Subversion Repositories Kolibri OS

Rev

Rev 3746 | Rev 4126 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
3031 serge 1
/*
2
 * Copyright © 2012 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eugeni Dodonov 
25
 *
26
 */
27
 
28
//#include 
29
#include "i915_drv.h"
30
#include "intel_drv.h"
31
#include 
32
//#include "../../../platform/x86/intel_ips.h"
33
#include 
34
 
35
#define FORCEWAKE_ACK_TIMEOUT_MS 2
36
 
37
#define assert_spin_locked(x)
38
 
39
void getrawmonotonic(struct timespec *ts);
40
 
41
 
42
 
43
/* FBC, or Frame Buffer Compression, is a technique employed to compress the
44
 * framebuffer contents in-memory, aiming at reducing the required bandwidth
45
 * during in-memory transfers and, therefore, reduce the power packet.
46
 *
47
 * The benefits of FBC are mostly visible with solid backgrounds and
48
 * variation-less patterns.
49
 *
50
 * FBC-related functionality can be enabled by the means of the
51
 * i915.i915_enable_fbc parameter
52
 */
53
 
3243 Serge 54
static bool intel_crtc_active(struct drm_crtc *crtc)
55
{
56
	/* Be paranoid as we can arrive here with only partial
57
	 * state retrieved from the hardware during setup.
58
	 */
59
	return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
60
}
61
 
3031 serge 62
static void i8xx_disable_fbc(struct drm_device *dev)
63
{
64
	struct drm_i915_private *dev_priv = dev->dev_private;
65
	u32 fbc_ctl;
66
 
67
	/* Disable compression */
68
	fbc_ctl = I915_READ(FBC_CONTROL);
69
	if ((fbc_ctl & FBC_CTL_EN) == 0)
70
		return;
71
 
72
	fbc_ctl &= ~FBC_CTL_EN;
73
	I915_WRITE(FBC_CONTROL, fbc_ctl);
74
 
75
	/* Wait for compressing bit to clear */
76
	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
77
		DRM_DEBUG_KMS("FBC idle timed out\n");
78
		return;
79
	}
80
 
81
	DRM_DEBUG_KMS("disabled FBC\n");
82
}
83
 
84
static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
85
{
86
	struct drm_device *dev = crtc->dev;
87
	struct drm_i915_private *dev_priv = dev->dev_private;
88
	struct drm_framebuffer *fb = crtc->fb;
89
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
90
	struct drm_i915_gem_object *obj = intel_fb->obj;
91
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
92
	int cfb_pitch;
93
	int plane, i;
94
	u32 fbc_ctl, fbc_ctl2;
95
 
4104 Serge 96
	cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
3031 serge 97
	if (fb->pitches[0] < cfb_pitch)
98
		cfb_pitch = fb->pitches[0];
99
 
100
	/* FBC_CTL wants 64B units */
101
	cfb_pitch = (cfb_pitch / 64) - 1;
102
	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
103
 
104
	/* Clear old tags */
105
	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
106
		I915_WRITE(FBC_TAG + (i * 4), 0);
107
 
108
	/* Set it up... */
109
	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
110
	fbc_ctl2 |= plane;
111
	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
112
	I915_WRITE(FBC_FENCE_OFF, crtc->y);
113
 
114
	/* enable it... */
115
	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
116
	if (IS_I945GM(dev))
117
		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
118
	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
119
	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
120
	fbc_ctl |= obj->fence_reg;
121
	I915_WRITE(FBC_CONTROL, fbc_ctl);
122
 
4104 Serge 123
	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
124
		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
3031 serge 125
}
126
 
127
static bool i8xx_fbc_enabled(struct drm_device *dev)
128
{
129
	struct drm_i915_private *dev_priv = dev->dev_private;
130
 
131
	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
132
}
133
 
134
static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
135
{
136
	struct drm_device *dev = crtc->dev;
137
	struct drm_i915_private *dev_priv = dev->dev_private;
138
	struct drm_framebuffer *fb = crtc->fb;
139
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
140
	struct drm_i915_gem_object *obj = intel_fb->obj;
141
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
142
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
143
	unsigned long stall_watermark = 200;
144
	u32 dpfc_ctl;
145
 
146
	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
147
	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
148
	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
149
 
150
	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
151
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
152
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
153
	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
154
 
155
	/* enable it... */
156
	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
157
 
4104 Serge 158
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
3031 serge 159
}
160
 
161
static void g4x_disable_fbc(struct drm_device *dev)
162
{
163
	struct drm_i915_private *dev_priv = dev->dev_private;
164
	u32 dpfc_ctl;
165
 
166
	/* Disable compression */
167
	dpfc_ctl = I915_READ(DPFC_CONTROL);
168
	if (dpfc_ctl & DPFC_CTL_EN) {
169
		dpfc_ctl &= ~DPFC_CTL_EN;
170
		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
171
 
172
		DRM_DEBUG_KMS("disabled FBC\n");
173
	}
174
}
175
 
176
static bool g4x_fbc_enabled(struct drm_device *dev)
177
{
178
	struct drm_i915_private *dev_priv = dev->dev_private;
179
 
180
	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
181
}
182
 
183
static void sandybridge_blit_fbc_update(struct drm_device *dev)
184
{
185
	struct drm_i915_private *dev_priv = dev->dev_private;
186
	u32 blt_ecoskpd;
187
 
188
	/* Make sure blitter notifies FBC of writes */
189
	gen6_gt_force_wake_get(dev_priv);
190
	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
191
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
192
		GEN6_BLITTER_LOCK_SHIFT;
193
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
194
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
195
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
196
	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
197
			 GEN6_BLITTER_LOCK_SHIFT);
198
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
199
	POSTING_READ(GEN6_BLITTER_ECOSKPD);
200
	gen6_gt_force_wake_put(dev_priv);
201
}
202
 
203
static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
204
{
205
	struct drm_device *dev = crtc->dev;
206
	struct drm_i915_private *dev_priv = dev->dev_private;
207
	struct drm_framebuffer *fb = crtc->fb;
208
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
209
	struct drm_i915_gem_object *obj = intel_fb->obj;
210
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
211
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
212
	unsigned long stall_watermark = 200;
213
	u32 dpfc_ctl;
214
 
215
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
216
	dpfc_ctl &= DPFC_RESERVED;
217
	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
218
	/* Set persistent mode for front-buffer rendering, ala X. */
219
	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
220
	dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
221
	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
222
 
223
	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
224
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
225
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
226
	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
4104 Serge 227
	I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
3031 serge 228
	/* enable it... */
229
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
230
 
231
	if (IS_GEN6(dev)) {
232
		I915_WRITE(SNB_DPFC_CTL_SA,
233
			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
234
		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
235
		sandybridge_blit_fbc_update(dev);
236
	}
237
 
4104 Serge 238
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
3031 serge 239
}
240
 
241
static void ironlake_disable_fbc(struct drm_device *dev)
242
{
243
	struct drm_i915_private *dev_priv = dev->dev_private;
244
	u32 dpfc_ctl;
245
 
246
	/* Disable compression */
247
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
248
	if (dpfc_ctl & DPFC_CTL_EN) {
249
		dpfc_ctl &= ~DPFC_CTL_EN;
250
		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
251
 
4104 Serge 252
		if (IS_IVYBRIDGE(dev))
253
			/* WaFbcDisableDpfcClockGating:ivb */
254
			I915_WRITE(ILK_DSPCLK_GATE_D,
255
				   I915_READ(ILK_DSPCLK_GATE_D) &
256
				   ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
257
 
258
		if (IS_HASWELL(dev))
259
			/* WaFbcDisableDpfcClockGating:hsw */
260
			I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
261
				   I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
262
				   ~HSW_DPFC_GATING_DISABLE);
263
 
3031 serge 264
		DRM_DEBUG_KMS("disabled FBC\n");
265
	}
266
}
267
 
268
static bool ironlake_fbc_enabled(struct drm_device *dev)
269
{
270
	struct drm_i915_private *dev_priv = dev->dev_private;
271
 
272
	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
273
}
274
 
4104 Serge 275
static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
276
{
277
	struct drm_device *dev = crtc->dev;
278
	struct drm_i915_private *dev_priv = dev->dev_private;
279
	struct drm_framebuffer *fb = crtc->fb;
280
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
281
	struct drm_i915_gem_object *obj = intel_fb->obj;
282
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
283
 
284
	I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
285
 
286
	I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
287
		   IVB_DPFC_CTL_FENCE_EN |
288
		   intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
289
 
290
	if (IS_IVYBRIDGE(dev)) {
291
		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
292
		I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
293
		/* WaFbcDisableDpfcClockGating:ivb */
294
		I915_WRITE(ILK_DSPCLK_GATE_D,
295
			   I915_READ(ILK_DSPCLK_GATE_D) |
296
			   ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
297
	} else {
298
		/* WaFbcAsynchFlipDisableFbcQueue:hsw */
299
		I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
300
			   HSW_BYPASS_FBC_QUEUE);
301
		/* WaFbcDisableDpfcClockGating:hsw */
302
		I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
303
			   I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
304
			   HSW_DPFC_GATING_DISABLE);
305
	}
306
 
307
	I915_WRITE(SNB_DPFC_CTL_SA,
308
		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
309
	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
310
 
311
	sandybridge_blit_fbc_update(dev);
312
 
313
	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
314
}
315
 
3031 serge 316
bool intel_fbc_enabled(struct drm_device *dev)
317
{
318
	struct drm_i915_private *dev_priv = dev->dev_private;
319
 
320
	if (!dev_priv->display.fbc_enabled)
321
		return false;
322
 
323
	return dev_priv->display.fbc_enabled(dev);
324
}
325
 
326
static void intel_fbc_work_fn(struct work_struct *__work)
327
{
328
	struct intel_fbc_work *work =
329
		container_of(to_delayed_work(__work),
330
			     struct intel_fbc_work, work);
331
	struct drm_device *dev = work->crtc->dev;
332
	struct drm_i915_private *dev_priv = dev->dev_private;
333
 
334
	mutex_lock(&dev->struct_mutex);
4104 Serge 335
	if (work == dev_priv->fbc.fbc_work) {
3031 serge 336
		/* Double check that we haven't switched fb without cancelling
337
		 * the prior work.
338
		 */
339
		if (work->crtc->fb == work->fb) {
340
			dev_priv->display.enable_fbc(work->crtc,
341
						     work->interval);
342
 
4104 Serge 343
			dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
344
			dev_priv->fbc.fb_id = work->crtc->fb->base.id;
345
			dev_priv->fbc.y = work->crtc->y;
3031 serge 346
		}
347
 
4104 Serge 348
		dev_priv->fbc.fbc_work = NULL;
3031 serge 349
	}
350
	mutex_unlock(&dev->struct_mutex);
351
 
352
	kfree(work);
353
}
354
 
355
static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
356
{
4104 Serge 357
	if (dev_priv->fbc.fbc_work == NULL)
3031 serge 358
		return;
359
 
360
	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
361
 
362
	/* Synchronisation is provided by struct_mutex and checking of
4104 Serge 363
	 * dev_priv->fbc.fbc_work, so we can perform the cancellation
3031 serge 364
	 * entirely asynchronously.
365
	 */
3482 Serge 366
//	if (cancel_delayed_work(&dev_priv->fbc_work->work))
3031 serge 367
		/* tasklet was killed before being run, clean up */
3482 Serge 368
//		kfree(dev_priv->fbc_work);
3031 serge 369
 
370
	/* Mark the work as no longer wanted so that if it does
371
	 * wake-up (because the work was already running and waiting
372
	 * for our mutex), it will discover that is no longer
373
	 * necessary to run.
374
	 */
4104 Serge 375
	dev_priv->fbc.fbc_work = NULL;
3031 serge 376
}
377
 
4104 Serge 378
static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
3031 serge 379
{
380
	struct intel_fbc_work *work;
381
	struct drm_device *dev = crtc->dev;
382
	struct drm_i915_private *dev_priv = dev->dev_private;
383
 
3482 Serge 384
	if (!dev_priv->display.enable_fbc)
3031 serge 385
		return;
3482 Serge 386
 
3031 serge 387
	intel_cancel_fbc_work(dev_priv);
388
 
389
	work = kzalloc(sizeof *work, GFP_KERNEL);
390
	if (work == NULL) {
4104 Serge 391
		DRM_ERROR("Failed to allocate FBC work structure\n");
3031 serge 392
		dev_priv->display.enable_fbc(crtc, interval);
393
		return;
394
	}
395
 
396
	work->crtc = crtc;
397
	work->fb = crtc->fb;
398
	work->interval = interval;
399
	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
400
 
4104 Serge 401
	dev_priv->fbc.fbc_work = work;
3031 serge 402
 
403
	DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
404
 
405
	/* Delay the actual enabling to let pageflipping cease and the
406
	 * display to settle before starting the compression. Note that
407
	 * this delay also serves a second purpose: it allows for a
408
	 * vblank to pass after disabling the FBC before we attempt
409
	 * to modify the control registers.
410
	 *
411
	 * A more complicated solution would involve tracking vblanks
412
	 * following the termination of the page-flipping sequence
413
	 * and indeed performing the enable as a co-routine and not
414
	 * waiting synchronously upon the vblank.
4104 Serge 415
	 *
416
	 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
3031 serge 417
	 */
418
	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
419
}
420
 
421
void intel_disable_fbc(struct drm_device *dev)
422
{
423
	struct drm_i915_private *dev_priv = dev->dev_private;
424
 
3482 Serge 425
	intel_cancel_fbc_work(dev_priv);
3031 serge 426
 
3482 Serge 427
	if (!dev_priv->display.disable_fbc)
428
		return;
3031 serge 429
 
3482 Serge 430
	dev_priv->display.disable_fbc(dev);
4104 Serge 431
	dev_priv->fbc.plane = -1;
3031 serge 432
}
433
 
4104 Serge 434
static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
435
			      enum no_fbc_reason reason)
436
{
437
	if (dev_priv->fbc.no_fbc_reason == reason)
438
		return false;
439
 
440
	dev_priv->fbc.no_fbc_reason = reason;
441
	return true;
442
}
443
 
3031 serge 444
/**
445
 * intel_update_fbc - enable/disable FBC as needed
446
 * @dev: the drm_device
447
 *
448
 * Set up the framebuffer compression hardware at mode set time.  We
449
 * enable it if possible:
450
 *   - plane A only (on pre-965)
451
 *   - no pixel mulitply/line duplication
452
 *   - no alpha buffer discard
453
 *   - no dual wide
4104 Serge 454
 *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
3031 serge 455
 *
456
 * We can't assume that any compression will take place (worst case),
457
 * so the compressed buffer has to be the same size as the uncompressed
458
 * one.  It also must reside (along with the line length buffer) in
459
 * stolen memory.
460
 *
461
 * We need to enable/disable FBC on a global basis.
462
 */
463
void intel_update_fbc(struct drm_device *dev)
464
{
465
	struct drm_i915_private *dev_priv = dev->dev_private;
466
	struct drm_crtc *crtc = NULL, *tmp_crtc;
467
	struct intel_crtc *intel_crtc;
468
	struct drm_framebuffer *fb;
469
	struct intel_framebuffer *intel_fb;
470
	struct drm_i915_gem_object *obj;
4104 Serge 471
	unsigned int max_hdisplay, max_vdisplay;
3031 serge 472
 
4104 Serge 473
	if (!I915_HAS_FBC(dev)) {
474
		set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
3031 serge 475
		return;
4104 Serge 476
	}
3031 serge 477
 
4104 Serge 478
	if (!i915_powersave) {
479
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
480
			DRM_DEBUG_KMS("fbc disabled per module param\n");
3031 serge 481
		return;
4104 Serge 482
	}
3031 serge 483
 
484
	/*
485
	 * If FBC is already on, we just have to verify that we can
486
	 * keep it that way...
487
	 * Need to disable if:
488
	 *   - more than one pipe is active
489
	 *   - changing FBC params (stride, fence, mode)
490
	 *   - new fb is too large to fit in compressed buffer
491
	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
492
	 */
493
	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
3243 Serge 494
		if (intel_crtc_active(tmp_crtc) &&
495
		    !to_intel_crtc(tmp_crtc)->primary_disabled) {
3031 serge 496
			if (crtc) {
4104 Serge 497
				if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
3031 serge 498
				DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
499
				goto out_disable;
500
			}
501
			crtc = tmp_crtc;
502
		}
503
	}
504
 
505
	if (!crtc || crtc->fb == NULL) {
4104 Serge 506
		if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
3031 serge 507
		DRM_DEBUG_KMS("no output, disabling\n");
508
		goto out_disable;
509
	}
510
 
511
	intel_crtc = to_intel_crtc(crtc);
512
	fb = crtc->fb;
513
	intel_fb = to_intel_framebuffer(fb);
514
	obj = intel_fb->obj;
515
 
4104 Serge 516
	if (i915_enable_fbc < 0 &&
517
	    INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
518
		if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
519
			DRM_DEBUG_KMS("disabled per chip default\n");
520
		goto out_disable;
3031 serge 521
	}
4104 Serge 522
	if (!i915_enable_fbc) {
523
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
3031 serge 524
		DRM_DEBUG_KMS("fbc disabled per module param\n");
525
		goto out_disable;
526
	}
527
	if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
528
	    (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
4104 Serge 529
		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
3031 serge 530
		DRM_DEBUG_KMS("mode incompatible with compression, "
531
			      "disabling\n");
532
		goto out_disable;
533
	}
4104 Serge 534
 
535
	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
536
		max_hdisplay = 4096;
537
		max_vdisplay = 2048;
538
	} else {
539
		max_hdisplay = 2048;
540
		max_vdisplay = 1536;
541
	}
542
	if ((crtc->mode.hdisplay > max_hdisplay) ||
543
	    (crtc->mode.vdisplay > max_vdisplay)) {
544
		if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
3031 serge 545
		DRM_DEBUG_KMS("mode too large for compression, disabling\n");
546
		goto out_disable;
547
	}
4104 Serge 548
	if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
549
	    intel_crtc->plane != 0) {
550
		if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
3031 serge 551
		DRM_DEBUG_KMS("plane not 0, disabling compression\n");
552
		goto out_disable;
553
	}
554
 
555
	/* The use of a CPU fence is mandatory in order to detect writes
556
	 * by the CPU to the scanout and trigger updates to the FBC.
557
	 */
558
	if (obj->tiling_mode != I915_TILING_X ||
559
	    obj->fence_reg == I915_FENCE_REG_NONE) {
4104 Serge 560
		if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
3031 serge 561
		DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
562
		goto out_disable;
563
	}
564
 
565
	/* If the kernel debugger is active, always disable compression */
566
	if (in_dbg_master())
567
		goto out_disable;
568
 
3480 Serge 569
	if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
4104 Serge 570
		if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
3480 Serge 571
		DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
572
		goto out_disable;
573
	}
574
 
3031 serge 575
	/* If the scanout has not changed, don't modify the FBC settings.
576
	 * Note that we make the fundamental assumption that the fb->obj
577
	 * cannot be unpinned (and have its GTT offset and fence revoked)
578
	 * without first being decoupled from the scanout and FBC disabled.
579
	 */
4104 Serge 580
	if (dev_priv->fbc.plane == intel_crtc->plane &&
581
	    dev_priv->fbc.fb_id == fb->base.id &&
582
	    dev_priv->fbc.y == crtc->y)
3031 serge 583
		return;
584
 
585
	if (intel_fbc_enabled(dev)) {
586
		/* We update FBC along two paths, after changing fb/crtc
587
		 * configuration (modeswitching) and after page-flipping
588
		 * finishes. For the latter, we know that not only did
589
		 * we disable the FBC at the start of the page-flip
590
		 * sequence, but also more than one vblank has passed.
591
		 *
592
		 * For the former case of modeswitching, it is possible
593
		 * to switch between two FBC valid configurations
594
		 * instantaneously so we do need to disable the FBC
595
		 * before we can modify its control registers. We also
596
		 * have to wait for the next vblank for that to take
597
		 * effect. However, since we delay enabling FBC we can
598
		 * assume that a vblank has passed since disabling and
599
		 * that we can safely alter the registers in the deferred
600
		 * callback.
601
		 *
602
		 * In the scenario that we go from a valid to invalid
603
		 * and then back to valid FBC configuration we have
604
		 * no strict enforcement that a vblank occurred since
605
		 * disabling the FBC. However, along all current pipe
606
		 * disabling paths we do need to wait for a vblank at
607
		 * some point. And we wait before enabling FBC anyway.
608
		 */
609
		DRM_DEBUG_KMS("disabling active FBC for update\n");
610
		intel_disable_fbc(dev);
611
	}
612
 
613
	intel_enable_fbc(crtc, 500);
4104 Serge 614
	dev_priv->fbc.no_fbc_reason = FBC_OK;
3031 serge 615
	return;
616
 
617
out_disable:
618
	/* Multiple disables should be harmless */
619
	if (intel_fbc_enabled(dev)) {
620
		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
621
		intel_disable_fbc(dev);
622
	}
3480 Serge 623
	i915_gem_stolen_cleanup_compression(dev);
3031 serge 624
}
625
 
626
static void i915_pineview_get_mem_freq(struct drm_device *dev)
627
{
628
	drm_i915_private_t *dev_priv = dev->dev_private;
629
	u32 tmp;
630
 
631
	tmp = I915_READ(CLKCFG);
632
 
633
	switch (tmp & CLKCFG_FSB_MASK) {
634
	case CLKCFG_FSB_533:
635
		dev_priv->fsb_freq = 533; /* 133*4 */
636
		break;
637
	case CLKCFG_FSB_800:
638
		dev_priv->fsb_freq = 800; /* 200*4 */
639
		break;
640
	case CLKCFG_FSB_667:
641
		dev_priv->fsb_freq =  667; /* 167*4 */
642
		break;
643
	case CLKCFG_FSB_400:
644
		dev_priv->fsb_freq = 400; /* 100*4 */
645
		break;
646
	}
647
 
648
	switch (tmp & CLKCFG_MEM_MASK) {
649
	case CLKCFG_MEM_533:
650
		dev_priv->mem_freq = 533;
651
		break;
652
	case CLKCFG_MEM_667:
653
		dev_priv->mem_freq = 667;
654
		break;
655
	case CLKCFG_MEM_800:
656
		dev_priv->mem_freq = 800;
657
		break;
658
	}
659
 
660
	/* detect pineview DDR3 setting */
661
	tmp = I915_READ(CSHRDDR3CTL);
662
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
663
}
664
 
665
static void i915_ironlake_get_mem_freq(struct drm_device *dev)
666
{
667
	drm_i915_private_t *dev_priv = dev->dev_private;
668
	u16 ddrpll, csipll;
669
 
670
	ddrpll = I915_READ16(DDRMPLL1);
671
	csipll = I915_READ16(CSIPLL0);
672
 
673
	switch (ddrpll & 0xff) {
674
	case 0xc:
675
		dev_priv->mem_freq = 800;
676
		break;
677
	case 0x10:
678
		dev_priv->mem_freq = 1066;
679
		break;
680
	case 0x14:
681
		dev_priv->mem_freq = 1333;
682
		break;
683
	case 0x18:
684
		dev_priv->mem_freq = 1600;
685
		break;
686
	default:
687
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
688
				 ddrpll & 0xff);
689
		dev_priv->mem_freq = 0;
690
		break;
691
	}
692
 
693
	dev_priv->ips.r_t = dev_priv->mem_freq;
694
 
695
	switch (csipll & 0x3ff) {
696
	case 0x00c:
697
		dev_priv->fsb_freq = 3200;
698
		break;
699
	case 0x00e:
700
		dev_priv->fsb_freq = 3733;
701
		break;
702
	case 0x010:
703
		dev_priv->fsb_freq = 4266;
704
		break;
705
	case 0x012:
706
		dev_priv->fsb_freq = 4800;
707
		break;
708
	case 0x014:
709
		dev_priv->fsb_freq = 5333;
710
		break;
711
	case 0x016:
712
		dev_priv->fsb_freq = 5866;
713
		break;
714
	case 0x018:
715
		dev_priv->fsb_freq = 6400;
716
		break;
717
	default:
718
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
719
				 csipll & 0x3ff);
720
		dev_priv->fsb_freq = 0;
721
		break;
722
	}
723
 
724
	if (dev_priv->fsb_freq == 3200) {
725
		dev_priv->ips.c_m = 0;
726
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
727
		dev_priv->ips.c_m = 1;
728
	} else {
729
		dev_priv->ips.c_m = 2;
730
	}
731
}
732
 
733
static const struct cxsr_latency cxsr_latency_table[] = {
734
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
735
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
736
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
737
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
738
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
739
 
740
	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
741
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
742
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
743
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
744
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
745
 
746
	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
747
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
748
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
749
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
750
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
751
 
752
	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
753
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
754
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
755
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
756
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
757
 
758
	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
759
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
760
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
761
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
762
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
763
 
764
	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
765
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
766
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
767
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
768
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
769
};
770
 
771
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
772
							 int is_ddr3,
773
							 int fsb,
774
							 int mem)
775
{
776
	const struct cxsr_latency *latency;
777
	int i;
778
 
779
	if (fsb == 0 || mem == 0)
780
		return NULL;
781
 
782
	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
783
		latency = &cxsr_latency_table[i];
784
		if (is_desktop == latency->is_desktop &&
785
		    is_ddr3 == latency->is_ddr3 &&
786
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
787
			return latency;
788
	}
789
 
790
	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
791
 
792
	return NULL;
793
}
794
 
795
static void pineview_disable_cxsr(struct drm_device *dev)
796
{
797
	struct drm_i915_private *dev_priv = dev->dev_private;
798
 
799
	/* deactivate cxsr */
800
	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
801
}
802
 
803
/*
804
 * Latency for FIFO fetches is dependent on several factors:
805
 *   - memory configuration (speed, channels)
806
 *   - chipset
807
 *   - current MCH state
808
 * It can be fairly high in some situations, so here we assume a fairly
809
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
810
 * set this value too high, the FIFO will fetch frequently to stay full)
811
 * and power consumption (set it too low to save power and we might see
812
 * FIFO underruns and display "flicker").
813
 *
814
 * A value of 5us seems to be a good balance; safe for very low end
815
 * platforms but not overly aggressive on lower latency configs.
816
 */
817
static const int latency_ns = 5000;
818
 
819
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
820
{
821
	struct drm_i915_private *dev_priv = dev->dev_private;
822
	uint32_t dsparb = I915_READ(DSPARB);
823
	int size;
824
 
825
	size = dsparb & 0x7f;
826
	if (plane)
827
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
828
 
829
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
830
		      plane ? "B" : "A", size);
831
 
832
	return size;
833
}
834
 
835
static int i85x_get_fifo_size(struct drm_device *dev, int plane)
836
{
837
	struct drm_i915_private *dev_priv = dev->dev_private;
838
	uint32_t dsparb = I915_READ(DSPARB);
839
	int size;
840
 
841
	size = dsparb & 0x1ff;
842
	if (plane)
843
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
844
	size >>= 1; /* Convert to cachelines */
845
 
846
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
847
		      plane ? "B" : "A", size);
848
 
849
	return size;
850
}
851
 
852
static int i845_get_fifo_size(struct drm_device *dev, int plane)
853
{
854
	struct drm_i915_private *dev_priv = dev->dev_private;
855
	uint32_t dsparb = I915_READ(DSPARB);
856
	int size;
857
 
858
	size = dsparb & 0x7f;
859
	size >>= 2; /* Convert to cachelines */
860
 
861
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
862
		      plane ? "B" : "A",
863
		      size);
864
 
865
	return size;
866
}
867
 
868
static int i830_get_fifo_size(struct drm_device *dev, int plane)
869
{
870
	struct drm_i915_private *dev_priv = dev->dev_private;
871
	uint32_t dsparb = I915_READ(DSPARB);
872
	int size;
873
 
874
	size = dsparb & 0x7f;
875
	size >>= 1; /* Convert to cachelines */
876
 
877
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
878
		      plane ? "B" : "A", size);
879
 
880
	return size;
881
}
882
 
883
/* Pineview has different values for various configs */
884
static const struct intel_watermark_params pineview_display_wm = {
885
	PINEVIEW_DISPLAY_FIFO,
886
	PINEVIEW_MAX_WM,
887
	PINEVIEW_DFT_WM,
888
	PINEVIEW_GUARD_WM,
889
	PINEVIEW_FIFO_LINE_SIZE
890
};
891
static const struct intel_watermark_params pineview_display_hplloff_wm = {
892
	PINEVIEW_DISPLAY_FIFO,
893
	PINEVIEW_MAX_WM,
894
	PINEVIEW_DFT_HPLLOFF_WM,
895
	PINEVIEW_GUARD_WM,
896
	PINEVIEW_FIFO_LINE_SIZE
897
};
898
static const struct intel_watermark_params pineview_cursor_wm = {
899
	PINEVIEW_CURSOR_FIFO,
900
	PINEVIEW_CURSOR_MAX_WM,
901
	PINEVIEW_CURSOR_DFT_WM,
902
	PINEVIEW_CURSOR_GUARD_WM,
903
	PINEVIEW_FIFO_LINE_SIZE,
904
};
905
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
906
	PINEVIEW_CURSOR_FIFO,
907
	PINEVIEW_CURSOR_MAX_WM,
908
	PINEVIEW_CURSOR_DFT_WM,
909
	PINEVIEW_CURSOR_GUARD_WM,
910
	PINEVIEW_FIFO_LINE_SIZE
911
};
912
static const struct intel_watermark_params g4x_wm_info = {
913
	G4X_FIFO_SIZE,
914
	G4X_MAX_WM,
915
	G4X_MAX_WM,
916
	2,
917
	G4X_FIFO_LINE_SIZE,
918
};
919
static const struct intel_watermark_params g4x_cursor_wm_info = {
920
	I965_CURSOR_FIFO,
921
	I965_CURSOR_MAX_WM,
922
	I965_CURSOR_DFT_WM,
923
	2,
924
	G4X_FIFO_LINE_SIZE,
925
};
926
static const struct intel_watermark_params valleyview_wm_info = {
927
	VALLEYVIEW_FIFO_SIZE,
928
	VALLEYVIEW_MAX_WM,
929
	VALLEYVIEW_MAX_WM,
930
	2,
931
	G4X_FIFO_LINE_SIZE,
932
};
933
static const struct intel_watermark_params valleyview_cursor_wm_info = {
934
	I965_CURSOR_FIFO,
935
	VALLEYVIEW_CURSOR_MAX_WM,
936
	I965_CURSOR_DFT_WM,
937
	2,
938
	G4X_FIFO_LINE_SIZE,
939
};
940
static const struct intel_watermark_params i965_cursor_wm_info = {
941
	I965_CURSOR_FIFO,
942
	I965_CURSOR_MAX_WM,
943
	I965_CURSOR_DFT_WM,
944
	2,
945
	I915_FIFO_LINE_SIZE,
946
};
947
static const struct intel_watermark_params i945_wm_info = {
948
	I945_FIFO_SIZE,
949
	I915_MAX_WM,
950
	1,
951
	2,
952
	I915_FIFO_LINE_SIZE
953
};
954
static const struct intel_watermark_params i915_wm_info = {
955
	I915_FIFO_SIZE,
956
	I915_MAX_WM,
957
	1,
958
	2,
959
	I915_FIFO_LINE_SIZE
960
};
961
static const struct intel_watermark_params i855_wm_info = {
962
	I855GM_FIFO_SIZE,
963
	I915_MAX_WM,
964
	1,
965
	2,
966
	I830_FIFO_LINE_SIZE
967
};
968
static const struct intel_watermark_params i830_wm_info = {
969
	I830_FIFO_SIZE,
970
	I915_MAX_WM,
971
	1,
972
	2,
973
	I830_FIFO_LINE_SIZE
974
};
975
 
976
static const struct intel_watermark_params ironlake_display_wm_info = {
977
	ILK_DISPLAY_FIFO,
978
	ILK_DISPLAY_MAXWM,
979
	ILK_DISPLAY_DFTWM,
980
	2,
981
	ILK_FIFO_LINE_SIZE
982
};
983
static const struct intel_watermark_params ironlake_cursor_wm_info = {
984
	ILK_CURSOR_FIFO,
985
	ILK_CURSOR_MAXWM,
986
	ILK_CURSOR_DFTWM,
987
	2,
988
	ILK_FIFO_LINE_SIZE
989
};
990
static const struct intel_watermark_params ironlake_display_srwm_info = {
991
	ILK_DISPLAY_SR_FIFO,
992
	ILK_DISPLAY_MAX_SRWM,
993
	ILK_DISPLAY_DFT_SRWM,
994
	2,
995
	ILK_FIFO_LINE_SIZE
996
};
997
static const struct intel_watermark_params ironlake_cursor_srwm_info = {
998
	ILK_CURSOR_SR_FIFO,
999
	ILK_CURSOR_MAX_SRWM,
1000
	ILK_CURSOR_DFT_SRWM,
1001
	2,
1002
	ILK_FIFO_LINE_SIZE
1003
};
1004
 
1005
static const struct intel_watermark_params sandybridge_display_wm_info = {
1006
	SNB_DISPLAY_FIFO,
1007
	SNB_DISPLAY_MAXWM,
1008
	SNB_DISPLAY_DFTWM,
1009
	2,
1010
	SNB_FIFO_LINE_SIZE
1011
};
1012
static const struct intel_watermark_params sandybridge_cursor_wm_info = {
1013
	SNB_CURSOR_FIFO,
1014
	SNB_CURSOR_MAXWM,
1015
	SNB_CURSOR_DFTWM,
1016
	2,
1017
	SNB_FIFO_LINE_SIZE
1018
};
1019
static const struct intel_watermark_params sandybridge_display_srwm_info = {
1020
	SNB_DISPLAY_SR_FIFO,
1021
	SNB_DISPLAY_MAX_SRWM,
1022
	SNB_DISPLAY_DFT_SRWM,
1023
	2,
1024
	SNB_FIFO_LINE_SIZE
1025
};
1026
static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1027
	SNB_CURSOR_SR_FIFO,
1028
	SNB_CURSOR_MAX_SRWM,
1029
	SNB_CURSOR_DFT_SRWM,
1030
	2,
1031
	SNB_FIFO_LINE_SIZE
1032
};
1033
 
1034
 
1035
/**
1036
 * intel_calculate_wm - calculate watermark level
1037
 * @clock_in_khz: pixel clock
1038
 * @wm: chip FIFO params
1039
 * @pixel_size: display pixel size
1040
 * @latency_ns: memory latency for the platform
1041
 *
1042
 * Calculate the watermark level (the level at which the display plane will
1043
 * start fetching from memory again).  Each chip has a different display
1044
 * FIFO size and allocation, so the caller needs to figure that out and pass
1045
 * in the correct intel_watermark_params structure.
1046
 *
1047
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1048
 * on the pixel size.  When it reaches the watermark level, it'll start
1049
 * fetching FIFO line sized based chunks from memory until the FIFO fills
1050
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1051
 * will occur, and a display engine hang could result.
1052
 */
1053
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1054
					const struct intel_watermark_params *wm,
1055
					int fifo_size,
1056
					int pixel_size,
1057
					unsigned long latency_ns)
1058
{
1059
	long entries_required, wm_size;
1060
 
1061
	/*
1062
	 * Note: we need to make sure we don't overflow for various clock &
1063
	 * latency values.
1064
	 * clocks go from a few thousand to several hundred thousand.
1065
	 * latency is usually a few thousand
1066
	 */
1067
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1068
		1000;
1069
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1070
 
1071
	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1072
 
1073
	wm_size = fifo_size - (entries_required + wm->guard_size);
1074
 
1075
	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1076
 
1077
	/* Don't promote wm_size to unsigned... */
1078
	if (wm_size > (long)wm->max_wm)
1079
		wm_size = wm->max_wm;
1080
	if (wm_size <= 0)
1081
		wm_size = wm->default_wm;
1082
	return wm_size;
1083
}
1084
 
1085
static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1086
{
1087
	struct drm_crtc *crtc, *enabled = NULL;
1088
 
1089
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3243 Serge 1090
		if (intel_crtc_active(crtc)) {
3031 serge 1091
			if (enabled)
1092
				return NULL;
1093
			enabled = crtc;
1094
		}
1095
	}
1096
 
1097
	return enabled;
1098
}
1099
 
1100
static void pineview_update_wm(struct drm_device *dev)
1101
{
1102
	struct drm_i915_private *dev_priv = dev->dev_private;
1103
	struct drm_crtc *crtc;
1104
	const struct cxsr_latency *latency;
1105
	u32 reg;
1106
	unsigned long wm;
1107
 
1108
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1109
					 dev_priv->fsb_freq, dev_priv->mem_freq);
1110
	if (!latency) {
1111
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1112
		pineview_disable_cxsr(dev);
1113
		return;
1114
	}
1115
 
1116
	crtc = single_enabled_crtc(dev);
1117
	if (crtc) {
1118
		int clock = crtc->mode.clock;
1119
		int pixel_size = crtc->fb->bits_per_pixel / 8;
1120
 
1121
		/* Display SR */
1122
		wm = intel_calculate_wm(clock, &pineview_display_wm,
1123
					pineview_display_wm.fifo_size,
1124
					pixel_size, latency->display_sr);
1125
		reg = I915_READ(DSPFW1);
1126
		reg &= ~DSPFW_SR_MASK;
1127
		reg |= wm << DSPFW_SR_SHIFT;
1128
		I915_WRITE(DSPFW1, reg);
1129
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1130
 
1131
		/* cursor SR */
1132
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1133
					pineview_display_wm.fifo_size,
1134
					pixel_size, latency->cursor_sr);
1135
		reg = I915_READ(DSPFW3);
1136
		reg &= ~DSPFW_CURSOR_SR_MASK;
1137
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1138
		I915_WRITE(DSPFW3, reg);
1139
 
1140
		/* Display HPLL off SR */
1141
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1142
					pineview_display_hplloff_wm.fifo_size,
1143
					pixel_size, latency->display_hpll_disable);
1144
		reg = I915_READ(DSPFW3);
1145
		reg &= ~DSPFW_HPLL_SR_MASK;
1146
		reg |= wm & DSPFW_HPLL_SR_MASK;
1147
		I915_WRITE(DSPFW3, reg);
1148
 
1149
		/* cursor HPLL off SR */
1150
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1151
					pineview_display_hplloff_wm.fifo_size,
1152
					pixel_size, latency->cursor_hpll_disable);
1153
		reg = I915_READ(DSPFW3);
1154
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
1155
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1156
		I915_WRITE(DSPFW3, reg);
1157
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1158
 
1159
		/* activate cxsr */
1160
		I915_WRITE(DSPFW3,
1161
			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1162
		DRM_DEBUG_KMS("Self-refresh is enabled\n");
1163
	} else {
1164
		pineview_disable_cxsr(dev);
1165
		DRM_DEBUG_KMS("Self-refresh is disabled\n");
1166
	}
1167
}
1168
 
1169
static bool g4x_compute_wm0(struct drm_device *dev,
1170
			    int plane,
1171
			    const struct intel_watermark_params *display,
1172
			    int display_latency_ns,
1173
			    const struct intel_watermark_params *cursor,
1174
			    int cursor_latency_ns,
1175
			    int *plane_wm,
1176
			    int *cursor_wm)
1177
{
1178
	struct drm_crtc *crtc;
1179
	int htotal, hdisplay, clock, pixel_size;
1180
	int line_time_us, line_count;
1181
	int entries, tlb_miss;
1182
 
1183
	crtc = intel_get_crtc_for_plane(dev, plane);
3243 Serge 1184
	if (!intel_crtc_active(crtc)) {
3031 serge 1185
		*cursor_wm = cursor->guard_size;
1186
		*plane_wm = display->guard_size;
1187
        return false;
1188
	}
1189
 
1190
	htotal = crtc->mode.htotal;
1191
	hdisplay = crtc->mode.hdisplay;
1192
	clock = crtc->mode.clock;
1193
	pixel_size = crtc->fb->bits_per_pixel / 8;
1194
 
1195
	/* Use the small buffer method to calculate plane watermark */
1196
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1197
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1198
	if (tlb_miss > 0)
1199
		entries += tlb_miss;
1200
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
1201
	*plane_wm = entries + display->guard_size;
1202
	if (*plane_wm > (int)display->max_wm)
1203
		*plane_wm = display->max_wm;
1204
 
1205
	/* Use the large buffer method to calculate cursor watermark */
1206
	line_time_us = ((htotal * 1000) / clock);
1207
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1208
	entries = line_count * 64 * pixel_size;
1209
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1210
	if (tlb_miss > 0)
1211
		entries += tlb_miss;
1212
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1213
	*cursor_wm = entries + cursor->guard_size;
1214
	if (*cursor_wm > (int)cursor->max_wm)
1215
		*cursor_wm = (int)cursor->max_wm;
1216
 
1217
	return true;
1218
}
1219
 
1220
/*
1221
 * Check the wm result.
1222
 *
1223
 * If any calculated watermark values is larger than the maximum value that
1224
 * can be programmed into the associated watermark register, that watermark
1225
 * must be disabled.
1226
 */
1227
static bool g4x_check_srwm(struct drm_device *dev,
1228
			   int display_wm, int cursor_wm,
1229
			   const struct intel_watermark_params *display,
1230
			   const struct intel_watermark_params *cursor)
1231
{
1232
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1233
		      display_wm, cursor_wm);
1234
 
1235
	if (display_wm > display->max_wm) {
1236
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1237
			      display_wm, display->max_wm);
1238
		return false;
1239
	}
1240
 
1241
	if (cursor_wm > cursor->max_wm) {
1242
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1243
			      cursor_wm, cursor->max_wm);
1244
		return false;
1245
	}
1246
 
1247
	if (!(display_wm || cursor_wm)) {
1248
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1249
		return false;
1250
	}
1251
 
1252
	return true;
1253
}
1254
 
1255
static bool g4x_compute_srwm(struct drm_device *dev,
1256
			     int plane,
1257
			     int latency_ns,
1258
			     const struct intel_watermark_params *display,
1259
			     const struct intel_watermark_params *cursor,
1260
			     int *display_wm, int *cursor_wm)
1261
{
1262
	struct drm_crtc *crtc;
1263
	int hdisplay, htotal, pixel_size, clock;
1264
	unsigned long line_time_us;
1265
	int line_count, line_size;
1266
	int small, large;
1267
	int entries;
1268
 
1269
	if (!latency_ns) {
1270
		*display_wm = *cursor_wm = 0;
1271
		return false;
1272
	}
1273
 
1274
	crtc = intel_get_crtc_for_plane(dev, plane);
1275
	hdisplay = crtc->mode.hdisplay;
1276
	htotal = crtc->mode.htotal;
1277
	clock = crtc->mode.clock;
1278
	pixel_size = crtc->fb->bits_per_pixel / 8;
1279
 
1280
	line_time_us = (htotal * 1000) / clock;
1281
	line_count = (latency_ns / line_time_us + 1000) / 1000;
1282
	line_size = hdisplay * pixel_size;
1283
 
1284
	/* Use the minimum of the small and large buffer method for primary */
1285
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1286
	large = line_count * line_size;
1287
 
1288
	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1289
	*display_wm = entries + display->guard_size;
1290
 
1291
	/* calculate the self-refresh watermark for display cursor */
1292
	entries = line_count * pixel_size * 64;
1293
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1294
	*cursor_wm = entries + cursor->guard_size;
1295
 
1296
	return g4x_check_srwm(dev,
1297
			      *display_wm, *cursor_wm,
1298
			      display, cursor);
1299
}
1300
 
1301
static bool vlv_compute_drain_latency(struct drm_device *dev,
1302
				     int plane,
1303
				     int *plane_prec_mult,
1304
				     int *plane_dl,
1305
				     int *cursor_prec_mult,
1306
				     int *cursor_dl)
1307
{
1308
	struct drm_crtc *crtc;
1309
	int clock, pixel_size;
1310
	int entries;
1311
 
1312
	crtc = intel_get_crtc_for_plane(dev, plane);
3243 Serge 1313
	if (!intel_crtc_active(crtc))
3031 serge 1314
		return false;
1315
 
1316
	clock = crtc->mode.clock;	/* VESA DOT Clock */
1317
	pixel_size = crtc->fb->bits_per_pixel / 8;	/* BPP */
1318
 
1319
	entries = (clock / 1000) * pixel_size;
1320
	*plane_prec_mult = (entries > 256) ?
1321
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1322
	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1323
						     pixel_size);
1324
 
1325
	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
1326
	*cursor_prec_mult = (entries > 256) ?
1327
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1328
	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1329
 
1330
	return true;
1331
}
1332
 
1333
/*
1334
 * Update drain latency registers of memory arbiter
1335
 *
1336
 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1337
 * to be programmed. Each plane has a drain latency multiplier and a drain
1338
 * latency value.
1339
 */
1340
 
1341
static void vlv_update_drain_latency(struct drm_device *dev)
1342
{
1343
	struct drm_i915_private *dev_priv = dev->dev_private;
1344
	int planea_prec, planea_dl, planeb_prec, planeb_dl;
1345
	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1346
	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1347
							either 16 or 32 */
1348
 
1349
	/* For plane A, Cursor A */
1350
	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1351
				      &cursor_prec_mult, &cursora_dl)) {
1352
		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1353
			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1354
		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1355
			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1356
 
1357
		I915_WRITE(VLV_DDL1, cursora_prec |
1358
				(cursora_dl << DDL_CURSORA_SHIFT) |
1359
				planea_prec | planea_dl);
1360
	}
1361
 
1362
	/* For plane B, Cursor B */
1363
	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1364
				      &cursor_prec_mult, &cursorb_dl)) {
1365
		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1366
			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1367
		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1368
			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1369
 
1370
		I915_WRITE(VLV_DDL2, cursorb_prec |
1371
				(cursorb_dl << DDL_CURSORB_SHIFT) |
1372
				planeb_prec | planeb_dl);
1373
	}
1374
}
1375
 
1376
#define single_plane_enabled(mask) is_power_of_2(mask)
1377
 
1378
static void valleyview_update_wm(struct drm_device *dev)
1379
{
1380
	static const int sr_latency_ns = 12000;
1381
	struct drm_i915_private *dev_priv = dev->dev_private;
1382
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1383
	int plane_sr, cursor_sr;
3243 Serge 1384
	int ignore_plane_sr, ignore_cursor_sr;
3031 serge 1385
	unsigned int enabled = 0;
1386
 
1387
	vlv_update_drain_latency(dev);
1388
 
3746 Serge 1389
	if (g4x_compute_wm0(dev, PIPE_A,
3031 serge 1390
			    &valleyview_wm_info, latency_ns,
1391
			    &valleyview_cursor_wm_info, latency_ns,
1392
			    &planea_wm, &cursora_wm))
3746 Serge 1393
		enabled |= 1 << PIPE_A;
3031 serge 1394
 
3746 Serge 1395
	if (g4x_compute_wm0(dev, PIPE_B,
3031 serge 1396
			    &valleyview_wm_info, latency_ns,
1397
			    &valleyview_cursor_wm_info, latency_ns,
1398
			    &planeb_wm, &cursorb_wm))
3746 Serge 1399
		enabled |= 1 << PIPE_B;
3031 serge 1400
 
1401
	if (single_plane_enabled(enabled) &&
1402
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1403
			     sr_latency_ns,
1404
			     &valleyview_wm_info,
1405
			     &valleyview_cursor_wm_info,
3243 Serge 1406
			     &plane_sr, &ignore_cursor_sr) &&
1407
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1408
			     2*sr_latency_ns,
1409
			     &valleyview_wm_info,
1410
			     &valleyview_cursor_wm_info,
1411
			     &ignore_plane_sr, &cursor_sr)) {
3031 serge 1412
		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
3243 Serge 1413
	} else {
3031 serge 1414
		I915_WRITE(FW_BLC_SELF_VLV,
1415
			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
3243 Serge 1416
		plane_sr = cursor_sr = 0;
1417
	}
3031 serge 1418
 
1419
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1420
		      planea_wm, cursora_wm,
1421
		      planeb_wm, cursorb_wm,
1422
		      plane_sr, cursor_sr);
1423
 
1424
	I915_WRITE(DSPFW1,
1425
		   (plane_sr << DSPFW_SR_SHIFT) |
1426
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1427
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1428
		   planea_wm);
1429
	I915_WRITE(DSPFW2,
3243 Serge 1430
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
3031 serge 1431
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1432
	I915_WRITE(DSPFW3,
3243 Serge 1433
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1434
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3031 serge 1435
}
1436
 
1437
static void g4x_update_wm(struct drm_device *dev)
1438
{
1439
	static const int sr_latency_ns = 12000;
1440
	struct drm_i915_private *dev_priv = dev->dev_private;
1441
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1442
	int plane_sr, cursor_sr;
1443
	unsigned int enabled = 0;
1444
 
3746 Serge 1445
	if (g4x_compute_wm0(dev, PIPE_A,
3031 serge 1446
			    &g4x_wm_info, latency_ns,
1447
			    &g4x_cursor_wm_info, latency_ns,
1448
			    &planea_wm, &cursora_wm))
3746 Serge 1449
		enabled |= 1 << PIPE_A;
3031 serge 1450
 
3746 Serge 1451
	if (g4x_compute_wm0(dev, PIPE_B,
3031 serge 1452
			    &g4x_wm_info, latency_ns,
1453
			    &g4x_cursor_wm_info, latency_ns,
1454
			    &planeb_wm, &cursorb_wm))
3746 Serge 1455
		enabled |= 1 << PIPE_B;
3031 serge 1456
 
1457
	if (single_plane_enabled(enabled) &&
1458
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1459
			     sr_latency_ns,
1460
			     &g4x_wm_info,
1461
			     &g4x_cursor_wm_info,
3243 Serge 1462
			     &plane_sr, &cursor_sr)) {
3031 serge 1463
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3243 Serge 1464
	} else {
3031 serge 1465
		I915_WRITE(FW_BLC_SELF,
1466
			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
3243 Serge 1467
		plane_sr = cursor_sr = 0;
1468
	}
3031 serge 1469
 
1470
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1471
		      planea_wm, cursora_wm,
1472
		      planeb_wm, cursorb_wm,
1473
		      plane_sr, cursor_sr);
1474
 
1475
	I915_WRITE(DSPFW1,
1476
		   (plane_sr << DSPFW_SR_SHIFT) |
1477
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1478
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1479
		   planea_wm);
1480
	I915_WRITE(DSPFW2,
3243 Serge 1481
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
3031 serge 1482
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1483
	/* HPLL off in SR has some issues on G4x... disable it */
1484
	I915_WRITE(DSPFW3,
3243 Serge 1485
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
3031 serge 1486
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1487
}
1488
 
1489
static void i965_update_wm(struct drm_device *dev)
1490
{
1491
	struct drm_i915_private *dev_priv = dev->dev_private;
1492
	struct drm_crtc *crtc;
1493
	int srwm = 1;
1494
	int cursor_sr = 16;
1495
 
1496
	/* Calc sr entries for one plane configs */
1497
	crtc = single_enabled_crtc(dev);
1498
	if (crtc) {
1499
		/* self-refresh has much higher latency */
1500
		static const int sr_latency_ns = 12000;
1501
		int clock = crtc->mode.clock;
1502
		int htotal = crtc->mode.htotal;
1503
		int hdisplay = crtc->mode.hdisplay;
1504
		int pixel_size = crtc->fb->bits_per_pixel / 8;
1505
		unsigned long line_time_us;
1506
		int entries;
1507
 
1508
		line_time_us = ((htotal * 1000) / clock);
1509
 
1510
		/* Use ns/us then divide to preserve precision */
1511
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1512
			pixel_size * hdisplay;
1513
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1514
		srwm = I965_FIFO_SIZE - entries;
1515
		if (srwm < 0)
1516
			srwm = 1;
1517
		srwm &= 0x1ff;
1518
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1519
			      entries, srwm);
1520
 
1521
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1522
			pixel_size * 64;
1523
		entries = DIV_ROUND_UP(entries,
1524
					  i965_cursor_wm_info.cacheline_size);
1525
		cursor_sr = i965_cursor_wm_info.fifo_size -
1526
			(entries + i965_cursor_wm_info.guard_size);
1527
 
1528
		if (cursor_sr > i965_cursor_wm_info.max_wm)
1529
			cursor_sr = i965_cursor_wm_info.max_wm;
1530
 
1531
		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1532
			      "cursor %d\n", srwm, cursor_sr);
1533
 
1534
		if (IS_CRESTLINE(dev))
1535
			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1536
	} else {
1537
		/* Turn off self refresh if both pipes are enabled */
1538
		if (IS_CRESTLINE(dev))
1539
			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1540
				   & ~FW_BLC_SELF_EN);
1541
	}
1542
 
1543
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1544
		      srwm);
1545
 
1546
	/* 965 has limitations... */
1547
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1548
		   (8 << 16) | (8 << 8) | (8 << 0));
1549
	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1550
	/* update cursor SR watermark */
1551
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1552
}
1553
 
1554
static void i9xx_update_wm(struct drm_device *dev)
1555
{
1556
	struct drm_i915_private *dev_priv = dev->dev_private;
1557
	const struct intel_watermark_params *wm_info;
1558
	uint32_t fwater_lo;
1559
	uint32_t fwater_hi;
1560
	int cwm, srwm = 1;
1561
	int fifo_size;
1562
	int planea_wm, planeb_wm;
1563
	struct drm_crtc *crtc, *enabled = NULL;
1564
 
1565
	if (IS_I945GM(dev))
1566
		wm_info = &i945_wm_info;
1567
	else if (!IS_GEN2(dev))
1568
		wm_info = &i915_wm_info;
1569
	else
1570
		wm_info = &i855_wm_info;
1571
 
1572
	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1573
	crtc = intel_get_crtc_for_plane(dev, 0);
3243 Serge 1574
	if (intel_crtc_active(crtc)) {
1575
		int cpp = crtc->fb->bits_per_pixel / 8;
1576
		if (IS_GEN2(dev))
1577
			cpp = 4;
1578
 
3031 serge 1579
		planea_wm = intel_calculate_wm(crtc->mode.clock,
3243 Serge 1580
					       wm_info, fifo_size, cpp,
3031 serge 1581
					       latency_ns);
1582
		enabled = crtc;
1583
	} else
1584
		planea_wm = fifo_size - wm_info->guard_size;
1585
 
1586
	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1587
	crtc = intel_get_crtc_for_plane(dev, 1);
3243 Serge 1588
	if (intel_crtc_active(crtc)) {
1589
		int cpp = crtc->fb->bits_per_pixel / 8;
1590
		if (IS_GEN2(dev))
1591
			cpp = 4;
1592
 
3031 serge 1593
		planeb_wm = intel_calculate_wm(crtc->mode.clock,
3243 Serge 1594
					       wm_info, fifo_size, cpp,
3031 serge 1595
					       latency_ns);
1596
		if (enabled == NULL)
1597
			enabled = crtc;
1598
		else
1599
			enabled = NULL;
1600
	} else
1601
		planeb_wm = fifo_size - wm_info->guard_size;
1602
 
1603
	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1604
 
1605
	/*
1606
	 * Overlay gets an aggressive default since video jitter is bad.
1607
	 */
1608
	cwm = 2;
1609
 
1610
	/* Play safe and disable self-refresh before adjusting watermarks. */
1611
	if (IS_I945G(dev) || IS_I945GM(dev))
1612
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1613
	else if (IS_I915GM(dev))
1614
		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1615
 
1616
	/* Calc sr entries for one plane configs */
1617
	if (HAS_FW_BLC(dev) && enabled) {
1618
		/* self-refresh has much higher latency */
1619
		static const int sr_latency_ns = 6000;
1620
		int clock = enabled->mode.clock;
1621
		int htotal = enabled->mode.htotal;
1622
		int hdisplay = enabled->mode.hdisplay;
1623
		int pixel_size = enabled->fb->bits_per_pixel / 8;
1624
		unsigned long line_time_us;
1625
		int entries;
1626
 
1627
		line_time_us = (htotal * 1000) / clock;
1628
 
1629
		/* Use ns/us then divide to preserve precision */
1630
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1631
			pixel_size * hdisplay;
1632
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1633
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1634
		srwm = wm_info->fifo_size - entries;
1635
		if (srwm < 0)
1636
			srwm = 1;
1637
 
1638
		if (IS_I945G(dev) || IS_I945GM(dev))
1639
			I915_WRITE(FW_BLC_SELF,
1640
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1641
		else if (IS_I915GM(dev))
1642
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1643
	}
1644
 
1645
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1646
		      planea_wm, planeb_wm, cwm, srwm);
1647
 
1648
	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1649
	fwater_hi = (cwm & 0x1f);
1650
 
1651
	/* Set request length to 8 cachelines per fetch */
1652
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1653
	fwater_hi = fwater_hi | (1 << 8);
1654
 
1655
	I915_WRITE(FW_BLC, fwater_lo);
1656
	I915_WRITE(FW_BLC2, fwater_hi);
1657
 
1658
	if (HAS_FW_BLC(dev)) {
1659
		if (enabled) {
1660
			if (IS_I945G(dev) || IS_I945GM(dev))
1661
				I915_WRITE(FW_BLC_SELF,
1662
					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1663
			else if (IS_I915GM(dev))
1664
				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1665
			DRM_DEBUG_KMS("memory self refresh enabled\n");
1666
		} else
1667
			DRM_DEBUG_KMS("memory self refresh disabled\n");
1668
	}
1669
}
1670
 
1671
static void i830_update_wm(struct drm_device *dev)
1672
{
1673
	struct drm_i915_private *dev_priv = dev->dev_private;
1674
	struct drm_crtc *crtc;
1675
	uint32_t fwater_lo;
1676
	int planea_wm;
1677
 
1678
	crtc = single_enabled_crtc(dev);
1679
	if (crtc == NULL)
1680
		return;
1681
 
1682
	planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1683
				       dev_priv->display.get_fifo_size(dev, 0),
3243 Serge 1684
				       4, latency_ns);
3031 serge 1685
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1686
	fwater_lo |= (3<<8) | planea_wm;
1687
 
1688
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1689
 
1690
	I915_WRITE(FW_BLC, fwater_lo);
1691
}
1692
 
1693
/*
1694
 * Check the wm result.
1695
 *
1696
 * If any calculated watermark values is larger than the maximum value that
1697
 * can be programmed into the associated watermark register, that watermark
1698
 * must be disabled.
1699
 */
1700
static bool ironlake_check_srwm(struct drm_device *dev, int level,
1701
				int fbc_wm, int display_wm, int cursor_wm,
1702
				const struct intel_watermark_params *display,
1703
				const struct intel_watermark_params *cursor)
1704
{
1705
	struct drm_i915_private *dev_priv = dev->dev_private;
1706
 
1707
	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1708
		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1709
 
1710
	if (fbc_wm > SNB_FBC_MAX_SRWM) {
1711
		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1712
			      fbc_wm, SNB_FBC_MAX_SRWM, level);
1713
 
1714
		/* fbc has it's own way to disable FBC WM */
1715
		I915_WRITE(DISP_ARB_CTL,
1716
			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1717
		return false;
4104 Serge 1718
	} else if (INTEL_INFO(dev)->gen >= 6) {
1719
		/* enable FBC WM (except on ILK, where it must remain off) */
1720
		I915_WRITE(DISP_ARB_CTL,
1721
			   I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
3031 serge 1722
	}
1723
 
1724
	if (display_wm > display->max_wm) {
1725
		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1726
			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
1727
		return false;
1728
	}
1729
 
1730
	if (cursor_wm > cursor->max_wm) {
1731
		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1732
			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1733
		return false;
1734
	}
1735
 
1736
	if (!(fbc_wm || display_wm || cursor_wm)) {
1737
		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1738
		return false;
1739
	}
1740
 
1741
	return true;
1742
}
1743
 
1744
/*
1745
 * Compute watermark values of WM[1-3],
1746
 */
1747
static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1748
				  int latency_ns,
1749
				  const struct intel_watermark_params *display,
1750
				  const struct intel_watermark_params *cursor,
1751
				  int *fbc_wm, int *display_wm, int *cursor_wm)
1752
{
1753
	struct drm_crtc *crtc;
1754
	unsigned long line_time_us;
1755
	int hdisplay, htotal, pixel_size, clock;
1756
	int line_count, line_size;
1757
	int small, large;
1758
	int entries;
1759
 
1760
	if (!latency_ns) {
1761
		*fbc_wm = *display_wm = *cursor_wm = 0;
1762
		return false;
1763
	}
1764
 
1765
	crtc = intel_get_crtc_for_plane(dev, plane);
1766
	hdisplay = crtc->mode.hdisplay;
1767
	htotal = crtc->mode.htotal;
1768
	clock = crtc->mode.clock;
1769
	pixel_size = crtc->fb->bits_per_pixel / 8;
1770
 
1771
	line_time_us = (htotal * 1000) / clock;
1772
	line_count = (latency_ns / line_time_us + 1000) / 1000;
1773
	line_size = hdisplay * pixel_size;
1774
 
1775
	/* Use the minimum of the small and large buffer method for primary */
1776
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1777
	large = line_count * line_size;
1778
 
1779
	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1780
	*display_wm = entries + display->guard_size;
1781
 
1782
	/*
1783
	 * Spec says:
1784
	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1785
	 */
1786
	*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1787
 
1788
	/* calculate the self-refresh watermark for display cursor */
1789
	entries = line_count * pixel_size * 64;
1790
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1791
	*cursor_wm = entries + cursor->guard_size;
1792
 
1793
	return ironlake_check_srwm(dev, level,
1794
				   *fbc_wm, *display_wm, *cursor_wm,
1795
				   display, cursor);
1796
}
1797
 
1798
static void ironlake_update_wm(struct drm_device *dev)
1799
{
1800
	struct drm_i915_private *dev_priv = dev->dev_private;
1801
	int fbc_wm, plane_wm, cursor_wm;
1802
	unsigned int enabled;
1803
 
1804
	enabled = 0;
3746 Serge 1805
	if (g4x_compute_wm0(dev, PIPE_A,
3031 serge 1806
			    &ironlake_display_wm_info,
4104 Serge 1807
			    dev_priv->wm.pri_latency[0] * 100,
3031 serge 1808
			    &ironlake_cursor_wm_info,
4104 Serge 1809
			    dev_priv->wm.cur_latency[0] * 100,
3031 serge 1810
			    &plane_wm, &cursor_wm)) {
1811
		I915_WRITE(WM0_PIPEA_ILK,
1812
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1813
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1814
			      " plane %d, " "cursor: %d\n",
1815
			      plane_wm, cursor_wm);
3746 Serge 1816
		enabled |= 1 << PIPE_A;
3031 serge 1817
	}
1818
 
3746 Serge 1819
	if (g4x_compute_wm0(dev, PIPE_B,
3031 serge 1820
			    &ironlake_display_wm_info,
4104 Serge 1821
			    dev_priv->wm.pri_latency[0] * 100,
3031 serge 1822
			    &ironlake_cursor_wm_info,
4104 Serge 1823
			    dev_priv->wm.cur_latency[0] * 100,
3031 serge 1824
			    &plane_wm, &cursor_wm)) {
1825
		I915_WRITE(WM0_PIPEB_ILK,
1826
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1827
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1828
			      " plane %d, cursor: %d\n",
1829
			      plane_wm, cursor_wm);
3746 Serge 1830
		enabled |= 1 << PIPE_B;
3031 serge 1831
	}
1832
 
1833
	/*
1834
	 * Calculate and update the self-refresh watermark only when one
1835
	 * display plane is used.
1836
	 */
1837
	I915_WRITE(WM3_LP_ILK, 0);
1838
	I915_WRITE(WM2_LP_ILK, 0);
1839
	I915_WRITE(WM1_LP_ILK, 0);
1840
 
1841
	if (!single_plane_enabled(enabled))
1842
		return;
1843
	enabled = ffs(enabled) - 1;
1844
 
1845
	/* WM1 */
1846
	if (!ironlake_compute_srwm(dev, 1, enabled,
4104 Serge 1847
				   dev_priv->wm.pri_latency[1] * 500,
3031 serge 1848
				   &ironlake_display_srwm_info,
1849
				   &ironlake_cursor_srwm_info,
1850
				   &fbc_wm, &plane_wm, &cursor_wm))
1851
		return;
1852
 
1853
	I915_WRITE(WM1_LP_ILK,
1854
		   WM1_LP_SR_EN |
4104 Serge 1855
		   (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
3031 serge 1856
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1857
		   (plane_wm << WM1_LP_SR_SHIFT) |
1858
		   cursor_wm);
1859
 
1860
	/* WM2 */
1861
	if (!ironlake_compute_srwm(dev, 2, enabled,
4104 Serge 1862
				   dev_priv->wm.pri_latency[2] * 500,
3031 serge 1863
				   &ironlake_display_srwm_info,
1864
				   &ironlake_cursor_srwm_info,
1865
				   &fbc_wm, &plane_wm, &cursor_wm))
1866
		return;
1867
 
1868
	I915_WRITE(WM2_LP_ILK,
1869
		   WM2_LP_EN |
4104 Serge 1870
		   (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
3031 serge 1871
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1872
		   (plane_wm << WM1_LP_SR_SHIFT) |
1873
		   cursor_wm);
1874
 
1875
	/*
1876
	 * WM3 is unsupported on ILK, probably because we don't have latency
1877
	 * data for that power state
1878
	 */
1879
}
1880
 
1881
static void sandybridge_update_wm(struct drm_device *dev)
1882
{
1883
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 1884
	int latency = dev_priv->wm.pri_latency[0] * 100;	/* In unit 0.1us */
3031 serge 1885
	u32 val;
1886
	int fbc_wm, plane_wm, cursor_wm;
1887
	unsigned int enabled;
1888
 
1889
	enabled = 0;
3746 Serge 1890
	if (g4x_compute_wm0(dev, PIPE_A,
3031 serge 1891
			    &sandybridge_display_wm_info, latency,
1892
			    &sandybridge_cursor_wm_info, latency,
1893
			    &plane_wm, &cursor_wm)) {
1894
		val = I915_READ(WM0_PIPEA_ILK);
1895
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1896
		I915_WRITE(WM0_PIPEA_ILK, val |
1897
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1898
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1899
			      " plane %d, " "cursor: %d\n",
1900
			      plane_wm, cursor_wm);
3746 Serge 1901
		enabled |= 1 << PIPE_A;
3031 serge 1902
	}
1903
 
3746 Serge 1904
	if (g4x_compute_wm0(dev, PIPE_B,
3031 serge 1905
			    &sandybridge_display_wm_info, latency,
1906
			    &sandybridge_cursor_wm_info, latency,
1907
			    &plane_wm, &cursor_wm)) {
1908
		val = I915_READ(WM0_PIPEB_ILK);
1909
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1910
		I915_WRITE(WM0_PIPEB_ILK, val |
1911
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1912
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1913
			      " plane %d, cursor: %d\n",
1914
			      plane_wm, cursor_wm);
3746 Serge 1915
		enabled |= 1 << PIPE_B;
3031 serge 1916
	}
1917
 
3243 Serge 1918
	/*
1919
	 * Calculate and update the self-refresh watermark only when one
1920
	 * display plane is used.
1921
	 *
1922
	 * SNB support 3 levels of watermark.
1923
	 *
1924
	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1925
	 * and disabled in the descending order
1926
	 *
1927
	 */
1928
	I915_WRITE(WM3_LP_ILK, 0);
1929
	I915_WRITE(WM2_LP_ILK, 0);
1930
	I915_WRITE(WM1_LP_ILK, 0);
1931
 
1932
	if (!single_plane_enabled(enabled) ||
1933
	    dev_priv->sprite_scaling_enabled)
1934
		return;
1935
	enabled = ffs(enabled) - 1;
1936
 
1937
	/* WM1 */
1938
	if (!ironlake_compute_srwm(dev, 1, enabled,
4104 Serge 1939
				   dev_priv->wm.pri_latency[1] * 500,
3243 Serge 1940
				   &sandybridge_display_srwm_info,
1941
				   &sandybridge_cursor_srwm_info,
1942
				   &fbc_wm, &plane_wm, &cursor_wm))
1943
		return;
1944
 
1945
	I915_WRITE(WM1_LP_ILK,
1946
		   WM1_LP_SR_EN |
4104 Serge 1947
		   (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
3243 Serge 1948
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1949
		   (plane_wm << WM1_LP_SR_SHIFT) |
1950
		   cursor_wm);
1951
 
1952
	/* WM2 */
1953
	if (!ironlake_compute_srwm(dev, 2, enabled,
4104 Serge 1954
				   dev_priv->wm.pri_latency[2] * 500,
3243 Serge 1955
				   &sandybridge_display_srwm_info,
1956
				   &sandybridge_cursor_srwm_info,
1957
				   &fbc_wm, &plane_wm, &cursor_wm))
1958
		return;
1959
 
1960
	I915_WRITE(WM2_LP_ILK,
1961
		   WM2_LP_EN |
4104 Serge 1962
		   (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
3243 Serge 1963
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1964
		   (plane_wm << WM1_LP_SR_SHIFT) |
1965
		   cursor_wm);
1966
 
1967
	/* WM3 */
1968
	if (!ironlake_compute_srwm(dev, 3, enabled,
4104 Serge 1969
				   dev_priv->wm.pri_latency[3] * 500,
3243 Serge 1970
				   &sandybridge_display_srwm_info,
1971
				   &sandybridge_cursor_srwm_info,
1972
				   &fbc_wm, &plane_wm, &cursor_wm))
1973
		return;
1974
 
1975
	I915_WRITE(WM3_LP_ILK,
1976
		   WM3_LP_EN |
4104 Serge 1977
		   (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
3243 Serge 1978
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1979
		   (plane_wm << WM1_LP_SR_SHIFT) |
1980
		   cursor_wm);
1981
}
1982
 
1983
static void ivybridge_update_wm(struct drm_device *dev)
1984
{
1985
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 1986
	int latency = dev_priv->wm.pri_latency[0] * 100;	/* In unit 0.1us */
3243 Serge 1987
	u32 val;
1988
	int fbc_wm, plane_wm, cursor_wm;
1989
	int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1990
	unsigned int enabled;
1991
 
1992
	enabled = 0;
3746 Serge 1993
	if (g4x_compute_wm0(dev, PIPE_A,
3031 serge 1994
			    &sandybridge_display_wm_info, latency,
1995
			    &sandybridge_cursor_wm_info, latency,
1996
			    &plane_wm, &cursor_wm)) {
3243 Serge 1997
		val = I915_READ(WM0_PIPEA_ILK);
1998
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1999
		I915_WRITE(WM0_PIPEA_ILK, val |
2000
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2001
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
2002
			      " plane %d, " "cursor: %d\n",
2003
			      plane_wm, cursor_wm);
3746 Serge 2004
		enabled |= 1 << PIPE_A;
3243 Serge 2005
	}
2006
 
3746 Serge 2007
	if (g4x_compute_wm0(dev, PIPE_B,
3243 Serge 2008
			    &sandybridge_display_wm_info, latency,
2009
			    &sandybridge_cursor_wm_info, latency,
2010
			    &plane_wm, &cursor_wm)) {
2011
		val = I915_READ(WM0_PIPEB_ILK);
2012
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2013
		I915_WRITE(WM0_PIPEB_ILK, val |
2014
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2015
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
2016
			      " plane %d, cursor: %d\n",
2017
			      plane_wm, cursor_wm);
3746 Serge 2018
		enabled |= 1 << PIPE_B;
3243 Serge 2019
	}
2020
 
3746 Serge 2021
	if (g4x_compute_wm0(dev, PIPE_C,
3243 Serge 2022
			    &sandybridge_display_wm_info, latency,
2023
			    &sandybridge_cursor_wm_info, latency,
2024
			    &plane_wm, &cursor_wm)) {
3031 serge 2025
		val = I915_READ(WM0_PIPEC_IVB);
2026
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2027
		I915_WRITE(WM0_PIPEC_IVB, val |
2028
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2029
		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2030
			      " plane %d, cursor: %d\n",
2031
			      plane_wm, cursor_wm);
3746 Serge 2032
		enabled |= 1 << PIPE_C;
3031 serge 2033
	}
2034
 
2035
	/*
2036
	 * Calculate and update the self-refresh watermark only when one
2037
	 * display plane is used.
2038
	 *
2039
	 * SNB support 3 levels of watermark.
2040
	 *
2041
	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2042
	 * and disabled in the descending order
2043
	 *
2044
	 */
2045
	I915_WRITE(WM3_LP_ILK, 0);
2046
	I915_WRITE(WM2_LP_ILK, 0);
2047
	I915_WRITE(WM1_LP_ILK, 0);
2048
 
2049
	if (!single_plane_enabled(enabled) ||
2050
	    dev_priv->sprite_scaling_enabled)
2051
		return;
2052
	enabled = ffs(enabled) - 1;
2053
 
2054
	/* WM1 */
2055
	if (!ironlake_compute_srwm(dev, 1, enabled,
4104 Serge 2056
				   dev_priv->wm.pri_latency[1] * 500,
3031 serge 2057
				   &sandybridge_display_srwm_info,
2058
				   &sandybridge_cursor_srwm_info,
2059
				   &fbc_wm, &plane_wm, &cursor_wm))
2060
		return;
2061
 
2062
	I915_WRITE(WM1_LP_ILK,
2063
		   WM1_LP_SR_EN |
4104 Serge 2064
		   (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
3031 serge 2065
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
2066
		   (plane_wm << WM1_LP_SR_SHIFT) |
2067
		   cursor_wm);
2068
 
2069
	/* WM2 */
2070
	if (!ironlake_compute_srwm(dev, 2, enabled,
4104 Serge 2071
				   dev_priv->wm.pri_latency[2] * 500,
3031 serge 2072
				   &sandybridge_display_srwm_info,
2073
				   &sandybridge_cursor_srwm_info,
2074
				   &fbc_wm, &plane_wm, &cursor_wm))
2075
		return;
2076
 
2077
	I915_WRITE(WM2_LP_ILK,
2078
		   WM2_LP_EN |
4104 Serge 2079
		   (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
3031 serge 2080
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
2081
		   (plane_wm << WM1_LP_SR_SHIFT) |
2082
		   cursor_wm);
2083
 
3243 Serge 2084
	/* WM3, note we have to correct the cursor latency */
3031 serge 2085
	if (!ironlake_compute_srwm(dev, 3, enabled,
4104 Serge 2086
				   dev_priv->wm.pri_latency[3] * 500,
3031 serge 2087
				   &sandybridge_display_srwm_info,
2088
				   &sandybridge_cursor_srwm_info,
3243 Serge 2089
				   &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2090
	    !ironlake_compute_srwm(dev, 3, enabled,
4104 Serge 2091
				   dev_priv->wm.cur_latency[3] * 500,
3243 Serge 2092
				   &sandybridge_display_srwm_info,
2093
				   &sandybridge_cursor_srwm_info,
2094
				   &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
3031 serge 2095
		return;
2096
 
2097
	I915_WRITE(WM3_LP_ILK,
2098
		   WM3_LP_EN |
4104 Serge 2099
		   (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
3031 serge 2100
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
2101
		   (plane_wm << WM1_LP_SR_SHIFT) |
2102
		   cursor_wm);
2103
}
2104
 
4104 Serge 2105
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
2106
				      struct drm_crtc *crtc)
3031 serge 2107
{
4104 Serge 2108
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2109
	uint32_t pixel_rate;
2110
 
2111
	pixel_rate = intel_crtc->config.adjusted_mode.clock;
2112
 
2113
	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
2114
	 * adjust the pixel_rate here. */
2115
 
2116
	if (intel_crtc->config.pch_pfit.enabled) {
2117
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2118
		uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
2119
 
2120
		pipe_w = intel_crtc->config.requested_mode.hdisplay;
2121
		pipe_h = intel_crtc->config.requested_mode.vdisplay;
2122
		pfit_w = (pfit_size >> 16) & 0xFFFF;
2123
		pfit_h = pfit_size & 0xFFFF;
2124
		if (pipe_w < pfit_w)
2125
			pipe_w = pfit_w;
2126
		if (pipe_h < pfit_h)
2127
			pipe_h = pfit_h;
2128
 
2129
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
2130
				     pfit_w * pfit_h);
2131
	}
2132
 
2133
	return pixel_rate;
2134
}
2135
 
2136
/* latency must be in 0.1us units. */
2137
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2138
			       uint32_t latency)
2139
{
2140
	uint64_t ret;
2141
 
2142
	if (WARN(latency == 0, "Latency value missing\n"))
2143
		return UINT_MAX;
2144
 
2145
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
2146
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
2147
 
2148
	return ret;
2149
}
2150
 
2151
/* latency must be in 0.1us units. */
2152
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2153
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2154
			       uint32_t latency)
2155
{
2156
	uint32_t ret;
2157
 
2158
	if (WARN(latency == 0, "Latency value missing\n"))
2159
		return UINT_MAX;
2160
 
2161
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
2162
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
2163
	ret = DIV_ROUND_UP(ret, 64) + 2;
2164
	return ret;
2165
}
2166
 
2167
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2168
			   uint8_t bytes_per_pixel)
2169
{
2170
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
2171
}
2172
 
2173
struct hsw_pipe_wm_parameters {
2174
	bool active;
2175
	uint32_t pipe_htotal;
2176
	uint32_t pixel_rate;
2177
	struct intel_plane_wm_parameters pri;
2178
	struct intel_plane_wm_parameters spr;
2179
	struct intel_plane_wm_parameters cur;
2180
};
2181
 
2182
struct hsw_wm_maximums {
2183
	uint16_t pri;
2184
	uint16_t spr;
2185
	uint16_t cur;
2186
	uint16_t fbc;
2187
};
2188
 
2189
struct hsw_wm_values {
2190
	uint32_t wm_pipe[3];
2191
	uint32_t wm_lp[3];
2192
	uint32_t wm_lp_spr[3];
2193
	uint32_t wm_linetime[3];
2194
	bool enable_fbc_wm;
2195
};
2196
 
2197
/* used in computing the new watermarks state */
2198
struct intel_wm_config {
2199
	unsigned int num_pipes_active;
2200
	bool sprites_enabled;
2201
	bool sprites_scaled;
2202
	bool fbc_wm_enabled;
2203
};
2204
 
2205
/*
2206
 * For both WM_PIPE and WM_LP.
2207
 * mem_value must be in 0.1us units.
2208
 */
2209
static uint32_t ilk_compute_pri_wm(struct hsw_pipe_wm_parameters *params,
2210
				   uint32_t mem_value,
2211
				   bool is_lp)
2212
{
2213
	uint32_t method1, method2;
2214
 
2215
	if (!params->active || !params->pri.enabled)
2216
		return 0;
2217
 
2218
	method1 = ilk_wm_method1(params->pixel_rate,
2219
				 params->pri.bytes_per_pixel,
2220
				 mem_value);
2221
 
2222
	if (!is_lp)
2223
		return method1;
2224
 
2225
	method2 = ilk_wm_method2(params->pixel_rate,
2226
				 params->pipe_htotal,
2227
				 params->pri.horiz_pixels,
2228
				 params->pri.bytes_per_pixel,
2229
				 mem_value);
2230
 
2231
	return min(method1, method2);
2232
}
2233
 
2234
/*
2235
 * For both WM_PIPE and WM_LP.
2236
 * mem_value must be in 0.1us units.
2237
 */
2238
static uint32_t ilk_compute_spr_wm(struct hsw_pipe_wm_parameters *params,
2239
				   uint32_t mem_value)
2240
{
2241
	uint32_t method1, method2;
2242
 
2243
	if (!params->active || !params->spr.enabled)
2244
		return 0;
2245
 
2246
	method1 = ilk_wm_method1(params->pixel_rate,
2247
				 params->spr.bytes_per_pixel,
2248
				 mem_value);
2249
	method2 = ilk_wm_method2(params->pixel_rate,
2250
				 params->pipe_htotal,
2251
				 params->spr.horiz_pixels,
2252
				 params->spr.bytes_per_pixel,
2253
				 mem_value);
2254
	return min(method1, method2);
2255
}
2256
 
2257
/*
2258
 * For both WM_PIPE and WM_LP.
2259
 * mem_value must be in 0.1us units.
2260
 */
2261
static uint32_t ilk_compute_cur_wm(struct hsw_pipe_wm_parameters *params,
2262
				   uint32_t mem_value)
2263
{
2264
	if (!params->active || !params->cur.enabled)
2265
		return 0;
2266
 
2267
	return ilk_wm_method2(params->pixel_rate,
2268
			      params->pipe_htotal,
2269
			      params->cur.horiz_pixels,
2270
			      params->cur.bytes_per_pixel,
2271
			      mem_value);
2272
}
2273
 
2274
/* Only for WM_LP. */
2275
static uint32_t ilk_compute_fbc_wm(struct hsw_pipe_wm_parameters *params,
2276
				   uint32_t pri_val)
2277
{
2278
	if (!params->active || !params->pri.enabled)
2279
		return 0;
2280
 
2281
	return ilk_wm_fbc(pri_val,
2282
			  params->pri.horiz_pixels,
2283
			  params->pri.bytes_per_pixel);
2284
}
2285
 
2286
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
2287
{
2288
	if (INTEL_INFO(dev)->gen >= 7)
2289
		return 768;
2290
	else
2291
		return 512;
2292
}
2293
 
2294
/* Calculate the maximum primary/sprite plane watermark */
2295
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2296
				     int level,
2297
				     const struct intel_wm_config *config,
2298
				     enum intel_ddb_partitioning ddb_partitioning,
2299
				     bool is_sprite)
2300
{
2301
	unsigned int fifo_size = ilk_display_fifo_size(dev);
2302
	unsigned int max;
2303
 
2304
	/* if sprites aren't enabled, sprites get nothing */
2305
	if (is_sprite && !config->sprites_enabled)
2306
		return 0;
2307
 
2308
	/* HSW allows LP1+ watermarks even with multiple pipes */
2309
	if (level == 0 || config->num_pipes_active > 1) {
2310
		fifo_size /= INTEL_INFO(dev)->num_pipes;
2311
 
2312
		/*
2313
		 * For some reason the non self refresh
2314
		 * FIFO size is only half of the self
2315
		 * refresh FIFO size on ILK/SNB.
2316
		 */
2317
		if (INTEL_INFO(dev)->gen <= 6)
2318
			fifo_size /= 2;
2319
	}
2320
 
2321
	if (config->sprites_enabled) {
2322
		/* level 0 is always calculated with 1:1 split */
2323
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2324
			if (is_sprite)
2325
				fifo_size *= 5;
2326
			fifo_size /= 6;
2327
		} else {
2328
			fifo_size /= 2;
2329
		}
2330
	}
2331
 
2332
	/* clamp to max that the registers can hold */
2333
	if (INTEL_INFO(dev)->gen >= 7)
2334
		/* IVB/HSW primary/sprite plane watermarks */
2335
		max = level == 0 ? 127 : 1023;
2336
	else if (!is_sprite)
2337
		/* ILK/SNB primary plane watermarks */
2338
		max = level == 0 ? 127 : 511;
2339
	else
2340
		/* ILK/SNB sprite plane watermarks */
2341
		max = level == 0 ? 63 : 255;
2342
 
2343
	return min(fifo_size, max);
2344
}
2345
 
2346
/* Calculate the maximum cursor plane watermark */
2347
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2348
				      int level,
2349
				      const struct intel_wm_config *config)
2350
{
2351
	/* HSW LP1+ watermarks w/ multiple pipes */
2352
	if (level > 0 && config->num_pipes_active > 1)
2353
		return 64;
2354
 
2355
	/* otherwise just report max that registers can hold */
2356
	if (INTEL_INFO(dev)->gen >= 7)
2357
		return level == 0 ? 63 : 255;
2358
	else
2359
		return level == 0 ? 31 : 63;
2360
	}
2361
 
2362
/* Calculate the maximum FBC watermark */
2363
static unsigned int ilk_fbc_wm_max(void)
2364
{
2365
	/* max that registers can hold */
2366
	return 15;
2367
}
2368
 
2369
static void ilk_wm_max(struct drm_device *dev,
2370
		       int level,
2371
		       const struct intel_wm_config *config,
2372
		       enum intel_ddb_partitioning ddb_partitioning,
2373
		       struct hsw_wm_maximums *max)
2374
{
2375
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2376
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2377
	max->cur = ilk_cursor_wm_max(dev, level, config);
2378
	max->fbc = ilk_fbc_wm_max();
2379
	}
2380
 
2381
static bool ilk_check_wm(int level,
2382
			 const struct hsw_wm_maximums *max,
2383
			 struct intel_wm_level *result)
2384
{
2385
	bool ret;
2386
 
2387
	/* already determined to be invalid? */
2388
	if (!result->enable)
2389
		return false;
2390
 
2391
	result->enable = result->pri_val <= max->pri &&
2392
			 result->spr_val <= max->spr &&
2393
			 result->cur_val <= max->cur;
2394
 
2395
	ret = result->enable;
2396
 
2397
	/*
2398
	 * HACK until we can pre-compute everything,
2399
	 * and thus fail gracefully if LP0 watermarks
2400
	 * are exceeded...
2401
	 */
2402
	if (level == 0 && !result->enable) {
2403
		if (result->pri_val > max->pri)
2404
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2405
				      level, result->pri_val, max->pri);
2406
		if (result->spr_val > max->spr)
2407
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2408
				      level, result->spr_val, max->spr);
2409
		if (result->cur_val > max->cur)
2410
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2411
				      level, result->cur_val, max->cur);
2412
 
2413
		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2414
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2415
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2416
		result->enable = true;
2417
	}
2418
 
2419
	DRM_DEBUG_KMS("WM%d: %sabled\n", level, result->enable ? "en" : "dis");
2420
 
2421
	return ret;
2422
}
2423
 
2424
static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
2425
				 int level,
2426
				 struct hsw_pipe_wm_parameters *p,
2427
				 struct intel_wm_level *result)
2428
{
2429
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2430
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2431
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2432
 
2433
	/* WM1+ latency values stored in 0.5us units */
2434
	if (level > 0) {
2435
		pri_latency *= 5;
2436
		spr_latency *= 5;
2437
		cur_latency *= 5;
2438
	}
2439
 
2440
	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2441
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2442
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2443
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2444
	result->enable = true;
2445
}
2446
 
2447
static bool hsw_compute_lp_wm(struct drm_i915_private *dev_priv,
2448
			      int level, struct hsw_wm_maximums *max,
2449
			      struct hsw_pipe_wm_parameters *params,
2450
			      struct intel_wm_level *result)
2451
{
2452
	enum pipe pipe;
2453
	struct intel_wm_level res[3];
2454
 
2455
	for (pipe = PIPE_A; pipe <= PIPE_C; pipe++)
2456
		ilk_compute_wm_level(dev_priv, level, ¶ms[pipe], &res[pipe]);
2457
 
2458
	result->pri_val = max3(res[0].pri_val, res[1].pri_val, res[2].pri_val);
2459
	result->spr_val = max3(res[0].spr_val, res[1].spr_val, res[2].spr_val);
2460
	result->cur_val = max3(res[0].cur_val, res[1].cur_val, res[2].cur_val);
2461
	result->fbc_val = max3(res[0].fbc_val, res[1].fbc_val, res[2].fbc_val);
2462
	result->enable = true;
2463
 
2464
	return ilk_check_wm(level, max, result);
2465
}
2466
 
2467
static uint32_t hsw_compute_wm_pipe(struct drm_i915_private *dev_priv,
2468
				    enum pipe pipe,
2469
				    struct hsw_pipe_wm_parameters *params)
2470
{
2471
	uint32_t pri_val, cur_val, spr_val;
2472
	/* WM0 latency values stored in 0.1us units */
2473
	uint16_t pri_latency = dev_priv->wm.pri_latency[0];
2474
	uint16_t spr_latency = dev_priv->wm.spr_latency[0];
2475
	uint16_t cur_latency = dev_priv->wm.cur_latency[0];
2476
 
2477
	pri_val = ilk_compute_pri_wm(params, pri_latency, false);
2478
	spr_val = ilk_compute_spr_wm(params, spr_latency);
2479
	cur_val = ilk_compute_cur_wm(params, cur_latency);
2480
 
2481
	WARN(pri_val > 127,
2482
	     "Primary WM error, mode not supported for pipe %c\n",
2483
	     pipe_name(pipe));
2484
	WARN(spr_val > 127,
2485
	     "Sprite WM error, mode not supported for pipe %c\n",
2486
	     pipe_name(pipe));
2487
	WARN(cur_val > 63,
2488
	     "Cursor WM error, mode not supported for pipe %c\n",
2489
	     pipe_name(pipe));
2490
 
2491
	return (pri_val << WM0_PIPE_PLANE_SHIFT) |
2492
	       (spr_val << WM0_PIPE_SPRITE_SHIFT) |
2493
	       cur_val;
2494
}
2495
 
2496
static uint32_t
2497
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2498
{
3031 serge 2499
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 2500
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2501
	struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2502
	u32 linetime, ips_linetime;
3031 serge 2503
 
4104 Serge 2504
	if (!intel_crtc_active(crtc))
2505
		return 0;
3031 serge 2506
 
2507
	/* The WM are computed with base on how long it takes to fill a single
2508
	 * row at the given clock rate, multiplied by 8.
2509
	 * */
4104 Serge 2510
	linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2511
	ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2512
					 intel_ddi_get_cdclk_freq(dev_priv));
3031 serge 2513
 
4104 Serge 2514
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2515
	       PIPE_WM_LINETIME_TIME(linetime);
2516
}
2517
 
2518
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2519
{
2520
	struct drm_i915_private *dev_priv = dev->dev_private;
2521
 
2522
	if (IS_HASWELL(dev)) {
2523
		uint64_t sskpd = I915_READ64(MCH_SSKPD);
2524
 
2525
		wm[0] = (sskpd >> 56) & 0xFF;
2526
		if (wm[0] == 0)
2527
			wm[0] = sskpd & 0xF;
2528
		wm[1] = (sskpd >> 4) & 0xFF;
2529
		wm[2] = (sskpd >> 12) & 0xFF;
2530
		wm[3] = (sskpd >> 20) & 0x1FF;
2531
		wm[4] = (sskpd >> 32) & 0x1FF;
2532
	} else if (INTEL_INFO(dev)->gen >= 6) {
2533
		uint32_t sskpd = I915_READ(MCH_SSKPD);
2534
 
2535
		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2536
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2537
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2538
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2539
	} else if (INTEL_INFO(dev)->gen >= 5) {
2540
		uint32_t mltr = I915_READ(MLTR_ILK);
2541
 
2542
		/* ILK primary LP0 latency is 700 ns */
2543
		wm[0] = 7;
2544
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2545
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2546
	}
2547
}
2548
 
2549
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2550
{
2551
	/* ILK sprite LP0 latency is 1300 ns */
2552
	if (INTEL_INFO(dev)->gen == 5)
2553
		wm[0] = 13;
2554
}
2555
 
2556
static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2557
{
2558
	/* ILK cursor LP0 latency is 1300 ns */
2559
	if (INTEL_INFO(dev)->gen == 5)
2560
		wm[0] = 13;
2561
 
2562
	/* WaDoubleCursorLP3Latency:ivb */
2563
	if (IS_IVYBRIDGE(dev))
2564
		wm[3] *= 2;
2565
}
2566
 
2567
static void intel_print_wm_latency(struct drm_device *dev,
2568
				   const char *name,
2569
				   const uint16_t wm[5])
2570
{
2571
	int level, max_level;
2572
 
2573
	/* how many WM levels are we expecting */
2574
	if (IS_HASWELL(dev))
2575
		max_level = 4;
2576
	else if (INTEL_INFO(dev)->gen >= 6)
2577
		max_level = 3;
2578
	else
2579
		max_level = 2;
2580
 
2581
	for (level = 0; level <= max_level; level++) {
2582
		unsigned int latency = wm[level];
2583
 
2584
		if (latency == 0) {
2585
			DRM_ERROR("%s WM%d latency not provided\n",
2586
				  name, level);
2587
			continue;
2588
		}
2589
 
2590
		/* WM1+ latency values in 0.5us units */
2591
		if (level > 0)
2592
			latency *= 5;
2593
 
2594
		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2595
			      name, level, wm[level],
2596
			      latency / 10, latency % 10);
2597
	}
2598
}
2599
 
2600
static void intel_setup_wm_latency(struct drm_device *dev)
2601
{
2602
	struct drm_i915_private *dev_priv = dev->dev_private;
2603
 
2604
	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2605
 
2606
	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2607
	       sizeof(dev_priv->wm.pri_latency));
2608
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2609
	       sizeof(dev_priv->wm.pri_latency));
2610
 
2611
	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2612
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2613
 
2614
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2615
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2616
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2617
}
2618
 
2619
static void hsw_compute_wm_parameters(struct drm_device *dev,
2620
				      struct hsw_pipe_wm_parameters *params,
2621
				      struct hsw_wm_maximums *lp_max_1_2,
2622
				      struct hsw_wm_maximums *lp_max_5_6)
2623
{
2624
	struct drm_crtc *crtc;
2625
	struct drm_plane *plane;
2626
	enum pipe pipe;
2627
	struct intel_wm_config config = {};
2628
 
2629
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2630
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2631
		struct hsw_pipe_wm_parameters *p;
2632
 
2633
		pipe = intel_crtc->pipe;
2634
		p = ¶ms[pipe];
2635
 
2636
		p->active = intel_crtc_active(crtc);
2637
		if (!p->active)
2638
			continue;
2639
 
2640
		config.num_pipes_active++;
2641
 
2642
		p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2643
		p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2644
		p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2645
		p->cur.bytes_per_pixel = 4;
2646
		p->pri.horiz_pixels =
2647
			intel_crtc->config.requested_mode.hdisplay;
2648
		p->cur.horiz_pixels = 64;
2649
		/* TODO: for now, assume primary and cursor planes are always enabled. */
2650
		p->pri.enabled = true;
2651
		p->cur.enabled = true;
2652
	}
2653
 
2654
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2655
		struct intel_plane *intel_plane = to_intel_plane(plane);
2656
		struct hsw_pipe_wm_parameters *p;
2657
 
2658
		pipe = intel_plane->pipe;
2659
		p = ¶ms[pipe];
2660
 
2661
		p->spr = intel_plane->wm;
2662
 
2663
		config.sprites_enabled |= p->spr.enabled;
2664
		config.sprites_scaled |= p->spr.scaled;
2665
	}
2666
 
2667
	ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_1_2, lp_max_1_2);
2668
 
2669
	/* 5/6 split only in single pipe config on IVB+ */
2670
	if (INTEL_INFO(dev)->gen >= 7 && config.num_pipes_active <= 1)
2671
		ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_5_6, lp_max_5_6);
2672
	else
2673
		*lp_max_5_6 = *lp_max_1_2;
2674
}
2675
 
2676
static void hsw_compute_wm_results(struct drm_device *dev,
2677
				   struct hsw_pipe_wm_parameters *params,
2678
				   struct hsw_wm_maximums *lp_maximums,
2679
				   struct hsw_wm_values *results)
2680
{
2681
	struct drm_i915_private *dev_priv = dev->dev_private;
2682
	struct drm_crtc *crtc;
2683
	struct intel_wm_level lp_results[4] = {};
2684
	enum pipe pipe;
2685
	int level, max_level, wm_lp;
2686
 
2687
	for (level = 1; level <= 4; level++)
2688
		if (!hsw_compute_lp_wm(dev_priv, level,
2689
				       lp_maximums, params,
2690
				       &lp_results[level - 1]))
2691
			break;
2692
	max_level = level - 1;
2693
 
2694
	memset(results, 0, sizeof(*results));
2695
 
2696
	/* The spec says it is preferred to disable FBC WMs instead of disabling
2697
	 * a WM level. */
2698
	results->enable_fbc_wm = true;
2699
	for (level = 1; level <= max_level; level++) {
2700
		if (lp_results[level - 1].fbc_val > lp_maximums->fbc) {
2701
			results->enable_fbc_wm = false;
2702
			lp_results[level - 1].fbc_val = 0;
2703
		}
2704
	}
2705
 
2706
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2707
		const struct intel_wm_level *r;
2708
 
2709
		level = (max_level == 4 && wm_lp > 1) ? wm_lp + 1 : wm_lp;
2710
		if (level > max_level)
2711
			break;
2712
 
2713
		r = &lp_results[level - 1];
2714
		results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
2715
							  r->fbc_val,
2716
							  r->pri_val,
2717
							  r->cur_val);
2718
		results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2719
	}
2720
 
2721
	for_each_pipe(pipe)
2722
		results->wm_pipe[pipe] = hsw_compute_wm_pipe(dev_priv, pipe,
2723
							     ¶ms[pipe]);
2724
 
2725
	for_each_pipe(pipe) {
2726
		crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2727
		results->wm_linetime[pipe] = hsw_compute_linetime_wm(dev, crtc);
2728
	}
2729
}
2730
 
2731
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2732
 * case both are at the same level. Prefer r1 in case they're the same. */
2733
static struct hsw_wm_values *hsw_find_best_result(struct hsw_wm_values *r1,
2734
					   struct hsw_wm_values *r2)
2735
{
2736
	int i, val_r1 = 0, val_r2 = 0;
2737
 
2738
	for (i = 0; i < 3; i++) {
2739
		if (r1->wm_lp[i] & WM3_LP_EN)
2740
			val_r1 = r1->wm_lp[i] & WM1_LP_LATENCY_MASK;
2741
		if (r2->wm_lp[i] & WM3_LP_EN)
2742
			val_r2 = r2->wm_lp[i] & WM1_LP_LATENCY_MASK;
2743
	}
2744
 
2745
	if (val_r1 == val_r2) {
2746
		if (r2->enable_fbc_wm && !r1->enable_fbc_wm)
2747
			return r2;
2748
		else
2749
			return r1;
2750
	} else if (val_r1 > val_r2) {
2751
		return r1;
2752
	} else {
2753
		return r2;
2754
	}
2755
}
2756
 
2757
/*
2758
 * The spec says we shouldn't write when we don't need, because every write
2759
 * causes WMs to be re-evaluated, expending some power.
3031 serge 2760
	 */
4104 Serge 2761
static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2762
				struct hsw_wm_values *results,
2763
				enum intel_ddb_partitioning partitioning)
2764
{
2765
	struct hsw_wm_values previous;
2766
	uint32_t val;
2767
	enum intel_ddb_partitioning prev_partitioning;
2768
	bool prev_enable_fbc_wm;
3031 serge 2769
 
4104 Serge 2770
	previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
2771
	previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
2772
	previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
2773
	previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
2774
	previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
2775
	previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
2776
	previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2777
	previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2778
	previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2779
	previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
2780
	previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
2781
	previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));
2782
 
2783
	prev_partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2784
				INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2785
 
2786
	prev_enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2787
 
2788
	if (memcmp(results->wm_pipe, previous.wm_pipe,
2789
		   sizeof(results->wm_pipe)) == 0 &&
2790
	    memcmp(results->wm_lp, previous.wm_lp,
2791
		   sizeof(results->wm_lp)) == 0 &&
2792
	    memcmp(results->wm_lp_spr, previous.wm_lp_spr,
2793
		   sizeof(results->wm_lp_spr)) == 0 &&
2794
	    memcmp(results->wm_linetime, previous.wm_linetime,
2795
		   sizeof(results->wm_linetime)) == 0 &&
2796
	    partitioning == prev_partitioning &&
2797
	    results->enable_fbc_wm == prev_enable_fbc_wm)
2798
		return;
2799
 
2800
	if (previous.wm_lp[2] != 0)
2801
		I915_WRITE(WM3_LP_ILK, 0);
2802
	if (previous.wm_lp[1] != 0)
2803
		I915_WRITE(WM2_LP_ILK, 0);
2804
	if (previous.wm_lp[0] != 0)
2805
		I915_WRITE(WM1_LP_ILK, 0);
2806
 
2807
	if (previous.wm_pipe[0] != results->wm_pipe[0])
2808
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2809
	if (previous.wm_pipe[1] != results->wm_pipe[1])
2810
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2811
	if (previous.wm_pipe[2] != results->wm_pipe[2])
2812
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2813
 
2814
	if (previous.wm_linetime[0] != results->wm_linetime[0])
2815
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2816
	if (previous.wm_linetime[1] != results->wm_linetime[1])
2817
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2818
	if (previous.wm_linetime[2] != results->wm_linetime[2])
2819
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2820
 
2821
	if (prev_partitioning != partitioning) {
2822
		val = I915_READ(WM_MISC);
2823
		if (partitioning == INTEL_DDB_PART_1_2)
2824
			val &= ~WM_MISC_DATA_PARTITION_5_6;
2825
		else
2826
			val |= WM_MISC_DATA_PARTITION_5_6;
2827
		I915_WRITE(WM_MISC, val);
2828
	}
2829
 
2830
	if (prev_enable_fbc_wm != results->enable_fbc_wm) {
2831
		val = I915_READ(DISP_ARB_CTL);
2832
		if (results->enable_fbc_wm)
2833
			val &= ~DISP_FBC_WM_DIS;
2834
		else
2835
			val |= DISP_FBC_WM_DIS;
2836
		I915_WRITE(DISP_ARB_CTL, val);
2837
	}
2838
 
2839
	if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
2840
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2841
	if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
2842
		I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2843
	if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
2844
		I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2845
 
2846
	if (results->wm_lp[0] != 0)
2847
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2848
	if (results->wm_lp[1] != 0)
2849
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2850
	if (results->wm_lp[2] != 0)
2851
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3031 serge 2852
}
2853
 
4104 Serge 2854
static void haswell_update_wm(struct drm_device *dev)
2855
{
2856
	struct drm_i915_private *dev_priv = dev->dev_private;
2857
	struct hsw_wm_maximums lp_max_1_2, lp_max_5_6;
2858
	struct hsw_pipe_wm_parameters params[3];
2859
	struct hsw_wm_values results_1_2, results_5_6, *best_results;
2860
	enum intel_ddb_partitioning partitioning;
2861
 
2862
	hsw_compute_wm_parameters(dev, params, &lp_max_1_2, &lp_max_5_6);
2863
 
2864
	hsw_compute_wm_results(dev, params,
2865
			       &lp_max_1_2, &results_1_2);
2866
	if (lp_max_1_2.pri != lp_max_5_6.pri) {
2867
		hsw_compute_wm_results(dev, params,
2868
				       &lp_max_5_6, &results_5_6);
2869
		best_results = hsw_find_best_result(&results_1_2, &results_5_6);
2870
	} else {
2871
		best_results = &results_1_2;
2872
	}
2873
 
2874
	partitioning = (best_results == &results_1_2) ?
2875
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2876
 
2877
	hsw_write_wm_values(dev_priv, best_results, partitioning);
2878
}
2879
 
2880
static void haswell_update_sprite_wm(struct drm_plane *plane,
2881
				     struct drm_crtc *crtc,
2882
				     uint32_t sprite_width, int pixel_size,
2883
				     bool enabled, bool scaled)
2884
{
2885
		struct intel_plane *intel_plane = to_intel_plane(plane);
2886
 
2887
	intel_plane->wm.enabled = enabled;
2888
	intel_plane->wm.scaled = scaled;
2889
	intel_plane->wm.horiz_pixels = sprite_width;
2890
			intel_plane->wm.bytes_per_pixel = pixel_size;
2891
 
2892
	haswell_update_wm(plane->dev);
2893
}
2894
 
3031 serge 2895
static bool
2896
sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2897
			      uint32_t sprite_width, int pixel_size,
2898
			      const struct intel_watermark_params *display,
2899
			      int display_latency_ns, int *sprite_wm)
2900
{
2901
	struct drm_crtc *crtc;
2902
	int clock;
2903
	int entries, tlb_miss;
2904
 
2905
	crtc = intel_get_crtc_for_plane(dev, plane);
3243 Serge 2906
	if (!intel_crtc_active(crtc)) {
3031 serge 2907
		*sprite_wm = display->guard_size;
2908
		return false;
2909
	}
2910
 
2911
	clock = crtc->mode.clock;
2912
 
2913
	/* Use the small buffer method to calculate the sprite watermark */
2914
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2915
	tlb_miss = display->fifo_size*display->cacheline_size -
2916
		sprite_width * 8;
2917
	if (tlb_miss > 0)
2918
		entries += tlb_miss;
2919
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
2920
	*sprite_wm = entries + display->guard_size;
2921
	if (*sprite_wm > (int)display->max_wm)
2922
		*sprite_wm = display->max_wm;
2923
 
2924
	return true;
2925
}
2926
 
2927
static bool
2928
sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2929
				uint32_t sprite_width, int pixel_size,
2930
				const struct intel_watermark_params *display,
2931
				int latency_ns, int *sprite_wm)
2932
{
2933
	struct drm_crtc *crtc;
2934
	unsigned long line_time_us;
2935
	int clock;
2936
	int line_count, line_size;
2937
	int small, large;
2938
	int entries;
2939
 
2940
	if (!latency_ns) {
2941
		*sprite_wm = 0;
2942
		return false;
2943
	}
2944
 
2945
	crtc = intel_get_crtc_for_plane(dev, plane);
2946
	clock = crtc->mode.clock;
2947
	if (!clock) {
2948
		*sprite_wm = 0;
2949
		return false;
2950
	}
2951
 
2952
	line_time_us = (sprite_width * 1000) / clock;
2953
	if (!line_time_us) {
2954
		*sprite_wm = 0;
2955
		return false;
2956
	}
2957
 
2958
	line_count = (latency_ns / line_time_us + 1000) / 1000;
2959
	line_size = sprite_width * pixel_size;
2960
 
2961
	/* Use the minimum of the small and large buffer method for primary */
2962
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2963
	large = line_count * line_size;
2964
 
2965
	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2966
	*sprite_wm = entries + display->guard_size;
2967
 
2968
	return *sprite_wm > 0x3ff ? false : true;
2969
}
2970
 
4104 Serge 2971
static void sandybridge_update_sprite_wm(struct drm_plane *plane,
2972
					 struct drm_crtc *crtc,
2973
					 uint32_t sprite_width, int pixel_size,
2974
					 bool enabled, bool scaled)
3031 serge 2975
{
4104 Serge 2976
	struct drm_device *dev = plane->dev;
3031 serge 2977
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 2978
	int pipe = to_intel_plane(plane)->pipe;
2979
	int latency = dev_priv->wm.spr_latency[0] * 100;	/* In unit 0.1us */
3031 serge 2980
	u32 val;
2981
	int sprite_wm, reg;
2982
	int ret;
2983
 
4104 Serge 2984
	if (!enabled)
2985
		return;
2986
 
3031 serge 2987
	switch (pipe) {
2988
	case 0:
2989
		reg = WM0_PIPEA_ILK;
2990
		break;
2991
	case 1:
2992
		reg = WM0_PIPEB_ILK;
2993
		break;
2994
	case 2:
2995
		reg = WM0_PIPEC_IVB;
2996
		break;
2997
	default:
2998
		return; /* bad pipe */
2999
	}
3000
 
3001
	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
3002
					    &sandybridge_display_wm_info,
3003
					    latency, &sprite_wm);
3004
	if (!ret) {
4104 Serge 3005
		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
3006
			      pipe_name(pipe));
3031 serge 3007
		return;
3008
	}
3009
 
3010
	val = I915_READ(reg);
3011
	val &= ~WM0_PIPE_SPRITE_MASK;
3012
	I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
4104 Serge 3013
	DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
3031 serge 3014
 
3015
 
3016
	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3017
					      pixel_size,
3018
					      &sandybridge_display_srwm_info,
4104 Serge 3019
					      dev_priv->wm.spr_latency[1] * 500,
3031 serge 3020
					      &sprite_wm);
3021
	if (!ret) {
4104 Serge 3022
		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
3023
			      pipe_name(pipe));
3031 serge 3024
		return;
3025
	}
3026
	I915_WRITE(WM1S_LP_ILK, sprite_wm);
3027
 
3028
	/* Only IVB has two more LP watermarks for sprite */
3029
	if (!IS_IVYBRIDGE(dev))
3030
		return;
3031
 
3032
	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3033
					      pixel_size,
3034
					      &sandybridge_display_srwm_info,
4104 Serge 3035
					      dev_priv->wm.spr_latency[2] * 500,
3031 serge 3036
					      &sprite_wm);
3037
	if (!ret) {
4104 Serge 3038
		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
3039
			      pipe_name(pipe));
3031 serge 3040
		return;
3041
	}
3042
	I915_WRITE(WM2S_LP_IVB, sprite_wm);
3043
 
3044
	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3045
					      pixel_size,
3046
					      &sandybridge_display_srwm_info,
4104 Serge 3047
					      dev_priv->wm.spr_latency[3] * 500,
3031 serge 3048
					      &sprite_wm);
3049
	if (!ret) {
4104 Serge 3050
		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
3051
			      pipe_name(pipe));
3031 serge 3052
		return;
3053
	}
3054
	I915_WRITE(WM3S_LP_IVB, sprite_wm);
3055
}
3056
 
3057
/**
3058
 * intel_update_watermarks - update FIFO watermark values based on current modes
3059
 *
3060
 * Calculate watermark values for the various WM regs based on current mode
3061
 * and plane configuration.
3062
 *
3063
 * There are several cases to deal with here:
3064
 *   - normal (i.e. non-self-refresh)
3065
 *   - self-refresh (SR) mode
3066
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
3067
 *   - lines are small relative to FIFO size (buffer can hold more than 2
3068
 *     lines), so need to account for TLB latency
3069
 *
3070
 *   The normal calculation is:
3071
 *     watermark = dotclock * bytes per pixel * latency
3072
 *   where latency is platform & configuration dependent (we assume pessimal
3073
 *   values here).
3074
 *
3075
 *   The SR calculation is:
3076
 *     watermark = (trunc(latency/line time)+1) * surface width *
3077
 *       bytes per pixel
3078
 *   where
3079
 *     line time = htotal / dotclock
3080
 *     surface width = hdisplay for normal plane and 64 for cursor
3081
 *   and latency is assumed to be high, as above.
3082
 *
3083
 * The final value programmed to the register should always be rounded up,
3084
 * and include an extra 2 entries to account for clock crossings.
3085
 *
3086
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
3087
 * to set the non-SR watermarks to 8.
3088
 */
3089
void intel_update_watermarks(struct drm_device *dev)
3090
{
3091
	struct drm_i915_private *dev_priv = dev->dev_private;
3092
 
3093
	if (dev_priv->display.update_wm)
3094
		dev_priv->display.update_wm(dev);
3095
}
3096
 
4104 Serge 3097
void intel_update_sprite_watermarks(struct drm_plane *plane,
3098
				    struct drm_crtc *crtc,
3099
				    uint32_t sprite_width, int pixel_size,
3100
				    bool enabled, bool scaled)
3031 serge 3101
{
4104 Serge 3102
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3031 serge 3103
 
3104
	if (dev_priv->display.update_sprite_wm)
4104 Serge 3105
		dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
3106
						   pixel_size, enabled, scaled);
3031 serge 3107
}
3108
 
3109
static struct drm_i915_gem_object *
3110
intel_alloc_context_page(struct drm_device *dev)
3111
{
3112
	struct drm_i915_gem_object *ctx;
3113
	int ret;
3114
 
3115
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3116
 
3117
	ctx = i915_gem_alloc_object(dev, 4096);
3118
	if (!ctx) {
3119
		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3120
		return NULL;
3121
	}
3122
 
4104 Serge 3123
	ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
3031 serge 3124
	if (ret) {
3125
		DRM_ERROR("failed to pin power context: %d\n", ret);
3126
		goto err_unref;
3127
	}
3128
 
3129
	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3130
	if (ret) {
3131
		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3132
		goto err_unpin;
3133
	}
3134
 
3135
	return ctx;
3136
 
3137
err_unpin:
3138
	i915_gem_object_unpin(ctx);
3139
err_unref:
3140
	drm_gem_object_unreference(&ctx->base);
3141
	return NULL;
3142
}
3143
 
3144
/**
3145
 * Lock protecting IPS related data structures
3146
 */
3147
DEFINE_SPINLOCK(mchdev_lock);
3148
 
3149
/* Global for IPS driver to get at the current i915 device. Protected by
3150
 * mchdev_lock. */
3151
static struct drm_i915_private *i915_mch_dev;
3152
 
3153
bool ironlake_set_drps(struct drm_device *dev, u8 val)
3154
{
3155
	struct drm_i915_private *dev_priv = dev->dev_private;
3156
	u16 rgvswctl;
3157
 
3158
	assert_spin_locked(&mchdev_lock);
3159
 
3160
	rgvswctl = I915_READ16(MEMSWCTL);
3161
	if (rgvswctl & MEMCTL_CMD_STS) {
3162
		DRM_DEBUG("gpu busy, RCS change rejected\n");
3163
		return false; /* still busy with another command */
3164
	}
3165
 
3166
	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3167
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3168
	I915_WRITE16(MEMSWCTL, rgvswctl);
3169
	POSTING_READ16(MEMSWCTL);
3170
 
3171
	rgvswctl |= MEMCTL_CMD_STS;
3172
	I915_WRITE16(MEMSWCTL, rgvswctl);
3173
 
3174
	return true;
3175
}
3176
 
3177
static void ironlake_enable_drps(struct drm_device *dev)
3178
{
3179
	struct drm_i915_private *dev_priv = dev->dev_private;
3180
	u32 rgvmodectl = I915_READ(MEMMODECTL);
3181
	u8 fmax, fmin, fstart, vstart;
3182
 
3183
	spin_lock_irq(&mchdev_lock);
3184
 
3185
	/* Enable temp reporting */
3186
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3187
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3188
 
3189
	/* 100ms RC evaluation intervals */
3190
	I915_WRITE(RCUPEI, 100000);
3191
	I915_WRITE(RCDNEI, 100000);
3192
 
3193
	/* Set max/min thresholds to 90ms and 80ms respectively */
3194
	I915_WRITE(RCBMAXAVG, 90000);
3195
	I915_WRITE(RCBMINAVG, 80000);
3196
 
3197
	I915_WRITE(MEMIHYST, 1);
3198
 
3199
	/* Set up min, max, and cur for interrupt handling */
3200
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3201
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3202
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3203
		MEMMODE_FSTART_SHIFT;
3204
 
3205
	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3206
		PXVFREQ_PX_SHIFT;
3207
 
3208
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3209
	dev_priv->ips.fstart = fstart;
3210
 
3211
	dev_priv->ips.max_delay = fstart;
3212
	dev_priv->ips.min_delay = fmin;
3213
	dev_priv->ips.cur_delay = fstart;
3214
 
3215
	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3216
			 fmax, fmin, fstart);
3217
 
3218
	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3219
 
3220
	/*
3221
	 * Interrupts will be enabled in ironlake_irq_postinstall
3222
	 */
3223
 
3224
	I915_WRITE(VIDSTART, vstart);
3225
	POSTING_READ(VIDSTART);
3226
 
3227
	rgvmodectl |= MEMMODE_SWMODE_EN;
3228
	I915_WRITE(MEMMODECTL, rgvmodectl);
3229
 
3230
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3231
		DRM_ERROR("stuck trying to change perf mode\n");
3232
	mdelay(1);
3233
 
3234
	ironlake_set_drps(dev, fstart);
3235
 
3236
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3237
		I915_READ(0x112e0);
3238
    dev_priv->ips.last_time1 = jiffies_to_msecs(GetTimerTicks());
3239
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
3482 Serge 3240
	getrawmonotonic(&dev_priv->ips.last_time2);
3031 serge 3241
 
3242
	spin_unlock_irq(&mchdev_lock);
3243
}
3244
 
3245
static void ironlake_disable_drps(struct drm_device *dev)
3246
{
3247
	struct drm_i915_private *dev_priv = dev->dev_private;
3248
	u16 rgvswctl;
3249
 
3250
	spin_lock_irq(&mchdev_lock);
3251
 
3252
	rgvswctl = I915_READ16(MEMSWCTL);
3253
 
3254
	/* Ack interrupts, disable EFC interrupt */
3255
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3256
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3257
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3258
	I915_WRITE(DEIIR, DE_PCU_EVENT);
3259
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3260
 
3261
	/* Go back to the starting frequency */
3262
	ironlake_set_drps(dev, dev_priv->ips.fstart);
3263
	mdelay(1);
3264
	rgvswctl |= MEMCTL_CMD_STS;
3265
	I915_WRITE(MEMSWCTL, rgvswctl);
3266
	mdelay(1);
3267
 
3268
	spin_unlock_irq(&mchdev_lock);
3269
}
3270
 
3271
/* There's a funny hw issue where the hw returns all 0 when reading from
3272
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3273
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3274
 * all limits and the gpu stuck at whatever frequency it is at atm).
3275
 */
3276
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
3277
{
3278
	u32 limits;
3279
 
3280
	limits = 0;
3281
 
3282
	if (*val >= dev_priv->rps.max_delay)
3283
		*val = dev_priv->rps.max_delay;
3284
	limits |= dev_priv->rps.max_delay << 24;
3285
 
3286
	/* Only set the down limit when we've reached the lowest level to avoid
3287
	 * getting more interrupts, otherwise leave this clear. This prevents a
3288
	 * race in the hw when coming out of rc6: There's a tiny window where
3289
	 * the hw runs at the minimal clock before selecting the desired
3290
	 * frequency, if the down threshold expires in that window we will not
3291
	 * receive a down interrupt. */
3292
	if (*val <= dev_priv->rps.min_delay) {
3293
		*val = dev_priv->rps.min_delay;
3294
		limits |= dev_priv->rps.min_delay << 16;
3295
	}
3296
 
3297
	return limits;
3298
}
3299
 
3300
void gen6_set_rps(struct drm_device *dev, u8 val)
3301
{
3302
	struct drm_i915_private *dev_priv = dev->dev_private;
3303
	u32 limits = gen6_rps_limits(dev_priv, &val);
3304
 
3243 Serge 3305
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 3306
	WARN_ON(val > dev_priv->rps.max_delay);
3307
	WARN_ON(val < dev_priv->rps.min_delay);
3308
 
3309
	if (val == dev_priv->rps.cur_delay)
3310
		return;
3311
 
3746 Serge 3312
	if (IS_HASWELL(dev))
3313
		I915_WRITE(GEN6_RPNSWREQ,
3314
			   HSW_FREQUENCY(val));
3315
	else
3031 serge 3316
	I915_WRITE(GEN6_RPNSWREQ,
3317
		   GEN6_FREQUENCY(val) |
3318
		   GEN6_OFFSET(0) |
3319
		   GEN6_AGGRESSIVE_TURBO);
3320
 
3321
	/* Make sure we continue to get interrupts
3322
	 * until we hit the minimum or maximum frequencies.
3323
	 */
3324
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3325
 
3326
	POSTING_READ(GEN6_RPNSWREQ);
3327
 
3328
	dev_priv->rps.cur_delay = val;
3329
 
3330
	trace_intel_gpu_freq_change(val * 50);
3331
}
3332
 
4104 Serge 3333
/*
3334
 * Wait until the previous freq change has completed,
3335
 * or the timeout elapsed, and then update our notion
3336
 * of the current GPU frequency.
3337
 */
3338
static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
3031 serge 3339
{
4104 Serge 3340
	u32 pval;
3341
 
3342
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3343
 
3344
	if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
3345
		DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
3346
 
3347
	pval >>= 8;
3348
 
3349
	if (pval != dev_priv->rps.cur_delay)
3350
		DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
3351
				 vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
3352
				 dev_priv->rps.cur_delay,
3353
				 vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
3354
 
3355
	dev_priv->rps.cur_delay = pval;
3356
}
3357
 
3358
void valleyview_set_rps(struct drm_device *dev, u8 val)
3359
{
3031 serge 3360
	struct drm_i915_private *dev_priv = dev->dev_private;
3361
 
4104 Serge 3362
	gen6_rps_limits(dev_priv, &val);
3363
 
3364
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3365
	WARN_ON(val > dev_priv->rps.max_delay);
3366
	WARN_ON(val < dev_priv->rps.min_delay);
3367
 
3368
	vlv_update_rps_cur_delay(dev_priv);
3369
 
3370
	DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3371
			 vlv_gpu_freq(dev_priv->mem_freq,
3372
				      dev_priv->rps.cur_delay),
3373
			 dev_priv->rps.cur_delay,
3374
			 vlv_gpu_freq(dev_priv->mem_freq, val), val);
3375
 
3376
	if (val == dev_priv->rps.cur_delay)
3377
		return;
3378
 
3379
	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3380
 
3381
	dev_priv->rps.cur_delay = val;
3382
 
3383
	trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
3384
}
3385
 
3386
static void gen6_disable_rps_interrupts(struct drm_device *dev)
3387
{
3388
	struct drm_i915_private *dev_priv = dev->dev_private;
3389
 
3031 serge 3390
	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4104 Serge 3391
	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3031 serge 3392
	/* Complete PM interrupt masking here doesn't race with the rps work
3393
	 * item again unmasking PM interrupts because that is using a different
3394
	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3395
	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3396
 
4104 Serge 3397
	spin_lock_irq(&dev_priv->irq_lock);
3031 serge 3398
	dev_priv->rps.pm_iir = 0;
4104 Serge 3399
	spin_unlock_irq(&dev_priv->irq_lock);
3031 serge 3400
 
4104 Serge 3401
	I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3031 serge 3402
}
3403
 
4104 Serge 3404
static void gen6_disable_rps(struct drm_device *dev)
3405
{
3406
	struct drm_i915_private *dev_priv = dev->dev_private;
3407
 
3408
	I915_WRITE(GEN6_RC_CONTROL, 0);
3409
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3410
 
3411
	gen6_disable_rps_interrupts(dev);
3412
}
3413
 
3414
static void valleyview_disable_rps(struct drm_device *dev)
3415
{
3416
	struct drm_i915_private *dev_priv = dev->dev_private;
3417
 
3418
	I915_WRITE(GEN6_RC_CONTROL, 0);
3419
 
3420
	gen6_disable_rps_interrupts(dev);
3421
 
3422
	if (dev_priv->vlv_pctx) {
3423
		drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3424
		dev_priv->vlv_pctx = NULL;
3425
	}
3426
}
3427
 
3031 serge 3428
int intel_enable_rc6(const struct drm_device *dev)
3429
{
4104 Serge 3430
	/* No RC6 before Ironlake */
3431
	if (INTEL_INFO(dev)->gen < 5)
3432
		return 0;
3433
 
3031 serge 3434
	/* Respect the kernel parameter if it is set */
3435
	if (i915_enable_rc6 >= 0)
3436
		return i915_enable_rc6;
3437
 
3120 serge 3438
	/* Disable RC6 on Ironlake */
3439
	if (INTEL_INFO(dev)->gen == 5)
3440
		return 0;
3031 serge 3441
 
3442
	if (IS_HASWELL(dev)) {
3443
		DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3444
		return INTEL_RC6_ENABLE;
3445
	}
3446
 
3447
	/* snb/ivb have more than one rc6 state. */
3448
	if (INTEL_INFO(dev)->gen == 6) {
3449
		DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3450
		return INTEL_RC6_ENABLE;
3451
	}
3452
 
3453
	DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
3454
	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3455
}
3456
 
4104 Serge 3457
static void gen6_enable_rps_interrupts(struct drm_device *dev)
3458
{
3459
	struct drm_i915_private *dev_priv = dev->dev_private;
3460
	u32 enabled_intrs;
3461
 
3462
	spin_lock_irq(&dev_priv->irq_lock);
3463
	WARN_ON(dev_priv->rps.pm_iir);
3464
	snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
3465
	I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3466
	spin_unlock_irq(&dev_priv->irq_lock);
3467
 
3468
	/* only unmask PM interrupts we need. Mask all others. */
3469
	enabled_intrs = GEN6_PM_RPS_EVENTS;
3470
 
3471
	/* IVB and SNB hard hangs on looping batchbuffer
3472
	 * if GEN6_PM_UP_EI_EXPIRED is masked.
3473
	 */
3474
	if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3475
		enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
3476
 
3477
	I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
3478
}
3479
 
3031 serge 3480
static void gen6_enable_rps(struct drm_device *dev)
3481
{
3482
	struct drm_i915_private *dev_priv = dev->dev_private;
3483
	struct intel_ring_buffer *ring;
3484
	u32 rp_state_cap;
3485
	u32 gt_perf_status;
3243 Serge 3486
	u32 rc6vids, pcu_mbox, rc6_mask = 0;
3031 serge 3487
	u32 gtfifodbg;
3488
	int rc6_mode;
3243 Serge 3489
	int i, ret;
3031 serge 3490
 
3243 Serge 3491
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 3492
 
3493
	/* Here begins a magic sequence of register writes to enable
3494
	 * auto-downclocking.
3495
	 *
3496
	 * Perhaps there might be some value in exposing these to
3497
	 * userspace...
3498
	 */
3499
	I915_WRITE(GEN6_RC_STATE, 0);
3500
 
3501
	/* Clear the DBG now so we don't confuse earlier errors */
3502
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3503
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3504
		I915_WRITE(GTFIFODBG, gtfifodbg);
3505
	}
3506
 
3507
	gen6_gt_force_wake_get(dev_priv);
3508
 
3509
	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3510
	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3511
 
3746 Serge 3512
	/* In units of 50MHz */
3513
	dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3031 serge 3514
	dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
3515
	dev_priv->rps.cur_delay = 0;
3516
 
3517
	/* disable the counters and set deterministic thresholds */
3518
	I915_WRITE(GEN6_RC_CONTROL, 0);
3519
 
3520
	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3521
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3522
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3523
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3524
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3525
 
3526
	for_each_ring(ring, dev_priv, i)
3527
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3528
 
3529
	I915_WRITE(GEN6_RC_SLEEP, 0);
3530
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4104 Serge 3531
	if (INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev))
3532
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3533
	else
3031 serge 3534
	I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3480 Serge 3535
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3031 serge 3536
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3537
 
3538
	/* Check if we are enabling RC6 */
3539
	rc6_mode = intel_enable_rc6(dev_priv->dev);
3540
	if (rc6_mode & INTEL_RC6_ENABLE)
3541
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3542
 
3543
	/* We don't use those on Haswell */
3544
	if (!IS_HASWELL(dev)) {
3545
		if (rc6_mode & INTEL_RC6p_ENABLE)
3546
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3547
 
3548
		if (rc6_mode & INTEL_RC6pp_ENABLE)
3549
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3550
	}
3551
 
3552
	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3553
			(rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3554
			(rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3555
			(rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3556
 
3557
	I915_WRITE(GEN6_RC_CONTROL,
3558
		   rc6_mask |
3559
		   GEN6_RC_CTL_EI_MODE(1) |
3560
		   GEN6_RC_CTL_HW_ENABLE);
3561
 
3746 Serge 3562
	if (IS_HASWELL(dev)) {
3563
		I915_WRITE(GEN6_RPNSWREQ,
3564
			   HSW_FREQUENCY(10));
3565
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
3566
			   HSW_FREQUENCY(12));
3567
	} else {
3031 serge 3568
	I915_WRITE(GEN6_RPNSWREQ,
3569
		   GEN6_FREQUENCY(10) |
3570
		   GEN6_OFFSET(0) |
3571
		   GEN6_AGGRESSIVE_TURBO);
3572
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
3573
		   GEN6_FREQUENCY(12));
3746 Serge 3574
	}
3031 serge 3575
 
3576
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
3577
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3578
		   dev_priv->rps.max_delay << 24 |
3579
		   dev_priv->rps.min_delay << 16);
3580
 
3581
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3582
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3583
	I915_WRITE(GEN6_RP_UP_EI, 66000);
3584
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3585
 
3586
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3587
	I915_WRITE(GEN6_RP_CONTROL,
3588
		   GEN6_RP_MEDIA_TURBO |
3589
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3590
		   GEN6_RP_MEDIA_IS_GFX |
3591
		   GEN6_RP_ENABLE |
3592
		   GEN6_RP_UP_BUSY_AVG |
3593
		   (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
3594
 
3243 Serge 3595
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3596
	if (!ret) {
3597
		pcu_mbox = 0;
3598
		ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3746 Serge 3599
		if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3600
			DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3601
					 (dev_priv->rps.max_delay & 0xff) * 50,
3602
					 (pcu_mbox & 0xff) * 50);
3603
			dev_priv->rps.hw_max = pcu_mbox & 0xff;
3031 serge 3604
	}
3243 Serge 3605
	} else {
3606
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3607
	}
3031 serge 3608
 
3609
	gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
3610
 
4104 Serge 3611
	gen6_enable_rps_interrupts(dev);
3031 serge 3612
 
3243 Serge 3613
	rc6vids = 0;
3614
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3615
	if (IS_GEN6(dev) && ret) {
3616
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3617
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3618
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3619
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3620
		rc6vids &= 0xffff00;
3621
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
3622
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3623
		if (ret)
3624
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3625
	}
3626
 
3031 serge 3627
	gen6_gt_force_wake_put(dev_priv);
3628
}
3629
 
4104 Serge 3630
void gen6_update_ring_freq(struct drm_device *dev)
3031 serge 3631
{
3632
	struct drm_i915_private *dev_priv = dev->dev_private;
3633
	int min_freq = 15;
3746 Serge 3634
	unsigned int gpu_freq;
3635
	unsigned int max_ia_freq, min_ring_freq;
3031 serge 3636
	int scaling_factor = 180;
3637
 
3243 Serge 3638
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 3639
 
3640
	max_ia_freq = cpufreq_quick_get_max(0);
3641
	/*
3642
	 * Default to measured freq if none found, PCU will ensure we don't go
3643
	 * over
3644
	 */
3645
	if (!max_ia_freq)
3646
		max_ia_freq = tsc_khz;
3647
 
3648
	/* Convert from kHz to MHz */
3649
	max_ia_freq /= 1000;
3650
 
3746 Serge 3651
	min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
3652
	/* convert DDR frequency from units of 133.3MHz to bandwidth */
3653
	min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
3654
 
3031 serge 3655
	/*
3656
	 * For each potential GPU frequency, load a ring frequency we'd like
3657
	 * to use for memory access.  We do this by specifying the IA frequency
3658
	 * the PCU should use as a reference to determine the ring frequency.
3659
	 */
3660
	for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3661
	     gpu_freq--) {
3662
		int diff = dev_priv->rps.max_delay - gpu_freq;
3746 Serge 3663
		unsigned int ia_freq = 0, ring_freq = 0;
3031 serge 3664
 
3746 Serge 3665
		if (IS_HASWELL(dev)) {
3666
			ring_freq = (gpu_freq * 5 + 3) / 4;
3667
			ring_freq = max(min_ring_freq, ring_freq);
3668
			/* leave ia_freq as the default, chosen by cpufreq */
3669
		} else {
3670
			/* On older processors, there is no separate ring
3671
			 * clock domain, so in order to boost the bandwidth
3672
			 * of the ring, we need to upclock the CPU (ia_freq).
3673
			 *
3674
			 * For GPU frequencies less than 750MHz,
3675
			 * just use the lowest ring freq.
3031 serge 3676
		 */
3677
		if (gpu_freq < min_freq)
3678
			ia_freq = 800;
3679
		else
3680
			ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3681
		ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3746 Serge 3682
		}
3031 serge 3683
 
3243 Serge 3684
		sandybridge_pcode_write(dev_priv,
3685
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3746 Serge 3686
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3687
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3688
					gpu_freq);
3031 serge 3689
	}
3690
}
3691
 
4104 Serge 3692
int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3693
{
3694
	u32 val, rp0;
3695
 
3696
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3697
 
3698
	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3699
	/* Clamp to max */
3700
	rp0 = min_t(u32, rp0, 0xea);
3701
 
3702
	return rp0;
3703
}
3704
 
3705
static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3706
{
3707
	u32 val, rpe;
3708
 
3709
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3710
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3711
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3712
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3713
 
3714
	return rpe;
3715
}
3716
 
3717
int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3718
{
3719
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3720
}
3721
 
3722
static void vlv_rps_timer_work(struct work_struct *work)
3723
{
3724
	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3725
						    rps.vlv_work.work);
3726
 
3727
	/*
3728
	 * Timer fired, we must be idle.  Drop to min voltage state.
3729
	 * Note: we use RPe here since it should match the
3730
	 * Vmin we were shooting for.  That should give us better
3731
	 * perf when we come back out of RC6 than if we used the
3732
	 * min freq available.
3733
	 */
3734
	mutex_lock(&dev_priv->rps.hw_lock);
3735
	if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
3736
		valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3737
	mutex_unlock(&dev_priv->rps.hw_lock);
3738
}
3739
 
3740
static void valleyview_setup_pctx(struct drm_device *dev)
3741
{
3742
	struct drm_i915_private *dev_priv = dev->dev_private;
3743
	struct drm_i915_gem_object *pctx;
3744
	unsigned long pctx_paddr;
3745
	u32 pcbr;
3746
	int pctx_size = 24*1024;
3747
 
3748
	pcbr = I915_READ(VLV_PCBR);
3749
	if (pcbr) {
3750
		/* BIOS set it up already, grab the pre-alloc'd space */
3751
		int pcbr_offset;
3752
 
3753
		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3754
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3755
								      pcbr_offset,
3756
								      I915_GTT_OFFSET_NONE,
3757
								      pctx_size);
3758
		goto out;
3759
	}
3760
 
3761
	/*
3762
	 * From the Gunit register HAS:
3763
	 * The Gfx driver is expected to program this register and ensure
3764
	 * proper allocation within Gfx stolen memory.  For example, this
3765
	 * register should be programmed such than the PCBR range does not
3766
	 * overlap with other ranges, such as the frame buffer, protected
3767
	 * memory, or any other relevant ranges.
3768
	 */
3769
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
3770
	if (!pctx) {
3771
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3772
		return;
3773
	}
3774
 
3775
	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3776
	I915_WRITE(VLV_PCBR, pctx_paddr);
3777
 
3778
out:
3779
	dev_priv->vlv_pctx = pctx;
3780
}
3781
 
3782
static void valleyview_enable_rps(struct drm_device *dev)
3783
{
3784
	struct drm_i915_private *dev_priv = dev->dev_private;
3785
	struct intel_ring_buffer *ring;
3786
	u32 gtfifodbg, val;
3787
	int i;
3788
 
3789
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3790
 
3791
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3792
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3793
		I915_WRITE(GTFIFODBG, gtfifodbg);
3794
	}
3795
 
3796
	valleyview_setup_pctx(dev);
3797
 
3798
	gen6_gt_force_wake_get(dev_priv);
3799
 
3800
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3801
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3802
	I915_WRITE(GEN6_RP_UP_EI, 66000);
3803
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3804
 
3805
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3806
 
3807
	I915_WRITE(GEN6_RP_CONTROL,
3808
		   GEN6_RP_MEDIA_TURBO |
3809
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3810
		   GEN6_RP_MEDIA_IS_GFX |
3811
		   GEN6_RP_ENABLE |
3812
		   GEN6_RP_UP_BUSY_AVG |
3813
		   GEN6_RP_DOWN_IDLE_CONT);
3814
 
3815
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3816
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3817
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3818
 
3819
	for_each_ring(ring, dev_priv, i)
3820
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3821
 
3822
	I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
3823
 
3824
	/* allows RC6 residency counter to work */
3825
	I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
3826
	I915_WRITE(GEN6_RC_CONTROL,
3827
		   GEN7_RC_CTL_TO_MODE);
3828
 
3829
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3830
	switch ((val >> 6) & 3) {
3831
	case 0:
3832
	case 1:
3833
		dev_priv->mem_freq = 800;
3834
		break;
3835
	case 2:
3836
		dev_priv->mem_freq = 1066;
3837
		break;
3838
	case 3:
3839
		dev_priv->mem_freq = 1333;
3840
		break;
3841
	}
3842
	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
3843
 
3844
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3845
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3846
 
3847
	dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3848
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3849
			 vlv_gpu_freq(dev_priv->mem_freq,
3850
				      dev_priv->rps.cur_delay),
3851
			 dev_priv->rps.cur_delay);
3852
 
3853
	dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3854
	dev_priv->rps.hw_max = dev_priv->rps.max_delay;
3855
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3856
			 vlv_gpu_freq(dev_priv->mem_freq,
3857
				      dev_priv->rps.max_delay),
3858
			 dev_priv->rps.max_delay);
3859
 
3860
	dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
3861
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3862
			 vlv_gpu_freq(dev_priv->mem_freq,
3863
				      dev_priv->rps.rpe_delay),
3864
			 dev_priv->rps.rpe_delay);
3865
 
3866
	dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
3867
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3868
			 vlv_gpu_freq(dev_priv->mem_freq,
3869
				      dev_priv->rps.min_delay),
3870
			 dev_priv->rps.min_delay);
3871
 
3872
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3873
			 vlv_gpu_freq(dev_priv->mem_freq,
3874
				      dev_priv->rps.rpe_delay),
3875
			 dev_priv->rps.rpe_delay);
3876
 
3877
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3878
 
3879
	gen6_enable_rps_interrupts(dev);
3880
 
3881
	gen6_gt_force_wake_put(dev_priv);
3882
}
3883
 
3031 serge 3884
void ironlake_teardown_rc6(struct drm_device *dev)
3885
{
3886
	struct drm_i915_private *dev_priv = dev->dev_private;
3887
 
3243 Serge 3888
	if (dev_priv->ips.renderctx) {
3889
		i915_gem_object_unpin(dev_priv->ips.renderctx);
3890
		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3891
		dev_priv->ips.renderctx = NULL;
3031 serge 3892
	}
3893
 
3243 Serge 3894
	if (dev_priv->ips.pwrctx) {
3895
		i915_gem_object_unpin(dev_priv->ips.pwrctx);
3896
		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3897
		dev_priv->ips.pwrctx = NULL;
3031 serge 3898
	}
3899
}
3900
 
3901
static void ironlake_disable_rc6(struct drm_device *dev)
3902
{
3903
	struct drm_i915_private *dev_priv = dev->dev_private;
3904
 
3905
	if (I915_READ(PWRCTXA)) {
3906
		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3907
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3908
		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3909
			 50);
3910
 
3911
		I915_WRITE(PWRCTXA, 0);
3912
		POSTING_READ(PWRCTXA);
3913
 
3914
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3915
		POSTING_READ(RSTDBYCTL);
3916
	}
3917
}
3918
 
3919
static int ironlake_setup_rc6(struct drm_device *dev)
3920
{
3921
	struct drm_i915_private *dev_priv = dev->dev_private;
3922
 
3243 Serge 3923
	if (dev_priv->ips.renderctx == NULL)
3924
		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3925
	if (!dev_priv->ips.renderctx)
3031 serge 3926
		return -ENOMEM;
3927
 
3243 Serge 3928
	if (dev_priv->ips.pwrctx == NULL)
3929
		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3930
	if (!dev_priv->ips.pwrctx) {
3031 serge 3931
		ironlake_teardown_rc6(dev);
3932
		return -ENOMEM;
3933
	}
3934
 
3935
	return 0;
3936
}
3937
 
3938
static void ironlake_enable_rc6(struct drm_device *dev)
3939
{
3940
	struct drm_i915_private *dev_priv = dev->dev_private;
3941
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3243 Serge 3942
	bool was_interruptible;
3031 serge 3943
	int ret;
3944
 
3945
	/* rc6 disabled by default due to repeated reports of hanging during
3946
	 * boot and resume.
3947
	 */
3948
	if (!intel_enable_rc6(dev))
3949
		return;
3950
 
3951
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3952
 
3953
	ret = ironlake_setup_rc6(dev);
3954
	if (ret)
3955
		return;
3956
 
3243 Serge 3957
	was_interruptible = dev_priv->mm.interruptible;
3958
	dev_priv->mm.interruptible = false;
3959
 
3031 serge 3960
	/*
3961
	 * GPU can automatically power down the render unit if given a page
3962
	 * to save state.
3963
	 */
3964
	ret = intel_ring_begin(ring, 6);
3965
	if (ret) {
3966
		ironlake_teardown_rc6(dev);
3243 Serge 3967
		dev_priv->mm.interruptible = was_interruptible;
3031 serge 3968
		return;
3969
	}
3970
 
3971
	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3972
	intel_ring_emit(ring, MI_SET_CONTEXT);
4104 Serge 3973
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3031 serge 3974
			MI_MM_SPACE_GTT |
3975
			MI_SAVE_EXT_STATE_EN |
3976
			MI_RESTORE_EXT_STATE_EN |
3977
			MI_RESTORE_INHIBIT);
3978
	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3979
	intel_ring_emit(ring, MI_NOOP);
3980
	intel_ring_emit(ring, MI_FLUSH);
3981
	intel_ring_advance(ring);
3982
 
3983
	/*
3984
	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3985
	 * does an implicit flush, combined with MI_FLUSH above, it should be
3986
	 * safe to assume that renderctx is valid
3987
	 */
3243 Serge 3988
	ret = intel_ring_idle(ring);
3989
	dev_priv->mm.interruptible = was_interruptible;
3031 serge 3990
	if (ret) {
3746 Serge 3991
		DRM_ERROR("failed to enable ironlake power savings\n");
3031 serge 3992
		ironlake_teardown_rc6(dev);
3993
		return;
3994
	}
3995
 
4104 Serge 3996
	I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3031 serge 3997
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3998
}
3999
 
4000
static unsigned long intel_pxfreq(u32 vidfreq)
4001
{
4002
	unsigned long freq;
4003
	int div = (vidfreq & 0x3f0000) >> 16;
4004
	int post = (vidfreq & 0x3000) >> 12;
4005
	int pre = (vidfreq & 0x7);
4006
 
4007
	if (!pre)
4008
		return 0;
4009
 
4010
	freq = ((div * 133333) / ((1<
4011
 
4012
	return freq;
4013
}
4014
 
4015
static const struct cparams {
4016
	u16 i;
4017
	u16 t;
4018
	u16 m;
4019
	u16 c;
4020
} cparams[] = {
4021
	{ 1, 1333, 301, 28664 },
4022
	{ 1, 1066, 294, 24460 },
4023
	{ 1, 800, 294, 25192 },
4024
	{ 0, 1333, 276, 27605 },
4025
	{ 0, 1066, 276, 27605 },
4026
	{ 0, 800, 231, 23784 },
4027
};
4028
 
4029
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4030
{
4031
	u64 total_count, diff, ret;
4032
	u32 count1, count2, count3, m = 0, c = 0;
4033
    unsigned long now = jiffies_to_msecs(GetTimerTicks()), diff1;
4034
	int i;
4035
 
4036
	assert_spin_locked(&mchdev_lock);
4037
 
4038
	diff1 = now - dev_priv->ips.last_time1;
4039
 
4040
	/* Prevent division-by-zero if we are asking too fast.
4041
	 * Also, we don't get interesting results if we are polling
4042
	 * faster than once in 10ms, so just return the saved value
4043
	 * in such cases.
4044
	 */
4045
	if (diff1 <= 10)
4046
		return dev_priv->ips.chipset_power;
4047
 
4048
	count1 = I915_READ(DMIEC);
4049
	count2 = I915_READ(DDREC);
4050
	count3 = I915_READ(CSIEC);
4051
 
4052
	total_count = count1 + count2 + count3;
4053
 
4054
	/* FIXME: handle per-counter overflow */
4055
	if (total_count < dev_priv->ips.last_count1) {
4056
		diff = ~0UL - dev_priv->ips.last_count1;
4057
		diff += total_count;
4058
	} else {
4059
		diff = total_count - dev_priv->ips.last_count1;
4060
	}
4061
 
4062
	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4063
		if (cparams[i].i == dev_priv->ips.c_m &&
4064
		    cparams[i].t == dev_priv->ips.r_t) {
4065
			m = cparams[i].m;
4066
			c = cparams[i].c;
4067
			break;
4068
		}
4069
	}
4070
 
4071
	diff = div_u64(diff, diff1);
4072
	ret = ((m * diff) + c);
4073
	ret = div_u64(ret, 10);
4074
 
4075
	dev_priv->ips.last_count1 = total_count;
4076
	dev_priv->ips.last_time1 = now;
4077
 
4078
	dev_priv->ips.chipset_power = ret;
4079
 
4080
	return ret;
4081
}
4082
 
4083
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4084
{
4085
	unsigned long val;
4086
 
4087
	if (dev_priv->info->gen != 5)
4088
		return 0;
4089
 
4090
	spin_lock_irq(&mchdev_lock);
4091
 
4092
	val = __i915_chipset_val(dev_priv);
4093
 
4094
	spin_unlock_irq(&mchdev_lock);
4095
 
4096
	return val;
4097
}
4098
 
4099
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4100
{
4101
	unsigned long m, x, b;
4102
	u32 tsfs;
4103
 
4104
	tsfs = I915_READ(TSFS);
4105
 
4106
	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4107
	x = I915_READ8(TR1);
4108
 
4109
	b = tsfs & TSFS_INTR_MASK;
4110
 
4111
	return ((m * x) / 127) - b;
4112
}
4113
 
4114
static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4115
{
4116
	static const struct v_table {
4117
		u16 vd; /* in .1 mil */
4118
		u16 vm; /* in .1 mil */
4119
	} v_table[] = {
4120
		{ 0, 0, },
4121
		{ 375, 0, },
4122
		{ 500, 0, },
4123
		{ 625, 0, },
4124
		{ 750, 0, },
4125
		{ 875, 0, },
4126
		{ 1000, 0, },
4127
		{ 1125, 0, },
4128
		{ 4125, 3000, },
4129
		{ 4125, 3000, },
4130
		{ 4125, 3000, },
4131
		{ 4125, 3000, },
4132
		{ 4125, 3000, },
4133
		{ 4125, 3000, },
4134
		{ 4125, 3000, },
4135
		{ 4125, 3000, },
4136
		{ 4125, 3000, },
4137
		{ 4125, 3000, },
4138
		{ 4125, 3000, },
4139
		{ 4125, 3000, },
4140
		{ 4125, 3000, },
4141
		{ 4125, 3000, },
4142
		{ 4125, 3000, },
4143
		{ 4125, 3000, },
4144
		{ 4125, 3000, },
4145
		{ 4125, 3000, },
4146
		{ 4125, 3000, },
4147
		{ 4125, 3000, },
4148
		{ 4125, 3000, },
4149
		{ 4125, 3000, },
4150
		{ 4125, 3000, },
4151
		{ 4125, 3000, },
4152
		{ 4250, 3125, },
4153
		{ 4375, 3250, },
4154
		{ 4500, 3375, },
4155
		{ 4625, 3500, },
4156
		{ 4750, 3625, },
4157
		{ 4875, 3750, },
4158
		{ 5000, 3875, },
4159
		{ 5125, 4000, },
4160
		{ 5250, 4125, },
4161
		{ 5375, 4250, },
4162
		{ 5500, 4375, },
4163
		{ 5625, 4500, },
4164
		{ 5750, 4625, },
4165
		{ 5875, 4750, },
4166
		{ 6000, 4875, },
4167
		{ 6125, 5000, },
4168
		{ 6250, 5125, },
4169
		{ 6375, 5250, },
4170
		{ 6500, 5375, },
4171
		{ 6625, 5500, },
4172
		{ 6750, 5625, },
4173
		{ 6875, 5750, },
4174
		{ 7000, 5875, },
4175
		{ 7125, 6000, },
4176
		{ 7250, 6125, },
4177
		{ 7375, 6250, },
4178
		{ 7500, 6375, },
4179
		{ 7625, 6500, },
4180
		{ 7750, 6625, },
4181
		{ 7875, 6750, },
4182
		{ 8000, 6875, },
4183
		{ 8125, 7000, },
4184
		{ 8250, 7125, },
4185
		{ 8375, 7250, },
4186
		{ 8500, 7375, },
4187
		{ 8625, 7500, },
4188
		{ 8750, 7625, },
4189
		{ 8875, 7750, },
4190
		{ 9000, 7875, },
4191
		{ 9125, 8000, },
4192
		{ 9250, 8125, },
4193
		{ 9375, 8250, },
4194
		{ 9500, 8375, },
4195
		{ 9625, 8500, },
4196
		{ 9750, 8625, },
4197
		{ 9875, 8750, },
4198
		{ 10000, 8875, },
4199
		{ 10125, 9000, },
4200
		{ 10250, 9125, },
4201
		{ 10375, 9250, },
4202
		{ 10500, 9375, },
4203
		{ 10625, 9500, },
4204
		{ 10750, 9625, },
4205
		{ 10875, 9750, },
4206
		{ 11000, 9875, },
4207
		{ 11125, 10000, },
4208
		{ 11250, 10125, },
4209
		{ 11375, 10250, },
4210
		{ 11500, 10375, },
4211
		{ 11625, 10500, },
4212
		{ 11750, 10625, },
4213
		{ 11875, 10750, },
4214
		{ 12000, 10875, },
4215
		{ 12125, 11000, },
4216
		{ 12250, 11125, },
4217
		{ 12375, 11250, },
4218
		{ 12500, 11375, },
4219
		{ 12625, 11500, },
4220
		{ 12750, 11625, },
4221
		{ 12875, 11750, },
4222
		{ 13000, 11875, },
4223
		{ 13125, 12000, },
4224
		{ 13250, 12125, },
4225
		{ 13375, 12250, },
4226
		{ 13500, 12375, },
4227
		{ 13625, 12500, },
4228
		{ 13750, 12625, },
4229
		{ 13875, 12750, },
4230
		{ 14000, 12875, },
4231
		{ 14125, 13000, },
4232
		{ 14250, 13125, },
4233
		{ 14375, 13250, },
4234
		{ 14500, 13375, },
4235
		{ 14625, 13500, },
4236
		{ 14750, 13625, },
4237
		{ 14875, 13750, },
4238
		{ 15000, 13875, },
4239
		{ 15125, 14000, },
4240
		{ 15250, 14125, },
4241
		{ 15375, 14250, },
4242
		{ 15500, 14375, },
4243
		{ 15625, 14500, },
4244
		{ 15750, 14625, },
4245
		{ 15875, 14750, },
4246
		{ 16000, 14875, },
4247
		{ 16125, 15000, },
4248
	};
4249
	if (dev_priv->info->is_mobile)
4250
		return v_table[pxvid].vm;
4251
	else
4252
		return v_table[pxvid].vd;
4253
}
4254
 
4255
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4256
{
4257
	struct timespec now, diff1;
4258
	u64 diff;
4259
	unsigned long diffms;
4260
	u32 count;
4261
 
4262
	assert_spin_locked(&mchdev_lock);
4263
 
4264
	getrawmonotonic(&now);
4265
	diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4266
 
4267
	/* Don't divide by 0 */
4268
	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4269
	if (!diffms)
4270
		return;
4271
 
4272
	count = I915_READ(GFXEC);
4273
 
4274
	if (count < dev_priv->ips.last_count2) {
4275
		diff = ~0UL - dev_priv->ips.last_count2;
4276
		diff += count;
4277
	} else {
4278
		diff = count - dev_priv->ips.last_count2;
4279
	}
4280
 
4281
	dev_priv->ips.last_count2 = count;
4282
	dev_priv->ips.last_time2 = now;
4283
 
4284
	/* More magic constants... */
4285
	diff = diff * 1181;
4286
	diff = div_u64(diff, diffms * 10);
4287
	dev_priv->ips.gfx_power = diff;
4288
}
4289
 
4290
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4291
{
4292
	if (dev_priv->info->gen != 5)
4293
		return;
4294
 
4295
	spin_lock_irq(&mchdev_lock);
4296
 
4297
	__i915_update_gfx_val(dev_priv);
4298
 
4299
	spin_unlock_irq(&mchdev_lock);
4300
}
4301
 
4302
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4303
{
4304
	unsigned long t, corr, state1, corr2, state2;
4305
	u32 pxvid, ext_v;
4306
 
4307
	assert_spin_locked(&mchdev_lock);
4308
 
4309
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4310
	pxvid = (pxvid >> 24) & 0x7f;
4311
	ext_v = pvid_to_extvid(dev_priv, pxvid);
4312
 
4313
	state1 = ext_v;
4314
 
4315
	t = i915_mch_val(dev_priv);
4316
 
4317
	/* Revel in the empirically derived constants */
4318
 
4319
	/* Correction factor in 1/100000 units */
4320
	if (t > 80)
4321
		corr = ((t * 2349) + 135940);
4322
	else if (t >= 50)
4323
		corr = ((t * 964) + 29317);
4324
	else /* < 50 */
4325
		corr = ((t * 301) + 1004);
4326
 
4327
	corr = corr * ((150142 * state1) / 10000 - 78642);
4328
	corr /= 100000;
4329
	corr2 = (corr * dev_priv->ips.corr);
4330
 
4331
	state2 = (corr2 * state1) / 10000;
4332
	state2 /= 100; /* convert to mW */
4333
 
4334
	__i915_update_gfx_val(dev_priv);
4335
 
4336
	return dev_priv->ips.gfx_power + state2;
4337
}
4338
 
4339
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4340
{
4341
	unsigned long val;
4342
 
4343
	if (dev_priv->info->gen != 5)
4344
		return 0;
4345
 
4346
	spin_lock_irq(&mchdev_lock);
4347
 
4348
	val = __i915_gfx_val(dev_priv);
4349
 
4350
	spin_unlock_irq(&mchdev_lock);
4351
 
4352
	return val;
4353
}
4354
 
4355
/**
4356
 * i915_read_mch_val - return value for IPS use
4357
 *
4358
 * Calculate and return a value for the IPS driver to use when deciding whether
4359
 * we have thermal and power headroom to increase CPU or GPU power budget.
4360
 */
4361
unsigned long i915_read_mch_val(void)
4362
{
4363
	struct drm_i915_private *dev_priv;
4364
	unsigned long chipset_val, graphics_val, ret = 0;
4365
 
4366
	spin_lock_irq(&mchdev_lock);
4367
	if (!i915_mch_dev)
4368
		goto out_unlock;
4369
	dev_priv = i915_mch_dev;
4370
 
4371
	chipset_val = __i915_chipset_val(dev_priv);
4372
	graphics_val = __i915_gfx_val(dev_priv);
4373
 
4374
	ret = chipset_val + graphics_val;
4375
 
4376
out_unlock:
4377
	spin_unlock_irq(&mchdev_lock);
4378
 
4379
	return ret;
4380
}
4381
EXPORT_SYMBOL_GPL(i915_read_mch_val);
4382
 
4383
/**
4384
 * i915_gpu_raise - raise GPU frequency limit
4385
 *
4386
 * Raise the limit; IPS indicates we have thermal headroom.
4387
 */
4388
bool i915_gpu_raise(void)
4389
{
4390
	struct drm_i915_private *dev_priv;
4391
	bool ret = true;
4392
 
4393
	spin_lock_irq(&mchdev_lock);
4394
	if (!i915_mch_dev) {
4395
		ret = false;
4396
		goto out_unlock;
4397
	}
4398
	dev_priv = i915_mch_dev;
4399
 
4400
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4401
		dev_priv->ips.max_delay--;
4402
 
4403
out_unlock:
4404
	spin_unlock_irq(&mchdev_lock);
4405
 
4406
	return ret;
4407
}
4408
EXPORT_SYMBOL_GPL(i915_gpu_raise);
4409
 
4410
/**
4411
 * i915_gpu_lower - lower GPU frequency limit
4412
 *
4413
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4414
 * frequency maximum.
4415
 */
4416
bool i915_gpu_lower(void)
4417
{
4418
	struct drm_i915_private *dev_priv;
4419
	bool ret = true;
4420
 
4421
	spin_lock_irq(&mchdev_lock);
4422
	if (!i915_mch_dev) {
4423
		ret = false;
4424
		goto out_unlock;
4425
	}
4426
	dev_priv = i915_mch_dev;
4427
 
4428
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4429
		dev_priv->ips.max_delay++;
4430
 
4431
out_unlock:
4432
	spin_unlock_irq(&mchdev_lock);
4433
 
4434
	return ret;
4435
}
4436
EXPORT_SYMBOL_GPL(i915_gpu_lower);
4437
 
4438
/**
4439
 * i915_gpu_busy - indicate GPU business to IPS
4440
 *
4441
 * Tell the IPS driver whether or not the GPU is busy.
4442
 */
4443
bool i915_gpu_busy(void)
4444
{
4445
	struct drm_i915_private *dev_priv;
4446
	struct intel_ring_buffer *ring;
4447
	bool ret = false;
4448
	int i;
4449
 
4450
	spin_lock_irq(&mchdev_lock);
4451
	if (!i915_mch_dev)
4452
		goto out_unlock;
4453
	dev_priv = i915_mch_dev;
4454
 
4455
	for_each_ring(ring, dev_priv, i)
4456
		ret |= !list_empty(&ring->request_list);
4457
 
4458
out_unlock:
4459
	spin_unlock_irq(&mchdev_lock);
4460
 
4461
	return ret;
4462
}
4463
EXPORT_SYMBOL_GPL(i915_gpu_busy);
4464
 
4465
/**
4466
 * i915_gpu_turbo_disable - disable graphics turbo
4467
 *
4468
 * Disable graphics turbo by resetting the max frequency and setting the
4469
 * current frequency to the default.
4470
 */
4471
bool i915_gpu_turbo_disable(void)
4472
{
4473
	struct drm_i915_private *dev_priv;
4474
	bool ret = true;
4475
 
4476
	spin_lock_irq(&mchdev_lock);
4477
	if (!i915_mch_dev) {
4478
		ret = false;
4479
		goto out_unlock;
4480
	}
4481
	dev_priv = i915_mch_dev;
4482
 
4483
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
4484
 
4485
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4486
		ret = false;
4487
 
4488
out_unlock:
4489
	spin_unlock_irq(&mchdev_lock);
4490
 
4491
	return ret;
4492
}
4493
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4494
 
4495
/**
4496
 * Tells the intel_ips driver that the i915 driver is now loaded, if
4497
 * IPS got loaded first.
4498
 *
4499
 * This awkward dance is so that neither module has to depend on the
4500
 * other in order for IPS to do the appropriate communication of
4501
 * GPU turbo limits to i915.
4502
 */
4503
static void
4504
ips_ping_for_i915_load(void)
4505
{
4506
	void (*link)(void);
4507
 
4508
//   link = symbol_get(ips_link_to_i915_driver);
4509
//   if (link) {
4510
//       link();
4511
//       symbol_put(ips_link_to_i915_driver);
4512
//   }
4513
}
4514
 
4515
void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4516
{
4517
	/* We only register the i915 ips part with intel-ips once everything is
4518
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4519
	spin_lock_irq(&mchdev_lock);
4520
	i915_mch_dev = dev_priv;
4521
	spin_unlock_irq(&mchdev_lock);
4522
 
4523
	ips_ping_for_i915_load();
4524
}
4525
 
4526
void intel_gpu_ips_teardown(void)
4527
{
4528
	spin_lock_irq(&mchdev_lock);
4529
	i915_mch_dev = NULL;
4530
	spin_unlock_irq(&mchdev_lock);
4531
}
4532
static void intel_init_emon(struct drm_device *dev)
4533
{
4534
	struct drm_i915_private *dev_priv = dev->dev_private;
4535
	u32 lcfuse;
4536
	u8 pxw[16];
4537
	int i;
4538
 
4539
	/* Disable to program */
4540
	I915_WRITE(ECR, 0);
4541
	POSTING_READ(ECR);
4542
 
4543
	/* Program energy weights for various events */
4544
	I915_WRITE(SDEW, 0x15040d00);
4545
	I915_WRITE(CSIEW0, 0x007f0000);
4546
	I915_WRITE(CSIEW1, 0x1e220004);
4547
	I915_WRITE(CSIEW2, 0x04000004);
4548
 
4549
	for (i = 0; i < 5; i++)
4550
		I915_WRITE(PEW + (i * 4), 0);
4551
	for (i = 0; i < 3; i++)
4552
		I915_WRITE(DEW + (i * 4), 0);
4553
 
4554
	/* Program P-state weights to account for frequency power adjustment */
4555
	for (i = 0; i < 16; i++) {
4556
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4557
		unsigned long freq = intel_pxfreq(pxvidfreq);
4558
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4559
			PXVFREQ_PX_SHIFT;
4560
		unsigned long val;
4561
 
4562
		val = vid * vid;
4563
		val *= (freq / 1000);
4564
		val *= 255;
4565
		val /= (127*127*900);
4566
		if (val > 0xff)
4567
			DRM_ERROR("bad pxval: %ld\n", val);
4568
		pxw[i] = val;
4569
	}
4570
	/* Render standby states get 0 weight */
4571
	pxw[14] = 0;
4572
	pxw[15] = 0;
4573
 
4574
	for (i = 0; i < 4; i++) {
4575
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4576
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4577
		I915_WRITE(PXW + (i * 4), val);
4578
	}
4579
 
4580
	/* Adjust magic regs to magic values (more experimental results) */
4581
	I915_WRITE(OGW0, 0);
4582
	I915_WRITE(OGW1, 0);
4583
	I915_WRITE(EG0, 0x00007f00);
4584
	I915_WRITE(EG1, 0x0000000e);
4585
	I915_WRITE(EG2, 0x000e0000);
4586
	I915_WRITE(EG3, 0x68000300);
4587
	I915_WRITE(EG4, 0x42000000);
4588
	I915_WRITE(EG5, 0x00140031);
4589
	I915_WRITE(EG6, 0);
4590
	I915_WRITE(EG7, 0);
4591
 
4592
	for (i = 0; i < 8; i++)
4593
		I915_WRITE(PXWL + (i * 4), 0);
4594
 
4595
	/* Enable PMON + select events */
4596
	I915_WRITE(ECR, 0x80000019);
4597
 
4598
	lcfuse = I915_READ(LCFUSE02);
4599
 
4600
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4601
}
4602
 
4603
void intel_disable_gt_powersave(struct drm_device *dev)
4604
{
3243 Serge 4605
	struct drm_i915_private *dev_priv = dev->dev_private;
4606
 
4104 Serge 4607
	/* Interrupts should be disabled already to avoid re-arming. */
4608
	WARN_ON(dev->irq_enabled);
4609
 
3031 serge 4610
	if (IS_IRONLAKE_M(dev)) {
4611
		ironlake_disable_drps(dev);
4612
		ironlake_disable_rc6(dev);
4613
	} else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
3482 Serge 4614
//		cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4615
		mutex_lock(&dev_priv->rps.hw_lock);
4104 Serge 4616
		if (IS_VALLEYVIEW(dev))
4617
			valleyview_disable_rps(dev);
4618
		else
3031 serge 4619
		gen6_disable_rps(dev);
3480 Serge 4620
		mutex_unlock(&dev_priv->rps.hw_lock);
3031 serge 4621
	}
4622
}
4623
 
3482 Serge 4624
static void intel_gen6_powersave_work(struct work_struct *work)
4625
{
4626
	struct drm_i915_private *dev_priv =
4627
		container_of(work, struct drm_i915_private,
4628
			     rps.delayed_resume_work.work);
4629
	struct drm_device *dev = dev_priv->dev;
4630
 
4631
    ENTER();
4632
 
4633
	mutex_lock(&dev_priv->rps.hw_lock);
4104 Serge 4634
 
4635
	if (IS_VALLEYVIEW(dev)) {
4636
		valleyview_enable_rps(dev);
4637
	} else {
3482 Serge 4638
	gen6_enable_rps(dev);
4639
	gen6_update_ring_freq(dev);
4104 Serge 4640
	}
3482 Serge 4641
	mutex_unlock(&dev_priv->rps.hw_lock);
4642
 
4643
    LEAVE();
4644
}
4645
 
3031 serge 4646
void intel_enable_gt_powersave(struct drm_device *dev)
4647
{
3243 Serge 4648
	struct drm_i915_private *dev_priv = dev->dev_private;
4649
 
3031 serge 4650
	if (IS_IRONLAKE_M(dev)) {
4651
		ironlake_enable_drps(dev);
4652
		ironlake_enable_rc6(dev);
4653
		intel_init_emon(dev);
4104 Serge 4654
	} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
3243 Serge 4655
		/*
4656
		 * PCU communication is slow and this doesn't need to be
4657
		 * done at any specific time, so do this out of our fast path
4658
		 * to make resume and init faster.
4659
		 */
3482 Serge 4660
		schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4661
				      round_jiffies_up_relative(HZ));
3031 serge 4662
	}
4663
}
4664
 
3243 Serge 4665
static void ibx_init_clock_gating(struct drm_device *dev)
4666
{
4667
	struct drm_i915_private *dev_priv = dev->dev_private;
4668
 
4669
	/*
4670
	 * On Ibex Peak and Cougar Point, we need to disable clock
4671
	 * gating for the panel power sequencer or it will fail to
4672
	 * start up when no ports are active.
4673
	 */
4674
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4675
}
4676
 
4104 Serge 4677
static void g4x_disable_trickle_feed(struct drm_device *dev)
4678
{
4679
	struct drm_i915_private *dev_priv = dev->dev_private;
4680
	int pipe;
4681
 
4682
	for_each_pipe(pipe) {
4683
		I915_WRITE(DSPCNTR(pipe),
4684
			   I915_READ(DSPCNTR(pipe)) |
4685
			   DISPPLANE_TRICKLE_FEED_DISABLE);
4686
		intel_flush_display_plane(dev_priv, pipe);
4687
	}
4688
}
4689
 
3031 serge 4690
static void ironlake_init_clock_gating(struct drm_device *dev)
4691
{
4692
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 4693
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3031 serge 4694
 
4104 Serge 4695
	/*
4696
	 * Required for FBC
4697
	 * WaFbcDisableDpfcClockGating:ilk
4698
	 */
3243 Serge 4699
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4700
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4701
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3031 serge 4702
 
4703
	I915_WRITE(PCH_3DCGDIS0,
4704
		   MARIUNIT_CLOCK_GATE_DISABLE |
4705
		   SVSMUNIT_CLOCK_GATE_DISABLE);
4706
	I915_WRITE(PCH_3DCGDIS1,
4707
		   VFMUNIT_CLOCK_GATE_DISABLE);
4708
 
4709
	/*
4710
	 * According to the spec the following bits should be set in
4711
	 * order to enable memory self-refresh
4712
	 * The bit 22/21 of 0x42004
4713
	 * The bit 5 of 0x42020
4714
	 * The bit 15 of 0x45000
4715
	 */
4716
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
4717
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
4718
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3243 Serge 4719
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3031 serge 4720
	I915_WRITE(DISP_ARB_CTL,
4721
		   (I915_READ(DISP_ARB_CTL) |
4722
		    DISP_FBC_WM_DIS));
4723
	I915_WRITE(WM3_LP_ILK, 0);
4724
	I915_WRITE(WM2_LP_ILK, 0);
4725
	I915_WRITE(WM1_LP_ILK, 0);
4726
 
4727
	/*
4728
	 * Based on the document from hardware guys the following bits
4729
	 * should be set unconditionally in order to enable FBC.
4730
	 * The bit 22 of 0x42000
4731
	 * The bit 22 of 0x42004
4732
	 * The bit 7,8,9 of 0x42020.
4733
	 */
4734
	if (IS_IRONLAKE_M(dev)) {
4104 Serge 4735
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
3031 serge 4736
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
4737
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
4738
			   ILK_FBCQ_DIS);
4739
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
4740
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
4741
			   ILK_DPARB_GATE);
4742
	}
4743
 
3243 Serge 4744
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4745
 
3031 serge 4746
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
4747
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
4748
		   ILK_ELPIN_409_SELECT);
4749
	I915_WRITE(_3D_CHICKEN2,
4750
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4751
		   _3D_CHICKEN2_WM_READ_PIPELINED);
3243 Serge 4752
 
4104 Serge 4753
	/* WaDisableRenderCachePipelinedFlush:ilk */
3243 Serge 4754
	I915_WRITE(CACHE_MODE_0,
4755
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4756
 
4104 Serge 4757
	g4x_disable_trickle_feed(dev);
4758
 
3243 Serge 4759
	ibx_init_clock_gating(dev);
3031 serge 4760
}
4761
 
3243 Serge 4762
static void cpt_init_clock_gating(struct drm_device *dev)
4763
{
4764
	struct drm_i915_private *dev_priv = dev->dev_private;
4765
	int pipe;
3746 Serge 4766
	uint32_t val;
3243 Serge 4767
 
4768
	/*
4769
	 * On Ibex Peak and Cougar Point, we need to disable clock
4770
	 * gating for the panel power sequencer or it will fail to
4771
	 * start up when no ports are active.
4772
	 */
4773
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4774
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4775
		   DPLS_EDP_PPS_FIX_DIS);
4776
	/* The below fixes the weird display corruption, a few pixels shifted
4777
	 * downward, on (only) LVDS of some HP laptops with IVY.
4778
	 */
3746 Serge 4779
	for_each_pipe(pipe) {
4780
		val = I915_READ(TRANS_CHICKEN2(pipe));
4781
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4782
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4104 Serge 4783
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
3746 Serge 4784
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4785
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4786
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4787
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4788
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
4789
	}
3243 Serge 4790
	/* WADP0ClockGatingDisable */
4791
	for_each_pipe(pipe) {
4792
		I915_WRITE(TRANS_CHICKEN1(pipe),
4793
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4794
	}
4795
}
4796
 
3480 Serge 4797
static void gen6_check_mch_setup(struct drm_device *dev)
4798
{
4799
	struct drm_i915_private *dev_priv = dev->dev_private;
4800
	uint32_t tmp;
4801
 
4802
	tmp = I915_READ(MCH_SSKPD);
4803
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4804
		DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4805
		DRM_INFO("This can cause pipe underruns and display issues.\n");
4806
		DRM_INFO("Please upgrade your BIOS to fix this.\n");
4807
	}
4808
}
4809
 
3031 serge 4810
static void gen6_init_clock_gating(struct drm_device *dev)
4811
{
4812
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 4813
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3031 serge 4814
 
3243 Serge 4815
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3031 serge 4816
 
4817
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
4818
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
4819
		   ILK_ELPIN_409_SELECT);
4820
 
4104 Serge 4821
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
3243 Serge 4822
	I915_WRITE(_3D_CHICKEN,
4823
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4824
 
4104 Serge 4825
	/* WaSetupGtModeTdRowDispatch:snb */
3243 Serge 4826
	if (IS_SNB_GT1(dev))
4827
		I915_WRITE(GEN6_GT_MODE,
4828
			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4829
 
3031 serge 4830
	I915_WRITE(WM3_LP_ILK, 0);
4831
	I915_WRITE(WM2_LP_ILK, 0);
4832
	I915_WRITE(WM1_LP_ILK, 0);
4833
 
4834
	I915_WRITE(CACHE_MODE_0,
4835
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4836
 
4837
	I915_WRITE(GEN6_UCGCTL1,
4838
		   I915_READ(GEN6_UCGCTL1) |
4839
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4840
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4841
 
4842
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4843
	 * gating disable must be set.  Failure to set it results in
4844
	 * flickering pixels due to Z write ordering failures after
4845
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
4846
	 * Sanctuary and Tropics, and apparently anything else with
4847
	 * alpha test or pixel discard.
4848
	 *
4849
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
4850
	 * but we didn't debug actual testcases to find it out.
4851
	 *
4104 Serge 4852
	 * Also apply WaDisableVDSUnitClockGating:snb and
4853
	 * WaDisableRCPBUnitClockGating:snb.
3031 serge 4854
	 */
4855
	I915_WRITE(GEN6_UCGCTL2,
4856
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4857
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4858
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4859
 
4860
	/* Bspec says we need to always set all mask bits. */
4861
	I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4862
		   _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4863
 
4864
	/*
4865
	 * According to the spec the following bits should be
4866
	 * set in order to enable memory self-refresh and fbc:
4867
	 * The bit21 and bit22 of 0x42000
4868
	 * The bit21 and bit22 of 0x42004
4869
	 * The bit5 and bit7 of 0x42020
4870
	 * The bit14 of 0x70180
4871
	 * The bit14 of 0x71180
4104 Serge 4872
	 *
4873
	 * WaFbcAsynchFlipDisableFbcQueue:snb
3031 serge 4874
	 */
4875
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
4876
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
4877
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4878
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
4879
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
4880
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3243 Serge 4881
	I915_WRITE(ILK_DSPCLK_GATE_D,
4882
		   I915_READ(ILK_DSPCLK_GATE_D) |
4883
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
4884
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3031 serge 4885
 
4104 Serge 4886
	g4x_disable_trickle_feed(dev);
3031 serge 4887
 
4888
	/* The default value should be 0x200 according to docs, but the two
4889
	 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4890
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4891
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3243 Serge 4892
 
4893
	cpt_init_clock_gating(dev);
3480 Serge 4894
 
4895
	gen6_check_mch_setup(dev);
3031 serge 4896
}
4897
 
4898
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4899
{
4900
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4901
 
4902
	reg &= ~GEN7_FF_SCHED_MASK;
4903
	reg |= GEN7_FF_TS_SCHED_HW;
4904
	reg |= GEN7_FF_VS_SCHED_HW;
4905
	reg |= GEN7_FF_DS_SCHED_HW;
4906
 
3480 Serge 4907
	if (IS_HASWELL(dev_priv->dev))
4908
		reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4909
 
3031 serge 4910
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4911
}
4912
 
3243 Serge 4913
static void lpt_init_clock_gating(struct drm_device *dev)
4914
{
4915
	struct drm_i915_private *dev_priv = dev->dev_private;
4916
 
4917
	/*
4918
	 * TODO: this bit should only be enabled when really needed, then
4919
	 * disabled when not needed anymore in order to save power.
4920
	 */
4921
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4922
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
4923
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
4924
			   PCH_LP_PARTITION_LEVEL_DISABLE);
4104 Serge 4925
 
4926
	/* WADPOClockGatingDisable:hsw */
4927
	I915_WRITE(_TRANSA_CHICKEN1,
4928
		   I915_READ(_TRANSA_CHICKEN1) |
4929
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3243 Serge 4930
}
4931
 
4104 Serge 4932
static void lpt_suspend_hw(struct drm_device *dev)
4933
{
4934
	struct drm_i915_private *dev_priv = dev->dev_private;
4935
 
4936
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4937
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4938
 
4939
		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4940
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4941
	}
4942
}
4943
 
3031 serge 4944
static void haswell_init_clock_gating(struct drm_device *dev)
4945
{
4946
	struct drm_i915_private *dev_priv = dev->dev_private;
4947
 
4948
	I915_WRITE(WM3_LP_ILK, 0);
4949
	I915_WRITE(WM2_LP_ILK, 0);
4950
	I915_WRITE(WM1_LP_ILK, 0);
4951
 
4952
	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4104 Serge 4953
	 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
3031 serge 4954
	 */
4955
	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4956
 
4104 Serge 4957
	/* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
3031 serge 4958
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4959
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4960
 
4104 Serge 4961
	/* WaApplyL3ControlAndL3ChickenMode:hsw */
3031 serge 4962
	I915_WRITE(GEN7_L3CNTLREG1,
4963
			GEN7_WA_FOR_GEN7_L3_CONTROL);
4964
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4965
			GEN7_WA_L3_CHICKEN_MODE);
4966
 
4104 Serge 4967
	/* L3 caching of data atomics doesn't work -- disable it. */
4968
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
4969
	I915_WRITE(HSW_ROW_CHICKEN3,
4970
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
4971
 
4972
	/* This is required by WaCatErrorRejectionIssue:hsw */
3031 serge 4973
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4974
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4975
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4976
 
4104 Serge 4977
	/* WaVSRefCountFullforceMissDisable:hsw */
3031 serge 4978
	gen7_setup_fixed_func_scheduler(dev_priv);
4979
 
4104 Serge 4980
	/* WaDisable4x2SubspanOptimization:hsw */
3031 serge 4981
	I915_WRITE(CACHE_MODE_1,
4982
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4983
 
4104 Serge 4984
	/* WaSwitchSolVfFArbitrationPriority:hsw */
3746 Serge 4985
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4986
 
4104 Serge 4987
	/* WaRsPkgCStateDisplayPMReq:hsw */
4988
	I915_WRITE(CHICKEN_PAR1_1,
4989
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
3031 serge 4990
 
3243 Serge 4991
	lpt_init_clock_gating(dev);
3031 serge 4992
}
4993
 
4994
static void ivybridge_init_clock_gating(struct drm_device *dev)
4995
{
4996
	struct drm_i915_private *dev_priv = dev->dev_private;
4997
	uint32_t snpcr;
4998
 
4999
	I915_WRITE(WM3_LP_ILK, 0);
5000
	I915_WRITE(WM2_LP_ILK, 0);
5001
	I915_WRITE(WM1_LP_ILK, 0);
5002
 
3243 Serge 5003
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3031 serge 5004
 
4104 Serge 5005
	/* WaDisableEarlyCull:ivb */
3243 Serge 5006
	I915_WRITE(_3D_CHICKEN3,
5007
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5008
 
4104 Serge 5009
	/* WaDisableBackToBackFlipFix:ivb */
3031 serge 5010
	I915_WRITE(IVB_CHICKEN3,
5011
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5012
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
5013
 
4104 Serge 5014
	/* WaDisablePSDDualDispatchEnable:ivb */
3243 Serge 5015
	if (IS_IVB_GT1(dev))
5016
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5017
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5018
	else
5019
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
5020
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5021
 
4104 Serge 5022
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
3031 serge 5023
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5024
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5025
 
4104 Serge 5026
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
3031 serge 5027
	I915_WRITE(GEN7_L3CNTLREG1,
5028
			GEN7_WA_FOR_GEN7_L3_CONTROL);
5029
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5030
			GEN7_WA_L3_CHICKEN_MODE);
3243 Serge 5031
	if (IS_IVB_GT1(dev))
5032
		I915_WRITE(GEN7_ROW_CHICKEN2,
5033
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5034
	else
5035
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5036
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3031 serge 5037
 
3243 Serge 5038
 
4104 Serge 5039
	/* WaForceL3Serialization:ivb */
3243 Serge 5040
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5041
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5042
 
3031 serge 5043
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5044
	 * gating disable must be set.  Failure to set it results in
5045
	 * flickering pixels due to Z write ordering failures after
5046
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
5047
	 * Sanctuary and Tropics, and apparently anything else with
5048
	 * alpha test or pixel discard.
5049
	 *
5050
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
5051
	 * but we didn't debug actual testcases to find it out.
5052
	 *
5053
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4104 Serge 5054
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
3031 serge 5055
	 */
5056
	I915_WRITE(GEN6_UCGCTL2,
5057
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5058
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5059
 
4104 Serge 5060
	/* This is required by WaCatErrorRejectionIssue:ivb */
3031 serge 5061
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5062
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5063
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5064
 
4104 Serge 5065
	g4x_disable_trickle_feed(dev);
3031 serge 5066
 
4104 Serge 5067
	/* WaVSRefCountFullforceMissDisable:ivb */
3031 serge 5068
	gen7_setup_fixed_func_scheduler(dev_priv);
5069
 
4104 Serge 5070
	/* WaDisable4x2SubspanOptimization:ivb */
3031 serge 5071
	I915_WRITE(CACHE_MODE_1,
5072
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5073
 
5074
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5075
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
5076
	snpcr |= GEN6_MBC_SNPCR_MED;
5077
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3243 Serge 5078
 
3746 Serge 5079
	if (!HAS_PCH_NOP(dev))
3243 Serge 5080
	cpt_init_clock_gating(dev);
3480 Serge 5081
 
5082
	gen6_check_mch_setup(dev);
3031 serge 5083
}
5084
 
5085
static void valleyview_init_clock_gating(struct drm_device *dev)
5086
{
5087
	struct drm_i915_private *dev_priv = dev->dev_private;
5088
 
4104 Serge 5089
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
3031 serge 5090
 
4104 Serge 5091
	/* WaDisableEarlyCull:vlv */
3243 Serge 5092
	I915_WRITE(_3D_CHICKEN3,
5093
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5094
 
4104 Serge 5095
	/* WaDisableBackToBackFlipFix:vlv */
3031 serge 5096
	I915_WRITE(IVB_CHICKEN3,
5097
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5098
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
5099
 
4104 Serge 5100
	/* WaDisablePSDDualDispatchEnable:vlv */
3243 Serge 5101
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3746 Serge 5102
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5103
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3243 Serge 5104
 
4104 Serge 5105
	/* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
3031 serge 5106
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5107
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5108
 
4104 Serge 5109
	/* WaApplyL3ControlAndL3ChickenMode:vlv */
3243 Serge 5110
	I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
3031 serge 5111
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
5112
 
4104 Serge 5113
	/* WaForceL3Serialization:vlv */
3243 Serge 5114
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5115
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5116
 
4104 Serge 5117
	/* WaDisableDopClockGating:vlv */
3243 Serge 5118
	I915_WRITE(GEN7_ROW_CHICKEN2,
5119
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5120
 
4104 Serge 5121
	/* This is required by WaCatErrorRejectionIssue:vlv */
3031 serge 5122
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5123
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5124
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5125
 
5126
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5127
	 * gating disable must be set.  Failure to set it results in
5128
	 * flickering pixels due to Z write ordering failures after
5129
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
5130
	 * Sanctuary and Tropics, and apparently anything else with
5131
	 * alpha test or pixel discard.
5132
	 *
5133
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
5134
	 * but we didn't debug actual testcases to find it out.
5135
	 *
5136
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4104 Serge 5137
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
3031 serge 5138
	 *
4104 Serge 5139
	 * Also apply WaDisableVDSUnitClockGating:vlv and
5140
	 * WaDisableRCPBUnitClockGating:vlv.
3031 serge 5141
	 */
5142
	I915_WRITE(GEN6_UCGCTL2,
5143
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5144
		   GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
5145
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5146
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5147
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5148
 
5149
	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5150
 
4104 Serge 5151
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
3031 serge 5152
 
5153
	I915_WRITE(CACHE_MODE_1,
5154
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5155
 
5156
	/*
4104 Serge 5157
	 * WaDisableVLVClockGating_VBIIssue:vlv
3243 Serge 5158
	 * Disable clock gating on th GCFG unit to prevent a delay
5159
	 * in the reporting of vblank events.
5160
	 */
3746 Serge 5161
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
5162
 
5163
	/* Conservative clock gating settings for now */
5164
	I915_WRITE(0x9400, 0xffffffff);
5165
	I915_WRITE(0x9404, 0xffffffff);
5166
	I915_WRITE(0x9408, 0xffffffff);
5167
	I915_WRITE(0x940c, 0xffffffff);
5168
	I915_WRITE(0x9410, 0xffffffff);
5169
	I915_WRITE(0x9414, 0xffffffff);
5170
	I915_WRITE(0x9418, 0xffffffff);
3031 serge 5171
}
5172
 
5173
static void g4x_init_clock_gating(struct drm_device *dev)
5174
{
5175
	struct drm_i915_private *dev_priv = dev->dev_private;
5176
	uint32_t dspclk_gate;
5177
 
5178
	I915_WRITE(RENCLK_GATE_D1, 0);
5179
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5180
		   GS_UNIT_CLOCK_GATE_DISABLE |
5181
		   CL_UNIT_CLOCK_GATE_DISABLE);
5182
	I915_WRITE(RAMCLK_GATE_D, 0);
5183
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5184
		OVRUNIT_CLOCK_GATE_DISABLE |
5185
		OVCUNIT_CLOCK_GATE_DISABLE;
5186
	if (IS_GM45(dev))
5187
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5188
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3243 Serge 5189
 
5190
	/* WaDisableRenderCachePipelinedFlush */
5191
	I915_WRITE(CACHE_MODE_0,
5192
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4104 Serge 5193
 
5194
	g4x_disable_trickle_feed(dev);
3031 serge 5195
}
5196
 
5197
static void crestline_init_clock_gating(struct drm_device *dev)
5198
{
5199
	struct drm_i915_private *dev_priv = dev->dev_private;
5200
 
5201
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5202
	I915_WRITE(RENCLK_GATE_D2, 0);
5203
	I915_WRITE(DSPCLK_GATE_D, 0);
5204
	I915_WRITE(RAMCLK_GATE_D, 0);
5205
	I915_WRITE16(DEUC, 0);
4104 Serge 5206
	I915_WRITE(MI_ARB_STATE,
5207
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
3031 serge 5208
}
5209
 
5210
static void broadwater_init_clock_gating(struct drm_device *dev)
5211
{
5212
	struct drm_i915_private *dev_priv = dev->dev_private;
5213
 
5214
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5215
		   I965_RCC_CLOCK_GATE_DISABLE |
5216
		   I965_RCPB_CLOCK_GATE_DISABLE |
5217
		   I965_ISC_CLOCK_GATE_DISABLE |
5218
		   I965_FBC_CLOCK_GATE_DISABLE);
5219
	I915_WRITE(RENCLK_GATE_D2, 0);
4104 Serge 5220
	I915_WRITE(MI_ARB_STATE,
5221
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
3031 serge 5222
}
5223
 
5224
static void gen3_init_clock_gating(struct drm_device *dev)
5225
{
5226
	struct drm_i915_private *dev_priv = dev->dev_private;
5227
	u32 dstate = I915_READ(D_STATE);
5228
 
5229
	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5230
		DSTATE_DOT_CLOCK_GATING;
5231
	I915_WRITE(D_STATE, dstate);
5232
 
5233
	if (IS_PINEVIEW(dev))
5234
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5235
 
5236
	/* IIR "flip pending" means done if this bit is set */
5237
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5238
}
5239
 
5240
static void i85x_init_clock_gating(struct drm_device *dev)
5241
{
5242
	struct drm_i915_private *dev_priv = dev->dev_private;
5243
 
5244
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5245
}
5246
 
5247
static void i830_init_clock_gating(struct drm_device *dev)
5248
{
5249
	struct drm_i915_private *dev_priv = dev->dev_private;
5250
 
5251
	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5252
}
5253
 
5254
void intel_init_clock_gating(struct drm_device *dev)
5255
{
5256
	struct drm_i915_private *dev_priv = dev->dev_private;
5257
 
5258
	dev_priv->display.init_clock_gating(dev);
5259
}
5260
 
4104 Serge 5261
void intel_suspend_hw(struct drm_device *dev)
5262
{
5263
	if (HAS_PCH_LPT(dev))
5264
		lpt_suspend_hw(dev);
5265
}
5266
 
3746 Serge 5267
/**
5268
 * We should only use the power well if we explicitly asked the hardware to
5269
 * enable it, so check if it's enabled and also check if we've requested it to
5270
 * be enabled.
5271
 */
4104 Serge 5272
bool intel_display_power_enabled(struct drm_device *dev,
5273
				 enum intel_display_power_domain domain)
3746 Serge 5274
{
5275
	struct drm_i915_private *dev_priv = dev->dev_private;
5276
 
4104 Serge 5277
	if (!HAS_POWER_WELL(dev))
5278
		return true;
5279
 
5280
	switch (domain) {
5281
	case POWER_DOMAIN_PIPE_A:
5282
	case POWER_DOMAIN_TRANSCODER_EDP:
5283
		return true;
5284
	case POWER_DOMAIN_PIPE_B:
5285
	case POWER_DOMAIN_PIPE_C:
5286
	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
5287
	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
5288
	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
5289
	case POWER_DOMAIN_TRANSCODER_A:
5290
	case POWER_DOMAIN_TRANSCODER_B:
5291
	case POWER_DOMAIN_TRANSCODER_C:
3746 Serge 5292
		return I915_READ(HSW_PWR_WELL_DRIVER) ==
4104 Serge 5293
		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5294
	default:
5295
		BUG();
5296
	}
3746 Serge 5297
}
5298
 
4104 Serge 5299
static void __intel_set_power_well(struct drm_device *dev, bool enable)
3031 serge 5300
{
5301
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 5302
	bool is_enabled, enable_requested;
5303
	uint32_t tmp;
3031 serge 5304
 
3480 Serge 5305
	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
4104 Serge 5306
	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5307
	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
3031 serge 5308
 
3480 Serge 5309
	if (enable) {
5310
		if (!enable_requested)
4104 Serge 5311
			I915_WRITE(HSW_PWR_WELL_DRIVER,
5312
				   HSW_PWR_WELL_ENABLE_REQUEST);
3031 serge 5313
 
3480 Serge 5314
		if (!is_enabled) {
5315
			DRM_DEBUG_KMS("Enabling power well\n");
5316
			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
4104 Serge 5317
				      HSW_PWR_WELL_STATE_ENABLED), 20))
3480 Serge 5318
				DRM_ERROR("Timeout enabling power well\n");
3031 serge 5319
		}
3480 Serge 5320
	} else {
5321
		if (enable_requested) {
4104 Serge 5322
			unsigned long irqflags;
5323
			enum pipe p;
5324
 
3480 Serge 5325
			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
4104 Serge 5326
			POSTING_READ(HSW_PWR_WELL_DRIVER);
3480 Serge 5327
			DRM_DEBUG_KMS("Requesting to disable the power well\n");
4104 Serge 5328
 
5329
			/*
5330
			 * After this, the registers on the pipes that are part
5331
			 * of the power well will become zero, so we have to
5332
			 * adjust our counters according to that.
5333
			 *
5334
			 * FIXME: Should we do this in general in
5335
			 * drm_vblank_post_modeset?
5336
			 */
5337
			spin_lock_irqsave(&dev->vbl_lock, irqflags);
5338
			for_each_pipe(p)
5339
				if (p != PIPE_A)
5340
					dev->last_vblank[p] = 0;
5341
			spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5342
		}
5343
		}
5344
}
5345
 
5346
static struct i915_power_well *hsw_pwr;
5347
 
5348
/* Display audio driver power well request */
5349
void i915_request_power_well(void)
5350
{
5351
	if (WARN_ON(!hsw_pwr))
5352
		return;
5353
 
5354
	spin_lock_irq(&hsw_pwr->lock);
5355
	if (!hsw_pwr->count++ &&
5356
			!hsw_pwr->i915_request)
5357
		__intel_set_power_well(hsw_pwr->device, true);
5358
	spin_unlock_irq(&hsw_pwr->lock);
5359
}
5360
EXPORT_SYMBOL_GPL(i915_request_power_well);
5361
 
5362
/* Display audio driver power well release */
5363
void i915_release_power_well(void)
5364
{
5365
	if (WARN_ON(!hsw_pwr))
5366
		return;
5367
 
5368
	spin_lock_irq(&hsw_pwr->lock);
5369
	WARN_ON(!hsw_pwr->count);
5370
	if (!--hsw_pwr->count &&
5371
		       !hsw_pwr->i915_request)
5372
		__intel_set_power_well(hsw_pwr->device, false);
5373
	spin_unlock_irq(&hsw_pwr->lock);
5374
}
5375
EXPORT_SYMBOL_GPL(i915_release_power_well);
5376
 
5377
int i915_init_power_well(struct drm_device *dev)
5378
{
5379
	struct drm_i915_private *dev_priv = dev->dev_private;
5380
 
5381
	hsw_pwr = &dev_priv->power_well;
5382
 
5383
	hsw_pwr->device = dev;
5384
	spin_lock_init(&hsw_pwr->lock);
5385
	hsw_pwr->count = 0;
5386
 
5387
	return 0;
5388
}
5389
 
5390
void i915_remove_power_well(struct drm_device *dev)
5391
{
5392
	hsw_pwr = NULL;
5393
}
5394
 
5395
void intel_set_power_well(struct drm_device *dev, bool enable)
5396
{
5397
	struct drm_i915_private *dev_priv = dev->dev_private;
5398
	struct i915_power_well *power_well = &dev_priv->power_well;
5399
 
5400
	if (!HAS_POWER_WELL(dev))
5401
		return;
5402
 
5403
	if (!i915_disable_power_well && !enable)
5404
		return;
5405
 
5406
	spin_lock_irq(&power_well->lock);
5407
	power_well->i915_request = enable;
5408
 
5409
	/* only reject "disable" power well request */
5410
	if (power_well->count && !enable) {
5411
		spin_unlock_irq(&power_well->lock);
5412
		return;
3031 serge 5413
	}
4104 Serge 5414
 
5415
	__intel_set_power_well(dev, enable);
5416
	spin_unlock_irq(&power_well->lock);
3480 Serge 5417
}
3031 serge 5418
 
3480 Serge 5419
/*
5420
 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5421
 * when not needed anymore. We have 4 registers that can request the power well
5422
 * to be enabled, and it will only be disabled if none of the registers is
5423
 * requesting it to be enabled.
5424
 */
5425
void intel_init_power_well(struct drm_device *dev)
5426
{
5427
	struct drm_i915_private *dev_priv = dev->dev_private;
5428
 
3746 Serge 5429
	if (!HAS_POWER_WELL(dev))
3480 Serge 5430
		return;
5431
 
5432
	/* For now, we need the power well to be always enabled. */
5433
	intel_set_power_well(dev, true);
5434
 
5435
	/* We're taking over the BIOS, so clear any requests made by it since
5436
	 * the driver is in charge now. */
4104 Serge 5437
	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
3480 Serge 5438
		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
3031 serge 5439
}
5440
 
4104 Serge 5441
/* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
5442
void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5443
{
5444
	hsw_disable_package_c8(dev_priv);
5445
}
5446
 
5447
void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5448
{
5449
	hsw_enable_package_c8(dev_priv);
5450
}
5451
 
3031 serge 5452
/* Set up chip specific power management-related functions */
5453
void intel_init_pm(struct drm_device *dev)
5454
{
5455
	struct drm_i915_private *dev_priv = dev->dev_private;
5456
 
5457
	if (I915_HAS_FBC(dev)) {
5458
		if (HAS_PCH_SPLIT(dev)) {
5459
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
4104 Serge 5460
			if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5461
				dev_priv->display.enable_fbc =
5462
					gen7_enable_fbc;
5463
			else
5464
				dev_priv->display.enable_fbc =
5465
					ironlake_enable_fbc;
3031 serge 5466
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
5467
		} else if (IS_GM45(dev)) {
5468
			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5469
			dev_priv->display.enable_fbc = g4x_enable_fbc;
5470
			dev_priv->display.disable_fbc = g4x_disable_fbc;
5471
		} else if (IS_CRESTLINE(dev)) {
5472
			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5473
			dev_priv->display.enable_fbc = i8xx_enable_fbc;
5474
			dev_priv->display.disable_fbc = i8xx_disable_fbc;
5475
		}
5476
		/* 855GM needs testing */
5477
	}
5478
 
5479
	/* For cxsr */
5480
	if (IS_PINEVIEW(dev))
5481
		i915_pineview_get_mem_freq(dev);
5482
	else if (IS_GEN5(dev))
5483
		i915_ironlake_get_mem_freq(dev);
5484
 
5485
	/* For FIFO watermark updates */
5486
	if (HAS_PCH_SPLIT(dev)) {
4104 Serge 5487
		intel_setup_wm_latency(dev);
5488
 
3031 serge 5489
		if (IS_GEN5(dev)) {
4104 Serge 5490
			if (dev_priv->wm.pri_latency[1] &&
5491
			    dev_priv->wm.spr_latency[1] &&
5492
			    dev_priv->wm.cur_latency[1])
3031 serge 5493
				dev_priv->display.update_wm = ironlake_update_wm;
5494
			else {
5495
				DRM_DEBUG_KMS("Failed to get proper latency. "
5496
					      "Disable CxSR\n");
5497
				dev_priv->display.update_wm = NULL;
5498
			}
5499
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5500
		} else if (IS_GEN6(dev)) {
4104 Serge 5501
			if (dev_priv->wm.pri_latency[0] &&
5502
			    dev_priv->wm.spr_latency[0] &&
5503
			    dev_priv->wm.cur_latency[0]) {
3031 serge 5504
				dev_priv->display.update_wm = sandybridge_update_wm;
5505
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5506
			} else {
5507
				DRM_DEBUG_KMS("Failed to read display plane latency. "
5508
					      "Disable CxSR\n");
5509
				dev_priv->display.update_wm = NULL;
5510
			}
5511
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
5512
		} else if (IS_IVYBRIDGE(dev)) {
4104 Serge 5513
			if (dev_priv->wm.pri_latency[0] &&
5514
			    dev_priv->wm.spr_latency[0] &&
5515
			    dev_priv->wm.cur_latency[0]) {
3243 Serge 5516
				dev_priv->display.update_wm = ivybridge_update_wm;
3031 serge 5517
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5518
			} else {
5519
				DRM_DEBUG_KMS("Failed to read display plane latency. "
5520
					      "Disable CxSR\n");
5521
				dev_priv->display.update_wm = NULL;
5522
			}
5523
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5524
		} else if (IS_HASWELL(dev)) {
4104 Serge 5525
			if (dev_priv->wm.pri_latency[0] &&
5526
			    dev_priv->wm.spr_latency[0] &&
5527
			    dev_priv->wm.cur_latency[0]) {
5528
				dev_priv->display.update_wm = haswell_update_wm;
5529
				dev_priv->display.update_sprite_wm =
5530
					haswell_update_sprite_wm;
3031 serge 5531
			} else {
5532
				DRM_DEBUG_KMS("Failed to read display plane latency. "
5533
					      "Disable CxSR\n");
5534
				dev_priv->display.update_wm = NULL;
5535
			}
5536
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5537
		} else
5538
			dev_priv->display.update_wm = NULL;
5539
	} else if (IS_VALLEYVIEW(dev)) {
5540
		dev_priv->display.update_wm = valleyview_update_wm;
5541
		dev_priv->display.init_clock_gating =
5542
			valleyview_init_clock_gating;
5543
	} else if (IS_PINEVIEW(dev)) {
5544
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5545
					    dev_priv->is_ddr3,
5546
					    dev_priv->fsb_freq,
5547
					    dev_priv->mem_freq)) {
5548
			DRM_INFO("failed to find known CxSR latency "
5549
				 "(found ddr%s fsb freq %d, mem freq %d), "
5550
				 "disabling CxSR\n",
5551
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
5552
				 dev_priv->fsb_freq, dev_priv->mem_freq);
5553
			/* Disable CxSR and never update its watermark again */
5554
			pineview_disable_cxsr(dev);
5555
			dev_priv->display.update_wm = NULL;
5556
		} else
5557
			dev_priv->display.update_wm = pineview_update_wm;
5558
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5559
	} else if (IS_G4X(dev)) {
5560
		dev_priv->display.update_wm = g4x_update_wm;
5561
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5562
	} else if (IS_GEN4(dev)) {
5563
		dev_priv->display.update_wm = i965_update_wm;
5564
		if (IS_CRESTLINE(dev))
5565
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5566
		else if (IS_BROADWATER(dev))
5567
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5568
	} else if (IS_GEN3(dev)) {
5569
		dev_priv->display.update_wm = i9xx_update_wm;
5570
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5571
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5572
	} else if (IS_I865G(dev)) {
5573
		dev_priv->display.update_wm = i830_update_wm;
5574
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5575
		dev_priv->display.get_fifo_size = i830_get_fifo_size;
5576
	} else if (IS_I85X(dev)) {
5577
		dev_priv->display.update_wm = i9xx_update_wm;
5578
		dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5579
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5580
	} else {
5581
		dev_priv->display.update_wm = i830_update_wm;
5582
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
5583
		if (IS_845G(dev))
5584
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
5585
		else
5586
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
5587
	}
5588
}
5589
 
3243 Serge 5590
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5591
{
5592
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 5593
 
3243 Serge 5594
	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5595
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5596
		return -EAGAIN;
5597
	}
3031 serge 5598
 
3243 Serge 5599
	I915_WRITE(GEN6_PCODE_DATA, *val);
5600
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5601
 
5602
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5603
		     500)) {
5604
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5605
		return -ETIMEDOUT;
3031 serge 5606
			}
3243 Serge 5607
 
5608
	*val = I915_READ(GEN6_PCODE_DATA);
5609
	I915_WRITE(GEN6_PCODE_DATA, 0);
5610
 
5611
	return 0;
5612
}
5613
 
5614
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5615
{
5616
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5617
 
5618
	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5619
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5620
		return -EAGAIN;
3031 serge 5621
		}
3243 Serge 5622
 
5623
	I915_WRITE(GEN6_PCODE_DATA, val);
5624
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5625
 
5626
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5627
		     500)) {
5628
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5629
		return -ETIMEDOUT;
3031 serge 5630
	}
3243 Serge 5631
 
5632
	I915_WRITE(GEN6_PCODE_DATA, 0);
5633
 
5634
	return 0;
3031 serge 5635
}
3746 Serge 5636
 
4104 Serge 5637
int vlv_gpu_freq(int ddr_freq, int val)
3746 Serge 5638
{
4104 Serge 5639
	int mult, base;
3746 Serge 5640
 
4104 Serge 5641
	switch (ddr_freq) {
5642
	case 800:
5643
		mult = 20;
5644
		base = 120;
5645
		break;
5646
	case 1066:
5647
		mult = 22;
5648
		base = 133;
5649
		break;
5650
	case 1333:
5651
		mult = 21;
5652
		base = 125;
5653
		break;
5654
	default:
5655
		return -1;
5656
	}
3746 Serge 5657
 
4104 Serge 5658
	return ((val - 0xbd) * mult) + base;
5659
}
3746 Serge 5660
 
4104 Serge 5661
int vlv_freq_opcode(int ddr_freq, int val)
5662
{
5663
	int mult, base;
3746 Serge 5664
 
4104 Serge 5665
	switch (ddr_freq) {
5666
	case 800:
5667
		mult = 20;
5668
		base = 120;
5669
		break;
5670
	case 1066:
5671
		mult = 22;
5672
		base = 133;
5673
		break;
5674
	case 1333:
5675
		mult = 21;
5676
		base = 125;
5677
		break;
5678
	default:
5679
		return -1;
3746 Serge 5680
	}
5681
 
4104 Serge 5682
	val /= mult;
5683
	val -= base / mult;
5684
	val += 0xbd;
3746 Serge 5685
 
4104 Serge 5686
	if (val > 0xea)
5687
		val = 0xea;
3746 Serge 5688
 
4104 Serge 5689
	return val;
3746 Serge 5690
}
5691
 
4104 Serge 5692
void intel_pm_init(struct drm_device *dev)
3746 Serge 5693
{
4104 Serge 5694
	struct drm_i915_private *dev_priv = dev->dev_private;
5695
 
5696
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
5697
			  intel_gen6_powersave_work);
5698
 
5699
	INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);
3746 Serge 5700
}
5701