wm_reg_max(dev);
1944
}
1945
 
4560 Serge 1946
static bool ilk_validate_wm_level(int level,
1947
				  const struct ilk_wm_maximums *max,
6084 serge 1948
				  struct intel_wm_level *result)
4104 Serge 1949
{
1950
	bool ret;
1951
 
1952
	/* already determined to be invalid? */
1953
	if (!result->enable)
1954
		return false;
1955
 
1956
	result->enable = result->pri_val <= max->pri &&
1957
			 result->spr_val <= max->spr &&
1958
			 result->cur_val <= max->cur;
1959
 
1960
	ret = result->enable;
1961
 
1962
	/*
1963
	 * HACK until we can pre-compute everything,
1964
	 * and thus fail gracefully if LP0 watermarks
1965
	 * are exceeded...
1966
	 */
1967
	if (level == 0 && !result->enable) {
1968
		if (result->pri_val > max->pri)
1969
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1970
				      level, result->pri_val, max->pri);
1971
		if (result->spr_val > max->spr)
1972
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1973
				      level, result->spr_val, max->spr);
1974
		if (result->cur_val > max->cur)
1975
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1976
				      level, result->cur_val, max->cur);
1977
 
1978
		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1979
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1980
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1981
		result->enable = true;
1982
	}
1983
 
1984
	return ret;
1985
}
1986
 
5060 serge 1987
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
6084 serge 1988
				 const struct intel_crtc *intel_crtc,
4104 Serge 1989
				 int level,
6084 serge 1990
				 struct intel_crtc_state *cstate,
4104 Serge 1991
				 struct intel_wm_level *result)
1992
{
6084 serge 1993
	struct intel_plane *intel_plane;
4104 Serge 1994
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1995
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1996
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1997
 
1998
	/* WM1+ latency values stored in 0.5us units */
1999
	if (level > 0) {
2000
		pri_latency *= 5;
2001
		spr_latency *= 5;
2002
		cur_latency *= 5;
2003
	}
2004
 
6084 serge 2005
	for_each_intel_plane_on_crtc(dev_priv->dev, intel_crtc, intel_plane) {
2006
		struct intel_plane_state *pstate =
2007
			to_intel_plane_state(intel_plane->base.state);
2008
 
2009
		switch (intel_plane->base.type) {
2010
		case DRM_PLANE_TYPE_PRIMARY:
2011
			result->pri_val = ilk_compute_pri_wm(cstate, pstate,
2012
							     pri_latency,
2013
							     level);
2014
			result->fbc_val = ilk_compute_fbc_wm(cstate, pstate,
2015
							     result->pri_val);
2016
			break;
2017
		case DRM_PLANE_TYPE_OVERLAY:
2018
			result->spr_val = ilk_compute_spr_wm(cstate, pstate,
2019
							     spr_latency);
2020
			break;
2021
		case DRM_PLANE_TYPE_CURSOR:
2022
			result->cur_val = ilk_compute_cur_wm(cstate, pstate,
2023
							     cur_latency);
2024
			break;
2025
		}
2026
	}
2027
 
4104 Serge 2028
	result->enable = true;
2029
}
2030
 
2031
static uint32_t
2032
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2033
{
3031 serge 2034
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 2035
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6084 serge 2036
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
4104 Serge 2037
	u32 linetime, ips_linetime;
3031 serge 2038
 
6084 serge 2039
	if (!intel_crtc->active)
4104 Serge 2040
		return 0;
3031 serge 2041
 
2042
	/* The WM are computed with base on how long it takes to fill a single
2043
	 * row at the given clock rate, multiplied by 8.
2044
	 * */
6084 serge 2045
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2046
				     adjusted_mode->crtc_clock);
2047
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2048
					 dev_priv->cdclk_freq);
3031 serge 2049
 
4104 Serge 2050
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2051
	       PIPE_WM_LINETIME_TIME(linetime);
2052
}
2053
 
5354 serge 2054
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
4104 Serge 2055
{
2056
	struct drm_i915_private *dev_priv = dev->dev_private;
2057
 
5354 serge 2058
	if (IS_GEN9(dev)) {
2059
		uint32_t val;
2060
		int ret, i;
2061
		int level, max_level = ilk_wm_max_level(dev);
2062
 
2063
		/* read the first set of memory latencies[0:3] */
2064
		val = 0; /* data0 to be programmed to 0 for first set */
2065
		mutex_lock(&dev_priv->rps.hw_lock);
2066
		ret = sandybridge_pcode_read(dev_priv,
2067
					     GEN9_PCODE_READ_MEM_LATENCY,
2068
					     &val);
2069
		mutex_unlock(&dev_priv->rps.hw_lock);
2070
 
2071
		if (ret) {
2072
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2073
			return;
2074
		}
2075
 
2076
		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2077
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2078
				GEN9_MEM_LATENCY_LEVEL_MASK;
2079
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2080
				GEN9_MEM_LATENCY_LEVEL_MASK;
2081
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2082
				GEN9_MEM_LATENCY_LEVEL_MASK;
2083
 
2084
		/* read the second set of memory latencies[4:7] */
2085
		val = 1; /* data0 to be programmed to 1 for second set */
2086
		mutex_lock(&dev_priv->rps.hw_lock);
2087
		ret = sandybridge_pcode_read(dev_priv,
2088
					     GEN9_PCODE_READ_MEM_LATENCY,
2089
					     &val);
2090
		mutex_unlock(&dev_priv->rps.hw_lock);
2091
		if (ret) {
2092
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2093
			return;
2094
		}
2095
 
2096
		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2097
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2098
				GEN9_MEM_LATENCY_LEVEL_MASK;
2099
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2100
				GEN9_MEM_LATENCY_LEVEL_MASK;
2101
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2102
				GEN9_MEM_LATENCY_LEVEL_MASK;
2103
 
2104
		/*
6935 serge 2105
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2106
		 * need to be disabled. We make sure to sanitize the values out
2107
		 * of the punit to satisfy this requirement.
2108
		 */
2109
		for (level = 1; level <= max_level; level++) {
2110
			if (wm[level] == 0) {
2111
				for (i = level + 1; i <= max_level; i++)
2112
					wm[i] = 0;
2113
				break;
2114
			}
2115
		}
2116
 
2117
		/*
6084 serge 2118
		 * WaWmMemoryReadLatency:skl
2119
		 *
5354 serge 2120
		 * punit doesn't take into account the read latency so we need
6935 serge 2121
		 * to add 2us to the various latency levels we retrieve from the
2122
		 * punit when level 0 response data us 0us.
5354 serge 2123
		 */
6935 serge 2124
		if (wm[0] == 0) {
5354 serge 2125
		wm[0] += 2;
6935 serge 2126
			for (level = 1; level <= max_level; level++) {
2127
				if (wm[level] == 0)
2128
					break;
5354 serge 2129
				wm[level] += 2;
6935 serge 2130
			}
2131
		}
5354 serge 2132
 
2133
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4104 Serge 2134
		uint64_t sskpd = I915_READ64(MCH_SSKPD);
2135
 
2136
		wm[0] = (sskpd >> 56) & 0xFF;
2137
		if (wm[0] == 0)
2138
			wm[0] = sskpd & 0xF;
2139
		wm[1] = (sskpd >> 4) & 0xFF;
2140
		wm[2] = (sskpd >> 12) & 0xFF;
2141
		wm[3] = (sskpd >> 20) & 0x1FF;
2142
		wm[4] = (sskpd >> 32) & 0x1FF;
2143
	} else if (INTEL_INFO(dev)->gen >= 6) {
2144
		uint32_t sskpd = I915_READ(MCH_SSKPD);
2145
 
2146
		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2147
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2148
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2149
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2150
	} else if (INTEL_INFO(dev)->gen >= 5) {
2151
		uint32_t mltr = I915_READ(MLTR_ILK);
2152
 
2153
		/* ILK primary LP0 latency is 700 ns */
2154
		wm[0] = 7;
2155
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2156
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2157
	}
2158
}
2159
 
2160
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2161
{
2162
	/* ILK sprite LP0 latency is 1300 ns */
2163
	if (INTEL_INFO(dev)->gen == 5)
2164
		wm[0] = 13;
2165
}
2166
 
2167
static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2168
{
2169
	/* ILK cursor LP0 latency is 1300 ns */
2170
	if (INTEL_INFO(dev)->gen == 5)
2171
		wm[0] = 13;
2172
 
2173
	/* WaDoubleCursorLP3Latency:ivb */
2174
	if (IS_IVYBRIDGE(dev))
2175
		wm[3] *= 2;
2176
}
2177
 
5060 serge 2178
int ilk_wm_max_level(const struct drm_device *dev)
4560 Serge 2179
{
2180
	/* how many WM levels are we expecting */
6084 serge 2181
	if (INTEL_INFO(dev)->gen >= 9)
5354 serge 2182
		return 7;
2183
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4560 Serge 2184
		return 4;
2185
	else if (INTEL_INFO(dev)->gen >= 6)
2186
		return 3;
2187
	else
2188
		return 2;
2189
}
2190
 
4104 Serge 2191
static void intel_print_wm_latency(struct drm_device *dev,
2192
				   const char *name,
5354 serge 2193
				   const uint16_t wm[8])
4104 Serge 2194
{
4560 Serge 2195
	int level, max_level = ilk_wm_max_level(dev);
4104 Serge 2196
 
2197
	for (level = 0; level <= max_level; level++) {
2198
		unsigned int latency = wm[level];
2199
 
2200
		if (latency == 0) {
2201
			DRM_ERROR("%s WM%d latency not provided\n",
2202
				  name, level);
2203
			continue;
2204
		}
2205
 
5354 serge 2206
		/*
2207
		 * - latencies are in us on gen9.
2208
		 * - before then, WM1+ latency values are in 0.5us units
2209
		 */
2210
		if (IS_GEN9(dev))
2211
			latency *= 10;
2212
		else if (level > 0)
4104 Serge 2213
			latency *= 5;
2214
 
2215
		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2216
			      name, level, wm[level],
2217
			      latency / 10, latency % 10);
2218
	}
2219
}
2220
 
5060 serge 2221
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2222
				    uint16_t wm[5], uint16_t min)
4104 Serge 2223
{
5060 serge 2224
	int level, max_level = ilk_wm_max_level(dev_priv->dev);
2225
 
2226
	if (wm[0] >= min)
2227
		return false;
2228
 
2229
	wm[0] = max(wm[0], min);
2230
	for (level = 1; level <= max_level; level++)
2231
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2232
 
2233
	return true;
2234
}
2235
 
2236
static void snb_wm_latency_quirk(struct drm_device *dev)
2237
{
4104 Serge 2238
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 2239
	bool changed;
4104 Serge 2240
 
5060 serge 2241
	/*
2242
	 * The BIOS provided WM memory latency values are often
2243
	 * inadequate for high resolution displays. Adjust them.
2244
	 */
2245
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2246
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2247
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2248
 
2249
	if (!changed)
2250
		return;
2251
 
2252
	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2253
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2254
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2255
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2256
}
2257
 
2258
static void ilk_setup_wm_latency(struct drm_device *dev)
2259
{
2260
	struct drm_i915_private *dev_priv = dev->dev_private;
2261
 
4104 Serge 2262
	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2263
 
2264
	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2265
	       sizeof(dev_priv->wm.pri_latency));
2266
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2267
	       sizeof(dev_priv->wm.pri_latency));
2268
 
2269
	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2270
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2271
 
2272
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2273
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2274
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
5060 serge 2275
 
2276
	if (IS_GEN6(dev))
2277
		snb_wm_latency_quirk(dev);
4104 Serge 2278
}
2279
 
5354 serge 2280
static void skl_setup_wm_latency(struct drm_device *dev)
2281
{
2282
	struct drm_i915_private *dev_priv = dev->dev_private;
2283
 
2284
	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2285
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2286
}
2287
 
5060 serge 2288
static void ilk_compute_wm_config(struct drm_device *dev,
2289
				  struct intel_wm_config *config)
2290
{
2291
	struct intel_crtc *intel_crtc;
2292
 
2293
	/* Compute the currently _active_ config */
2294
	for_each_intel_crtc(dev, intel_crtc) {
2295
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2296
 
2297
		if (!wm->pipe_enabled)
2298
			continue;
2299
 
2300
		config->sprites_enabled |= wm->sprites_enabled;
2301
		config->sprites_scaled |= wm->sprites_scaled;
2302
		config->num_pipes_active++;
4104 Serge 2303
	}
4560 Serge 2304
}
4104 Serge 2305
 
4560 Serge 2306
/* Compute new watermarks for the pipe */
6084 serge 2307
static bool intel_compute_pipe_wm(struct intel_crtc_state *cstate,
4560 Serge 2308
				  struct intel_pipe_wm *pipe_wm)
2309
{
6084 serge 2310
	struct drm_crtc *crtc = cstate->base.crtc;
4560 Serge 2311
	struct drm_device *dev = crtc->dev;
5060 serge 2312
	const struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 2313
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2314
	struct intel_plane *intel_plane;
2315
	struct intel_plane_state *sprstate = NULL;
4560 Serge 2316
	int level, max_level = ilk_wm_max_level(dev);
2317
	/* LP0 watermark maximums depend on this pipe alone */
2318
	struct intel_wm_config config = {
2319
		.num_pipes_active = 1,
2320
	};
2321
	struct ilk_wm_maximums max;
4104 Serge 2322
 
6084 serge 2323
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2324
		if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY) {
2325
			sprstate = to_intel_plane_state(intel_plane->base.state);
2326
			break;
2327
		}
2328
	}
4560 Serge 2329
 
6084 serge 2330
	config.sprites_enabled = sprstate->visible;
2331
	config.sprites_scaled = sprstate->visible &&
2332
		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2333
		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2334
 
2335
	pipe_wm->pipe_enabled = cstate->base.active;
2336
	pipe_wm->sprites_enabled = sprstate->visible;
2337
	pipe_wm->sprites_scaled = config.sprites_scaled;
2338
 
4560 Serge 2339
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
6084 serge 2340
	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
4560 Serge 2341
		max_level = 1;
2342
 
2343
	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
6084 serge 2344
	if (config.sprites_scaled)
4560 Serge 2345
		max_level = 0;
2346
 
6084 serge 2347
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate, &pipe_wm->wm[0]);
4560 Serge 2348
 
2349
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2350
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2351
 
5060 serge 2352
	/* LP0 watermarks always use 1/2 DDB partitioning */
2353
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2354
 
4560 Serge 2355
	/* At least LP0 must be valid */
5060 serge 2356
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2357
		return false;
2358
 
2359
	ilk_compute_wm_reg_maximums(dev, 1, &max);
2360
 
2361
	for (level = 1; level <= max_level; level++) {
2362
		struct intel_wm_level wm = {};
2363
 
6084 serge 2364
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate, &wm);
5060 serge 2365
 
2366
		/*
2367
		 * Disable any watermark level that exceeds the
2368
		 * register maximums since such watermarks are
2369
		 * always invalid.
2370
		 */
2371
		if (!ilk_validate_wm_level(level, &max, &wm))
2372
			break;
2373
 
2374
		pipe_wm->wm[level] = wm;
2375
	}
2376
 
2377
	return true;
4104 Serge 2378
}
2379
 
4560 Serge 2380
/*
2381
 * Merge the watermarks from all active pipes for a specific level.
2382
 */
2383
static void ilk_merge_wm_level(struct drm_device *dev,
2384
			       int level,
2385
			       struct intel_wm_level *ret_wm)
4104 Serge 2386
{
4560 Serge 2387
	const struct intel_crtc *intel_crtc;
4104 Serge 2388
 
5060 serge 2389
	ret_wm->enable = true;
4104 Serge 2390
 
5060 serge 2391
	for_each_intel_crtc(dev, intel_crtc) {
2392
		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2393
		const struct intel_wm_level *wm = &active->wm[level];
2394
 
2395
		if (!active->pipe_enabled)
2396
			continue;
2397
 
2398
		/*
2399
		 * The watermark values may have been used in the past,
2400
		 * so we must maintain them in the registers for some
2401
		 * time even if the level is now disabled.
2402
		 */
4560 Serge 2403
		if (!wm->enable)
5060 serge 2404
			ret_wm->enable = false;
4104 Serge 2405
 
4560 Serge 2406
		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2407
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2408
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2409
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2410
	}
2411
}
2412
 
2413
/*
2414
 * Merge all low power watermarks for all active pipes.
2415
 */
2416
static void ilk_wm_merge(struct drm_device *dev,
2417
			 const struct intel_wm_config *config,
2418
			 const struct ilk_wm_maximums *max,
2419
			 struct intel_pipe_wm *merged)
2420
{
6084 serge 2421
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 2422
	int level, max_level = ilk_wm_max_level(dev);
5060 serge 2423
	int last_enabled_level = max_level;
4560 Serge 2424
 
2425
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2426
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2427
	    config->num_pipes_active > 1)
2428
		return;
2429
 
2430
	/* ILK: FBC WM must be disabled always */
2431
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2432
 
2433
	/* merge each WM1+ level */
4104 Serge 2434
	for (level = 1; level <= max_level; level++) {
4560 Serge 2435
		struct intel_wm_level *wm = &merged->wm[level];
2436
 
2437
		ilk_merge_wm_level(dev, level, wm);
2438
 
5060 serge 2439
		if (level > last_enabled_level)
2440
			wm->enable = false;
2441
		else if (!ilk_validate_wm_level(level, max, wm))
2442
			/* make sure all following levels get disabled */
2443
			last_enabled_level = level - 1;
4560 Serge 2444
 
2445
		/*
2446
		 * The spec says it is preferred to disable
2447
		 * FBC WMs instead of disabling a WM level.
2448
		 */
2449
		if (wm->fbc_val > max->fbc) {
5060 serge 2450
			if (wm->enable)
6084 serge 2451
				merged->fbc_wm_enabled = false;
4560 Serge 2452
			wm->fbc_val = 0;
4104 Serge 2453
		}
2454
	}
2455
 
4560 Serge 2456
	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2457
	/*
2458
	 * FIXME this is racy. FBC might get enabled later.
2459
	 * What we should check here is whether FBC can be
2460
	 * enabled sometime later.
2461
	 */
6084 serge 2462
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2463
	    intel_fbc_enabled(dev_priv)) {
4560 Serge 2464
		for (level = 2; level <= max_level; level++) {
2465
			struct intel_wm_level *wm = &merged->wm[level];
2466
 
2467
			wm->enable = false;
2468
		}
2469
	}
2470
}
2471
 
2472
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2473
{
2474
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2475
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2476
}
2477
 
2478
/* The value we need to program into the WM_LPx latency field */
2479
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2480
{
2481
	struct drm_i915_private *dev_priv = dev->dev_private;
2482
 
2483
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2484
		return 2 * level;
2485
	else
2486
		return dev_priv->wm.pri_latency[level];
2487
}
2488
 
2489
static void ilk_compute_wm_results(struct drm_device *dev,
2490
				   const struct intel_pipe_wm *merged,
2491
				   enum intel_ddb_partitioning partitioning,
2492
				   struct ilk_wm_values *results)
2493
{
2494
	struct intel_crtc *intel_crtc;
2495
	int level, wm_lp;
2496
 
2497
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2498
	results->partitioning = partitioning;
2499
 
2500
	/* LP1+ register values */
4104 Serge 2501
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2502
		const struct intel_wm_level *r;
2503
 
4560 Serge 2504
		level = ilk_wm_lp_to_level(wm_lp, merged);
2505
 
2506
		r = &merged->wm[level];
4104 Serge 2507
 
5060 serge 2508
		/*
2509
		 * Maintain the watermark values even if the level is
2510
		 * disabled. Doing otherwise could cause underruns.
2511
		 */
2512
		results->wm_lp[wm_lp - 1] =
4560 Serge 2513
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2514
			(r->pri_val << WM1_LP_SR_SHIFT) |
2515
			r->cur_val;
2516
 
5060 serge 2517
		if (r->enable)
2518
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2519
 
4560 Serge 2520
		if (INTEL_INFO(dev)->gen >= 8)
2521
			results->wm_lp[wm_lp - 1] |=
2522
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2523
		else
2524
			results->wm_lp[wm_lp - 1] |=
2525
				r->fbc_val << WM1_LP_FBC_SHIFT;
2526
 
5060 serge 2527
		/*
2528
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
2529
		 * level is disabled. Doing otherwise could cause underruns.
2530
		 */
4560 Serge 2531
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2532
			WARN_ON(wm_lp != 1);
2533
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2534
		} else
6084 serge 2535
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
4104 Serge 2536
	}
2537
 
4560 Serge 2538
	/* LP0 register values */
5060 serge 2539
	for_each_intel_crtc(dev, intel_crtc) {
4560 Serge 2540
		enum pipe pipe = intel_crtc->pipe;
2541
		const struct intel_wm_level *r =
2542
			&intel_crtc->wm.active.wm[0];
4104 Serge 2543
 
4560 Serge 2544
		if (WARN_ON(!r->enable))
2545
			continue;
2546
 
2547
		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2548
 
2549
		results->wm_pipe[pipe] =
2550
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2551
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2552
			r->cur_val;
4104 Serge 2553
	}
2554
}
2555
 
2556
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2557
 * case both are at the same level. Prefer r1 in case they're the same. */
4560 Serge 2558
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2559
						  struct intel_pipe_wm *r1,
2560
						  struct intel_pipe_wm *r2)
4104 Serge 2561
{
4560 Serge 2562
	int level, max_level = ilk_wm_max_level(dev);
2563
	int level1 = 0, level2 = 0;
4104 Serge 2564
 
4560 Serge 2565
	for (level = 1; level <= max_level; level++) {
2566
		if (r1->wm[level].enable)
2567
			level1 = level;
2568
		if (r2->wm[level].enable)
2569
			level2 = level;
4104 Serge 2570
	}
2571
 
4560 Serge 2572
	if (level1 == level2) {
2573
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
4104 Serge 2574
			return r2;
2575
		else
2576
			return r1;
4560 Serge 2577
	} else if (level1 > level2) {
4104 Serge 2578
		return r1;
2579
	} else {
2580
		return r2;
2581
	}
2582
}
2583
 
4560 Serge 2584
/* dirty bits used to track which watermarks need changes */
2585
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2586
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2587
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2588
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2589
#define WM_DIRTY_FBC (1 << 24)
2590
#define WM_DIRTY_DDB (1 << 25)
2591
 
5354 serge 2592
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
4560 Serge 2593
					 const struct ilk_wm_values *old,
2594
					 const struct ilk_wm_values *new)
2595
{
2596
	unsigned int dirty = 0;
2597
	enum pipe pipe;
2598
	int wm_lp;
2599
 
5354 serge 2600
	for_each_pipe(dev_priv, pipe) {
4560 Serge 2601
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2602
			dirty |= WM_DIRTY_LINETIME(pipe);
2603
			/* Must disable LP1+ watermarks too */
2604
			dirty |= WM_DIRTY_LP_ALL;
2605
		}
2606
 
2607
		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2608
			dirty |= WM_DIRTY_PIPE(pipe);
2609
			/* Must disable LP1+ watermarks too */
2610
			dirty |= WM_DIRTY_LP_ALL;
2611
		}
2612
	}
2613
 
2614
	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2615
		dirty |= WM_DIRTY_FBC;
2616
		/* Must disable LP1+ watermarks too */
2617
		dirty |= WM_DIRTY_LP_ALL;
2618
	}
2619
 
2620
	if (old->partitioning != new->partitioning) {
2621
		dirty |= WM_DIRTY_DDB;
2622
		/* Must disable LP1+ watermarks too */
2623
		dirty |= WM_DIRTY_LP_ALL;
2624
	}
2625
 
2626
	/* LP1+ watermarks already deemed dirty, no need to continue */
2627
	if (dirty & WM_DIRTY_LP_ALL)
2628
		return dirty;
2629
 
2630
	/* Find the lowest numbered LP1+ watermark in need of an update... */
2631
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2632
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2633
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2634
			break;
2635
	}
2636
 
2637
	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2638
	for (; wm_lp <= 3; wm_lp++)
2639
		dirty |= WM_DIRTY_LP(wm_lp);
2640
 
2641
	return dirty;
2642
}
2643
 
2644
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2645
			       unsigned int dirty)
2646
{
2647
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2648
	bool changed = false;
2649
 
2650
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2651
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2652
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2653
		changed = true;
2654
	}
2655
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2656
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2657
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2658
		changed = true;
2659
	}
2660
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2661
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2662
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2663
		changed = true;
2664
	}
2665
 
2666
	/*
2667
	 * Don't touch WM1S_LP_EN here.
2668
	 * Doing so could cause underruns.
2669
	 */
2670
 
2671
	return changed;
2672
}
2673
 
4104 Serge 2674
/*
2675
 * The spec says we shouldn't write when we don't need, because every write
2676
 * causes WMs to be re-evaluated, expending some power.
6084 serge 2677
 */
4560 Serge 2678
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2679
				struct ilk_wm_values *results)
4104 Serge 2680
{
4560 Serge 2681
	struct drm_device *dev = dev_priv->dev;
2682
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2683
	unsigned int dirty;
4104 Serge 2684
	uint32_t val;
3031 serge 2685
 
5354 serge 2686
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
4560 Serge 2687
	if (!dirty)
4104 Serge 2688
		return;
2689
 
4560 Serge 2690
	_ilk_disable_lp_wm(dev_priv, dirty);
4104 Serge 2691
 
4560 Serge 2692
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
4104 Serge 2693
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
4560 Serge 2694
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
4104 Serge 2695
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
4560 Serge 2696
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
4104 Serge 2697
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2698
 
4560 Serge 2699
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
4104 Serge 2700
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
4560 Serge 2701
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
4104 Serge 2702
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
4560 Serge 2703
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
4104 Serge 2704
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2705
 
4560 Serge 2706
	if (dirty & WM_DIRTY_DDB) {
2707
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6084 serge 2708
			val = I915_READ(WM_MISC);
4560 Serge 2709
			if (results->partitioning == INTEL_DDB_PART_1_2)
6084 serge 2710
				val &= ~WM_MISC_DATA_PARTITION_5_6;
2711
			else
2712
				val |= WM_MISC_DATA_PARTITION_5_6;
2713
			I915_WRITE(WM_MISC, val);
4560 Serge 2714
		} else {
2715
			val = I915_READ(DISP_ARB_CTL2);
2716
			if (results->partitioning == INTEL_DDB_PART_1_2)
2717
				val &= ~DISP_DATA_PARTITION_5_6;
2718
			else
2719
				val |= DISP_DATA_PARTITION_5_6;
2720
			I915_WRITE(DISP_ARB_CTL2, val);
2721
		}
4104 Serge 2722
	}
2723
 
4560 Serge 2724
	if (dirty & WM_DIRTY_FBC) {
4104 Serge 2725
		val = I915_READ(DISP_ARB_CTL);
2726
		if (results->enable_fbc_wm)
2727
			val &= ~DISP_FBC_WM_DIS;
2728
		else
2729
			val |= DISP_FBC_WM_DIS;
2730
		I915_WRITE(DISP_ARB_CTL, val);
2731
	}
2732
 
4560 Serge 2733
	if (dirty & WM_DIRTY_LP(1) &&
2734
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
4104 Serge 2735
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
4560 Serge 2736
 
2737
	if (INTEL_INFO(dev)->gen >= 7) {
2738
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
6084 serge 2739
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
4560 Serge 2740
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
6084 serge 2741
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
4560 Serge 2742
	}
4104 Serge 2743
 
4560 Serge 2744
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
4104 Serge 2745
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
4560 Serge 2746
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
4104 Serge 2747
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
4560 Serge 2748
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
4104 Serge 2749
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
4560 Serge 2750
 
2751
	dev_priv->wm.hw = *results;
3031 serge 2752
}
2753
 
4560 Serge 2754
static bool ilk_disable_lp_wm(struct drm_device *dev)
4104 Serge 2755
{
2756
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 2757
 
2758
	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2759
}
2760
 
5354 serge 2761
/*
2762
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2763
 * different active planes.
2764
 */
2765
 
2766
#define SKL_DDB_SIZE		896	/* in blocks */
6084 serge 2767
#define BXT_DDB_SIZE		512
5354 serge 2768
 
2769
static void
2770
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2771
				   struct drm_crtc *for_crtc,
2772
				   const struct intel_wm_config *config,
2773
				   const struct skl_pipe_wm_parameters *params,
2774
				   struct skl_ddb_entry *alloc /* out */)
2775
{
2776
	struct drm_crtc *crtc;
2777
	unsigned int pipe_size, ddb_size;
2778
	int nth_active_pipe;
2779
 
2780
	if (!params->active) {
2781
		alloc->start = 0;
2782
		alloc->end = 0;
2783
		return;
2784
	}
2785
 
6084 serge 2786
	if (IS_BROXTON(dev))
2787
		ddb_size = BXT_DDB_SIZE;
2788
	else
2789
		ddb_size = SKL_DDB_SIZE;
5354 serge 2790
 
2791
	ddb_size -= 4; /* 4 blocks for bypass path allocation */
2792
 
2793
	nth_active_pipe = 0;
2794
	for_each_crtc(dev, crtc) {
6084 serge 2795
		if (!to_intel_crtc(crtc)->active)
5354 serge 2796
			continue;
2797
 
2798
		if (crtc == for_crtc)
2799
			break;
2800
 
2801
		nth_active_pipe++;
2802
	}
2803
 
2804
	pipe_size = ddb_size / config->num_pipes_active;
2805
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2806
	alloc->end = alloc->start + pipe_size;
2807
}
2808
 
2809
static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2810
{
2811
	if (config->num_pipes_active == 1)
2812
		return 32;
2813
 
2814
	return 8;
2815
}
2816
 
2817
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2818
{
2819
	entry->start = reg & 0x3ff;
2820
	entry->end = (reg >> 16) & 0x3ff;
2821
	if (entry->end)
2822
		entry->end += 1;
2823
}
2824
 
2825
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2826
			  struct skl_ddb_allocation *ddb /* out */)
2827
{
2828
	enum pipe pipe;
2829
	int plane;
2830
	u32 val;
2831
 
6084 serge 2832
	memset(ddb, 0, sizeof(*ddb));
2833
 
5354 serge 2834
	for_each_pipe(dev_priv, pipe) {
6084 serge 2835
		if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
2836
			continue;
2837
 
2838
		for_each_plane(dev_priv, pipe, plane) {
5354 serge 2839
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2840
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2841
						   val);
2842
		}
2843
 
2844
		val = I915_READ(CUR_BUF_CFG(pipe));
6084 serge 2845
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2846
					   val);
5354 serge 2847
	}
2848
}
2849
 
2850
static unsigned int
6084 serge 2851
skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
5354 serge 2852
{
6084 serge 2853
 
2854
	/* for planar format */
2855
	if (p->y_bytes_per_pixel) {
2856
		if (y)  /* y-plane data rate */
2857
			return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
2858
		else    /* uv-plane data rate */
2859
			return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
2860
	}
2861
 
2862
	/* for packed formats */
5354 serge 2863
	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2864
}
2865
 
2866
/*
2867
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2868
 * a 8192x4096@32bpp framebuffer:
2869
 *   3 * 4096 * 8192  * 4 < 2^32
2870
 */
2871
static unsigned int
2872
skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2873
				 const struct skl_pipe_wm_parameters *params)
2874
{
2875
	unsigned int total_data_rate = 0;
2876
	int plane;
2877
 
2878
	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2879
		const struct intel_plane_wm_parameters *p;
2880
 
2881
		p = ¶ms->plane[plane];
2882
		if (!p->enabled)
2883
			continue;
2884
 
6084 serge 2885
		total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
2886
		if (p->y_bytes_per_pixel) {
2887
			total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
2888
		}
5354 serge 2889
	}
2890
 
2891
	return total_data_rate;
2892
}
2893
 
2894
static void
2895
skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2896
		      const struct intel_wm_config *config,
2897
		      const struct skl_pipe_wm_parameters *params,
2898
		      struct skl_ddb_allocation *ddb /* out */)
2899
{
2900
	struct drm_device *dev = crtc->dev;
6084 serge 2901
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 2902
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2903
	enum pipe pipe = intel_crtc->pipe;
2904
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2905
	uint16_t alloc_size, start, cursor_blocks;
6084 serge 2906
	uint16_t minimum[I915_MAX_PLANES];
2907
	uint16_t y_minimum[I915_MAX_PLANES];
5354 serge 2908
	unsigned int total_data_rate;
2909
	int plane;
2910
 
2911
	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2912
	alloc_size = skl_ddb_entry_size(alloc);
2913
	if (alloc_size == 0) {
2914
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
6084 serge 2915
		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2916
		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
5354 serge 2917
		return;
2918
	}
2919
 
2920
	cursor_blocks = skl_cursor_allocation(config);
6084 serge 2921
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2922
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
5354 serge 2923
 
2924
	alloc_size -= cursor_blocks;
2925
	alloc->end -= cursor_blocks;
2926
 
6084 serge 2927
	/* 1. Allocate the mininum required blocks for each active plane */
2928
	for_each_plane(dev_priv, pipe, plane) {
2929
		const struct intel_plane_wm_parameters *p;
2930
 
2931
		p = ¶ms->plane[plane];
2932
		if (!p->enabled)
2933
			continue;
2934
 
2935
		minimum[plane] = 8;
2936
		alloc_size -= minimum[plane];
2937
		y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
2938
		alloc_size -= y_minimum[plane];
2939
	}
2940
 
2941
	/*
2942
	 * 2. Distribute the remaining space in proportion to the amount of
2943
	 * data each plane needs to fetch from memory.
5354 serge 2944
	 *
2945
	 * FIXME: we may not allocate every single block here.
6084 serge 2946
	 */
5354 serge 2947
	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2948
 
2949
	start = alloc->start;
2950
	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2951
		const struct intel_plane_wm_parameters *p;
6084 serge 2952
		unsigned int data_rate, y_data_rate;
2953
		uint16_t plane_blocks, y_plane_blocks = 0;
5354 serge 2954
 
2955
		p = ¶ms->plane[plane];
2956
		if (!p->enabled)
2957
			continue;
2958
 
6084 serge 2959
		data_rate = skl_plane_relative_data_rate(p, 0);
5354 serge 2960
 
2961
		/*
6084 serge 2962
		 * allocation for (packed formats) or (uv-plane part of planar format):
5354 serge 2963
		 * promote the expression to 64 bits to avoid overflowing, the
2964
		 * result is < available as data_rate / total_data_rate < 1
2965
		 */
6084 serge 2966
		plane_blocks = minimum[plane];
2967
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2968
					total_data_rate);
5354 serge 2969
 
2970
		ddb->plane[pipe][plane].start = start;
2971
		ddb->plane[pipe][plane].end = start + plane_blocks;
2972
 
2973
		start += plane_blocks;
6084 serge 2974
 
2975
		/*
2976
		 * allocation for y_plane part of planar format:
2977
		 */
2978
		if (p->y_bytes_per_pixel) {
2979
			y_data_rate = skl_plane_relative_data_rate(p, 1);
2980
			y_plane_blocks = y_minimum[plane];
2981
			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
2982
						total_data_rate);
2983
 
2984
			ddb->y_plane[pipe][plane].start = start;
2985
			ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
2986
 
2987
			start += y_plane_blocks;
2988
		}
2989
 
5354 serge 2990
	}
2991
 
2992
}
2993
 
6084 serge 2994
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
5354 serge 2995
{
2996
	/* TODO: Take into account the scalers once we support them */
6084 serge 2997
	return config->base.adjusted_mode.crtc_clock;
5354 serge 2998
}
2999
 
3000
/*
3001
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3002
 * for the read latency) and bytes_per_pixel should always be <= 8, so that
3003
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3004
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3005
*/
3006
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3007
			       uint32_t latency)
3008
{
3009
	uint32_t wm_intermediate_val, ret;
3010
 
3011
	if (latency == 0)
3012
		return UINT_MAX;
3013
 
6084 serge 3014
	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
5354 serge 3015
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3016
 
3017
	return ret;
3018
}
3019
 
3020
static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3021
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
6084 serge 3022
			       uint64_t tiling, uint32_t latency)
5354 serge 3023
{
6084 serge 3024
	uint32_t ret;
3025
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3026
	uint32_t wm_intermediate_val;
5354 serge 3027
 
3028
	if (latency == 0)
3029
		return UINT_MAX;
3030
 
3031
	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
6084 serge 3032
 
3033
	if (tiling == I915_FORMAT_MOD_Y_TILED ||
3034
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
3035
		plane_bytes_per_line *= 4;
3036
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3037
		plane_blocks_per_line /= 4;
3038
	} else {
3039
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3040
	}
3041
 
5354 serge 3042
	wm_intermediate_val = latency * pixel_rate;
3043
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
6084 serge 3044
				plane_blocks_per_line;
5354 serge 3045
 
3046
	return ret;
3047
}
3048
 
3049
static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3050
				       const struct intel_crtc *intel_crtc)
3051
{
3052
	struct drm_device *dev = intel_crtc->base.dev;
3053
	struct drm_i915_private *dev_priv = dev->dev_private;
3054
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3055
	enum pipe pipe = intel_crtc->pipe;
3056
 
3057
	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
3058
		   sizeof(new_ddb->plane[pipe])))
3059
		return true;
3060
 
6084 serge 3061
	if (memcmp(&new_ddb->plane[pipe][PLANE_CURSOR], &cur_ddb->plane[pipe][PLANE_CURSOR],
3062
		    sizeof(new_ddb->plane[pipe][PLANE_CURSOR])))
5354 serge 3063
		return true;
3064
 
3065
	return false;
3066
}
3067
 
3068
static void skl_compute_wm_global_parameters(struct drm_device *dev,
3069
					     struct intel_wm_config *config)
3070
{
3071
	struct drm_crtc *crtc;
3072
	struct drm_plane *plane;
3073
 
3074
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
6084 serge 3075
		config->num_pipes_active += to_intel_crtc(crtc)->active;
5354 serge 3076
 
3077
	/* FIXME: I don't think we need those two global parameters on SKL */
3078
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3079
		struct intel_plane *intel_plane = to_intel_plane(plane);
3080
 
3081
		config->sprites_enabled |= intel_plane->wm.enabled;
3082
		config->sprites_scaled |= intel_plane->wm.scaled;
3083
	}
3084
}
3085
 
3086
static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
3087
					   struct skl_pipe_wm_parameters *p)
3088
{
3089
	struct drm_device *dev = crtc->dev;
3090
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3091
	enum pipe pipe = intel_crtc->pipe;
3092
	struct drm_plane *plane;
6084 serge 3093
	struct drm_framebuffer *fb;
5354 serge 3094
	int i = 1; /* Index for sprite planes start */
3095
 
6084 serge 3096
	p->active = intel_crtc->active;
5354 serge 3097
	if (p->active) {
6084 serge 3098
		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
3099
		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
5354 serge 3100
 
6084 serge 3101
		fb = crtc->primary->state->fb;
3102
		/* For planar: Bpp is for uv plane, y_Bpp is for y plane */
3103
		if (fb) {
3104
			p->plane[0].enabled = true;
3105
			p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3106
				drm_format_plane_cpp(fb->pixel_format, 1) :
3107
				drm_format_plane_cpp(fb->pixel_format, 0);
3108
			p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3109
				drm_format_plane_cpp(fb->pixel_format, 0) : 0;
3110
			p->plane[0].tiling = fb->modifier[0];
3111
		} else {
3112
			p->plane[0].enabled = false;
3113
			p->plane[0].bytes_per_pixel = 0;
3114
			p->plane[0].y_bytes_per_pixel = 0;
3115
			p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
3116
		}
3117
		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
3118
		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
3119
		p->plane[0].rotation = crtc->primary->state->rotation;
5354 serge 3120
 
6084 serge 3121
		fb = crtc->cursor->state->fb;
3122
		p->plane[PLANE_CURSOR].y_bytes_per_pixel = 0;
3123
		if (fb) {
3124
			p->plane[PLANE_CURSOR].enabled = true;
3125
			p->plane[PLANE_CURSOR].bytes_per_pixel = fb->bits_per_pixel / 8;
3126
			p->plane[PLANE_CURSOR].horiz_pixels = crtc->cursor->state->crtc_w;
3127
			p->plane[PLANE_CURSOR].vert_pixels = crtc->cursor->state->crtc_h;
3128
		} else {
3129
			p->plane[PLANE_CURSOR].enabled = false;
3130
			p->plane[PLANE_CURSOR].bytes_per_pixel = 0;
3131
			p->plane[PLANE_CURSOR].horiz_pixels = 64;
3132
			p->plane[PLANE_CURSOR].vert_pixels = 64;
3133
		}
5354 serge 3134
	}
3135
 
3136
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3137
		struct intel_plane *intel_plane = to_intel_plane(plane);
3138
 
6084 serge 3139
		if (intel_plane->pipe == pipe &&
3140
			plane->type == DRM_PLANE_TYPE_OVERLAY)
5354 serge 3141
			p->plane[i++] = intel_plane->wm;
3142
	}
3143
}
3144
 
6084 serge 3145
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3146
				 struct skl_pipe_wm_parameters *p,
5354 serge 3147
				 struct intel_plane_wm_parameters *p_params,
3148
				 uint16_t ddb_allocation,
6084 serge 3149
				 int level,
5354 serge 3150
				 uint16_t *out_blocks, /* out */
3151
				 uint8_t *out_lines /* out */)
3152
{
6084 serge 3153
	uint32_t latency = dev_priv->wm.skl_latency[level];
3154
	uint32_t method1, method2;
3155
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3156
	uint32_t res_blocks, res_lines;
3157
	uint32_t selected_result;
3158
	uint8_t bytes_per_pixel;
5354 serge 3159
 
6084 serge 3160
	if (latency == 0 || !p->active || !p_params->enabled)
5354 serge 3161
		return false;
3162
 
6084 serge 3163
	bytes_per_pixel = p_params->y_bytes_per_pixel ?
3164
		p_params->y_bytes_per_pixel :
3165
		p_params->bytes_per_pixel;
5354 serge 3166
	method1 = skl_wm_method1(p->pixel_rate,
6084 serge 3167
				 bytes_per_pixel,
3168
				 latency);
5354 serge 3169
	method2 = skl_wm_method2(p->pixel_rate,
3170
				 p->pipe_htotal,
3171
				 p_params->horiz_pixels,
6084 serge 3172
				 bytes_per_pixel,
3173
				 p_params->tiling,
3174
				 latency);
5354 serge 3175
 
6084 serge 3176
	plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
3177
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
5354 serge 3178
 
6084 serge 3179
	if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3180
	    p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
3181
		uint32_t min_scanlines = 4;
3182
		uint32_t y_tile_minimum;
3183
		if (intel_rotation_90_or_270(p_params->rotation)) {
3184
			switch (p_params->bytes_per_pixel) {
3185
			case 1:
3186
				min_scanlines = 16;
3187
				break;
3188
			case 2:
3189
				min_scanlines = 8;
3190
				break;
3191
			case 8:
3192
				WARN(1, "Unsupported pixel depth for rotation");
3193
			}
3194
		}
3195
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3196
		selected_result = max(method2, y_tile_minimum);
3197
	} else {
3198
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
3199
			selected_result = min(method1, method2);
3200
		else
3201
			selected_result = method1;
3202
	}
5354 serge 3203
 
6084 serge 3204
	res_blocks = selected_result + 1;
3205
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
5354 serge 3206
 
6084 serge 3207
	if (level >= 1 && level <= 7) {
3208
		if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3209
		    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
3210
			res_lines += 4;
3211
		else
3212
			res_blocks++;
3213
	}
3214
 
3215
	if (res_blocks >= ddb_allocation || res_lines > 31)
5354 serge 3216
		return false;
3217
 
3218
	*out_blocks = res_blocks;
3219
	*out_lines = res_lines;
3220
 
3221
	return true;
3222
}
3223
 
3224
static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3225
				 struct skl_ddb_allocation *ddb,
3226
				 struct skl_pipe_wm_parameters *p,
3227
				 enum pipe pipe,
3228
				 int level,
3229
				 int num_planes,
3230
				 struct skl_wm_level *result)
3231
{
3232
	uint16_t ddb_blocks;
3233
	int i;
3234
 
3235
	for (i = 0; i < num_planes; i++) {
3236
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3237
 
6084 serge 3238
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3239
						p, &p->plane[i],
5354 serge 3240
						ddb_blocks,
6084 serge 3241
						level,
5354 serge 3242
						&result->plane_res_b[i],
3243
						&result->plane_res_l[i]);
3244
	}
3245
 
6084 serge 3246
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][PLANE_CURSOR]);
3247
	result->plane_en[PLANE_CURSOR] = skl_compute_plane_wm(dev_priv, p,
3248
						 &p->plane[PLANE_CURSOR],
3249
						 ddb_blocks, level,
3250
						 &result->plane_res_b[PLANE_CURSOR],
3251
						 &result->plane_res_l[PLANE_CURSOR]);
5354 serge 3252
}
3253
 
3254
static uint32_t
3255
skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3256
{
6084 serge 3257
	if (!to_intel_crtc(crtc)->active)
5354 serge 3258
		return 0;
3259
 
6084 serge 3260
	if (WARN_ON(p->pixel_rate == 0))
3261
		return 0;
3262
 
5354 serge 3263
	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3264
}
3265
 
3266
static void skl_compute_transition_wm(struct drm_crtc *crtc,
3267
				      struct skl_pipe_wm_parameters *params,
3268
				      struct skl_wm_level *trans_wm /* out */)
3269
{
3270
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3271
	int i;
3272
 
3273
	if (!params->active)
3274
		return;
3275
 
3276
	/* Until we know more, just disable transition WMs */
3277
	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3278
		trans_wm->plane_en[i] = false;
6084 serge 3279
	trans_wm->plane_en[PLANE_CURSOR] = false;
5354 serge 3280
}
3281
 
3282
static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3283
				struct skl_ddb_allocation *ddb,
3284
				struct skl_pipe_wm_parameters *params,
3285
				struct skl_pipe_wm *pipe_wm)
3286
{
3287
	struct drm_device *dev = crtc->dev;
3288
	const struct drm_i915_private *dev_priv = dev->dev_private;
3289
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3290
	int level, max_level = ilk_wm_max_level(dev);
3291
 
3292
	for (level = 0; level <= max_level; level++) {
3293
		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3294
				     level, intel_num_planes(intel_crtc),
3295
				     &pipe_wm->wm[level]);
3296
	}
3297
	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3298
 
3299
	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3300
}
3301
 
3302
static void skl_compute_wm_results(struct drm_device *dev,
3303
				   struct skl_pipe_wm_parameters *p,
3304
				   struct skl_pipe_wm *p_wm,
3305
				   struct skl_wm_values *r,
3306
				   struct intel_crtc *intel_crtc)
3307
{
3308
	int level, max_level = ilk_wm_max_level(dev);
3309
	enum pipe pipe = intel_crtc->pipe;
3310
	uint32_t temp;
3311
	int i;
3312
 
3313
	for (level = 0; level <= max_level; level++) {
3314
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3315
			temp = 0;
3316
 
3317
			temp |= p_wm->wm[level].plane_res_l[i] <<
3318
					PLANE_WM_LINES_SHIFT;
3319
			temp |= p_wm->wm[level].plane_res_b[i];
3320
			if (p_wm->wm[level].plane_en[i])
3321
				temp |= PLANE_WM_EN;
3322
 
3323
			r->plane[pipe][i][level] = temp;
3324
		}
3325
 
3326
		temp = 0;
3327
 
6084 serge 3328
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3329
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
5354 serge 3330
 
6084 serge 3331
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
5354 serge 3332
			temp |= PLANE_WM_EN;
3333
 
6084 serge 3334
		r->plane[pipe][PLANE_CURSOR][level] = temp;
5354 serge 3335
 
3336
	}
3337
 
3338
	/* transition WMs */
3339
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3340
		temp = 0;
3341
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3342
		temp |= p_wm->trans_wm.plane_res_b[i];
3343
		if (p_wm->trans_wm.plane_en[i])
3344
			temp |= PLANE_WM_EN;
3345
 
3346
		r->plane_trans[pipe][i] = temp;
3347
	}
3348
 
3349
	temp = 0;
6084 serge 3350
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3351
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3352
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
5354 serge 3353
		temp |= PLANE_WM_EN;
3354
 
6084 serge 3355
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
5354 serge 3356
 
3357
	r->wm_linetime[pipe] = p_wm->linetime;
3358
}
3359
 
3360
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3361
				const struct skl_ddb_entry *entry)
3362
{
3363
	if (entry->end)
3364
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3365
	else
3366
		I915_WRITE(reg, 0);
3367
}
3368
 
3369
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3370
				const struct skl_wm_values *new)
3371
{
3372
	struct drm_device *dev = dev_priv->dev;
3373
	struct intel_crtc *crtc;
3374
 
3375
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3376
		int i, level, max_level = ilk_wm_max_level(dev);
3377
		enum pipe pipe = crtc->pipe;
3378
 
3379
		if (!new->dirty[pipe])
3380
			continue;
3381
 
3382
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3383
 
3384
		for (level = 0; level <= max_level; level++) {
3385
			for (i = 0; i < intel_num_planes(crtc); i++)
3386
				I915_WRITE(PLANE_WM(pipe, i, level),
3387
					   new->plane[pipe][i][level]);
3388
			I915_WRITE(CUR_WM(pipe, level),
6084 serge 3389
				   new->plane[pipe][PLANE_CURSOR][level]);
5354 serge 3390
		}
3391
		for (i = 0; i < intel_num_planes(crtc); i++)
3392
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
3393
				   new->plane_trans[pipe][i]);
6084 serge 3394
		I915_WRITE(CUR_WM_TRANS(pipe),
3395
			   new->plane_trans[pipe][PLANE_CURSOR]);
5354 serge 3396
 
6084 serge 3397
		for (i = 0; i < intel_num_planes(crtc); i++) {
5354 serge 3398
			skl_ddb_entry_write(dev_priv,
3399
					    PLANE_BUF_CFG(pipe, i),
3400
					    &new->ddb.plane[pipe][i]);
6084 serge 3401
			skl_ddb_entry_write(dev_priv,
3402
					    PLANE_NV12_BUF_CFG(pipe, i),
3403
					    &new->ddb.y_plane[pipe][i]);
3404
		}
5354 serge 3405
 
3406
		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
6084 serge 3407
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
5354 serge 3408
	}
3409
}
3410
 
3411
/*
3412
 * When setting up a new DDB allocation arrangement, we need to correctly
3413
 * sequence the times at which the new allocations for the pipes are taken into
3414
 * account or we'll have pipes fetching from space previously allocated to
3415
 * another pipe.
3416
 *
3417
 * Roughly the sequence looks like:
3418
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
3419
 *     overlapping with a previous light-up pipe (another way to put it is:
3420
 *     pipes with their new allocation strickly included into their old ones).
3421
 *  2. re-allocate the other pipes that get their allocation reduced
3422
 *  3. allocate the pipes having their allocation increased
3423
 *
3424
 * Steps 1. and 2. are here to take care of the following case:
3425
 * - Initially DDB looks like this:
3426
 *     |   B    |   C    |
3427
 * - enable pipe A.
3428
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3429
 *   allocation
3430
 *     |  A  |  B  |  C  |
3431
 *
3432
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3433
 */
3434
 
3435
static void
3436
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3437
{
3438
	int plane;
3439
 
3440
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3441
 
6084 serge 3442
	for_each_plane(dev_priv, pipe, plane) {
5354 serge 3443
		I915_WRITE(PLANE_SURF(pipe, plane),
3444
			   I915_READ(PLANE_SURF(pipe, plane)));
3445
	}
3446
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3447
}
3448
 
3449
static bool
3450
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3451
			    const struct skl_ddb_allocation *new,
3452
			    enum pipe pipe)
3453
{
3454
	uint16_t old_size, new_size;
3455
 
3456
	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3457
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3458
 
3459
	return old_size != new_size &&
3460
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
3461
	       new->pipe[pipe].end <= old->pipe[pipe].end;
3462
}
3463
 
3464
static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3465
				struct skl_wm_values *new_values)
3466
{
3467
	struct drm_device *dev = dev_priv->dev;
3468
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
6084 serge 3469
	bool reallocated[I915_MAX_PIPES] = {};
5354 serge 3470
	struct intel_crtc *crtc;
3471
	enum pipe pipe;
3472
 
3473
	new_ddb = &new_values->ddb;
3474
	cur_ddb = &dev_priv->wm.skl_hw.ddb;
3475
 
3476
	/*
3477
	 * First pass: flush the pipes with the new allocation contained into
3478
	 * the old space.
3479
	 *
3480
	 * We'll wait for the vblank on those pipes to ensure we can safely
3481
	 * re-allocate the freed space without this pipe fetching from it.
3482
	 */
3483
	for_each_intel_crtc(dev, crtc) {
3484
		if (!crtc->active)
3485
			continue;
3486
 
3487
		pipe = crtc->pipe;
3488
 
3489
		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3490
			continue;
3491
 
3492
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3493
		intel_wait_for_vblank(dev, pipe);
3494
 
3495
		reallocated[pipe] = true;
3496
	}
3497
 
3498
 
3499
	/*
3500
	 * Second pass: flush the pipes that are having their allocation
3501
	 * reduced, but overlapping with a previous allocation.
3502
	 *
3503
	 * Here as well we need to wait for the vblank to make sure the freed
3504
	 * space is not used anymore.
3505
	 */
3506
	for_each_intel_crtc(dev, crtc) {
3507
		if (!crtc->active)
3508
			continue;
3509
 
3510
		pipe = crtc->pipe;
3511
 
3512
		if (reallocated[pipe])
3513
			continue;
3514
 
3515
		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3516
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3517
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3518
			intel_wait_for_vblank(dev, pipe);
6084 serge 3519
			reallocated[pipe] = true;
5354 serge 3520
		}
3521
	}
3522
 
3523
	/*
3524
	 * Third pass: flush the pipes that got more space allocated.
3525
	 *
3526
	 * We don't need to actively wait for the update here, next vblank
3527
	 * will just get more DDB space with the correct WM values.
3528
	 */
3529
	for_each_intel_crtc(dev, crtc) {
3530
		if (!crtc->active)
3531
			continue;
3532
 
3533
		pipe = crtc->pipe;
3534
 
3535
		/*
3536
		 * At this point, only the pipes more space than before are
3537
		 * left to re-allocate.
3538
		 */
3539
		if (reallocated[pipe])
3540
			continue;
3541
 
3542
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3543
	}
3544
}
3545
 
3546
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3547
			       struct skl_pipe_wm_parameters *params,
3548
			       struct intel_wm_config *config,
3549
			       struct skl_ddb_allocation *ddb, /* out */
3550
			       struct skl_pipe_wm *pipe_wm /* out */)
3551
{
3552
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3553
 
3554
	skl_compute_wm_pipe_parameters(crtc, params);
3555
	skl_allocate_pipe_ddb(crtc, config, params, ddb);
3556
	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3557
 
3558
	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3559
		return false;
3560
 
3561
	intel_crtc->wm.skl_active = *pipe_wm;
6084 serge 3562
 
5354 serge 3563
	return true;
3564
}
3565
 
3566
static void skl_update_other_pipe_wm(struct drm_device *dev,
3567
				     struct drm_crtc *crtc,
3568
				     struct intel_wm_config *config,
3569
				     struct skl_wm_values *r)
3570
{
3571
	struct intel_crtc *intel_crtc;
3572
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3573
 
3574
	/*
3575
	 * If the WM update hasn't changed the allocation for this_crtc (the
3576
	 * crtc we are currently computing the new WM values for), other
3577
	 * enabled crtcs will keep the same allocation and we don't need to
3578
	 * recompute anything for them.
3579
	 */
3580
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3581
		return;
3582
 
3583
	/*
3584
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3585
	 * other active pipes need new DDB allocation and WM values.
3586
	 */
3587
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3588
				base.head) {
3589
		struct skl_pipe_wm_parameters params = {};
3590
		struct skl_pipe_wm pipe_wm = {};
3591
		bool wm_changed;
3592
 
3593
		if (this_crtc->pipe == intel_crtc->pipe)
3594
			continue;
3595
 
3596
		if (!intel_crtc->active)
3597
			continue;
3598
 
3599
		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3600
						¶ms, config,
3601
						&r->ddb, &pipe_wm);
3602
 
3603
		/*
3604
		 * If we end up re-computing the other pipe WM values, it's
3605
		 * because it was really needed, so we expect the WM values to
3606
		 * be different.
6084 serge 3607
		 */
5354 serge 3608
		WARN_ON(!wm_changed);
3609
 
3610
		skl_compute_wm_results(dev, ¶ms, &pipe_wm, r, intel_crtc);
3611
		r->dirty[intel_crtc->pipe] = true;
3612
	}
3613
}
3614
 
6084 serge 3615
static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3616
{
3617
	watermarks->wm_linetime[pipe] = 0;
3618
	memset(watermarks->plane[pipe], 0,
3619
	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3620
	memset(watermarks->plane_trans[pipe],
3621
	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3622
	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3623
 
3624
	/* Clear ddb entries for pipe */
3625
	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3626
	memset(&watermarks->ddb.plane[pipe], 0,
3627
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3628
	memset(&watermarks->ddb.y_plane[pipe], 0,
3629
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3630
	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3631
	       sizeof(struct skl_ddb_entry));
3632
 
3633
}
3634
 
5354 serge 3635
static void skl_update_wm(struct drm_crtc *crtc)
3636
{
3637
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3638
	struct drm_device *dev = crtc->dev;
3639
	struct drm_i915_private *dev_priv = dev->dev_private;
3640
	struct skl_pipe_wm_parameters params = {};
3641
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3642
	struct skl_pipe_wm pipe_wm = {};
3643
	struct intel_wm_config config = {};
3644
 
3645
 
6084 serge 3646
	/* Clear all dirty flags */
3647
	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3648
 
3649
	skl_clear_wm(results, intel_crtc->pipe);
3650
 
5354 serge 3651
	skl_compute_wm_global_parameters(dev, &config);
3652
 
3653
	if (!skl_update_pipe_wm(crtc, ¶ms, &config,
3654
				&results->ddb, &pipe_wm))
3655
		return;
3656
 
3657
	skl_compute_wm_results(dev, ¶ms, &pipe_wm, results, intel_crtc);
3658
	results->dirty[intel_crtc->pipe] = true;
3659
 
3660
	skl_update_other_pipe_wm(dev, crtc, &config, results);
3661
	skl_write_wm_values(dev_priv, results);
3662
	skl_flush_wm_values(dev_priv, results);
3663
 
3664
	/* store the new configuration */
3665
	dev_priv->wm.skl_hw = *results;
3666
}
3667
 
3668
static void
3669
skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3670
		     uint32_t sprite_width, uint32_t sprite_height,
3671
		     int pixel_size, bool enabled, bool scaled)
3672
{
3673
	struct intel_plane *intel_plane = to_intel_plane(plane);
6084 serge 3674
	struct drm_framebuffer *fb = plane->state->fb;
5354 serge 3675
 
3676
	intel_plane->wm.enabled = enabled;
3677
	intel_plane->wm.scaled = scaled;
3678
	intel_plane->wm.horiz_pixels = sprite_width;
3679
	intel_plane->wm.vert_pixels = sprite_height;
6084 serge 3680
	intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
5354 serge 3681
 
6084 serge 3682
	/* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
3683
	intel_plane->wm.bytes_per_pixel =
3684
		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3685
		drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
3686
	intel_plane->wm.y_bytes_per_pixel =
3687
		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3688
		drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
3689
 
3690
	/*
3691
	 * Framebuffer can be NULL on plane disable, but it does not
3692
	 * matter for watermarks if we assume no tiling in that case.
3693
	 */
3694
	if (fb)
3695
		intel_plane->wm.tiling = fb->modifier[0];
3696
	intel_plane->wm.rotation = plane->state->rotation;
3697
 
5354 serge 3698
	skl_update_wm(crtc);
3699
}
3700
 
4560 Serge 3701
static void ilk_update_wm(struct drm_crtc *crtc)
3702
{
3703
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6084 serge 3704
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4560 Serge 3705
	struct drm_device *dev = crtc->dev;
3706
	struct drm_i915_private *dev_priv = dev->dev_private;
3707
	struct ilk_wm_maximums max;
3708
	struct ilk_wm_values results = {};
4104 Serge 3709
	enum intel_ddb_partitioning partitioning;
4560 Serge 3710
	struct intel_pipe_wm pipe_wm = {};
3711
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3712
	struct intel_wm_config config = {};
4104 Serge 3713
 
6084 serge 3714
	WARN_ON(cstate->base.active != intel_crtc->active);
4104 Serge 3715
 
6084 serge 3716
	intel_compute_pipe_wm(cstate, &pipe_wm);
4560 Serge 3717
 
3718
	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3719
		return;
3720
 
3721
	intel_crtc->wm.active = pipe_wm;
3722
 
5060 serge 3723
	ilk_compute_wm_config(dev, &config);
3724
 
4560 Serge 3725
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3726
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3727
 
3728
	/* 5/6 split only in single pipe config on IVB+ */
3729
	if (INTEL_INFO(dev)->gen >= 7 &&
3730
	    config.num_pipes_active == 1 && config.sprites_enabled) {
3731
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3732
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3733
 
3734
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4104 Serge 3735
	} else {
4560 Serge 3736
		best_lp_wm = &lp_wm_1_2;
4104 Serge 3737
	}
3738
 
4560 Serge 3739
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4104 Serge 3740
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3741
 
4560 Serge 3742
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3743
 
3744
	ilk_write_wm_values(dev_priv, &results);
4104 Serge 3745
}
3746
 
5060 serge 3747
static void
3748
ilk_update_sprite_wm(struct drm_plane *plane,
5354 serge 3749
		     struct drm_crtc *crtc,
5060 serge 3750
		     uint32_t sprite_width, uint32_t sprite_height,
3751
		     int pixel_size, bool enabled, bool scaled)
4104 Serge 3752
{
4560 Serge 3753
	struct drm_device *dev = plane->dev;
5354 serge 3754
	struct intel_plane *intel_plane = to_intel_plane(plane);
4104 Serge 3755
 
4560 Serge 3756
	/*
3757
	 * IVB workaround: must disable low power watermarks for at least
3758
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
3759
	 * when scaling is disabled.
3760
	 *
3761
	 * WaCxSRDisabledForSpriteScaling:ivb
3762
	 */
3763
	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3764
		intel_wait_for_vblank(dev, intel_plane->pipe);
3765
 
3766
	ilk_update_wm(crtc);
4104 Serge 3767
}
3768
 
5354 serge 3769
static void skl_pipe_wm_active_state(uint32_t val,
3770
				     struct skl_pipe_wm *active,
3771
				     bool is_transwm,
3772
				     bool is_cursor,
3773
				     int i,
3774
				     int level)
3775
{
3776
	bool is_enabled = (val & PLANE_WM_EN) != 0;
3777
 
3778
	if (!is_transwm) {
3779
		if (!is_cursor) {
3780
			active->wm[level].plane_en[i] = is_enabled;
3781
			active->wm[level].plane_res_b[i] =
3782
					val & PLANE_WM_BLOCKS_MASK;
3783
			active->wm[level].plane_res_l[i] =
3784
					(val >> PLANE_WM_LINES_SHIFT) &
3785
						PLANE_WM_LINES_MASK;
3786
		} else {
6084 serge 3787
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3788
			active->wm[level].plane_res_b[PLANE_CURSOR] =
5354 serge 3789
					val & PLANE_WM_BLOCKS_MASK;
6084 serge 3790
			active->wm[level].plane_res_l[PLANE_CURSOR] =
5354 serge 3791
					(val >> PLANE_WM_LINES_SHIFT) &
3792
						PLANE_WM_LINES_MASK;
3793
		}
3794
	} else {
3795
		if (!is_cursor) {
3796
			active->trans_wm.plane_en[i] = is_enabled;
3797
			active->trans_wm.plane_res_b[i] =
3798
					val & PLANE_WM_BLOCKS_MASK;
3799
			active->trans_wm.plane_res_l[i] =
3800
					(val >> PLANE_WM_LINES_SHIFT) &
3801
						PLANE_WM_LINES_MASK;
3802
		} else {
6084 serge 3803
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3804
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
5354 serge 3805
					val & PLANE_WM_BLOCKS_MASK;
6084 serge 3806
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
5354 serge 3807
					(val >> PLANE_WM_LINES_SHIFT) &
3808
						PLANE_WM_LINES_MASK;
3809
		}
3810
	}
3811
}
3812
 
3813
static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3814
{
3815
	struct drm_device *dev = crtc->dev;
3816
	struct drm_i915_private *dev_priv = dev->dev_private;
3817
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3818
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3819
	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3820
	enum pipe pipe = intel_crtc->pipe;
3821
	int level, i, max_level;
3822
	uint32_t temp;
3823
 
3824
	max_level = ilk_wm_max_level(dev);
3825
 
3826
	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3827
 
3828
	for (level = 0; level <= max_level; level++) {
3829
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
3830
			hw->plane[pipe][i][level] =
3831
					I915_READ(PLANE_WM(pipe, i, level));
6084 serge 3832
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
5354 serge 3833
	}
3834
 
3835
	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3836
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
6084 serge 3837
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
5354 serge 3838
 
6084 serge 3839
	if (!intel_crtc->active)
5354 serge 3840
		return;
3841
 
3842
	hw->dirty[pipe] = true;
3843
 
3844
	active->linetime = hw->wm_linetime[pipe];
3845
 
3846
	for (level = 0; level <= max_level; level++) {
3847
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3848
			temp = hw->plane[pipe][i][level];
3849
			skl_pipe_wm_active_state(temp, active, false,
3850
						false, i, level);
3851
		}
6084 serge 3852
		temp = hw->plane[pipe][PLANE_CURSOR][level];
5354 serge 3853
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
3854
	}
3855
 
3856
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3857
		temp = hw->plane_trans[pipe][i];
3858
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3859
	}
3860
 
6084 serge 3861
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
5354 serge 3862
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3863
}
3864
 
3865
void skl_wm_get_hw_state(struct drm_device *dev)
3866
{
3867
	struct drm_i915_private *dev_priv = dev->dev_private;
3868
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3869
	struct drm_crtc *crtc;
3870
 
3871
	skl_ddb_get_hw_state(dev_priv, ddb);
3872
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3873
		skl_pipe_wm_get_hw_state(crtc);
3874
}
3875
 
4560 Serge 3876
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3031 serge 3877
{
4560 Serge 3878
	struct drm_device *dev = crtc->dev;
3879
	struct drm_i915_private *dev_priv = dev->dev_private;
3880
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3881
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3882
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
3883
	enum pipe pipe = intel_crtc->pipe;
3884
	static const unsigned int wm0_pipe_reg[] = {
3885
		[PIPE_A] = WM0_PIPEA_ILK,
3886
		[PIPE_B] = WM0_PIPEB_ILK,
3887
		[PIPE_C] = WM0_PIPEC_IVB,
3888
	};
3031 serge 3889
 
4560 Serge 3890
	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3891
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3892
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3031 serge 3893
 
6660 serge 3894
	memset(active, 0, sizeof(*active));
3895
 
6084 serge 3896
	active->pipe_enabled = intel_crtc->active;
5060 serge 3897
 
3898
	if (active->pipe_enabled) {
4560 Serge 3899
		u32 tmp = hw->wm_pipe[pipe];
3031 serge 3900
 
4560 Serge 3901
		/*
3902
		 * For active pipes LP0 watermark is marked as
3903
		 * enabled, and LP1+ watermaks as disabled since
3904
		 * we can't really reverse compute them in case
3905
		 * multiple pipes are active.
3906
		 */
3907
		active->wm[0].enable = true;
3908
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3909
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3910
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3911
		active->linetime = hw->wm_linetime[pipe];
3912
	} else {
3913
		int level, max_level = ilk_wm_max_level(dev);
3031 serge 3914
 
4560 Serge 3915
		/*
3916
		 * For inactive pipes, all watermark levels
3917
		 * should be marked as enabled but zeroed,
3918
		 * which is what we'd compute them to.
3919
		 */
3920
		for (level = 0; level <= max_level; level++)
3921
			active->wm[level].enable = true;
3031 serge 3922
	}
3923
}
3924
 
6084 serge 3925
#define _FW_WM(value, plane) \
3926
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3927
#define _FW_WM_VLV(value, plane) \
3928
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3929
 
3930
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3931
			       struct vlv_wm_values *wm)
3932
{
3933
	enum pipe pipe;
3934
	uint32_t tmp;
3935
 
3936
	for_each_pipe(dev_priv, pipe) {
3937
		tmp = I915_READ(VLV_DDL(pipe));
3938
 
3939
		wm->ddl[pipe].primary =
3940
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3941
		wm->ddl[pipe].cursor =
3942
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3943
		wm->ddl[pipe].sprite[0] =
3944
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3945
		wm->ddl[pipe].sprite[1] =
3946
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3947
	}
3948
 
3949
	tmp = I915_READ(DSPFW1);
3950
	wm->sr.plane = _FW_WM(tmp, SR);
3951
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3952
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3953
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3954
 
3955
	tmp = I915_READ(DSPFW2);
3956
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3957
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3958
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3959
 
3960
	tmp = I915_READ(DSPFW3);
3961
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3962
 
3963
	if (IS_CHERRYVIEW(dev_priv)) {
3964
		tmp = I915_READ(DSPFW7_CHV);
3965
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3966
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3967
 
3968
		tmp = I915_READ(DSPFW8_CHV);
3969
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3970
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3971
 
3972
		tmp = I915_READ(DSPFW9_CHV);
3973
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3974
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3975
 
3976
		tmp = I915_READ(DSPHOWM);
3977
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3978
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3979
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3980
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3981
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3982
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3983
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3984
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3985
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3986
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3987
	} else {
3988
		tmp = I915_READ(DSPFW7);
3989
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3990
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3991
 
3992
		tmp = I915_READ(DSPHOWM);
3993
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3994
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3995
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3996
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3997
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3998
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3999
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4000
	}
4001
}
4002
 
4003
#undef _FW_WM
4004
#undef _FW_WM_VLV
4005
 
4006
void vlv_wm_get_hw_state(struct drm_device *dev)
4007
{
4008
	struct drm_i915_private *dev_priv = to_i915(dev);
4009
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4010
	struct intel_plane *plane;
4011
	enum pipe pipe;
4012
	u32 val;
4013
 
4014
	vlv_read_wm_values(dev_priv, wm);
4015
 
4016
	for_each_intel_plane(dev, plane) {
4017
		switch (plane->base.type) {
4018
			int sprite;
4019
		case DRM_PLANE_TYPE_CURSOR:
4020
			plane->wm.fifo_size = 63;
4021
			break;
4022
		case DRM_PLANE_TYPE_PRIMARY:
4023
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4024
			break;
4025
		case DRM_PLANE_TYPE_OVERLAY:
4026
			sprite = plane->plane;
4027
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4028
			break;
4029
		}
4030
	}
4031
 
4032
	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4033
	wm->level = VLV_WM_LEVEL_PM2;
4034
 
4035
	if (IS_CHERRYVIEW(dev_priv)) {
4036
		mutex_lock(&dev_priv->rps.hw_lock);
4037
 
4038
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4039
		if (val & DSP_MAXFIFO_PM5_ENABLE)
4040
			wm->level = VLV_WM_LEVEL_PM5;
4041
 
4042
		/*
4043
		 * If DDR DVFS is disabled in the BIOS, Punit
4044
		 * will never ack the request. So if that happens
4045
		 * assume we don't have to enable/disable DDR DVFS
4046
		 * dynamically. To test that just set the REQ_ACK
4047
		 * bit to poke the Punit, but don't change the
4048
		 * HIGH/LOW bits so that we don't actually change
4049
		 * the current state.
4050
		 */
4051
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4052
		val |= FORCE_DDR_FREQ_REQ_ACK;
4053
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4054
 
4055
		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4056
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4057
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4058
				      "assuming DDR DVFS is disabled\n");
4059
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4060
		} else {
4061
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4062
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4063
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
4064
		}
4065
 
4066
		mutex_unlock(&dev_priv->rps.hw_lock);
4067
	}
4068
 
4069
	for_each_pipe(dev_priv, pipe)
4070
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4071
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4072
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4073
 
4074
	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4075
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4076
}
4077
 
4560 Serge 4078
void ilk_wm_get_hw_state(struct drm_device *dev)
3031 serge 4079
{
4080
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 4081
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4082
	struct drm_crtc *crtc;
3031 serge 4083
 
5060 serge 4084
	for_each_crtc(dev, crtc)
4560 Serge 4085
		ilk_pipe_wm_get_hw_state(crtc);
4104 Serge 4086
 
4560 Serge 4087
	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4088
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4089
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3031 serge 4090
 
4560 Serge 4091
	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5060 serge 4092
	if (INTEL_INFO(dev)->gen >= 7) {
5354 serge 4093
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4094
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
5060 serge 4095
	}
3031 serge 4096
 
4560 Serge 4097
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4098
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4099
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4100
	else if (IS_IVYBRIDGE(dev))
4101
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4102
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3031 serge 4103
 
4560 Serge 4104
	hw->enable_fbc_wm =
4105
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3031 serge 4106
}
4107
 
4108
/**
4109
 * intel_update_watermarks - update FIFO watermark values based on current modes
4110
 *
4111
 * Calculate watermark values for the various WM regs based on current mode
4112
 * and plane configuration.
4113
 *
4114
 * There are several cases to deal with here:
4115
 *   - normal (i.e. non-self-refresh)
4116
 *   - self-refresh (SR) mode
4117
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
4118
 *   - lines are small relative to FIFO size (buffer can hold more than 2
4119
 *     lines), so need to account for TLB latency
4120
 *
4121
 *   The normal calculation is:
4122
 *     watermark = dotclock * bytes per pixel * latency
4123
 *   where latency is platform & configuration dependent (we assume pessimal
4124
 *   values here).
4125
 *
4126
 *   The SR calculation is:
4127
 *     watermark = (trunc(latency/line time)+1) * surface width *
4128
 *       bytes per pixel
4129
 *   where
4130
 *     line time = htotal / dotclock
4131
 *     surface width = hdisplay for normal plane and 64 for cursor
4132
 *   and latency is assumed to be high, as above.
4133
 *
4134
 * The final value programmed to the register should always be rounded up,
4135
 * and include an extra 2 entries to account for clock crossings.
4136
 *
4137
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
4138
 * to set the non-SR watermarks to 8.
4139
 */
4560 Serge 4140
void intel_update_watermarks(struct drm_crtc *crtc)
3031 serge 4141
{
4560 Serge 4142
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3031 serge 4143
 
4144
	if (dev_priv->display.update_wm)
4560 Serge 4145
		dev_priv->display.update_wm(crtc);
3031 serge 4146
}
4147
 
4104 Serge 4148
void intel_update_sprite_watermarks(struct drm_plane *plane,
4149
				    struct drm_crtc *crtc,
5060 serge 4150
				    uint32_t sprite_width,
4151
				    uint32_t sprite_height,
4152
				    int pixel_size,
4104 Serge 4153
				    bool enabled, bool scaled)
3031 serge 4154
{
4104 Serge 4155
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3031 serge 4156
 
4157
	if (dev_priv->display.update_sprite_wm)
5060 serge 4158
		dev_priv->display.update_sprite_wm(plane, crtc,
4159
						   sprite_width, sprite_height,
4104 Serge 4160
						   pixel_size, enabled, scaled);
3031 serge 4161
}
4162
 
4163
/**
4164
 * Lock protecting IPS related data structures
4165
 */
4166
DEFINE_SPINLOCK(mchdev_lock);
4167
 
4168
/* Global for IPS driver to get at the current i915 device. Protected by
4169
 * mchdev_lock. */
4170
static struct drm_i915_private *i915_mch_dev;
4171
 
4172
bool ironlake_set_drps(struct drm_device *dev, u8 val)
4173
{
4174
	struct drm_i915_private *dev_priv = dev->dev_private;
4175
	u16 rgvswctl;
4176
 
4177
	assert_spin_locked(&mchdev_lock);
4178
 
4179
	rgvswctl = I915_READ16(MEMSWCTL);
4180
	if (rgvswctl & MEMCTL_CMD_STS) {
4181
		DRM_DEBUG("gpu busy, RCS change rejected\n");
4182
		return false; /* still busy with another command */
4183
	}
4184
 
4185
	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4186
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4187
	I915_WRITE16(MEMSWCTL, rgvswctl);
4188
	POSTING_READ16(MEMSWCTL);
4189
 
4190
	rgvswctl |= MEMCTL_CMD_STS;
4191
	I915_WRITE16(MEMSWCTL, rgvswctl);
4192
 
4193
	return true;
4194
}
4195
 
4196
static void ironlake_enable_drps(struct drm_device *dev)
4197
{
4198
	struct drm_i915_private *dev_priv = dev->dev_private;
4199
	u32 rgvmodectl = I915_READ(MEMMODECTL);
4200
	u8 fmax, fmin, fstart, vstart;
4201
 
4202
	spin_lock_irq(&mchdev_lock);
4203
 
4204
	/* Enable temp reporting */
4205
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4206
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4207
 
4208
	/* 100ms RC evaluation intervals */
4209
	I915_WRITE(RCUPEI, 100000);
4210
	I915_WRITE(RCDNEI, 100000);
4211
 
4212
	/* Set max/min thresholds to 90ms and 80ms respectively */
4213
	I915_WRITE(RCBMAXAVG, 90000);
4214
	I915_WRITE(RCBMINAVG, 80000);
4215
 
4216
	I915_WRITE(MEMIHYST, 1);
4217
 
4218
	/* Set up min, max, and cur for interrupt handling */
4219
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4220
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4221
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4222
		MEMMODE_FSTART_SHIFT;
4223
 
6084 serge 4224
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
3031 serge 4225
		PXVFREQ_PX_SHIFT;
4226
 
4227
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4228
	dev_priv->ips.fstart = fstart;
4229
 
4230
	dev_priv->ips.max_delay = fstart;
4231
	dev_priv->ips.min_delay = fmin;
4232
	dev_priv->ips.cur_delay = fstart;
4233
 
4234
	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4235
			 fmax, fmin, fstart);
4236
 
4237
	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4238
 
4239
	/*
4240
	 * Interrupts will be enabled in ironlake_irq_postinstall
4241
	 */
4242
 
4243
	I915_WRITE(VIDSTART, vstart);
4244
	POSTING_READ(VIDSTART);
4245
 
4246
	rgvmodectl |= MEMMODE_SWMODE_EN;
4247
	I915_WRITE(MEMMODECTL, rgvmodectl);
4248
 
4249
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4250
		DRM_ERROR("stuck trying to change perf mode\n");
4251
	mdelay(1);
4252
 
4253
	ironlake_set_drps(dev, fstart);
4254
 
6084 serge 4255
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4256
		I915_READ(DDREC) + I915_READ(CSIEC);
5060 serge 4257
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6084 serge 4258
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
5060 serge 4259
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
3031 serge 4260
 
4261
	spin_unlock_irq(&mchdev_lock);
4262
}
4263
 
4264
static void ironlake_disable_drps(struct drm_device *dev)
4265
{
4266
	struct drm_i915_private *dev_priv = dev->dev_private;
4267
	u16 rgvswctl;
4268
 
4269
	spin_lock_irq(&mchdev_lock);
4270
 
4271
	rgvswctl = I915_READ16(MEMSWCTL);
4272
 
4273
	/* Ack interrupts, disable EFC interrupt */
4274
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4275
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4276
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4277
	I915_WRITE(DEIIR, DE_PCU_EVENT);
4278
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4279
 
4280
	/* Go back to the starting frequency */
4281
	ironlake_set_drps(dev, dev_priv->ips.fstart);
4282
	mdelay(1);
4283
	rgvswctl |= MEMCTL_CMD_STS;
4284
	I915_WRITE(MEMSWCTL, rgvswctl);
4285
	mdelay(1);
4286
 
4287
	spin_unlock_irq(&mchdev_lock);
4288
}
4289
 
4290
/* There's a funny hw issue where the hw returns all 0 when reading from
4291
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4292
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4293
 * all limits and the gpu stuck at whatever frequency it is at atm).
4294
 */
6084 serge 4295
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3031 serge 4296
{
4297
	u32 limits;
4298
 
4299
	/* Only set the down limit when we've reached the lowest level to avoid
4300
	 * getting more interrupts, otherwise leave this clear. This prevents a
4301
	 * race in the hw when coming out of rc6: There's a tiny window where
4302
	 * the hw runs at the minimal clock before selecting the desired
4303
	 * frequency, if the down threshold expires in that window we will not
4304
	 * receive a down interrupt. */
6084 serge 4305
	if (IS_GEN9(dev_priv->dev)) {
4306
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
4307
		if (val <= dev_priv->rps.min_freq_softlimit)
4308
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4309
	} else {
4310
		limits = dev_priv->rps.max_freq_softlimit << 24;
4311
		if (val <= dev_priv->rps.min_freq_softlimit)
4312
			limits |= dev_priv->rps.min_freq_softlimit << 16;
4313
	}
3031 serge 4314
 
4315
	return limits;
4316
}
4317
 
4560 Serge 4318
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4319
{
4320
	int new_power;
6084 serge 4321
	u32 threshold_up = 0, threshold_down = 0; /* in % */
4322
	u32 ei_up = 0, ei_down = 0;
4560 Serge 4323
 
4324
	new_power = dev_priv->rps.power;
4325
	switch (dev_priv->rps.power) {
4326
	case LOW_POWER:
5060 serge 4327
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4560 Serge 4328
			new_power = BETWEEN;
4329
		break;
4330
 
4331
	case BETWEEN:
5060 serge 4332
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4560 Serge 4333
			new_power = LOW_POWER;
5060 serge 4334
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4560 Serge 4335
			new_power = HIGH_POWER;
4336
		break;
4337
 
4338
	case HIGH_POWER:
5060 serge 4339
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4560 Serge 4340
			new_power = BETWEEN;
4341
		break;
4342
	}
4343
	/* Max/min bins are special */
6084 serge 4344
	if (val <= dev_priv->rps.min_freq_softlimit)
4560 Serge 4345
		new_power = LOW_POWER;
6084 serge 4346
	if (val >= dev_priv->rps.max_freq_softlimit)
4560 Serge 4347
		new_power = HIGH_POWER;
4348
	if (new_power == dev_priv->rps.power)
4349
		return;
4350
 
4351
	/* Note the units here are not exactly 1us, but 1280ns. */
4352
	switch (new_power) {
4353
	case LOW_POWER:
4354
		/* Upclock if more than 95% busy over 16ms */
6084 serge 4355
		ei_up = 16000;
4356
		threshold_up = 95;
4560 Serge 4357
 
4358
		/* Downclock if less than 85% busy over 32ms */
6084 serge 4359
		ei_down = 32000;
4360
		threshold_down = 85;
4560 Serge 4361
		break;
4362
 
4363
	case BETWEEN:
4364
		/* Upclock if more than 90% busy over 13ms */
6084 serge 4365
		ei_up = 13000;
4366
		threshold_up = 90;
4560 Serge 4367
 
4368
		/* Downclock if less than 75% busy over 32ms */
6084 serge 4369
		ei_down = 32000;
4370
		threshold_down = 75;
4560 Serge 4371
		break;
4372
 
4373
	case HIGH_POWER:
4374
		/* Upclock if more than 85% busy over 10ms */
6084 serge 4375
		ei_up = 10000;
4376
		threshold_up = 85;
4560 Serge 4377
 
4378
		/* Downclock if less than 60% busy over 32ms */
6084 serge 4379
		ei_down = 32000;
4380
		threshold_down = 60;
4560 Serge 4381
		break;
4382
	}
4383
 
6935 serge 4384
	/* When byt can survive without system hang with dynamic
4385
	 * sw freq adjustments, this restriction can be lifted.
4386
	 */
4387
	if (IS_VALLEYVIEW(dev_priv))
4388
		goto skip_hw_write;
4389
 
6084 serge 4390
	I915_WRITE(GEN6_RP_UP_EI,
4391
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
4392
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4393
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4394
 
4395
	I915_WRITE(GEN6_RP_DOWN_EI,
4396
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
4397
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4398
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4399
 
4400
	 I915_WRITE(GEN6_RP_CONTROL,
4401
		    GEN6_RP_MEDIA_TURBO |
4402
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4403
		    GEN6_RP_MEDIA_IS_GFX |
4404
		    GEN6_RP_ENABLE |
4405
		    GEN6_RP_UP_BUSY_AVG |
4406
		    GEN6_RP_DOWN_IDLE_AVG);
4407
 
6935 serge 4408
skip_hw_write:
4560 Serge 4409
	dev_priv->rps.power = new_power;
6084 serge 4410
	dev_priv->rps.up_threshold = threshold_up;
4411
	dev_priv->rps.down_threshold = threshold_down;
4560 Serge 4412
	dev_priv->rps.last_adj = 0;
4413
}
4414
 
5060 serge 4415
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4416
{
4417
	u32 mask = 0;
4418
 
6935 serge 4419
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
5060 serge 4420
	if (val > dev_priv->rps.min_freq_softlimit)
6935 serge 4421
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
5060 serge 4422
	if (val < dev_priv->rps.max_freq_softlimit)
6084 serge 4423
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
5060 serge 4424
 
4425
	mask &= dev_priv->pm_rps_events;
4426
 
6084 serge 4427
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
5060 serge 4428
}
4429
 
4430
/* gen6_set_rps is called to update the frequency request, but should also be
4431
 * called when the range (min_delay and max_delay) is modified so that we can
4432
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6084 serge 4433
static void gen6_set_rps(struct drm_device *dev, u8 val)
3031 serge 4434
{
4435
	struct drm_i915_private *dev_priv = dev->dev_private;
4436
 
6084 serge 4437
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4438
	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
4439
		return;
4440
 
3243 Serge 4441
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6084 serge 4442
	WARN_ON(val > dev_priv->rps.max_freq);
4443
	WARN_ON(val < dev_priv->rps.min_freq);
3031 serge 4444
 
5060 serge 4445
	/* min/max delay may still have been modified so be sure to
4446
	 * write the limits value.
4447
	 */
4448
	if (val != dev_priv->rps.cur_freq) {
5354 serge 4449
		gen6_set_rps_thresholds(dev_priv, val);
4560 Serge 4450
 
6084 serge 4451
		if (IS_GEN9(dev))
5354 serge 4452
			I915_WRITE(GEN6_RPNSWREQ,
6084 serge 4453
				   GEN9_FREQUENCY(val));
4454
		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4455
			I915_WRITE(GEN6_RPNSWREQ,
5354 serge 4456
				   HSW_FREQUENCY(val));
4457
		else
4458
			I915_WRITE(GEN6_RPNSWREQ,
4459
				   GEN6_FREQUENCY(val) |
4460
				   GEN6_OFFSET(0) |
4461
				   GEN6_AGGRESSIVE_TURBO);
5060 serge 4462
	}
3031 serge 4463
 
4464
	/* Make sure we continue to get interrupts
4465
	 * until we hit the minimum or maximum frequencies.
4466
	 */
6084 serge 4467
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
5060 serge 4468
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3031 serge 4469
 
4470
	POSTING_READ(GEN6_RPNSWREQ);
4471
 
5060 serge 4472
	dev_priv->rps.cur_freq = val;
6084 serge 4473
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
3031 serge 4474
}
4475
 
6084 serge 4476
static void valleyview_set_rps(struct drm_device *dev, u8 val)
5060 serge 4477
{
6084 serge 4478
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 4479
 
6084 serge 4480
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4481
	WARN_ON(val > dev_priv->rps.max_freq);
4482
	WARN_ON(val < dev_priv->rps.min_freq);
5060 serge 4483
 
6084 serge 4484
	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4485
		      "Odd GPU freq value\n"))
4486
		val &= ~1;
5060 serge 4487
 
6084 serge 4488
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5060 serge 4489
 
6084 serge 4490
	if (val != dev_priv->rps.cur_freq) {
4491
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4492
		if (!IS_CHERRYVIEW(dev_priv))
4493
			gen6_set_rps_thresholds(dev_priv, val);
4494
	}
5060 serge 4495
 
6084 serge 4496
	dev_priv->rps.cur_freq = val;
4497
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4498
}
5060 serge 4499
 
6084 serge 4500
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4501
 *
4502
 * * If Gfx is Idle, then
4503
 * 1. Forcewake Media well.
4504
 * 2. Request idle freq.
4505
 * 3. Release Forcewake of Media well.
4506
*/
4507
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4508
{
4509
	u32 val = dev_priv->rps.idle_freq;
5060 serge 4510
 
6084 serge 4511
	if (dev_priv->rps.cur_freq <= val)
4512
		return;
5060 serge 4513
 
6084 serge 4514
	/* Wake up the media well, as that takes a lot less
4515
	 * power than the Render well. */
4516
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4517
	valleyview_set_rps(dev_priv->dev, val);
4518
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5060 serge 4519
}
4520
 
6084 serge 4521
void gen6_rps_busy(struct drm_i915_private *dev_priv)
3031 serge 4522
{
4560 Serge 4523
	mutex_lock(&dev_priv->rps.hw_lock);
4524
	if (dev_priv->rps.enabled) {
6935 serge 4525
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6084 serge 4526
			gen6_rps_reset_ei(dev_priv);
4527
		I915_WRITE(GEN6_PMINTRMSK,
4528
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4560 Serge 4529
	}
4530
	mutex_unlock(&dev_priv->rps.hw_lock);
4531
}
4104 Serge 4532
 
6084 serge 4533
void gen6_rps_idle(struct drm_i915_private *dev_priv)
4560 Serge 4534
{
4535
	struct drm_device *dev = dev_priv->dev;
4104 Serge 4536
 
4560 Serge 4537
	mutex_lock(&dev_priv->rps.hw_lock);
4538
	if (dev_priv->rps.enabled) {
4539
		if (IS_VALLEYVIEW(dev))
6084 serge 4540
			vlv_set_rps_idle(dev_priv);
4560 Serge 4541
		else
6084 serge 4542
			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4560 Serge 4543
		dev_priv->rps.last_adj = 0;
6660 serge 4544
		I915_WRITE(GEN6_PMINTRMSK,
4545
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4560 Serge 4546
	}
4547
	mutex_unlock(&dev_priv->rps.hw_lock);
6084 serge 4548
 
4549
	spin_lock(&dev_priv->rps.client_lock);
4550
	while (!list_empty(&dev_priv->rps.clients))
4551
		list_del_init(dev_priv->rps.clients.next);
4552
	spin_unlock(&dev_priv->rps.client_lock);
4104 Serge 4553
}
4554
 
6084 serge 4555
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4556
		    struct intel_rps_client *rps,
4557
		    unsigned long submitted)
4104 Serge 4558
{
6084 serge 4559
	/* This is intentionally racy! We peek at the state here, then
4560
	 * validate inside the RPS worker.
4561
	 */
4562
	if (!(dev_priv->mm.busy &&
4563
	      dev_priv->rps.enabled &&
4564
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4565
		return;
3031 serge 4566
 
6084 serge 4567
	/* Force a RPS boost (and don't count it against the client) if
4568
	 * the GPU is severely congested.
4569
	 */
4570
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4571
		rps = NULL;
4104 Serge 4572
 
6084 serge 4573
	spin_lock(&dev_priv->rps.client_lock);
4574
	if (rps == NULL || list_empty(&rps->link)) {
4575
		spin_lock_irq(&dev_priv->irq_lock);
4576
		if (dev_priv->rps.interrupts_enabled) {
4577
			dev_priv->rps.client_boost = true;
4578
			queue_work(dev_priv->wq, &dev_priv->rps.work);
4579
		}
4580
		spin_unlock_irq(&dev_priv->irq_lock);
4104 Serge 4581
 
6084 serge 4582
		if (rps != NULL) {
4583
			list_add(&rps->link, &dev_priv->rps.clients);
4584
			rps->boosts++;
4585
		} else
4586
			dev_priv->rps.boosts++;
4587
	}
4588
	spin_unlock(&dev_priv->rps.client_lock);
4589
}
4104 Serge 4590
 
6084 serge 4591
void intel_set_rps(struct drm_device *dev, u8 val)
4592
{
4593
	if (IS_VALLEYVIEW(dev))
4594
		valleyview_set_rps(dev, val);
4595
	else
4596
		gen6_set_rps(dev, val);
4104 Serge 4597
}
4598
 
5354 serge 4599
static void gen9_disable_rps(struct drm_device *dev)
5060 serge 4600
{
4601
	struct drm_i915_private *dev_priv = dev->dev_private;
4602
 
5354 serge 4603
	I915_WRITE(GEN6_RC_CONTROL, 0);
6084 serge 4604
	I915_WRITE(GEN9_PG_ENABLE, 0);
5060 serge 4605
}
4606
 
4104 Serge 4607
static void gen6_disable_rps(struct drm_device *dev)
4608
{
4609
	struct drm_i915_private *dev_priv = dev->dev_private;
4610
 
4611
	I915_WRITE(GEN6_RC_CONTROL, 0);
4612
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4613
}
4614
 
5060 serge 4615
static void cherryview_disable_rps(struct drm_device *dev)
4616
{
4617
	struct drm_i915_private *dev_priv = dev->dev_private;
4618
 
4619
	I915_WRITE(GEN6_RC_CONTROL, 0);
4620
}
4621
 
4104 Serge 4622
static void valleyview_disable_rps(struct drm_device *dev)
4623
{
4624
	struct drm_i915_private *dev_priv = dev->dev_private;
4625
 
5354 serge 4626
	/* we're doing forcewake before Disabling RC6,
4627
	 * This what the BIOS expects when going into suspend */
6084 serge 4628
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5354 serge 4629
 
4104 Serge 4630
	I915_WRITE(GEN6_RC_CONTROL, 0);
4631
 
6084 serge 4632
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4104 Serge 4633
}
4634
 
4560 Serge 4635
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4636
{
5060 serge 4637
	if (IS_VALLEYVIEW(dev)) {
4638
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4639
			mode = GEN6_RC_CTL_RC6_ENABLE;
4640
		else
4641
			mode = 0;
4642
	}
5354 serge 4643
	if (HAS_RC6p(dev))
4644
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
6084 serge 4645
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4646
			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4647
			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
5354 serge 4648
 
4649
	else
4650
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4651
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4560 Serge 4652
}
4653
 
5060 serge 4654
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3031 serge 4655
{
6084 serge 4656
	/* No RC6 before Ironlake and code is gone for ilk. */
4657
	if (INTEL_INFO(dev)->gen < 6)
4104 Serge 4658
		return 0;
4659
 
3031 serge 4660
	/* Respect the kernel parameter if it is set */
5060 serge 4661
	if (enable_rc6 >= 0) {
4662
		int mask;
3031 serge 4663
 
5354 serge 4664
		if (HAS_RC6p(dev))
5060 serge 4665
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4666
			       INTEL_RC6pp_ENABLE;
4667
		else
4668
			mask = INTEL_RC6_ENABLE;
4669
 
4670
		if ((enable_rc6 & mask) != enable_rc6)
4671
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
6084 serge 4672
				      enable_rc6 & mask, enable_rc6, mask);
5060 serge 4673
 
4674
		return enable_rc6 & mask;
4675
	}
4676
 
4677
	if (IS_IVYBRIDGE(dev))
4678
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3031 serge 4679
 
6084 serge 4680
	return INTEL_RC6_ENABLE;
5060 serge 4681
}
3031 serge 4682
 
5060 serge 4683
int intel_enable_rc6(const struct drm_device *dev)
4684
{
4685
	return i915.enable_rc6;
3031 serge 4686
}
4687
 
5354 serge 4688
static void gen6_init_rps_frequencies(struct drm_device *dev)
5060 serge 4689
{
4690
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 4691
	uint32_t rp_state_cap;
4692
	u32 ddcc_status = 0;
4693
	int ret;
5060 serge 4694
 
4695
	/* All of these values are in units of 50MHz */
4696
	dev_priv->rps.cur_freq		= 0;
5354 serge 4697
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6084 serge 4698
	if (IS_BROXTON(dev)) {
4699
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4700
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4701
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4702
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4703
	} else {
4704
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4705
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4706
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4707
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4708
	}
4709
 
5060 serge 4710
	/* hw_max = RP0 until we check for overclocking */
4711
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
4104 Serge 4712
 
5354 serge 4713
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
6084 serge 4714
	if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
5354 serge 4715
		ret = sandybridge_pcode_read(dev_priv,
4716
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4717
					&ddcc_status);
4718
		if (0 == ret)
4719
			dev_priv->rps.efficient_freq =
6084 serge 4720
				clamp_t(u8,
4721
					((ddcc_status >> 8) & 0xff),
4722
					dev_priv->rps.min_freq,
4723
					dev_priv->rps.max_freq);
5354 serge 4724
	}
4725
 
6084 serge 4726
	if (IS_SKYLAKE(dev)) {
4727
		/* Store the frequency values in 16.66 MHZ units, which is
4728
		   the natural hardware unit for SKL */
4729
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4730
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4731
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4732
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4733
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4734
	}
4735
 
4736
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4737
 
5060 serge 4738
	/* Preserve min/max settings in case of re-init */
4739
	if (dev_priv->rps.max_freq_softlimit == 0)
4740
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4104 Serge 4741
 
5354 serge 4742
	if (dev_priv->rps.min_freq_softlimit == 0) {
4743
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4744
			dev_priv->rps.min_freq_softlimit =
6084 serge 4745
				max_t(int, dev_priv->rps.efficient_freq,
4746
				      intel_freq_opcode(dev_priv, 450));
5354 serge 4747
		else
4748
			dev_priv->rps.min_freq_softlimit =
4749
				dev_priv->rps.min_freq;
4750
	}
4104 Serge 4751
}
4752
 
6084 serge 4753
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5354 serge 4754
static void gen9_enable_rps(struct drm_device *dev)
4755
{
4756
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 4757
 
4758
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4759
 
4760
	gen6_init_rps_frequencies(dev);
4761
 
4762
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4763
	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
4764
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4765
		return;
4766
	}
4767
 
4768
	/* Program defaults and thresholds for RPS*/
4769
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4770
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4771
 
4772
	/* 1 second timeout*/
4773
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4774
		GT_INTERVAL_FROM_US(dev_priv, 1000000));
4775
 
4776
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4777
 
4778
	/* Leaning on the below call to gen6_set_rps to program/setup the
4779
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4780
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4781
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4782
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4783
 
4784
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4785
}
4786
 
4787
static void gen9_enable_rc6(struct drm_device *dev)
4788
{
4789
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 4790
	struct intel_engine_cs *ring;
4791
	uint32_t rc6_mask = 0;
4792
	int unused;
4793
 
4794
	/* 1a: Software RC state - RC0 */
4795
	I915_WRITE(GEN6_RC_STATE, 0);
4796
 
4797
	/* 1b: Get forcewake during program sequence. Although the driver
4798
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6084 serge 4799
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5354 serge 4800
 
4801
	/* 2a: Disable RC states. */
4802
	I915_WRITE(GEN6_RC_CONTROL, 0);
4803
 
4804
	/* 2b: Program RC6 thresholds.*/
6084 serge 4805
 
4806
	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4807
	if (IS_SKYLAKE(dev))
4808
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4809
	else
4810
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5354 serge 4811
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4812
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4813
	for_each_ring(ring, dev_priv, unused)
4814
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
6084 serge 4815
 
4816
	if (HAS_GUC_UCODE(dev))
4817
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4818
 
5354 serge 4819
	I915_WRITE(GEN6_RC_SLEEP, 0);
4820
 
6084 serge 4821
	/* 2c: Program Coarse Power Gating Policies. */
4822
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4823
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4824
 
5354 serge 4825
	/* 3a: Enable RC6 */
4826
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4827
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4828
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4829
			"on" : "off");
6084 serge 4830
	/* WaRsUseTimeoutMode */
4831
	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
4832
	    (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0)) {
4833
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4834
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4835
			   GEN7_RC_CTL_TO_MODE |
4836
			   rc6_mask);
4837
	} else {
4838
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4839
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4840
			   GEN6_RC_CTL_EI_MODE(1) |
4841
			   rc6_mask);
4842
	}
5354 serge 4843
 
6084 serge 4844
	/*
4845
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4846
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4847
	 */
4848
	if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
4849
	    ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_F0)))
4850
		I915_WRITE(GEN9_PG_ENABLE, 0);
4851
	else
4852
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4853
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5354 serge 4854
 
6084 serge 4855
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4856
 
5354 serge 4857
}
4858
 
4560 Serge 4859
static void gen8_enable_rps(struct drm_device *dev)
4860
{
4861
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 4862
	struct intel_engine_cs *ring;
5354 serge 4863
	uint32_t rc6_mask = 0;
4560 Serge 4864
	int unused;
4865
 
4866
	/* 1a: Software RC state - RC0 */
4867
	I915_WRITE(GEN6_RC_STATE, 0);
4868
 
4869
	/* 1c & 1d: Get forcewake during program sequence. Although the driver
4870
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6084 serge 4871
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4560 Serge 4872
 
4873
	/* 2a: Disable RC states. */
4874
	I915_WRITE(GEN6_RC_CONTROL, 0);
4875
 
5354 serge 4876
	/* Initialize rps frequencies */
4877
	gen6_init_rps_frequencies(dev);
4560 Serge 4878
 
4879
	/* 2b: Program RC6 thresholds.*/
4880
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4881
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4882
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4883
	for_each_ring(ring, dev_priv, unused)
4884
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4885
	I915_WRITE(GEN6_RC_SLEEP, 0);
5060 serge 4886
	if (IS_BROADWELL(dev))
4887
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4888
	else
6084 serge 4889
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4560 Serge 4890
 
4891
	/* 3: Enable RC6 */
4892
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4893
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5060 serge 4894
	intel_print_rc6_info(dev, rc6_mask);
4895
	if (IS_BROADWELL(dev))
4896
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4897
				GEN7_RC_CTL_TO_MODE |
4898
				rc6_mask);
4899
	else
6084 serge 4900
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4901
				GEN6_RC_CTL_EI_MODE(1) |
4902
				rc6_mask);
4560 Serge 4903
 
4904
	/* 4 Program defaults and thresholds for RPS*/
5060 serge 4905
	I915_WRITE(GEN6_RPNSWREQ,
4906
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4907
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4908
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4560 Serge 4909
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4910
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4911
 
4912
	/* Docs recommend 900MHz, and 300 MHz respectively */
4913
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5060 serge 4914
		   dev_priv->rps.max_freq_softlimit << 24 |
4915
		   dev_priv->rps.min_freq_softlimit << 16);
4560 Serge 4916
 
4917
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4918
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4919
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4920
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4921
 
4922
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4923
 
4924
	/* 5: Enable RPS */
4925
	I915_WRITE(GEN6_RP_CONTROL,
4926
		   GEN6_RP_MEDIA_TURBO |
4927
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4928
		   GEN6_RP_MEDIA_IS_GFX |
4929
		   GEN6_RP_ENABLE |
4930
		   GEN6_RP_UP_BUSY_AVG |
4931
		   GEN6_RP_DOWN_IDLE_AVG);
4932
 
4933
	/* 6: Ring frequency + overclocking (our driver does this later */
4934
 
5354 serge 4935
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
6084 serge 4936
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4560 Serge 4937
 
6084 serge 4938
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4560 Serge 4939
}
4940
 
3031 serge 4941
static void gen6_enable_rps(struct drm_device *dev)
4942
{
4943
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 4944
	struct intel_engine_cs *ring;
4945
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3031 serge 4946
	u32 gtfifodbg;
4947
	int rc6_mode;
3243 Serge 4948
	int i, ret;
3031 serge 4949
 
3243 Serge 4950
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 4951
 
4952
	/* Here begins a magic sequence of register writes to enable
4953
	 * auto-downclocking.
4954
	 *
4955
	 * Perhaps there might be some value in exposing these to
4956
	 * userspace...
4957
	 */
4958
	I915_WRITE(GEN6_RC_STATE, 0);
4959
 
4960
	/* Clear the DBG now so we don't confuse earlier errors */
4961
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4962
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4963
		I915_WRITE(GTFIFODBG, gtfifodbg);
4964
	}
4965
 
6084 serge 4966
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
3031 serge 4967
 
5354 serge 4968
	/* Initialize rps frequencies */
4969
	gen6_init_rps_frequencies(dev);
3031 serge 4970
 
4971
	/* disable the counters and set deterministic thresholds */
4972
	I915_WRITE(GEN6_RC_CONTROL, 0);
4973
 
4974
	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4975
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4976
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4977
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4978
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4979
 
4980
	for_each_ring(ring, dev_priv, i)
4981
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4982
 
4983
	I915_WRITE(GEN6_RC_SLEEP, 0);
4984
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4560 Serge 4985
	if (IS_IVYBRIDGE(dev))
4104 Serge 4986
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4987
	else
6084 serge 4988
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3480 Serge 4989
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3031 serge 4990
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4991
 
4992
	/* Check if we are enabling RC6 */
4993
	rc6_mode = intel_enable_rc6(dev_priv->dev);
4994
	if (rc6_mode & INTEL_RC6_ENABLE)
4995
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4996
 
4997
	/* We don't use those on Haswell */
4998
	if (!IS_HASWELL(dev)) {
4999
		if (rc6_mode & INTEL_RC6p_ENABLE)
5000
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5001
 
5002
		if (rc6_mode & INTEL_RC6pp_ENABLE)
5003
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5004
	}
5005
 
4560 Serge 5006
	intel_print_rc6_info(dev, rc6_mask);
3031 serge 5007
 
5008
	I915_WRITE(GEN6_RC_CONTROL,
5009
		   rc6_mask |
5010
		   GEN6_RC_CTL_EI_MODE(1) |
5011
		   GEN6_RC_CTL_HW_ENABLE);
5012
 
4560 Serge 5013
	/* Power down if completely idle for over 50ms */
5014
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3031 serge 5015
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5016
 
3243 Serge 5017
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5060 serge 5018
	if (ret)
5019
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5020
 
6084 serge 5021
	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5022
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5023
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5060 serge 5024
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
6084 serge 5025
				 (pcu_mbox & 0xff) * 50);
5060 serge 5026
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
3031 serge 5027
	}
5028
 
4560 Serge 5029
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
6084 serge 5030
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
3031 serge 5031
 
3243 Serge 5032
	rc6vids = 0;
5033
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5034
	if (IS_GEN6(dev) && ret) {
5035
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5036
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5037
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5038
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5039
		rc6vids &= 0xffff00;
5040
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
5041
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5042
		if (ret)
5043
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5044
	}
5045
 
6084 serge 5046
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
3031 serge 5047
}
5048
 
5060 serge 5049
static void __gen6_update_ring_freq(struct drm_device *dev)
3031 serge 5050
{
5051
	struct drm_i915_private *dev_priv = dev->dev_private;
5052
	int min_freq = 15;
3746 Serge 5053
	unsigned int gpu_freq;
5054
	unsigned int max_ia_freq, min_ring_freq;
6084 serge 5055
	unsigned int max_gpu_freq, min_gpu_freq;
3031 serge 5056
	int scaling_factor = 180;
4560 Serge 5057
	struct cpufreq_policy *policy;
3031 serge 5058
 
3243 Serge 5059
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 5060
 
5061
	max_ia_freq = cpufreq_quick_get_max(0);
5062
	/*
5060 serge 5063
		 * Default to measured freq if none found, PCU will ensure we
5064
		 * don't go over
3031 serge 5065
	 */
5066
		max_ia_freq = tsc_khz;
5067
 
5068
	/* Convert from kHz to MHz */
5069
	max_ia_freq /= 1000;
5070
 
4560 Serge 5071
	min_ring_freq = I915_READ(DCLK) & 0xf;
5072
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
5073
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3746 Serge 5074
 
6084 serge 5075
	if (IS_SKYLAKE(dev)) {
5076
		/* Convert GT frequency to 50 HZ units */
5077
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5078
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5079
	} else {
5080
		min_gpu_freq = dev_priv->rps.min_freq;
5081
		max_gpu_freq = dev_priv->rps.max_freq;
5082
	}
5083
 
3031 serge 5084
	/*
5085
	 * For each potential GPU frequency, load a ring frequency we'd like
5086
	 * to use for memory access.  We do this by specifying the IA frequency
5087
	 * the PCU should use as a reference to determine the ring frequency.
5088
	 */
6084 serge 5089
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5090
		int diff = max_gpu_freq - gpu_freq;
3746 Serge 5091
		unsigned int ia_freq = 0, ring_freq = 0;
3031 serge 5092
 
6084 serge 5093
		if (IS_SKYLAKE(dev)) {
5094
			/*
5095
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5096
			 * No floor required for ring frequency on SKL.
5097
			 */
5098
			ring_freq = gpu_freq;
5099
		} else if (INTEL_INFO(dev)->gen >= 8) {
4560 Serge 5100
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
5101
			ring_freq = max(min_ring_freq, gpu_freq);
5102
		} else if (IS_HASWELL(dev)) {
5103
			ring_freq = mult_frac(gpu_freq, 5, 4);
3746 Serge 5104
			ring_freq = max(min_ring_freq, ring_freq);
5105
			/* leave ia_freq as the default, chosen by cpufreq */
5106
		} else {
5107
			/* On older processors, there is no separate ring
5108
			 * clock domain, so in order to boost the bandwidth
5109
			 * of the ring, we need to upclock the CPU (ia_freq).
5110
			 *
5111
			 * For GPU frequencies less than 750MHz,
5112
			 * just use the lowest ring freq.
6084 serge 5113
			 */
5114
			if (gpu_freq < min_freq)
5115
				ia_freq = 800;
5116
			else
5117
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5118
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3746 Serge 5119
		}
3031 serge 5120
 
3243 Serge 5121
		sandybridge_pcode_write(dev_priv,
5122
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3746 Serge 5123
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5124
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5125
					gpu_freq);
3031 serge 5126
	}
5127
}
5128
 
5060 serge 5129
void gen6_update_ring_freq(struct drm_device *dev)
4104 Serge 5130
{
5060 serge 5131
	struct drm_i915_private *dev_priv = dev->dev_private;
5132
 
6084 serge 5133
	if (!HAS_CORE_RING_FREQ(dev))
5060 serge 5134
		return;
5135
 
5136
	mutex_lock(&dev_priv->rps.hw_lock);
5137
	__gen6_update_ring_freq(dev);
5138
	mutex_unlock(&dev_priv->rps.hw_lock);
5139
}
5140
 
5141
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5142
{
6084 serge 5143
	struct drm_device *dev = dev_priv->dev;
4104 Serge 5144
	u32 val, rp0;
5145
 
6084 serge 5146
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5060 serge 5147
 
6084 serge 5148
	switch (INTEL_INFO(dev)->eu_total) {
5149
	case 8:
5150
		/* (2 * 4) config */
5151
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5152
		break;
5153
	case 12:
5154
		/* (2 * 6) config */
5155
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5156
		break;
5157
	case 16:
5158
		/* (2 * 8) config */
5159
	default:
5160
		/* Setting (2 * 8) Min RP0 for any other combination */
5161
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5162
		break;
5163
	}
5164
 
5165
	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5166
 
5060 serge 5167
	return rp0;
5168
}
5169
 
5170
static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5171
{
5172
	u32 val, rpe;
5173
 
5174
	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5175
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5176
 
5177
	return rpe;
5178
}
5179
 
5180
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5181
{
5182
	u32 val, rp1;
5183
 
6084 serge 5184
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5185
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5060 serge 5186
 
5187
	return rp1;
5188
}
5189
 
5190
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5191
{
5192
	u32 val, rp1;
5193
 
4104 Serge 5194
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5195
 
5060 serge 5196
	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5197
 
5198
	return rp1;
5199
}
5200
 
5201
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5202
{
5203
	u32 val, rp0;
5204
 
5205
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5206
 
4104 Serge 5207
	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5208
	/* Clamp to max */
5209
	rp0 = min_t(u32, rp0, 0xea);
5210
 
5211
	return rp0;
5212
}
5213
 
5214
static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5215
{
5216
	u32 val, rpe;
5217
 
5218
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5219
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5220
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5221
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5222
 
5223
	return rpe;
5224
}
5225
 
5060 serge 5226
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4104 Serge 5227
{
5228
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5229
}
5230
 
5060 serge 5231
/* Check that the pctx buffer wasn't move under us. */
5232
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5233
{
5234
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5235
 
5236
	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5237
			     dev_priv->vlv_pctx->stolen->start);
5238
}
5239
 
5240
 
5241
/* Check that the pcbr address is not empty. */
5242
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5243
{
5244
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5245
 
5246
	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5247
}
5248
 
5249
static void cherryview_setup_pctx(struct drm_device *dev)
5250
{
5251
	struct drm_i915_private *dev_priv = dev->dev_private;
5252
	unsigned long pctx_paddr, paddr;
5253
	struct i915_gtt *gtt = &dev_priv->gtt;
5254
	u32 pcbr;
5255
	int pctx_size = 32*1024;
5256
 
5257
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5258
 
5259
	pcbr = I915_READ(VLV_PCBR);
5260
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5354 serge 5261
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5060 serge 5262
		paddr = (dev_priv->mm.stolen_base +
5263
			 (gtt->stolen_size - pctx_size));
5264
 
5265
		pctx_paddr = (paddr & (~4095));
5266
		I915_WRITE(VLV_PCBR, pctx_paddr);
5267
	}
5354 serge 5268
 
5269
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5060 serge 5270
}
5271
 
4104 Serge 5272
static void valleyview_setup_pctx(struct drm_device *dev)
5273
{
5274
	struct drm_i915_private *dev_priv = dev->dev_private;
5275
	struct drm_i915_gem_object *pctx;
5276
	unsigned long pctx_paddr;
5277
	u32 pcbr;
5278
	int pctx_size = 24*1024;
5279
 
5060 serge 5280
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5281
 
4104 Serge 5282
	pcbr = I915_READ(VLV_PCBR);
5283
	if (pcbr) {
5284
		/* BIOS set it up already, grab the pre-alloc'd space */
5285
		int pcbr_offset;
5286
 
5287
		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5288
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5289
								      pcbr_offset,
5290
								      I915_GTT_OFFSET_NONE,
5291
								      pctx_size);
5292
		goto out;
5293
	}
5294
 
5354 serge 5295
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5296
 
4104 Serge 5297
	/*
5298
	 * From the Gunit register HAS:
5299
	 * The Gfx driver is expected to program this register and ensure
5300
	 * proper allocation within Gfx stolen memory.  For example, this
5301
	 * register should be programmed such than the PCBR range does not
5302
	 * overlap with other ranges, such as the frame buffer, protected
5303
	 * memory, or any other relevant ranges.
5304
	 */
5305
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
5306
	if (!pctx) {
5307
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5308
		return;
5309
	}
5310
 
5311
	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5312
	I915_WRITE(VLV_PCBR, pctx_paddr);
5313
 
5314
out:
5354 serge 5315
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4104 Serge 5316
	dev_priv->vlv_pctx = pctx;
5317
}
5318
 
5060 serge 5319
static void valleyview_cleanup_pctx(struct drm_device *dev)
5320
{
5321
	struct drm_i915_private *dev_priv = dev->dev_private;
5322
 
5323
	if (WARN_ON(!dev_priv->vlv_pctx))
5324
		return;
5325
 
5326
	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5327
	dev_priv->vlv_pctx = NULL;
5328
}
5329
 
5330
static void valleyview_init_gt_powersave(struct drm_device *dev)
5331
{
5332
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 5333
	u32 val;
5060 serge 5334
 
5335
	valleyview_setup_pctx(dev);
5336
 
5337
	mutex_lock(&dev_priv->rps.hw_lock);
5338
 
5354 serge 5339
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5340
	switch ((val >> 6) & 3) {
5341
	case 0:
5342
	case 1:
5343
		dev_priv->mem_freq = 800;
5344
		break;
5345
	case 2:
5346
		dev_priv->mem_freq = 1066;
5347
		break;
5348
	case 3:
5349
		dev_priv->mem_freq = 1333;
5350
		break;
5351
	}
5352
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5353
 
5060 serge 5354
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5355
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5356
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6084 serge 5357
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5060 serge 5358
			 dev_priv->rps.max_freq);
5359
 
5360
	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5361
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6084 serge 5362
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5060 serge 5363
			 dev_priv->rps.efficient_freq);
5364
 
5365
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5366
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
6084 serge 5367
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5060 serge 5368
			 dev_priv->rps.rp1_freq);
5369
 
5370
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5371
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6084 serge 5372
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5060 serge 5373
			 dev_priv->rps.min_freq);
5374
 
6084 serge 5375
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5376
 
5060 serge 5377
	/* Preserve min/max settings in case of re-init */
5378
	if (dev_priv->rps.max_freq_softlimit == 0)
5379
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5380
 
5381
	if (dev_priv->rps.min_freq_softlimit == 0)
5382
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5383
 
5384
	mutex_unlock(&dev_priv->rps.hw_lock);
5385
}
5386
 
5387
static void cherryview_init_gt_powersave(struct drm_device *dev)
5388
{
5389
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 5390
	u32 val;
5060 serge 5391
 
5392
	cherryview_setup_pctx(dev);
5393
 
5394
	mutex_lock(&dev_priv->rps.hw_lock);
5395
 
6084 serge 5396
	mutex_lock(&dev_priv->sb_lock);
5354 serge 5397
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
6084 serge 5398
	mutex_unlock(&dev_priv->sb_lock);
5354 serge 5399
 
5400
	switch ((val >> 2) & 0x7) {
5401
	case 3:
5402
		dev_priv->mem_freq = 2000;
5403
		break;
6084 serge 5404
	default:
5354 serge 5405
		dev_priv->mem_freq = 1600;
5406
		break;
5407
	}
5408
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5409
 
5060 serge 5410
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5411
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5412
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6084 serge 5413
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5060 serge 5414
			 dev_priv->rps.max_freq);
5415
 
5416
	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5417
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6084 serge 5418
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5060 serge 5419
			 dev_priv->rps.efficient_freq);
5420
 
5421
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5422
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
6084 serge 5423
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5060 serge 5424
			 dev_priv->rps.rp1_freq);
5425
 
6084 serge 5426
	/* PUnit validated range is only [RPe, RP0] */
5427
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5060 serge 5428
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6084 serge 5429
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5060 serge 5430
			 dev_priv->rps.min_freq);
5431
 
5354 serge 5432
	WARN_ONCE((dev_priv->rps.max_freq |
5433
		   dev_priv->rps.efficient_freq |
5434
		   dev_priv->rps.rp1_freq |
5435
		   dev_priv->rps.min_freq) & 1,
5436
		  "Odd GPU freq values\n");
5437
 
6084 serge 5438
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5439
 
5060 serge 5440
	/* Preserve min/max settings in case of re-init */
5441
	if (dev_priv->rps.max_freq_softlimit == 0)
5442
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5443
 
5444
	if (dev_priv->rps.min_freq_softlimit == 0)
5445
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5446
 
5447
	mutex_unlock(&dev_priv->rps.hw_lock);
5448
}
5449
 
5450
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5451
{
5452
	valleyview_cleanup_pctx(dev);
5453
}
5454
 
5455
static void cherryview_enable_rps(struct drm_device *dev)
5456
{
5457
	struct drm_i915_private *dev_priv = dev->dev_private;
5458
	struct intel_engine_cs *ring;
5459
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5460
	int i;
5461
 
5462
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5463
 
5464
	gtfifodbg = I915_READ(GTFIFODBG);
5465
	if (gtfifodbg) {
5466
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5467
				 gtfifodbg);
5468
		I915_WRITE(GTFIFODBG, gtfifodbg);
5469
	}
5470
 
5471
	cherryview_check_pctx(dev_priv);
5472
 
5473
	/* 1a & 1b: Get forcewake during program sequence. Although the driver
5474
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6084 serge 5475
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5060 serge 5476
 
6084 serge 5477
	/*  Disable RC states. */
5478
	I915_WRITE(GEN6_RC_CONTROL, 0);
5479
 
5060 serge 5480
	/* 2a: Program RC6 thresholds.*/
5481
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5482
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5483
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5484
 
5485
	for_each_ring(ring, dev_priv, i)
5486
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5487
	I915_WRITE(GEN6_RC_SLEEP, 0);
5488
 
6084 serge 5489
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5490
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5060 serge 5491
 
5492
	/* allows RC6 residency counter to work */
5493
	I915_WRITE(VLV_COUNTER_CONTROL,
5494
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5495
				      VLV_MEDIA_RC6_COUNT_EN |
5496
				      VLV_RENDER_RC6_COUNT_EN));
5497
 
5498
	/* For now we assume BIOS is allocating and populating the PCBR  */
5499
	pcbr = I915_READ(VLV_PCBR);
5500
 
5501
	/* 3: Enable RC6 */
5502
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5503
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
6084 serge 5504
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5060 serge 5505
 
5506
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5507
 
5508
	/* 4 Program defaults and thresholds for RPS*/
6084 serge 5509
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5060 serge 5510
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5511
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5512
	I915_WRITE(GEN6_RP_UP_EI, 66000);
5513
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5514
 
5515
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5516
 
5517
	/* 5: Enable RPS */
5518
	I915_WRITE(GEN6_RP_CONTROL,
5519
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6084 serge 5520
		   GEN6_RP_MEDIA_IS_GFX |
5060 serge 5521
		   GEN6_RP_ENABLE |
5522
		   GEN6_RP_UP_BUSY_AVG |
5523
		   GEN6_RP_DOWN_IDLE_AVG);
5524
 
6084 serge 5525
	/* Setting Fixed Bias */
5526
	val = VLV_OVERRIDE_EN |
5527
		  VLV_SOC_TDP_EN |
5528
		  CHV_BIAS_CPU_50_SOC_50;
5529
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5530
 
5060 serge 5531
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5532
 
5354 serge 5533
	/* RPS code assumes GPLL is used */
5534
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5535
 
6084 serge 5536
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5060 serge 5537
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5538
 
5539
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5540
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
6084 serge 5541
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5060 serge 5542
			 dev_priv->rps.cur_freq);
5543
 
5544
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
6084 serge 5545
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5060 serge 5546
			 dev_priv->rps.efficient_freq);
5547
 
5548
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5549
 
6084 serge 5550
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5060 serge 5551
}
5552
 
4104 Serge 5553
static void valleyview_enable_rps(struct drm_device *dev)
5554
{
5555
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 5556
	struct intel_engine_cs *ring;
4560 Serge 5557
	u32 gtfifodbg, val, rc6_mode = 0;
4104 Serge 5558
	int i;
5559
 
5560
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5561
 
5060 serge 5562
	valleyview_check_pctx(dev_priv);
5563
 
4104 Serge 5564
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4560 Serge 5565
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5566
				 gtfifodbg);
4104 Serge 5567
		I915_WRITE(GTFIFODBG, gtfifodbg);
5568
	}
5569
 
4560 Serge 5570
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6084 serge 5571
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4104 Serge 5572
 
6084 serge 5573
	/*  Disable RC states. */
5574
	I915_WRITE(GEN6_RC_CONTROL, 0);
5575
 
5576
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4104 Serge 5577
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5578
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5579
	I915_WRITE(GEN6_RP_UP_EI, 66000);
5580
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5581
 
5582
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5583
 
5584
	I915_WRITE(GEN6_RP_CONTROL,
5585
		   GEN6_RP_MEDIA_TURBO |
5586
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5587
		   GEN6_RP_MEDIA_IS_GFX |
5588
		   GEN6_RP_ENABLE |
5589
		   GEN6_RP_UP_BUSY_AVG |
5590
		   GEN6_RP_DOWN_IDLE_CONT);
5591
 
5592
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5593
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5594
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5595
 
5596
	for_each_ring(ring, dev_priv, i)
5597
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5598
 
4560 Serge 5599
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4104 Serge 5600
 
5601
	/* allows RC6 residency counter to work */
4560 Serge 5602
	I915_WRITE(VLV_COUNTER_CONTROL,
5060 serge 5603
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5604
				      VLV_RENDER_RC0_COUNT_EN |
4560 Serge 5605
				      VLV_MEDIA_RC6_COUNT_EN |
5606
				      VLV_RENDER_RC6_COUNT_EN));
5060 serge 5607
 
4560 Serge 5608
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5609
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4104 Serge 5610
 
4560 Serge 5611
	intel_print_rc6_info(dev, rc6_mode);
5612
 
5613
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5614
 
6084 serge 5615
	/* Setting Fixed Bias */
5616
	val = VLV_OVERRIDE_EN |
5617
		  VLV_SOC_TDP_EN |
5618
		  VLV_BIAS_CPU_125_SOC_875;
5619
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5620
 
4104 Serge 5621
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5622
 
5354 serge 5623
	/* RPS code assumes GPLL is used */
5624
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5625
 
6084 serge 5626
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
4104 Serge 5627
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5628
 
5060 serge 5629
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4104 Serge 5630
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
6084 serge 5631
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5060 serge 5632
			 dev_priv->rps.cur_freq);
4104 Serge 5633
 
5634
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
6084 serge 5635
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5060 serge 5636
			 dev_priv->rps.efficient_freq);
4104 Serge 5637
 
5060 serge 5638
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4104 Serge 5639
 
6084 serge 5640
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4104 Serge 5641
}
5642
 
3031 serge 5643
static unsigned long intel_pxfreq(u32 vidfreq)
5644
{
5645
	unsigned long freq;
5646
	int div = (vidfreq & 0x3f0000) >> 16;
5647
	int post = (vidfreq & 0x3000) >> 12;
5648
	int pre = (vidfreq & 0x7);
5649
 
5650
	if (!pre)
5651
		return 0;
5652
 
5653
	freq = ((div * 133333) / ((1<
5654
 
5655
	return freq;
5656
}
5657
 
5658
static const struct cparams {
5659
	u16 i;
5660
	u16 t;
5661
	u16 m;
5662
	u16 c;
5663
} cparams[] = {
5664
	{ 1, 1333, 301, 28664 },
5665
	{ 1, 1066, 294, 24460 },
5666
	{ 1, 800, 294, 25192 },
5667
	{ 0, 1333, 276, 27605 },
5668
	{ 0, 1066, 276, 27605 },
5669
	{ 0, 800, 231, 23784 },
5670
};
5671
 
5672
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5673
{
5674
	u64 total_count, diff, ret;
5675
	u32 count1, count2, count3, m = 0, c = 0;
5060 serge 5676
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
3031 serge 5677
	int i;
5678
 
5679
	assert_spin_locked(&mchdev_lock);
5680
 
5681
	diff1 = now - dev_priv->ips.last_time1;
5682
 
5683
	/* Prevent division-by-zero if we are asking too fast.
5684
	 * Also, we don't get interesting results if we are polling
5685
	 * faster than once in 10ms, so just return the saved value
5686
	 * in such cases.
5687
	 */
5688
	if (diff1 <= 10)
5689
		return dev_priv->ips.chipset_power;
5690
 
5691
	count1 = I915_READ(DMIEC);
5692
	count2 = I915_READ(DDREC);
5693
	count3 = I915_READ(CSIEC);
5694
 
5695
	total_count = count1 + count2 + count3;
5696
 
5697
	/* FIXME: handle per-counter overflow */
5698
	if (total_count < dev_priv->ips.last_count1) {
5699
		diff = ~0UL - dev_priv->ips.last_count1;
5700
		diff += total_count;
5701
	} else {
5702
		diff = total_count - dev_priv->ips.last_count1;
5703
	}
5704
 
5705
	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5706
		if (cparams[i].i == dev_priv->ips.c_m &&
5707
		    cparams[i].t == dev_priv->ips.r_t) {
5708
			m = cparams[i].m;
5709
			c = cparams[i].c;
5710
			break;
5711
		}
5712
	}
5713
 
5714
	diff = div_u64(diff, diff1);
5715
	ret = ((m * diff) + c);
5716
	ret = div_u64(ret, 10);
5717
 
5718
	dev_priv->ips.last_count1 = total_count;
5719
	dev_priv->ips.last_time1 = now;
5720
 
5721
	dev_priv->ips.chipset_power = ret;
5722
 
5723
	return ret;
5724
}
5725
 
5726
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5727
{
5060 serge 5728
	struct drm_device *dev = dev_priv->dev;
3031 serge 5729
	unsigned long val;
5730
 
5060 serge 5731
	if (INTEL_INFO(dev)->gen != 5)
3031 serge 5732
		return 0;
5733
 
5734
	spin_lock_irq(&mchdev_lock);
5735
 
5736
	val = __i915_chipset_val(dev_priv);
5737
 
5738
	spin_unlock_irq(&mchdev_lock);
5739
 
5740
	return val;
5741
}
5742
 
5743
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5744
{
5745
	unsigned long m, x, b;
5746
	u32 tsfs;
5747
 
5748
	tsfs = I915_READ(TSFS);
5749
 
5750
	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5751
	x = I915_READ8(TR1);
5752
 
5753
	b = tsfs & TSFS_INTR_MASK;
5754
 
5755
	return ((m * x) / 127) - b;
5756
}
5757
 
6084 serge 5758
static int _pxvid_to_vd(u8 pxvid)
3031 serge 5759
{
6084 serge 5760
	if (pxvid == 0)
5761
		return 0;
5762
 
5763
	if (pxvid >= 8 && pxvid < 31)
5764
		pxvid = 31;
5765
 
5766
	return (pxvid + 2) * 125;
5767
}
5768
 
5769
static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5770
{
5060 serge 5771
	struct drm_device *dev = dev_priv->dev;
6084 serge 5772
	const int vd = _pxvid_to_vd(pxvid);
5773
	const int vm = vd - 1125;
5774
 
5060 serge 5775
	if (INTEL_INFO(dev)->is_mobile)
6084 serge 5776
		return vm > 0 ? vm : 0;
5777
 
5778
	return vd;
3031 serge 5779
}
5780
 
5781
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5782
{
5060 serge 5783
	u64 now, diff, diffms;
3031 serge 5784
	u32 count;
5785
 
5786
	assert_spin_locked(&mchdev_lock);
5787
 
5060 serge 5788
	now = ktime_get_raw_ns();
5789
	diffms = now - dev_priv->ips.last_time2;
5790
	do_div(diffms, NSEC_PER_MSEC);
3031 serge 5791
 
5792
	/* Don't divide by 0 */
5793
	if (!diffms)
5794
		return;
5795
 
5796
	count = I915_READ(GFXEC);
5797
 
5798
	if (count < dev_priv->ips.last_count2) {
5799
		diff = ~0UL - dev_priv->ips.last_count2;
5800
		diff += count;
5801
	} else {
5802
		diff = count - dev_priv->ips.last_count2;
5803
	}
5804
 
5805
	dev_priv->ips.last_count2 = count;
5806
	dev_priv->ips.last_time2 = now;
5807
 
5808
	/* More magic constants... */
5809
	diff = diff * 1181;
5810
	diff = div_u64(diff, diffms * 10);
5811
	dev_priv->ips.gfx_power = diff;
5812
}
5813
 
5814
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5815
{
5060 serge 5816
	struct drm_device *dev = dev_priv->dev;
5817
 
5818
	if (INTEL_INFO(dev)->gen != 5)
3031 serge 5819
		return;
5820
 
5821
	spin_lock_irq(&mchdev_lock);
5822
 
5823
	__i915_update_gfx_val(dev_priv);
5824
 
5825
	spin_unlock_irq(&mchdev_lock);
5826
}
5827
 
5828
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5829
{
5830
	unsigned long t, corr, state1, corr2, state2;
5831
	u32 pxvid, ext_v;
5832
 
5833
	assert_spin_locked(&mchdev_lock);
5834
 
6084 serge 5835
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
3031 serge 5836
	pxvid = (pxvid >> 24) & 0x7f;
5837
	ext_v = pvid_to_extvid(dev_priv, pxvid);
5838
 
5839
	state1 = ext_v;
5840
 
5841
	t = i915_mch_val(dev_priv);
5842
 
5843
	/* Revel in the empirically derived constants */
5844
 
5845
	/* Correction factor in 1/100000 units */
5846
	if (t > 80)
5847
		corr = ((t * 2349) + 135940);
5848
	else if (t >= 50)
5849
		corr = ((t * 964) + 29317);
5850
	else /* < 50 */
5851
		corr = ((t * 301) + 1004);
5852
 
5853
	corr = corr * ((150142 * state1) / 10000 - 78642);
5854
	corr /= 100000;
5855
	corr2 = (corr * dev_priv->ips.corr);
5856
 
5857
	state2 = (corr2 * state1) / 10000;
5858
	state2 /= 100; /* convert to mW */
5859
 
5860
	__i915_update_gfx_val(dev_priv);
5861
 
5862
	return dev_priv->ips.gfx_power + state2;
5863
}
5864
 
5865
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5866
{
5060 serge 5867
	struct drm_device *dev = dev_priv->dev;
3031 serge 5868
	unsigned long val;
5869
 
5060 serge 5870
	if (INTEL_INFO(dev)->gen != 5)
3031 serge 5871
		return 0;
5872
 
5873
	spin_lock_irq(&mchdev_lock);
5874
 
5875
	val = __i915_gfx_val(dev_priv);
5876
 
5877
	spin_unlock_irq(&mchdev_lock);
5878
 
5879
	return val;
5880
}
5881
 
5882
/**
5883
 * i915_read_mch_val - return value for IPS use
5884
 *
5885
 * Calculate and return a value for the IPS driver to use when deciding whether
5886
 * we have thermal and power headroom to increase CPU or GPU power budget.
5887
 */
5888
unsigned long i915_read_mch_val(void)
5889
{
5890
	struct drm_i915_private *dev_priv;
5891
	unsigned long chipset_val, graphics_val, ret = 0;
5892
 
5893
	spin_lock_irq(&mchdev_lock);
5894
	if (!i915_mch_dev)
5895
		goto out_unlock;
5896
	dev_priv = i915_mch_dev;
5897
 
5898
	chipset_val = __i915_chipset_val(dev_priv);
5899
	graphics_val = __i915_gfx_val(dev_priv);
5900
 
5901
	ret = chipset_val + graphics_val;
5902
 
5903
out_unlock:
5904
	spin_unlock_irq(&mchdev_lock);
5905
 
5906
	return ret;
5907
}
5908
EXPORT_SYMBOL_GPL(i915_read_mch_val);
5909
 
5910
/**
5911
 * i915_gpu_raise - raise GPU frequency limit
5912
 *
5913
 * Raise the limit; IPS indicates we have thermal headroom.
5914
 */
5915
bool i915_gpu_raise(void)
5916
{
5917
	struct drm_i915_private *dev_priv;
5918
	bool ret = true;
5919
 
5920
	spin_lock_irq(&mchdev_lock);
5921
	if (!i915_mch_dev) {
5922
		ret = false;
5923
		goto out_unlock;
5924
	}
5925
	dev_priv = i915_mch_dev;
5926
 
5927
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5928
		dev_priv->ips.max_delay--;
5929
 
5930
out_unlock:
5931
	spin_unlock_irq(&mchdev_lock);
5932
 
5933
	return ret;
5934
}
5935
EXPORT_SYMBOL_GPL(i915_gpu_raise);
5936
 
5937
/**
5938
 * i915_gpu_lower - lower GPU frequency limit
5939
 *
5940
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5941
 * frequency maximum.
5942
 */
5943
bool i915_gpu_lower(void)
5944
{
5945
	struct drm_i915_private *dev_priv;
5946
	bool ret = true;
5947
 
5948
	spin_lock_irq(&mchdev_lock);
5949
	if (!i915_mch_dev) {
5950
		ret = false;
5951
		goto out_unlock;
5952
	}
5953
	dev_priv = i915_mch_dev;
5954
 
5955
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5956
		dev_priv->ips.max_delay++;
5957
 
5958
out_unlock:
5959
	spin_unlock_irq(&mchdev_lock);
5960
 
5961
	return ret;
5962
}
5963
EXPORT_SYMBOL_GPL(i915_gpu_lower);
5964
 
5965
/**
5966
 * i915_gpu_busy - indicate GPU business to IPS
5967
 *
5968
 * Tell the IPS driver whether or not the GPU is busy.
5969
 */
5970
bool i915_gpu_busy(void)
5971
{
5972
	struct drm_i915_private *dev_priv;
5060 serge 5973
	struct intel_engine_cs *ring;
3031 serge 5974
	bool ret = false;
5975
	int i;
5976
 
5977
	spin_lock_irq(&mchdev_lock);
5978
	if (!i915_mch_dev)
5979
		goto out_unlock;
5980
	dev_priv = i915_mch_dev;
5981
 
5982
	for_each_ring(ring, dev_priv, i)
5983
		ret |= !list_empty(&ring->request_list);
5984
 
5985
out_unlock:
5986
	spin_unlock_irq(&mchdev_lock);
5987
 
5988
	return ret;
5989
}
5990
EXPORT_SYMBOL_GPL(i915_gpu_busy);
5991
 
5992
/**
5993
 * i915_gpu_turbo_disable - disable graphics turbo
5994
 *
5995
 * Disable graphics turbo by resetting the max frequency and setting the
5996
 * current frequency to the default.
5997
 */
5998
bool i915_gpu_turbo_disable(void)
5999
{
6000
	struct drm_i915_private *dev_priv;
6001
	bool ret = true;
6002
 
6003
	spin_lock_irq(&mchdev_lock);
6004
	if (!i915_mch_dev) {
6005
		ret = false;
6006
		goto out_unlock;
6007
	}
6008
	dev_priv = i915_mch_dev;
6009
 
6010
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6011
 
6012
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6013
		ret = false;
6014
 
6015
out_unlock:
6016
	spin_unlock_irq(&mchdev_lock);
6017
 
6018
	return ret;
6019
}
6020
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6021
 
6022
/**
6023
 * Tells the intel_ips driver that the i915 driver is now loaded, if
6024
 * IPS got loaded first.
6025
 *
6026
 * This awkward dance is so that neither module has to depend on the
6027
 * other in order for IPS to do the appropriate communication of
6028
 * GPU turbo limits to i915.
6029
 */
6030
static void
6031
ips_ping_for_i915_load(void)
6032
{
6033
	void (*link)(void);
6034
 
6035
//   link = symbol_get(ips_link_to_i915_driver);
6036
//   if (link) {
6037
//       link();
6038
//       symbol_put(ips_link_to_i915_driver);
6039
//   }
6040
}
6041
 
6042
void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6043
{
6044
	/* We only register the i915 ips part with intel-ips once everything is
6045
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6046
	spin_lock_irq(&mchdev_lock);
6047
	i915_mch_dev = dev_priv;
6048
	spin_unlock_irq(&mchdev_lock);
6049
 
6050
	ips_ping_for_i915_load();
6051
}
6052
 
6053
void intel_gpu_ips_teardown(void)
6054
{
6055
	spin_lock_irq(&mchdev_lock);
6056
	i915_mch_dev = NULL;
6057
	spin_unlock_irq(&mchdev_lock);
6058
}
5060 serge 6059
 
3031 serge 6060
static void intel_init_emon(struct drm_device *dev)
6061
{
6062
	struct drm_i915_private *dev_priv = dev->dev_private;
6063
	u32 lcfuse;
6064
	u8 pxw[16];
6065
	int i;
6066
 
6067
	/* Disable to program */
6068
	I915_WRITE(ECR, 0);
6069
	POSTING_READ(ECR);
6070
 
6071
	/* Program energy weights for various events */
6072
	I915_WRITE(SDEW, 0x15040d00);
6073
	I915_WRITE(CSIEW0, 0x007f0000);
6074
	I915_WRITE(CSIEW1, 0x1e220004);
6075
	I915_WRITE(CSIEW2, 0x04000004);
6076
 
6077
	for (i = 0; i < 5; i++)
6084 serge 6078
		I915_WRITE(PEW(i), 0);
3031 serge 6079
	for (i = 0; i < 3; i++)
6084 serge 6080
		I915_WRITE(DEW(i), 0);
3031 serge 6081
 
6082
	/* Program P-state weights to account for frequency power adjustment */
6083
	for (i = 0; i < 16; i++) {
6084 serge 6084
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
3031 serge 6085
		unsigned long freq = intel_pxfreq(pxvidfreq);
6086
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6087
			PXVFREQ_PX_SHIFT;
6088
		unsigned long val;
6089
 
6090
		val = vid * vid;
6091
		val *= (freq / 1000);
6092
		val *= 255;
6093
		val /= (127*127*900);
6094
		if (val > 0xff)
6095
			DRM_ERROR("bad pxval: %ld\n", val);
6096
		pxw[i] = val;
6097
	}
6098
	/* Render standby states get 0 weight */
6099
	pxw[14] = 0;
6100
	pxw[15] = 0;
6101
 
6102
	for (i = 0; i < 4; i++) {
6103
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6104
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6084 serge 6105
		I915_WRITE(PXW(i), val);
3031 serge 6106
	}
6107
 
6108
	/* Adjust magic regs to magic values (more experimental results) */
6109
	I915_WRITE(OGW0, 0);
6110
	I915_WRITE(OGW1, 0);
6111
	I915_WRITE(EG0, 0x00007f00);
6112
	I915_WRITE(EG1, 0x0000000e);
6113
	I915_WRITE(EG2, 0x000e0000);
6114
	I915_WRITE(EG3, 0x68000300);
6115
	I915_WRITE(EG4, 0x42000000);
6116
	I915_WRITE(EG5, 0x00140031);
6117
	I915_WRITE(EG6, 0);
6118
	I915_WRITE(EG7, 0);
6119
 
6120
	for (i = 0; i < 8; i++)
6084 serge 6121
		I915_WRITE(PXWL(i), 0);
3031 serge 6122
 
6123
	/* Enable PMON + select events */
6124
	I915_WRITE(ECR, 0x80000019);
6125
 
6126
	lcfuse = I915_READ(LCFUSE02);
6127
 
6128
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6129
}
6130
 
5060 serge 6131
void intel_init_gt_powersave(struct drm_device *dev)
6132
{
6133
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6134
 
6135
	if (IS_CHERRYVIEW(dev))
6136
		cherryview_init_gt_powersave(dev);
6137
	else if (IS_VALLEYVIEW(dev))
6138
		valleyview_init_gt_powersave(dev);
6139
}
6140
 
6141
void intel_cleanup_gt_powersave(struct drm_device *dev)
6142
{
6143
	if (IS_CHERRYVIEW(dev))
6144
		return;
6145
	else if (IS_VALLEYVIEW(dev))
6146
		valleyview_cleanup_gt_powersave(dev);
6147
}
6148
 
5354 serge 6149
static void gen6_suspend_rps(struct drm_device *dev)
6150
{
6151
	struct drm_i915_private *dev_priv = dev->dev_private;
6152
 
6153
//   flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6154
 
6084 serge 6155
	gen6_disable_rps_interrupts(dev);
5354 serge 6156
}
6157
 
5060 serge 6158
/**
6159
 * intel_suspend_gt_powersave - suspend PM work and helper threads
6160
 * @dev: drm device
6161
 *
6162
 * We don't want to disable RC6 or other features here, we just want
6163
 * to make sure any work we've queued has finished and won't bother
6164
 * us while we're suspended.
6165
 */
6166
void intel_suspend_gt_powersave(struct drm_device *dev)
6167
{
6168
	struct drm_i915_private *dev_priv = dev->dev_private;
6169
 
5354 serge 6170
	if (INTEL_INFO(dev)->gen < 6)
6171
		return;
5060 serge 6172
 
5354 serge 6173
	gen6_suspend_rps(dev);
5060 serge 6174
 
6175
	/* Force GPU to min freq during suspend */
6176
	gen6_rps_idle(dev_priv);
6177
}
6178
 
3031 serge 6179
void intel_disable_gt_powersave(struct drm_device *dev)
6180
{
3243 Serge 6181
	struct drm_i915_private *dev_priv = dev->dev_private;
6182
 
3031 serge 6183
	if (IS_IRONLAKE_M(dev)) {
6184
		ironlake_disable_drps(dev);
4293 Serge 6185
	} else if (INTEL_INFO(dev)->gen >= 6) {
5060 serge 6186
		intel_suspend_gt_powersave(dev);
6187
 
3482 Serge 6188
		mutex_lock(&dev_priv->rps.hw_lock);
5354 serge 6189
		if (INTEL_INFO(dev)->gen >= 9)
6190
			gen9_disable_rps(dev);
6191
		else if (IS_CHERRYVIEW(dev))
5060 serge 6192
			cherryview_disable_rps(dev);
6193
		else if (IS_VALLEYVIEW(dev))
4104 Serge 6194
			valleyview_disable_rps(dev);
6195
		else
6084 serge 6196
			gen6_disable_rps(dev);
5354 serge 6197
 
4560 Serge 6198
		dev_priv->rps.enabled = false;
3480 Serge 6199
		mutex_unlock(&dev_priv->rps.hw_lock);
3031 serge 6200
	}
6201
}
6202
 
3482 Serge 6203
static void intel_gen6_powersave_work(struct work_struct *work)
6204
{
6205
	struct drm_i915_private *dev_priv =
6206
		container_of(work, struct drm_i915_private,
6207
			     rps.delayed_resume_work.work);
6208
	struct drm_device *dev = dev_priv->dev;
6209
 
6210
	mutex_lock(&dev_priv->rps.hw_lock);
4104 Serge 6211
 
6084 serge 6212
	gen6_reset_rps_interrupts(dev);
5354 serge 6213
 
5060 serge 6214
	if (IS_CHERRYVIEW(dev)) {
6215
		cherryview_enable_rps(dev);
6216
	} else if (IS_VALLEYVIEW(dev)) {
4104 Serge 6217
		valleyview_enable_rps(dev);
5354 serge 6218
	} else if (INTEL_INFO(dev)->gen >= 9) {
6084 serge 6219
		gen9_enable_rc6(dev);
5354 serge 6220
		gen9_enable_rps(dev);
6084 serge 6221
		if (IS_SKYLAKE(dev))
6222
			__gen6_update_ring_freq(dev);
4560 Serge 6223
	} else if (IS_BROADWELL(dev)) {
6224
		gen8_enable_rps(dev);
5060 serge 6225
		__gen6_update_ring_freq(dev);
4104 Serge 6226
	} else {
6084 serge 6227
		gen6_enable_rps(dev);
5060 serge 6228
		__gen6_update_ring_freq(dev);
4104 Serge 6229
	}
6084 serge 6230
 
6231
	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6232
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6233
 
6234
	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6235
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6236
 
4560 Serge 6237
	dev_priv->rps.enabled = true;
5354 serge 6238
 
6084 serge 6239
	gen6_enable_rps_interrupts(dev);
5354 serge 6240
 
3482 Serge 6241
	mutex_unlock(&dev_priv->rps.hw_lock);
5060 serge 6242
 
6243
	intel_runtime_pm_put(dev_priv);
3482 Serge 6244
}
6245
 
3031 serge 6246
void intel_enable_gt_powersave(struct drm_device *dev)
6247
{
3243 Serge 6248
	struct drm_i915_private *dev_priv = dev->dev_private;
6249
 
6084 serge 6250
	/* Powersaving is controlled by the host when inside a VM */
6251
	if (intel_vgpu_active(dev))
6252
		return;
6253
 
3031 serge 6254
	if (IS_IRONLAKE_M(dev)) {
5060 serge 6255
		mutex_lock(&dev->struct_mutex);
3031 serge 6256
		ironlake_enable_drps(dev);
6257
		intel_init_emon(dev);
5060 serge 6258
		mutex_unlock(&dev->struct_mutex);
6259
	} else if (INTEL_INFO(dev)->gen >= 6) {
3243 Serge 6260
		/*
6261
		 * PCU communication is slow and this doesn't need to be
6262
		 * done at any specific time, so do this out of our fast path
6263
		 * to make resume and init faster.
5060 serge 6264
		 *
6265
		 * We depend on the HW RC6 power context save/restore
6266
		 * mechanism when entering D3 through runtime PM suspend. So
6267
		 * disable RPM until RPS/RC6 is properly setup. We can only
6268
		 * get here via the driver load/system resume/runtime resume
6269
		 * paths, so the _noresume version is enough (and in case of
6270
		 * runtime resume it's necessary).
3243 Serge 6271
		 */
5060 serge 6272
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6273
					   round_jiffies_up_relative(HZ)))
6274
			intel_runtime_pm_get_noresume(dev_priv);
3031 serge 6275
	}
6276
}
6277
 
5060 serge 6278
void intel_reset_gt_powersave(struct drm_device *dev)
6279
{
6280
	struct drm_i915_private *dev_priv = dev->dev_private;
6281
 
5354 serge 6282
	if (INTEL_INFO(dev)->gen < 6)
6283
		return;
6284
 
6285
	gen6_suspend_rps(dev);
5060 serge 6286
	dev_priv->rps.enabled = false;
6287
}
6288
 
3243 Serge 6289
static void ibx_init_clock_gating(struct drm_device *dev)
6290
{
6291
	struct drm_i915_private *dev_priv = dev->dev_private;
6292
 
6293
	/*
6294
	 * On Ibex Peak and Cougar Point, we need to disable clock
6295
	 * gating for the panel power sequencer or it will fail to
6296
	 * start up when no ports are active.
6297
	 */
6298
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6299
}
6300
 
4104 Serge 6301
static void g4x_disable_trickle_feed(struct drm_device *dev)
6302
{
6303
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 6304
	enum pipe pipe;
4104 Serge 6305
 
5354 serge 6306
	for_each_pipe(dev_priv, pipe) {
4104 Serge 6307
		I915_WRITE(DSPCNTR(pipe),
6308
			   I915_READ(DSPCNTR(pipe)) |
6309
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6084 serge 6310
 
6311
		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6312
		POSTING_READ(DSPSURF(pipe));
4104 Serge 6313
	}
6314
}
6315
 
4560 Serge 6316
static void ilk_init_lp_watermarks(struct drm_device *dev)
6317
{
6318
	struct drm_i915_private *dev_priv = dev->dev_private;
6319
 
6320
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6321
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6322
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6323
 
6324
	/*
6325
	 * Don't touch WM1S_LP_EN here.
6326
	 * Doing so could cause underruns.
6327
	 */
6328
}
6329
 
3031 serge 6330
static void ironlake_init_clock_gating(struct drm_device *dev)
6331
{
6332
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 6333
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3031 serge 6334
 
4104 Serge 6335
	/*
6336
	 * Required for FBC
6337
	 * WaFbcDisableDpfcClockGating:ilk
6338
	 */
3243 Serge 6339
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6340
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6341
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3031 serge 6342
 
6343
	I915_WRITE(PCH_3DCGDIS0,
6344
		   MARIUNIT_CLOCK_GATE_DISABLE |
6345
		   SVSMUNIT_CLOCK_GATE_DISABLE);
6346
	I915_WRITE(PCH_3DCGDIS1,
6347
		   VFMUNIT_CLOCK_GATE_DISABLE);
6348
 
6349
	/*
6350
	 * According to the spec the following bits should be set in
6351
	 * order to enable memory self-refresh
6352
	 * The bit 22/21 of 0x42004
6353
	 * The bit 5 of 0x42020
6354
	 * The bit 15 of 0x45000
6355
	 */
6356
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6357
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
6358
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3243 Serge 6359
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3031 serge 6360
	I915_WRITE(DISP_ARB_CTL,
6361
		   (I915_READ(DISP_ARB_CTL) |
6362
		    DISP_FBC_WM_DIS));
6363
 
4560 Serge 6364
	ilk_init_lp_watermarks(dev);
6365
 
3031 serge 6366
	/*
6367
	 * Based on the document from hardware guys the following bits
6368
	 * should be set unconditionally in order to enable FBC.
6369
	 * The bit 22 of 0x42000
6370
	 * The bit 22 of 0x42004
6371
	 * The bit 7,8,9 of 0x42020.
6372
	 */
6373
	if (IS_IRONLAKE_M(dev)) {
4104 Serge 6374
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
3031 serge 6375
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
6376
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
6377
			   ILK_FBCQ_DIS);
6378
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
6379
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
6380
			   ILK_DPARB_GATE);
6381
	}
6382
 
3243 Serge 6383
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6384
 
3031 serge 6385
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6386
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6387
		   ILK_ELPIN_409_SELECT);
6388
	I915_WRITE(_3D_CHICKEN2,
6389
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6390
		   _3D_CHICKEN2_WM_READ_PIPELINED);
3243 Serge 6391
 
4104 Serge 6392
	/* WaDisableRenderCachePipelinedFlush:ilk */
3243 Serge 6393
	I915_WRITE(CACHE_MODE_0,
6394
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6395
 
5060 serge 6396
	/* WaDisable_RenderCache_OperationalFlush:ilk */
6397
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6398
 
4104 Serge 6399
	g4x_disable_trickle_feed(dev);
6400
 
3243 Serge 6401
	ibx_init_clock_gating(dev);
3031 serge 6402
}
6403
 
3243 Serge 6404
static void cpt_init_clock_gating(struct drm_device *dev)
6405
{
6406
	struct drm_i915_private *dev_priv = dev->dev_private;
6407
	int pipe;
3746 Serge 6408
	uint32_t val;
3243 Serge 6409
 
6410
	/*
6411
	 * On Ibex Peak and Cougar Point, we need to disable clock
6412
	 * gating for the panel power sequencer or it will fail to
6413
	 * start up when no ports are active.
6414
	 */
4280 Serge 6415
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6416
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6417
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
3243 Serge 6418
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6419
		   DPLS_EDP_PPS_FIX_DIS);
6420
	/* The below fixes the weird display corruption, a few pixels shifted
6421
	 * downward, on (only) LVDS of some HP laptops with IVY.
6422
	 */
5354 serge 6423
	for_each_pipe(dev_priv, pipe) {
3746 Serge 6424
		val = I915_READ(TRANS_CHICKEN2(pipe));
6425
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6426
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4104 Serge 6427
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
3746 Serge 6428
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6429
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6430
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6431
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6432
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
6433
	}
3243 Serge 6434
	/* WADP0ClockGatingDisable */
5354 serge 6435
	for_each_pipe(dev_priv, pipe) {
3243 Serge 6436
		I915_WRITE(TRANS_CHICKEN1(pipe),
6437
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6438
	}
6439
}
6440
 
3480 Serge 6441
static void gen6_check_mch_setup(struct drm_device *dev)
6442
{
6443
	struct drm_i915_private *dev_priv = dev->dev_private;
6444
	uint32_t tmp;
6445
 
6446
	tmp = I915_READ(MCH_SSKPD);
5060 serge 6447
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6448
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6449
			      tmp);
3480 Serge 6450
}
6451
 
3031 serge 6452
static void gen6_init_clock_gating(struct drm_device *dev)
6453
{
6454
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 6455
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3031 serge 6456
 
3243 Serge 6457
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3031 serge 6458
 
6459
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6460
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6461
		   ILK_ELPIN_409_SELECT);
6462
 
4104 Serge 6463
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
3243 Serge 6464
	I915_WRITE(_3D_CHICKEN,
6465
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6466
 
5060 serge 6467
	/* WaDisable_RenderCache_OperationalFlush:snb */
6468
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6469
 
6470
	/*
6471
	 * BSpec recoomends 8x4 when MSAA is used,
6472
	 * however in practice 16x4 seems fastest.
6473
	 *
6474
	 * Note that PS/WM thread counts depend on the WIZ hashing
6475
	 * disable bit, which we don't touch here, but it's good
6476
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6477
	 */
6478
	I915_WRITE(GEN6_GT_MODE,
5354 serge 6479
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5060 serge 6480
 
4560 Serge 6481
	ilk_init_lp_watermarks(dev);
3031 serge 6482
 
6483
	I915_WRITE(CACHE_MODE_0,
6484
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6485
 
6486
	I915_WRITE(GEN6_UCGCTL1,
6487
		   I915_READ(GEN6_UCGCTL1) |
6488
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6489
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6490
 
6491
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6492
	 * gating disable must be set.  Failure to set it results in
6493
	 * flickering pixels due to Z write ordering failures after
6494
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
6495
	 * Sanctuary and Tropics, and apparently anything else with
6496
	 * alpha test or pixel discard.
6497
	 *
6498
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
6499
	 * but we didn't debug actual testcases to find it out.
6500
	 *
5060 serge 6501
	 * WaDisableRCCUnitClockGating:snb
6502
	 * WaDisableRCPBUnitClockGating:snb
3031 serge 6503
	 */
6504
	I915_WRITE(GEN6_UCGCTL2,
6505
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6506
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6507
 
5060 serge 6508
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6509
	I915_WRITE(_3D_CHICKEN3,
6510
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
3031 serge 6511
 
6512
	/*
5060 serge 6513
	 * Bspec says:
6514
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6515
	 * 3DSTATE_SF number of SF output attributes is more than 16."
6516
	 */
6517
	I915_WRITE(_3D_CHICKEN3,
6518
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6519
 
6520
	/*
3031 serge 6521
	 * According to the spec the following bits should be
6522
	 * set in order to enable memory self-refresh and fbc:
6523
	 * The bit21 and bit22 of 0x42000
6524
	 * The bit21 and bit22 of 0x42004
6525
	 * The bit5 and bit7 of 0x42020
6526
	 * The bit14 of 0x70180
6527
	 * The bit14 of 0x71180
4104 Serge 6528
	 *
6529
	 * WaFbcAsynchFlipDisableFbcQueue:snb
3031 serge 6530
	 */
6531
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
6532
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
6533
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6534
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6535
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6536
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3243 Serge 6537
	I915_WRITE(ILK_DSPCLK_GATE_D,
6538
		   I915_READ(ILK_DSPCLK_GATE_D) |
6539
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6540
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3031 serge 6541
 
4104 Serge 6542
	g4x_disable_trickle_feed(dev);
3031 serge 6543
 
3243 Serge 6544
	cpt_init_clock_gating(dev);
3480 Serge 6545
 
6546
	gen6_check_mch_setup(dev);
3031 serge 6547
}
6548
 
6549
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6550
{
6551
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6552
 
5060 serge 6553
	/*
6554
	 * WaVSThreadDispatchOverride:ivb,vlv
6555
	 *
6556
	 * This actually overrides the dispatch
6557
	 * mode for all thread types.
6558
	 */
3031 serge 6559
	reg &= ~GEN7_FF_SCHED_MASK;
6560
	reg |= GEN7_FF_TS_SCHED_HW;
6561
	reg |= GEN7_FF_VS_SCHED_HW;
6562
	reg |= GEN7_FF_DS_SCHED_HW;
6563
 
6564
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6565
}
6566
 
3243 Serge 6567
static void lpt_init_clock_gating(struct drm_device *dev)
6568
{
6569
	struct drm_i915_private *dev_priv = dev->dev_private;
6570
 
6571
	/*
6572
	 * TODO: this bit should only be enabled when really needed, then
6573
	 * disabled when not needed anymore in order to save power.
6574
	 */
6084 serge 6575
	if (HAS_PCH_LPT_LP(dev))
3243 Serge 6576
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
6577
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
6578
			   PCH_LP_PARTITION_LEVEL_DISABLE);
4104 Serge 6579
 
6580
	/* WADPOClockGatingDisable:hsw */
6084 serge 6581
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6582
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
4104 Serge 6583
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3243 Serge 6584
}
6585
 
4104 Serge 6586
static void lpt_suspend_hw(struct drm_device *dev)
6587
{
6588
	struct drm_i915_private *dev_priv = dev->dev_private;
6589
 
6084 serge 6590
	if (HAS_PCH_LPT_LP(dev)) {
4104 Serge 6591
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6592
 
6593
		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6594
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6595
	}
6596
}
6597
 
5354 serge 6598
static void broadwell_init_clock_gating(struct drm_device *dev)
3031 serge 6599
{
6600
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 6601
	enum pipe pipe;
6084 serge 6602
	uint32_t misccpctl;
3031 serge 6603
 
6084 serge 6604
	ilk_init_lp_watermarks(dev);
3031 serge 6605
 
4560 Serge 6606
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6607
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6608
 
6609
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6610
	I915_WRITE(CHICKEN_PAR1_1,
6611
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6612
 
6613
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5354 serge 6614
	for_each_pipe(dev_priv, pipe) {
5060 serge 6615
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6616
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6617
			   BDW_DPRS_MASK_VBLANK_SRD);
4560 Serge 6618
	}
6619
 
6620
	/* WaVSRefCountFullforceMissDisable:bdw */
6621
	/* WaDSRefCountFullforceMissDisable:bdw */
6622
	I915_WRITE(GEN7_FF_THREAD_MODE,
6623
		   I915_READ(GEN7_FF_THREAD_MODE) &
6624
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5060 serge 6625
 
6626
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6627
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6628
 
6629
	/* WaDisableSDEUnitClockGating:bdw */
6630
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6631
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6632
 
6084 serge 6633
	/*
6634
	 * WaProgramL3SqcReg1Default:bdw
6635
	 * WaTempDisableDOPClkGating:bdw
6636
	 */
6637
	misccpctl = I915_READ(GEN7_MISCCPCTL);
6638
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6639
	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6660 serge 6640
	/*
6641
	 * Wait at least 100 clocks before re-enabling clock gating. See
6642
	 * the definition of L3SQCREG1 in BSpec.
6643
	 */
6644
	POSTING_READ(GEN8_L3SQCREG1);
6645
	udelay(1);
6084 serge 6646
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6647
 
6648
	/*
6649
	 * WaGttCachingOffByDefault:bdw
6650
	 * GTT cache may not work with big pages, so if those
6651
	 * are ever enabled GTT cache may need to be disabled.
6652
	 */
6653
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6654
 
5354 serge 6655
	lpt_init_clock_gating(dev);
4560 Serge 6656
}
6657
 
6658
static void haswell_init_clock_gating(struct drm_device *dev)
6659
{
6660
	struct drm_i915_private *dev_priv = dev->dev_private;
6661
 
6662
	ilk_init_lp_watermarks(dev);
6663
 
4104 Serge 6664
	/* L3 caching of data atomics doesn't work -- disable it. */
6665
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6666
	I915_WRITE(HSW_ROW_CHICKEN3,
6667
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6668
 
6669
	/* This is required by WaCatErrorRejectionIssue:hsw */
3031 serge 6670
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6671
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6672
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6673
 
4104 Serge 6674
	/* WaVSRefCountFullforceMissDisable:hsw */
5060 serge 6675
	I915_WRITE(GEN7_FF_THREAD_MODE,
6676
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
3031 serge 6677
 
5060 serge 6678
	/* WaDisable_RenderCache_OperationalFlush:hsw */
6679
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6680
 
6681
	/* enable HiZ Raw Stall Optimization */
6682
	I915_WRITE(CACHE_MODE_0_GEN7,
6683
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6684
 
4104 Serge 6685
	/* WaDisable4x2SubspanOptimization:hsw */
3031 serge 6686
	I915_WRITE(CACHE_MODE_1,
6687
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6688
 
5060 serge 6689
	/*
6690
	 * BSpec recommends 8x4 when MSAA is used,
6691
	 * however in practice 16x4 seems fastest.
6692
	 *
6693
	 * Note that PS/WM thread counts depend on the WIZ hashing
6694
	 * disable bit, which we don't touch here, but it's good
6695
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6696
	 */
6697
	I915_WRITE(GEN7_GT_MODE,
5354 serge 6698
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5060 serge 6699
 
6084 serge 6700
	/* WaSampleCChickenBitEnable:hsw */
6701
	I915_WRITE(HALF_SLICE_CHICKEN3,
6702
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6703
 
4104 Serge 6704
	/* WaSwitchSolVfFArbitrationPriority:hsw */
3746 Serge 6705
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6706
 
4104 Serge 6707
	/* WaRsPkgCStateDisplayPMReq:hsw */
6708
	I915_WRITE(CHICKEN_PAR1_1,
6709
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
3031 serge 6710
 
3243 Serge 6711
	lpt_init_clock_gating(dev);
3031 serge 6712
}
6713
 
6714
static void ivybridge_init_clock_gating(struct drm_device *dev)
6715
{
6716
	struct drm_i915_private *dev_priv = dev->dev_private;
6717
	uint32_t snpcr;
6718
 
4560 Serge 6719
	ilk_init_lp_watermarks(dev);
3031 serge 6720
 
3243 Serge 6721
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3031 serge 6722
 
4104 Serge 6723
	/* WaDisableEarlyCull:ivb */
3243 Serge 6724
	I915_WRITE(_3D_CHICKEN3,
6725
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6726
 
4104 Serge 6727
	/* WaDisableBackToBackFlipFix:ivb */
3031 serge 6728
	I915_WRITE(IVB_CHICKEN3,
6729
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6730
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6731
 
4104 Serge 6732
	/* WaDisablePSDDualDispatchEnable:ivb */
3243 Serge 6733
	if (IS_IVB_GT1(dev))
6734
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6735
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6736
 
5060 serge 6737
	/* WaDisable_RenderCache_OperationalFlush:ivb */
6738
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6739
 
4104 Serge 6740
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
3031 serge 6741
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6742
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6743
 
4104 Serge 6744
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
3031 serge 6745
	I915_WRITE(GEN7_L3CNTLREG1,
6746
			GEN7_WA_FOR_GEN7_L3_CONTROL);
6747
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6084 serge 6748
		   GEN7_WA_L3_CHICKEN_MODE);
3243 Serge 6749
	if (IS_IVB_GT1(dev))
6750
		I915_WRITE(GEN7_ROW_CHICKEN2,
6751
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5060 serge 6752
	else {
6753
		/* must write both registers */
6754
		I915_WRITE(GEN7_ROW_CHICKEN2,
6755
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3243 Serge 6756
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6757
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5060 serge 6758
	}
3031 serge 6759
 
4104 Serge 6760
	/* WaForceL3Serialization:ivb */
3243 Serge 6761
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6762
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6763
 
5060 serge 6764
	/*
3031 serge 6765
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4104 Serge 6766
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
3031 serge 6767
	 */
6768
	I915_WRITE(GEN6_UCGCTL2,
5060 serge 6769
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3031 serge 6770
 
4104 Serge 6771
	/* This is required by WaCatErrorRejectionIssue:ivb */
3031 serge 6772
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6773
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6774
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6775
 
4104 Serge 6776
	g4x_disable_trickle_feed(dev);
3031 serge 6777
 
6778
	gen7_setup_fixed_func_scheduler(dev_priv);
6779
 
5060 serge 6780
	if (0) { /* causes HiZ corruption on ivb:gt1 */
6781
		/* enable HiZ Raw Stall Optimization */
6782
		I915_WRITE(CACHE_MODE_0_GEN7,
6783
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6784
	}
6785
 
4104 Serge 6786
	/* WaDisable4x2SubspanOptimization:ivb */
3031 serge 6787
	I915_WRITE(CACHE_MODE_1,
6788
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6789
 
5060 serge 6790
	/*
6791
	 * BSpec recommends 8x4 when MSAA is used,
6792
	 * however in practice 16x4 seems fastest.
6793
	 *
6794
	 * Note that PS/WM thread counts depend on the WIZ hashing
6795
	 * disable bit, which we don't touch here, but it's good
6796
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6797
	 */
6798
	I915_WRITE(GEN7_GT_MODE,
5354 serge 6799
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5060 serge 6800
 
3031 serge 6801
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6802
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
6803
	snpcr |= GEN6_MBC_SNPCR_MED;
6804
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3243 Serge 6805
 
3746 Serge 6806
	if (!HAS_PCH_NOP(dev))
6084 serge 6807
		cpt_init_clock_gating(dev);
3480 Serge 6808
 
6809
	gen6_check_mch_setup(dev);
3031 serge 6810
}
6811
 
6084 serge 6812
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6813
{
6935 serge 6814
        u32 val;
6084 serge 6815
 
6935 serge 6816
        /*
6817
        * On driver load, a pipe may be active and driving a DSI display.
6818
        * Preserve DPOUNIT_CLOCK_GATE_DISABLE to avoid the pipe getting stuck
6819
        * (and never recovering) in this case. intel_dsi_post_disable() will
6820
        * clear it when we turn off the display.
6821
        */
6822
        val = I915_READ(DSPCLK_GATE_D);
6823
        val &= DPOUNIT_CLOCK_GATE_DISABLE;
6824
        val |= VRHUNIT_CLOCK_GATE_DISABLE;
6825
        I915_WRITE(DSPCLK_GATE_D, val);
6826
 
6084 serge 6827
	/*
6828
	 * Disable trickle feed and enable pnd deadline calculation
6829
	 */
6830
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6831
	I915_WRITE(CBR1_VLV, 0);
6832
}
6833
 
3031 serge 6834
static void valleyview_init_clock_gating(struct drm_device *dev)
6835
{
6836
	struct drm_i915_private *dev_priv = dev->dev_private;
6837
 
6084 serge 6838
	vlv_init_display_clock_gating(dev_priv);
3031 serge 6839
 
4104 Serge 6840
	/* WaDisableEarlyCull:vlv */
3243 Serge 6841
	I915_WRITE(_3D_CHICKEN3,
6842
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6843
 
4104 Serge 6844
	/* WaDisableBackToBackFlipFix:vlv */
3031 serge 6845
	I915_WRITE(IVB_CHICKEN3,
6846
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6847
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6848
 
5060 serge 6849
	/* WaPsdDispatchEnable:vlv */
4104 Serge 6850
	/* WaDisablePSDDualDispatchEnable:vlv */
3243 Serge 6851
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3746 Serge 6852
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6853
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3243 Serge 6854
 
5060 serge 6855
	/* WaDisable_RenderCache_OperationalFlush:vlv */
6856
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
3031 serge 6857
 
4104 Serge 6858
	/* WaForceL3Serialization:vlv */
3243 Serge 6859
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6860
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6861
 
4104 Serge 6862
	/* WaDisableDopClockGating:vlv */
3243 Serge 6863
	I915_WRITE(GEN7_ROW_CHICKEN2,
6864
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6865
 
4104 Serge 6866
	/* This is required by WaCatErrorRejectionIssue:vlv */
3031 serge 6867
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6868
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6869
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6870
 
5060 serge 6871
	gen7_setup_fixed_func_scheduler(dev_priv);
6872
 
6873
	/*
3031 serge 6874
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4104 Serge 6875
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
3031 serge 6876
	 */
6877
	I915_WRITE(GEN6_UCGCTL2,
5060 serge 6878
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3031 serge 6879
 
5060 serge 6880
	/* WaDisableL3Bank2xClockGate:vlv
6881
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
6882
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6883
	I915_WRITE(GEN7_UCGCTL4,
6884
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3031 serge 6885
 
5060 serge 6886
	/*
6887
	 * BSpec says this must be set, even though
6888
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6889
	 */
3031 serge 6890
	I915_WRITE(CACHE_MODE_1,
6891
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6892
 
6893
	/*
6084 serge 6894
	 * BSpec recommends 8x4 when MSAA is used,
6895
	 * however in practice 16x4 seems fastest.
6896
	 *
6897
	 * Note that PS/WM thread counts depend on the WIZ hashing
6898
	 * disable bit, which we don't touch here, but it's good
6899
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6900
	 */
6901
	I915_WRITE(GEN7_GT_MODE,
6902
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6903
 
6904
	/*
5060 serge 6905
	 * WaIncreaseL3CreditsForVLVB0:vlv
6906
	 * This is the hardware default actually.
6907
	 */
6908
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6909
 
6910
	/*
4104 Serge 6911
	 * WaDisableVLVClockGating_VBIIssue:vlv
3243 Serge 6912
	 * Disable clock gating on th GCFG unit to prevent a delay
6913
	 * in the reporting of vblank events.
6914
	 */
5060 serge 6915
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6916
}
3746 Serge 6917
 
5060 serge 6918
static void cherryview_init_clock_gating(struct drm_device *dev)
6919
{
6920
	struct drm_i915_private *dev_priv = dev->dev_private;
6921
 
6084 serge 6922
	vlv_init_display_clock_gating(dev_priv);
5060 serge 6923
 
6924
	/* WaVSRefCountFullforceMissDisable:chv */
6925
	/* WaDSRefCountFullforceMissDisable:chv */
6926
	I915_WRITE(GEN7_FF_THREAD_MODE,
6927
		   I915_READ(GEN7_FF_THREAD_MODE) &
6928
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6929
 
6930
	/* WaDisableSemaphoreAndSyncFlipWait:chv */
6931
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6932
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6933
 
6934
	/* WaDisableCSUnitClockGating:chv */
6935
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6936
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6937
 
6938
	/* WaDisableSDEUnitClockGating:chv */
6939
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6940
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6084 serge 6941
 
6942
	/*
6943
	 * GTT cache may not work with big pages, so if those
6944
	 * are ever enabled GTT cache may need to be disabled.
6945
	 */
6946
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
3031 serge 6947
}
6948
 
6949
static void g4x_init_clock_gating(struct drm_device *dev)
6950
{
6951
	struct drm_i915_private *dev_priv = dev->dev_private;
6952
	uint32_t dspclk_gate;
6953
 
6954
	I915_WRITE(RENCLK_GATE_D1, 0);
6955
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6956
		   GS_UNIT_CLOCK_GATE_DISABLE |
6957
		   CL_UNIT_CLOCK_GATE_DISABLE);
6958
	I915_WRITE(RAMCLK_GATE_D, 0);
6959
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6960
		OVRUNIT_CLOCK_GATE_DISABLE |
6961
		OVCUNIT_CLOCK_GATE_DISABLE;
6962
	if (IS_GM45(dev))
6963
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6964
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3243 Serge 6965
 
6966
	/* WaDisableRenderCachePipelinedFlush */
6967
	I915_WRITE(CACHE_MODE_0,
6968
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4104 Serge 6969
 
5060 serge 6970
	/* WaDisable_RenderCache_OperationalFlush:g4x */
6971
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6972
 
4104 Serge 6973
	g4x_disable_trickle_feed(dev);
3031 serge 6974
}
6975
 
6976
static void crestline_init_clock_gating(struct drm_device *dev)
6977
{
6978
	struct drm_i915_private *dev_priv = dev->dev_private;
6979
 
6980
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6981
	I915_WRITE(RENCLK_GATE_D2, 0);
6982
	I915_WRITE(DSPCLK_GATE_D, 0);
6983
	I915_WRITE(RAMCLK_GATE_D, 0);
6984
	I915_WRITE16(DEUC, 0);
4104 Serge 6985
	I915_WRITE(MI_ARB_STATE,
6986
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5060 serge 6987
 
6988
	/* WaDisable_RenderCache_OperationalFlush:gen4 */
6989
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
3031 serge 6990
}
6991
 
6992
static void broadwater_init_clock_gating(struct drm_device *dev)
6993
{
6994
	struct drm_i915_private *dev_priv = dev->dev_private;
6995
 
6996
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6997
		   I965_RCC_CLOCK_GATE_DISABLE |
6998
		   I965_RCPB_CLOCK_GATE_DISABLE |
6999
		   I965_ISC_CLOCK_GATE_DISABLE |
7000
		   I965_FBC_CLOCK_GATE_DISABLE);
7001
	I915_WRITE(RENCLK_GATE_D2, 0);
4104 Serge 7002
	I915_WRITE(MI_ARB_STATE,
7003
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5060 serge 7004
 
7005
	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7006
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
3031 serge 7007
}
7008
 
7009
static void gen3_init_clock_gating(struct drm_device *dev)
7010
{
7011
	struct drm_i915_private *dev_priv = dev->dev_private;
7012
	u32 dstate = I915_READ(D_STATE);
7013
 
7014
	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7015
		DSTATE_DOT_CLOCK_GATING;
7016
	I915_WRITE(D_STATE, dstate);
7017
 
7018
	if (IS_PINEVIEW(dev))
7019
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7020
 
7021
	/* IIR "flip pending" means done if this bit is set */
7022
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5060 serge 7023
 
7024
	/* interrupts should cause a wake up from C3 */
7025
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7026
 
7027
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7028
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5354 serge 7029
 
7030
	I915_WRITE(MI_ARB_STATE,
7031
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
3031 serge 7032
}
7033
 
7034
static void i85x_init_clock_gating(struct drm_device *dev)
7035
{
7036
	struct drm_i915_private *dev_priv = dev->dev_private;
7037
 
7038
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5060 serge 7039
 
7040
	/* interrupts should cause a wake up from C3 */
7041
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7042
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
5354 serge 7043
 
7044
	I915_WRITE(MEM_MODE,
7045
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
3031 serge 7046
}
7047
 
7048
static void i830_init_clock_gating(struct drm_device *dev)
7049
{
7050
	struct drm_i915_private *dev_priv = dev->dev_private;
7051
 
7052
	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5354 serge 7053
 
7054
	I915_WRITE(MEM_MODE,
7055
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7056
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
3031 serge 7057
}
7058
 
7059
void intel_init_clock_gating(struct drm_device *dev)
7060
{
7061
	struct drm_i915_private *dev_priv = dev->dev_private;
7062
 
6084 serge 7063
	if (dev_priv->display.init_clock_gating)
7064
		dev_priv->display.init_clock_gating(dev);
3031 serge 7065
}
7066
 
4104 Serge 7067
void intel_suspend_hw(struct drm_device *dev)
7068
{
7069
	if (HAS_PCH_LPT(dev))
7070
		lpt_suspend_hw(dev);
7071
}
7072
 
5354 serge 7073
/* Set up chip specific power management-related functions */
7074
void intel_init_pm(struct drm_device *dev)
7075
{
7076
	struct drm_i915_private *dev_priv = dev->dev_private;
7077
 
6084 serge 7078
	intel_fbc_init(dev_priv);
5354 serge 7079
 
3031 serge 7080
	/* For cxsr */
7081
	if (IS_PINEVIEW(dev))
7082
		i915_pineview_get_mem_freq(dev);
7083
	else if (IS_GEN5(dev))
7084
		i915_ironlake_get_mem_freq(dev);
7085
 
7086
	/* For FIFO watermark updates */
5354 serge 7087
	if (INTEL_INFO(dev)->gen >= 9) {
7088
		skl_setup_wm_latency(dev);
7089
 
6084 serge 7090
		if (IS_BROXTON(dev))
7091
			dev_priv->display.init_clock_gating =
7092
				bxt_init_clock_gating;
5354 serge 7093
		dev_priv->display.update_wm = skl_update_wm;
7094
		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7095
	} else if (HAS_PCH_SPLIT(dev)) {
5060 serge 7096
		ilk_setup_wm_latency(dev);
4104 Serge 7097
 
4560 Serge 7098
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7099
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7100
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7101
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7102
			dev_priv->display.update_wm = ilk_update_wm;
7103
			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6084 serge 7104
		} else {
7105
			DRM_DEBUG_KMS("Failed to read display plane latency. "
7106
				      "Disable CxSR\n");
7107
		}
4560 Serge 7108
 
7109
		if (IS_GEN5(dev))
7110
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7111
		else if (IS_GEN6(dev))
3031 serge 7112
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4560 Serge 7113
		else if (IS_IVYBRIDGE(dev))
3031 serge 7114
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4560 Serge 7115
		else if (IS_HASWELL(dev))
3031 serge 7116
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4560 Serge 7117
		else if (INTEL_INFO(dev)->gen == 8)
5354 serge 7118
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
5060 serge 7119
	} else if (IS_CHERRYVIEW(dev)) {
6084 serge 7120
		vlv_setup_wm_latency(dev);
7121
 
7122
		dev_priv->display.update_wm = vlv_update_wm;
5060 serge 7123
		dev_priv->display.init_clock_gating =
7124
			cherryview_init_clock_gating;
3031 serge 7125
	} else if (IS_VALLEYVIEW(dev)) {
6084 serge 7126
		vlv_setup_wm_latency(dev);
7127
 
7128
		dev_priv->display.update_wm = vlv_update_wm;
3031 serge 7129
		dev_priv->display.init_clock_gating =
7130
			valleyview_init_clock_gating;
7131
	} else if (IS_PINEVIEW(dev)) {
7132
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7133
					    dev_priv->is_ddr3,
7134
					    dev_priv->fsb_freq,
7135
					    dev_priv->mem_freq)) {
7136
			DRM_INFO("failed to find known CxSR latency "
7137
				 "(found ddr%s fsb freq %d, mem freq %d), "
7138
				 "disabling CxSR\n",
7139
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7140
				 dev_priv->fsb_freq, dev_priv->mem_freq);
7141
			/* Disable CxSR and never update its watermark again */
5060 serge 7142
			intel_set_memory_cxsr(dev_priv, false);
3031 serge 7143
			dev_priv->display.update_wm = NULL;
7144
		} else
7145
			dev_priv->display.update_wm = pineview_update_wm;
7146
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7147
	} else if (IS_G4X(dev)) {
7148
		dev_priv->display.update_wm = g4x_update_wm;
7149
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7150
	} else if (IS_GEN4(dev)) {
7151
		dev_priv->display.update_wm = i965_update_wm;
7152
		if (IS_CRESTLINE(dev))
7153
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7154
		else if (IS_BROADWATER(dev))
7155
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7156
	} else if (IS_GEN3(dev)) {
7157
		dev_priv->display.update_wm = i9xx_update_wm;
7158
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7159
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4560 Serge 7160
	} else if (IS_GEN2(dev)) {
7161
		if (INTEL_INFO(dev)->num_pipes == 1) {
7162
			dev_priv->display.update_wm = i845_update_wm;
7163
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7164
		} else {
7165
			dev_priv->display.update_wm = i9xx_update_wm;
6084 serge 7166
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
4560 Serge 7167
		}
7168
 
7169
		if (IS_I85X(dev) || IS_I865G(dev))
6084 serge 7170
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4560 Serge 7171
		else
7172
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
3031 serge 7173
	} else {
4560 Serge 7174
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
3031 serge 7175
	}
7176
}
7177
 
5354 serge 7178
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
3243 Serge 7179
{
7180
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 7181
 
3243 Serge 7182
	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7183
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7184
		return -EAGAIN;
7185
	}
3031 serge 7186
 
3243 Serge 7187
	I915_WRITE(GEN6_PCODE_DATA, *val);
5354 serge 7188
	I915_WRITE(GEN6_PCODE_DATA1, 0);
3243 Serge 7189
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7190
 
7191
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7192
		     500)) {
7193
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7194
		return -ETIMEDOUT;
6084 serge 7195
	}
3243 Serge 7196
 
7197
	*val = I915_READ(GEN6_PCODE_DATA);
7198
	I915_WRITE(GEN6_PCODE_DATA, 0);
7199
 
7200
	return 0;
7201
}
7202
 
5354 serge 7203
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
3243 Serge 7204
{
7205
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7206
 
7207
	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7208
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7209
		return -EAGAIN;
6084 serge 7210
	}
3243 Serge 7211
 
7212
	I915_WRITE(GEN6_PCODE_DATA, val);
7213
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7214
 
7215
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7216
		     500)) {
7217
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7218
		return -ETIMEDOUT;
3031 serge 7219
	}
3243 Serge 7220
 
7221
	I915_WRITE(GEN6_PCODE_DATA, 0);
7222
 
7223
	return 0;
3031 serge 7224
}
3746 Serge 7225
 
5354 serge 7226
static int vlv_gpu_freq_div(unsigned int czclk_freq)
3746 Serge 7227
{
5354 serge 7228
	switch (czclk_freq) {
7229
	case 200:
7230
		return 10;
7231
	case 267:
7232
		return 12;
7233
	case 320:
7234
	case 333:
7235
		return 16;
7236
	case 400:
7237
		return 20;
4104 Serge 7238
	default:
7239
		return -1;
7240
	}
5354 serge 7241
}
3746 Serge 7242
 
5354 serge 7243
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7244
{
6084 serge 7245
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
5354 serge 7246
 
7247
	div = vlv_gpu_freq_div(czclk_freq);
7248
	if (div < 0)
7249
		return div;
7250
 
7251
	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
4104 Serge 7252
}
3746 Serge 7253
 
5060 serge 7254
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
4104 Serge 7255
{
6084 serge 7256
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
3746 Serge 7257
 
5354 serge 7258
	mul = vlv_gpu_freq_div(czclk_freq);
7259
	if (mul < 0)
7260
		return mul;
3746 Serge 7261
 
5354 serge 7262
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
3746 Serge 7263
}
7264
 
5060 serge 7265
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7266
{
6084 serge 7267
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
5060 serge 7268
 
5354 serge 7269
	div = vlv_gpu_freq_div(czclk_freq) / 2;
7270
	if (div < 0)
7271
		return div;
5060 serge 7272
 
5354 serge 7273
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
5060 serge 7274
}
7275
 
7276
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7277
{
6084 serge 7278
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
5060 serge 7279
 
5354 serge 7280
	mul = vlv_gpu_freq_div(czclk_freq) / 2;
7281
	if (mul < 0)
7282
		return mul;
5060 serge 7283
 
5354 serge 7284
	/* CHV needs even values */
7285
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
5060 serge 7286
}
7287
 
6084 serge 7288
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
5060 serge 7289
{
6084 serge 7290
	if (IS_GEN9(dev_priv->dev))
7291
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7292
					 GEN9_FREQ_SCALER);
7293
	else if (IS_CHERRYVIEW(dev_priv->dev))
7294
		return chv_gpu_freq(dev_priv, val);
7295
	else if (IS_VALLEYVIEW(dev_priv->dev))
7296
		return byt_gpu_freq(dev_priv, val);
7297
	else
7298
		return val * GT_FREQUENCY_MULTIPLIER;
7299
}
5060 serge 7300
 
6084 serge 7301
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7302
{
7303
	if (IS_GEN9(dev_priv->dev))
7304
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7305
					 GT_FREQUENCY_MULTIPLIER);
7306
	else if (IS_CHERRYVIEW(dev_priv->dev))
7307
		return chv_freq_opcode(dev_priv, val);
5060 serge 7308
	else if (IS_VALLEYVIEW(dev_priv->dev))
6084 serge 7309
		return byt_freq_opcode(dev_priv, val);
7310
	else
7311
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7312
}
5060 serge 7313
 
6084 serge 7314
struct request_boost {
7315
	struct work_struct work;
7316
	struct drm_i915_gem_request *req;
7317
};
7318
 
7319
static void __intel_rps_boost_work(struct work_struct *work)
7320
{
7321
	struct request_boost *boost = container_of(work, struct request_boost, work);
7322
	struct drm_i915_gem_request *req = boost->req;
7323
 
7324
	if (!i915_gem_request_completed(req, true))
7325
		gen6_rps_boost(to_i915(req->ring->dev), NULL,
7326
			       req->emitted_jiffies);
7327
 
7328
	i915_gem_request_unreference__unlocked(req);
7329
	kfree(boost);
5060 serge 7330
}
7331
 
6084 serge 7332
void intel_queue_rps_boost_for_request(struct drm_device *dev,
7333
				       struct drm_i915_gem_request *req)
5060 serge 7334
{
6084 serge 7335
	struct request_boost *boost;
5060 serge 7336
 
6084 serge 7337
	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7338
		return;
5060 serge 7339
 
6084 serge 7340
	if (i915_gem_request_completed(req, true))
7341
		return;
7342
 
7343
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7344
	if (boost == NULL)
7345
		return;
7346
 
7347
	i915_gem_request_reference(req);
7348
	boost->req = req;
7349
 
7350
	INIT_WORK(&boost->work, __intel_rps_boost_work);
7351
	queue_work(to_i915(dev)->wq, &boost->work);
5060 serge 7352
}
7353
 
4560 Serge 7354
void intel_pm_setup(struct drm_device *dev)
3746 Serge 7355
{
4104 Serge 7356
	struct drm_i915_private *dev_priv = dev->dev_private;
7357
 
4560 Serge 7358
	mutex_init(&dev_priv->rps.hw_lock);
6084 serge 7359
	spin_lock_init(&dev_priv->rps.client_lock);
4560 Serge 7360
 
4104 Serge 7361
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7362
			  intel_gen6_powersave_work);
6084 serge 7363
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7364
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7365
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
5060 serge 7366
 
7367
	dev_priv->pm.suspended = false;
3746 Serge 7368
}