Subversion Repositories Kolibri OS

Rev

Rev 2326 | Rev 2330 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2326 Serge 1
/*
2
 * Copyright (c) 2006 Dave Airlie 
3
 * Copyright © 2006-2008,2010 Intel Corporation
4
 *   Jesse Barnes 
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a
7
 * copy of this software and associated documentation files (the "Software"),
8
 * to deal in the Software without restriction, including without limitation
9
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10
 * and/or sell copies of the Software, and to permit persons to whom the
11
 * Software is furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice (including the next
14
 * paragraph) shall be included in all copies or substantial portions of the
15
 * Software.
16
 *
17
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23
 * DEALINGS IN THE SOFTWARE.
24
 *
25
 * Authors:
26
 *	Eric Anholt 
27
 *	Chris Wilson 
28
 */
29
#include 
30
#include 
31
#include "drmP.h"
32
#include "drm.h"
33
#include "intel_drv.h"
34
//#include "i915_drm.h"
35
#include "i915_drv.h"
36
#include 
37
 
38
#define MSEC_PER_SEC    1000L
39
#define USEC_PER_MSEC   1000L
40
#define NSEC_PER_USEC   1000L
41
#define NSEC_PER_MSEC   1000000L
42
#define USEC_PER_SEC    1000000L
43
#define NSEC_PER_SEC    1000000000L
44
#define FSEC_PER_SEC    1000000000000000L
45
 
46
#define HZ_TO_MSEC_MUL32 0xA0000000
47
#define HZ_TO_MSEC_ADJ32 0x0
48
#define HZ_TO_MSEC_SHR32 28
49
#define HZ_TO_MSEC_MUL64 0xA000000000000000
50
#define HZ_TO_MSEC_ADJ64 0x0
51
#define HZ_TO_MSEC_SHR64 60
52
#define MSEC_TO_HZ_MUL32 0xCCCCCCCD
53
#define MSEC_TO_HZ_ADJ32 0x733333333
54
#define MSEC_TO_HZ_SHR32 35
55
#define MSEC_TO_HZ_MUL64 0xCCCCCCCCCCCCCCCD
56
#define MSEC_TO_HZ_ADJ64 0x73333333333333333
57
#define MSEC_TO_HZ_SHR64 67
58
#define HZ_TO_MSEC_NUM 10
59
#define HZ_TO_MSEC_DEN 1
60
#define MSEC_TO_HZ_NUM 1
61
#define MSEC_TO_HZ_DEN 10
62
 
63
#define HZ_TO_USEC_MUL32 0x9C400000
64
#define HZ_TO_USEC_ADJ32 0x0
65
#define HZ_TO_USEC_SHR32 18
66
#define HZ_TO_USEC_MUL64 0x9C40000000000000
67
#define HZ_TO_USEC_ADJ64 0x0
68
#define HZ_TO_USEC_SHR64 50
69
#define USEC_TO_HZ_MUL32 0xD1B71759
70
#define USEC_TO_HZ_ADJ32 0x1FFF2E48E8A7
71
#define USEC_TO_HZ_SHR32 45
72
#define USEC_TO_HZ_MUL64 0xD1B71758E219652C
73
#define USEC_TO_HZ_ADJ64 0x1FFF2E48E8A71DE69AD4
74
#define USEC_TO_HZ_SHR64 77
75
#define HZ_TO_USEC_NUM 10000
76
#define HZ_TO_USEC_DEN 1
77
#define USEC_TO_HZ_NUM 1
78
#define USEC_TO_HZ_DEN 10000
79
 
80
unsigned int inline jiffies_to_usecs(const unsigned long j)
81
{
82
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
83
        return (USEC_PER_SEC / HZ) * j;
84
#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
85
        return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
86
#else
87
# if BITS_PER_LONG == 32
88
        return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
89
# else
90
        return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
91
# endif
92
#endif
93
}
94
 
95
/*
96
* When we convert to jiffies then we interpret incoming values
97
* the following way:
98
*
99
* - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
100
*
101
* - 'too large' values [that would result in larger than
102
*   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
103
*
104
* - all other values are converted to jiffies by either multiplying
105
*   the input value by a factor or dividing it with a factor
106
*
107
* We must also be careful about 32-bit overflows.
108
*/
109
unsigned long msecs_to_jiffies(const unsigned int m)
110
{
111
        /*
112
         * Negative value, means infinite timeout:
113
         */
114
        if ((int)m < 0)
115
                return MAX_JIFFY_OFFSET;
116
 
117
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
118
        /*
119
         * HZ is equal to or smaller than 1000, and 1000 is a nice
120
         * round multiple of HZ, divide with the factor between them,
121
         * but round upwards:
122
         */
123
        return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
124
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
125
        /*
126
         * HZ is larger than 1000, and HZ is a nice round multiple of
127
         * 1000 - simply multiply with the factor between them.
128
         *
129
         * But first make sure the multiplication result cannot
130
         * overflow:
131
         */
132
        if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
133
                return MAX_JIFFY_OFFSET;
134
 
135
        return m * (HZ / MSEC_PER_SEC);
136
#else
137
        /*
138
         * Generic case - multiply, round and divide. But first
139
         * check that if we are doing a net multiplication, that
140
         * we wouldn't overflow:
141
         */
142
        if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
143
                return MAX_JIFFY_OFFSET;
144
 
145
        return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
146
                >> MSEC_TO_HZ_SHR32;
147
#endif
148
}
149
 
150
unsigned long usecs_to_jiffies(const unsigned int u)
151
{
152
        if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
153
                return MAX_JIFFY_OFFSET;
154
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
155
        return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
156
#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
157
        return u * (HZ / USEC_PER_SEC);
158
#else
159
        return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
160
                >> USEC_TO_HZ_SHR32;
161
#endif
162
}
163
 
164
 
165
 
166
/* Intel GPIO access functions */
167
 
168
#define I2C_RISEFALL_TIME 20
169
 
170
static inline struct intel_gmbus *
171
to_intel_gmbus(struct i2c_adapter *i2c)
172
{
173
	return container_of(i2c, struct intel_gmbus, adapter);
174
}
175
 
176
struct intel_gpio {
177
	struct i2c_adapter adapter;
178
	struct i2c_algo_bit_data algo;
179
	struct drm_i915_private *dev_priv;
180
	u32 reg;
181
};
182
 
183
void
184
intel_i2c_reset(struct drm_device *dev)
185
{
186
	struct drm_i915_private *dev_priv = dev->dev_private;
187
	if (HAS_PCH_SPLIT(dev))
188
		I915_WRITE(PCH_GMBUS0, 0);
189
	else
190
		I915_WRITE(GMBUS0, 0);
191
}
192
 
193
static void intel_i2c_quirk_set(struct drm_i915_private *dev_priv, bool enable)
194
{
195
	u32 val;
196
 
197
	/* When using bit bashing for I2C, this bit needs to be set to 1 */
198
	if (!IS_PINEVIEW(dev_priv->dev))
199
		return;
200
 
201
	val = I915_READ(DSPCLK_GATE_D);
202
	if (enable)
203
		val |= DPCUNIT_CLOCK_GATE_DISABLE;
204
	else
205
		val &= ~DPCUNIT_CLOCK_GATE_DISABLE;
206
	I915_WRITE(DSPCLK_GATE_D, val);
207
}
208
 
209
static u32 get_reserved(struct intel_gpio *gpio)
210
{
211
	struct drm_i915_private *dev_priv = gpio->dev_priv;
212
	struct drm_device *dev = dev_priv->dev;
213
	u32 reserved = 0;
214
 
215
	/* On most chips, these bits must be preserved in software. */
216
	if (!IS_I830(dev) && !IS_845G(dev))
217
		reserved = I915_READ_NOTRACE(gpio->reg) &
218
					     (GPIO_DATA_PULLUP_DISABLE |
219
					      GPIO_CLOCK_PULLUP_DISABLE);
220
 
221
	return reserved;
222
}
223
 
224
static int get_clock(void *data)
225
{
226
	struct intel_gpio *gpio = data;
227
	struct drm_i915_private *dev_priv = gpio->dev_priv;
228
	u32 reserved = get_reserved(gpio);
229
	I915_WRITE_NOTRACE(gpio->reg, reserved | GPIO_CLOCK_DIR_MASK);
230
	I915_WRITE_NOTRACE(gpio->reg, reserved);
231
	return (I915_READ_NOTRACE(gpio->reg) & GPIO_CLOCK_VAL_IN) != 0;
232
}
233
 
234
static int get_data(void *data)
235
{
236
	struct intel_gpio *gpio = data;
237
	struct drm_i915_private *dev_priv = gpio->dev_priv;
238
	u32 reserved = get_reserved(gpio);
239
	I915_WRITE_NOTRACE(gpio->reg, reserved | GPIO_DATA_DIR_MASK);
240
	I915_WRITE_NOTRACE(gpio->reg, reserved);
241
	return (I915_READ_NOTRACE(gpio->reg) & GPIO_DATA_VAL_IN) != 0;
242
}
243
 
244
static void set_clock(void *data, int state_high)
245
{
246
	struct intel_gpio *gpio = data;
247
	struct drm_i915_private *dev_priv = gpio->dev_priv;
248
	u32 reserved = get_reserved(gpio);
249
	u32 clock_bits;
250
 
251
	if (state_high)
252
		clock_bits = GPIO_CLOCK_DIR_IN | GPIO_CLOCK_DIR_MASK;
253
	else
254
		clock_bits = GPIO_CLOCK_DIR_OUT | GPIO_CLOCK_DIR_MASK |
255
			GPIO_CLOCK_VAL_MASK;
256
 
257
	I915_WRITE_NOTRACE(gpio->reg, reserved | clock_bits);
258
	POSTING_READ(gpio->reg);
259
}
260
 
261
static void set_data(void *data, int state_high)
262
{
263
	struct intel_gpio *gpio = data;
264
	struct drm_i915_private *dev_priv = gpio->dev_priv;
265
	u32 reserved = get_reserved(gpio);
266
	u32 data_bits;
267
 
268
	if (state_high)
269
		data_bits = GPIO_DATA_DIR_IN | GPIO_DATA_DIR_MASK;
270
	else
271
		data_bits = GPIO_DATA_DIR_OUT | GPIO_DATA_DIR_MASK |
272
			GPIO_DATA_VAL_MASK;
273
 
274
	I915_WRITE_NOTRACE(gpio->reg, reserved | data_bits);
275
	POSTING_READ(gpio->reg);
276
}
277
 
278
static struct i2c_adapter *
279
intel_gpio_create(struct drm_i915_private *dev_priv, u32 pin)
280
{
281
	static const int map_pin_to_reg[] = {
282
		0,
283
		GPIOB,
284
		GPIOA,
285
		GPIOC,
286
		GPIOD,
287
		GPIOE,
288
		0,
289
		GPIOF,
290
	};
291
	struct intel_gpio *gpio;
2327 Serge 292
 
2326 Serge 293
	if (pin >= ARRAY_SIZE(map_pin_to_reg) || !map_pin_to_reg[pin])
294
		return NULL;
295
 
296
	gpio = kzalloc(sizeof(struct intel_gpio), GFP_KERNEL);
297
	if (gpio == NULL)
298
		return NULL;
299
 
300
	gpio->reg = map_pin_to_reg[pin];
301
	if (HAS_PCH_SPLIT(dev_priv->dev))
302
		gpio->reg += PCH_GPIOA - GPIOA;
303
	gpio->dev_priv = dev_priv;
304
 
305
	snprintf(gpio->adapter.name, sizeof(gpio->adapter.name),
306
		 "i915 GPIO%c", "?BACDE?F"[pin]);
307
//   gpio->adapter.owner = THIS_MODULE;
308
	gpio->adapter.algo_data	= &gpio->algo;
309
	gpio->adapter.dev.parent = &dev_priv->dev->pdev->dev;
310
	gpio->algo.setsda = set_data;
311
	gpio->algo.setscl = set_clock;
312
	gpio->algo.getsda = get_data;
313
	gpio->algo.getscl = get_clock;
314
	gpio->algo.udelay = I2C_RISEFALL_TIME;
315
	gpio->algo.timeout = usecs_to_jiffies(2200);
316
	gpio->algo.data = gpio;
317
 
318
    if (i2c_bit_add_bus(&gpio->adapter))
319
       goto out_free;
2327 Serge 320
 
2326 Serge 321
	return &gpio->adapter;
322
 
323
out_free:
324
	kfree(gpio);
325
	return NULL;
326
}
327
 
328
static int
329
intel_i2c_quirk_xfer(struct drm_i915_private *dev_priv,
330
		     struct i2c_adapter *adapter,
331
		     struct i2c_msg *msgs,
332
		     int num)
333
{
334
	struct intel_gpio *gpio = container_of(adapter,
335
					       struct intel_gpio,
336
					       adapter);
337
	int ret;
338
 
339
	intel_i2c_reset(dev_priv->dev);
340
 
341
	intel_i2c_quirk_set(dev_priv, true);
342
	set_data(gpio, 1);
343
	set_clock(gpio, 1);
344
	udelay(I2C_RISEFALL_TIME);
345
 
346
	ret = adapter->algo->master_xfer(adapter, msgs, num);
347
 
348
	set_data(gpio, 1);
349
	set_clock(gpio, 1);
350
	intel_i2c_quirk_set(dev_priv, false);
351
 
352
	return ret;
353
}
354
 
355
static int
356
gmbus_xfer(struct i2c_adapter *adapter,
357
	   struct i2c_msg *msgs,
358
	   int num)
359
{
360
	struct intel_gmbus *bus = container_of(adapter,
361
					       struct intel_gmbus,
362
					       adapter);
363
	struct drm_i915_private *dev_priv = adapter->algo_data;
364
	int i, reg_offset;
365
 
366
	if (bus->force_bit)
367
		return intel_i2c_quirk_xfer(dev_priv,
368
					    bus->force_bit, msgs, num);
369
 
370
	reg_offset = HAS_PCH_SPLIT(dev_priv->dev) ? PCH_GMBUS0 - GMBUS0 : 0;
371
 
372
	I915_WRITE(GMBUS0 + reg_offset, bus->reg0);
373
 
374
	for (i = 0; i < num; i++) {
375
		u16 len = msgs[i].len;
376
		u8 *buf = msgs[i].buf;
377
 
378
		if (msgs[i].flags & I2C_M_RD) {
379
			I915_WRITE(GMBUS1 + reg_offset,
380
				   GMBUS_CYCLE_WAIT | (i + 1 == num ? GMBUS_CYCLE_STOP : 0) |
381
				   (len << GMBUS_BYTE_COUNT_SHIFT) |
382
				   (msgs[i].addr << GMBUS_SLAVE_ADDR_SHIFT) |
383
				   GMBUS_SLAVE_READ | GMBUS_SW_RDY);
384
			POSTING_READ(GMBUS2+reg_offset);
385
			do {
386
				u32 val, loop = 0;
387
 
388
				if (wait_for(I915_READ(GMBUS2 + reg_offset) & (GMBUS_SATOER | GMBUS_HW_RDY), 50))
389
					goto timeout;
390
				if (I915_READ(GMBUS2 + reg_offset) & GMBUS_SATOER)
391
					goto clear_err;
392
 
393
				val = I915_READ(GMBUS3 + reg_offset);
394
				do {
395
					*buf++ = val & 0xff;
396
					val >>= 8;
397
				} while (--len && ++loop < 4);
398
			} while (len);
399
		} else {
400
			u32 val, loop;
401
 
402
			val = loop = 0;
403
			do {
404
				val |= *buf++ << (8 * loop);
405
			} while (--len && ++loop < 4);
406
 
407
			I915_WRITE(GMBUS3 + reg_offset, val);
408
			I915_WRITE(GMBUS1 + reg_offset,
409
				   (i + 1 == num ? GMBUS_CYCLE_STOP : GMBUS_CYCLE_WAIT) |
410
				   (msgs[i].len << GMBUS_BYTE_COUNT_SHIFT) |
411
				   (msgs[i].addr << GMBUS_SLAVE_ADDR_SHIFT) |
412
				   GMBUS_SLAVE_WRITE | GMBUS_SW_RDY);
413
			POSTING_READ(GMBUS2+reg_offset);
414
 
415
			while (len) {
416
				if (wait_for(I915_READ(GMBUS2 + reg_offset) & (GMBUS_SATOER | GMBUS_HW_RDY), 50))
417
					goto timeout;
418
				if (I915_READ(GMBUS2 + reg_offset) & GMBUS_SATOER)
419
					goto clear_err;
420
 
421
				val = loop = 0;
422
				do {
423
					val |= *buf++ << (8 * loop);
424
				} while (--len && ++loop < 4);
425
 
426
				I915_WRITE(GMBUS3 + reg_offset, val);
427
				POSTING_READ(GMBUS2+reg_offset);
428
			}
429
		}
430
 
431
		if (i + 1 < num && wait_for(I915_READ(GMBUS2 + reg_offset) & (GMBUS_SATOER | GMBUS_HW_WAIT_PHASE), 50))
432
			goto timeout;
433
		if (I915_READ(GMBUS2 + reg_offset) & GMBUS_SATOER)
434
			goto clear_err;
435
	}
436
 
437
	goto done;
438
 
439
clear_err:
440
	/* Toggle the Software Clear Interrupt bit. This has the effect
441
	 * of resetting the GMBUS controller and so clearing the
442
	 * BUS_ERROR raised by the slave's NAK.
443
	 */
444
	I915_WRITE(GMBUS1 + reg_offset, GMBUS_SW_CLR_INT);
445
	I915_WRITE(GMBUS1 + reg_offset, 0);
446
 
447
done:
448
	/* Mark the GMBUS interface as disabled. We will re-enable it at the
449
	 * start of the next xfer, till then let it sleep.
450
	 */
451
	I915_WRITE(GMBUS0 + reg_offset, 0);
452
	return i;
453
 
454
timeout:
455
	DRM_INFO("GMBUS timed out, falling back to bit banging on pin %d [%s]\n",
456
		 bus->reg0 & 0xff, bus->adapter.name);
457
	I915_WRITE(GMBUS0 + reg_offset, 0);
458
 
459
	/* Hardware may not support GMBUS over these pins? Try GPIO bitbanging instead. */
460
	bus->force_bit = intel_gpio_create(dev_priv, bus->reg0 & 0xff);
461
	if (!bus->force_bit)
462
		return -ENOMEM;
463
 
464
	return intel_i2c_quirk_xfer(dev_priv, bus->force_bit, msgs, num);
465
}
466
 
467
static u32 gmbus_func(struct i2c_adapter *adapter)
468
{
469
	struct intel_gmbus *bus = container_of(adapter,
470
					       struct intel_gmbus,
471
					       adapter);
472
 
473
	if (bus->force_bit)
474
		bus->force_bit->algo->functionality(bus->force_bit);
475
 
476
	return (I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
477
		/* I2C_FUNC_10BIT_ADDR | */
478
		I2C_FUNC_SMBUS_READ_BLOCK_DATA |
479
		I2C_FUNC_SMBUS_BLOCK_PROC_CALL);
480
}
481
 
482
static const struct i2c_algorithm gmbus_algorithm = {
483
	.master_xfer	= gmbus_xfer,
484
	.functionality	= gmbus_func
485
};
486
 
487
/**
488
 * intel_gmbus_setup - instantiate all Intel i2c GMBuses
489
 * @dev: DRM device
490
 */
491
int intel_setup_gmbus(struct drm_device *dev)
492
{
493
	static const char *names[GMBUS_NUM_PORTS] = {
494
		"disabled",
495
		"ssc",
496
		"vga",
497
		"panel",
498
		"dpc",
499
		"dpb",
500
		"reserved",
501
		"dpd",
502
	};
503
	struct drm_i915_private *dev_priv = dev->dev_private;
504
	int ret, i;
2327 Serge 505
 
2326 Serge 506
	dev_priv->gmbus = kcalloc(sizeof(struct intel_gmbus), GMBUS_NUM_PORTS,
507
				  GFP_KERNEL);
508
	if (dev_priv->gmbus == NULL)
509
		return -ENOMEM;
510
 
511
	for (i = 0; i < GMBUS_NUM_PORTS; i++) {
512
		struct intel_gmbus *bus = &dev_priv->gmbus[i];
513
 
514
//       bus->adapter.owner = THIS_MODULE;
515
		bus->adapter.class = I2C_CLASS_DDC;
516
		snprintf(bus->adapter.name,
517
			 sizeof(bus->adapter.name),
518
			 "i915 gmbus %s",
519
			 names[i]);
520
 
521
		bus->adapter.dev.parent = &dev->pdev->dev;
522
		bus->adapter.algo_data	= dev_priv;
523
 
524
		bus->adapter.algo = &gmbus_algorithm;
525
//       ret = i2c_add_adapter(&bus->adapter);
526
//       if (ret)
527
//           goto err;
528
 
529
		/* By default use a conservative clock rate */
530
		bus->reg0 = i | GMBUS_RATE_100KHZ;
531
 
532
		/* XXX force bit banging until GMBUS is fully debugged */
533
		bus->force_bit = intel_gpio_create(dev_priv, i);
534
	}
535
 
536
	intel_i2c_reset(dev_priv->dev);
2327 Serge 537
 
2326 Serge 538
	return 0;
539
 
540
err:
541
//   while (--i) {
542
//       struct intel_gmbus *bus = &dev_priv->gmbus[i];
543
//       i2c_del_adapter(&bus->adapter);
544
//   }
545
	kfree(dev_priv->gmbus);
546
	dev_priv->gmbus = NULL;
547
	return ret;
548
}
549
 
550
void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed)
551
{
552
	struct intel_gmbus *bus = to_intel_gmbus(adapter);
553
 
554
	/* speed:
555
	 * 0x0 = 100 KHz
556
	 * 0x1 = 50 KHz
557
	 * 0x2 = 400 KHz
558
	 * 0x3 = 1000 Khz
559
	 */
560
	bus->reg0 = (bus->reg0 & ~(0x3 << 8)) | (speed << 8);
561
}
562
 
563
void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit)
564
{
565
	struct intel_gmbus *bus = to_intel_gmbus(adapter);
566
 
567
	if (force_bit) {
568
		if (bus->force_bit == NULL) {
569
			struct drm_i915_private *dev_priv = adapter->algo_data;
570
			bus->force_bit = intel_gpio_create(dev_priv,
571
							   bus->reg0 & 0xff);
572
		}
573
	} else {
574
		if (bus->force_bit) {
575
//           i2c_del_adapter(bus->force_bit);
576
			kfree(bus->force_bit);
577
			bus->force_bit = NULL;
578
		}
579
	}
580
}
581
 
582
void intel_teardown_gmbus(struct drm_device *dev)
583
{
584
	struct drm_i915_private *dev_priv = dev->dev_private;
585
	int i;
586
 
587
	if (dev_priv->gmbus == NULL)
588
		return;
589
 
590
	for (i = 0; i < GMBUS_NUM_PORTS; i++) {
591
		struct intel_gmbus *bus = &dev_priv->gmbus[i];
592
		if (bus->force_bit) {
593
//           i2c_del_adapter(bus->force_bit);
594
			kfree(bus->force_bit);
595
		}
596
//       i2c_del_adapter(&bus->adapter);
597
	}
598
 
599
	kfree(dev_priv->gmbus);
600
	dev_priv->gmbus = NULL;
601
}