Subversion Repositories Kolibri OS

Rev

Rev 3482 | Rev 4104 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
3031 serge 1
/*
2
 * Copyright © 2012 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eugeni Dodonov 
25
 *
26
 */
27
 
28
//#include 
29
#include "i915_drv.h"
30
#include "intel_drv.h"
31
#include 
32
//#include "../../../platform/x86/intel_ips.h"
33
#include 
34
 
35
#define FORCEWAKE_ACK_TIMEOUT_MS 2
36
 
37
#define assert_spin_locked(x)
38
 
39
void getrawmonotonic(struct timespec *ts);
40
void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec);
41
 
42
static inline struct timespec timespec_sub(struct timespec lhs,
43
                                                struct timespec rhs)
44
{
45
    struct timespec ts_delta;
46
    set_normalized_timespec(&ts_delta, lhs.tv_sec - rhs.tv_sec,
47
                                lhs.tv_nsec - rhs.tv_nsec);
48
    return ts_delta;
49
}
50
 
51
 
52
/* FBC, or Frame Buffer Compression, is a technique employed to compress the
53
 * framebuffer contents in-memory, aiming at reducing the required bandwidth
54
 * during in-memory transfers and, therefore, reduce the power packet.
55
 *
56
 * The benefits of FBC are mostly visible with solid backgrounds and
57
 * variation-less patterns.
58
 *
59
 * FBC-related functionality can be enabled by the means of the
60
 * i915.i915_enable_fbc parameter
61
 */
62
 
3243 Serge 63
static bool intel_crtc_active(struct drm_crtc *crtc)
64
{
65
	/* Be paranoid as we can arrive here with only partial
66
	 * state retrieved from the hardware during setup.
67
	 */
68
	return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
69
}
70
 
3031 serge 71
static void i8xx_disable_fbc(struct drm_device *dev)
72
{
73
	struct drm_i915_private *dev_priv = dev->dev_private;
74
	u32 fbc_ctl;
75
 
76
	/* Disable compression */
77
	fbc_ctl = I915_READ(FBC_CONTROL);
78
	if ((fbc_ctl & FBC_CTL_EN) == 0)
79
		return;
80
 
81
	fbc_ctl &= ~FBC_CTL_EN;
82
	I915_WRITE(FBC_CONTROL, fbc_ctl);
83
 
84
	/* Wait for compressing bit to clear */
85
	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
86
		DRM_DEBUG_KMS("FBC idle timed out\n");
87
		return;
88
	}
89
 
90
	DRM_DEBUG_KMS("disabled FBC\n");
91
}
92
 
93
static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
94
{
95
	struct drm_device *dev = crtc->dev;
96
	struct drm_i915_private *dev_priv = dev->dev_private;
97
	struct drm_framebuffer *fb = crtc->fb;
98
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
99
	struct drm_i915_gem_object *obj = intel_fb->obj;
100
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
101
	int cfb_pitch;
102
	int plane, i;
103
	u32 fbc_ctl, fbc_ctl2;
104
 
105
	cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
106
	if (fb->pitches[0] < cfb_pitch)
107
		cfb_pitch = fb->pitches[0];
108
 
109
	/* FBC_CTL wants 64B units */
110
	cfb_pitch = (cfb_pitch / 64) - 1;
111
	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
112
 
113
	/* Clear old tags */
114
	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
115
		I915_WRITE(FBC_TAG + (i * 4), 0);
116
 
117
	/* Set it up... */
118
	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
119
	fbc_ctl2 |= plane;
120
	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
121
	I915_WRITE(FBC_FENCE_OFF, crtc->y);
122
 
123
	/* enable it... */
124
	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
125
	if (IS_I945GM(dev))
126
		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
127
	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
128
	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
129
	fbc_ctl |= obj->fence_reg;
130
	I915_WRITE(FBC_CONTROL, fbc_ctl);
131
 
132
	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
133
		      cfb_pitch, crtc->y, intel_crtc->plane);
134
}
135
 
136
static bool i8xx_fbc_enabled(struct drm_device *dev)
137
{
138
	struct drm_i915_private *dev_priv = dev->dev_private;
139
 
140
	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
141
}
142
 
143
static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
144
{
145
	struct drm_device *dev = crtc->dev;
146
	struct drm_i915_private *dev_priv = dev->dev_private;
147
	struct drm_framebuffer *fb = crtc->fb;
148
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
149
	struct drm_i915_gem_object *obj = intel_fb->obj;
150
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
151
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
152
	unsigned long stall_watermark = 200;
153
	u32 dpfc_ctl;
154
 
155
	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
156
	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
157
	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
158
 
159
	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
160
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
161
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
162
	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
163
 
164
	/* enable it... */
165
	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
166
 
167
	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
168
}
169
 
170
static void g4x_disable_fbc(struct drm_device *dev)
171
{
172
	struct drm_i915_private *dev_priv = dev->dev_private;
173
	u32 dpfc_ctl;
174
 
175
	/* Disable compression */
176
	dpfc_ctl = I915_READ(DPFC_CONTROL);
177
	if (dpfc_ctl & DPFC_CTL_EN) {
178
		dpfc_ctl &= ~DPFC_CTL_EN;
179
		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
180
 
181
		DRM_DEBUG_KMS("disabled FBC\n");
182
	}
183
}
184
 
185
static bool g4x_fbc_enabled(struct drm_device *dev)
186
{
187
	struct drm_i915_private *dev_priv = dev->dev_private;
188
 
189
	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
190
}
191
 
192
static void sandybridge_blit_fbc_update(struct drm_device *dev)
193
{
194
	struct drm_i915_private *dev_priv = dev->dev_private;
195
	u32 blt_ecoskpd;
196
 
197
	/* Make sure blitter notifies FBC of writes */
198
	gen6_gt_force_wake_get(dev_priv);
199
	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
200
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
201
		GEN6_BLITTER_LOCK_SHIFT;
202
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
203
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
204
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
205
	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
206
			 GEN6_BLITTER_LOCK_SHIFT);
207
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
208
	POSTING_READ(GEN6_BLITTER_ECOSKPD);
209
	gen6_gt_force_wake_put(dev_priv);
210
}
211
 
212
static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
213
{
214
	struct drm_device *dev = crtc->dev;
215
	struct drm_i915_private *dev_priv = dev->dev_private;
216
	struct drm_framebuffer *fb = crtc->fb;
217
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
218
	struct drm_i915_gem_object *obj = intel_fb->obj;
219
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
220
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
221
	unsigned long stall_watermark = 200;
222
	u32 dpfc_ctl;
223
 
224
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
225
	dpfc_ctl &= DPFC_RESERVED;
226
	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
227
	/* Set persistent mode for front-buffer rendering, ala X. */
228
	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
229
	dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
230
	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
231
 
232
	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
233
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
234
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
235
	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
236
	I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
237
	/* enable it... */
238
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
239
 
240
	if (IS_GEN6(dev)) {
241
		I915_WRITE(SNB_DPFC_CTL_SA,
242
			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
243
		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
244
		sandybridge_blit_fbc_update(dev);
245
	}
246
 
247
	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
248
}
249
 
250
static void ironlake_disable_fbc(struct drm_device *dev)
251
{
252
	struct drm_i915_private *dev_priv = dev->dev_private;
253
	u32 dpfc_ctl;
254
 
255
	/* Disable compression */
256
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
257
	if (dpfc_ctl & DPFC_CTL_EN) {
258
		dpfc_ctl &= ~DPFC_CTL_EN;
259
		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
260
 
261
		DRM_DEBUG_KMS("disabled FBC\n");
262
	}
263
}
264
 
265
static bool ironlake_fbc_enabled(struct drm_device *dev)
266
{
267
	struct drm_i915_private *dev_priv = dev->dev_private;
268
 
269
	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
270
}
271
 
272
bool intel_fbc_enabled(struct drm_device *dev)
273
{
274
	struct drm_i915_private *dev_priv = dev->dev_private;
275
 
276
	if (!dev_priv->display.fbc_enabled)
277
		return false;
278
 
279
	return dev_priv->display.fbc_enabled(dev);
280
}
281
 
282
static void intel_fbc_work_fn(struct work_struct *__work)
283
{
284
	struct intel_fbc_work *work =
285
		container_of(to_delayed_work(__work),
286
			     struct intel_fbc_work, work);
287
	struct drm_device *dev = work->crtc->dev;
288
	struct drm_i915_private *dev_priv = dev->dev_private;
289
 
290
	mutex_lock(&dev->struct_mutex);
291
	if (work == dev_priv->fbc_work) {
292
		/* Double check that we haven't switched fb without cancelling
293
		 * the prior work.
294
		 */
295
		if (work->crtc->fb == work->fb) {
296
			dev_priv->display.enable_fbc(work->crtc,
297
						     work->interval);
298
 
299
			dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
300
			dev_priv->cfb_fb = work->crtc->fb->base.id;
301
			dev_priv->cfb_y = work->crtc->y;
302
		}
303
 
304
		dev_priv->fbc_work = NULL;
305
	}
306
	mutex_unlock(&dev->struct_mutex);
307
 
308
	kfree(work);
309
}
310
 
311
static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
312
{
313
	if (dev_priv->fbc_work == NULL)
314
		return;
315
 
316
	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
317
 
318
	/* Synchronisation is provided by struct_mutex and checking of
319
	 * dev_priv->fbc_work, so we can perform the cancellation
320
	 * entirely asynchronously.
321
	 */
3482 Serge 322
//	if (cancel_delayed_work(&dev_priv->fbc_work->work))
3031 serge 323
		/* tasklet was killed before being run, clean up */
3482 Serge 324
//		kfree(dev_priv->fbc_work);
3031 serge 325
 
326
	/* Mark the work as no longer wanted so that if it does
327
	 * wake-up (because the work was already running and waiting
328
	 * for our mutex), it will discover that is no longer
329
	 * necessary to run.
330
	 */
331
	dev_priv->fbc_work = NULL;
332
}
333
 
334
void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
335
{
336
	struct intel_fbc_work *work;
337
	struct drm_device *dev = crtc->dev;
338
	struct drm_i915_private *dev_priv = dev->dev_private;
339
 
3482 Serge 340
	if (!dev_priv->display.enable_fbc)
3031 serge 341
		return;
3482 Serge 342
 
3031 serge 343
	intel_cancel_fbc_work(dev_priv);
344
 
345
	work = kzalloc(sizeof *work, GFP_KERNEL);
346
	if (work == NULL) {
347
		dev_priv->display.enable_fbc(crtc, interval);
348
		return;
349
	}
350
 
351
	work->crtc = crtc;
352
	work->fb = crtc->fb;
353
	work->interval = interval;
354
	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
355
 
356
	dev_priv->fbc_work = work;
357
 
358
	DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
359
 
360
	/* Delay the actual enabling to let pageflipping cease and the
361
	 * display to settle before starting the compression. Note that
362
	 * this delay also serves a second purpose: it allows for a
363
	 * vblank to pass after disabling the FBC before we attempt
364
	 * to modify the control registers.
365
	 *
366
	 * A more complicated solution would involve tracking vblanks
367
	 * following the termination of the page-flipping sequence
368
	 * and indeed performing the enable as a co-routine and not
369
	 * waiting synchronously upon the vblank.
370
	 */
371
	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
372
}
373
 
374
void intel_disable_fbc(struct drm_device *dev)
375
{
376
	struct drm_i915_private *dev_priv = dev->dev_private;
377
 
3482 Serge 378
	intel_cancel_fbc_work(dev_priv);
3031 serge 379
 
3482 Serge 380
	if (!dev_priv->display.disable_fbc)
381
		return;
3031 serge 382
 
3482 Serge 383
	dev_priv->display.disable_fbc(dev);
3031 serge 384
	dev_priv->cfb_plane = -1;
385
}
386
 
387
/**
388
 * intel_update_fbc - enable/disable FBC as needed
389
 * @dev: the drm_device
390
 *
391
 * Set up the framebuffer compression hardware at mode set time.  We
392
 * enable it if possible:
393
 *   - plane A only (on pre-965)
394
 *   - no pixel mulitply/line duplication
395
 *   - no alpha buffer discard
396
 *   - no dual wide
397
 *   - framebuffer <= 2048 in width, 1536 in height
398
 *
399
 * We can't assume that any compression will take place (worst case),
400
 * so the compressed buffer has to be the same size as the uncompressed
401
 * one.  It also must reside (along with the line length buffer) in
402
 * stolen memory.
403
 *
404
 * We need to enable/disable FBC on a global basis.
405
 */
406
void intel_update_fbc(struct drm_device *dev)
407
{
408
	struct drm_i915_private *dev_priv = dev->dev_private;
409
	struct drm_crtc *crtc = NULL, *tmp_crtc;
410
	struct intel_crtc *intel_crtc;
411
	struct drm_framebuffer *fb;
412
	struct intel_framebuffer *intel_fb;
413
	struct drm_i915_gem_object *obj;
414
	int enable_fbc;
415
 
3482 Serge 416
    ENTER();
417
 
3031 serge 418
	if (!i915_powersave)
419
		return;
420
 
421
	if (!I915_HAS_FBC(dev))
422
		return;
423
 
424
	/*
425
	 * If FBC is already on, we just have to verify that we can
426
	 * keep it that way...
427
	 * Need to disable if:
428
	 *   - more than one pipe is active
429
	 *   - changing FBC params (stride, fence, mode)
430
	 *   - new fb is too large to fit in compressed buffer
431
	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
432
	 */
433
	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
3243 Serge 434
		if (intel_crtc_active(tmp_crtc) &&
435
		    !to_intel_crtc(tmp_crtc)->primary_disabled) {
3031 serge 436
			if (crtc) {
437
				DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
438
				dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
439
				goto out_disable;
440
			}
441
			crtc = tmp_crtc;
442
		}
443
	}
444
 
445
	if (!crtc || crtc->fb == NULL) {
446
		DRM_DEBUG_KMS("no output, disabling\n");
447
		dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
448
		goto out_disable;
449
	}
450
 
451
	intel_crtc = to_intel_crtc(crtc);
452
	fb = crtc->fb;
453
	intel_fb = to_intel_framebuffer(fb);
454
	obj = intel_fb->obj;
455
 
456
	enable_fbc = i915_enable_fbc;
457
	if (enable_fbc < 0) {
458
		DRM_DEBUG_KMS("fbc set to per-chip default\n");
459
		enable_fbc = 1;
460
		if (INTEL_INFO(dev)->gen <= 6)
461
			enable_fbc = 0;
462
	}
463
	if (!enable_fbc) {
464
		DRM_DEBUG_KMS("fbc disabled per module param\n");
465
		dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
466
		goto out_disable;
467
	}
468
	if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
469
	    (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
470
		DRM_DEBUG_KMS("mode incompatible with compression, "
471
			      "disabling\n");
472
		dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
473
		goto out_disable;
474
	}
475
	if ((crtc->mode.hdisplay > 2048) ||
476
	    (crtc->mode.vdisplay > 1536)) {
477
		DRM_DEBUG_KMS("mode too large for compression, disabling\n");
478
		dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
479
		goto out_disable;
480
	}
481
	if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
482
		DRM_DEBUG_KMS("plane not 0, disabling compression\n");
483
		dev_priv->no_fbc_reason = FBC_BAD_PLANE;
484
		goto out_disable;
485
	}
486
 
487
	/* The use of a CPU fence is mandatory in order to detect writes
488
	 * by the CPU to the scanout and trigger updates to the FBC.
489
	 */
490
	if (obj->tiling_mode != I915_TILING_X ||
491
	    obj->fence_reg == I915_FENCE_REG_NONE) {
492
		DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
493
		dev_priv->no_fbc_reason = FBC_NOT_TILED;
494
		goto out_disable;
495
	}
496
 
497
	/* If the kernel debugger is active, always disable compression */
498
	if (in_dbg_master())
499
		goto out_disable;
500
 
3480 Serge 501
	if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
502
		DRM_INFO("not enough stolen space for compressed buffer (need %zd bytes), disabling\n", intel_fb->obj->base.size);
503
		DRM_INFO("hint: you may be able to increase stolen memory size in the BIOS to avoid this\n");
504
		DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
505
		dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
506
		goto out_disable;
507
	}
508
 
3031 serge 509
	/* If the scanout has not changed, don't modify the FBC settings.
510
	 * Note that we make the fundamental assumption that the fb->obj
511
	 * cannot be unpinned (and have its GTT offset and fence revoked)
512
	 * without first being decoupled from the scanout and FBC disabled.
513
	 */
514
	if (dev_priv->cfb_plane == intel_crtc->plane &&
515
	    dev_priv->cfb_fb == fb->base.id &&
516
	    dev_priv->cfb_y == crtc->y)
517
		return;
518
 
519
	if (intel_fbc_enabled(dev)) {
520
		/* We update FBC along two paths, after changing fb/crtc
521
		 * configuration (modeswitching) and after page-flipping
522
		 * finishes. For the latter, we know that not only did
523
		 * we disable the FBC at the start of the page-flip
524
		 * sequence, but also more than one vblank has passed.
525
		 *
526
		 * For the former case of modeswitching, it is possible
527
		 * to switch between two FBC valid configurations
528
		 * instantaneously so we do need to disable the FBC
529
		 * before we can modify its control registers. We also
530
		 * have to wait for the next vblank for that to take
531
		 * effect. However, since we delay enabling FBC we can
532
		 * assume that a vblank has passed since disabling and
533
		 * that we can safely alter the registers in the deferred
534
		 * callback.
535
		 *
536
		 * In the scenario that we go from a valid to invalid
537
		 * and then back to valid FBC configuration we have
538
		 * no strict enforcement that a vblank occurred since
539
		 * disabling the FBC. However, along all current pipe
540
		 * disabling paths we do need to wait for a vblank at
541
		 * some point. And we wait before enabling FBC anyway.
542
		 */
543
		DRM_DEBUG_KMS("disabling active FBC for update\n");
544
		intel_disable_fbc(dev);
545
	}
546
 
547
	intel_enable_fbc(crtc, 500);
3482 Serge 548
    LEAVE();
549
 
3031 serge 550
	return;
551
 
552
out_disable:
553
	/* Multiple disables should be harmless */
554
	if (intel_fbc_enabled(dev)) {
555
		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
556
		intel_disable_fbc(dev);
557
	}
3480 Serge 558
	i915_gem_stolen_cleanup_compression(dev);
3482 Serge 559
    LEAVE();
3031 serge 560
}
561
 
562
static void i915_pineview_get_mem_freq(struct drm_device *dev)
563
{
564
	drm_i915_private_t *dev_priv = dev->dev_private;
565
	u32 tmp;
566
 
567
	tmp = I915_READ(CLKCFG);
568
 
569
	switch (tmp & CLKCFG_FSB_MASK) {
570
	case CLKCFG_FSB_533:
571
		dev_priv->fsb_freq = 533; /* 133*4 */
572
		break;
573
	case CLKCFG_FSB_800:
574
		dev_priv->fsb_freq = 800; /* 200*4 */
575
		break;
576
	case CLKCFG_FSB_667:
577
		dev_priv->fsb_freq =  667; /* 167*4 */
578
		break;
579
	case CLKCFG_FSB_400:
580
		dev_priv->fsb_freq = 400; /* 100*4 */
581
		break;
582
	}
583
 
584
	switch (tmp & CLKCFG_MEM_MASK) {
585
	case CLKCFG_MEM_533:
586
		dev_priv->mem_freq = 533;
587
		break;
588
	case CLKCFG_MEM_667:
589
		dev_priv->mem_freq = 667;
590
		break;
591
	case CLKCFG_MEM_800:
592
		dev_priv->mem_freq = 800;
593
		break;
594
	}
595
 
596
	/* detect pineview DDR3 setting */
597
	tmp = I915_READ(CSHRDDR3CTL);
598
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
599
}
600
 
601
static void i915_ironlake_get_mem_freq(struct drm_device *dev)
602
{
603
	drm_i915_private_t *dev_priv = dev->dev_private;
604
	u16 ddrpll, csipll;
605
 
606
	ddrpll = I915_READ16(DDRMPLL1);
607
	csipll = I915_READ16(CSIPLL0);
608
 
609
	switch (ddrpll & 0xff) {
610
	case 0xc:
611
		dev_priv->mem_freq = 800;
612
		break;
613
	case 0x10:
614
		dev_priv->mem_freq = 1066;
615
		break;
616
	case 0x14:
617
		dev_priv->mem_freq = 1333;
618
		break;
619
	case 0x18:
620
		dev_priv->mem_freq = 1600;
621
		break;
622
	default:
623
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
624
				 ddrpll & 0xff);
625
		dev_priv->mem_freq = 0;
626
		break;
627
	}
628
 
629
	dev_priv->ips.r_t = dev_priv->mem_freq;
630
 
631
	switch (csipll & 0x3ff) {
632
	case 0x00c:
633
		dev_priv->fsb_freq = 3200;
634
		break;
635
	case 0x00e:
636
		dev_priv->fsb_freq = 3733;
637
		break;
638
	case 0x010:
639
		dev_priv->fsb_freq = 4266;
640
		break;
641
	case 0x012:
642
		dev_priv->fsb_freq = 4800;
643
		break;
644
	case 0x014:
645
		dev_priv->fsb_freq = 5333;
646
		break;
647
	case 0x016:
648
		dev_priv->fsb_freq = 5866;
649
		break;
650
	case 0x018:
651
		dev_priv->fsb_freq = 6400;
652
		break;
653
	default:
654
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
655
				 csipll & 0x3ff);
656
		dev_priv->fsb_freq = 0;
657
		break;
658
	}
659
 
660
	if (dev_priv->fsb_freq == 3200) {
661
		dev_priv->ips.c_m = 0;
662
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
663
		dev_priv->ips.c_m = 1;
664
	} else {
665
		dev_priv->ips.c_m = 2;
666
	}
667
}
668
 
669
static const struct cxsr_latency cxsr_latency_table[] = {
670
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
671
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
672
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
673
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
674
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
675
 
676
	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
677
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
678
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
679
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
680
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
681
 
682
	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
683
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
684
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
685
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
686
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
687
 
688
	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
689
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
690
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
691
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
692
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
693
 
694
	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
695
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
696
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
697
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
698
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
699
 
700
	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
701
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
702
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
703
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
704
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
705
};
706
 
707
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
708
							 int is_ddr3,
709
							 int fsb,
710
							 int mem)
711
{
712
	const struct cxsr_latency *latency;
713
	int i;
714
 
715
	if (fsb == 0 || mem == 0)
716
		return NULL;
717
 
718
	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
719
		latency = &cxsr_latency_table[i];
720
		if (is_desktop == latency->is_desktop &&
721
		    is_ddr3 == latency->is_ddr3 &&
722
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
723
			return latency;
724
	}
725
 
726
	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
727
 
728
	return NULL;
729
}
730
 
731
static void pineview_disable_cxsr(struct drm_device *dev)
732
{
733
	struct drm_i915_private *dev_priv = dev->dev_private;
734
 
735
	/* deactivate cxsr */
736
	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
737
}
738
 
739
/*
740
 * Latency for FIFO fetches is dependent on several factors:
741
 *   - memory configuration (speed, channels)
742
 *   - chipset
743
 *   - current MCH state
744
 * It can be fairly high in some situations, so here we assume a fairly
745
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
746
 * set this value too high, the FIFO will fetch frequently to stay full)
747
 * and power consumption (set it too low to save power and we might see
748
 * FIFO underruns and display "flicker").
749
 *
750
 * A value of 5us seems to be a good balance; safe for very low end
751
 * platforms but not overly aggressive on lower latency configs.
752
 */
753
static const int latency_ns = 5000;
754
 
755
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
756
{
757
	struct drm_i915_private *dev_priv = dev->dev_private;
758
	uint32_t dsparb = I915_READ(DSPARB);
759
	int size;
760
 
761
	size = dsparb & 0x7f;
762
	if (plane)
763
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
764
 
765
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
766
		      plane ? "B" : "A", size);
767
 
768
	return size;
769
}
770
 
771
static int i85x_get_fifo_size(struct drm_device *dev, int plane)
772
{
773
	struct drm_i915_private *dev_priv = dev->dev_private;
774
	uint32_t dsparb = I915_READ(DSPARB);
775
	int size;
776
 
777
	size = dsparb & 0x1ff;
778
	if (plane)
779
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
780
	size >>= 1; /* Convert to cachelines */
781
 
782
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
783
		      plane ? "B" : "A", size);
784
 
785
	return size;
786
}
787
 
788
static int i845_get_fifo_size(struct drm_device *dev, int plane)
789
{
790
	struct drm_i915_private *dev_priv = dev->dev_private;
791
	uint32_t dsparb = I915_READ(DSPARB);
792
	int size;
793
 
794
	size = dsparb & 0x7f;
795
	size >>= 2; /* Convert to cachelines */
796
 
797
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
798
		      plane ? "B" : "A",
799
		      size);
800
 
801
	return size;
802
}
803
 
804
static int i830_get_fifo_size(struct drm_device *dev, int plane)
805
{
806
	struct drm_i915_private *dev_priv = dev->dev_private;
807
	uint32_t dsparb = I915_READ(DSPARB);
808
	int size;
809
 
810
	size = dsparb & 0x7f;
811
	size >>= 1; /* Convert to cachelines */
812
 
813
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
814
		      plane ? "B" : "A", size);
815
 
816
	return size;
817
}
818
 
819
/* Pineview has different values for various configs */
820
static const struct intel_watermark_params pineview_display_wm = {
821
	PINEVIEW_DISPLAY_FIFO,
822
	PINEVIEW_MAX_WM,
823
	PINEVIEW_DFT_WM,
824
	PINEVIEW_GUARD_WM,
825
	PINEVIEW_FIFO_LINE_SIZE
826
};
827
static const struct intel_watermark_params pineview_display_hplloff_wm = {
828
	PINEVIEW_DISPLAY_FIFO,
829
	PINEVIEW_MAX_WM,
830
	PINEVIEW_DFT_HPLLOFF_WM,
831
	PINEVIEW_GUARD_WM,
832
	PINEVIEW_FIFO_LINE_SIZE
833
};
834
static const struct intel_watermark_params pineview_cursor_wm = {
835
	PINEVIEW_CURSOR_FIFO,
836
	PINEVIEW_CURSOR_MAX_WM,
837
	PINEVIEW_CURSOR_DFT_WM,
838
	PINEVIEW_CURSOR_GUARD_WM,
839
	PINEVIEW_FIFO_LINE_SIZE,
840
};
841
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
842
	PINEVIEW_CURSOR_FIFO,
843
	PINEVIEW_CURSOR_MAX_WM,
844
	PINEVIEW_CURSOR_DFT_WM,
845
	PINEVIEW_CURSOR_GUARD_WM,
846
	PINEVIEW_FIFO_LINE_SIZE
847
};
848
static const struct intel_watermark_params g4x_wm_info = {
849
	G4X_FIFO_SIZE,
850
	G4X_MAX_WM,
851
	G4X_MAX_WM,
852
	2,
853
	G4X_FIFO_LINE_SIZE,
854
};
855
static const struct intel_watermark_params g4x_cursor_wm_info = {
856
	I965_CURSOR_FIFO,
857
	I965_CURSOR_MAX_WM,
858
	I965_CURSOR_DFT_WM,
859
	2,
860
	G4X_FIFO_LINE_SIZE,
861
};
862
static const struct intel_watermark_params valleyview_wm_info = {
863
	VALLEYVIEW_FIFO_SIZE,
864
	VALLEYVIEW_MAX_WM,
865
	VALLEYVIEW_MAX_WM,
866
	2,
867
	G4X_FIFO_LINE_SIZE,
868
};
869
static const struct intel_watermark_params valleyview_cursor_wm_info = {
870
	I965_CURSOR_FIFO,
871
	VALLEYVIEW_CURSOR_MAX_WM,
872
	I965_CURSOR_DFT_WM,
873
	2,
874
	G4X_FIFO_LINE_SIZE,
875
};
876
static const struct intel_watermark_params i965_cursor_wm_info = {
877
	I965_CURSOR_FIFO,
878
	I965_CURSOR_MAX_WM,
879
	I965_CURSOR_DFT_WM,
880
	2,
881
	I915_FIFO_LINE_SIZE,
882
};
883
static const struct intel_watermark_params i945_wm_info = {
884
	I945_FIFO_SIZE,
885
	I915_MAX_WM,
886
	1,
887
	2,
888
	I915_FIFO_LINE_SIZE
889
};
890
static const struct intel_watermark_params i915_wm_info = {
891
	I915_FIFO_SIZE,
892
	I915_MAX_WM,
893
	1,
894
	2,
895
	I915_FIFO_LINE_SIZE
896
};
897
static const struct intel_watermark_params i855_wm_info = {
898
	I855GM_FIFO_SIZE,
899
	I915_MAX_WM,
900
	1,
901
	2,
902
	I830_FIFO_LINE_SIZE
903
};
904
static const struct intel_watermark_params i830_wm_info = {
905
	I830_FIFO_SIZE,
906
	I915_MAX_WM,
907
	1,
908
	2,
909
	I830_FIFO_LINE_SIZE
910
};
911
 
912
static const struct intel_watermark_params ironlake_display_wm_info = {
913
	ILK_DISPLAY_FIFO,
914
	ILK_DISPLAY_MAXWM,
915
	ILK_DISPLAY_DFTWM,
916
	2,
917
	ILK_FIFO_LINE_SIZE
918
};
919
static const struct intel_watermark_params ironlake_cursor_wm_info = {
920
	ILK_CURSOR_FIFO,
921
	ILK_CURSOR_MAXWM,
922
	ILK_CURSOR_DFTWM,
923
	2,
924
	ILK_FIFO_LINE_SIZE
925
};
926
static const struct intel_watermark_params ironlake_display_srwm_info = {
927
	ILK_DISPLAY_SR_FIFO,
928
	ILK_DISPLAY_MAX_SRWM,
929
	ILK_DISPLAY_DFT_SRWM,
930
	2,
931
	ILK_FIFO_LINE_SIZE
932
};
933
static const struct intel_watermark_params ironlake_cursor_srwm_info = {
934
	ILK_CURSOR_SR_FIFO,
935
	ILK_CURSOR_MAX_SRWM,
936
	ILK_CURSOR_DFT_SRWM,
937
	2,
938
	ILK_FIFO_LINE_SIZE
939
};
940
 
941
static const struct intel_watermark_params sandybridge_display_wm_info = {
942
	SNB_DISPLAY_FIFO,
943
	SNB_DISPLAY_MAXWM,
944
	SNB_DISPLAY_DFTWM,
945
	2,
946
	SNB_FIFO_LINE_SIZE
947
};
948
static const struct intel_watermark_params sandybridge_cursor_wm_info = {
949
	SNB_CURSOR_FIFO,
950
	SNB_CURSOR_MAXWM,
951
	SNB_CURSOR_DFTWM,
952
	2,
953
	SNB_FIFO_LINE_SIZE
954
};
955
static const struct intel_watermark_params sandybridge_display_srwm_info = {
956
	SNB_DISPLAY_SR_FIFO,
957
	SNB_DISPLAY_MAX_SRWM,
958
	SNB_DISPLAY_DFT_SRWM,
959
	2,
960
	SNB_FIFO_LINE_SIZE
961
};
962
static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
963
	SNB_CURSOR_SR_FIFO,
964
	SNB_CURSOR_MAX_SRWM,
965
	SNB_CURSOR_DFT_SRWM,
966
	2,
967
	SNB_FIFO_LINE_SIZE
968
};
969
 
970
 
971
/**
972
 * intel_calculate_wm - calculate watermark level
973
 * @clock_in_khz: pixel clock
974
 * @wm: chip FIFO params
975
 * @pixel_size: display pixel size
976
 * @latency_ns: memory latency for the platform
977
 *
978
 * Calculate the watermark level (the level at which the display plane will
979
 * start fetching from memory again).  Each chip has a different display
980
 * FIFO size and allocation, so the caller needs to figure that out and pass
981
 * in the correct intel_watermark_params structure.
982
 *
983
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
984
 * on the pixel size.  When it reaches the watermark level, it'll start
985
 * fetching FIFO line sized based chunks from memory until the FIFO fills
986
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
987
 * will occur, and a display engine hang could result.
988
 */
989
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
990
					const struct intel_watermark_params *wm,
991
					int fifo_size,
992
					int pixel_size,
993
					unsigned long latency_ns)
994
{
995
	long entries_required, wm_size;
996
 
997
	/*
998
	 * Note: we need to make sure we don't overflow for various clock &
999
	 * latency values.
1000
	 * clocks go from a few thousand to several hundred thousand.
1001
	 * latency is usually a few thousand
1002
	 */
1003
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1004
		1000;
1005
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1006
 
1007
	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1008
 
1009
	wm_size = fifo_size - (entries_required + wm->guard_size);
1010
 
1011
	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1012
 
1013
	/* Don't promote wm_size to unsigned... */
1014
	if (wm_size > (long)wm->max_wm)
1015
		wm_size = wm->max_wm;
1016
	if (wm_size <= 0)
1017
		wm_size = wm->default_wm;
1018
	return wm_size;
1019
}
1020
 
1021
static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1022
{
1023
	struct drm_crtc *crtc, *enabled = NULL;
1024
 
1025
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3243 Serge 1026
		if (intel_crtc_active(crtc)) {
3031 serge 1027
			if (enabled)
1028
				return NULL;
1029
			enabled = crtc;
1030
		}
1031
	}
1032
 
1033
	return enabled;
1034
}
1035
 
1036
static void pineview_update_wm(struct drm_device *dev)
1037
{
1038
	struct drm_i915_private *dev_priv = dev->dev_private;
1039
	struct drm_crtc *crtc;
1040
	const struct cxsr_latency *latency;
1041
	u32 reg;
1042
	unsigned long wm;
1043
 
1044
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1045
					 dev_priv->fsb_freq, dev_priv->mem_freq);
1046
	if (!latency) {
1047
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1048
		pineview_disable_cxsr(dev);
1049
		return;
1050
	}
1051
 
1052
	crtc = single_enabled_crtc(dev);
1053
	if (crtc) {
1054
		int clock = crtc->mode.clock;
1055
		int pixel_size = crtc->fb->bits_per_pixel / 8;
1056
 
1057
		/* Display SR */
1058
		wm = intel_calculate_wm(clock, &pineview_display_wm,
1059
					pineview_display_wm.fifo_size,
1060
					pixel_size, latency->display_sr);
1061
		reg = I915_READ(DSPFW1);
1062
		reg &= ~DSPFW_SR_MASK;
1063
		reg |= wm << DSPFW_SR_SHIFT;
1064
		I915_WRITE(DSPFW1, reg);
1065
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1066
 
1067
		/* cursor SR */
1068
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1069
					pineview_display_wm.fifo_size,
1070
					pixel_size, latency->cursor_sr);
1071
		reg = I915_READ(DSPFW3);
1072
		reg &= ~DSPFW_CURSOR_SR_MASK;
1073
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1074
		I915_WRITE(DSPFW3, reg);
1075
 
1076
		/* Display HPLL off SR */
1077
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1078
					pineview_display_hplloff_wm.fifo_size,
1079
					pixel_size, latency->display_hpll_disable);
1080
		reg = I915_READ(DSPFW3);
1081
		reg &= ~DSPFW_HPLL_SR_MASK;
1082
		reg |= wm & DSPFW_HPLL_SR_MASK;
1083
		I915_WRITE(DSPFW3, reg);
1084
 
1085
		/* cursor HPLL off SR */
1086
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1087
					pineview_display_hplloff_wm.fifo_size,
1088
					pixel_size, latency->cursor_hpll_disable);
1089
		reg = I915_READ(DSPFW3);
1090
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
1091
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1092
		I915_WRITE(DSPFW3, reg);
1093
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1094
 
1095
		/* activate cxsr */
1096
		I915_WRITE(DSPFW3,
1097
			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1098
		DRM_DEBUG_KMS("Self-refresh is enabled\n");
1099
	} else {
1100
		pineview_disable_cxsr(dev);
1101
		DRM_DEBUG_KMS("Self-refresh is disabled\n");
1102
	}
1103
}
1104
 
1105
static bool g4x_compute_wm0(struct drm_device *dev,
1106
			    int plane,
1107
			    const struct intel_watermark_params *display,
1108
			    int display_latency_ns,
1109
			    const struct intel_watermark_params *cursor,
1110
			    int cursor_latency_ns,
1111
			    int *plane_wm,
1112
			    int *cursor_wm)
1113
{
1114
	struct drm_crtc *crtc;
1115
	int htotal, hdisplay, clock, pixel_size;
1116
	int line_time_us, line_count;
1117
	int entries, tlb_miss;
1118
 
1119
	crtc = intel_get_crtc_for_plane(dev, plane);
3243 Serge 1120
	if (!intel_crtc_active(crtc)) {
3031 serge 1121
		*cursor_wm = cursor->guard_size;
1122
		*plane_wm = display->guard_size;
1123
        return false;
1124
	}
1125
 
1126
	htotal = crtc->mode.htotal;
1127
	hdisplay = crtc->mode.hdisplay;
1128
	clock = crtc->mode.clock;
1129
	pixel_size = crtc->fb->bits_per_pixel / 8;
1130
 
1131
	/* Use the small buffer method to calculate plane watermark */
1132
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1133
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1134
	if (tlb_miss > 0)
1135
		entries += tlb_miss;
1136
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
1137
	*plane_wm = entries + display->guard_size;
1138
	if (*plane_wm > (int)display->max_wm)
1139
		*plane_wm = display->max_wm;
1140
 
1141
	/* Use the large buffer method to calculate cursor watermark */
1142
	line_time_us = ((htotal * 1000) / clock);
1143
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1144
	entries = line_count * 64 * pixel_size;
1145
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1146
	if (tlb_miss > 0)
1147
		entries += tlb_miss;
1148
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1149
	*cursor_wm = entries + cursor->guard_size;
1150
	if (*cursor_wm > (int)cursor->max_wm)
1151
		*cursor_wm = (int)cursor->max_wm;
1152
 
1153
	return true;
1154
}
1155
 
1156
/*
1157
 * Check the wm result.
1158
 *
1159
 * If any calculated watermark values is larger than the maximum value that
1160
 * can be programmed into the associated watermark register, that watermark
1161
 * must be disabled.
1162
 */
1163
static bool g4x_check_srwm(struct drm_device *dev,
1164
			   int display_wm, int cursor_wm,
1165
			   const struct intel_watermark_params *display,
1166
			   const struct intel_watermark_params *cursor)
1167
{
1168
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1169
		      display_wm, cursor_wm);
1170
 
1171
	if (display_wm > display->max_wm) {
1172
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1173
			      display_wm, display->max_wm);
1174
		return false;
1175
	}
1176
 
1177
	if (cursor_wm > cursor->max_wm) {
1178
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1179
			      cursor_wm, cursor->max_wm);
1180
		return false;
1181
	}
1182
 
1183
	if (!(display_wm || cursor_wm)) {
1184
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1185
		return false;
1186
	}
1187
 
1188
	return true;
1189
}
1190
 
1191
static bool g4x_compute_srwm(struct drm_device *dev,
1192
			     int plane,
1193
			     int latency_ns,
1194
			     const struct intel_watermark_params *display,
1195
			     const struct intel_watermark_params *cursor,
1196
			     int *display_wm, int *cursor_wm)
1197
{
1198
	struct drm_crtc *crtc;
1199
	int hdisplay, htotal, pixel_size, clock;
1200
	unsigned long line_time_us;
1201
	int line_count, line_size;
1202
	int small, large;
1203
	int entries;
1204
 
1205
	if (!latency_ns) {
1206
		*display_wm = *cursor_wm = 0;
1207
		return false;
1208
	}
1209
 
1210
	crtc = intel_get_crtc_for_plane(dev, plane);
1211
	hdisplay = crtc->mode.hdisplay;
1212
	htotal = crtc->mode.htotal;
1213
	clock = crtc->mode.clock;
1214
	pixel_size = crtc->fb->bits_per_pixel / 8;
1215
 
1216
	line_time_us = (htotal * 1000) / clock;
1217
	line_count = (latency_ns / line_time_us + 1000) / 1000;
1218
	line_size = hdisplay * pixel_size;
1219
 
1220
	/* Use the minimum of the small and large buffer method for primary */
1221
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1222
	large = line_count * line_size;
1223
 
1224
	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1225
	*display_wm = entries + display->guard_size;
1226
 
1227
	/* calculate the self-refresh watermark for display cursor */
1228
	entries = line_count * pixel_size * 64;
1229
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1230
	*cursor_wm = entries + cursor->guard_size;
1231
 
1232
	return g4x_check_srwm(dev,
1233
			      *display_wm, *cursor_wm,
1234
			      display, cursor);
1235
}
1236
 
1237
static bool vlv_compute_drain_latency(struct drm_device *dev,
1238
				     int plane,
1239
				     int *plane_prec_mult,
1240
				     int *plane_dl,
1241
				     int *cursor_prec_mult,
1242
				     int *cursor_dl)
1243
{
1244
	struct drm_crtc *crtc;
1245
	int clock, pixel_size;
1246
	int entries;
1247
 
1248
	crtc = intel_get_crtc_for_plane(dev, plane);
3243 Serge 1249
	if (!intel_crtc_active(crtc))
3031 serge 1250
		return false;
1251
 
1252
	clock = crtc->mode.clock;	/* VESA DOT Clock */
1253
	pixel_size = crtc->fb->bits_per_pixel / 8;	/* BPP */
1254
 
1255
	entries = (clock / 1000) * pixel_size;
1256
	*plane_prec_mult = (entries > 256) ?
1257
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1258
	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1259
						     pixel_size);
1260
 
1261
	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
1262
	*cursor_prec_mult = (entries > 256) ?
1263
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1264
	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1265
 
1266
	return true;
1267
}
1268
 
1269
/*
1270
 * Update drain latency registers of memory arbiter
1271
 *
1272
 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1273
 * to be programmed. Each plane has a drain latency multiplier and a drain
1274
 * latency value.
1275
 */
1276
 
1277
static void vlv_update_drain_latency(struct drm_device *dev)
1278
{
1279
	struct drm_i915_private *dev_priv = dev->dev_private;
1280
	int planea_prec, planea_dl, planeb_prec, planeb_dl;
1281
	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1282
	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1283
							either 16 or 32 */
1284
 
1285
	/* For plane A, Cursor A */
1286
	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1287
				      &cursor_prec_mult, &cursora_dl)) {
1288
		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1289
			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1290
		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1291
			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1292
 
1293
		I915_WRITE(VLV_DDL1, cursora_prec |
1294
				(cursora_dl << DDL_CURSORA_SHIFT) |
1295
				planea_prec | planea_dl);
1296
	}
1297
 
1298
	/* For plane B, Cursor B */
1299
	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1300
				      &cursor_prec_mult, &cursorb_dl)) {
1301
		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1302
			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1303
		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1304
			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1305
 
1306
		I915_WRITE(VLV_DDL2, cursorb_prec |
1307
				(cursorb_dl << DDL_CURSORB_SHIFT) |
1308
				planeb_prec | planeb_dl);
1309
	}
1310
}
1311
 
1312
#define single_plane_enabled(mask) is_power_of_2(mask)
1313
 
1314
static void valleyview_update_wm(struct drm_device *dev)
1315
{
1316
	static const int sr_latency_ns = 12000;
1317
	struct drm_i915_private *dev_priv = dev->dev_private;
1318
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1319
	int plane_sr, cursor_sr;
3243 Serge 1320
	int ignore_plane_sr, ignore_cursor_sr;
3031 serge 1321
	unsigned int enabled = 0;
1322
 
1323
	vlv_update_drain_latency(dev);
1324
 
3746 Serge 1325
	if (g4x_compute_wm0(dev, PIPE_A,
3031 serge 1326
			    &valleyview_wm_info, latency_ns,
1327
			    &valleyview_cursor_wm_info, latency_ns,
1328
			    &planea_wm, &cursora_wm))
3746 Serge 1329
		enabled |= 1 << PIPE_A;
3031 serge 1330
 
3746 Serge 1331
	if (g4x_compute_wm0(dev, PIPE_B,
3031 serge 1332
			    &valleyview_wm_info, latency_ns,
1333
			    &valleyview_cursor_wm_info, latency_ns,
1334
			    &planeb_wm, &cursorb_wm))
3746 Serge 1335
		enabled |= 1 << PIPE_B;
3031 serge 1336
 
1337
	if (single_plane_enabled(enabled) &&
1338
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1339
			     sr_latency_ns,
1340
			     &valleyview_wm_info,
1341
			     &valleyview_cursor_wm_info,
3243 Serge 1342
			     &plane_sr, &ignore_cursor_sr) &&
1343
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1344
			     2*sr_latency_ns,
1345
			     &valleyview_wm_info,
1346
			     &valleyview_cursor_wm_info,
1347
			     &ignore_plane_sr, &cursor_sr)) {
3031 serge 1348
		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
3243 Serge 1349
	} else {
3031 serge 1350
		I915_WRITE(FW_BLC_SELF_VLV,
1351
			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
3243 Serge 1352
		plane_sr = cursor_sr = 0;
1353
	}
3031 serge 1354
 
1355
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1356
		      planea_wm, cursora_wm,
1357
		      planeb_wm, cursorb_wm,
1358
		      plane_sr, cursor_sr);
1359
 
1360
	I915_WRITE(DSPFW1,
1361
		   (plane_sr << DSPFW_SR_SHIFT) |
1362
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1363
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1364
		   planea_wm);
1365
	I915_WRITE(DSPFW2,
3243 Serge 1366
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
3031 serge 1367
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1368
	I915_WRITE(DSPFW3,
3243 Serge 1369
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1370
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3031 serge 1371
}
1372
 
1373
static void g4x_update_wm(struct drm_device *dev)
1374
{
1375
	static const int sr_latency_ns = 12000;
1376
	struct drm_i915_private *dev_priv = dev->dev_private;
1377
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1378
	int plane_sr, cursor_sr;
1379
	unsigned int enabled = 0;
1380
 
3746 Serge 1381
	if (g4x_compute_wm0(dev, PIPE_A,
3031 serge 1382
			    &g4x_wm_info, latency_ns,
1383
			    &g4x_cursor_wm_info, latency_ns,
1384
			    &planea_wm, &cursora_wm))
3746 Serge 1385
		enabled |= 1 << PIPE_A;
3031 serge 1386
 
3746 Serge 1387
	if (g4x_compute_wm0(dev, PIPE_B,
3031 serge 1388
			    &g4x_wm_info, latency_ns,
1389
			    &g4x_cursor_wm_info, latency_ns,
1390
			    &planeb_wm, &cursorb_wm))
3746 Serge 1391
		enabled |= 1 << PIPE_B;
3031 serge 1392
 
1393
	if (single_plane_enabled(enabled) &&
1394
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1395
			     sr_latency_ns,
1396
			     &g4x_wm_info,
1397
			     &g4x_cursor_wm_info,
3243 Serge 1398
			     &plane_sr, &cursor_sr)) {
3031 serge 1399
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3243 Serge 1400
	} else {
3031 serge 1401
		I915_WRITE(FW_BLC_SELF,
1402
			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
3243 Serge 1403
		plane_sr = cursor_sr = 0;
1404
	}
3031 serge 1405
 
1406
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1407
		      planea_wm, cursora_wm,
1408
		      planeb_wm, cursorb_wm,
1409
		      plane_sr, cursor_sr);
1410
 
1411
	I915_WRITE(DSPFW1,
1412
		   (plane_sr << DSPFW_SR_SHIFT) |
1413
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1414
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1415
		   planea_wm);
1416
	I915_WRITE(DSPFW2,
3243 Serge 1417
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
3031 serge 1418
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1419
	/* HPLL off in SR has some issues on G4x... disable it */
1420
	I915_WRITE(DSPFW3,
3243 Serge 1421
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
3031 serge 1422
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1423
}
1424
 
1425
static void i965_update_wm(struct drm_device *dev)
1426
{
1427
	struct drm_i915_private *dev_priv = dev->dev_private;
1428
	struct drm_crtc *crtc;
1429
	int srwm = 1;
1430
	int cursor_sr = 16;
1431
 
1432
	/* Calc sr entries for one plane configs */
1433
	crtc = single_enabled_crtc(dev);
1434
	if (crtc) {
1435
		/* self-refresh has much higher latency */
1436
		static const int sr_latency_ns = 12000;
1437
		int clock = crtc->mode.clock;
1438
		int htotal = crtc->mode.htotal;
1439
		int hdisplay = crtc->mode.hdisplay;
1440
		int pixel_size = crtc->fb->bits_per_pixel / 8;
1441
		unsigned long line_time_us;
1442
		int entries;
1443
 
1444
		line_time_us = ((htotal * 1000) / clock);
1445
 
1446
		/* Use ns/us then divide to preserve precision */
1447
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1448
			pixel_size * hdisplay;
1449
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1450
		srwm = I965_FIFO_SIZE - entries;
1451
		if (srwm < 0)
1452
			srwm = 1;
1453
		srwm &= 0x1ff;
1454
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1455
			      entries, srwm);
1456
 
1457
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1458
			pixel_size * 64;
1459
		entries = DIV_ROUND_UP(entries,
1460
					  i965_cursor_wm_info.cacheline_size);
1461
		cursor_sr = i965_cursor_wm_info.fifo_size -
1462
			(entries + i965_cursor_wm_info.guard_size);
1463
 
1464
		if (cursor_sr > i965_cursor_wm_info.max_wm)
1465
			cursor_sr = i965_cursor_wm_info.max_wm;
1466
 
1467
		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1468
			      "cursor %d\n", srwm, cursor_sr);
1469
 
1470
		if (IS_CRESTLINE(dev))
1471
			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1472
	} else {
1473
		/* Turn off self refresh if both pipes are enabled */
1474
		if (IS_CRESTLINE(dev))
1475
			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1476
				   & ~FW_BLC_SELF_EN);
1477
	}
1478
 
1479
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1480
		      srwm);
1481
 
1482
	/* 965 has limitations... */
1483
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1484
		   (8 << 16) | (8 << 8) | (8 << 0));
1485
	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1486
	/* update cursor SR watermark */
1487
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1488
}
1489
 
1490
static void i9xx_update_wm(struct drm_device *dev)
1491
{
1492
	struct drm_i915_private *dev_priv = dev->dev_private;
1493
	const struct intel_watermark_params *wm_info;
1494
	uint32_t fwater_lo;
1495
	uint32_t fwater_hi;
1496
	int cwm, srwm = 1;
1497
	int fifo_size;
1498
	int planea_wm, planeb_wm;
1499
	struct drm_crtc *crtc, *enabled = NULL;
1500
 
1501
	if (IS_I945GM(dev))
1502
		wm_info = &i945_wm_info;
1503
	else if (!IS_GEN2(dev))
1504
		wm_info = &i915_wm_info;
1505
	else
1506
		wm_info = &i855_wm_info;
1507
 
1508
	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1509
	crtc = intel_get_crtc_for_plane(dev, 0);
3243 Serge 1510
	if (intel_crtc_active(crtc)) {
1511
		int cpp = crtc->fb->bits_per_pixel / 8;
1512
		if (IS_GEN2(dev))
1513
			cpp = 4;
1514
 
3031 serge 1515
		planea_wm = intel_calculate_wm(crtc->mode.clock,
3243 Serge 1516
					       wm_info, fifo_size, cpp,
3031 serge 1517
					       latency_ns);
1518
		enabled = crtc;
1519
	} else
1520
		planea_wm = fifo_size - wm_info->guard_size;
1521
 
1522
	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1523
	crtc = intel_get_crtc_for_plane(dev, 1);
3243 Serge 1524
	if (intel_crtc_active(crtc)) {
1525
		int cpp = crtc->fb->bits_per_pixel / 8;
1526
		if (IS_GEN2(dev))
1527
			cpp = 4;
1528
 
3031 serge 1529
		planeb_wm = intel_calculate_wm(crtc->mode.clock,
3243 Serge 1530
					       wm_info, fifo_size, cpp,
3031 serge 1531
					       latency_ns);
1532
		if (enabled == NULL)
1533
			enabled = crtc;
1534
		else
1535
			enabled = NULL;
1536
	} else
1537
		planeb_wm = fifo_size - wm_info->guard_size;
1538
 
1539
	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1540
 
1541
	/*
1542
	 * Overlay gets an aggressive default since video jitter is bad.
1543
	 */
1544
	cwm = 2;
1545
 
1546
	/* Play safe and disable self-refresh before adjusting watermarks. */
1547
	if (IS_I945G(dev) || IS_I945GM(dev))
1548
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1549
	else if (IS_I915GM(dev))
1550
		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1551
 
1552
	/* Calc sr entries for one plane configs */
1553
	if (HAS_FW_BLC(dev) && enabled) {
1554
		/* self-refresh has much higher latency */
1555
		static const int sr_latency_ns = 6000;
1556
		int clock = enabled->mode.clock;
1557
		int htotal = enabled->mode.htotal;
1558
		int hdisplay = enabled->mode.hdisplay;
1559
		int pixel_size = enabled->fb->bits_per_pixel / 8;
1560
		unsigned long line_time_us;
1561
		int entries;
1562
 
1563
		line_time_us = (htotal * 1000) / clock;
1564
 
1565
		/* Use ns/us then divide to preserve precision */
1566
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1567
			pixel_size * hdisplay;
1568
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1569
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1570
		srwm = wm_info->fifo_size - entries;
1571
		if (srwm < 0)
1572
			srwm = 1;
1573
 
1574
		if (IS_I945G(dev) || IS_I945GM(dev))
1575
			I915_WRITE(FW_BLC_SELF,
1576
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1577
		else if (IS_I915GM(dev))
1578
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1579
	}
1580
 
1581
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1582
		      planea_wm, planeb_wm, cwm, srwm);
1583
 
1584
	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1585
	fwater_hi = (cwm & 0x1f);
1586
 
1587
	/* Set request length to 8 cachelines per fetch */
1588
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1589
	fwater_hi = fwater_hi | (1 << 8);
1590
 
1591
	I915_WRITE(FW_BLC, fwater_lo);
1592
	I915_WRITE(FW_BLC2, fwater_hi);
1593
 
1594
	if (HAS_FW_BLC(dev)) {
1595
		if (enabled) {
1596
			if (IS_I945G(dev) || IS_I945GM(dev))
1597
				I915_WRITE(FW_BLC_SELF,
1598
					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1599
			else if (IS_I915GM(dev))
1600
				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1601
			DRM_DEBUG_KMS("memory self refresh enabled\n");
1602
		} else
1603
			DRM_DEBUG_KMS("memory self refresh disabled\n");
1604
	}
1605
}
1606
 
1607
static void i830_update_wm(struct drm_device *dev)
1608
{
1609
	struct drm_i915_private *dev_priv = dev->dev_private;
1610
	struct drm_crtc *crtc;
1611
	uint32_t fwater_lo;
1612
	int planea_wm;
1613
 
1614
	crtc = single_enabled_crtc(dev);
1615
	if (crtc == NULL)
1616
		return;
1617
 
1618
	planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1619
				       dev_priv->display.get_fifo_size(dev, 0),
3243 Serge 1620
				       4, latency_ns);
3031 serge 1621
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1622
	fwater_lo |= (3<<8) | planea_wm;
1623
 
1624
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1625
 
1626
	I915_WRITE(FW_BLC, fwater_lo);
1627
}
1628
 
1629
#define ILK_LP0_PLANE_LATENCY		700
1630
#define ILK_LP0_CURSOR_LATENCY		1300
1631
 
1632
/*
1633
 * Check the wm result.
1634
 *
1635
 * If any calculated watermark values is larger than the maximum value that
1636
 * can be programmed into the associated watermark register, that watermark
1637
 * must be disabled.
1638
 */
1639
static bool ironlake_check_srwm(struct drm_device *dev, int level,
1640
				int fbc_wm, int display_wm, int cursor_wm,
1641
				const struct intel_watermark_params *display,
1642
				const struct intel_watermark_params *cursor)
1643
{
1644
	struct drm_i915_private *dev_priv = dev->dev_private;
1645
 
1646
	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1647
		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1648
 
1649
	if (fbc_wm > SNB_FBC_MAX_SRWM) {
1650
		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1651
			      fbc_wm, SNB_FBC_MAX_SRWM, level);
1652
 
1653
		/* fbc has it's own way to disable FBC WM */
1654
		I915_WRITE(DISP_ARB_CTL,
1655
			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1656
		return false;
1657
	}
1658
 
1659
	if (display_wm > display->max_wm) {
1660
		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1661
			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
1662
		return false;
1663
	}
1664
 
1665
	if (cursor_wm > cursor->max_wm) {
1666
		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1667
			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1668
		return false;
1669
	}
1670
 
1671
	if (!(fbc_wm || display_wm || cursor_wm)) {
1672
		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1673
		return false;
1674
	}
1675
 
1676
	return true;
1677
}
1678
 
1679
/*
1680
 * Compute watermark values of WM[1-3],
1681
 */
1682
static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1683
				  int latency_ns,
1684
				  const struct intel_watermark_params *display,
1685
				  const struct intel_watermark_params *cursor,
1686
				  int *fbc_wm, int *display_wm, int *cursor_wm)
1687
{
1688
	struct drm_crtc *crtc;
1689
	unsigned long line_time_us;
1690
	int hdisplay, htotal, pixel_size, clock;
1691
	int line_count, line_size;
1692
	int small, large;
1693
	int entries;
1694
 
1695
	if (!latency_ns) {
1696
		*fbc_wm = *display_wm = *cursor_wm = 0;
1697
		return false;
1698
	}
1699
 
1700
	crtc = intel_get_crtc_for_plane(dev, plane);
1701
	hdisplay = crtc->mode.hdisplay;
1702
	htotal = crtc->mode.htotal;
1703
	clock = crtc->mode.clock;
1704
	pixel_size = crtc->fb->bits_per_pixel / 8;
1705
 
1706
	line_time_us = (htotal * 1000) / clock;
1707
	line_count = (latency_ns / line_time_us + 1000) / 1000;
1708
	line_size = hdisplay * pixel_size;
1709
 
1710
	/* Use the minimum of the small and large buffer method for primary */
1711
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1712
	large = line_count * line_size;
1713
 
1714
	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1715
	*display_wm = entries + display->guard_size;
1716
 
1717
	/*
1718
	 * Spec says:
1719
	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1720
	 */
1721
	*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1722
 
1723
	/* calculate the self-refresh watermark for display cursor */
1724
	entries = line_count * pixel_size * 64;
1725
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1726
	*cursor_wm = entries + cursor->guard_size;
1727
 
1728
	return ironlake_check_srwm(dev, level,
1729
				   *fbc_wm, *display_wm, *cursor_wm,
1730
				   display, cursor);
1731
}
1732
 
1733
static void ironlake_update_wm(struct drm_device *dev)
1734
{
1735
	struct drm_i915_private *dev_priv = dev->dev_private;
1736
	int fbc_wm, plane_wm, cursor_wm;
1737
	unsigned int enabled;
1738
 
1739
	enabled = 0;
3746 Serge 1740
	if (g4x_compute_wm0(dev, PIPE_A,
3031 serge 1741
			    &ironlake_display_wm_info,
1742
			    ILK_LP0_PLANE_LATENCY,
1743
			    &ironlake_cursor_wm_info,
1744
			    ILK_LP0_CURSOR_LATENCY,
1745
			    &plane_wm, &cursor_wm)) {
1746
		I915_WRITE(WM0_PIPEA_ILK,
1747
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1748
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1749
			      " plane %d, " "cursor: %d\n",
1750
			      plane_wm, cursor_wm);
3746 Serge 1751
		enabled |= 1 << PIPE_A;
3031 serge 1752
	}
1753
 
3746 Serge 1754
	if (g4x_compute_wm0(dev, PIPE_B,
3031 serge 1755
			    &ironlake_display_wm_info,
1756
			    ILK_LP0_PLANE_LATENCY,
1757
			    &ironlake_cursor_wm_info,
1758
			    ILK_LP0_CURSOR_LATENCY,
1759
			    &plane_wm, &cursor_wm)) {
1760
		I915_WRITE(WM0_PIPEB_ILK,
1761
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1762
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1763
			      " plane %d, cursor: %d\n",
1764
			      plane_wm, cursor_wm);
3746 Serge 1765
		enabled |= 1 << PIPE_B;
3031 serge 1766
	}
1767
 
1768
	/*
1769
	 * Calculate and update the self-refresh watermark only when one
1770
	 * display plane is used.
1771
	 */
1772
	I915_WRITE(WM3_LP_ILK, 0);
1773
	I915_WRITE(WM2_LP_ILK, 0);
1774
	I915_WRITE(WM1_LP_ILK, 0);
1775
 
1776
	if (!single_plane_enabled(enabled))
1777
		return;
1778
	enabled = ffs(enabled) - 1;
1779
 
1780
	/* WM1 */
1781
	if (!ironlake_compute_srwm(dev, 1, enabled,
1782
				   ILK_READ_WM1_LATENCY() * 500,
1783
				   &ironlake_display_srwm_info,
1784
				   &ironlake_cursor_srwm_info,
1785
				   &fbc_wm, &plane_wm, &cursor_wm))
1786
		return;
1787
 
1788
	I915_WRITE(WM1_LP_ILK,
1789
		   WM1_LP_SR_EN |
1790
		   (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1791
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1792
		   (plane_wm << WM1_LP_SR_SHIFT) |
1793
		   cursor_wm);
1794
 
1795
	/* WM2 */
1796
	if (!ironlake_compute_srwm(dev, 2, enabled,
1797
				   ILK_READ_WM2_LATENCY() * 500,
1798
				   &ironlake_display_srwm_info,
1799
				   &ironlake_cursor_srwm_info,
1800
				   &fbc_wm, &plane_wm, &cursor_wm))
1801
		return;
1802
 
1803
	I915_WRITE(WM2_LP_ILK,
1804
		   WM2_LP_EN |
1805
		   (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1806
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1807
		   (plane_wm << WM1_LP_SR_SHIFT) |
1808
		   cursor_wm);
1809
 
1810
	/*
1811
	 * WM3 is unsupported on ILK, probably because we don't have latency
1812
	 * data for that power state
1813
	 */
1814
}
1815
 
1816
static void sandybridge_update_wm(struct drm_device *dev)
1817
{
1818
	struct drm_i915_private *dev_priv = dev->dev_private;
1819
	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
1820
	u32 val;
1821
	int fbc_wm, plane_wm, cursor_wm;
1822
	unsigned int enabled;
1823
 
1824
	enabled = 0;
3746 Serge 1825
	if (g4x_compute_wm0(dev, PIPE_A,
3031 serge 1826
			    &sandybridge_display_wm_info, latency,
1827
			    &sandybridge_cursor_wm_info, latency,
1828
			    &plane_wm, &cursor_wm)) {
1829
		val = I915_READ(WM0_PIPEA_ILK);
1830
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1831
		I915_WRITE(WM0_PIPEA_ILK, val |
1832
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1833
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1834
			      " plane %d, " "cursor: %d\n",
1835
			      plane_wm, cursor_wm);
3746 Serge 1836
		enabled |= 1 << PIPE_A;
3031 serge 1837
	}
1838
 
3746 Serge 1839
	if (g4x_compute_wm0(dev, PIPE_B,
3031 serge 1840
			    &sandybridge_display_wm_info, latency,
1841
			    &sandybridge_cursor_wm_info, latency,
1842
			    &plane_wm, &cursor_wm)) {
1843
		val = I915_READ(WM0_PIPEB_ILK);
1844
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1845
		I915_WRITE(WM0_PIPEB_ILK, val |
1846
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1847
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1848
			      " plane %d, cursor: %d\n",
1849
			      plane_wm, cursor_wm);
3746 Serge 1850
		enabled |= 1 << PIPE_B;
3031 serge 1851
	}
1852
 
3243 Serge 1853
	/*
1854
	 * Calculate and update the self-refresh watermark only when one
1855
	 * display plane is used.
1856
	 *
1857
	 * SNB support 3 levels of watermark.
1858
	 *
1859
	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1860
	 * and disabled in the descending order
1861
	 *
1862
	 */
1863
	I915_WRITE(WM3_LP_ILK, 0);
1864
	I915_WRITE(WM2_LP_ILK, 0);
1865
	I915_WRITE(WM1_LP_ILK, 0);
1866
 
1867
	if (!single_plane_enabled(enabled) ||
1868
	    dev_priv->sprite_scaling_enabled)
1869
		return;
1870
	enabled = ffs(enabled) - 1;
1871
 
1872
	/* WM1 */
1873
	if (!ironlake_compute_srwm(dev, 1, enabled,
1874
				   SNB_READ_WM1_LATENCY() * 500,
1875
				   &sandybridge_display_srwm_info,
1876
				   &sandybridge_cursor_srwm_info,
1877
				   &fbc_wm, &plane_wm, &cursor_wm))
1878
		return;
1879
 
1880
	I915_WRITE(WM1_LP_ILK,
1881
		   WM1_LP_SR_EN |
1882
		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1883
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1884
		   (plane_wm << WM1_LP_SR_SHIFT) |
1885
		   cursor_wm);
1886
 
1887
	/* WM2 */
1888
	if (!ironlake_compute_srwm(dev, 2, enabled,
1889
				   SNB_READ_WM2_LATENCY() * 500,
1890
				   &sandybridge_display_srwm_info,
1891
				   &sandybridge_cursor_srwm_info,
1892
				   &fbc_wm, &plane_wm, &cursor_wm))
1893
		return;
1894
 
1895
	I915_WRITE(WM2_LP_ILK,
1896
		   WM2_LP_EN |
1897
		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1898
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1899
		   (plane_wm << WM1_LP_SR_SHIFT) |
1900
		   cursor_wm);
1901
 
1902
	/* WM3 */
1903
	if (!ironlake_compute_srwm(dev, 3, enabled,
1904
				   SNB_READ_WM3_LATENCY() * 500,
1905
				   &sandybridge_display_srwm_info,
1906
				   &sandybridge_cursor_srwm_info,
1907
				   &fbc_wm, &plane_wm, &cursor_wm))
1908
		return;
1909
 
1910
	I915_WRITE(WM3_LP_ILK,
1911
		   WM3_LP_EN |
1912
		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1913
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1914
		   (plane_wm << WM1_LP_SR_SHIFT) |
1915
		   cursor_wm);
1916
}
1917
 
1918
static void ivybridge_update_wm(struct drm_device *dev)
1919
{
1920
	struct drm_i915_private *dev_priv = dev->dev_private;
1921
	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
1922
	u32 val;
1923
	int fbc_wm, plane_wm, cursor_wm;
1924
	int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1925
	unsigned int enabled;
1926
 
1927
	enabled = 0;
3746 Serge 1928
	if (g4x_compute_wm0(dev, PIPE_A,
3031 serge 1929
			    &sandybridge_display_wm_info, latency,
1930
			    &sandybridge_cursor_wm_info, latency,
1931
			    &plane_wm, &cursor_wm)) {
3243 Serge 1932
		val = I915_READ(WM0_PIPEA_ILK);
1933
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1934
		I915_WRITE(WM0_PIPEA_ILK, val |
1935
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1936
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1937
			      " plane %d, " "cursor: %d\n",
1938
			      plane_wm, cursor_wm);
3746 Serge 1939
		enabled |= 1 << PIPE_A;
3243 Serge 1940
	}
1941
 
3746 Serge 1942
	if (g4x_compute_wm0(dev, PIPE_B,
3243 Serge 1943
			    &sandybridge_display_wm_info, latency,
1944
			    &sandybridge_cursor_wm_info, latency,
1945
			    &plane_wm, &cursor_wm)) {
1946
		val = I915_READ(WM0_PIPEB_ILK);
1947
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1948
		I915_WRITE(WM0_PIPEB_ILK, val |
1949
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1950
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1951
			      " plane %d, cursor: %d\n",
1952
			      plane_wm, cursor_wm);
3746 Serge 1953
		enabled |= 1 << PIPE_B;
3243 Serge 1954
	}
1955
 
3746 Serge 1956
	if (g4x_compute_wm0(dev, PIPE_C,
3243 Serge 1957
			    &sandybridge_display_wm_info, latency,
1958
			    &sandybridge_cursor_wm_info, latency,
1959
			    &plane_wm, &cursor_wm)) {
3031 serge 1960
		val = I915_READ(WM0_PIPEC_IVB);
1961
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1962
		I915_WRITE(WM0_PIPEC_IVB, val |
1963
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1964
		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1965
			      " plane %d, cursor: %d\n",
1966
			      plane_wm, cursor_wm);
3746 Serge 1967
		enabled |= 1 << PIPE_C;
3031 serge 1968
	}
1969
 
1970
	/*
1971
	 * Calculate and update the self-refresh watermark only when one
1972
	 * display plane is used.
1973
	 *
1974
	 * SNB support 3 levels of watermark.
1975
	 *
1976
	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1977
	 * and disabled in the descending order
1978
	 *
1979
	 */
1980
	I915_WRITE(WM3_LP_ILK, 0);
1981
	I915_WRITE(WM2_LP_ILK, 0);
1982
	I915_WRITE(WM1_LP_ILK, 0);
1983
 
1984
	if (!single_plane_enabled(enabled) ||
1985
	    dev_priv->sprite_scaling_enabled)
1986
		return;
1987
	enabled = ffs(enabled) - 1;
1988
 
1989
	/* WM1 */
1990
	if (!ironlake_compute_srwm(dev, 1, enabled,
1991
				   SNB_READ_WM1_LATENCY() * 500,
1992
				   &sandybridge_display_srwm_info,
1993
				   &sandybridge_cursor_srwm_info,
1994
				   &fbc_wm, &plane_wm, &cursor_wm))
1995
		return;
1996
 
1997
	I915_WRITE(WM1_LP_ILK,
1998
		   WM1_LP_SR_EN |
1999
		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2000
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
2001
		   (plane_wm << WM1_LP_SR_SHIFT) |
2002
		   cursor_wm);
2003
 
2004
	/* WM2 */
2005
	if (!ironlake_compute_srwm(dev, 2, enabled,
2006
				   SNB_READ_WM2_LATENCY() * 500,
2007
				   &sandybridge_display_srwm_info,
2008
				   &sandybridge_cursor_srwm_info,
2009
				   &fbc_wm, &plane_wm, &cursor_wm))
2010
		return;
2011
 
2012
	I915_WRITE(WM2_LP_ILK,
2013
		   WM2_LP_EN |
2014
		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2015
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
2016
		   (plane_wm << WM1_LP_SR_SHIFT) |
2017
		   cursor_wm);
2018
 
3243 Serge 2019
	/* WM3, note we have to correct the cursor latency */
3031 serge 2020
	if (!ironlake_compute_srwm(dev, 3, enabled,
2021
				   SNB_READ_WM3_LATENCY() * 500,
2022
				   &sandybridge_display_srwm_info,
2023
				   &sandybridge_cursor_srwm_info,
3243 Serge 2024
				   &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2025
	    !ironlake_compute_srwm(dev, 3, enabled,
2026
				   2 * SNB_READ_WM3_LATENCY() * 500,
2027
				   &sandybridge_display_srwm_info,
2028
				   &sandybridge_cursor_srwm_info,
2029
				   &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
3031 serge 2030
		return;
2031
 
2032
	I915_WRITE(WM3_LP_ILK,
2033
		   WM3_LP_EN |
2034
		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2035
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
2036
		   (plane_wm << WM1_LP_SR_SHIFT) |
2037
		   cursor_wm);
2038
}
2039
 
2040
static void
2041
haswell_update_linetime_wm(struct drm_device *dev, int pipe,
2042
				 struct drm_display_mode *mode)
2043
{
2044
	struct drm_i915_private *dev_priv = dev->dev_private;
2045
	u32 temp;
2046
 
2047
	temp = I915_READ(PIPE_WM_LINETIME(pipe));
2048
	temp &= ~PIPE_WM_LINETIME_MASK;
2049
 
2050
	/* The WM are computed with base on how long it takes to fill a single
2051
	 * row at the given clock rate, multiplied by 8.
2052
	 * */
2053
	temp |= PIPE_WM_LINETIME_TIME(
2054
		((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
2055
 
2056
	/* IPS watermarks are only used by pipe A, and are ignored by
2057
	 * pipes B and C.  They are calculated similarly to the common
2058
	 * linetime values, except that we are using CD clock frequency
2059
	 * in MHz instead of pixel rate for the division.
2060
	 *
2061
	 * This is a placeholder for the IPS watermark calculation code.
2062
	 */
2063
 
2064
	I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
2065
}
2066
 
2067
static bool
2068
sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2069
			      uint32_t sprite_width, int pixel_size,
2070
			      const struct intel_watermark_params *display,
2071
			      int display_latency_ns, int *sprite_wm)
2072
{
2073
	struct drm_crtc *crtc;
2074
	int clock;
2075
	int entries, tlb_miss;
2076
 
2077
	crtc = intel_get_crtc_for_plane(dev, plane);
3243 Serge 2078
	if (!intel_crtc_active(crtc)) {
3031 serge 2079
		*sprite_wm = display->guard_size;
2080
		return false;
2081
	}
2082
 
2083
	clock = crtc->mode.clock;
2084
 
2085
	/* Use the small buffer method to calculate the sprite watermark */
2086
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2087
	tlb_miss = display->fifo_size*display->cacheline_size -
2088
		sprite_width * 8;
2089
	if (tlb_miss > 0)
2090
		entries += tlb_miss;
2091
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
2092
	*sprite_wm = entries + display->guard_size;
2093
	if (*sprite_wm > (int)display->max_wm)
2094
		*sprite_wm = display->max_wm;
2095
 
2096
	return true;
2097
}
2098
 
2099
static bool
2100
sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2101
				uint32_t sprite_width, int pixel_size,
2102
				const struct intel_watermark_params *display,
2103
				int latency_ns, int *sprite_wm)
2104
{
2105
	struct drm_crtc *crtc;
2106
	unsigned long line_time_us;
2107
	int clock;
2108
	int line_count, line_size;
2109
	int small, large;
2110
	int entries;
2111
 
2112
	if (!latency_ns) {
2113
		*sprite_wm = 0;
2114
		return false;
2115
	}
2116
 
2117
	crtc = intel_get_crtc_for_plane(dev, plane);
2118
	clock = crtc->mode.clock;
2119
	if (!clock) {
2120
		*sprite_wm = 0;
2121
		return false;
2122
	}
2123
 
2124
	line_time_us = (sprite_width * 1000) / clock;
2125
	if (!line_time_us) {
2126
		*sprite_wm = 0;
2127
		return false;
2128
	}
2129
 
2130
	line_count = (latency_ns / line_time_us + 1000) / 1000;
2131
	line_size = sprite_width * pixel_size;
2132
 
2133
	/* Use the minimum of the small and large buffer method for primary */
2134
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2135
	large = line_count * line_size;
2136
 
2137
	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2138
	*sprite_wm = entries + display->guard_size;
2139
 
2140
	return *sprite_wm > 0x3ff ? false : true;
2141
}
2142
 
2143
static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2144
					 uint32_t sprite_width, int pixel_size)
2145
{
2146
	struct drm_i915_private *dev_priv = dev->dev_private;
2147
	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
2148
	u32 val;
2149
	int sprite_wm, reg;
2150
	int ret;
2151
 
2152
	switch (pipe) {
2153
	case 0:
2154
		reg = WM0_PIPEA_ILK;
2155
		break;
2156
	case 1:
2157
		reg = WM0_PIPEB_ILK;
2158
		break;
2159
	case 2:
2160
		reg = WM0_PIPEC_IVB;
2161
		break;
2162
	default:
2163
		return; /* bad pipe */
2164
	}
2165
 
2166
	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2167
					    &sandybridge_display_wm_info,
2168
					    latency, &sprite_wm);
2169
	if (!ret) {
2170
		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2171
			      pipe);
2172
		return;
2173
	}
2174
 
2175
	val = I915_READ(reg);
2176
	val &= ~WM0_PIPE_SPRITE_MASK;
2177
	I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2178
	DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2179
 
2180
 
2181
	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2182
					      pixel_size,
2183
					      &sandybridge_display_srwm_info,
2184
					      SNB_READ_WM1_LATENCY() * 500,
2185
					      &sprite_wm);
2186
	if (!ret) {
2187
		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2188
			      pipe);
2189
		return;
2190
	}
2191
	I915_WRITE(WM1S_LP_ILK, sprite_wm);
2192
 
2193
	/* Only IVB has two more LP watermarks for sprite */
2194
	if (!IS_IVYBRIDGE(dev))
2195
		return;
2196
 
2197
	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2198
					      pixel_size,
2199
					      &sandybridge_display_srwm_info,
2200
					      SNB_READ_WM2_LATENCY() * 500,
2201
					      &sprite_wm);
2202
	if (!ret) {
2203
		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2204
			      pipe);
2205
		return;
2206
	}
2207
	I915_WRITE(WM2S_LP_IVB, sprite_wm);
2208
 
2209
	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2210
					      pixel_size,
2211
					      &sandybridge_display_srwm_info,
2212
					      SNB_READ_WM3_LATENCY() * 500,
2213
					      &sprite_wm);
2214
	if (!ret) {
2215
		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2216
			      pipe);
2217
		return;
2218
	}
2219
	I915_WRITE(WM3S_LP_IVB, sprite_wm);
2220
}
2221
 
2222
/**
2223
 * intel_update_watermarks - update FIFO watermark values based on current modes
2224
 *
2225
 * Calculate watermark values for the various WM regs based on current mode
2226
 * and plane configuration.
2227
 *
2228
 * There are several cases to deal with here:
2229
 *   - normal (i.e. non-self-refresh)
2230
 *   - self-refresh (SR) mode
2231
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
2232
 *   - lines are small relative to FIFO size (buffer can hold more than 2
2233
 *     lines), so need to account for TLB latency
2234
 *
2235
 *   The normal calculation is:
2236
 *     watermark = dotclock * bytes per pixel * latency
2237
 *   where latency is platform & configuration dependent (we assume pessimal
2238
 *   values here).
2239
 *
2240
 *   The SR calculation is:
2241
 *     watermark = (trunc(latency/line time)+1) * surface width *
2242
 *       bytes per pixel
2243
 *   where
2244
 *     line time = htotal / dotclock
2245
 *     surface width = hdisplay for normal plane and 64 for cursor
2246
 *   and latency is assumed to be high, as above.
2247
 *
2248
 * The final value programmed to the register should always be rounded up,
2249
 * and include an extra 2 entries to account for clock crossings.
2250
 *
2251
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
2252
 * to set the non-SR watermarks to 8.
2253
 */
2254
void intel_update_watermarks(struct drm_device *dev)
2255
{
2256
	struct drm_i915_private *dev_priv = dev->dev_private;
2257
 
2258
	if (dev_priv->display.update_wm)
2259
		dev_priv->display.update_wm(dev);
2260
}
2261
 
2262
void intel_update_linetime_watermarks(struct drm_device *dev,
2263
		int pipe, struct drm_display_mode *mode)
2264
{
2265
	struct drm_i915_private *dev_priv = dev->dev_private;
2266
 
2267
	if (dev_priv->display.update_linetime_wm)
2268
		dev_priv->display.update_linetime_wm(dev, pipe, mode);
2269
}
2270
 
2271
void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2272
				    uint32_t sprite_width, int pixel_size)
2273
{
2274
	struct drm_i915_private *dev_priv = dev->dev_private;
2275
 
2276
	if (dev_priv->display.update_sprite_wm)
2277
		dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2278
						   pixel_size);
2279
}
2280
 
2281
static struct drm_i915_gem_object *
2282
intel_alloc_context_page(struct drm_device *dev)
2283
{
2284
	struct drm_i915_gem_object *ctx;
2285
	int ret;
2286
 
2287
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2288
 
2289
	ctx = i915_gem_alloc_object(dev, 4096);
2290
	if (!ctx) {
2291
		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2292
		return NULL;
2293
	}
2294
 
2295
	ret = i915_gem_object_pin(ctx, 4096, true, false);
2296
	if (ret) {
2297
		DRM_ERROR("failed to pin power context: %d\n", ret);
2298
		goto err_unref;
2299
	}
2300
 
2301
	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2302
	if (ret) {
2303
		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2304
		goto err_unpin;
2305
	}
2306
 
2307
	return ctx;
2308
 
2309
err_unpin:
2310
	i915_gem_object_unpin(ctx);
2311
err_unref:
2312
	drm_gem_object_unreference(&ctx->base);
2313
	return NULL;
2314
}
2315
 
2316
/**
2317
 * Lock protecting IPS related data structures
2318
 */
2319
DEFINE_SPINLOCK(mchdev_lock);
2320
 
2321
/* Global for IPS driver to get at the current i915 device. Protected by
2322
 * mchdev_lock. */
2323
static struct drm_i915_private *i915_mch_dev;
2324
 
2325
bool ironlake_set_drps(struct drm_device *dev, u8 val)
2326
{
2327
	struct drm_i915_private *dev_priv = dev->dev_private;
2328
	u16 rgvswctl;
2329
 
2330
	assert_spin_locked(&mchdev_lock);
2331
 
2332
	rgvswctl = I915_READ16(MEMSWCTL);
2333
	if (rgvswctl & MEMCTL_CMD_STS) {
2334
		DRM_DEBUG("gpu busy, RCS change rejected\n");
2335
		return false; /* still busy with another command */
2336
	}
2337
 
2338
	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2339
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2340
	I915_WRITE16(MEMSWCTL, rgvswctl);
2341
	POSTING_READ16(MEMSWCTL);
2342
 
2343
	rgvswctl |= MEMCTL_CMD_STS;
2344
	I915_WRITE16(MEMSWCTL, rgvswctl);
2345
 
2346
	return true;
2347
}
2348
 
2349
static void ironlake_enable_drps(struct drm_device *dev)
2350
{
2351
	struct drm_i915_private *dev_priv = dev->dev_private;
2352
	u32 rgvmodectl = I915_READ(MEMMODECTL);
2353
	u8 fmax, fmin, fstart, vstart;
2354
 
2355
	spin_lock_irq(&mchdev_lock);
2356
 
2357
	/* Enable temp reporting */
2358
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2359
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2360
 
2361
	/* 100ms RC evaluation intervals */
2362
	I915_WRITE(RCUPEI, 100000);
2363
	I915_WRITE(RCDNEI, 100000);
2364
 
2365
	/* Set max/min thresholds to 90ms and 80ms respectively */
2366
	I915_WRITE(RCBMAXAVG, 90000);
2367
	I915_WRITE(RCBMINAVG, 80000);
2368
 
2369
	I915_WRITE(MEMIHYST, 1);
2370
 
2371
	/* Set up min, max, and cur for interrupt handling */
2372
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2373
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2374
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2375
		MEMMODE_FSTART_SHIFT;
2376
 
2377
	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2378
		PXVFREQ_PX_SHIFT;
2379
 
2380
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2381
	dev_priv->ips.fstart = fstart;
2382
 
2383
	dev_priv->ips.max_delay = fstart;
2384
	dev_priv->ips.min_delay = fmin;
2385
	dev_priv->ips.cur_delay = fstart;
2386
 
2387
	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2388
			 fmax, fmin, fstart);
2389
 
2390
	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2391
 
2392
	/*
2393
	 * Interrupts will be enabled in ironlake_irq_postinstall
2394
	 */
2395
 
2396
	I915_WRITE(VIDSTART, vstart);
2397
	POSTING_READ(VIDSTART);
2398
 
2399
	rgvmodectl |= MEMMODE_SWMODE_EN;
2400
	I915_WRITE(MEMMODECTL, rgvmodectl);
2401
 
2402
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2403
		DRM_ERROR("stuck trying to change perf mode\n");
2404
	mdelay(1);
2405
 
2406
	ironlake_set_drps(dev, fstart);
2407
 
2408
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2409
		I915_READ(0x112e0);
2410
    dev_priv->ips.last_time1 = jiffies_to_msecs(GetTimerTicks());
2411
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
3482 Serge 2412
	getrawmonotonic(&dev_priv->ips.last_time2);
3031 serge 2413
 
2414
	spin_unlock_irq(&mchdev_lock);
2415
}
2416
 
2417
static void ironlake_disable_drps(struct drm_device *dev)
2418
{
2419
	struct drm_i915_private *dev_priv = dev->dev_private;
2420
	u16 rgvswctl;
2421
 
2422
	spin_lock_irq(&mchdev_lock);
2423
 
2424
	rgvswctl = I915_READ16(MEMSWCTL);
2425
 
2426
	/* Ack interrupts, disable EFC interrupt */
2427
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2428
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2429
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2430
	I915_WRITE(DEIIR, DE_PCU_EVENT);
2431
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2432
 
2433
	/* Go back to the starting frequency */
2434
	ironlake_set_drps(dev, dev_priv->ips.fstart);
2435
	mdelay(1);
2436
	rgvswctl |= MEMCTL_CMD_STS;
2437
	I915_WRITE(MEMSWCTL, rgvswctl);
2438
	mdelay(1);
2439
 
2440
	spin_unlock_irq(&mchdev_lock);
2441
}
2442
 
2443
/* There's a funny hw issue where the hw returns all 0 when reading from
2444
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2445
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
2446
 * all limits and the gpu stuck at whatever frequency it is at atm).
2447
 */
2448
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2449
{
2450
	u32 limits;
2451
 
2452
	limits = 0;
2453
 
2454
	if (*val >= dev_priv->rps.max_delay)
2455
		*val = dev_priv->rps.max_delay;
2456
	limits |= dev_priv->rps.max_delay << 24;
2457
 
2458
	/* Only set the down limit when we've reached the lowest level to avoid
2459
	 * getting more interrupts, otherwise leave this clear. This prevents a
2460
	 * race in the hw when coming out of rc6: There's a tiny window where
2461
	 * the hw runs at the minimal clock before selecting the desired
2462
	 * frequency, if the down threshold expires in that window we will not
2463
	 * receive a down interrupt. */
2464
	if (*val <= dev_priv->rps.min_delay) {
2465
		*val = dev_priv->rps.min_delay;
2466
		limits |= dev_priv->rps.min_delay << 16;
2467
	}
2468
 
2469
	return limits;
2470
}
2471
 
2472
void gen6_set_rps(struct drm_device *dev, u8 val)
2473
{
2474
	struct drm_i915_private *dev_priv = dev->dev_private;
2475
	u32 limits = gen6_rps_limits(dev_priv, &val);
2476
 
3243 Serge 2477
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 2478
	WARN_ON(val > dev_priv->rps.max_delay);
2479
	WARN_ON(val < dev_priv->rps.min_delay);
2480
 
2481
	if (val == dev_priv->rps.cur_delay)
2482
		return;
2483
 
3746 Serge 2484
	if (IS_HASWELL(dev))
2485
		I915_WRITE(GEN6_RPNSWREQ,
2486
			   HSW_FREQUENCY(val));
2487
	else
3031 serge 2488
	I915_WRITE(GEN6_RPNSWREQ,
2489
		   GEN6_FREQUENCY(val) |
2490
		   GEN6_OFFSET(0) |
2491
		   GEN6_AGGRESSIVE_TURBO);
2492
 
2493
	/* Make sure we continue to get interrupts
2494
	 * until we hit the minimum or maximum frequencies.
2495
	 */
2496
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2497
 
2498
	POSTING_READ(GEN6_RPNSWREQ);
2499
 
2500
	dev_priv->rps.cur_delay = val;
2501
 
2502
	trace_intel_gpu_freq_change(val * 50);
2503
}
2504
 
2505
static void gen6_disable_rps(struct drm_device *dev)
2506
{
2507
	struct drm_i915_private *dev_priv = dev->dev_private;
2508
 
2509
	I915_WRITE(GEN6_RC_CONTROL, 0);
2510
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2511
	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2512
	I915_WRITE(GEN6_PMIER, 0);
2513
	/* Complete PM interrupt masking here doesn't race with the rps work
2514
	 * item again unmasking PM interrupts because that is using a different
2515
	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2516
	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2517
 
2518
	spin_lock_irq(&dev_priv->rps.lock);
2519
	dev_priv->rps.pm_iir = 0;
2520
	spin_unlock_irq(&dev_priv->rps.lock);
2521
 
2522
	I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2523
}
2524
 
2525
int intel_enable_rc6(const struct drm_device *dev)
2526
{
2527
	/* Respect the kernel parameter if it is set */
2528
	if (i915_enable_rc6 >= 0)
2529
		return i915_enable_rc6;
2530
 
3120 serge 2531
	/* Disable RC6 on Ironlake */
2532
	if (INTEL_INFO(dev)->gen == 5)
2533
		return 0;
3031 serge 2534
 
2535
	if (IS_HASWELL(dev)) {
2536
		DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2537
		return INTEL_RC6_ENABLE;
2538
	}
2539
 
2540
	/* snb/ivb have more than one rc6 state. */
2541
	if (INTEL_INFO(dev)->gen == 6) {
2542
		DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2543
		return INTEL_RC6_ENABLE;
2544
	}
2545
 
2546
	DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2547
	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2548
}
2549
 
2550
static void gen6_enable_rps(struct drm_device *dev)
2551
{
2552
	struct drm_i915_private *dev_priv = dev->dev_private;
2553
	struct intel_ring_buffer *ring;
2554
	u32 rp_state_cap;
2555
	u32 gt_perf_status;
3243 Serge 2556
	u32 rc6vids, pcu_mbox, rc6_mask = 0;
3031 serge 2557
	u32 gtfifodbg;
2558
	int rc6_mode;
3243 Serge 2559
	int i, ret;
3031 serge 2560
 
3243 Serge 2561
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 2562
 
2563
	/* Here begins a magic sequence of register writes to enable
2564
	 * auto-downclocking.
2565
	 *
2566
	 * Perhaps there might be some value in exposing these to
2567
	 * userspace...
2568
	 */
2569
	I915_WRITE(GEN6_RC_STATE, 0);
2570
 
2571
	/* Clear the DBG now so we don't confuse earlier errors */
2572
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2573
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2574
		I915_WRITE(GTFIFODBG, gtfifodbg);
2575
	}
2576
 
2577
	gen6_gt_force_wake_get(dev_priv);
2578
 
2579
	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2580
	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2581
 
3746 Serge 2582
	/* In units of 50MHz */
2583
	dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3031 serge 2584
	dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2585
	dev_priv->rps.cur_delay = 0;
2586
 
2587
	/* disable the counters and set deterministic thresholds */
2588
	I915_WRITE(GEN6_RC_CONTROL, 0);
2589
 
2590
	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2591
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2592
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2593
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2594
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2595
 
2596
	for_each_ring(ring, dev_priv, i)
2597
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2598
 
2599
	I915_WRITE(GEN6_RC_SLEEP, 0);
2600
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2601
	I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3480 Serge 2602
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3031 serge 2603
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2604
 
2605
	/* Check if we are enabling RC6 */
2606
	rc6_mode = intel_enable_rc6(dev_priv->dev);
2607
	if (rc6_mode & INTEL_RC6_ENABLE)
2608
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2609
 
2610
	/* We don't use those on Haswell */
2611
	if (!IS_HASWELL(dev)) {
2612
		if (rc6_mode & INTEL_RC6p_ENABLE)
2613
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2614
 
2615
		if (rc6_mode & INTEL_RC6pp_ENABLE)
2616
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2617
	}
2618
 
2619
	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2620
			(rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2621
			(rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2622
			(rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2623
 
2624
	I915_WRITE(GEN6_RC_CONTROL,
2625
		   rc6_mask |
2626
		   GEN6_RC_CTL_EI_MODE(1) |
2627
		   GEN6_RC_CTL_HW_ENABLE);
2628
 
3746 Serge 2629
	if (IS_HASWELL(dev)) {
2630
		I915_WRITE(GEN6_RPNSWREQ,
2631
			   HSW_FREQUENCY(10));
2632
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
2633
			   HSW_FREQUENCY(12));
2634
	} else {
3031 serge 2635
	I915_WRITE(GEN6_RPNSWREQ,
2636
		   GEN6_FREQUENCY(10) |
2637
		   GEN6_OFFSET(0) |
2638
		   GEN6_AGGRESSIVE_TURBO);
2639
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
2640
		   GEN6_FREQUENCY(12));
3746 Serge 2641
	}
3031 serge 2642
 
2643
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2644
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2645
		   dev_priv->rps.max_delay << 24 |
2646
		   dev_priv->rps.min_delay << 16);
2647
 
2648
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2649
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2650
	I915_WRITE(GEN6_RP_UP_EI, 66000);
2651
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2652
 
2653
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2654
	I915_WRITE(GEN6_RP_CONTROL,
2655
		   GEN6_RP_MEDIA_TURBO |
2656
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
2657
		   GEN6_RP_MEDIA_IS_GFX |
2658
		   GEN6_RP_ENABLE |
2659
		   GEN6_RP_UP_BUSY_AVG |
2660
		   (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2661
 
3243 Serge 2662
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
2663
	if (!ret) {
2664
		pcu_mbox = 0;
2665
		ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3746 Serge 2666
		if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
2667
			DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
2668
					 (dev_priv->rps.max_delay & 0xff) * 50,
2669
					 (pcu_mbox & 0xff) * 50);
2670
			dev_priv->rps.hw_max = pcu_mbox & 0xff;
3031 serge 2671
	}
3243 Serge 2672
	} else {
2673
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2674
	}
3031 serge 2675
 
2676
	gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2677
 
2678
	/* requires MSI enabled */
2679
	I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2680
	spin_lock_irq(&dev_priv->rps.lock);
2681
	WARN_ON(dev_priv->rps.pm_iir != 0);
2682
	I915_WRITE(GEN6_PMIMR, 0);
2683
	spin_unlock_irq(&dev_priv->rps.lock);
2684
	/* enable all PM interrupts */
2685
	I915_WRITE(GEN6_PMINTRMSK, 0);
2686
 
3243 Serge 2687
	rc6vids = 0;
2688
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
2689
	if (IS_GEN6(dev) && ret) {
2690
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
2691
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
2692
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
2693
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
2694
		rc6vids &= 0xffff00;
2695
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
2696
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
2697
		if (ret)
2698
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
2699
	}
2700
 
3031 serge 2701
	gen6_gt_force_wake_put(dev_priv);
2702
}
2703
 
2704
static void gen6_update_ring_freq(struct drm_device *dev)
2705
{
2706
	struct drm_i915_private *dev_priv = dev->dev_private;
2707
	int min_freq = 15;
3746 Serge 2708
	unsigned int gpu_freq;
2709
	unsigned int max_ia_freq, min_ring_freq;
3031 serge 2710
	int scaling_factor = 180;
2711
 
3243 Serge 2712
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 2713
 
2714
	max_ia_freq = cpufreq_quick_get_max(0);
2715
	/*
2716
	 * Default to measured freq if none found, PCU will ensure we don't go
2717
	 * over
2718
	 */
2719
	if (!max_ia_freq)
2720
		max_ia_freq = tsc_khz;
2721
 
2722
	/* Convert from kHz to MHz */
2723
	max_ia_freq /= 1000;
2724
 
3746 Serge 2725
	min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
2726
	/* convert DDR frequency from units of 133.3MHz to bandwidth */
2727
	min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
2728
 
3031 serge 2729
	/*
2730
	 * For each potential GPU frequency, load a ring frequency we'd like
2731
	 * to use for memory access.  We do this by specifying the IA frequency
2732
	 * the PCU should use as a reference to determine the ring frequency.
2733
	 */
2734
	for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2735
	     gpu_freq--) {
2736
		int diff = dev_priv->rps.max_delay - gpu_freq;
3746 Serge 2737
		unsigned int ia_freq = 0, ring_freq = 0;
3031 serge 2738
 
3746 Serge 2739
		if (IS_HASWELL(dev)) {
2740
			ring_freq = (gpu_freq * 5 + 3) / 4;
2741
			ring_freq = max(min_ring_freq, ring_freq);
2742
			/* leave ia_freq as the default, chosen by cpufreq */
2743
		} else {
2744
			/* On older processors, there is no separate ring
2745
			 * clock domain, so in order to boost the bandwidth
2746
			 * of the ring, we need to upclock the CPU (ia_freq).
2747
			 *
2748
			 * For GPU frequencies less than 750MHz,
2749
			 * just use the lowest ring freq.
3031 serge 2750
		 */
2751
		if (gpu_freq < min_freq)
2752
			ia_freq = 800;
2753
		else
2754
			ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2755
		ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3746 Serge 2756
		}
3031 serge 2757
 
3243 Serge 2758
		sandybridge_pcode_write(dev_priv,
2759
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3746 Serge 2760
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
2761
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
2762
					gpu_freq);
3031 serge 2763
	}
2764
}
2765
 
2766
void ironlake_teardown_rc6(struct drm_device *dev)
2767
{
2768
	struct drm_i915_private *dev_priv = dev->dev_private;
2769
 
3243 Serge 2770
	if (dev_priv->ips.renderctx) {
2771
		i915_gem_object_unpin(dev_priv->ips.renderctx);
2772
		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
2773
		dev_priv->ips.renderctx = NULL;
3031 serge 2774
	}
2775
 
3243 Serge 2776
	if (dev_priv->ips.pwrctx) {
2777
		i915_gem_object_unpin(dev_priv->ips.pwrctx);
2778
		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
2779
		dev_priv->ips.pwrctx = NULL;
3031 serge 2780
	}
2781
}
2782
 
2783
static void ironlake_disable_rc6(struct drm_device *dev)
2784
{
2785
	struct drm_i915_private *dev_priv = dev->dev_private;
2786
 
2787
	if (I915_READ(PWRCTXA)) {
2788
		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2789
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2790
		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2791
			 50);
2792
 
2793
		I915_WRITE(PWRCTXA, 0);
2794
		POSTING_READ(PWRCTXA);
2795
 
2796
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2797
		POSTING_READ(RSTDBYCTL);
2798
	}
2799
}
2800
 
2801
static int ironlake_setup_rc6(struct drm_device *dev)
2802
{
2803
	struct drm_i915_private *dev_priv = dev->dev_private;
2804
 
3243 Serge 2805
	if (dev_priv->ips.renderctx == NULL)
2806
		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
2807
	if (!dev_priv->ips.renderctx)
3031 serge 2808
		return -ENOMEM;
2809
 
3243 Serge 2810
	if (dev_priv->ips.pwrctx == NULL)
2811
		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
2812
	if (!dev_priv->ips.pwrctx) {
3031 serge 2813
		ironlake_teardown_rc6(dev);
2814
		return -ENOMEM;
2815
	}
2816
 
2817
	return 0;
2818
}
2819
 
2820
static void ironlake_enable_rc6(struct drm_device *dev)
2821
{
2822
	struct drm_i915_private *dev_priv = dev->dev_private;
2823
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3243 Serge 2824
	bool was_interruptible;
3031 serge 2825
	int ret;
2826
 
2827
	/* rc6 disabled by default due to repeated reports of hanging during
2828
	 * boot and resume.
2829
	 */
2830
	if (!intel_enable_rc6(dev))
2831
		return;
2832
 
2833
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2834
 
2835
	ret = ironlake_setup_rc6(dev);
2836
	if (ret)
2837
		return;
2838
 
3243 Serge 2839
	was_interruptible = dev_priv->mm.interruptible;
2840
	dev_priv->mm.interruptible = false;
2841
 
3031 serge 2842
	/*
2843
	 * GPU can automatically power down the render unit if given a page
2844
	 * to save state.
2845
	 */
2846
	ret = intel_ring_begin(ring, 6);
2847
	if (ret) {
2848
		ironlake_teardown_rc6(dev);
3243 Serge 2849
		dev_priv->mm.interruptible = was_interruptible;
3031 serge 2850
		return;
2851
	}
2852
 
2853
	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2854
	intel_ring_emit(ring, MI_SET_CONTEXT);
3243 Serge 2855
	intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
3031 serge 2856
			MI_MM_SPACE_GTT |
2857
			MI_SAVE_EXT_STATE_EN |
2858
			MI_RESTORE_EXT_STATE_EN |
2859
			MI_RESTORE_INHIBIT);
2860
	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2861
	intel_ring_emit(ring, MI_NOOP);
2862
	intel_ring_emit(ring, MI_FLUSH);
2863
	intel_ring_advance(ring);
2864
 
2865
	/*
2866
	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2867
	 * does an implicit flush, combined with MI_FLUSH above, it should be
2868
	 * safe to assume that renderctx is valid
2869
	 */
3243 Serge 2870
	ret = intel_ring_idle(ring);
2871
	dev_priv->mm.interruptible = was_interruptible;
3031 serge 2872
	if (ret) {
3746 Serge 2873
		DRM_ERROR("failed to enable ironlake power savings\n");
3031 serge 2874
		ironlake_teardown_rc6(dev);
2875
		return;
2876
	}
2877
 
3243 Serge 2878
	I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
3031 serge 2879
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2880
}
2881
 
2882
static unsigned long intel_pxfreq(u32 vidfreq)
2883
{
2884
	unsigned long freq;
2885
	int div = (vidfreq & 0x3f0000) >> 16;
2886
	int post = (vidfreq & 0x3000) >> 12;
2887
	int pre = (vidfreq & 0x7);
2888
 
2889
	if (!pre)
2890
		return 0;
2891
 
2892
	freq = ((div * 133333) / ((1<
2893
 
2894
	return freq;
2895
}
2896
 
2897
static const struct cparams {
2898
	u16 i;
2899
	u16 t;
2900
	u16 m;
2901
	u16 c;
2902
} cparams[] = {
2903
	{ 1, 1333, 301, 28664 },
2904
	{ 1, 1066, 294, 24460 },
2905
	{ 1, 800, 294, 25192 },
2906
	{ 0, 1333, 276, 27605 },
2907
	{ 0, 1066, 276, 27605 },
2908
	{ 0, 800, 231, 23784 },
2909
};
2910
 
2911
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
2912
{
2913
	u64 total_count, diff, ret;
2914
	u32 count1, count2, count3, m = 0, c = 0;
2915
    unsigned long now = jiffies_to_msecs(GetTimerTicks()), diff1;
2916
	int i;
2917
 
2918
	assert_spin_locked(&mchdev_lock);
2919
 
2920
	diff1 = now - dev_priv->ips.last_time1;
2921
 
2922
	/* Prevent division-by-zero if we are asking too fast.
2923
	 * Also, we don't get interesting results if we are polling
2924
	 * faster than once in 10ms, so just return the saved value
2925
	 * in such cases.
2926
	 */
2927
	if (diff1 <= 10)
2928
		return dev_priv->ips.chipset_power;
2929
 
2930
	count1 = I915_READ(DMIEC);
2931
	count2 = I915_READ(DDREC);
2932
	count3 = I915_READ(CSIEC);
2933
 
2934
	total_count = count1 + count2 + count3;
2935
 
2936
	/* FIXME: handle per-counter overflow */
2937
	if (total_count < dev_priv->ips.last_count1) {
2938
		diff = ~0UL - dev_priv->ips.last_count1;
2939
		diff += total_count;
2940
	} else {
2941
		diff = total_count - dev_priv->ips.last_count1;
2942
	}
2943
 
2944
	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2945
		if (cparams[i].i == dev_priv->ips.c_m &&
2946
		    cparams[i].t == dev_priv->ips.r_t) {
2947
			m = cparams[i].m;
2948
			c = cparams[i].c;
2949
			break;
2950
		}
2951
	}
2952
 
2953
	diff = div_u64(diff, diff1);
2954
	ret = ((m * diff) + c);
2955
	ret = div_u64(ret, 10);
2956
 
2957
	dev_priv->ips.last_count1 = total_count;
2958
	dev_priv->ips.last_time1 = now;
2959
 
2960
	dev_priv->ips.chipset_power = ret;
2961
 
2962
	return ret;
2963
}
2964
 
2965
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2966
{
2967
	unsigned long val;
2968
 
2969
	if (dev_priv->info->gen != 5)
2970
		return 0;
2971
 
2972
	spin_lock_irq(&mchdev_lock);
2973
 
2974
	val = __i915_chipset_val(dev_priv);
2975
 
2976
	spin_unlock_irq(&mchdev_lock);
2977
 
2978
	return val;
2979
}
2980
 
2981
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2982
{
2983
	unsigned long m, x, b;
2984
	u32 tsfs;
2985
 
2986
	tsfs = I915_READ(TSFS);
2987
 
2988
	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2989
	x = I915_READ8(TR1);
2990
 
2991
	b = tsfs & TSFS_INTR_MASK;
2992
 
2993
	return ((m * x) / 127) - b;
2994
}
2995
 
2996
static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2997
{
2998
	static const struct v_table {
2999
		u16 vd; /* in .1 mil */
3000
		u16 vm; /* in .1 mil */
3001
	} v_table[] = {
3002
		{ 0, 0, },
3003
		{ 375, 0, },
3004
		{ 500, 0, },
3005
		{ 625, 0, },
3006
		{ 750, 0, },
3007
		{ 875, 0, },
3008
		{ 1000, 0, },
3009
		{ 1125, 0, },
3010
		{ 4125, 3000, },
3011
		{ 4125, 3000, },
3012
		{ 4125, 3000, },
3013
		{ 4125, 3000, },
3014
		{ 4125, 3000, },
3015
		{ 4125, 3000, },
3016
		{ 4125, 3000, },
3017
		{ 4125, 3000, },
3018
		{ 4125, 3000, },
3019
		{ 4125, 3000, },
3020
		{ 4125, 3000, },
3021
		{ 4125, 3000, },
3022
		{ 4125, 3000, },
3023
		{ 4125, 3000, },
3024
		{ 4125, 3000, },
3025
		{ 4125, 3000, },
3026
		{ 4125, 3000, },
3027
		{ 4125, 3000, },
3028
		{ 4125, 3000, },
3029
		{ 4125, 3000, },
3030
		{ 4125, 3000, },
3031
		{ 4125, 3000, },
3032
		{ 4125, 3000, },
3033
		{ 4125, 3000, },
3034
		{ 4250, 3125, },
3035
		{ 4375, 3250, },
3036
		{ 4500, 3375, },
3037
		{ 4625, 3500, },
3038
		{ 4750, 3625, },
3039
		{ 4875, 3750, },
3040
		{ 5000, 3875, },
3041
		{ 5125, 4000, },
3042
		{ 5250, 4125, },
3043
		{ 5375, 4250, },
3044
		{ 5500, 4375, },
3045
		{ 5625, 4500, },
3046
		{ 5750, 4625, },
3047
		{ 5875, 4750, },
3048
		{ 6000, 4875, },
3049
		{ 6125, 5000, },
3050
		{ 6250, 5125, },
3051
		{ 6375, 5250, },
3052
		{ 6500, 5375, },
3053
		{ 6625, 5500, },
3054
		{ 6750, 5625, },
3055
		{ 6875, 5750, },
3056
		{ 7000, 5875, },
3057
		{ 7125, 6000, },
3058
		{ 7250, 6125, },
3059
		{ 7375, 6250, },
3060
		{ 7500, 6375, },
3061
		{ 7625, 6500, },
3062
		{ 7750, 6625, },
3063
		{ 7875, 6750, },
3064
		{ 8000, 6875, },
3065
		{ 8125, 7000, },
3066
		{ 8250, 7125, },
3067
		{ 8375, 7250, },
3068
		{ 8500, 7375, },
3069
		{ 8625, 7500, },
3070
		{ 8750, 7625, },
3071
		{ 8875, 7750, },
3072
		{ 9000, 7875, },
3073
		{ 9125, 8000, },
3074
		{ 9250, 8125, },
3075
		{ 9375, 8250, },
3076
		{ 9500, 8375, },
3077
		{ 9625, 8500, },
3078
		{ 9750, 8625, },
3079
		{ 9875, 8750, },
3080
		{ 10000, 8875, },
3081
		{ 10125, 9000, },
3082
		{ 10250, 9125, },
3083
		{ 10375, 9250, },
3084
		{ 10500, 9375, },
3085
		{ 10625, 9500, },
3086
		{ 10750, 9625, },
3087
		{ 10875, 9750, },
3088
		{ 11000, 9875, },
3089
		{ 11125, 10000, },
3090
		{ 11250, 10125, },
3091
		{ 11375, 10250, },
3092
		{ 11500, 10375, },
3093
		{ 11625, 10500, },
3094
		{ 11750, 10625, },
3095
		{ 11875, 10750, },
3096
		{ 12000, 10875, },
3097
		{ 12125, 11000, },
3098
		{ 12250, 11125, },
3099
		{ 12375, 11250, },
3100
		{ 12500, 11375, },
3101
		{ 12625, 11500, },
3102
		{ 12750, 11625, },
3103
		{ 12875, 11750, },
3104
		{ 13000, 11875, },
3105
		{ 13125, 12000, },
3106
		{ 13250, 12125, },
3107
		{ 13375, 12250, },
3108
		{ 13500, 12375, },
3109
		{ 13625, 12500, },
3110
		{ 13750, 12625, },
3111
		{ 13875, 12750, },
3112
		{ 14000, 12875, },
3113
		{ 14125, 13000, },
3114
		{ 14250, 13125, },
3115
		{ 14375, 13250, },
3116
		{ 14500, 13375, },
3117
		{ 14625, 13500, },
3118
		{ 14750, 13625, },
3119
		{ 14875, 13750, },
3120
		{ 15000, 13875, },
3121
		{ 15125, 14000, },
3122
		{ 15250, 14125, },
3123
		{ 15375, 14250, },
3124
		{ 15500, 14375, },
3125
		{ 15625, 14500, },
3126
		{ 15750, 14625, },
3127
		{ 15875, 14750, },
3128
		{ 16000, 14875, },
3129
		{ 16125, 15000, },
3130
	};
3131
	if (dev_priv->info->is_mobile)
3132
		return v_table[pxvid].vm;
3133
	else
3134
		return v_table[pxvid].vd;
3135
}
3136
 
3137
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3138
{
3139
	struct timespec now, diff1;
3140
	u64 diff;
3141
	unsigned long diffms;
3142
	u32 count;
3143
 
3144
	assert_spin_locked(&mchdev_lock);
3145
 
3146
	getrawmonotonic(&now);
3147
	diff1 = timespec_sub(now, dev_priv->ips.last_time2);
3148
 
3149
	/* Don't divide by 0 */
3150
	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3151
	if (!diffms)
3152
		return;
3153
 
3154
	count = I915_READ(GFXEC);
3155
 
3156
	if (count < dev_priv->ips.last_count2) {
3157
		diff = ~0UL - dev_priv->ips.last_count2;
3158
		diff += count;
3159
	} else {
3160
		diff = count - dev_priv->ips.last_count2;
3161
	}
3162
 
3163
	dev_priv->ips.last_count2 = count;
3164
	dev_priv->ips.last_time2 = now;
3165
 
3166
	/* More magic constants... */
3167
	diff = diff * 1181;
3168
	diff = div_u64(diff, diffms * 10);
3169
	dev_priv->ips.gfx_power = diff;
3170
}
3171
 
3172
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3173
{
3174
	if (dev_priv->info->gen != 5)
3175
		return;
3176
 
3177
	spin_lock_irq(&mchdev_lock);
3178
 
3179
	__i915_update_gfx_val(dev_priv);
3180
 
3181
	spin_unlock_irq(&mchdev_lock);
3182
}
3183
 
3184
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
3185
{
3186
	unsigned long t, corr, state1, corr2, state2;
3187
	u32 pxvid, ext_v;
3188
 
3189
	assert_spin_locked(&mchdev_lock);
3190
 
3191
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3192
	pxvid = (pxvid >> 24) & 0x7f;
3193
	ext_v = pvid_to_extvid(dev_priv, pxvid);
3194
 
3195
	state1 = ext_v;
3196
 
3197
	t = i915_mch_val(dev_priv);
3198
 
3199
	/* Revel in the empirically derived constants */
3200
 
3201
	/* Correction factor in 1/100000 units */
3202
	if (t > 80)
3203
		corr = ((t * 2349) + 135940);
3204
	else if (t >= 50)
3205
		corr = ((t * 964) + 29317);
3206
	else /* < 50 */
3207
		corr = ((t * 301) + 1004);
3208
 
3209
	corr = corr * ((150142 * state1) / 10000 - 78642);
3210
	corr /= 100000;
3211
	corr2 = (corr * dev_priv->ips.corr);
3212
 
3213
	state2 = (corr2 * state1) / 10000;
3214
	state2 /= 100; /* convert to mW */
3215
 
3216
	__i915_update_gfx_val(dev_priv);
3217
 
3218
	return dev_priv->ips.gfx_power + state2;
3219
}
3220
 
3221
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3222
{
3223
	unsigned long val;
3224
 
3225
	if (dev_priv->info->gen != 5)
3226
		return 0;
3227
 
3228
	spin_lock_irq(&mchdev_lock);
3229
 
3230
	val = __i915_gfx_val(dev_priv);
3231
 
3232
	spin_unlock_irq(&mchdev_lock);
3233
 
3234
	return val;
3235
}
3236
 
3237
/**
3238
 * i915_read_mch_val - return value for IPS use
3239
 *
3240
 * Calculate and return a value for the IPS driver to use when deciding whether
3241
 * we have thermal and power headroom to increase CPU or GPU power budget.
3242
 */
3243
unsigned long i915_read_mch_val(void)
3244
{
3245
	struct drm_i915_private *dev_priv;
3246
	unsigned long chipset_val, graphics_val, ret = 0;
3247
 
3248
	spin_lock_irq(&mchdev_lock);
3249
	if (!i915_mch_dev)
3250
		goto out_unlock;
3251
	dev_priv = i915_mch_dev;
3252
 
3253
	chipset_val = __i915_chipset_val(dev_priv);
3254
	graphics_val = __i915_gfx_val(dev_priv);
3255
 
3256
	ret = chipset_val + graphics_val;
3257
 
3258
out_unlock:
3259
	spin_unlock_irq(&mchdev_lock);
3260
 
3261
	return ret;
3262
}
3263
EXPORT_SYMBOL_GPL(i915_read_mch_val);
3264
 
3265
/**
3266
 * i915_gpu_raise - raise GPU frequency limit
3267
 *
3268
 * Raise the limit; IPS indicates we have thermal headroom.
3269
 */
3270
bool i915_gpu_raise(void)
3271
{
3272
	struct drm_i915_private *dev_priv;
3273
	bool ret = true;
3274
 
3275
	spin_lock_irq(&mchdev_lock);
3276
	if (!i915_mch_dev) {
3277
		ret = false;
3278
		goto out_unlock;
3279
	}
3280
	dev_priv = i915_mch_dev;
3281
 
3282
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3283
		dev_priv->ips.max_delay--;
3284
 
3285
out_unlock:
3286
	spin_unlock_irq(&mchdev_lock);
3287
 
3288
	return ret;
3289
}
3290
EXPORT_SYMBOL_GPL(i915_gpu_raise);
3291
 
3292
/**
3293
 * i915_gpu_lower - lower GPU frequency limit
3294
 *
3295
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
3296
 * frequency maximum.
3297
 */
3298
bool i915_gpu_lower(void)
3299
{
3300
	struct drm_i915_private *dev_priv;
3301
	bool ret = true;
3302
 
3303
	spin_lock_irq(&mchdev_lock);
3304
	if (!i915_mch_dev) {
3305
		ret = false;
3306
		goto out_unlock;
3307
	}
3308
	dev_priv = i915_mch_dev;
3309
 
3310
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3311
		dev_priv->ips.max_delay++;
3312
 
3313
out_unlock:
3314
	spin_unlock_irq(&mchdev_lock);
3315
 
3316
	return ret;
3317
}
3318
EXPORT_SYMBOL_GPL(i915_gpu_lower);
3319
 
3320
/**
3321
 * i915_gpu_busy - indicate GPU business to IPS
3322
 *
3323
 * Tell the IPS driver whether or not the GPU is busy.
3324
 */
3325
bool i915_gpu_busy(void)
3326
{
3327
	struct drm_i915_private *dev_priv;
3328
	struct intel_ring_buffer *ring;
3329
	bool ret = false;
3330
	int i;
3331
 
3332
	spin_lock_irq(&mchdev_lock);
3333
	if (!i915_mch_dev)
3334
		goto out_unlock;
3335
	dev_priv = i915_mch_dev;
3336
 
3337
	for_each_ring(ring, dev_priv, i)
3338
		ret |= !list_empty(&ring->request_list);
3339
 
3340
out_unlock:
3341
	spin_unlock_irq(&mchdev_lock);
3342
 
3343
	return ret;
3344
}
3345
EXPORT_SYMBOL_GPL(i915_gpu_busy);
3346
 
3347
/**
3348
 * i915_gpu_turbo_disable - disable graphics turbo
3349
 *
3350
 * Disable graphics turbo by resetting the max frequency and setting the
3351
 * current frequency to the default.
3352
 */
3353
bool i915_gpu_turbo_disable(void)
3354
{
3355
	struct drm_i915_private *dev_priv;
3356
	bool ret = true;
3357
 
3358
	spin_lock_irq(&mchdev_lock);
3359
	if (!i915_mch_dev) {
3360
		ret = false;
3361
		goto out_unlock;
3362
	}
3363
	dev_priv = i915_mch_dev;
3364
 
3365
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
3366
 
3367
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
3368
		ret = false;
3369
 
3370
out_unlock:
3371
	spin_unlock_irq(&mchdev_lock);
3372
 
3373
	return ret;
3374
}
3375
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3376
 
3377
/**
3378
 * Tells the intel_ips driver that the i915 driver is now loaded, if
3379
 * IPS got loaded first.
3380
 *
3381
 * This awkward dance is so that neither module has to depend on the
3382
 * other in order for IPS to do the appropriate communication of
3383
 * GPU turbo limits to i915.
3384
 */
3385
static void
3386
ips_ping_for_i915_load(void)
3387
{
3388
	void (*link)(void);
3389
 
3390
//   link = symbol_get(ips_link_to_i915_driver);
3391
//   if (link) {
3392
//       link();
3393
//       symbol_put(ips_link_to_i915_driver);
3394
//   }
3395
}
3396
 
3397
void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3398
{
3399
	/* We only register the i915 ips part with intel-ips once everything is
3400
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
3401
	spin_lock_irq(&mchdev_lock);
3402
	i915_mch_dev = dev_priv;
3403
	spin_unlock_irq(&mchdev_lock);
3404
 
3405
	ips_ping_for_i915_load();
3406
}
3407
 
3408
void intel_gpu_ips_teardown(void)
3409
{
3410
	spin_lock_irq(&mchdev_lock);
3411
	i915_mch_dev = NULL;
3412
	spin_unlock_irq(&mchdev_lock);
3413
}
3414
static void intel_init_emon(struct drm_device *dev)
3415
{
3416
	struct drm_i915_private *dev_priv = dev->dev_private;
3417
	u32 lcfuse;
3418
	u8 pxw[16];
3419
	int i;
3420
 
3421
	/* Disable to program */
3422
	I915_WRITE(ECR, 0);
3423
	POSTING_READ(ECR);
3424
 
3425
	/* Program energy weights for various events */
3426
	I915_WRITE(SDEW, 0x15040d00);
3427
	I915_WRITE(CSIEW0, 0x007f0000);
3428
	I915_WRITE(CSIEW1, 0x1e220004);
3429
	I915_WRITE(CSIEW2, 0x04000004);
3430
 
3431
	for (i = 0; i < 5; i++)
3432
		I915_WRITE(PEW + (i * 4), 0);
3433
	for (i = 0; i < 3; i++)
3434
		I915_WRITE(DEW + (i * 4), 0);
3435
 
3436
	/* Program P-state weights to account for frequency power adjustment */
3437
	for (i = 0; i < 16; i++) {
3438
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3439
		unsigned long freq = intel_pxfreq(pxvidfreq);
3440
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3441
			PXVFREQ_PX_SHIFT;
3442
		unsigned long val;
3443
 
3444
		val = vid * vid;
3445
		val *= (freq / 1000);
3446
		val *= 255;
3447
		val /= (127*127*900);
3448
		if (val > 0xff)
3449
			DRM_ERROR("bad pxval: %ld\n", val);
3450
		pxw[i] = val;
3451
	}
3452
	/* Render standby states get 0 weight */
3453
	pxw[14] = 0;
3454
	pxw[15] = 0;
3455
 
3456
	for (i = 0; i < 4; i++) {
3457
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3458
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3459
		I915_WRITE(PXW + (i * 4), val);
3460
	}
3461
 
3462
	/* Adjust magic regs to magic values (more experimental results) */
3463
	I915_WRITE(OGW0, 0);
3464
	I915_WRITE(OGW1, 0);
3465
	I915_WRITE(EG0, 0x00007f00);
3466
	I915_WRITE(EG1, 0x0000000e);
3467
	I915_WRITE(EG2, 0x000e0000);
3468
	I915_WRITE(EG3, 0x68000300);
3469
	I915_WRITE(EG4, 0x42000000);
3470
	I915_WRITE(EG5, 0x00140031);
3471
	I915_WRITE(EG6, 0);
3472
	I915_WRITE(EG7, 0);
3473
 
3474
	for (i = 0; i < 8; i++)
3475
		I915_WRITE(PXWL + (i * 4), 0);
3476
 
3477
	/* Enable PMON + select events */
3478
	I915_WRITE(ECR, 0x80000019);
3479
 
3480
	lcfuse = I915_READ(LCFUSE02);
3481
 
3482
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
3483
}
3484
 
3485
void intel_disable_gt_powersave(struct drm_device *dev)
3486
{
3243 Serge 3487
	struct drm_i915_private *dev_priv = dev->dev_private;
3488
 
3031 serge 3489
	if (IS_IRONLAKE_M(dev)) {
3490
		ironlake_disable_drps(dev);
3491
		ironlake_disable_rc6(dev);
3492
	} else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
3482 Serge 3493
//		cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
3494
		mutex_lock(&dev_priv->rps.hw_lock);
3031 serge 3495
		gen6_disable_rps(dev);
3480 Serge 3496
		mutex_unlock(&dev_priv->rps.hw_lock);
3031 serge 3497
	}
3498
}
3499
 
3482 Serge 3500
static void intel_gen6_powersave_work(struct work_struct *work)
3501
{
3502
	struct drm_i915_private *dev_priv =
3503
		container_of(work, struct drm_i915_private,
3504
			     rps.delayed_resume_work.work);
3505
	struct drm_device *dev = dev_priv->dev;
3506
 
3507
    ENTER();
3508
 
3509
	mutex_lock(&dev_priv->rps.hw_lock);
3510
	gen6_enable_rps(dev);
3511
	gen6_update_ring_freq(dev);
3512
	mutex_unlock(&dev_priv->rps.hw_lock);
3513
 
3514
    LEAVE();
3515
}
3516
 
3031 serge 3517
void intel_enable_gt_powersave(struct drm_device *dev)
3518
{
3243 Serge 3519
	struct drm_i915_private *dev_priv = dev->dev_private;
3520
 
3031 serge 3521
	if (IS_IRONLAKE_M(dev)) {
3522
		ironlake_enable_drps(dev);
3523
		ironlake_enable_rc6(dev);
3524
		intel_init_emon(dev);
3525
	} else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
3243 Serge 3526
		/*
3527
		 * PCU communication is slow and this doesn't need to be
3528
		 * done at any specific time, so do this out of our fast path
3529
		 * to make resume and init faster.
3530
		 */
3482 Serge 3531
		schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
3532
				      round_jiffies_up_relative(HZ));
3031 serge 3533
	}
3534
}
3535
 
3243 Serge 3536
static void ibx_init_clock_gating(struct drm_device *dev)
3537
{
3538
	struct drm_i915_private *dev_priv = dev->dev_private;
3539
 
3540
	/*
3541
	 * On Ibex Peak and Cougar Point, we need to disable clock
3542
	 * gating for the panel power sequencer or it will fail to
3543
	 * start up when no ports are active.
3544
	 */
3545
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3546
}
3547
 
3031 serge 3548
static void ironlake_init_clock_gating(struct drm_device *dev)
3549
{
3550
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 3551
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3031 serge 3552
 
3553
	/* Required for FBC */
3243 Serge 3554
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
3555
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
3556
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3031 serge 3557
 
3558
	I915_WRITE(PCH_3DCGDIS0,
3559
		   MARIUNIT_CLOCK_GATE_DISABLE |
3560
		   SVSMUNIT_CLOCK_GATE_DISABLE);
3561
	I915_WRITE(PCH_3DCGDIS1,
3562
		   VFMUNIT_CLOCK_GATE_DISABLE);
3563
 
3564
	/*
3565
	 * According to the spec the following bits should be set in
3566
	 * order to enable memory self-refresh
3567
	 * The bit 22/21 of 0x42004
3568
	 * The bit 5 of 0x42020
3569
	 * The bit 15 of 0x45000
3570
	 */
3571
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3572
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
3573
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3243 Serge 3574
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3031 serge 3575
	I915_WRITE(DISP_ARB_CTL,
3576
		   (I915_READ(DISP_ARB_CTL) |
3577
		    DISP_FBC_WM_DIS));
3578
	I915_WRITE(WM3_LP_ILK, 0);
3579
	I915_WRITE(WM2_LP_ILK, 0);
3580
	I915_WRITE(WM1_LP_ILK, 0);
3581
 
3582
	/*
3583
	 * Based on the document from hardware guys the following bits
3584
	 * should be set unconditionally in order to enable FBC.
3585
	 * The bit 22 of 0x42000
3586
	 * The bit 22 of 0x42004
3587
	 * The bit 7,8,9 of 0x42020.
3588
	 */
3589
	if (IS_IRONLAKE_M(dev)) {
3590
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
3591
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
3592
			   ILK_FBCQ_DIS);
3593
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
3594
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
3595
			   ILK_DPARB_GATE);
3596
	}
3597
 
3243 Serge 3598
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3599
 
3031 serge 3600
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3601
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3602
		   ILK_ELPIN_409_SELECT);
3603
	I915_WRITE(_3D_CHICKEN2,
3604
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3605
		   _3D_CHICKEN2_WM_READ_PIPELINED);
3243 Serge 3606
 
3607
	/* WaDisableRenderCachePipelinedFlush */
3608
	I915_WRITE(CACHE_MODE_0,
3609
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3610
 
3611
	ibx_init_clock_gating(dev);
3031 serge 3612
}
3613
 
3243 Serge 3614
static void cpt_init_clock_gating(struct drm_device *dev)
3615
{
3616
	struct drm_i915_private *dev_priv = dev->dev_private;
3617
	int pipe;
3746 Serge 3618
	uint32_t val;
3243 Serge 3619
 
3620
	/*
3621
	 * On Ibex Peak and Cougar Point, we need to disable clock
3622
	 * gating for the panel power sequencer or it will fail to
3623
	 * start up when no ports are active.
3624
	 */
3625
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3626
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3627
		   DPLS_EDP_PPS_FIX_DIS);
3628
	/* The below fixes the weird display corruption, a few pixels shifted
3629
	 * downward, on (only) LVDS of some HP laptops with IVY.
3630
	 */
3746 Serge 3631
	for_each_pipe(pipe) {
3632
		val = I915_READ(TRANS_CHICKEN2(pipe));
3633
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
3634
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
3635
		if (dev_priv->fdi_rx_polarity_inverted)
3636
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
3637
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
3638
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
3639
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
3640
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
3641
	}
3243 Serge 3642
	/* WADP0ClockGatingDisable */
3643
	for_each_pipe(pipe) {
3644
		I915_WRITE(TRANS_CHICKEN1(pipe),
3645
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3646
	}
3647
}
3648
 
3480 Serge 3649
static void gen6_check_mch_setup(struct drm_device *dev)
3650
{
3651
	struct drm_i915_private *dev_priv = dev->dev_private;
3652
	uint32_t tmp;
3653
 
3654
	tmp = I915_READ(MCH_SSKPD);
3655
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
3656
		DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
3657
		DRM_INFO("This can cause pipe underruns and display issues.\n");
3658
		DRM_INFO("Please upgrade your BIOS to fix this.\n");
3659
	}
3660
}
3661
 
3031 serge 3662
static void gen6_init_clock_gating(struct drm_device *dev)
3663
{
3664
	struct drm_i915_private *dev_priv = dev->dev_private;
3665
	int pipe;
3243 Serge 3666
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3031 serge 3667
 
3243 Serge 3668
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3031 serge 3669
 
3670
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3671
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3672
		   ILK_ELPIN_409_SELECT);
3673
 
3243 Serge 3674
	/* WaDisableHiZPlanesWhenMSAAEnabled */
3675
	I915_WRITE(_3D_CHICKEN,
3676
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
3677
 
3678
	/* WaSetupGtModeTdRowDispatch */
3679
	if (IS_SNB_GT1(dev))
3680
		I915_WRITE(GEN6_GT_MODE,
3681
			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
3682
 
3031 serge 3683
	I915_WRITE(WM3_LP_ILK, 0);
3684
	I915_WRITE(WM2_LP_ILK, 0);
3685
	I915_WRITE(WM1_LP_ILK, 0);
3686
 
3687
	I915_WRITE(CACHE_MODE_0,
3688
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3689
 
3690
	I915_WRITE(GEN6_UCGCTL1,
3691
		   I915_READ(GEN6_UCGCTL1) |
3692
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3693
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3694
 
3695
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3696
	 * gating disable must be set.  Failure to set it results in
3697
	 * flickering pixels due to Z write ordering failures after
3698
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3699
	 * Sanctuary and Tropics, and apparently anything else with
3700
	 * alpha test or pixel discard.
3701
	 *
3702
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3703
	 * but we didn't debug actual testcases to find it out.
3704
	 *
3705
	 * Also apply WaDisableVDSUnitClockGating and
3706
	 * WaDisableRCPBUnitClockGating.
3707
	 */
3708
	I915_WRITE(GEN6_UCGCTL2,
3709
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3710
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3711
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3712
 
3713
	/* Bspec says we need to always set all mask bits. */
3714
	I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
3715
		   _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
3716
 
3717
	/*
3718
	 * According to the spec the following bits should be
3719
	 * set in order to enable memory self-refresh and fbc:
3720
	 * The bit21 and bit22 of 0x42000
3721
	 * The bit21 and bit22 of 0x42004
3722
	 * The bit5 and bit7 of 0x42020
3723
	 * The bit14 of 0x70180
3724
	 * The bit14 of 0x71180
3725
	 */
3726
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
3727
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
3728
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3729
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3730
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3731
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3243 Serge 3732
	I915_WRITE(ILK_DSPCLK_GATE_D,
3733
		   I915_READ(ILK_DSPCLK_GATE_D) |
3734
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
3735
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3031 serge 3736
 
3243 Serge 3737
	/* WaMbcDriverBootEnable */
3031 serge 3738
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3739
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3740
 
3741
	for_each_pipe(pipe) {
3742
		I915_WRITE(DSPCNTR(pipe),
3743
			   I915_READ(DSPCNTR(pipe)) |
3744
			   DISPPLANE_TRICKLE_FEED_DISABLE);
3745
		intel_flush_display_plane(dev_priv, pipe);
3746
	}
3747
 
3748
	/* The default value should be 0x200 according to docs, but the two
3749
	 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
3750
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
3751
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3243 Serge 3752
 
3753
	cpt_init_clock_gating(dev);
3480 Serge 3754
 
3755
	gen6_check_mch_setup(dev);
3031 serge 3756
}
3757
 
3758
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3759
{
3760
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3761
 
3762
	reg &= ~GEN7_FF_SCHED_MASK;
3763
	reg |= GEN7_FF_TS_SCHED_HW;
3764
	reg |= GEN7_FF_VS_SCHED_HW;
3765
	reg |= GEN7_FF_DS_SCHED_HW;
3766
 
3480 Serge 3767
	/* WaVSRefCountFullforceMissDisable */
3768
	if (IS_HASWELL(dev_priv->dev))
3769
		reg &= ~GEN7_FF_VS_REF_CNT_FFME;
3770
 
3031 serge 3771
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3772
}
3773
 
3243 Serge 3774
static void lpt_init_clock_gating(struct drm_device *dev)
3775
{
3776
	struct drm_i915_private *dev_priv = dev->dev_private;
3777
 
3778
	/*
3779
	 * TODO: this bit should only be enabled when really needed, then
3780
	 * disabled when not needed anymore in order to save power.
3781
	 */
3782
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
3783
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
3784
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
3785
			   PCH_LP_PARTITION_LEVEL_DISABLE);
3786
}
3787
 
3031 serge 3788
static void haswell_init_clock_gating(struct drm_device *dev)
3789
{
3790
	struct drm_i915_private *dev_priv = dev->dev_private;
3791
	int pipe;
3792
 
3793
	I915_WRITE(WM3_LP_ILK, 0);
3794
	I915_WRITE(WM2_LP_ILK, 0);
3795
	I915_WRITE(WM1_LP_ILK, 0);
3796
 
3797
	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3798
	 * This implements the WaDisableRCZUnitClockGating workaround.
3799
	 */
3800
	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3801
 
3802
	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3803
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3804
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3805
 
3806
	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3807
	I915_WRITE(GEN7_L3CNTLREG1,
3808
			GEN7_WA_FOR_GEN7_L3_CONTROL);
3809
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3810
			GEN7_WA_L3_CHICKEN_MODE);
3811
 
3812
	/* This is required by WaCatErrorRejectionIssue */
3813
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3814
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3815
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3816
 
3817
	for_each_pipe(pipe) {
3818
		I915_WRITE(DSPCNTR(pipe),
3819
			   I915_READ(DSPCNTR(pipe)) |
3820
			   DISPPLANE_TRICKLE_FEED_DISABLE);
3821
		intel_flush_display_plane(dev_priv, pipe);
3822
	}
3823
 
3824
	gen7_setup_fixed_func_scheduler(dev_priv);
3825
 
3826
	/* WaDisable4x2SubspanOptimization */
3827
	I915_WRITE(CACHE_MODE_1,
3828
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3829
 
3243 Serge 3830
	/* WaMbcDriverBootEnable */
3831
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3832
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3833
 
3746 Serge 3834
	/* WaSwitchSolVfFArbitrationPriority */
3835
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
3836
 
3031 serge 3837
	/* XXX: This is a workaround for early silicon revisions and should be
3838
	 * removed later.
3839
	 */
3840
	I915_WRITE(WM_DBG,
3841
			I915_READ(WM_DBG) |
3842
			WM_DBG_DISALLOW_MULTIPLE_LP |
3843
			WM_DBG_DISALLOW_SPRITE |
3844
			WM_DBG_DISALLOW_MAXFIFO);
3845
 
3243 Serge 3846
	lpt_init_clock_gating(dev);
3031 serge 3847
}
3848
 
3849
static void ivybridge_init_clock_gating(struct drm_device *dev)
3850
{
3851
	struct drm_i915_private *dev_priv = dev->dev_private;
3852
	int pipe;
3853
	uint32_t snpcr;
3854
 
3855
	I915_WRITE(WM3_LP_ILK, 0);
3856
	I915_WRITE(WM2_LP_ILK, 0);
3857
	I915_WRITE(WM1_LP_ILK, 0);
3858
 
3243 Serge 3859
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3031 serge 3860
 
3243 Serge 3861
	/* WaDisableEarlyCull */
3862
	I915_WRITE(_3D_CHICKEN3,
3863
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3864
 
3865
	/* WaDisableBackToBackFlipFix */
3031 serge 3866
	I915_WRITE(IVB_CHICKEN3,
3867
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3868
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3869
 
3243 Serge 3870
	/* WaDisablePSDDualDispatchEnable */
3871
	if (IS_IVB_GT1(dev))
3872
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3873
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3874
	else
3875
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
3876
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3877
 
3031 serge 3878
	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3879
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3880
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3881
 
3882
	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3883
	I915_WRITE(GEN7_L3CNTLREG1,
3884
			GEN7_WA_FOR_GEN7_L3_CONTROL);
3885
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3886
			GEN7_WA_L3_CHICKEN_MODE);
3243 Serge 3887
	if (IS_IVB_GT1(dev))
3888
		I915_WRITE(GEN7_ROW_CHICKEN2,
3889
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3890
	else
3891
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
3892
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3031 serge 3893
 
3243 Serge 3894
 
3895
	/* WaForceL3Serialization */
3896
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3897
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3898
 
3031 serge 3899
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3900
	 * gating disable must be set.  Failure to set it results in
3901
	 * flickering pixels due to Z write ordering failures after
3902
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3903
	 * Sanctuary and Tropics, and apparently anything else with
3904
	 * alpha test or pixel discard.
3905
	 *
3906
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3907
	 * but we didn't debug actual testcases to find it out.
3908
	 *
3909
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3910
	 * This implements the WaDisableRCZUnitClockGating workaround.
3911
	 */
3912
	I915_WRITE(GEN6_UCGCTL2,
3913
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3914
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3915
 
3916
	/* This is required by WaCatErrorRejectionIssue */
3917
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3918
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3919
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3920
 
3921
	for_each_pipe(pipe) {
3922
		I915_WRITE(DSPCNTR(pipe),
3923
			   I915_READ(DSPCNTR(pipe)) |
3924
			   DISPPLANE_TRICKLE_FEED_DISABLE);
3925
		intel_flush_display_plane(dev_priv, pipe);
3926
	}
3927
 
3243 Serge 3928
	/* WaMbcDriverBootEnable */
3031 serge 3929
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3930
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3931
 
3932
	gen7_setup_fixed_func_scheduler(dev_priv);
3933
 
3934
	/* WaDisable4x2SubspanOptimization */
3935
	I915_WRITE(CACHE_MODE_1,
3936
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3937
 
3938
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3939
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
3940
	snpcr |= GEN6_MBC_SNPCR_MED;
3941
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3243 Serge 3942
 
3746 Serge 3943
	if (!HAS_PCH_NOP(dev))
3243 Serge 3944
	cpt_init_clock_gating(dev);
3480 Serge 3945
 
3946
	gen6_check_mch_setup(dev);
3031 serge 3947
}
3948
 
3949
static void valleyview_init_clock_gating(struct drm_device *dev)
3950
{
3951
	struct drm_i915_private *dev_priv = dev->dev_private;
3952
	int pipe;
3953
 
3954
	I915_WRITE(WM3_LP_ILK, 0);
3955
	I915_WRITE(WM2_LP_ILK, 0);
3956
	I915_WRITE(WM1_LP_ILK, 0);
3957
 
3243 Serge 3958
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3031 serge 3959
 
3243 Serge 3960
	/* WaDisableEarlyCull */
3961
	I915_WRITE(_3D_CHICKEN3,
3962
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3963
 
3964
	/* WaDisableBackToBackFlipFix */
3031 serge 3965
	I915_WRITE(IVB_CHICKEN3,
3966
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3967
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3968
 
3746 Serge 3969
	/* WaDisablePSDDualDispatchEnable */
3243 Serge 3970
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3746 Serge 3971
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
3972
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3243 Serge 3973
 
3031 serge 3974
	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3975
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3976
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3977
 
3978
	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3243 Serge 3979
	I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
3031 serge 3980
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3981
 
3243 Serge 3982
	/* WaForceL3Serialization */
3983
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3984
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3985
 
3986
	/* WaDisableDopClockGating */
3987
	I915_WRITE(GEN7_ROW_CHICKEN2,
3988
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3989
 
3990
	/* WaForceL3Serialization */
3991
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3992
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3993
 
3031 serge 3994
	/* This is required by WaCatErrorRejectionIssue */
3995
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3996
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3997
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3998
 
3243 Serge 3999
	/* WaMbcDriverBootEnable */
3031 serge 4000
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4001
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
4002
 
4003
 
4004
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4005
	 * gating disable must be set.  Failure to set it results in
4006
	 * flickering pixels due to Z write ordering failures after
4007
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
4008
	 * Sanctuary and Tropics, and apparently anything else with
4009
	 * alpha test or pixel discard.
4010
	 *
4011
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
4012
	 * but we didn't debug actual testcases to find it out.
4013
	 *
4014
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4015
	 * This implements the WaDisableRCZUnitClockGating workaround.
4016
	 *
4017
	 * Also apply WaDisableVDSUnitClockGating and
4018
	 * WaDisableRCPBUnitClockGating.
4019
	 */
4020
	I915_WRITE(GEN6_UCGCTL2,
4021
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4022
		   GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
4023
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4024
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4025
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4026
 
4027
	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
4028
 
4029
	for_each_pipe(pipe) {
4030
		I915_WRITE(DSPCNTR(pipe),
4031
			   I915_READ(DSPCNTR(pipe)) |
4032
			   DISPPLANE_TRICKLE_FEED_DISABLE);
4033
		intel_flush_display_plane(dev_priv, pipe);
4034
	}
4035
 
4036
	I915_WRITE(CACHE_MODE_1,
4037
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4038
 
4039
	/*
3243 Serge 4040
	 * WaDisableVLVClockGating_VBIIssue
4041
	 * Disable clock gating on th GCFG unit to prevent a delay
4042
	 * in the reporting of vblank events.
4043
	 */
3746 Serge 4044
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
4045
 
4046
	/* Conservative clock gating settings for now */
4047
	I915_WRITE(0x9400, 0xffffffff);
4048
	I915_WRITE(0x9404, 0xffffffff);
4049
	I915_WRITE(0x9408, 0xffffffff);
4050
	I915_WRITE(0x940c, 0xffffffff);
4051
	I915_WRITE(0x9410, 0xffffffff);
4052
	I915_WRITE(0x9414, 0xffffffff);
4053
	I915_WRITE(0x9418, 0xffffffff);
3031 serge 4054
}
4055
 
4056
static void g4x_init_clock_gating(struct drm_device *dev)
4057
{
4058
	struct drm_i915_private *dev_priv = dev->dev_private;
4059
	uint32_t dspclk_gate;
4060
 
4061
	I915_WRITE(RENCLK_GATE_D1, 0);
4062
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4063
		   GS_UNIT_CLOCK_GATE_DISABLE |
4064
		   CL_UNIT_CLOCK_GATE_DISABLE);
4065
	I915_WRITE(RAMCLK_GATE_D, 0);
4066
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4067
		OVRUNIT_CLOCK_GATE_DISABLE |
4068
		OVCUNIT_CLOCK_GATE_DISABLE;
4069
	if (IS_GM45(dev))
4070
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4071
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3243 Serge 4072
 
4073
	/* WaDisableRenderCachePipelinedFlush */
4074
	I915_WRITE(CACHE_MODE_0,
4075
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3031 serge 4076
}
4077
 
4078
static void crestline_init_clock_gating(struct drm_device *dev)
4079
{
4080
	struct drm_i915_private *dev_priv = dev->dev_private;
4081
 
4082
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4083
	I915_WRITE(RENCLK_GATE_D2, 0);
4084
	I915_WRITE(DSPCLK_GATE_D, 0);
4085
	I915_WRITE(RAMCLK_GATE_D, 0);
4086
	I915_WRITE16(DEUC, 0);
4087
}
4088
 
4089
static void broadwater_init_clock_gating(struct drm_device *dev)
4090
{
4091
	struct drm_i915_private *dev_priv = dev->dev_private;
4092
 
4093
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4094
		   I965_RCC_CLOCK_GATE_DISABLE |
4095
		   I965_RCPB_CLOCK_GATE_DISABLE |
4096
		   I965_ISC_CLOCK_GATE_DISABLE |
4097
		   I965_FBC_CLOCK_GATE_DISABLE);
4098
	I915_WRITE(RENCLK_GATE_D2, 0);
4099
}
4100
 
4101
static void gen3_init_clock_gating(struct drm_device *dev)
4102
{
4103
	struct drm_i915_private *dev_priv = dev->dev_private;
4104
	u32 dstate = I915_READ(D_STATE);
4105
 
4106
	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4107
		DSTATE_DOT_CLOCK_GATING;
4108
	I915_WRITE(D_STATE, dstate);
4109
 
4110
	if (IS_PINEVIEW(dev))
4111
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4112
 
4113
	/* IIR "flip pending" means done if this bit is set */
4114
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4115
}
4116
 
4117
static void i85x_init_clock_gating(struct drm_device *dev)
4118
{
4119
	struct drm_i915_private *dev_priv = dev->dev_private;
4120
 
4121
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4122
}
4123
 
4124
static void i830_init_clock_gating(struct drm_device *dev)
4125
{
4126
	struct drm_i915_private *dev_priv = dev->dev_private;
4127
 
4128
	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4129
}
4130
 
4131
void intel_init_clock_gating(struct drm_device *dev)
4132
{
4133
	struct drm_i915_private *dev_priv = dev->dev_private;
4134
 
4135
	dev_priv->display.init_clock_gating(dev);
4136
}
4137
 
3746 Serge 4138
/**
4139
 * We should only use the power well if we explicitly asked the hardware to
4140
 * enable it, so check if it's enabled and also check if we've requested it to
4141
 * be enabled.
4142
 */
4143
bool intel_using_power_well(struct drm_device *dev)
4144
{
4145
	struct drm_i915_private *dev_priv = dev->dev_private;
4146
 
4147
	if (IS_HASWELL(dev))
4148
		return I915_READ(HSW_PWR_WELL_DRIVER) ==
4149
		       (HSW_PWR_WELL_ENABLE | HSW_PWR_WELL_STATE);
4150
	else
4151
		return true;
4152
}
4153
 
3480 Serge 4154
void intel_set_power_well(struct drm_device *dev, bool enable)
3031 serge 4155
{
4156
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 4157
	bool is_enabled, enable_requested;
4158
	uint32_t tmp;
3031 serge 4159
 
3746 Serge 4160
	if (!HAS_POWER_WELL(dev))
3031 serge 4161
		return;
4162
 
3482 Serge 4163
	if (!i915_disable_power_well && !enable)
4164
		return;
4165
 
3480 Serge 4166
	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
4167
	is_enabled = tmp & HSW_PWR_WELL_STATE;
4168
	enable_requested = tmp & HSW_PWR_WELL_ENABLE;
3031 serge 4169
 
3480 Serge 4170
	if (enable) {
4171
		if (!enable_requested)
4172
			I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
3031 serge 4173
 
3480 Serge 4174
		if (!is_enabled) {
4175
			DRM_DEBUG_KMS("Enabling power well\n");
4176
			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
4177
				      HSW_PWR_WELL_STATE), 20))
4178
				DRM_ERROR("Timeout enabling power well\n");
3031 serge 4179
		}
3480 Serge 4180
	} else {
4181
		if (enable_requested) {
4182
			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
4183
			DRM_DEBUG_KMS("Requesting to disable the power well\n");
3031 serge 4184
	}
3480 Serge 4185
	}
4186
}
3031 serge 4187
 
3480 Serge 4188
/*
4189
 * Starting with Haswell, we have a "Power Down Well" that can be turned off
4190
 * when not needed anymore. We have 4 registers that can request the power well
4191
 * to be enabled, and it will only be disabled if none of the registers is
4192
 * requesting it to be enabled.
4193
 */
4194
void intel_init_power_well(struct drm_device *dev)
4195
{
4196
	struct drm_i915_private *dev_priv = dev->dev_private;
4197
 
3746 Serge 4198
	if (!HAS_POWER_WELL(dev))
3480 Serge 4199
		return;
4200
 
4201
	/* For now, we need the power well to be always enabled. */
4202
	intel_set_power_well(dev, true);
4203
 
4204
	/* We're taking over the BIOS, so clear any requests made by it since
4205
	 * the driver is in charge now. */
4206
	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
4207
		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
3031 serge 4208
}
4209
 
4210
/* Set up chip specific power management-related functions */
4211
void intel_init_pm(struct drm_device *dev)
4212
{
4213
	struct drm_i915_private *dev_priv = dev->dev_private;
4214
 
4215
	if (I915_HAS_FBC(dev)) {
4216
		if (HAS_PCH_SPLIT(dev)) {
4217
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
4218
			dev_priv->display.enable_fbc = ironlake_enable_fbc;
4219
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
4220
		} else if (IS_GM45(dev)) {
4221
			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4222
			dev_priv->display.enable_fbc = g4x_enable_fbc;
4223
			dev_priv->display.disable_fbc = g4x_disable_fbc;
4224
		} else if (IS_CRESTLINE(dev)) {
4225
			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4226
			dev_priv->display.enable_fbc = i8xx_enable_fbc;
4227
			dev_priv->display.disable_fbc = i8xx_disable_fbc;
4228
		}
4229
		/* 855GM needs testing */
4230
	}
4231
 
4232
	/* For cxsr */
4233
	if (IS_PINEVIEW(dev))
4234
		i915_pineview_get_mem_freq(dev);
4235
	else if (IS_GEN5(dev))
4236
		i915_ironlake_get_mem_freq(dev);
4237
 
4238
	/* For FIFO watermark updates */
4239
	if (HAS_PCH_SPLIT(dev)) {
4240
		if (IS_GEN5(dev)) {
4241
			if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
4242
				dev_priv->display.update_wm = ironlake_update_wm;
4243
			else {
4244
				DRM_DEBUG_KMS("Failed to get proper latency. "
4245
					      "Disable CxSR\n");
4246
				dev_priv->display.update_wm = NULL;
4247
			}
4248
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
4249
		} else if (IS_GEN6(dev)) {
4250
			if (SNB_READ_WM0_LATENCY()) {
4251
				dev_priv->display.update_wm = sandybridge_update_wm;
4252
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4253
			} else {
4254
				DRM_DEBUG_KMS("Failed to read display plane latency. "
4255
					      "Disable CxSR\n");
4256
				dev_priv->display.update_wm = NULL;
4257
			}
4258
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4259
		} else if (IS_IVYBRIDGE(dev)) {
4260
			if (SNB_READ_WM0_LATENCY()) {
3243 Serge 4261
				dev_priv->display.update_wm = ivybridge_update_wm;
3031 serge 4262
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4263
			} else {
4264
				DRM_DEBUG_KMS("Failed to read display plane latency. "
4265
					      "Disable CxSR\n");
4266
				dev_priv->display.update_wm = NULL;
4267
			}
4268
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4269
		} else if (IS_HASWELL(dev)) {
4270
			if (SNB_READ_WM0_LATENCY()) {
4271
				dev_priv->display.update_wm = sandybridge_update_wm;
4272
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4273
				dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
4274
			} else {
4275
				DRM_DEBUG_KMS("Failed to read display plane latency. "
4276
					      "Disable CxSR\n");
4277
				dev_priv->display.update_wm = NULL;
4278
			}
4279
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4280
		} else
4281
			dev_priv->display.update_wm = NULL;
4282
	} else if (IS_VALLEYVIEW(dev)) {
4283
		dev_priv->display.update_wm = valleyview_update_wm;
4284
		dev_priv->display.init_clock_gating =
4285
			valleyview_init_clock_gating;
4286
	} else if (IS_PINEVIEW(dev)) {
4287
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4288
					    dev_priv->is_ddr3,
4289
					    dev_priv->fsb_freq,
4290
					    dev_priv->mem_freq)) {
4291
			DRM_INFO("failed to find known CxSR latency "
4292
				 "(found ddr%s fsb freq %d, mem freq %d), "
4293
				 "disabling CxSR\n",
4294
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
4295
				 dev_priv->fsb_freq, dev_priv->mem_freq);
4296
			/* Disable CxSR and never update its watermark again */
4297
			pineview_disable_cxsr(dev);
4298
			dev_priv->display.update_wm = NULL;
4299
		} else
4300
			dev_priv->display.update_wm = pineview_update_wm;
4301
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4302
	} else if (IS_G4X(dev)) {
4303
		dev_priv->display.update_wm = g4x_update_wm;
4304
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
4305
	} else if (IS_GEN4(dev)) {
4306
		dev_priv->display.update_wm = i965_update_wm;
4307
		if (IS_CRESTLINE(dev))
4308
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
4309
		else if (IS_BROADWATER(dev))
4310
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
4311
	} else if (IS_GEN3(dev)) {
4312
		dev_priv->display.update_wm = i9xx_update_wm;
4313
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4314
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4315
	} else if (IS_I865G(dev)) {
4316
		dev_priv->display.update_wm = i830_update_wm;
4317
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4318
		dev_priv->display.get_fifo_size = i830_get_fifo_size;
4319
	} else if (IS_I85X(dev)) {
4320
		dev_priv->display.update_wm = i9xx_update_wm;
4321
		dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4322
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4323
	} else {
4324
		dev_priv->display.update_wm = i830_update_wm;
4325
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
4326
		if (IS_845G(dev))
4327
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
4328
		else
4329
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
4330
	}
4331
}
4332
 
4333
static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4334
{
4335
	u32 gt_thread_status_mask;
4336
 
4337
	if (IS_HASWELL(dev_priv->dev))
4338
		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4339
	else
4340
		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4341
 
4342
	/* w/a for a sporadic read returning 0 by waiting for the GT
4343
	 * thread to wake up.
4344
	 */
4345
	if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4346
		DRM_ERROR("GT thread status wait timed out\n");
4347
}
4348
 
3243 Serge 4349
static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
4350
{
4351
	I915_WRITE_NOTRACE(FORCEWAKE, 0);
4352
	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4353
}
4354
 
3031 serge 4355
static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4356
{
3746 Serge 4357
	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1) == 0,
3031 serge 4358
			    FORCEWAKE_ACK_TIMEOUT_MS))
4359
		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4360
 
3746 Serge 4361
	I915_WRITE_NOTRACE(FORCEWAKE, 1);
3031 serge 4362
	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4363
 
3746 Serge 4364
	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1),
3031 serge 4365
			    FORCEWAKE_ACK_TIMEOUT_MS))
4366
		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4367
 
4368
	__gen6_gt_wait_for_thread_c0(dev_priv);
4369
}
4370
 
3243 Serge 4371
static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
4372
{
4373
	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
4374
	/* something from same cacheline, but !FORCEWAKE_MT */
4375
	POSTING_READ(ECOBUS);
4376
}
4377
 
3031 serge 4378
static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4379
{
4380
	u32 forcewake_ack;
4381
 
4382
	if (IS_HASWELL(dev_priv->dev))
4383
		forcewake_ack = FORCEWAKE_ACK_HSW;
4384
	else
4385
		forcewake_ack = FORCEWAKE_MT_ACK;
4386
 
3746 Serge 4387
	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL) == 0,
3031 serge 4388
			    FORCEWAKE_ACK_TIMEOUT_MS))
4389
		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4390
 
3243 Serge 4391
	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4392
	/* something from same cacheline, but !FORCEWAKE_MT */
4393
	POSTING_READ(ECOBUS);
3031 serge 4394
 
3746 Serge 4395
	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL),
3031 serge 4396
			    FORCEWAKE_ACK_TIMEOUT_MS))
4397
		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4398
 
4399
	__gen6_gt_wait_for_thread_c0(dev_priv);
4400
}
4401
 
4402
/*
4403
 * Generally this is called implicitly by the register read function. However,
4404
 * if some sequence requires the GT to not power down then this function should
4405
 * be called at the beginning of the sequence followed by a call to
4406
 * gen6_gt_force_wake_put() at the end of the sequence.
4407
 */
4408
void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4409
{
4410
	unsigned long irqflags;
4411
 
4412
	spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4413
	if (dev_priv->forcewake_count++ == 0)
4414
		dev_priv->gt.force_wake_get(dev_priv);
4415
	spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4416
}
4417
 
4418
void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4419
{
4420
	u32 gtfifodbg;
4421
	gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4422
	if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4423
	     "MMIO read or write has been dropped %x\n", gtfifodbg))
4424
		I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4425
}
4426
 
4427
static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4428
{
4429
	I915_WRITE_NOTRACE(FORCEWAKE, 0);
3243 Serge 4430
	/* something from same cacheline, but !FORCEWAKE */
4431
	POSTING_READ(ECOBUS);
3031 serge 4432
	gen6_gt_check_fifodbg(dev_priv);
4433
}
4434
 
4435
static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4436
{
3243 Serge 4437
	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4438
	/* something from same cacheline, but !FORCEWAKE_MT */
4439
	POSTING_READ(ECOBUS);
3031 serge 4440
	gen6_gt_check_fifodbg(dev_priv);
4441
}
4442
 
4443
/*
4444
 * see gen6_gt_force_wake_get()
4445
 */
4446
void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4447
{
4448
	unsigned long irqflags;
4449
 
4450
	spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4451
	if (--dev_priv->forcewake_count == 0)
4452
		dev_priv->gt.force_wake_put(dev_priv);
4453
	spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4454
}
4455
 
4456
int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4457
{
4458
	int ret = 0;
4459
 
4460
	if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4461
		int loop = 500;
4462
		u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4463
		while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4464
			udelay(10);
4465
			fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4466
		}
4467
		if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4468
			++ret;
4469
		dev_priv->gt_fifo_count = fifo;
4470
	}
4471
	dev_priv->gt_fifo_count--;
4472
 
4473
	return ret;
4474
}
4475
 
3243 Serge 4476
static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
4477
{
4478
	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
4479
	/* something from same cacheline, but !FORCEWAKE_VLV */
4480
	POSTING_READ(FORCEWAKE_ACK_VLV);
4481
}
4482
 
3031 serge 4483
static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4484
{
3746 Serge 4485
	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL) == 0,
3031 serge 4486
			    FORCEWAKE_ACK_TIMEOUT_MS))
4487
		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4488
 
3243 Serge 4489
	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
3746 Serge 4490
	I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
4491
			   _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
3031 serge 4492
 
3746 Serge 4493
	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL),
3031 serge 4494
			    FORCEWAKE_ACK_TIMEOUT_MS))
3746 Serge 4495
		DRM_ERROR("Timed out waiting for GT to ack forcewake request.\n");
3031 serge 4496
 
3746 Serge 4497
	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_MEDIA_VLV) &
4498
			     FORCEWAKE_KERNEL),
4499
			    FORCEWAKE_ACK_TIMEOUT_MS))
4500
		DRM_ERROR("Timed out waiting for media to ack forcewake request.\n");
4501
 
3031 serge 4502
	__gen6_gt_wait_for_thread_c0(dev_priv);
4503
}
4504
 
4505
static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4506
{
3243 Serge 4507
	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
3746 Serge 4508
	I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
4509
			   _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4510
	/* The below doubles as a POSTING_READ */
3031 serge 4511
	gen6_gt_check_fifodbg(dev_priv);
4512
}
4513
 
3243 Serge 4514
void intel_gt_reset(struct drm_device *dev)
4515
{
4516
	struct drm_i915_private *dev_priv = dev->dev_private;
4517
 
4518
	if (IS_VALLEYVIEW(dev)) {
4519
		vlv_force_wake_reset(dev_priv);
4520
	} else if (INTEL_INFO(dev)->gen >= 6) {
4521
		__gen6_gt_force_wake_reset(dev_priv);
4522
		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4523
			__gen6_gt_force_wake_mt_reset(dev_priv);
4524
	}
4525
}
4526
 
3031 serge 4527
void intel_gt_init(struct drm_device *dev)
4528
{
4529
	struct drm_i915_private *dev_priv = dev->dev_private;
4530
 
4531
	spin_lock_init(&dev_priv->gt_lock);
4532
 
3243 Serge 4533
	intel_gt_reset(dev);
4534
 
3031 serge 4535
	if (IS_VALLEYVIEW(dev)) {
4536
		dev_priv->gt.force_wake_get = vlv_force_wake_get;
4537
		dev_priv->gt.force_wake_put = vlv_force_wake_put;
3243 Serge 4538
	} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4539
		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
4540
		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
4541
	} else if (IS_GEN6(dev)) {
3031 serge 4542
		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4543
		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
3243 Serge 4544
	}
3482 Serge 4545
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
4546
			  intel_gen6_powersave_work);
3243 Serge 4547
}
3031 serge 4548
 
3243 Serge 4549
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
4550
{
4551
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 4552
 
3243 Serge 4553
	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4554
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
4555
		return -EAGAIN;
4556
	}
3031 serge 4557
 
3243 Serge 4558
	I915_WRITE(GEN6_PCODE_DATA, *val);
4559
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4560
 
4561
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4562
		     500)) {
4563
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
4564
		return -ETIMEDOUT;
3031 serge 4565
			}
3243 Serge 4566
 
4567
	*val = I915_READ(GEN6_PCODE_DATA);
4568
	I915_WRITE(GEN6_PCODE_DATA, 0);
4569
 
4570
	return 0;
4571
}
4572
 
4573
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
4574
{
4575
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4576
 
4577
	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4578
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
4579
		return -EAGAIN;
3031 serge 4580
		}
3243 Serge 4581
 
4582
	I915_WRITE(GEN6_PCODE_DATA, val);
4583
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4584
 
4585
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4586
		     500)) {
4587
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
4588
		return -ETIMEDOUT;
3031 serge 4589
	}
3243 Serge 4590
 
4591
	I915_WRITE(GEN6_PCODE_DATA, 0);
4592
 
4593
	return 0;
3031 serge 4594
}
3746 Serge 4595
 
4596
static int vlv_punit_rw(struct drm_i915_private *dev_priv, u8 opcode,
4597
			u8 addr, u32 *val)
4598
{
4599
	u32 cmd, devfn, port, be, bar;
4600
 
4601
	bar = 0;
4602
	be = 0xf;
4603
	port = IOSF_PORT_PUNIT;
4604
	devfn = PCI_DEVFN(2, 0);
4605
 
4606
	cmd = (devfn << IOSF_DEVFN_SHIFT) | (opcode << IOSF_OPCODE_SHIFT) |
4607
		(port << IOSF_PORT_SHIFT) | (be << IOSF_BYTE_ENABLES_SHIFT) |
4608
		(bar << IOSF_BAR_SHIFT);
4609
 
4610
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4611
 
4612
	if (I915_READ(VLV_IOSF_DOORBELL_REQ) & IOSF_SB_BUSY) {
4613
		DRM_DEBUG_DRIVER("warning: pcode (%s) mailbox access failed\n",
4614
				 opcode == PUNIT_OPCODE_REG_READ ?
4615
				 "read" : "write");
4616
		return -EAGAIN;
4617
	}
4618
 
4619
	I915_WRITE(VLV_IOSF_ADDR, addr);
4620
	if (opcode == PUNIT_OPCODE_REG_WRITE)
4621
		I915_WRITE(VLV_IOSF_DATA, *val);
4622
	I915_WRITE(VLV_IOSF_DOORBELL_REQ, cmd);
4623
 
4624
	if (wait_for((I915_READ(VLV_IOSF_DOORBELL_REQ) & IOSF_SB_BUSY) == 0,
4625
		     500)) {
4626
		DRM_ERROR("timeout waiting for pcode %s (%d) to finish\n",
4627
			  opcode == PUNIT_OPCODE_REG_READ ? "read" : "write",
4628
			  addr);
4629
		return -ETIMEDOUT;
4630
	}
4631
 
4632
	if (opcode == PUNIT_OPCODE_REG_READ)
4633
		*val = I915_READ(VLV_IOSF_DATA);
4634
	I915_WRITE(VLV_IOSF_DATA, 0);
4635
 
4636
	return 0;
4637
}
4638
 
4639
int valleyview_punit_read(struct drm_i915_private *dev_priv, u8 addr, u32 *val)
4640
{
4641
	return vlv_punit_rw(dev_priv, PUNIT_OPCODE_REG_READ, addr, val);
4642
}
4643
 
4644
int valleyview_punit_write(struct drm_i915_private *dev_priv, u8 addr, u32 val)
4645
{
4646
	return vlv_punit_rw(dev_priv, PUNIT_OPCODE_REG_WRITE, addr, &val);
4647
}