Subversion Repositories Kolibri OS

Rev

Rev 3037 | Rev 3243 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
3031 serge 1
/*
2
 * Copyright © 2012 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eugeni Dodonov 
25
 *
26
 */
27
 
28
#define iowrite32(v, addr)      writel((v), (addr))
29
#define ioread32(addr)          readl(addr)
30
 
31
//#include 
32
#include "i915_drv.h"
33
#include "intel_drv.h"
34
#include 
35
//#include "../../../platform/x86/intel_ips.h"
36
#include 
37
 
38
#define FORCEWAKE_ACK_TIMEOUT_MS 2
39
 
40
#define assert_spin_locked(x)
41
 
42
void getrawmonotonic(struct timespec *ts);
43
void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec);
44
 
45
static inline struct timespec timespec_sub(struct timespec lhs,
46
                                                struct timespec rhs)
47
{
48
    struct timespec ts_delta;
49
    set_normalized_timespec(&ts_delta, lhs.tv_sec - rhs.tv_sec,
50
                                lhs.tv_nsec - rhs.tv_nsec);
51
    return ts_delta;
52
}
53
 
54
 
55
/* FBC, or Frame Buffer Compression, is a technique employed to compress the
56
 * framebuffer contents in-memory, aiming at reducing the required bandwidth
57
 * during in-memory transfers and, therefore, reduce the power packet.
58
 *
59
 * The benefits of FBC are mostly visible with solid backgrounds and
60
 * variation-less patterns.
61
 *
62
 * FBC-related functionality can be enabled by the means of the
63
 * i915.i915_enable_fbc parameter
64
 */
65
 
66
static void i8xx_disable_fbc(struct drm_device *dev)
67
{
68
	struct drm_i915_private *dev_priv = dev->dev_private;
69
	u32 fbc_ctl;
70
 
71
	/* Disable compression */
72
	fbc_ctl = I915_READ(FBC_CONTROL);
73
	if ((fbc_ctl & FBC_CTL_EN) == 0)
74
		return;
75
 
76
	fbc_ctl &= ~FBC_CTL_EN;
77
	I915_WRITE(FBC_CONTROL, fbc_ctl);
78
 
79
	/* Wait for compressing bit to clear */
80
	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
81
		DRM_DEBUG_KMS("FBC idle timed out\n");
82
		return;
83
	}
84
 
85
	DRM_DEBUG_KMS("disabled FBC\n");
86
}
87
 
88
static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
89
{
90
	struct drm_device *dev = crtc->dev;
91
	struct drm_i915_private *dev_priv = dev->dev_private;
92
	struct drm_framebuffer *fb = crtc->fb;
93
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
94
	struct drm_i915_gem_object *obj = intel_fb->obj;
95
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
96
	int cfb_pitch;
97
	int plane, i;
98
	u32 fbc_ctl, fbc_ctl2;
99
 
100
	cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
101
	if (fb->pitches[0] < cfb_pitch)
102
		cfb_pitch = fb->pitches[0];
103
 
104
	/* FBC_CTL wants 64B units */
105
	cfb_pitch = (cfb_pitch / 64) - 1;
106
	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
107
 
108
	/* Clear old tags */
109
	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
110
		I915_WRITE(FBC_TAG + (i * 4), 0);
111
 
112
	/* Set it up... */
113
	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
114
	fbc_ctl2 |= plane;
115
	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
116
	I915_WRITE(FBC_FENCE_OFF, crtc->y);
117
 
118
	/* enable it... */
119
	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
120
	if (IS_I945GM(dev))
121
		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
122
	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
123
	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
124
	fbc_ctl |= obj->fence_reg;
125
	I915_WRITE(FBC_CONTROL, fbc_ctl);
126
 
127
	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
128
		      cfb_pitch, crtc->y, intel_crtc->plane);
129
}
130
 
131
static bool i8xx_fbc_enabled(struct drm_device *dev)
132
{
133
	struct drm_i915_private *dev_priv = dev->dev_private;
134
 
135
	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
136
}
137
 
138
static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
139
{
140
	struct drm_device *dev = crtc->dev;
141
	struct drm_i915_private *dev_priv = dev->dev_private;
142
	struct drm_framebuffer *fb = crtc->fb;
143
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
144
	struct drm_i915_gem_object *obj = intel_fb->obj;
145
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
146
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
147
	unsigned long stall_watermark = 200;
148
	u32 dpfc_ctl;
149
 
150
	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
151
	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
152
	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
153
 
154
	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
155
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
156
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
157
	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
158
 
159
	/* enable it... */
160
	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
161
 
162
	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
163
}
164
 
165
static void g4x_disable_fbc(struct drm_device *dev)
166
{
167
	struct drm_i915_private *dev_priv = dev->dev_private;
168
	u32 dpfc_ctl;
169
 
170
	/* Disable compression */
171
	dpfc_ctl = I915_READ(DPFC_CONTROL);
172
	if (dpfc_ctl & DPFC_CTL_EN) {
173
		dpfc_ctl &= ~DPFC_CTL_EN;
174
		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
175
 
176
		DRM_DEBUG_KMS("disabled FBC\n");
177
	}
178
}
179
 
180
static bool g4x_fbc_enabled(struct drm_device *dev)
181
{
182
	struct drm_i915_private *dev_priv = dev->dev_private;
183
 
184
	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
185
}
186
 
187
static void sandybridge_blit_fbc_update(struct drm_device *dev)
188
{
189
	struct drm_i915_private *dev_priv = dev->dev_private;
190
	u32 blt_ecoskpd;
191
 
192
	/* Make sure blitter notifies FBC of writes */
193
	gen6_gt_force_wake_get(dev_priv);
194
	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
195
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
196
		GEN6_BLITTER_LOCK_SHIFT;
197
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
198
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
199
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
200
	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
201
			 GEN6_BLITTER_LOCK_SHIFT);
202
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
203
	POSTING_READ(GEN6_BLITTER_ECOSKPD);
204
	gen6_gt_force_wake_put(dev_priv);
205
}
206
 
207
static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
208
{
209
	struct drm_device *dev = crtc->dev;
210
	struct drm_i915_private *dev_priv = dev->dev_private;
211
	struct drm_framebuffer *fb = crtc->fb;
212
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
213
	struct drm_i915_gem_object *obj = intel_fb->obj;
214
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
215
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
216
	unsigned long stall_watermark = 200;
217
	u32 dpfc_ctl;
218
 
219
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
220
	dpfc_ctl &= DPFC_RESERVED;
221
	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
222
	/* Set persistent mode for front-buffer rendering, ala X. */
223
	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
224
	dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
225
	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
226
 
227
	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
228
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
229
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
230
	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
231
	I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
232
	/* enable it... */
233
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
234
 
235
	if (IS_GEN6(dev)) {
236
		I915_WRITE(SNB_DPFC_CTL_SA,
237
			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
238
		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
239
		sandybridge_blit_fbc_update(dev);
240
	}
241
 
242
	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
243
}
244
 
245
static void ironlake_disable_fbc(struct drm_device *dev)
246
{
247
	struct drm_i915_private *dev_priv = dev->dev_private;
248
	u32 dpfc_ctl;
249
 
250
	/* Disable compression */
251
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
252
	if (dpfc_ctl & DPFC_CTL_EN) {
253
		dpfc_ctl &= ~DPFC_CTL_EN;
254
		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
255
 
256
		DRM_DEBUG_KMS("disabled FBC\n");
257
	}
258
}
259
 
260
static bool ironlake_fbc_enabled(struct drm_device *dev)
261
{
262
	struct drm_i915_private *dev_priv = dev->dev_private;
263
 
264
	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
265
}
266
 
267
bool intel_fbc_enabled(struct drm_device *dev)
268
{
269
	struct drm_i915_private *dev_priv = dev->dev_private;
270
 
271
	if (!dev_priv->display.fbc_enabled)
272
		return false;
273
 
274
	return dev_priv->display.fbc_enabled(dev);
275
}
276
 
277
#if 0
278
static void intel_fbc_work_fn(struct work_struct *__work)
279
{
280
	struct intel_fbc_work *work =
281
		container_of(to_delayed_work(__work),
282
			     struct intel_fbc_work, work);
283
	struct drm_device *dev = work->crtc->dev;
284
	struct drm_i915_private *dev_priv = dev->dev_private;
285
 
286
	mutex_lock(&dev->struct_mutex);
287
	if (work == dev_priv->fbc_work) {
288
		/* Double check that we haven't switched fb without cancelling
289
		 * the prior work.
290
		 */
291
		if (work->crtc->fb == work->fb) {
292
			dev_priv->display.enable_fbc(work->crtc,
293
						     work->interval);
294
 
295
			dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
296
			dev_priv->cfb_fb = work->crtc->fb->base.id;
297
			dev_priv->cfb_y = work->crtc->y;
298
		}
299
 
300
		dev_priv->fbc_work = NULL;
301
	}
302
	mutex_unlock(&dev->struct_mutex);
303
 
304
	kfree(work);
305
}
306
 
307
static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
308
{
309
	if (dev_priv->fbc_work == NULL)
310
		return;
311
 
312
	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
313
 
314
	/* Synchronisation is provided by struct_mutex and checking of
315
	 * dev_priv->fbc_work, so we can perform the cancellation
316
	 * entirely asynchronously.
317
	 */
318
	if (cancel_delayed_work(&dev_priv->fbc_work->work))
319
		/* tasklet was killed before being run, clean up */
320
		kfree(dev_priv->fbc_work);
321
 
322
	/* Mark the work as no longer wanted so that if it does
323
	 * wake-up (because the work was already running and waiting
324
	 * for our mutex), it will discover that is no longer
325
	 * necessary to run.
326
	 */
327
	dev_priv->fbc_work = NULL;
328
}
329
#endif
330
 
331
void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
332
{
333
	struct intel_fbc_work *work;
334
	struct drm_device *dev = crtc->dev;
335
	struct drm_i915_private *dev_priv = dev->dev_private;
336
 
337
//   if (!dev_priv->display.enable_fbc)
338
		return;
339
#if 0
340
	intel_cancel_fbc_work(dev_priv);
341
 
342
	work = kzalloc(sizeof *work, GFP_KERNEL);
343
	if (work == NULL) {
344
		dev_priv->display.enable_fbc(crtc, interval);
345
		return;
346
	}
347
 
348
	work->crtc = crtc;
349
	work->fb = crtc->fb;
350
	work->interval = interval;
351
	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
352
 
353
	dev_priv->fbc_work = work;
354
 
355
	DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
356
 
357
	/* Delay the actual enabling to let pageflipping cease and the
358
	 * display to settle before starting the compression. Note that
359
	 * this delay also serves a second purpose: it allows for a
360
	 * vblank to pass after disabling the FBC before we attempt
361
	 * to modify the control registers.
362
	 *
363
	 * A more complicated solution would involve tracking vblanks
364
	 * following the termination of the page-flipping sequence
365
	 * and indeed performing the enable as a co-routine and not
366
	 * waiting synchronously upon the vblank.
367
	 */
368
	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
369
#endif
370
 
371
}
372
 
373
void intel_disable_fbc(struct drm_device *dev)
374
{
375
	struct drm_i915_private *dev_priv = dev->dev_private;
376
 
377
//   intel_cancel_fbc_work(dev_priv);
378
 
379
//   if (!dev_priv->display.disable_fbc)
380
//       return;
381
 
382
//   dev_priv->display.disable_fbc(dev);
383
	dev_priv->cfb_plane = -1;
384
}
385
 
386
/**
387
 * intel_update_fbc - enable/disable FBC as needed
388
 * @dev: the drm_device
389
 *
390
 * Set up the framebuffer compression hardware at mode set time.  We
391
 * enable it if possible:
392
 *   - plane A only (on pre-965)
393
 *   - no pixel mulitply/line duplication
394
 *   - no alpha buffer discard
395
 *   - no dual wide
396
 *   - framebuffer <= 2048 in width, 1536 in height
397
 *
398
 * We can't assume that any compression will take place (worst case),
399
 * so the compressed buffer has to be the same size as the uncompressed
400
 * one.  It also must reside (along with the line length buffer) in
401
 * stolen memory.
402
 *
403
 * We need to enable/disable FBC on a global basis.
404
 */
405
void intel_update_fbc(struct drm_device *dev)
406
{
407
	struct drm_i915_private *dev_priv = dev->dev_private;
408
	struct drm_crtc *crtc = NULL, *tmp_crtc;
409
	struct intel_crtc *intel_crtc;
410
	struct drm_framebuffer *fb;
411
	struct intel_framebuffer *intel_fb;
412
	struct drm_i915_gem_object *obj;
413
	int enable_fbc;
414
 
415
	if (!i915_powersave)
416
		return;
417
 
418
	if (!I915_HAS_FBC(dev))
419
		return;
420
 
421
	/*
422
	 * If FBC is already on, we just have to verify that we can
423
	 * keep it that way...
424
	 * Need to disable if:
425
	 *   - more than one pipe is active
426
	 *   - changing FBC params (stride, fence, mode)
427
	 *   - new fb is too large to fit in compressed buffer
428
	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
429
	 */
430
	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
431
		if (tmp_crtc->enabled &&
432
		    !to_intel_crtc(tmp_crtc)->primary_disabled &&
433
		    tmp_crtc->fb) {
434
			if (crtc) {
435
				DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
436
				dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
437
				goto out_disable;
438
			}
439
			crtc = tmp_crtc;
440
		}
441
	}
442
 
443
	if (!crtc || crtc->fb == NULL) {
444
		DRM_DEBUG_KMS("no output, disabling\n");
445
		dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
446
		goto out_disable;
447
	}
448
 
449
	intel_crtc = to_intel_crtc(crtc);
450
	fb = crtc->fb;
451
	intel_fb = to_intel_framebuffer(fb);
452
	obj = intel_fb->obj;
453
 
454
	enable_fbc = i915_enable_fbc;
455
	if (enable_fbc < 0) {
456
		DRM_DEBUG_KMS("fbc set to per-chip default\n");
457
		enable_fbc = 1;
458
		if (INTEL_INFO(dev)->gen <= 6)
459
			enable_fbc = 0;
460
	}
461
	if (!enable_fbc) {
462
		DRM_DEBUG_KMS("fbc disabled per module param\n");
463
		dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
464
		goto out_disable;
465
	}
466
	if (intel_fb->obj->base.size > dev_priv->cfb_size) {
467
		DRM_DEBUG_KMS("framebuffer too large, disabling "
468
			      "compression\n");
469
		dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
470
		goto out_disable;
471
	}
472
	if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
473
	    (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
474
		DRM_DEBUG_KMS("mode incompatible with compression, "
475
			      "disabling\n");
476
		dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
477
		goto out_disable;
478
	}
479
	if ((crtc->mode.hdisplay > 2048) ||
480
	    (crtc->mode.vdisplay > 1536)) {
481
		DRM_DEBUG_KMS("mode too large for compression, disabling\n");
482
		dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
483
		goto out_disable;
484
	}
485
	if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
486
		DRM_DEBUG_KMS("plane not 0, disabling compression\n");
487
		dev_priv->no_fbc_reason = FBC_BAD_PLANE;
488
		goto out_disable;
489
	}
490
 
491
	/* The use of a CPU fence is mandatory in order to detect writes
492
	 * by the CPU to the scanout and trigger updates to the FBC.
493
	 */
494
	if (obj->tiling_mode != I915_TILING_X ||
495
	    obj->fence_reg == I915_FENCE_REG_NONE) {
496
		DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
497
		dev_priv->no_fbc_reason = FBC_NOT_TILED;
498
		goto out_disable;
499
	}
500
 
501
	/* If the kernel debugger is active, always disable compression */
502
	if (in_dbg_master())
503
		goto out_disable;
504
 
505
	/* If the scanout has not changed, don't modify the FBC settings.
506
	 * Note that we make the fundamental assumption that the fb->obj
507
	 * cannot be unpinned (and have its GTT offset and fence revoked)
508
	 * without first being decoupled from the scanout and FBC disabled.
509
	 */
510
	if (dev_priv->cfb_plane == intel_crtc->plane &&
511
	    dev_priv->cfb_fb == fb->base.id &&
512
	    dev_priv->cfb_y == crtc->y)
513
		return;
514
 
515
	if (intel_fbc_enabled(dev)) {
516
		/* We update FBC along two paths, after changing fb/crtc
517
		 * configuration (modeswitching) and after page-flipping
518
		 * finishes. For the latter, we know that not only did
519
		 * we disable the FBC at the start of the page-flip
520
		 * sequence, but also more than one vblank has passed.
521
		 *
522
		 * For the former case of modeswitching, it is possible
523
		 * to switch between two FBC valid configurations
524
		 * instantaneously so we do need to disable the FBC
525
		 * before we can modify its control registers. We also
526
		 * have to wait for the next vblank for that to take
527
		 * effect. However, since we delay enabling FBC we can
528
		 * assume that a vblank has passed since disabling and
529
		 * that we can safely alter the registers in the deferred
530
		 * callback.
531
		 *
532
		 * In the scenario that we go from a valid to invalid
533
		 * and then back to valid FBC configuration we have
534
		 * no strict enforcement that a vblank occurred since
535
		 * disabling the FBC. However, along all current pipe
536
		 * disabling paths we do need to wait for a vblank at
537
		 * some point. And we wait before enabling FBC anyway.
538
		 */
539
		DRM_DEBUG_KMS("disabling active FBC for update\n");
540
		intel_disable_fbc(dev);
541
	}
542
 
543
	intel_enable_fbc(crtc, 500);
544
	return;
545
 
546
out_disable:
547
	/* Multiple disables should be harmless */
548
	if (intel_fbc_enabled(dev)) {
549
		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
550
		intel_disable_fbc(dev);
551
	}
552
}
553
 
554
static void i915_pineview_get_mem_freq(struct drm_device *dev)
555
{
556
	drm_i915_private_t *dev_priv = dev->dev_private;
557
	u32 tmp;
558
 
559
	tmp = I915_READ(CLKCFG);
560
 
561
	switch (tmp & CLKCFG_FSB_MASK) {
562
	case CLKCFG_FSB_533:
563
		dev_priv->fsb_freq = 533; /* 133*4 */
564
		break;
565
	case CLKCFG_FSB_800:
566
		dev_priv->fsb_freq = 800; /* 200*4 */
567
		break;
568
	case CLKCFG_FSB_667:
569
		dev_priv->fsb_freq =  667; /* 167*4 */
570
		break;
571
	case CLKCFG_FSB_400:
572
		dev_priv->fsb_freq = 400; /* 100*4 */
573
		break;
574
	}
575
 
576
	switch (tmp & CLKCFG_MEM_MASK) {
577
	case CLKCFG_MEM_533:
578
		dev_priv->mem_freq = 533;
579
		break;
580
	case CLKCFG_MEM_667:
581
		dev_priv->mem_freq = 667;
582
		break;
583
	case CLKCFG_MEM_800:
584
		dev_priv->mem_freq = 800;
585
		break;
586
	}
587
 
588
	/* detect pineview DDR3 setting */
589
	tmp = I915_READ(CSHRDDR3CTL);
590
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
591
}
592
 
593
static void i915_ironlake_get_mem_freq(struct drm_device *dev)
594
{
595
	drm_i915_private_t *dev_priv = dev->dev_private;
596
	u16 ddrpll, csipll;
597
 
598
	ddrpll = I915_READ16(DDRMPLL1);
599
	csipll = I915_READ16(CSIPLL0);
600
 
601
	switch (ddrpll & 0xff) {
602
	case 0xc:
603
		dev_priv->mem_freq = 800;
604
		break;
605
	case 0x10:
606
		dev_priv->mem_freq = 1066;
607
		break;
608
	case 0x14:
609
		dev_priv->mem_freq = 1333;
610
		break;
611
	case 0x18:
612
		dev_priv->mem_freq = 1600;
613
		break;
614
	default:
615
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
616
				 ddrpll & 0xff);
617
		dev_priv->mem_freq = 0;
618
		break;
619
	}
620
 
621
	dev_priv->ips.r_t = dev_priv->mem_freq;
622
 
623
	switch (csipll & 0x3ff) {
624
	case 0x00c:
625
		dev_priv->fsb_freq = 3200;
626
		break;
627
	case 0x00e:
628
		dev_priv->fsb_freq = 3733;
629
		break;
630
	case 0x010:
631
		dev_priv->fsb_freq = 4266;
632
		break;
633
	case 0x012:
634
		dev_priv->fsb_freq = 4800;
635
		break;
636
	case 0x014:
637
		dev_priv->fsb_freq = 5333;
638
		break;
639
	case 0x016:
640
		dev_priv->fsb_freq = 5866;
641
		break;
642
	case 0x018:
643
		dev_priv->fsb_freq = 6400;
644
		break;
645
	default:
646
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
647
				 csipll & 0x3ff);
648
		dev_priv->fsb_freq = 0;
649
		break;
650
	}
651
 
652
	if (dev_priv->fsb_freq == 3200) {
653
		dev_priv->ips.c_m = 0;
654
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
655
		dev_priv->ips.c_m = 1;
656
	} else {
657
		dev_priv->ips.c_m = 2;
658
	}
659
}
660
 
661
static const struct cxsr_latency cxsr_latency_table[] = {
662
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
663
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
664
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
665
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
666
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
667
 
668
	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
669
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
670
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
671
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
672
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
673
 
674
	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
675
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
676
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
677
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
678
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
679
 
680
	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
681
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
682
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
683
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
684
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
685
 
686
	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
687
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
688
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
689
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
690
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
691
 
692
	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
693
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
694
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
695
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
696
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
697
};
698
 
699
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
700
							 int is_ddr3,
701
							 int fsb,
702
							 int mem)
703
{
704
	const struct cxsr_latency *latency;
705
	int i;
706
 
707
	if (fsb == 0 || mem == 0)
708
		return NULL;
709
 
710
	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
711
		latency = &cxsr_latency_table[i];
712
		if (is_desktop == latency->is_desktop &&
713
		    is_ddr3 == latency->is_ddr3 &&
714
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
715
			return latency;
716
	}
717
 
718
	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
719
 
720
	return NULL;
721
}
722
 
723
static void pineview_disable_cxsr(struct drm_device *dev)
724
{
725
	struct drm_i915_private *dev_priv = dev->dev_private;
726
 
727
	/* deactivate cxsr */
728
	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
729
}
730
 
731
/*
732
 * Latency for FIFO fetches is dependent on several factors:
733
 *   - memory configuration (speed, channels)
734
 *   - chipset
735
 *   - current MCH state
736
 * It can be fairly high in some situations, so here we assume a fairly
737
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
738
 * set this value too high, the FIFO will fetch frequently to stay full)
739
 * and power consumption (set it too low to save power and we might see
740
 * FIFO underruns and display "flicker").
741
 *
742
 * A value of 5us seems to be a good balance; safe for very low end
743
 * platforms but not overly aggressive on lower latency configs.
744
 */
745
static const int latency_ns = 5000;
746
 
747
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
748
{
749
	struct drm_i915_private *dev_priv = dev->dev_private;
750
	uint32_t dsparb = I915_READ(DSPARB);
751
	int size;
752
 
753
	size = dsparb & 0x7f;
754
	if (plane)
755
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
756
 
757
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
758
		      plane ? "B" : "A", size);
759
 
760
	return size;
761
}
762
 
763
static int i85x_get_fifo_size(struct drm_device *dev, int plane)
764
{
765
	struct drm_i915_private *dev_priv = dev->dev_private;
766
	uint32_t dsparb = I915_READ(DSPARB);
767
	int size;
768
 
769
	size = dsparb & 0x1ff;
770
	if (plane)
771
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
772
	size >>= 1; /* Convert to cachelines */
773
 
774
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
775
		      plane ? "B" : "A", size);
776
 
777
	return size;
778
}
779
 
780
static int i845_get_fifo_size(struct drm_device *dev, int plane)
781
{
782
	struct drm_i915_private *dev_priv = dev->dev_private;
783
	uint32_t dsparb = I915_READ(DSPARB);
784
	int size;
785
 
786
	size = dsparb & 0x7f;
787
	size >>= 2; /* Convert to cachelines */
788
 
789
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
790
		      plane ? "B" : "A",
791
		      size);
792
 
793
	return size;
794
}
795
 
796
static int i830_get_fifo_size(struct drm_device *dev, int plane)
797
{
798
	struct drm_i915_private *dev_priv = dev->dev_private;
799
	uint32_t dsparb = I915_READ(DSPARB);
800
	int size;
801
 
802
	size = dsparb & 0x7f;
803
	size >>= 1; /* Convert to cachelines */
804
 
805
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
806
		      plane ? "B" : "A", size);
807
 
808
	return size;
809
}
810
 
811
/* Pineview has different values for various configs */
812
static const struct intel_watermark_params pineview_display_wm = {
813
	PINEVIEW_DISPLAY_FIFO,
814
	PINEVIEW_MAX_WM,
815
	PINEVIEW_DFT_WM,
816
	PINEVIEW_GUARD_WM,
817
	PINEVIEW_FIFO_LINE_SIZE
818
};
819
static const struct intel_watermark_params pineview_display_hplloff_wm = {
820
	PINEVIEW_DISPLAY_FIFO,
821
	PINEVIEW_MAX_WM,
822
	PINEVIEW_DFT_HPLLOFF_WM,
823
	PINEVIEW_GUARD_WM,
824
	PINEVIEW_FIFO_LINE_SIZE
825
};
826
static const struct intel_watermark_params pineview_cursor_wm = {
827
	PINEVIEW_CURSOR_FIFO,
828
	PINEVIEW_CURSOR_MAX_WM,
829
	PINEVIEW_CURSOR_DFT_WM,
830
	PINEVIEW_CURSOR_GUARD_WM,
831
	PINEVIEW_FIFO_LINE_SIZE,
832
};
833
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
834
	PINEVIEW_CURSOR_FIFO,
835
	PINEVIEW_CURSOR_MAX_WM,
836
	PINEVIEW_CURSOR_DFT_WM,
837
	PINEVIEW_CURSOR_GUARD_WM,
838
	PINEVIEW_FIFO_LINE_SIZE
839
};
840
static const struct intel_watermark_params g4x_wm_info = {
841
	G4X_FIFO_SIZE,
842
	G4X_MAX_WM,
843
	G4X_MAX_WM,
844
	2,
845
	G4X_FIFO_LINE_SIZE,
846
};
847
static const struct intel_watermark_params g4x_cursor_wm_info = {
848
	I965_CURSOR_FIFO,
849
	I965_CURSOR_MAX_WM,
850
	I965_CURSOR_DFT_WM,
851
	2,
852
	G4X_FIFO_LINE_SIZE,
853
};
854
static const struct intel_watermark_params valleyview_wm_info = {
855
	VALLEYVIEW_FIFO_SIZE,
856
	VALLEYVIEW_MAX_WM,
857
	VALLEYVIEW_MAX_WM,
858
	2,
859
	G4X_FIFO_LINE_SIZE,
860
};
861
static const struct intel_watermark_params valleyview_cursor_wm_info = {
862
	I965_CURSOR_FIFO,
863
	VALLEYVIEW_CURSOR_MAX_WM,
864
	I965_CURSOR_DFT_WM,
865
	2,
866
	G4X_FIFO_LINE_SIZE,
867
};
868
static const struct intel_watermark_params i965_cursor_wm_info = {
869
	I965_CURSOR_FIFO,
870
	I965_CURSOR_MAX_WM,
871
	I965_CURSOR_DFT_WM,
872
	2,
873
	I915_FIFO_LINE_SIZE,
874
};
875
static const struct intel_watermark_params i945_wm_info = {
876
	I945_FIFO_SIZE,
877
	I915_MAX_WM,
878
	1,
879
	2,
880
	I915_FIFO_LINE_SIZE
881
};
882
static const struct intel_watermark_params i915_wm_info = {
883
	I915_FIFO_SIZE,
884
	I915_MAX_WM,
885
	1,
886
	2,
887
	I915_FIFO_LINE_SIZE
888
};
889
static const struct intel_watermark_params i855_wm_info = {
890
	I855GM_FIFO_SIZE,
891
	I915_MAX_WM,
892
	1,
893
	2,
894
	I830_FIFO_LINE_SIZE
895
};
896
static const struct intel_watermark_params i830_wm_info = {
897
	I830_FIFO_SIZE,
898
	I915_MAX_WM,
899
	1,
900
	2,
901
	I830_FIFO_LINE_SIZE
902
};
903
 
904
static const struct intel_watermark_params ironlake_display_wm_info = {
905
	ILK_DISPLAY_FIFO,
906
	ILK_DISPLAY_MAXWM,
907
	ILK_DISPLAY_DFTWM,
908
	2,
909
	ILK_FIFO_LINE_SIZE
910
};
911
static const struct intel_watermark_params ironlake_cursor_wm_info = {
912
	ILK_CURSOR_FIFO,
913
	ILK_CURSOR_MAXWM,
914
	ILK_CURSOR_DFTWM,
915
	2,
916
	ILK_FIFO_LINE_SIZE
917
};
918
static const struct intel_watermark_params ironlake_display_srwm_info = {
919
	ILK_DISPLAY_SR_FIFO,
920
	ILK_DISPLAY_MAX_SRWM,
921
	ILK_DISPLAY_DFT_SRWM,
922
	2,
923
	ILK_FIFO_LINE_SIZE
924
};
925
static const struct intel_watermark_params ironlake_cursor_srwm_info = {
926
	ILK_CURSOR_SR_FIFO,
927
	ILK_CURSOR_MAX_SRWM,
928
	ILK_CURSOR_DFT_SRWM,
929
	2,
930
	ILK_FIFO_LINE_SIZE
931
};
932
 
933
static const struct intel_watermark_params sandybridge_display_wm_info = {
934
	SNB_DISPLAY_FIFO,
935
	SNB_DISPLAY_MAXWM,
936
	SNB_DISPLAY_DFTWM,
937
	2,
938
	SNB_FIFO_LINE_SIZE
939
};
940
static const struct intel_watermark_params sandybridge_cursor_wm_info = {
941
	SNB_CURSOR_FIFO,
942
	SNB_CURSOR_MAXWM,
943
	SNB_CURSOR_DFTWM,
944
	2,
945
	SNB_FIFO_LINE_SIZE
946
};
947
static const struct intel_watermark_params sandybridge_display_srwm_info = {
948
	SNB_DISPLAY_SR_FIFO,
949
	SNB_DISPLAY_MAX_SRWM,
950
	SNB_DISPLAY_DFT_SRWM,
951
	2,
952
	SNB_FIFO_LINE_SIZE
953
};
954
static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
955
	SNB_CURSOR_SR_FIFO,
956
	SNB_CURSOR_MAX_SRWM,
957
	SNB_CURSOR_DFT_SRWM,
958
	2,
959
	SNB_FIFO_LINE_SIZE
960
};
961
 
962
 
963
/**
964
 * intel_calculate_wm - calculate watermark level
965
 * @clock_in_khz: pixel clock
966
 * @wm: chip FIFO params
967
 * @pixel_size: display pixel size
968
 * @latency_ns: memory latency for the platform
969
 *
970
 * Calculate the watermark level (the level at which the display plane will
971
 * start fetching from memory again).  Each chip has a different display
972
 * FIFO size and allocation, so the caller needs to figure that out and pass
973
 * in the correct intel_watermark_params structure.
974
 *
975
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
976
 * on the pixel size.  When it reaches the watermark level, it'll start
977
 * fetching FIFO line sized based chunks from memory until the FIFO fills
978
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
979
 * will occur, and a display engine hang could result.
980
 */
981
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
982
					const struct intel_watermark_params *wm,
983
					int fifo_size,
984
					int pixel_size,
985
					unsigned long latency_ns)
986
{
987
	long entries_required, wm_size;
988
 
989
	/*
990
	 * Note: we need to make sure we don't overflow for various clock &
991
	 * latency values.
992
	 * clocks go from a few thousand to several hundred thousand.
993
	 * latency is usually a few thousand
994
	 */
995
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
996
		1000;
997
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
998
 
999
	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1000
 
1001
	wm_size = fifo_size - (entries_required + wm->guard_size);
1002
 
1003
	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1004
 
1005
	/* Don't promote wm_size to unsigned... */
1006
	if (wm_size > (long)wm->max_wm)
1007
		wm_size = wm->max_wm;
1008
	if (wm_size <= 0)
1009
		wm_size = wm->default_wm;
1010
	return wm_size;
1011
}
1012
 
1013
static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1014
{
1015
	struct drm_crtc *crtc, *enabled = NULL;
1016
 
1017
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1018
		if (crtc->enabled && crtc->fb) {
1019
			if (enabled)
1020
				return NULL;
1021
			enabled = crtc;
1022
		}
1023
	}
1024
 
1025
	return enabled;
1026
}
1027
 
1028
static void pineview_update_wm(struct drm_device *dev)
1029
{
1030
	struct drm_i915_private *dev_priv = dev->dev_private;
1031
	struct drm_crtc *crtc;
1032
	const struct cxsr_latency *latency;
1033
	u32 reg;
1034
	unsigned long wm;
1035
 
1036
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1037
					 dev_priv->fsb_freq, dev_priv->mem_freq);
1038
	if (!latency) {
1039
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1040
		pineview_disable_cxsr(dev);
1041
		return;
1042
	}
1043
 
1044
	crtc = single_enabled_crtc(dev);
1045
	if (crtc) {
1046
		int clock = crtc->mode.clock;
1047
		int pixel_size = crtc->fb->bits_per_pixel / 8;
1048
 
1049
		/* Display SR */
1050
		wm = intel_calculate_wm(clock, &pineview_display_wm,
1051
					pineview_display_wm.fifo_size,
1052
					pixel_size, latency->display_sr);
1053
		reg = I915_READ(DSPFW1);
1054
		reg &= ~DSPFW_SR_MASK;
1055
		reg |= wm << DSPFW_SR_SHIFT;
1056
		I915_WRITE(DSPFW1, reg);
1057
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1058
 
1059
		/* cursor SR */
1060
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1061
					pineview_display_wm.fifo_size,
1062
					pixel_size, latency->cursor_sr);
1063
		reg = I915_READ(DSPFW3);
1064
		reg &= ~DSPFW_CURSOR_SR_MASK;
1065
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1066
		I915_WRITE(DSPFW3, reg);
1067
 
1068
		/* Display HPLL off SR */
1069
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1070
					pineview_display_hplloff_wm.fifo_size,
1071
					pixel_size, latency->display_hpll_disable);
1072
		reg = I915_READ(DSPFW3);
1073
		reg &= ~DSPFW_HPLL_SR_MASK;
1074
		reg |= wm & DSPFW_HPLL_SR_MASK;
1075
		I915_WRITE(DSPFW3, reg);
1076
 
1077
		/* cursor HPLL off SR */
1078
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1079
					pineview_display_hplloff_wm.fifo_size,
1080
					pixel_size, latency->cursor_hpll_disable);
1081
		reg = I915_READ(DSPFW3);
1082
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
1083
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1084
		I915_WRITE(DSPFW3, reg);
1085
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1086
 
1087
		/* activate cxsr */
1088
		I915_WRITE(DSPFW3,
1089
			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1090
		DRM_DEBUG_KMS("Self-refresh is enabled\n");
1091
	} else {
1092
		pineview_disable_cxsr(dev);
1093
		DRM_DEBUG_KMS("Self-refresh is disabled\n");
1094
	}
1095
}
1096
 
1097
static bool g4x_compute_wm0(struct drm_device *dev,
1098
			    int plane,
1099
			    const struct intel_watermark_params *display,
1100
			    int display_latency_ns,
1101
			    const struct intel_watermark_params *cursor,
1102
			    int cursor_latency_ns,
1103
			    int *plane_wm,
1104
			    int *cursor_wm)
1105
{
1106
	struct drm_crtc *crtc;
1107
	int htotal, hdisplay, clock, pixel_size;
1108
	int line_time_us, line_count;
1109
	int entries, tlb_miss;
1110
 
1111
	crtc = intel_get_crtc_for_plane(dev, plane);
1112
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1113
 
1114
    if (crtc->fb == NULL || !crtc->enabled || !intel_crtc->active) {
1115
		*cursor_wm = cursor->guard_size;
1116
		*plane_wm = display->guard_size;
1117
        return false;
1118
	}
1119
 
1120
	htotal = crtc->mode.htotal;
1121
	hdisplay = crtc->mode.hdisplay;
1122
	clock = crtc->mode.clock;
1123
	pixel_size = crtc->fb->bits_per_pixel / 8;
1124
 
1125
	/* Use the small buffer method to calculate plane watermark */
1126
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1127
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1128
	if (tlb_miss > 0)
1129
		entries += tlb_miss;
1130
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
1131
	*plane_wm = entries + display->guard_size;
1132
	if (*plane_wm > (int)display->max_wm)
1133
		*plane_wm = display->max_wm;
1134
 
1135
	/* Use the large buffer method to calculate cursor watermark */
1136
	line_time_us = ((htotal * 1000) / clock);
1137
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1138
	entries = line_count * 64 * pixel_size;
1139
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1140
	if (tlb_miss > 0)
1141
		entries += tlb_miss;
1142
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1143
	*cursor_wm = entries + cursor->guard_size;
1144
	if (*cursor_wm > (int)cursor->max_wm)
1145
		*cursor_wm = (int)cursor->max_wm;
1146
 
1147
	return true;
1148
}
1149
 
1150
/*
1151
 * Check the wm result.
1152
 *
1153
 * If any calculated watermark values is larger than the maximum value that
1154
 * can be programmed into the associated watermark register, that watermark
1155
 * must be disabled.
1156
 */
1157
static bool g4x_check_srwm(struct drm_device *dev,
1158
			   int display_wm, int cursor_wm,
1159
			   const struct intel_watermark_params *display,
1160
			   const struct intel_watermark_params *cursor)
1161
{
1162
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1163
		      display_wm, cursor_wm);
1164
 
1165
	if (display_wm > display->max_wm) {
1166
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1167
			      display_wm, display->max_wm);
1168
		return false;
1169
	}
1170
 
1171
	if (cursor_wm > cursor->max_wm) {
1172
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1173
			      cursor_wm, cursor->max_wm);
1174
		return false;
1175
	}
1176
 
1177
	if (!(display_wm || cursor_wm)) {
1178
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1179
		return false;
1180
	}
1181
 
1182
	return true;
1183
}
1184
 
1185
static bool g4x_compute_srwm(struct drm_device *dev,
1186
			     int plane,
1187
			     int latency_ns,
1188
			     const struct intel_watermark_params *display,
1189
			     const struct intel_watermark_params *cursor,
1190
			     int *display_wm, int *cursor_wm)
1191
{
1192
	struct drm_crtc *crtc;
1193
	int hdisplay, htotal, pixel_size, clock;
1194
	unsigned long line_time_us;
1195
	int line_count, line_size;
1196
	int small, large;
1197
	int entries;
1198
 
1199
	if (!latency_ns) {
1200
		*display_wm = *cursor_wm = 0;
1201
		return false;
1202
	}
1203
 
1204
	crtc = intel_get_crtc_for_plane(dev, plane);
1205
	hdisplay = crtc->mode.hdisplay;
1206
	htotal = crtc->mode.htotal;
1207
	clock = crtc->mode.clock;
1208
	pixel_size = crtc->fb->bits_per_pixel / 8;
1209
 
1210
	line_time_us = (htotal * 1000) / clock;
1211
	line_count = (latency_ns / line_time_us + 1000) / 1000;
1212
	line_size = hdisplay * pixel_size;
1213
 
1214
	/* Use the minimum of the small and large buffer method for primary */
1215
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1216
	large = line_count * line_size;
1217
 
1218
	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1219
	*display_wm = entries + display->guard_size;
1220
 
1221
	/* calculate the self-refresh watermark for display cursor */
1222
	entries = line_count * pixel_size * 64;
1223
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1224
	*cursor_wm = entries + cursor->guard_size;
1225
 
1226
	return g4x_check_srwm(dev,
1227
			      *display_wm, *cursor_wm,
1228
			      display, cursor);
1229
}
1230
 
1231
static bool vlv_compute_drain_latency(struct drm_device *dev,
1232
				     int plane,
1233
				     int *plane_prec_mult,
1234
				     int *plane_dl,
1235
				     int *cursor_prec_mult,
1236
				     int *cursor_dl)
1237
{
1238
	struct drm_crtc *crtc;
1239
	int clock, pixel_size;
1240
	int entries;
1241
 
1242
	crtc = intel_get_crtc_for_plane(dev, plane);
1243
	if (crtc->fb == NULL || !crtc->enabled)
1244
		return false;
1245
 
1246
	clock = crtc->mode.clock;	/* VESA DOT Clock */
1247
	pixel_size = crtc->fb->bits_per_pixel / 8;	/* BPP */
1248
 
1249
	entries = (clock / 1000) * pixel_size;
1250
	*plane_prec_mult = (entries > 256) ?
1251
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1252
	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1253
						     pixel_size);
1254
 
1255
	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
1256
	*cursor_prec_mult = (entries > 256) ?
1257
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1258
	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1259
 
1260
	return true;
1261
}
1262
 
1263
/*
1264
 * Update drain latency registers of memory arbiter
1265
 *
1266
 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1267
 * to be programmed. Each plane has a drain latency multiplier and a drain
1268
 * latency value.
1269
 */
1270
 
1271
static void vlv_update_drain_latency(struct drm_device *dev)
1272
{
1273
	struct drm_i915_private *dev_priv = dev->dev_private;
1274
	int planea_prec, planea_dl, planeb_prec, planeb_dl;
1275
	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1276
	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1277
							either 16 or 32 */
1278
 
1279
	/* For plane A, Cursor A */
1280
	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1281
				      &cursor_prec_mult, &cursora_dl)) {
1282
		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1283
			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1284
		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1285
			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1286
 
1287
		I915_WRITE(VLV_DDL1, cursora_prec |
1288
				(cursora_dl << DDL_CURSORA_SHIFT) |
1289
				planea_prec | planea_dl);
1290
	}
1291
 
1292
	/* For plane B, Cursor B */
1293
	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1294
				      &cursor_prec_mult, &cursorb_dl)) {
1295
		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1296
			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1297
		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1298
			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1299
 
1300
		I915_WRITE(VLV_DDL2, cursorb_prec |
1301
				(cursorb_dl << DDL_CURSORB_SHIFT) |
1302
				planeb_prec | planeb_dl);
1303
	}
1304
}
1305
 
1306
#define single_plane_enabled(mask) is_power_of_2(mask)
1307
 
1308
static void valleyview_update_wm(struct drm_device *dev)
1309
{
1310
	static const int sr_latency_ns = 12000;
1311
	struct drm_i915_private *dev_priv = dev->dev_private;
1312
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1313
	int plane_sr, cursor_sr;
1314
	unsigned int enabled = 0;
1315
 
1316
	vlv_update_drain_latency(dev);
1317
 
1318
	if (g4x_compute_wm0(dev, 0,
1319
			    &valleyview_wm_info, latency_ns,
1320
			    &valleyview_cursor_wm_info, latency_ns,
1321
			    &planea_wm, &cursora_wm))
1322
		enabled |= 1;
1323
 
1324
	if (g4x_compute_wm0(dev, 1,
1325
			    &valleyview_wm_info, latency_ns,
1326
			    &valleyview_cursor_wm_info, latency_ns,
1327
			    &planeb_wm, &cursorb_wm))
1328
		enabled |= 2;
1329
 
1330
	plane_sr = cursor_sr = 0;
1331
	if (single_plane_enabled(enabled) &&
1332
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1333
			     sr_latency_ns,
1334
			     &valleyview_wm_info,
1335
			     &valleyview_cursor_wm_info,
1336
			     &plane_sr, &cursor_sr))
1337
		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1338
	else
1339
		I915_WRITE(FW_BLC_SELF_VLV,
1340
			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1341
 
1342
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1343
		      planea_wm, cursora_wm,
1344
		      planeb_wm, cursorb_wm,
1345
		      plane_sr, cursor_sr);
1346
 
1347
	I915_WRITE(DSPFW1,
1348
		   (plane_sr << DSPFW_SR_SHIFT) |
1349
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1350
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1351
		   planea_wm);
1352
	I915_WRITE(DSPFW2,
1353
		   (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1354
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1355
	I915_WRITE(DSPFW3,
1356
		   (I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)));
1357
}
1358
 
1359
static void g4x_update_wm(struct drm_device *dev)
1360
{
1361
	static const int sr_latency_ns = 12000;
1362
	struct drm_i915_private *dev_priv = dev->dev_private;
1363
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1364
	int plane_sr, cursor_sr;
1365
	unsigned int enabled = 0;
1366
 
1367
	if (g4x_compute_wm0(dev, 0,
1368
			    &g4x_wm_info, latency_ns,
1369
			    &g4x_cursor_wm_info, latency_ns,
1370
			    &planea_wm, &cursora_wm))
1371
		enabled |= 1;
1372
 
1373
	if (g4x_compute_wm0(dev, 1,
1374
			    &g4x_wm_info, latency_ns,
1375
			    &g4x_cursor_wm_info, latency_ns,
1376
			    &planeb_wm, &cursorb_wm))
1377
		enabled |= 2;
1378
 
1379
	plane_sr = cursor_sr = 0;
1380
	if (single_plane_enabled(enabled) &&
1381
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1382
			     sr_latency_ns,
1383
			     &g4x_wm_info,
1384
			     &g4x_cursor_wm_info,
1385
			     &plane_sr, &cursor_sr))
1386
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1387
	else
1388
		I915_WRITE(FW_BLC_SELF,
1389
			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1390
 
1391
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1392
		      planea_wm, cursora_wm,
1393
		      planeb_wm, cursorb_wm,
1394
		      plane_sr, cursor_sr);
1395
 
1396
	I915_WRITE(DSPFW1,
1397
		   (plane_sr << DSPFW_SR_SHIFT) |
1398
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1399
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1400
		   planea_wm);
1401
	I915_WRITE(DSPFW2,
1402
		   (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1403
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1404
	/* HPLL off in SR has some issues on G4x... disable it */
1405
	I915_WRITE(DSPFW3,
1406
		   (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
1407
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1408
}
1409
 
1410
static void i965_update_wm(struct drm_device *dev)
1411
{
1412
	struct drm_i915_private *dev_priv = dev->dev_private;
1413
	struct drm_crtc *crtc;
1414
	int srwm = 1;
1415
	int cursor_sr = 16;
1416
 
1417
	/* Calc sr entries for one plane configs */
1418
	crtc = single_enabled_crtc(dev);
1419
	if (crtc) {
1420
		/* self-refresh has much higher latency */
1421
		static const int sr_latency_ns = 12000;
1422
		int clock = crtc->mode.clock;
1423
		int htotal = crtc->mode.htotal;
1424
		int hdisplay = crtc->mode.hdisplay;
1425
		int pixel_size = crtc->fb->bits_per_pixel / 8;
1426
		unsigned long line_time_us;
1427
		int entries;
1428
 
1429
		line_time_us = ((htotal * 1000) / clock);
1430
 
1431
		/* Use ns/us then divide to preserve precision */
1432
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1433
			pixel_size * hdisplay;
1434
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1435
		srwm = I965_FIFO_SIZE - entries;
1436
		if (srwm < 0)
1437
			srwm = 1;
1438
		srwm &= 0x1ff;
1439
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1440
			      entries, srwm);
1441
 
1442
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1443
			pixel_size * 64;
1444
		entries = DIV_ROUND_UP(entries,
1445
					  i965_cursor_wm_info.cacheline_size);
1446
		cursor_sr = i965_cursor_wm_info.fifo_size -
1447
			(entries + i965_cursor_wm_info.guard_size);
1448
 
1449
		if (cursor_sr > i965_cursor_wm_info.max_wm)
1450
			cursor_sr = i965_cursor_wm_info.max_wm;
1451
 
1452
		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1453
			      "cursor %d\n", srwm, cursor_sr);
1454
 
1455
		if (IS_CRESTLINE(dev))
1456
			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1457
	} else {
1458
		/* Turn off self refresh if both pipes are enabled */
1459
		if (IS_CRESTLINE(dev))
1460
			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1461
				   & ~FW_BLC_SELF_EN);
1462
	}
1463
 
1464
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1465
		      srwm);
1466
 
1467
	/* 965 has limitations... */
1468
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1469
		   (8 << 16) | (8 << 8) | (8 << 0));
1470
	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1471
	/* update cursor SR watermark */
1472
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1473
}
1474
 
1475
static void i9xx_update_wm(struct drm_device *dev)
1476
{
1477
	struct drm_i915_private *dev_priv = dev->dev_private;
1478
	const struct intel_watermark_params *wm_info;
1479
	uint32_t fwater_lo;
1480
	uint32_t fwater_hi;
1481
	int cwm, srwm = 1;
1482
	int fifo_size;
1483
	int planea_wm, planeb_wm;
1484
	struct drm_crtc *crtc, *enabled = NULL;
1485
 
1486
	if (IS_I945GM(dev))
1487
		wm_info = &i945_wm_info;
1488
	else if (!IS_GEN2(dev))
1489
		wm_info = &i915_wm_info;
1490
	else
1491
		wm_info = &i855_wm_info;
1492
 
1493
	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1494
	crtc = intel_get_crtc_for_plane(dev, 0);
1495
	if (crtc->enabled && crtc->fb) {
1496
		planea_wm = intel_calculate_wm(crtc->mode.clock,
1497
					       wm_info, fifo_size,
1498
					       crtc->fb->bits_per_pixel / 8,
1499
					       latency_ns);
1500
		enabled = crtc;
1501
	} else
1502
		planea_wm = fifo_size - wm_info->guard_size;
1503
 
1504
	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1505
	crtc = intel_get_crtc_for_plane(dev, 1);
1506
	if (crtc->enabled && crtc->fb) {
1507
		planeb_wm = intel_calculate_wm(crtc->mode.clock,
1508
					       wm_info, fifo_size,
1509
					       crtc->fb->bits_per_pixel / 8,
1510
					       latency_ns);
1511
		if (enabled == NULL)
1512
			enabled = crtc;
1513
		else
1514
			enabled = NULL;
1515
	} else
1516
		planeb_wm = fifo_size - wm_info->guard_size;
1517
 
1518
	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1519
 
1520
	/*
1521
	 * Overlay gets an aggressive default since video jitter is bad.
1522
	 */
1523
	cwm = 2;
1524
 
1525
	/* Play safe and disable self-refresh before adjusting watermarks. */
1526
	if (IS_I945G(dev) || IS_I945GM(dev))
1527
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1528
	else if (IS_I915GM(dev))
1529
		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1530
 
1531
	/* Calc sr entries for one plane configs */
1532
	if (HAS_FW_BLC(dev) && enabled) {
1533
		/* self-refresh has much higher latency */
1534
		static const int sr_latency_ns = 6000;
1535
		int clock = enabled->mode.clock;
1536
		int htotal = enabled->mode.htotal;
1537
		int hdisplay = enabled->mode.hdisplay;
1538
		int pixel_size = enabled->fb->bits_per_pixel / 8;
1539
		unsigned long line_time_us;
1540
		int entries;
1541
 
1542
		line_time_us = (htotal * 1000) / clock;
1543
 
1544
		/* Use ns/us then divide to preserve precision */
1545
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1546
			pixel_size * hdisplay;
1547
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1548
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1549
		srwm = wm_info->fifo_size - entries;
1550
		if (srwm < 0)
1551
			srwm = 1;
1552
 
1553
		if (IS_I945G(dev) || IS_I945GM(dev))
1554
			I915_WRITE(FW_BLC_SELF,
1555
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1556
		else if (IS_I915GM(dev))
1557
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1558
	}
1559
 
1560
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1561
		      planea_wm, planeb_wm, cwm, srwm);
1562
 
1563
	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1564
	fwater_hi = (cwm & 0x1f);
1565
 
1566
	/* Set request length to 8 cachelines per fetch */
1567
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1568
	fwater_hi = fwater_hi | (1 << 8);
1569
 
1570
	I915_WRITE(FW_BLC, fwater_lo);
1571
	I915_WRITE(FW_BLC2, fwater_hi);
1572
 
1573
	if (HAS_FW_BLC(dev)) {
1574
		if (enabled) {
1575
			if (IS_I945G(dev) || IS_I945GM(dev))
1576
				I915_WRITE(FW_BLC_SELF,
1577
					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1578
			else if (IS_I915GM(dev))
1579
				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1580
			DRM_DEBUG_KMS("memory self refresh enabled\n");
1581
		} else
1582
			DRM_DEBUG_KMS("memory self refresh disabled\n");
1583
	}
1584
}
1585
 
1586
static void i830_update_wm(struct drm_device *dev)
1587
{
1588
	struct drm_i915_private *dev_priv = dev->dev_private;
1589
	struct drm_crtc *crtc;
1590
	uint32_t fwater_lo;
1591
	int planea_wm;
1592
 
1593
	crtc = single_enabled_crtc(dev);
1594
	if (crtc == NULL)
1595
		return;
1596
 
1597
	planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1598
				       dev_priv->display.get_fifo_size(dev, 0),
1599
				       crtc->fb->bits_per_pixel / 8,
1600
				       latency_ns);
1601
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1602
	fwater_lo |= (3<<8) | planea_wm;
1603
 
1604
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1605
 
1606
	I915_WRITE(FW_BLC, fwater_lo);
1607
}
1608
 
1609
#define ILK_LP0_PLANE_LATENCY		700
1610
#define ILK_LP0_CURSOR_LATENCY		1300
1611
 
1612
/*
1613
 * Check the wm result.
1614
 *
1615
 * If any calculated watermark values is larger than the maximum value that
1616
 * can be programmed into the associated watermark register, that watermark
1617
 * must be disabled.
1618
 */
1619
static bool ironlake_check_srwm(struct drm_device *dev, int level,
1620
				int fbc_wm, int display_wm, int cursor_wm,
1621
				const struct intel_watermark_params *display,
1622
				const struct intel_watermark_params *cursor)
1623
{
1624
	struct drm_i915_private *dev_priv = dev->dev_private;
1625
 
1626
	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1627
		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1628
 
1629
	if (fbc_wm > SNB_FBC_MAX_SRWM) {
1630
		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1631
			      fbc_wm, SNB_FBC_MAX_SRWM, level);
1632
 
1633
		/* fbc has it's own way to disable FBC WM */
1634
		I915_WRITE(DISP_ARB_CTL,
1635
			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1636
		return false;
1637
	}
1638
 
1639
	if (display_wm > display->max_wm) {
1640
		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1641
			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
1642
		return false;
1643
	}
1644
 
1645
	if (cursor_wm > cursor->max_wm) {
1646
		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1647
			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1648
		return false;
1649
	}
1650
 
1651
	if (!(fbc_wm || display_wm || cursor_wm)) {
1652
		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1653
		return false;
1654
	}
1655
 
1656
	return true;
1657
}
1658
 
1659
/*
1660
 * Compute watermark values of WM[1-3],
1661
 */
1662
static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1663
				  int latency_ns,
1664
				  const struct intel_watermark_params *display,
1665
				  const struct intel_watermark_params *cursor,
1666
				  int *fbc_wm, int *display_wm, int *cursor_wm)
1667
{
1668
	struct drm_crtc *crtc;
1669
	unsigned long line_time_us;
1670
	int hdisplay, htotal, pixel_size, clock;
1671
	int line_count, line_size;
1672
	int small, large;
1673
	int entries;
1674
 
1675
	if (!latency_ns) {
1676
		*fbc_wm = *display_wm = *cursor_wm = 0;
1677
		return false;
1678
	}
1679
 
1680
	crtc = intel_get_crtc_for_plane(dev, plane);
1681
	hdisplay = crtc->mode.hdisplay;
1682
	htotal = crtc->mode.htotal;
1683
	clock = crtc->mode.clock;
1684
	pixel_size = crtc->fb->bits_per_pixel / 8;
1685
 
1686
	line_time_us = (htotal * 1000) / clock;
1687
	line_count = (latency_ns / line_time_us + 1000) / 1000;
1688
	line_size = hdisplay * pixel_size;
1689
 
1690
	/* Use the minimum of the small and large buffer method for primary */
1691
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1692
	large = line_count * line_size;
1693
 
1694
	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1695
	*display_wm = entries + display->guard_size;
1696
 
1697
	/*
1698
	 * Spec says:
1699
	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1700
	 */
1701
	*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1702
 
1703
	/* calculate the self-refresh watermark for display cursor */
1704
	entries = line_count * pixel_size * 64;
1705
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1706
	*cursor_wm = entries + cursor->guard_size;
1707
 
1708
	return ironlake_check_srwm(dev, level,
1709
				   *fbc_wm, *display_wm, *cursor_wm,
1710
				   display, cursor);
1711
}
1712
 
1713
static void ironlake_update_wm(struct drm_device *dev)
1714
{
1715
	struct drm_i915_private *dev_priv = dev->dev_private;
1716
	int fbc_wm, plane_wm, cursor_wm;
1717
	unsigned int enabled;
1718
 
1719
	enabled = 0;
1720
	if (g4x_compute_wm0(dev, 0,
1721
			    &ironlake_display_wm_info,
1722
			    ILK_LP0_PLANE_LATENCY,
1723
			    &ironlake_cursor_wm_info,
1724
			    ILK_LP0_CURSOR_LATENCY,
1725
			    &plane_wm, &cursor_wm)) {
1726
		I915_WRITE(WM0_PIPEA_ILK,
1727
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1728
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1729
			      " plane %d, " "cursor: %d\n",
1730
			      plane_wm, cursor_wm);
1731
		enabled |= 1;
1732
	}
1733
 
1734
	if (g4x_compute_wm0(dev, 1,
1735
			    &ironlake_display_wm_info,
1736
			    ILK_LP0_PLANE_LATENCY,
1737
			    &ironlake_cursor_wm_info,
1738
			    ILK_LP0_CURSOR_LATENCY,
1739
			    &plane_wm, &cursor_wm)) {
1740
		I915_WRITE(WM0_PIPEB_ILK,
1741
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1742
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1743
			      " plane %d, cursor: %d\n",
1744
			      plane_wm, cursor_wm);
1745
		enabled |= 2;
1746
	}
1747
 
1748
	/*
1749
	 * Calculate and update the self-refresh watermark only when one
1750
	 * display plane is used.
1751
	 */
1752
	I915_WRITE(WM3_LP_ILK, 0);
1753
	I915_WRITE(WM2_LP_ILK, 0);
1754
	I915_WRITE(WM1_LP_ILK, 0);
1755
 
1756
	if (!single_plane_enabled(enabled))
1757
		return;
1758
	enabled = ffs(enabled) - 1;
1759
 
1760
	/* WM1 */
1761
	if (!ironlake_compute_srwm(dev, 1, enabled,
1762
				   ILK_READ_WM1_LATENCY() * 500,
1763
				   &ironlake_display_srwm_info,
1764
				   &ironlake_cursor_srwm_info,
1765
				   &fbc_wm, &plane_wm, &cursor_wm))
1766
		return;
1767
 
1768
	I915_WRITE(WM1_LP_ILK,
1769
		   WM1_LP_SR_EN |
1770
		   (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1771
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1772
		   (plane_wm << WM1_LP_SR_SHIFT) |
1773
		   cursor_wm);
1774
 
1775
	/* WM2 */
1776
	if (!ironlake_compute_srwm(dev, 2, enabled,
1777
				   ILK_READ_WM2_LATENCY() * 500,
1778
				   &ironlake_display_srwm_info,
1779
				   &ironlake_cursor_srwm_info,
1780
				   &fbc_wm, &plane_wm, &cursor_wm))
1781
		return;
1782
 
1783
	I915_WRITE(WM2_LP_ILK,
1784
		   WM2_LP_EN |
1785
		   (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1786
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1787
		   (plane_wm << WM1_LP_SR_SHIFT) |
1788
		   cursor_wm);
1789
 
1790
	/*
1791
	 * WM3 is unsupported on ILK, probably because we don't have latency
1792
	 * data for that power state
1793
	 */
1794
}
1795
 
1796
static void sandybridge_update_wm(struct drm_device *dev)
1797
{
1798
	struct drm_i915_private *dev_priv = dev->dev_private;
1799
	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
1800
	u32 val;
1801
	int fbc_wm, plane_wm, cursor_wm;
1802
	unsigned int enabled;
1803
 
1804
	enabled = 0;
1805
	if (g4x_compute_wm0(dev, 0,
1806
			    &sandybridge_display_wm_info, latency,
1807
			    &sandybridge_cursor_wm_info, latency,
1808
			    &plane_wm, &cursor_wm)) {
1809
		val = I915_READ(WM0_PIPEA_ILK);
1810
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1811
		I915_WRITE(WM0_PIPEA_ILK, val |
1812
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1813
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1814
			      " plane %d, " "cursor: %d\n",
1815
			      plane_wm, cursor_wm);
1816
		enabled |= 1;
1817
	}
1818
 
1819
	if (g4x_compute_wm0(dev, 1,
1820
			    &sandybridge_display_wm_info, latency,
1821
			    &sandybridge_cursor_wm_info, latency,
1822
			    &plane_wm, &cursor_wm)) {
1823
		val = I915_READ(WM0_PIPEB_ILK);
1824
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1825
		I915_WRITE(WM0_PIPEB_ILK, val |
1826
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1827
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1828
			      " plane %d, cursor: %d\n",
1829
			      plane_wm, cursor_wm);
1830
		enabled |= 2;
1831
	}
1832
 
1833
	if ((dev_priv->num_pipe == 3) &&
1834
	    g4x_compute_wm0(dev, 2,
1835
			    &sandybridge_display_wm_info, latency,
1836
			    &sandybridge_cursor_wm_info, latency,
1837
			    &plane_wm, &cursor_wm)) {
1838
		val = I915_READ(WM0_PIPEC_IVB);
1839
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1840
		I915_WRITE(WM0_PIPEC_IVB, val |
1841
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1842
		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1843
			      " plane %d, cursor: %d\n",
1844
			      plane_wm, cursor_wm);
1845
		enabled |= 3;
1846
	}
1847
 
1848
	/*
1849
	 * Calculate and update the self-refresh watermark only when one
1850
	 * display plane is used.
1851
	 *
1852
	 * SNB support 3 levels of watermark.
1853
	 *
1854
	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1855
	 * and disabled in the descending order
1856
	 *
1857
	 */
1858
	I915_WRITE(WM3_LP_ILK, 0);
1859
	I915_WRITE(WM2_LP_ILK, 0);
1860
	I915_WRITE(WM1_LP_ILK, 0);
1861
 
1862
	if (!single_plane_enabled(enabled) ||
1863
	    dev_priv->sprite_scaling_enabled)
1864
		return;
1865
	enabled = ffs(enabled) - 1;
1866
 
1867
	/* WM1 */
1868
	if (!ironlake_compute_srwm(dev, 1, enabled,
1869
				   SNB_READ_WM1_LATENCY() * 500,
1870
				   &sandybridge_display_srwm_info,
1871
				   &sandybridge_cursor_srwm_info,
1872
				   &fbc_wm, &plane_wm, &cursor_wm))
1873
		return;
1874
 
1875
	I915_WRITE(WM1_LP_ILK,
1876
		   WM1_LP_SR_EN |
1877
		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1878
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1879
		   (plane_wm << WM1_LP_SR_SHIFT) |
1880
		   cursor_wm);
1881
 
1882
	/* WM2 */
1883
	if (!ironlake_compute_srwm(dev, 2, enabled,
1884
				   SNB_READ_WM2_LATENCY() * 500,
1885
				   &sandybridge_display_srwm_info,
1886
				   &sandybridge_cursor_srwm_info,
1887
				   &fbc_wm, &plane_wm, &cursor_wm))
1888
		return;
1889
 
1890
	I915_WRITE(WM2_LP_ILK,
1891
		   WM2_LP_EN |
1892
		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1893
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1894
		   (plane_wm << WM1_LP_SR_SHIFT) |
1895
		   cursor_wm);
1896
 
1897
	/* WM3 */
1898
	if (!ironlake_compute_srwm(dev, 3, enabled,
1899
				   SNB_READ_WM3_LATENCY() * 500,
1900
				   &sandybridge_display_srwm_info,
1901
				   &sandybridge_cursor_srwm_info,
1902
				   &fbc_wm, &plane_wm, &cursor_wm))
1903
		return;
1904
 
1905
	I915_WRITE(WM3_LP_ILK,
1906
		   WM3_LP_EN |
1907
		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1908
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1909
		   (plane_wm << WM1_LP_SR_SHIFT) |
1910
		   cursor_wm);
1911
}
1912
 
1913
static void
1914
haswell_update_linetime_wm(struct drm_device *dev, int pipe,
1915
				 struct drm_display_mode *mode)
1916
{
1917
	struct drm_i915_private *dev_priv = dev->dev_private;
1918
	u32 temp;
1919
 
1920
	temp = I915_READ(PIPE_WM_LINETIME(pipe));
1921
	temp &= ~PIPE_WM_LINETIME_MASK;
1922
 
1923
	/* The WM are computed with base on how long it takes to fill a single
1924
	 * row at the given clock rate, multiplied by 8.
1925
	 * */
1926
	temp |= PIPE_WM_LINETIME_TIME(
1927
		((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
1928
 
1929
	/* IPS watermarks are only used by pipe A, and are ignored by
1930
	 * pipes B and C.  They are calculated similarly to the common
1931
	 * linetime values, except that we are using CD clock frequency
1932
	 * in MHz instead of pixel rate for the division.
1933
	 *
1934
	 * This is a placeholder for the IPS watermark calculation code.
1935
	 */
1936
 
1937
	I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
1938
}
1939
 
1940
static bool
1941
sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
1942
			      uint32_t sprite_width, int pixel_size,
1943
			      const struct intel_watermark_params *display,
1944
			      int display_latency_ns, int *sprite_wm)
1945
{
1946
	struct drm_crtc *crtc;
1947
	int clock;
1948
	int entries, tlb_miss;
1949
 
1950
	crtc = intel_get_crtc_for_plane(dev, plane);
1951
	if (crtc->fb == NULL || !crtc->enabled) {
1952
		*sprite_wm = display->guard_size;
1953
		return false;
1954
	}
1955
 
1956
	clock = crtc->mode.clock;
1957
 
1958
	/* Use the small buffer method to calculate the sprite watermark */
1959
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1960
	tlb_miss = display->fifo_size*display->cacheline_size -
1961
		sprite_width * 8;
1962
	if (tlb_miss > 0)
1963
		entries += tlb_miss;
1964
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
1965
	*sprite_wm = entries + display->guard_size;
1966
	if (*sprite_wm > (int)display->max_wm)
1967
		*sprite_wm = display->max_wm;
1968
 
1969
	return true;
1970
}
1971
 
1972
static bool
1973
sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
1974
				uint32_t sprite_width, int pixel_size,
1975
				const struct intel_watermark_params *display,
1976
				int latency_ns, int *sprite_wm)
1977
{
1978
	struct drm_crtc *crtc;
1979
	unsigned long line_time_us;
1980
	int clock;
1981
	int line_count, line_size;
1982
	int small, large;
1983
	int entries;
1984
 
1985
	if (!latency_ns) {
1986
		*sprite_wm = 0;
1987
		return false;
1988
	}
1989
 
1990
	crtc = intel_get_crtc_for_plane(dev, plane);
1991
	clock = crtc->mode.clock;
1992
	if (!clock) {
1993
		*sprite_wm = 0;
1994
		return false;
1995
	}
1996
 
1997
	line_time_us = (sprite_width * 1000) / clock;
1998
	if (!line_time_us) {
1999
		*sprite_wm = 0;
2000
		return false;
2001
	}
2002
 
2003
	line_count = (latency_ns / line_time_us + 1000) / 1000;
2004
	line_size = sprite_width * pixel_size;
2005
 
2006
	/* Use the minimum of the small and large buffer method for primary */
2007
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2008
	large = line_count * line_size;
2009
 
2010
	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2011
	*sprite_wm = entries + display->guard_size;
2012
 
2013
	return *sprite_wm > 0x3ff ? false : true;
2014
}
2015
 
2016
static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2017
					 uint32_t sprite_width, int pixel_size)
2018
{
2019
	struct drm_i915_private *dev_priv = dev->dev_private;
2020
	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
2021
	u32 val;
2022
	int sprite_wm, reg;
2023
	int ret;
2024
 
2025
	switch (pipe) {
2026
	case 0:
2027
		reg = WM0_PIPEA_ILK;
2028
		break;
2029
	case 1:
2030
		reg = WM0_PIPEB_ILK;
2031
		break;
2032
	case 2:
2033
		reg = WM0_PIPEC_IVB;
2034
		break;
2035
	default:
2036
		return; /* bad pipe */
2037
	}
2038
 
2039
	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2040
					    &sandybridge_display_wm_info,
2041
					    latency, &sprite_wm);
2042
	if (!ret) {
2043
		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2044
			      pipe);
2045
		return;
2046
	}
2047
 
2048
	val = I915_READ(reg);
2049
	val &= ~WM0_PIPE_SPRITE_MASK;
2050
	I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2051
	DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2052
 
2053
 
2054
	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2055
					      pixel_size,
2056
					      &sandybridge_display_srwm_info,
2057
					      SNB_READ_WM1_LATENCY() * 500,
2058
					      &sprite_wm);
2059
	if (!ret) {
2060
		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2061
			      pipe);
2062
		return;
2063
	}
2064
	I915_WRITE(WM1S_LP_ILK, sprite_wm);
2065
 
2066
	/* Only IVB has two more LP watermarks for sprite */
2067
	if (!IS_IVYBRIDGE(dev))
2068
		return;
2069
 
2070
	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2071
					      pixel_size,
2072
					      &sandybridge_display_srwm_info,
2073
					      SNB_READ_WM2_LATENCY() * 500,
2074
					      &sprite_wm);
2075
	if (!ret) {
2076
		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2077
			      pipe);
2078
		return;
2079
	}
2080
	I915_WRITE(WM2S_LP_IVB, sprite_wm);
2081
 
2082
	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2083
					      pixel_size,
2084
					      &sandybridge_display_srwm_info,
2085
					      SNB_READ_WM3_LATENCY() * 500,
2086
					      &sprite_wm);
2087
	if (!ret) {
2088
		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2089
			      pipe);
2090
		return;
2091
	}
2092
	I915_WRITE(WM3S_LP_IVB, sprite_wm);
2093
}
2094
 
2095
/**
2096
 * intel_update_watermarks - update FIFO watermark values based on current modes
2097
 *
2098
 * Calculate watermark values for the various WM regs based on current mode
2099
 * and plane configuration.
2100
 *
2101
 * There are several cases to deal with here:
2102
 *   - normal (i.e. non-self-refresh)
2103
 *   - self-refresh (SR) mode
2104
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
2105
 *   - lines are small relative to FIFO size (buffer can hold more than 2
2106
 *     lines), so need to account for TLB latency
2107
 *
2108
 *   The normal calculation is:
2109
 *     watermark = dotclock * bytes per pixel * latency
2110
 *   where latency is platform & configuration dependent (we assume pessimal
2111
 *   values here).
2112
 *
2113
 *   The SR calculation is:
2114
 *     watermark = (trunc(latency/line time)+1) * surface width *
2115
 *       bytes per pixel
2116
 *   where
2117
 *     line time = htotal / dotclock
2118
 *     surface width = hdisplay for normal plane and 64 for cursor
2119
 *   and latency is assumed to be high, as above.
2120
 *
2121
 * The final value programmed to the register should always be rounded up,
2122
 * and include an extra 2 entries to account for clock crossings.
2123
 *
2124
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
2125
 * to set the non-SR watermarks to 8.
2126
 */
2127
void intel_update_watermarks(struct drm_device *dev)
2128
{
2129
	struct drm_i915_private *dev_priv = dev->dev_private;
2130
 
2131
	if (dev_priv->display.update_wm)
2132
		dev_priv->display.update_wm(dev);
2133
}
2134
 
2135
void intel_update_linetime_watermarks(struct drm_device *dev,
2136
		int pipe, struct drm_display_mode *mode)
2137
{
2138
	struct drm_i915_private *dev_priv = dev->dev_private;
2139
 
2140
	if (dev_priv->display.update_linetime_wm)
2141
		dev_priv->display.update_linetime_wm(dev, pipe, mode);
2142
}
2143
 
2144
void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2145
				    uint32_t sprite_width, int pixel_size)
2146
{
2147
	struct drm_i915_private *dev_priv = dev->dev_private;
2148
 
2149
	if (dev_priv->display.update_sprite_wm)
2150
		dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2151
						   pixel_size);
2152
}
2153
 
2154
static struct drm_i915_gem_object *
2155
intel_alloc_context_page(struct drm_device *dev)
2156
{
2157
	struct drm_i915_gem_object *ctx;
2158
	int ret;
2159
 
2160
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2161
 
2162
	ctx = i915_gem_alloc_object(dev, 4096);
2163
	if (!ctx) {
2164
		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2165
		return NULL;
2166
	}
2167
 
2168
	ret = i915_gem_object_pin(ctx, 4096, true, false);
2169
	if (ret) {
2170
		DRM_ERROR("failed to pin power context: %d\n", ret);
2171
		goto err_unref;
2172
	}
2173
 
2174
	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2175
	if (ret) {
2176
		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2177
		goto err_unpin;
2178
	}
2179
 
2180
	return ctx;
2181
 
2182
err_unpin:
2183
	i915_gem_object_unpin(ctx);
2184
err_unref:
2185
	drm_gem_object_unreference(&ctx->base);
2186
	mutex_unlock(&dev->struct_mutex);
2187
	return NULL;
2188
}
2189
 
2190
/**
2191
 * Lock protecting IPS related data structures
2192
 */
2193
DEFINE_SPINLOCK(mchdev_lock);
2194
 
2195
/* Global for IPS driver to get at the current i915 device. Protected by
2196
 * mchdev_lock. */
2197
static struct drm_i915_private *i915_mch_dev;
2198
 
2199
bool ironlake_set_drps(struct drm_device *dev, u8 val)
2200
{
2201
	struct drm_i915_private *dev_priv = dev->dev_private;
2202
	u16 rgvswctl;
2203
 
2204
	assert_spin_locked(&mchdev_lock);
2205
 
2206
	rgvswctl = I915_READ16(MEMSWCTL);
2207
	if (rgvswctl & MEMCTL_CMD_STS) {
2208
		DRM_DEBUG("gpu busy, RCS change rejected\n");
2209
		return false; /* still busy with another command */
2210
	}
2211
 
2212
	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2213
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2214
	I915_WRITE16(MEMSWCTL, rgvswctl);
2215
	POSTING_READ16(MEMSWCTL);
2216
 
2217
	rgvswctl |= MEMCTL_CMD_STS;
2218
	I915_WRITE16(MEMSWCTL, rgvswctl);
2219
 
2220
	return true;
2221
}
2222
 
2223
static void ironlake_enable_drps(struct drm_device *dev)
2224
{
2225
	struct drm_i915_private *dev_priv = dev->dev_private;
2226
	u32 rgvmodectl = I915_READ(MEMMODECTL);
2227
	u8 fmax, fmin, fstart, vstart;
2228
 
2229
	spin_lock_irq(&mchdev_lock);
2230
 
2231
	/* Enable temp reporting */
2232
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2233
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2234
 
2235
	/* 100ms RC evaluation intervals */
2236
	I915_WRITE(RCUPEI, 100000);
2237
	I915_WRITE(RCDNEI, 100000);
2238
 
2239
	/* Set max/min thresholds to 90ms and 80ms respectively */
2240
	I915_WRITE(RCBMAXAVG, 90000);
2241
	I915_WRITE(RCBMINAVG, 80000);
2242
 
2243
	I915_WRITE(MEMIHYST, 1);
2244
 
2245
	/* Set up min, max, and cur for interrupt handling */
2246
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2247
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2248
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2249
		MEMMODE_FSTART_SHIFT;
2250
 
2251
	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2252
		PXVFREQ_PX_SHIFT;
2253
 
2254
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2255
	dev_priv->ips.fstart = fstart;
2256
 
2257
	dev_priv->ips.max_delay = fstart;
2258
	dev_priv->ips.min_delay = fmin;
2259
	dev_priv->ips.cur_delay = fstart;
2260
 
2261
	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2262
			 fmax, fmin, fstart);
2263
 
2264
	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2265
 
2266
	/*
2267
	 * Interrupts will be enabled in ironlake_irq_postinstall
2268
	 */
2269
 
2270
	I915_WRITE(VIDSTART, vstart);
2271
	POSTING_READ(VIDSTART);
2272
 
2273
	rgvmodectl |= MEMMODE_SWMODE_EN;
2274
	I915_WRITE(MEMMODECTL, rgvmodectl);
2275
 
2276
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2277
		DRM_ERROR("stuck trying to change perf mode\n");
2278
	mdelay(1);
2279
 
2280
	ironlake_set_drps(dev, fstart);
2281
 
2282
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2283
		I915_READ(0x112e0);
2284
    dev_priv->ips.last_time1 = jiffies_to_msecs(GetTimerTicks());
2285
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
2286
//   getrawmonotonic(&dev_priv->ips.last_time2);
2287
 
2288
	spin_unlock_irq(&mchdev_lock);
2289
}
2290
 
2291
static void ironlake_disable_drps(struct drm_device *dev)
2292
{
2293
	struct drm_i915_private *dev_priv = dev->dev_private;
2294
	u16 rgvswctl;
2295
 
2296
	spin_lock_irq(&mchdev_lock);
2297
 
2298
	rgvswctl = I915_READ16(MEMSWCTL);
2299
 
2300
	/* Ack interrupts, disable EFC interrupt */
2301
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2302
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2303
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2304
	I915_WRITE(DEIIR, DE_PCU_EVENT);
2305
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2306
 
2307
	/* Go back to the starting frequency */
2308
	ironlake_set_drps(dev, dev_priv->ips.fstart);
2309
	mdelay(1);
2310
	rgvswctl |= MEMCTL_CMD_STS;
2311
	I915_WRITE(MEMSWCTL, rgvswctl);
2312
	mdelay(1);
2313
 
2314
	spin_unlock_irq(&mchdev_lock);
2315
}
2316
 
2317
/* There's a funny hw issue where the hw returns all 0 when reading from
2318
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2319
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
2320
 * all limits and the gpu stuck at whatever frequency it is at atm).
2321
 */
2322
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2323
{
2324
	u32 limits;
2325
 
2326
	limits = 0;
2327
 
2328
	if (*val >= dev_priv->rps.max_delay)
2329
		*val = dev_priv->rps.max_delay;
2330
	limits |= dev_priv->rps.max_delay << 24;
2331
 
2332
	/* Only set the down limit when we've reached the lowest level to avoid
2333
	 * getting more interrupts, otherwise leave this clear. This prevents a
2334
	 * race in the hw when coming out of rc6: There's a tiny window where
2335
	 * the hw runs at the minimal clock before selecting the desired
2336
	 * frequency, if the down threshold expires in that window we will not
2337
	 * receive a down interrupt. */
2338
	if (*val <= dev_priv->rps.min_delay) {
2339
		*val = dev_priv->rps.min_delay;
2340
		limits |= dev_priv->rps.min_delay << 16;
2341
	}
2342
 
2343
	return limits;
2344
}
2345
 
2346
void gen6_set_rps(struct drm_device *dev, u8 val)
2347
{
2348
	struct drm_i915_private *dev_priv = dev->dev_private;
2349
	u32 limits = gen6_rps_limits(dev_priv, &val);
2350
 
2351
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2352
	WARN_ON(val > dev_priv->rps.max_delay);
2353
	WARN_ON(val < dev_priv->rps.min_delay);
2354
 
2355
	if (val == dev_priv->rps.cur_delay)
2356
		return;
2357
 
2358
	I915_WRITE(GEN6_RPNSWREQ,
2359
		   GEN6_FREQUENCY(val) |
2360
		   GEN6_OFFSET(0) |
2361
		   GEN6_AGGRESSIVE_TURBO);
2362
 
2363
	/* Make sure we continue to get interrupts
2364
	 * until we hit the minimum or maximum frequencies.
2365
	 */
2366
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2367
 
2368
	POSTING_READ(GEN6_RPNSWREQ);
2369
 
2370
	dev_priv->rps.cur_delay = val;
2371
 
2372
	trace_intel_gpu_freq_change(val * 50);
2373
}
2374
 
2375
static void gen6_disable_rps(struct drm_device *dev)
2376
{
2377
	struct drm_i915_private *dev_priv = dev->dev_private;
2378
 
2379
	I915_WRITE(GEN6_RC_CONTROL, 0);
2380
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2381
	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2382
	I915_WRITE(GEN6_PMIER, 0);
2383
	/* Complete PM interrupt masking here doesn't race with the rps work
2384
	 * item again unmasking PM interrupts because that is using a different
2385
	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2386
	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2387
 
2388
	spin_lock_irq(&dev_priv->rps.lock);
2389
	dev_priv->rps.pm_iir = 0;
2390
	spin_unlock_irq(&dev_priv->rps.lock);
2391
 
2392
	I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2393
}
2394
 
2395
int intel_enable_rc6(const struct drm_device *dev)
2396
{
2397
	/* Respect the kernel parameter if it is set */
2398
	if (i915_enable_rc6 >= 0)
2399
		return i915_enable_rc6;
2400
 
3120 serge 2401
	/* Disable RC6 on Ironlake */
2402
	if (INTEL_INFO(dev)->gen == 5)
2403
		return 0;
3031 serge 2404
 
2405
	if (IS_HASWELL(dev)) {
2406
		DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2407
		return INTEL_RC6_ENABLE;
2408
	}
2409
 
2410
	/* snb/ivb have more than one rc6 state. */
2411
	if (INTEL_INFO(dev)->gen == 6) {
2412
		DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2413
		return INTEL_RC6_ENABLE;
2414
	}
2415
 
2416
	DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2417
	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2418
}
2419
 
2420
static void gen6_enable_rps(struct drm_device *dev)
2421
{
2422
	struct drm_i915_private *dev_priv = dev->dev_private;
2423
	struct intel_ring_buffer *ring;
2424
	u32 rp_state_cap;
2425
	u32 gt_perf_status;
2426
	u32 pcu_mbox, rc6_mask = 0;
2427
	u32 gtfifodbg;
2428
	int rc6_mode;
2429
	int i;
2430
 
2431
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2432
 
2433
	/* Here begins a magic sequence of register writes to enable
2434
	 * auto-downclocking.
2435
	 *
2436
	 * Perhaps there might be some value in exposing these to
2437
	 * userspace...
2438
	 */
2439
	I915_WRITE(GEN6_RC_STATE, 0);
2440
 
2441
	/* Clear the DBG now so we don't confuse earlier errors */
2442
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2443
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2444
		I915_WRITE(GTFIFODBG, gtfifodbg);
2445
	}
2446
 
2447
	gen6_gt_force_wake_get(dev_priv);
2448
 
2449
	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2450
	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2451
 
2452
	/* In units of 100MHz */
2453
	dev_priv->rps.max_delay = rp_state_cap & 0xff;
2454
	dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2455
	dev_priv->rps.cur_delay = 0;
2456
 
2457
	/* disable the counters and set deterministic thresholds */
2458
	I915_WRITE(GEN6_RC_CONTROL, 0);
2459
 
2460
	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2461
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2462
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2463
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2464
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2465
 
2466
	for_each_ring(ring, dev_priv, i)
2467
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2468
 
2469
	I915_WRITE(GEN6_RC_SLEEP, 0);
2470
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2471
	I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2472
	I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
2473
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2474
 
2475
	/* Check if we are enabling RC6 */
2476
	rc6_mode = intel_enable_rc6(dev_priv->dev);
2477
	if (rc6_mode & INTEL_RC6_ENABLE)
2478
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2479
 
2480
	/* We don't use those on Haswell */
2481
	if (!IS_HASWELL(dev)) {
2482
		if (rc6_mode & INTEL_RC6p_ENABLE)
2483
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2484
 
2485
		if (rc6_mode & INTEL_RC6pp_ENABLE)
2486
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2487
	}
2488
 
2489
	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2490
			(rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2491
			(rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2492
			(rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2493
 
2494
	I915_WRITE(GEN6_RC_CONTROL,
2495
		   rc6_mask |
2496
		   GEN6_RC_CTL_EI_MODE(1) |
2497
		   GEN6_RC_CTL_HW_ENABLE);
2498
 
2499
	I915_WRITE(GEN6_RPNSWREQ,
2500
		   GEN6_FREQUENCY(10) |
2501
		   GEN6_OFFSET(0) |
2502
		   GEN6_AGGRESSIVE_TURBO);
2503
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
2504
		   GEN6_FREQUENCY(12));
2505
 
2506
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2507
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2508
		   dev_priv->rps.max_delay << 24 |
2509
		   dev_priv->rps.min_delay << 16);
2510
 
2511
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2512
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2513
	I915_WRITE(GEN6_RP_UP_EI, 66000);
2514
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2515
 
2516
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2517
	I915_WRITE(GEN6_RP_CONTROL,
2518
		   GEN6_RP_MEDIA_TURBO |
2519
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
2520
		   GEN6_RP_MEDIA_IS_GFX |
2521
		   GEN6_RP_ENABLE |
2522
		   GEN6_RP_UP_BUSY_AVG |
2523
		   (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2524
 
2525
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2526
		     500))
2527
		DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2528
 
2529
	I915_WRITE(GEN6_PCODE_DATA, 0);
2530
	I915_WRITE(GEN6_PCODE_MAILBOX,
2531
		   GEN6_PCODE_READY |
2532
		   GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2533
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2534
		     500))
2535
		DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2536
 
2537
	/* Check for overclock support */
2538
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2539
		     500))
2540
		DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2541
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
2542
	pcu_mbox = I915_READ(GEN6_PCODE_DATA);
2543
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2544
		     500))
2545
		DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2546
	if (pcu_mbox & (1<<31)) { /* OC supported */
2547
		dev_priv->rps.max_delay = pcu_mbox & 0xff;
2548
		DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2549
	}
2550
 
2551
	gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2552
 
2553
	/* requires MSI enabled */
2554
	I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2555
	spin_lock_irq(&dev_priv->rps.lock);
2556
	WARN_ON(dev_priv->rps.pm_iir != 0);
2557
	I915_WRITE(GEN6_PMIMR, 0);
2558
	spin_unlock_irq(&dev_priv->rps.lock);
2559
	/* enable all PM interrupts */
2560
	I915_WRITE(GEN6_PMINTRMSK, 0);
2561
 
2562
	gen6_gt_force_wake_put(dev_priv);
2563
}
2564
 
2565
#if 0
2566
static void gen6_update_ring_freq(struct drm_device *dev)
2567
{
2568
	struct drm_i915_private *dev_priv = dev->dev_private;
2569
	int min_freq = 15;
2570
	int gpu_freq, ia_freq, max_ia_freq;
2571
	int scaling_factor = 180;
2572
 
2573
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2574
 
2575
	max_ia_freq = cpufreq_quick_get_max(0);
2576
	/*
2577
	 * Default to measured freq if none found, PCU will ensure we don't go
2578
	 * over
2579
	 */
2580
	if (!max_ia_freq)
2581
		max_ia_freq = tsc_khz;
2582
 
2583
	/* Convert from kHz to MHz */
2584
	max_ia_freq /= 1000;
2585
 
2586
	/*
2587
	 * For each potential GPU frequency, load a ring frequency we'd like
2588
	 * to use for memory access.  We do this by specifying the IA frequency
2589
	 * the PCU should use as a reference to determine the ring frequency.
2590
	 */
2591
	for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2592
	     gpu_freq--) {
2593
		int diff = dev_priv->rps.max_delay - gpu_freq;
2594
 
2595
		/*
2596
		 * For GPU frequencies less than 750MHz, just use the lowest
2597
		 * ring freq.
2598
		 */
2599
		if (gpu_freq < min_freq)
2600
			ia_freq = 800;
2601
		else
2602
			ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2603
		ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2604
 
2605
		I915_WRITE(GEN6_PCODE_DATA,
2606
			   (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
2607
			   gpu_freq);
2608
		I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
2609
			   GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2610
		if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
2611
			      GEN6_PCODE_READY) == 0, 10)) {
2612
			DRM_ERROR("pcode write of freq table timed out\n");
2613
			continue;
2614
		}
2615
	}
2616
}
2617
#endif
2618
 
2619
void ironlake_teardown_rc6(struct drm_device *dev)
2620
{
2621
	struct drm_i915_private *dev_priv = dev->dev_private;
2622
 
2623
	if (dev_priv->renderctx) {
2624
		i915_gem_object_unpin(dev_priv->renderctx);
2625
		drm_gem_object_unreference(&dev_priv->renderctx->base);
2626
		dev_priv->renderctx = NULL;
2627
	}
2628
 
2629
	if (dev_priv->pwrctx) {
2630
		i915_gem_object_unpin(dev_priv->pwrctx);
2631
		drm_gem_object_unreference(&dev_priv->pwrctx->base);
2632
		dev_priv->pwrctx = NULL;
2633
	}
2634
}
2635
 
2636
static void ironlake_disable_rc6(struct drm_device *dev)
2637
{
2638
	struct drm_i915_private *dev_priv = dev->dev_private;
2639
 
2640
	if (I915_READ(PWRCTXA)) {
2641
		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2642
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2643
		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2644
			 50);
2645
 
2646
		I915_WRITE(PWRCTXA, 0);
2647
		POSTING_READ(PWRCTXA);
2648
 
2649
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2650
		POSTING_READ(RSTDBYCTL);
2651
	}
2652
}
2653
 
2654
static int ironlake_setup_rc6(struct drm_device *dev)
2655
{
2656
	struct drm_i915_private *dev_priv = dev->dev_private;
2657
 
2658
	if (dev_priv->renderctx == NULL)
2659
		dev_priv->renderctx = intel_alloc_context_page(dev);
2660
	if (!dev_priv->renderctx)
2661
		return -ENOMEM;
2662
 
2663
	if (dev_priv->pwrctx == NULL)
2664
		dev_priv->pwrctx = intel_alloc_context_page(dev);
2665
	if (!dev_priv->pwrctx) {
2666
		ironlake_teardown_rc6(dev);
2667
		return -ENOMEM;
2668
	}
2669
 
2670
	return 0;
2671
}
2672
 
2673
static void ironlake_enable_rc6(struct drm_device *dev)
2674
{
2675
	struct drm_i915_private *dev_priv = dev->dev_private;
2676
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2677
	int ret;
2678
 
2679
	/* rc6 disabled by default due to repeated reports of hanging during
2680
	 * boot and resume.
2681
	 */
2682
	if (!intel_enable_rc6(dev))
2683
		return;
2684
 
2685
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2686
 
2687
	ret = ironlake_setup_rc6(dev);
2688
	if (ret)
2689
		return;
2690
 
2691
	/*
2692
	 * GPU can automatically power down the render unit if given a page
2693
	 * to save state.
2694
	 */
2695
	ret = intel_ring_begin(ring, 6);
2696
	if (ret) {
2697
		ironlake_teardown_rc6(dev);
2698
		return;
2699
	}
2700
 
2701
	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2702
	intel_ring_emit(ring, MI_SET_CONTEXT);
2703
	intel_ring_emit(ring, dev_priv->renderctx->gtt_offset |
2704
			MI_MM_SPACE_GTT |
2705
			MI_SAVE_EXT_STATE_EN |
2706
			MI_RESTORE_EXT_STATE_EN |
2707
			MI_RESTORE_INHIBIT);
2708
	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2709
	intel_ring_emit(ring, MI_NOOP);
2710
	intel_ring_emit(ring, MI_FLUSH);
2711
	intel_ring_advance(ring);
2712
 
2713
	/*
2714
	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2715
	 * does an implicit flush, combined with MI_FLUSH above, it should be
2716
	 * safe to assume that renderctx is valid
2717
	 */
2718
	ret = intel_wait_ring_idle(ring);
2719
	if (ret) {
2720
		DRM_ERROR("failed to enable ironlake power power savings\n");
2721
		ironlake_teardown_rc6(dev);
2722
		return;
2723
	}
2724
 
2725
	I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
2726
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2727
}
2728
 
2729
static unsigned long intel_pxfreq(u32 vidfreq)
2730
{
2731
	unsigned long freq;
2732
	int div = (vidfreq & 0x3f0000) >> 16;
2733
	int post = (vidfreq & 0x3000) >> 12;
2734
	int pre = (vidfreq & 0x7);
2735
 
2736
	if (!pre)
2737
		return 0;
2738
 
2739
	freq = ((div * 133333) / ((1<
2740
 
2741
	return freq;
2742
}
2743
 
2744
static const struct cparams {
2745
	u16 i;
2746
	u16 t;
2747
	u16 m;
2748
	u16 c;
2749
} cparams[] = {
2750
	{ 1, 1333, 301, 28664 },
2751
	{ 1, 1066, 294, 24460 },
2752
	{ 1, 800, 294, 25192 },
2753
	{ 0, 1333, 276, 27605 },
2754
	{ 0, 1066, 276, 27605 },
2755
	{ 0, 800, 231, 23784 },
2756
};
2757
 
2758
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
2759
{
2760
	u64 total_count, diff, ret;
2761
	u32 count1, count2, count3, m = 0, c = 0;
2762
    unsigned long now = jiffies_to_msecs(GetTimerTicks()), diff1;
2763
	int i;
2764
 
2765
	assert_spin_locked(&mchdev_lock);
2766
 
2767
	diff1 = now - dev_priv->ips.last_time1;
2768
 
2769
	/* Prevent division-by-zero if we are asking too fast.
2770
	 * Also, we don't get interesting results if we are polling
2771
	 * faster than once in 10ms, so just return the saved value
2772
	 * in such cases.
2773
	 */
2774
	if (diff1 <= 10)
2775
		return dev_priv->ips.chipset_power;
2776
 
2777
	count1 = I915_READ(DMIEC);
2778
	count2 = I915_READ(DDREC);
2779
	count3 = I915_READ(CSIEC);
2780
 
2781
	total_count = count1 + count2 + count3;
2782
 
2783
	/* FIXME: handle per-counter overflow */
2784
	if (total_count < dev_priv->ips.last_count1) {
2785
		diff = ~0UL - dev_priv->ips.last_count1;
2786
		diff += total_count;
2787
	} else {
2788
		diff = total_count - dev_priv->ips.last_count1;
2789
	}
2790
 
2791
	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2792
		if (cparams[i].i == dev_priv->ips.c_m &&
2793
		    cparams[i].t == dev_priv->ips.r_t) {
2794
			m = cparams[i].m;
2795
			c = cparams[i].c;
2796
			break;
2797
		}
2798
	}
2799
 
2800
	diff = div_u64(diff, diff1);
2801
	ret = ((m * diff) + c);
2802
	ret = div_u64(ret, 10);
2803
 
2804
	dev_priv->ips.last_count1 = total_count;
2805
	dev_priv->ips.last_time1 = now;
2806
 
2807
	dev_priv->ips.chipset_power = ret;
2808
 
2809
	return ret;
2810
}
2811
 
2812
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2813
{
2814
	unsigned long val;
2815
 
2816
	if (dev_priv->info->gen != 5)
2817
		return 0;
2818
 
2819
	spin_lock_irq(&mchdev_lock);
2820
 
2821
	val = __i915_chipset_val(dev_priv);
2822
 
2823
	spin_unlock_irq(&mchdev_lock);
2824
 
2825
	return val;
2826
}
2827
 
2828
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2829
{
2830
	unsigned long m, x, b;
2831
	u32 tsfs;
2832
 
2833
	tsfs = I915_READ(TSFS);
2834
 
2835
	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2836
	x = I915_READ8(TR1);
2837
 
2838
	b = tsfs & TSFS_INTR_MASK;
2839
 
2840
	return ((m * x) / 127) - b;
2841
}
2842
 
2843
static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2844
{
2845
	static const struct v_table {
2846
		u16 vd; /* in .1 mil */
2847
		u16 vm; /* in .1 mil */
2848
	} v_table[] = {
2849
		{ 0, 0, },
2850
		{ 375, 0, },
2851
		{ 500, 0, },
2852
		{ 625, 0, },
2853
		{ 750, 0, },
2854
		{ 875, 0, },
2855
		{ 1000, 0, },
2856
		{ 1125, 0, },
2857
		{ 4125, 3000, },
2858
		{ 4125, 3000, },
2859
		{ 4125, 3000, },
2860
		{ 4125, 3000, },
2861
		{ 4125, 3000, },
2862
		{ 4125, 3000, },
2863
		{ 4125, 3000, },
2864
		{ 4125, 3000, },
2865
		{ 4125, 3000, },
2866
		{ 4125, 3000, },
2867
		{ 4125, 3000, },
2868
		{ 4125, 3000, },
2869
		{ 4125, 3000, },
2870
		{ 4125, 3000, },
2871
		{ 4125, 3000, },
2872
		{ 4125, 3000, },
2873
		{ 4125, 3000, },
2874
		{ 4125, 3000, },
2875
		{ 4125, 3000, },
2876
		{ 4125, 3000, },
2877
		{ 4125, 3000, },
2878
		{ 4125, 3000, },
2879
		{ 4125, 3000, },
2880
		{ 4125, 3000, },
2881
		{ 4250, 3125, },
2882
		{ 4375, 3250, },
2883
		{ 4500, 3375, },
2884
		{ 4625, 3500, },
2885
		{ 4750, 3625, },
2886
		{ 4875, 3750, },
2887
		{ 5000, 3875, },
2888
		{ 5125, 4000, },
2889
		{ 5250, 4125, },
2890
		{ 5375, 4250, },
2891
		{ 5500, 4375, },
2892
		{ 5625, 4500, },
2893
		{ 5750, 4625, },
2894
		{ 5875, 4750, },
2895
		{ 6000, 4875, },
2896
		{ 6125, 5000, },
2897
		{ 6250, 5125, },
2898
		{ 6375, 5250, },
2899
		{ 6500, 5375, },
2900
		{ 6625, 5500, },
2901
		{ 6750, 5625, },
2902
		{ 6875, 5750, },
2903
		{ 7000, 5875, },
2904
		{ 7125, 6000, },
2905
		{ 7250, 6125, },
2906
		{ 7375, 6250, },
2907
		{ 7500, 6375, },
2908
		{ 7625, 6500, },
2909
		{ 7750, 6625, },
2910
		{ 7875, 6750, },
2911
		{ 8000, 6875, },
2912
		{ 8125, 7000, },
2913
		{ 8250, 7125, },
2914
		{ 8375, 7250, },
2915
		{ 8500, 7375, },
2916
		{ 8625, 7500, },
2917
		{ 8750, 7625, },
2918
		{ 8875, 7750, },
2919
		{ 9000, 7875, },
2920
		{ 9125, 8000, },
2921
		{ 9250, 8125, },
2922
		{ 9375, 8250, },
2923
		{ 9500, 8375, },
2924
		{ 9625, 8500, },
2925
		{ 9750, 8625, },
2926
		{ 9875, 8750, },
2927
		{ 10000, 8875, },
2928
		{ 10125, 9000, },
2929
		{ 10250, 9125, },
2930
		{ 10375, 9250, },
2931
		{ 10500, 9375, },
2932
		{ 10625, 9500, },
2933
		{ 10750, 9625, },
2934
		{ 10875, 9750, },
2935
		{ 11000, 9875, },
2936
		{ 11125, 10000, },
2937
		{ 11250, 10125, },
2938
		{ 11375, 10250, },
2939
		{ 11500, 10375, },
2940
		{ 11625, 10500, },
2941
		{ 11750, 10625, },
2942
		{ 11875, 10750, },
2943
		{ 12000, 10875, },
2944
		{ 12125, 11000, },
2945
		{ 12250, 11125, },
2946
		{ 12375, 11250, },
2947
		{ 12500, 11375, },
2948
		{ 12625, 11500, },
2949
		{ 12750, 11625, },
2950
		{ 12875, 11750, },
2951
		{ 13000, 11875, },
2952
		{ 13125, 12000, },
2953
		{ 13250, 12125, },
2954
		{ 13375, 12250, },
2955
		{ 13500, 12375, },
2956
		{ 13625, 12500, },
2957
		{ 13750, 12625, },
2958
		{ 13875, 12750, },
2959
		{ 14000, 12875, },
2960
		{ 14125, 13000, },
2961
		{ 14250, 13125, },
2962
		{ 14375, 13250, },
2963
		{ 14500, 13375, },
2964
		{ 14625, 13500, },
2965
		{ 14750, 13625, },
2966
		{ 14875, 13750, },
2967
		{ 15000, 13875, },
2968
		{ 15125, 14000, },
2969
		{ 15250, 14125, },
2970
		{ 15375, 14250, },
2971
		{ 15500, 14375, },
2972
		{ 15625, 14500, },
2973
		{ 15750, 14625, },
2974
		{ 15875, 14750, },
2975
		{ 16000, 14875, },
2976
		{ 16125, 15000, },
2977
	};
2978
	if (dev_priv->info->is_mobile)
2979
		return v_table[pxvid].vm;
2980
	else
2981
		return v_table[pxvid].vd;
2982
}
2983
 
2984
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
2985
{
2986
	struct timespec now, diff1;
2987
	u64 diff;
2988
	unsigned long diffms;
2989
	u32 count;
2990
 
2991
	assert_spin_locked(&mchdev_lock);
2992
 
2993
	getrawmonotonic(&now);
2994
	diff1 = timespec_sub(now, dev_priv->ips.last_time2);
2995
 
2996
	/* Don't divide by 0 */
2997
	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
2998
	if (!diffms)
2999
		return;
3000
 
3001
	count = I915_READ(GFXEC);
3002
 
3003
	if (count < dev_priv->ips.last_count2) {
3004
		diff = ~0UL - dev_priv->ips.last_count2;
3005
		diff += count;
3006
	} else {
3007
		diff = count - dev_priv->ips.last_count2;
3008
	}
3009
 
3010
	dev_priv->ips.last_count2 = count;
3011
	dev_priv->ips.last_time2 = now;
3012
 
3013
	/* More magic constants... */
3014
	diff = diff * 1181;
3015
	diff = div_u64(diff, diffms * 10);
3016
	dev_priv->ips.gfx_power = diff;
3017
}
3018
 
3019
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3020
{
3021
	if (dev_priv->info->gen != 5)
3022
		return;
3023
 
3024
	spin_lock_irq(&mchdev_lock);
3025
 
3026
	__i915_update_gfx_val(dev_priv);
3027
 
3028
	spin_unlock_irq(&mchdev_lock);
3029
}
3030
 
3031
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
3032
{
3033
	unsigned long t, corr, state1, corr2, state2;
3034
	u32 pxvid, ext_v;
3035
 
3036
	assert_spin_locked(&mchdev_lock);
3037
 
3038
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3039
	pxvid = (pxvid >> 24) & 0x7f;
3040
	ext_v = pvid_to_extvid(dev_priv, pxvid);
3041
 
3042
	state1 = ext_v;
3043
 
3044
	t = i915_mch_val(dev_priv);
3045
 
3046
	/* Revel in the empirically derived constants */
3047
 
3048
	/* Correction factor in 1/100000 units */
3049
	if (t > 80)
3050
		corr = ((t * 2349) + 135940);
3051
	else if (t >= 50)
3052
		corr = ((t * 964) + 29317);
3053
	else /* < 50 */
3054
		corr = ((t * 301) + 1004);
3055
 
3056
	corr = corr * ((150142 * state1) / 10000 - 78642);
3057
	corr /= 100000;
3058
	corr2 = (corr * dev_priv->ips.corr);
3059
 
3060
	state2 = (corr2 * state1) / 10000;
3061
	state2 /= 100; /* convert to mW */
3062
 
3063
	__i915_update_gfx_val(dev_priv);
3064
 
3065
	return dev_priv->ips.gfx_power + state2;
3066
}
3067
 
3068
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3069
{
3070
	unsigned long val;
3071
 
3072
	if (dev_priv->info->gen != 5)
3073
		return 0;
3074
 
3075
	spin_lock_irq(&mchdev_lock);
3076
 
3077
	val = __i915_gfx_val(dev_priv);
3078
 
3079
	spin_unlock_irq(&mchdev_lock);
3080
 
3081
	return val;
3082
}
3083
 
3084
/**
3085
 * i915_read_mch_val - return value for IPS use
3086
 *
3087
 * Calculate and return a value for the IPS driver to use when deciding whether
3088
 * we have thermal and power headroom to increase CPU or GPU power budget.
3089
 */
3090
unsigned long i915_read_mch_val(void)
3091
{
3092
	struct drm_i915_private *dev_priv;
3093
	unsigned long chipset_val, graphics_val, ret = 0;
3094
 
3095
	spin_lock_irq(&mchdev_lock);
3096
	if (!i915_mch_dev)
3097
		goto out_unlock;
3098
	dev_priv = i915_mch_dev;
3099
 
3100
	chipset_val = __i915_chipset_val(dev_priv);
3101
	graphics_val = __i915_gfx_val(dev_priv);
3102
 
3103
	ret = chipset_val + graphics_val;
3104
 
3105
out_unlock:
3106
	spin_unlock_irq(&mchdev_lock);
3107
 
3108
	return ret;
3109
}
3110
EXPORT_SYMBOL_GPL(i915_read_mch_val);
3111
 
3112
/**
3113
 * i915_gpu_raise - raise GPU frequency limit
3114
 *
3115
 * Raise the limit; IPS indicates we have thermal headroom.
3116
 */
3117
bool i915_gpu_raise(void)
3118
{
3119
	struct drm_i915_private *dev_priv;
3120
	bool ret = true;
3121
 
3122
	spin_lock_irq(&mchdev_lock);
3123
	if (!i915_mch_dev) {
3124
		ret = false;
3125
		goto out_unlock;
3126
	}
3127
	dev_priv = i915_mch_dev;
3128
 
3129
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3130
		dev_priv->ips.max_delay--;
3131
 
3132
out_unlock:
3133
	spin_unlock_irq(&mchdev_lock);
3134
 
3135
	return ret;
3136
}
3137
EXPORT_SYMBOL_GPL(i915_gpu_raise);
3138
 
3139
/**
3140
 * i915_gpu_lower - lower GPU frequency limit
3141
 *
3142
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
3143
 * frequency maximum.
3144
 */
3145
bool i915_gpu_lower(void)
3146
{
3147
	struct drm_i915_private *dev_priv;
3148
	bool ret = true;
3149
 
3150
	spin_lock_irq(&mchdev_lock);
3151
	if (!i915_mch_dev) {
3152
		ret = false;
3153
		goto out_unlock;
3154
	}
3155
	dev_priv = i915_mch_dev;
3156
 
3157
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3158
		dev_priv->ips.max_delay++;
3159
 
3160
out_unlock:
3161
	spin_unlock_irq(&mchdev_lock);
3162
 
3163
	return ret;
3164
}
3165
EXPORT_SYMBOL_GPL(i915_gpu_lower);
3166
 
3167
/**
3168
 * i915_gpu_busy - indicate GPU business to IPS
3169
 *
3170
 * Tell the IPS driver whether or not the GPU is busy.
3171
 */
3172
bool i915_gpu_busy(void)
3173
{
3174
	struct drm_i915_private *dev_priv;
3175
	struct intel_ring_buffer *ring;
3176
	bool ret = false;
3177
	int i;
3178
 
3179
	spin_lock_irq(&mchdev_lock);
3180
	if (!i915_mch_dev)
3181
		goto out_unlock;
3182
	dev_priv = i915_mch_dev;
3183
 
3184
	for_each_ring(ring, dev_priv, i)
3185
		ret |= !list_empty(&ring->request_list);
3186
 
3187
out_unlock:
3188
	spin_unlock_irq(&mchdev_lock);
3189
 
3190
	return ret;
3191
}
3192
EXPORT_SYMBOL_GPL(i915_gpu_busy);
3193
 
3194
/**
3195
 * i915_gpu_turbo_disable - disable graphics turbo
3196
 *
3197
 * Disable graphics turbo by resetting the max frequency and setting the
3198
 * current frequency to the default.
3199
 */
3200
bool i915_gpu_turbo_disable(void)
3201
{
3202
	struct drm_i915_private *dev_priv;
3203
	bool ret = true;
3204
 
3205
	spin_lock_irq(&mchdev_lock);
3206
	if (!i915_mch_dev) {
3207
		ret = false;
3208
		goto out_unlock;
3209
	}
3210
	dev_priv = i915_mch_dev;
3211
 
3212
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
3213
 
3214
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
3215
		ret = false;
3216
 
3217
out_unlock:
3218
	spin_unlock_irq(&mchdev_lock);
3219
 
3220
	return ret;
3221
}
3222
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3223
 
3224
/**
3225
 * Tells the intel_ips driver that the i915 driver is now loaded, if
3226
 * IPS got loaded first.
3227
 *
3228
 * This awkward dance is so that neither module has to depend on the
3229
 * other in order for IPS to do the appropriate communication of
3230
 * GPU turbo limits to i915.
3231
 */
3232
static void
3233
ips_ping_for_i915_load(void)
3234
{
3235
	void (*link)(void);
3236
 
3237
//   link = symbol_get(ips_link_to_i915_driver);
3238
//   if (link) {
3239
//       link();
3240
//       symbol_put(ips_link_to_i915_driver);
3241
//   }
3242
}
3243
 
3244
void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3245
{
3246
	/* We only register the i915 ips part with intel-ips once everything is
3247
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
3248
	spin_lock_irq(&mchdev_lock);
3249
	i915_mch_dev = dev_priv;
3250
	spin_unlock_irq(&mchdev_lock);
3251
 
3252
	ips_ping_for_i915_load();
3253
}
3254
 
3255
void intel_gpu_ips_teardown(void)
3256
{
3257
	spin_lock_irq(&mchdev_lock);
3258
	i915_mch_dev = NULL;
3259
	spin_unlock_irq(&mchdev_lock);
3260
}
3261
static void intel_init_emon(struct drm_device *dev)
3262
{
3263
	struct drm_i915_private *dev_priv = dev->dev_private;
3264
	u32 lcfuse;
3265
	u8 pxw[16];
3266
	int i;
3267
 
3268
	/* Disable to program */
3269
	I915_WRITE(ECR, 0);
3270
	POSTING_READ(ECR);
3271
 
3272
	/* Program energy weights for various events */
3273
	I915_WRITE(SDEW, 0x15040d00);
3274
	I915_WRITE(CSIEW0, 0x007f0000);
3275
	I915_WRITE(CSIEW1, 0x1e220004);
3276
	I915_WRITE(CSIEW2, 0x04000004);
3277
 
3278
	for (i = 0; i < 5; i++)
3279
		I915_WRITE(PEW + (i * 4), 0);
3280
	for (i = 0; i < 3; i++)
3281
		I915_WRITE(DEW + (i * 4), 0);
3282
 
3283
	/* Program P-state weights to account for frequency power adjustment */
3284
	for (i = 0; i < 16; i++) {
3285
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3286
		unsigned long freq = intel_pxfreq(pxvidfreq);
3287
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3288
			PXVFREQ_PX_SHIFT;
3289
		unsigned long val;
3290
 
3291
		val = vid * vid;
3292
		val *= (freq / 1000);
3293
		val *= 255;
3294
		val /= (127*127*900);
3295
		if (val > 0xff)
3296
			DRM_ERROR("bad pxval: %ld\n", val);
3297
		pxw[i] = val;
3298
	}
3299
	/* Render standby states get 0 weight */
3300
	pxw[14] = 0;
3301
	pxw[15] = 0;
3302
 
3303
	for (i = 0; i < 4; i++) {
3304
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3305
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3306
		I915_WRITE(PXW + (i * 4), val);
3307
	}
3308
 
3309
	/* Adjust magic regs to magic values (more experimental results) */
3310
	I915_WRITE(OGW0, 0);
3311
	I915_WRITE(OGW1, 0);
3312
	I915_WRITE(EG0, 0x00007f00);
3313
	I915_WRITE(EG1, 0x0000000e);
3314
	I915_WRITE(EG2, 0x000e0000);
3315
	I915_WRITE(EG3, 0x68000300);
3316
	I915_WRITE(EG4, 0x42000000);
3317
	I915_WRITE(EG5, 0x00140031);
3318
	I915_WRITE(EG6, 0);
3319
	I915_WRITE(EG7, 0);
3320
 
3321
	for (i = 0; i < 8; i++)
3322
		I915_WRITE(PXWL + (i * 4), 0);
3323
 
3324
	/* Enable PMON + select events */
3325
	I915_WRITE(ECR, 0x80000019);
3326
 
3327
	lcfuse = I915_READ(LCFUSE02);
3328
 
3329
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
3330
}
3331
 
3332
void intel_disable_gt_powersave(struct drm_device *dev)
3333
{
3334
	if (IS_IRONLAKE_M(dev)) {
3335
		ironlake_disable_drps(dev);
3336
		ironlake_disable_rc6(dev);
3337
	} else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
3338
		gen6_disable_rps(dev);
3339
	}
3340
}
3341
 
3342
void intel_enable_gt_powersave(struct drm_device *dev)
3343
{
3344
	if (IS_IRONLAKE_M(dev)) {
3345
		ironlake_enable_drps(dev);
3346
		ironlake_enable_rc6(dev);
3347
		intel_init_emon(dev);
3348
	} else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
3349
//       gen6_enable_rps(dev);
3350
//       gen6_update_ring_freq(dev);
3351
	}
3352
}
3353
 
3354
static void ironlake_init_clock_gating(struct drm_device *dev)
3355
{
3356
	struct drm_i915_private *dev_priv = dev->dev_private;
3357
	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3358
 
3359
	/* Required for FBC */
3360
	dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
3361
		DPFCRUNIT_CLOCK_GATE_DISABLE |
3362
		DPFDUNIT_CLOCK_GATE_DISABLE;
3363
	/* Required for CxSR */
3364
	dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
3365
 
3366
	I915_WRITE(PCH_3DCGDIS0,
3367
		   MARIUNIT_CLOCK_GATE_DISABLE |
3368
		   SVSMUNIT_CLOCK_GATE_DISABLE);
3369
	I915_WRITE(PCH_3DCGDIS1,
3370
		   VFMUNIT_CLOCK_GATE_DISABLE);
3371
 
3372
	I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3373
 
3374
	/*
3375
	 * According to the spec the following bits should be set in
3376
	 * order to enable memory self-refresh
3377
	 * The bit 22/21 of 0x42004
3378
	 * The bit 5 of 0x42020
3379
	 * The bit 15 of 0x45000
3380
	 */
3381
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3382
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
3383
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3384
	I915_WRITE(ILK_DSPCLK_GATE,
3385
		   (I915_READ(ILK_DSPCLK_GATE) |
3386
		    ILK_DPARB_CLK_GATE));
3387
	I915_WRITE(DISP_ARB_CTL,
3388
		   (I915_READ(DISP_ARB_CTL) |
3389
		    DISP_FBC_WM_DIS));
3390
	I915_WRITE(WM3_LP_ILK, 0);
3391
	I915_WRITE(WM2_LP_ILK, 0);
3392
	I915_WRITE(WM1_LP_ILK, 0);
3393
 
3394
	/*
3395
	 * Based on the document from hardware guys the following bits
3396
	 * should be set unconditionally in order to enable FBC.
3397
	 * The bit 22 of 0x42000
3398
	 * The bit 22 of 0x42004
3399
	 * The bit 7,8,9 of 0x42020.
3400
	 */
3401
	if (IS_IRONLAKE_M(dev)) {
3402
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
3403
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
3404
			   ILK_FBCQ_DIS);
3405
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
3406
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
3407
			   ILK_DPARB_GATE);
3408
		I915_WRITE(ILK_DSPCLK_GATE,
3409
			   I915_READ(ILK_DSPCLK_GATE) |
3410
			   ILK_DPFC_DIS1 |
3411
			   ILK_DPFC_DIS2 |
3412
			   ILK_CLK_FBC);
3413
	}
3414
 
3415
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3416
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3417
		   ILK_ELPIN_409_SELECT);
3418
	I915_WRITE(_3D_CHICKEN2,
3419
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3420
		   _3D_CHICKEN2_WM_READ_PIPELINED);
3421
}
3422
 
3423
static void gen6_init_clock_gating(struct drm_device *dev)
3424
{
3425
	struct drm_i915_private *dev_priv = dev->dev_private;
3426
	int pipe;
3427
	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3428
 
3429
	I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3430
 
3431
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3432
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3433
		   ILK_ELPIN_409_SELECT);
3434
 
3435
	I915_WRITE(WM3_LP_ILK, 0);
3436
	I915_WRITE(WM2_LP_ILK, 0);
3437
	I915_WRITE(WM1_LP_ILK, 0);
3438
 
3439
	I915_WRITE(CACHE_MODE_0,
3440
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3441
 
3442
	I915_WRITE(GEN6_UCGCTL1,
3443
		   I915_READ(GEN6_UCGCTL1) |
3444
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3445
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3446
 
3447
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3448
	 * gating disable must be set.  Failure to set it results in
3449
	 * flickering pixels due to Z write ordering failures after
3450
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3451
	 * Sanctuary and Tropics, and apparently anything else with
3452
	 * alpha test or pixel discard.
3453
	 *
3454
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3455
	 * but we didn't debug actual testcases to find it out.
3456
	 *
3457
	 * Also apply WaDisableVDSUnitClockGating and
3458
	 * WaDisableRCPBUnitClockGating.
3459
	 */
3460
	I915_WRITE(GEN6_UCGCTL2,
3461
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3462
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3463
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3464
 
3465
	/* Bspec says we need to always set all mask bits. */
3466
	I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
3467
		   _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
3468
 
3469
	/*
3470
	 * According to the spec the following bits should be
3471
	 * set in order to enable memory self-refresh and fbc:
3472
	 * The bit21 and bit22 of 0x42000
3473
	 * The bit21 and bit22 of 0x42004
3474
	 * The bit5 and bit7 of 0x42020
3475
	 * The bit14 of 0x70180
3476
	 * The bit14 of 0x71180
3477
	 */
3478
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
3479
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
3480
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3481
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3482
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3483
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3484
	I915_WRITE(ILK_DSPCLK_GATE,
3485
		   I915_READ(ILK_DSPCLK_GATE) |
3486
		   ILK_DPARB_CLK_GATE  |
3487
		   ILK_DPFD_CLK_GATE);
3488
 
3489
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3490
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3491
 
3492
	for_each_pipe(pipe) {
3493
		I915_WRITE(DSPCNTR(pipe),
3494
			   I915_READ(DSPCNTR(pipe)) |
3495
			   DISPPLANE_TRICKLE_FEED_DISABLE);
3496
		intel_flush_display_plane(dev_priv, pipe);
3497
	}
3498
 
3499
	/* The default value should be 0x200 according to docs, but the two
3500
	 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
3501
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
3502
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3503
}
3504
 
3505
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3506
{
3507
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3508
 
3509
	reg &= ~GEN7_FF_SCHED_MASK;
3510
	reg |= GEN7_FF_TS_SCHED_HW;
3511
	reg |= GEN7_FF_VS_SCHED_HW;
3512
	reg |= GEN7_FF_DS_SCHED_HW;
3513
 
3514
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3515
}
3516
 
3517
static void haswell_init_clock_gating(struct drm_device *dev)
3518
{
3519
	struct drm_i915_private *dev_priv = dev->dev_private;
3520
	int pipe;
3521
	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3522
 
3523
	I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3524
 
3525
	I915_WRITE(WM3_LP_ILK, 0);
3526
	I915_WRITE(WM2_LP_ILK, 0);
3527
	I915_WRITE(WM1_LP_ILK, 0);
3528
 
3529
	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3530
	 * This implements the WaDisableRCZUnitClockGating workaround.
3531
	 */
3532
	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3533
 
3534
	I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3535
 
3536
	I915_WRITE(IVB_CHICKEN3,
3537
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3538
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3539
 
3540
	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3541
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3542
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3543
 
3544
	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3545
	I915_WRITE(GEN7_L3CNTLREG1,
3546
			GEN7_WA_FOR_GEN7_L3_CONTROL);
3547
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3548
			GEN7_WA_L3_CHICKEN_MODE);
3549
 
3550
	/* This is required by WaCatErrorRejectionIssue */
3551
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3552
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3553
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3554
 
3555
	for_each_pipe(pipe) {
3556
		I915_WRITE(DSPCNTR(pipe),
3557
			   I915_READ(DSPCNTR(pipe)) |
3558
			   DISPPLANE_TRICKLE_FEED_DISABLE);
3559
		intel_flush_display_plane(dev_priv, pipe);
3560
	}
3561
 
3562
	gen7_setup_fixed_func_scheduler(dev_priv);
3563
 
3564
	/* WaDisable4x2SubspanOptimization */
3565
	I915_WRITE(CACHE_MODE_1,
3566
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3567
 
3568
	/* XXX: This is a workaround for early silicon revisions and should be
3569
	 * removed later.
3570
	 */
3571
	I915_WRITE(WM_DBG,
3572
			I915_READ(WM_DBG) |
3573
			WM_DBG_DISALLOW_MULTIPLE_LP |
3574
			WM_DBG_DISALLOW_SPRITE |
3575
			WM_DBG_DISALLOW_MAXFIFO);
3576
 
3577
}
3578
 
3579
static void ivybridge_init_clock_gating(struct drm_device *dev)
3580
{
3581
	struct drm_i915_private *dev_priv = dev->dev_private;
3582
	int pipe;
3583
	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3584
	uint32_t snpcr;
3585
 
3586
	I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3587
 
3588
	I915_WRITE(WM3_LP_ILK, 0);
3589
	I915_WRITE(WM2_LP_ILK, 0);
3590
	I915_WRITE(WM1_LP_ILK, 0);
3591
 
3592
	I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3593
 
3594
	I915_WRITE(IVB_CHICKEN3,
3595
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3596
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3597
 
3598
	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3599
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3600
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3601
 
3602
	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3603
	I915_WRITE(GEN7_L3CNTLREG1,
3604
			GEN7_WA_FOR_GEN7_L3_CONTROL);
3605
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3606
			GEN7_WA_L3_CHICKEN_MODE);
3607
 
3608
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3609
	 * gating disable must be set.  Failure to set it results in
3610
	 * flickering pixels due to Z write ordering failures after
3611
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3612
	 * Sanctuary and Tropics, and apparently anything else with
3613
	 * alpha test or pixel discard.
3614
	 *
3615
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3616
	 * but we didn't debug actual testcases to find it out.
3617
	 *
3618
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3619
	 * This implements the WaDisableRCZUnitClockGating workaround.
3620
	 */
3621
	I915_WRITE(GEN6_UCGCTL2,
3622
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3623
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3624
 
3625
	/* This is required by WaCatErrorRejectionIssue */
3626
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3627
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3628
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3629
 
3630
	for_each_pipe(pipe) {
3631
		I915_WRITE(DSPCNTR(pipe),
3632
			   I915_READ(DSPCNTR(pipe)) |
3633
			   DISPPLANE_TRICKLE_FEED_DISABLE);
3634
		intel_flush_display_plane(dev_priv, pipe);
3635
	}
3636
 
3637
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3638
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3639
 
3640
	gen7_setup_fixed_func_scheduler(dev_priv);
3641
 
3642
	/* WaDisable4x2SubspanOptimization */
3643
	I915_WRITE(CACHE_MODE_1,
3644
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3645
 
3646
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3647
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
3648
	snpcr |= GEN6_MBC_SNPCR_MED;
3649
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3650
}
3651
 
3652
static void valleyview_init_clock_gating(struct drm_device *dev)
3653
{
3654
	struct drm_i915_private *dev_priv = dev->dev_private;
3655
	int pipe;
3656
	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3657
 
3658
	I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3659
 
3660
	I915_WRITE(WM3_LP_ILK, 0);
3661
	I915_WRITE(WM2_LP_ILK, 0);
3662
	I915_WRITE(WM1_LP_ILK, 0);
3663
 
3664
	I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3665
 
3666
	I915_WRITE(IVB_CHICKEN3,
3667
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3668
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3669
 
3670
	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3671
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3672
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3673
 
3674
	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3675
	I915_WRITE(GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
3676
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3677
 
3678
	/* This is required by WaCatErrorRejectionIssue */
3679
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3680
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3681
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3682
 
3683
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3684
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3685
 
3686
 
3687
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3688
	 * gating disable must be set.  Failure to set it results in
3689
	 * flickering pixels due to Z write ordering failures after
3690
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3691
	 * Sanctuary and Tropics, and apparently anything else with
3692
	 * alpha test or pixel discard.
3693
	 *
3694
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3695
	 * but we didn't debug actual testcases to find it out.
3696
	 *
3697
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3698
	 * This implements the WaDisableRCZUnitClockGating workaround.
3699
	 *
3700
	 * Also apply WaDisableVDSUnitClockGating and
3701
	 * WaDisableRCPBUnitClockGating.
3702
	 */
3703
	I915_WRITE(GEN6_UCGCTL2,
3704
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3705
		   GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
3706
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3707
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3708
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3709
 
3710
	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3711
 
3712
	for_each_pipe(pipe) {
3713
		I915_WRITE(DSPCNTR(pipe),
3714
			   I915_READ(DSPCNTR(pipe)) |
3715
			   DISPPLANE_TRICKLE_FEED_DISABLE);
3716
		intel_flush_display_plane(dev_priv, pipe);
3717
	}
3718
 
3719
	I915_WRITE(CACHE_MODE_1,
3720
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3721
 
3722
	/*
3723
	 * On ValleyView, the GUnit needs to signal the GT
3724
	 * when flip and other events complete.  So enable
3725
	 * all the GUnit->GT interrupts here
3726
	 */
3727
	I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN |
3728
		   PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN |
3729
		   SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN |
3730
		   PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN |
3731
		   PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN |
3732
		   SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN |
3733
		   PLANEA_FLIPDONE_INT_EN);
3734
}
3735
 
3736
static void g4x_init_clock_gating(struct drm_device *dev)
3737
{
3738
	struct drm_i915_private *dev_priv = dev->dev_private;
3739
	uint32_t dspclk_gate;
3740
 
3741
	I915_WRITE(RENCLK_GATE_D1, 0);
3742
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
3743
		   GS_UNIT_CLOCK_GATE_DISABLE |
3744
		   CL_UNIT_CLOCK_GATE_DISABLE);
3745
	I915_WRITE(RAMCLK_GATE_D, 0);
3746
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
3747
		OVRUNIT_CLOCK_GATE_DISABLE |
3748
		OVCUNIT_CLOCK_GATE_DISABLE;
3749
	if (IS_GM45(dev))
3750
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
3751
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3752
}
3753
 
3754
static void crestline_init_clock_gating(struct drm_device *dev)
3755
{
3756
	struct drm_i915_private *dev_priv = dev->dev_private;
3757
 
3758
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
3759
	I915_WRITE(RENCLK_GATE_D2, 0);
3760
	I915_WRITE(DSPCLK_GATE_D, 0);
3761
	I915_WRITE(RAMCLK_GATE_D, 0);
3762
	I915_WRITE16(DEUC, 0);
3763
}
3764
 
3765
static void broadwater_init_clock_gating(struct drm_device *dev)
3766
{
3767
	struct drm_i915_private *dev_priv = dev->dev_private;
3768
 
3769
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
3770
		   I965_RCC_CLOCK_GATE_DISABLE |
3771
		   I965_RCPB_CLOCK_GATE_DISABLE |
3772
		   I965_ISC_CLOCK_GATE_DISABLE |
3773
		   I965_FBC_CLOCK_GATE_DISABLE);
3774
	I915_WRITE(RENCLK_GATE_D2, 0);
3775
}
3776
 
3777
static void gen3_init_clock_gating(struct drm_device *dev)
3778
{
3779
	struct drm_i915_private *dev_priv = dev->dev_private;
3780
	u32 dstate = I915_READ(D_STATE);
3781
 
3782
	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
3783
		DSTATE_DOT_CLOCK_GATING;
3784
	I915_WRITE(D_STATE, dstate);
3785
 
3786
	if (IS_PINEVIEW(dev))
3787
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
3788
 
3789
	/* IIR "flip pending" means done if this bit is set */
3790
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
3791
}
3792
 
3793
static void i85x_init_clock_gating(struct drm_device *dev)
3794
{
3795
	struct drm_i915_private *dev_priv = dev->dev_private;
3796
 
3797
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
3798
}
3799
 
3800
static void i830_init_clock_gating(struct drm_device *dev)
3801
{
3802
	struct drm_i915_private *dev_priv = dev->dev_private;
3803
 
3804
	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
3805
}
3806
 
3807
static void ibx_init_clock_gating(struct drm_device *dev)
3808
{
3809
	struct drm_i915_private *dev_priv = dev->dev_private;
3810
 
3811
	/*
3812
	 * On Ibex Peak and Cougar Point, we need to disable clock
3813
	 * gating for the panel power sequencer or it will fail to
3814
	 * start up when no ports are active.
3815
	 */
3816
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3817
}
3818
 
3819
static void cpt_init_clock_gating(struct drm_device *dev)
3820
{
3821
	struct drm_i915_private *dev_priv = dev->dev_private;
3822
	int pipe;
3823
 
3824
	/*
3825
	 * On Ibex Peak and Cougar Point, we need to disable clock
3826
	 * gating for the panel power sequencer or it will fail to
3827
	 * start up when no ports are active.
3828
	 */
3829
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3830
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3831
		   DPLS_EDP_PPS_FIX_DIS);
3832
	/* Without this, mode sets may fail silently on FDI */
3833
	for_each_pipe(pipe)
3834
		I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
3835
}
3836
 
3837
void intel_init_clock_gating(struct drm_device *dev)
3838
{
3839
	struct drm_i915_private *dev_priv = dev->dev_private;
3840
 
3841
	dev_priv->display.init_clock_gating(dev);
3842
 
3843
	if (dev_priv->display.init_pch_clock_gating)
3844
		dev_priv->display.init_pch_clock_gating(dev);
3845
}
3846
 
3847
/* Starting with Haswell, we have different power wells for
3848
 * different parts of the GPU. This attempts to enable them all.
3849
 */
3850
void intel_init_power_wells(struct drm_device *dev)
3851
{
3852
	struct drm_i915_private *dev_priv = dev->dev_private;
3853
	unsigned long power_wells[] = {
3854
		HSW_PWR_WELL_CTL1,
3855
		HSW_PWR_WELL_CTL2,
3856
		HSW_PWR_WELL_CTL4
3857
	};
3858
	int i;
3859
 
3860
	if (!IS_HASWELL(dev))
3861
		return;
3862
 
3863
	mutex_lock(&dev->struct_mutex);
3864
 
3865
	for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
3866
		int well = I915_READ(power_wells[i]);
3867
 
3868
		if ((well & HSW_PWR_WELL_STATE) == 0) {
3869
			I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
3870
			if (wait_for(I915_READ(power_wells[i] & HSW_PWR_WELL_STATE), 20))
3871
				DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
3872
		}
3873
	}
3874
 
3875
	mutex_unlock(&dev->struct_mutex);
3876
}
3877
 
3878
/* Set up chip specific power management-related functions */
3879
void intel_init_pm(struct drm_device *dev)
3880
{
3881
	struct drm_i915_private *dev_priv = dev->dev_private;
3882
 
3883
	if (I915_HAS_FBC(dev)) {
3884
		if (HAS_PCH_SPLIT(dev)) {
3885
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
3886
			dev_priv->display.enable_fbc = ironlake_enable_fbc;
3887
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
3888
		} else if (IS_GM45(dev)) {
3889
			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
3890
			dev_priv->display.enable_fbc = g4x_enable_fbc;
3891
			dev_priv->display.disable_fbc = g4x_disable_fbc;
3892
		} else if (IS_CRESTLINE(dev)) {
3893
			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
3894
			dev_priv->display.enable_fbc = i8xx_enable_fbc;
3895
			dev_priv->display.disable_fbc = i8xx_disable_fbc;
3896
		}
3897
		/* 855GM needs testing */
3898
	}
3899
 
3900
	/* For cxsr */
3901
	if (IS_PINEVIEW(dev))
3902
		i915_pineview_get_mem_freq(dev);
3903
	else if (IS_GEN5(dev))
3904
		i915_ironlake_get_mem_freq(dev);
3905
 
3906
	/* For FIFO watermark updates */
3907
	if (HAS_PCH_SPLIT(dev)) {
3908
		if (HAS_PCH_IBX(dev))
3909
			dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
3910
		else if (HAS_PCH_CPT(dev))
3911
			dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
3912
 
3913
		if (IS_GEN5(dev)) {
3914
			if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
3915
				dev_priv->display.update_wm = ironlake_update_wm;
3916
			else {
3917
				DRM_DEBUG_KMS("Failed to get proper latency. "
3918
					      "Disable CxSR\n");
3919
				dev_priv->display.update_wm = NULL;
3920
			}
3921
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
3922
		} else if (IS_GEN6(dev)) {
3923
			if (SNB_READ_WM0_LATENCY()) {
3924
				dev_priv->display.update_wm = sandybridge_update_wm;
3925
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3926
			} else {
3927
				DRM_DEBUG_KMS("Failed to read display plane latency. "
3928
					      "Disable CxSR\n");
3929
				dev_priv->display.update_wm = NULL;
3930
			}
3931
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
3932
		} else if (IS_IVYBRIDGE(dev)) {
3933
			/* FIXME: detect B0+ stepping and use auto training */
3934
			if (SNB_READ_WM0_LATENCY()) {
3935
				dev_priv->display.update_wm = sandybridge_update_wm;
3936
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3937
			} else {
3938
				DRM_DEBUG_KMS("Failed to read display plane latency. "
3939
					      "Disable CxSR\n");
3940
				dev_priv->display.update_wm = NULL;
3941
			}
3942
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
3943
		} else if (IS_HASWELL(dev)) {
3944
			if (SNB_READ_WM0_LATENCY()) {
3945
				dev_priv->display.update_wm = sandybridge_update_wm;
3946
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3947
				dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
3948
			} else {
3949
				DRM_DEBUG_KMS("Failed to read display plane latency. "
3950
					      "Disable CxSR\n");
3951
				dev_priv->display.update_wm = NULL;
3952
			}
3953
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
3954
		} else
3955
			dev_priv->display.update_wm = NULL;
3956
	} else if (IS_VALLEYVIEW(dev)) {
3957
		dev_priv->display.update_wm = valleyview_update_wm;
3958
		dev_priv->display.init_clock_gating =
3959
			valleyview_init_clock_gating;
3960
	} else if (IS_PINEVIEW(dev)) {
3961
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
3962
					    dev_priv->is_ddr3,
3963
					    dev_priv->fsb_freq,
3964
					    dev_priv->mem_freq)) {
3965
			DRM_INFO("failed to find known CxSR latency "
3966
				 "(found ddr%s fsb freq %d, mem freq %d), "
3967
				 "disabling CxSR\n",
3968
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
3969
				 dev_priv->fsb_freq, dev_priv->mem_freq);
3970
			/* Disable CxSR and never update its watermark again */
3971
			pineview_disable_cxsr(dev);
3972
			dev_priv->display.update_wm = NULL;
3973
		} else
3974
			dev_priv->display.update_wm = pineview_update_wm;
3975
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
3976
	} else if (IS_G4X(dev)) {
3977
		dev_priv->display.update_wm = g4x_update_wm;
3978
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
3979
	} else if (IS_GEN4(dev)) {
3980
		dev_priv->display.update_wm = i965_update_wm;
3981
		if (IS_CRESTLINE(dev))
3982
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
3983
		else if (IS_BROADWATER(dev))
3984
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
3985
	} else if (IS_GEN3(dev)) {
3986
		dev_priv->display.update_wm = i9xx_update_wm;
3987
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
3988
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
3989
	} else if (IS_I865G(dev)) {
3990
		dev_priv->display.update_wm = i830_update_wm;
3991
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
3992
		dev_priv->display.get_fifo_size = i830_get_fifo_size;
3993
	} else if (IS_I85X(dev)) {
3994
		dev_priv->display.update_wm = i9xx_update_wm;
3995
		dev_priv->display.get_fifo_size = i85x_get_fifo_size;
3996
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
3997
	} else {
3998
		dev_priv->display.update_wm = i830_update_wm;
3999
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
4000
		if (IS_845G(dev))
4001
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
4002
		else
4003
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
4004
	}
4005
}
4006
 
4007
static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4008
{
4009
	u32 gt_thread_status_mask;
4010
 
4011
	if (IS_HASWELL(dev_priv->dev))
4012
		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4013
	else
4014
		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4015
 
4016
	/* w/a for a sporadic read returning 0 by waiting for the GT
4017
	 * thread to wake up.
4018
	 */
4019
	if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4020
		DRM_ERROR("GT thread status wait timed out\n");
4021
}
4022
 
4023
static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4024
{
4025
	u32 forcewake_ack;
4026
 
4027
	if (IS_HASWELL(dev_priv->dev))
4028
		forcewake_ack = FORCEWAKE_ACK_HSW;
4029
	else
4030
		forcewake_ack = FORCEWAKE_ACK;
4031
 
4032
	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4033
			    FORCEWAKE_ACK_TIMEOUT_MS))
4034
		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4035
 
4036
	I915_WRITE_NOTRACE(FORCEWAKE, 1);
4037
	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4038
 
4039
	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4040
			    FORCEWAKE_ACK_TIMEOUT_MS))
4041
		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4042
 
4043
	__gen6_gt_wait_for_thread_c0(dev_priv);
4044
}
4045
 
4046
static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4047
{
4048
	u32 forcewake_ack;
4049
 
4050
	if (IS_HASWELL(dev_priv->dev))
4051
		forcewake_ack = FORCEWAKE_ACK_HSW;
4052
	else
4053
		forcewake_ack = FORCEWAKE_MT_ACK;
4054
 
4055
	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4056
			    FORCEWAKE_ACK_TIMEOUT_MS))
4057
		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4058
 
4059
	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(1));
4060
	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4061
 
4062
	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4063
			    FORCEWAKE_ACK_TIMEOUT_MS))
4064
		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4065
 
4066
	__gen6_gt_wait_for_thread_c0(dev_priv);
4067
}
4068
 
4069
/*
4070
 * Generally this is called implicitly by the register read function. However,
4071
 * if some sequence requires the GT to not power down then this function should
4072
 * be called at the beginning of the sequence followed by a call to
4073
 * gen6_gt_force_wake_put() at the end of the sequence.
4074
 */
4075
void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4076
{
4077
	unsigned long irqflags;
4078
 
4079
	spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4080
	if (dev_priv->forcewake_count++ == 0)
4081
		dev_priv->gt.force_wake_get(dev_priv);
4082
	spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4083
}
4084
 
4085
void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4086
{
4087
	u32 gtfifodbg;
4088
	gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4089
	if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4090
	     "MMIO read or write has been dropped %x\n", gtfifodbg))
4091
		I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4092
}
4093
 
4094
static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4095
{
4096
	I915_WRITE_NOTRACE(FORCEWAKE, 0);
4097
	/* gen6_gt_check_fifodbg doubles as the POSTING_READ */
4098
	gen6_gt_check_fifodbg(dev_priv);
4099
}
4100
 
4101
static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4102
{
4103
	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(1));
4104
	/* gen6_gt_check_fifodbg doubles as the POSTING_READ */
4105
	gen6_gt_check_fifodbg(dev_priv);
4106
}
4107
 
4108
/*
4109
 * see gen6_gt_force_wake_get()
4110
 */
4111
void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4112
{
4113
	unsigned long irqflags;
4114
 
4115
	spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4116
	if (--dev_priv->forcewake_count == 0)
4117
		dev_priv->gt.force_wake_put(dev_priv);
4118
	spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4119
}
4120
 
4121
int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4122
{
4123
	int ret = 0;
4124
 
4125
	if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4126
		int loop = 500;
4127
		u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4128
		while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4129
			udelay(10);
4130
			fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4131
		}
4132
		if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4133
			++ret;
4134
		dev_priv->gt_fifo_count = fifo;
4135
	}
4136
	dev_priv->gt_fifo_count--;
4137
 
4138
	return ret;
4139
}
4140
 
4141
static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4142
{
4143
	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1) == 0,
4144
			    FORCEWAKE_ACK_TIMEOUT_MS))
4145
		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4146
 
4147
	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(1));
4148
 
4149
	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1),
4150
			    FORCEWAKE_ACK_TIMEOUT_MS))
4151
		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4152
 
4153
	__gen6_gt_wait_for_thread_c0(dev_priv);
4154
}
4155
 
4156
static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4157
{
4158
	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(1));
4159
	/* The below doubles as a POSTING_READ */
4160
	gen6_gt_check_fifodbg(dev_priv);
4161
}
4162
 
4163
void intel_gt_init(struct drm_device *dev)
4164
{
4165
	struct drm_i915_private *dev_priv = dev->dev_private;
4166
 
4167
	spin_lock_init(&dev_priv->gt_lock);
4168
 
4169
	if (IS_VALLEYVIEW(dev)) {
4170
		dev_priv->gt.force_wake_get = vlv_force_wake_get;
4171
		dev_priv->gt.force_wake_put = vlv_force_wake_put;
4172
	} else if (INTEL_INFO(dev)->gen >= 6) {
4173
		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4174
		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4175
 
4176
		/* IVB configs may use multi-threaded forcewake */
4177
		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4178
			u32 ecobus;
4179
 
4180
			/* A small trick here - if the bios hasn't configured
4181
			 * MT forcewake, and if the device is in RC6, then
4182
			 * force_wake_mt_get will not wake the device and the
4183
			 * ECOBUS read will return zero. Which will be
4184
			 * (correctly) interpreted by the test below as MT
4185
			 * forcewake being disabled.
4186
			 */
4187
			mutex_lock(&dev->struct_mutex);
4188
			__gen6_gt_force_wake_mt_get(dev_priv);
4189
			ecobus = I915_READ_NOTRACE(ECOBUS);
4190
			__gen6_gt_force_wake_mt_put(dev_priv);
4191
			mutex_unlock(&dev->struct_mutex);
4192
 
4193
			if (ecobus & FORCEWAKE_MT_ENABLE) {
4194
				DRM_DEBUG_KMS("Using MT version of forcewake\n");
4195
				dev_priv->gt.force_wake_get =
4196
					__gen6_gt_force_wake_mt_get;
4197
				dev_priv->gt.force_wake_put =
4198
					__gen6_gt_force_wake_mt_put;
4199
			}
4200
		}
4201
	}
4202
}
4203