Subversion Repositories Kolibri OS

Rev

Rev 5060 | Rev 5139 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2327 Serge 1
/*
2
 * Copyright © 2008 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Keith Packard 
25
 *
26
 */
27
 
28
#include 
2330 Serge 29
#include 
3031 serge 30
#include 
31
#include 
32
#include 
33
#include 
34
#include 
2327 Serge 35
#include "intel_drv.h"
3031 serge 36
#include 
2327 Serge 37
#include "i915_drv.h"
38
 
5060 serge 39
#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
2327 Serge 40
 
4560 Serge 41
struct dp_link_dpll {
42
	int link_bw;
43
	struct dpll dpll;
44
};
45
 
46
static const struct dp_link_dpll gen4_dpll[] = {
47
	{ DP_LINK_BW_1_62,
48
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49
	{ DP_LINK_BW_2_7,
50
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51
};
52
 
53
static const struct dp_link_dpll pch_dpll[] = {
54
	{ DP_LINK_BW_1_62,
55
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56
	{ DP_LINK_BW_2_7,
57
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58
};
59
 
60
static const struct dp_link_dpll vlv_dpll[] = {
61
	{ DP_LINK_BW_1_62,
62
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63
	{ DP_LINK_BW_2_7,
64
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65
};
66
 
5060 serge 67
/*
68
 * CHV supports eDP 1.4 that have  more link rates.
69
 * Below only provides the fixed rate but exclude variable rate.
70
 */
71
static const struct dp_link_dpll chv_dpll[] = {
72
	/*
73
	 * CHV requires to program fractional division for m2.
74
	 * m2 is stored in fixed point format using formula below
75
	 * (m2_int << 22) | m2_fraction
76
	 */
77
	{ DP_LINK_BW_1_62,	/* m2_int = 32, m2_fraction = 1677722 */
78
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
79
	{ DP_LINK_BW_2_7,	/* m2_int = 27, m2_fraction = 0 */
80
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
81
	{ DP_LINK_BW_5_4,	/* m2_int = 27, m2_fraction = 0 */
82
		{ .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
83
};
84
 
2327 Serge 85
/**
86
 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
87
 * @intel_dp: DP struct
88
 *
89
 * If a CPU or PCH DP output is attached to an eDP panel, this function
90
 * will return true, and false otherwise.
91
 */
92
static bool is_edp(struct intel_dp *intel_dp)
93
{
3243 Serge 94
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
95
 
96
	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
2327 Serge 97
}
98
 
3243 Serge 99
static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
2327 Serge 100
{
3243 Serge 101
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
102
 
103
	return intel_dig_port->base.base.dev;
2327 Serge 104
}
105
 
2330 Serge 106
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
107
{
3243 Serge 108
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
2330 Serge 109
}
2327 Serge 110
 
2330 Serge 111
static void intel_dp_link_down(struct intel_dp *intel_dp);
5060 serge 112
static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
113
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
2330 Serge 114
 
5060 serge 115
int
2330 Serge 116
intel_dp_max_link_bw(struct intel_dp *intel_dp)
117
{
118
	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
5060 serge 119
	struct drm_device *dev = intel_dp->attached_connector->base.dev;
2327 Serge 120
 
2330 Serge 121
	switch (max_link_bw) {
122
	case DP_LINK_BW_1_62:
123
	case DP_LINK_BW_2_7:
124
		break;
4104 Serge 125
	case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
5060 serge 126
		if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
127
		     INTEL_INFO(dev)->gen >= 8) &&
128
		    intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
129
			max_link_bw = DP_LINK_BW_5_4;
130
		else
131
			max_link_bw = DP_LINK_BW_2_7;
4104 Serge 132
		break;
2330 Serge 133
	default:
4104 Serge 134
		WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
135
		     max_link_bw);
2330 Serge 136
		max_link_bw = DP_LINK_BW_1_62;
137
		break;
138
	}
139
	return max_link_bw;
140
}
2327 Serge 141
 
5060 serge 142
static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
143
{
144
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
145
	struct drm_device *dev = intel_dig_port->base.base.dev;
146
	u8 source_max, sink_max;
147
 
148
	source_max = 4;
149
	if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
150
	    (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
151
		source_max = 2;
152
 
153
	sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
154
 
155
	return min(source_max, sink_max);
156
}
157
 
2342 Serge 158
/*
159
 * The units on the numbers in the next two are... bizarre.  Examples will
160
 * make it clearer; this one parallels an example in the eDP spec.
161
 *
162
 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
163
 *
164
 *     270000 * 1 * 8 / 10 == 216000
165
 *
166
 * The actual data capacity of that configuration is 2.16Gbit/s, so the
167
 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
168
 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
169
 * 119000.  At 18bpp that's 2142000 kilobits per second.
170
 *
171
 * Thus the strange-looking division by 10 in intel_dp_link_required, to
172
 * get the result in decakilobits instead of kilobits.
173
 */
174
 
2330 Serge 175
static int
2351 Serge 176
intel_dp_link_required(int pixel_clock, int bpp)
2330 Serge 177
{
2342 Serge 178
	return (pixel_clock * bpp + 9) / 10;
2330 Serge 179
}
2327 Serge 180
 
2330 Serge 181
static int
182
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
183
{
184
	return (max_link_clock * max_lanes * 8) / 10;
185
}
2327 Serge 186
 
4560 Serge 187
static enum drm_mode_status
2330 Serge 188
intel_dp_mode_valid(struct drm_connector *connector,
189
		    struct drm_display_mode *mode)
190
{
191
	struct intel_dp *intel_dp = intel_attached_dp(connector);
3243 Serge 192
	struct intel_connector *intel_connector = to_intel_connector(connector);
193
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
3746 Serge 194
	int target_clock = mode->clock;
195
	int max_rate, mode_rate, max_lanes, max_link_clock;
2327 Serge 196
 
3243 Serge 197
	if (is_edp(intel_dp) && fixed_mode) {
198
		if (mode->hdisplay > fixed_mode->hdisplay)
2330 Serge 199
			return MODE_PANEL;
2327 Serge 200
 
3243 Serge 201
		if (mode->vdisplay > fixed_mode->vdisplay)
2330 Serge 202
			return MODE_PANEL;
3746 Serge 203
 
204
		target_clock = fixed_mode->clock;
2330 Serge 205
	}
2327 Serge 206
 
3746 Serge 207
	max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
5060 serge 208
	max_lanes = intel_dp_max_lane_count(intel_dp);
3746 Serge 209
 
210
	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
211
	mode_rate = intel_dp_link_required(target_clock, 18);
212
 
213
	if (mode_rate > max_rate)
2330 Serge 214
		return MODE_CLOCK_HIGH;
2327 Serge 215
 
2330 Serge 216
	if (mode->clock < 10000)
217
		return MODE_CLOCK_LOW;
218
 
3031 serge 219
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
220
		return MODE_H_ILLEGAL;
221
 
2330 Serge 222
	return MODE_OK;
223
}
224
 
225
static uint32_t
226
pack_aux(uint8_t *src, int src_bytes)
227
{
228
	int	i;
229
	uint32_t v = 0;
230
 
231
	if (src_bytes > 4)
232
		src_bytes = 4;
233
	for (i = 0; i < src_bytes; i++)
234
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
235
	return v;
236
}
237
 
238
static void
239
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
240
{
241
	int i;
242
	if (dst_bytes > 4)
243
		dst_bytes = 4;
244
	for (i = 0; i < dst_bytes; i++)
245
		dst[i] = src >> ((3-i) * 8);
246
}
247
 
248
/* hrawclock is 1/4 the FSB frequency */
249
static int
250
intel_hrawclk(struct drm_device *dev)
251
{
252
	struct drm_i915_private *dev_priv = dev->dev_private;
253
	uint32_t clkcfg;
254
 
3243 Serge 255
	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
256
	if (IS_VALLEYVIEW(dev))
257
		return 200;
258
 
2330 Serge 259
	clkcfg = I915_READ(CLKCFG);
260
	switch (clkcfg & CLKCFG_FSB_MASK) {
261
	case CLKCFG_FSB_400:
262
		return 100;
263
	case CLKCFG_FSB_533:
264
		return 133;
265
	case CLKCFG_FSB_667:
266
		return 166;
267
	case CLKCFG_FSB_800:
268
		return 200;
269
	case CLKCFG_FSB_1067:
270
		return 266;
271
	case CLKCFG_FSB_1333:
272
		return 333;
273
	/* these two are just a guess; one of them might be right */
274
	case CLKCFG_FSB_1600:
275
	case CLKCFG_FSB_1600_ALT:
276
		return 400;
277
	default:
278
		return 133;
279
	}
280
}
281
 
4560 Serge 282
static void
283
intel_dp_init_panel_power_sequencer(struct drm_device *dev,
284
				    struct intel_dp *intel_dp,
285
				    struct edp_power_seq *out);
286
static void
287
intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
288
					      struct intel_dp *intel_dp,
289
					      struct edp_power_seq *out);
290
 
291
static enum pipe
292
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
293
{
294
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
295
	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
296
	struct drm_device *dev = intel_dig_port->base.base.dev;
297
	struct drm_i915_private *dev_priv = dev->dev_private;
298
	enum port port = intel_dig_port->port;
299
	enum pipe pipe;
300
 
301
	/* modeset should have pipe */
302
	if (crtc)
303
		return to_intel_crtc(crtc)->pipe;
304
 
305
	/* init time, try to find a pipe with this port selected */
306
	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
307
		u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
308
			PANEL_PORT_SELECT_MASK;
309
		if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
310
			return pipe;
311
		if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
312
			return pipe;
313
	}
314
 
315
	/* shrug */
316
	return PIPE_A;
317
}
318
 
319
static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
320
{
321
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
322
 
323
	if (HAS_PCH_SPLIT(dev))
324
		return PCH_PP_CONTROL;
325
	else
326
		return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
327
}
328
 
329
static u32 _pp_stat_reg(struct intel_dp *intel_dp)
330
{
331
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
332
 
333
	if (HAS_PCH_SPLIT(dev))
334
		return PCH_PP_STATUS;
335
	else
336
		return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
337
}
338
 
5060 serge 339
 
340
static bool edp_have_panel_power(struct intel_dp *intel_dp)
2342 Serge 341
{
3243 Serge 342
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 343
	struct drm_i915_private *dev_priv = dev->dev_private;
344
 
4560 Serge 345
	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
2342 Serge 346
}
347
 
5060 serge 348
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
2342 Serge 349
{
3243 Serge 350
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 351
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 352
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
353
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
354
	enum intel_display_power_domain power_domain;
2342 Serge 355
 
5060 serge 356
	power_domain = intel_display_port_power_domain(intel_encoder);
357
	return intel_display_power_enabled(dev_priv, power_domain) &&
358
	       (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
2342 Serge 359
}
360
 
361
static void
362
intel_dp_check_edp(struct intel_dp *intel_dp)
363
{
3243 Serge 364
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 365
	struct drm_i915_private *dev_priv = dev->dev_private;
366
 
367
	if (!is_edp(intel_dp))
368
		return;
3746 Serge 369
 
5060 serge 370
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
2342 Serge 371
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
372
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
4560 Serge 373
			      I915_READ(_pp_stat_reg(intel_dp)),
374
			      I915_READ(_pp_ctrl_reg(intel_dp)));
2342 Serge 375
	}
376
}
377
 
3480 Serge 378
static uint32_t
379
intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
380
{
381
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
382
	struct drm_device *dev = intel_dig_port->base.base.dev;
383
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 384
	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
3480 Serge 385
	uint32_t status;
386
	bool done;
387
 
388
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
389
	if (has_aux_irq)
390
		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
4104 Serge 391
					  msecs_to_jiffies_timeout(10));
3480 Serge 392
	else
393
		done = wait_for_atomic(C, 10) == 0;
394
	if (!done)
395
		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
396
			  has_aux_irq);
397
#undef C
398
 
399
	return status;
400
}
401
 
5060 serge 402
static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
4104 Serge 403
{
404
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
405
	struct drm_device *dev = intel_dig_port->base.base.dev;
406
 
5060 serge 407
	/*
408
	 * The clock divider is based off the hrawclk, and would like to run at
409
	 * 2MHz.  So, take the hrawclk value and divide by 2 and use that
4104 Serge 410
	 */
5060 serge 411
	return index ? 0 : intel_hrawclk(dev) / 2;
412
}
413
 
414
static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
415
{
416
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
417
	struct drm_device *dev = intel_dig_port->base.base.dev;
418
 
419
	if (index)
420
		return 0;
421
 
422
	if (intel_dig_port->port == PORT_A) {
423
		if (IS_GEN6(dev) || IS_GEN7(dev))
4104 Serge 424
			return 200; /* SNB & IVB eDP input clock at 400Mhz */
425
		else
426
			return 225; /* eDP input clock at 450Mhz */
5060 serge 427
	} else {
428
		return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
429
	}
430
}
431
 
432
static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
433
{
434
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
435
	struct drm_device *dev = intel_dig_port->base.base.dev;
436
	struct drm_i915_private *dev_priv = dev->dev_private;
437
 
438
	if (intel_dig_port->port == PORT_A) {
439
		if (index)
440
			return 0;
441
		return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
4104 Serge 442
	} else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
443
		/* Workaround for non-ULT HSW */
444
		switch (index) {
445
		case 0: return 63;
446
		case 1: return 72;
447
		default: return 0;
448
		}
5060 serge 449
	} else  {
4104 Serge 450
		return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
451
	}
452
}
453
 
5060 serge 454
static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
455
{
456
	return index ? 0 : 100;
457
}
458
 
459
static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
460
				      bool has_aux_irq,
461
				      int send_bytes,
462
				      uint32_t aux_clock_divider)
463
{
464
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
465
	struct drm_device *dev = intel_dig_port->base.base.dev;
466
	uint32_t precharge, timeout;
467
 
468
	if (IS_GEN6(dev))
469
		precharge = 3;
470
	else
471
		precharge = 5;
472
 
473
	if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
474
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
475
	else
476
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
477
 
478
	return DP_AUX_CH_CTL_SEND_BUSY |
479
	       DP_AUX_CH_CTL_DONE |
480
	       (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
481
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
482
	       timeout |
483
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
484
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
485
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
486
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
487
}
488
 
2330 Serge 489
static int
490
intel_dp_aux_ch(struct intel_dp *intel_dp,
491
		uint8_t *send, int send_bytes,
492
		uint8_t *recv, int recv_size)
493
{
3243 Serge 494
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
495
	struct drm_device *dev = intel_dig_port->base.base.dev;
2330 Serge 496
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 497
	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
2330 Serge 498
	uint32_t ch_data = ch_ctl + 4;
4104 Serge 499
	uint32_t aux_clock_divider;
3480 Serge 500
	int i, ret, recv_bytes;
2330 Serge 501
	uint32_t status;
5060 serge 502
	int try, clock = 0;
503
	bool has_aux_irq = HAS_AUX_IRQ(dev);
504
	bool vdd;
2330 Serge 505
 
5060 serge 506
	vdd = _edp_panel_vdd_on(intel_dp);
507
 
3480 Serge 508
	/* dp aux is extremely sensitive to irq latency, hence request the
509
	 * lowest possible wakeup latency and so prevent the cpu from going into
510
	 * deep sleep states.
511
	 */
512
 
2342 Serge 513
	intel_dp_check_edp(intel_dp);
2330 Serge 514
 
4104 Serge 515
	intel_aux_display_runtime_get(dev_priv);
516
 
2330 Serge 517
	/* Try to wait for any previous AUX channel activity */
518
	for (try = 0; try < 3; try++) {
3480 Serge 519
		status = I915_READ_NOTRACE(ch_ctl);
2330 Serge 520
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
521
			break;
522
		msleep(1);
523
	}
524
 
525
	if (try == 3) {
526
		WARN(1, "dp_aux_ch not started status 0x%08x\n",
527
		     I915_READ(ch_ctl));
3480 Serge 528
		ret = -EBUSY;
529
		goto out;
2330 Serge 530
	}
531
 
4560 Serge 532
	/* Only 5 data registers! */
533
	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
534
		ret = -E2BIG;
535
		goto out;
536
	}
537
 
5060 serge 538
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
539
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
540
							  has_aux_irq,
541
							  send_bytes,
542
							  aux_clock_divider);
543
 
2330 Serge 544
	/* Must try at least 3 times according to DP spec */
545
	for (try = 0; try < 5; try++) {
546
		/* Load the send data into the aux channel data registers */
547
		for (i = 0; i < send_bytes; i += 4)
548
			I915_WRITE(ch_data + i,
549
				   pack_aux(send + i, send_bytes - i));
550
 
551
		/* Send the command and wait for it to complete */
5060 serge 552
			I915_WRITE(ch_ctl, send_ctl);
2330 Serge 553
 
3480 Serge 554
		status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
555
 
2330 Serge 556
		/* Clear done status and any errors */
557
		I915_WRITE(ch_ctl,
558
			   status |
559
			   DP_AUX_CH_CTL_DONE |
560
			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
561
			   DP_AUX_CH_CTL_RECEIVE_ERROR);
3031 serge 562
 
563
		if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
564
			      DP_AUX_CH_CTL_RECEIVE_ERROR))
565
			continue;
2330 Serge 566
		if (status & DP_AUX_CH_CTL_DONE)
567
			break;
568
	}
4104 Serge 569
		if (status & DP_AUX_CH_CTL_DONE)
570
			break;
571
	}
2330 Serge 572
 
573
	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
574
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
3480 Serge 575
		ret = -EBUSY;
576
		goto out;
2330 Serge 577
	}
578
 
579
	/* Check for timeout or receive error.
580
	 * Timeouts occur when the sink is not connected
581
	 */
582
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
583
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
3480 Serge 584
		ret = -EIO;
585
		goto out;
2330 Serge 586
	}
587
 
588
	/* Timeouts occur when the device isn't connected, so they're
589
	 * "normal" -- don't fill the kernel log with these */
590
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
591
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
3480 Serge 592
		ret = -ETIMEDOUT;
593
		goto out;
2330 Serge 594
	}
595
 
596
	/* Unload any bytes sent back from the other side */
597
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
598
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
599
	if (recv_bytes > recv_size)
600
		recv_bytes = recv_size;
601
 
602
	for (i = 0; i < recv_bytes; i += 4)
603
		unpack_aux(I915_READ(ch_data + i),
604
			   recv + i, recv_bytes - i);
605
 
3480 Serge 606
	ret = recv_bytes;
607
out:
608
//	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
4104 Serge 609
	intel_aux_display_runtime_put(dev_priv);
3480 Serge 610
 
5060 serge 611
	if (vdd)
612
		edp_panel_vdd_off(intel_dp, false);
613
 
3480 Serge 614
	return ret;
2330 Serge 615
}
616
 
5060 serge 617
#define BARE_ADDRESS_SIZE	3
618
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
619
static ssize_t
620
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
2330 Serge 621
{
5060 serge 622
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
623
	uint8_t txbuf[20], rxbuf[20];
624
	size_t txsize, rxsize;
2330 Serge 625
	int ret;
626
 
5060 serge 627
	txbuf[0] = msg->request << 4;
628
	txbuf[1] = msg->address >> 8;
629
	txbuf[2] = msg->address & 0xff;
630
	txbuf[3] = msg->size - 1;
631
 
632
	switch (msg->request & ~DP_AUX_I2C_MOT) {
633
	case DP_AUX_NATIVE_WRITE:
634
	case DP_AUX_I2C_WRITE:
635
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
636
		rxsize = 1;
637
 
638
		if (WARN_ON(txsize > 20))
4560 Serge 639
		return -E2BIG;
640
 
5060 serge 641
		memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
642
 
643
		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
644
		if (ret > 0) {
645
			msg->reply = rxbuf[0] >> 4;
646
 
647
			/* Return payload size. */
648
			ret = msg->size;
649
		}
2330 Serge 650
			break;
651
 
5060 serge 652
	case DP_AUX_NATIVE_READ:
653
	case DP_AUX_I2C_READ:
654
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
655
		rxsize = msg->size + 1;
2330 Serge 656
 
5060 serge 657
		if (WARN_ON(rxsize > 20))
4560 Serge 658
		return -E2BIG;
659
 
5060 serge 660
		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
661
		if (ret > 0) {
662
			msg->reply = rxbuf[0] >> 4;
663
			/*
664
			 * Assume happy day, and copy the data. The caller is
665
			 * expected to check msg->reply before touching it.
666
			 *
667
			 * Return payload size.
668
			 */
669
			ret--;
670
			memcpy(msg->buffer, rxbuf + 1, ret);
671
		}
672
		break;
2330 Serge 673
 
5060 serge 674
	default:
675
		ret = -EINVAL;
676
		break;
677
	}
2330 Serge 678
 
679
			return ret;
680
}
681
 
5060 serge 682
static void
683
intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
2330 Serge 684
{
5060 serge 685
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
686
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
687
	enum port port = intel_dig_port->port;
688
	const char *name = NULL;
2330 Serge 689
	int ret;
690
 
5060 serge 691
	switch (port) {
692
	case PORT_A:
693
		intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
694
		name = "DPDDC-A";
2330 Serge 695
		break;
5060 serge 696
	case PORT_B:
697
		intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
698
		name = "DPDDC-B";
2330 Serge 699
		break;
5060 serge 700
	case PORT_C:
701
		intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
702
		name = "DPDDC-C";
703
		break;
704
	case PORT_D:
705
		intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
706
		name = "DPDDC-D";
707
		break;
2330 Serge 708
	default:
5060 serge 709
		BUG();
2330 Serge 710
	}
711
 
5060 serge 712
	if (!HAS_DDI(dev))
713
		intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
2330 Serge 714
 
5060 serge 715
	intel_dp->aux.name = name;
716
	intel_dp->aux.dev = dev->dev;
717
	intel_dp->aux.transfer = intel_dp_aux_transfer;
2330 Serge 718
 
5060 serge 719
 
720
	ret = drm_dp_aux_register(&intel_dp->aux);
721
		if (ret < 0) {
722
		DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
723
			  name, ret);
724
		return;
2330 Serge 725
	}
5060 serge 726
}
2330 Serge 727
 
5060 serge 728
static void
729
intel_dp_connector_unregister(struct intel_connector *intel_connector)
730
{
731
	struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
4560 Serge 732
 
5060 serge 733
	intel_connector_unregister(intel_connector);
2330 Serge 734
}
735
 
5060 serge 736
static void
737
hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
2330 Serge 738
{
5060 serge 739
	switch (link_bw) {
740
	case DP_LINK_BW_1_62:
741
		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
742
		break;
743
	case DP_LINK_BW_2_7:
744
		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
745
		break;
746
	case DP_LINK_BW_5_4:
747
		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
748
		break;
749
	}
2330 Serge 750
}
751
 
4104 Serge 752
static void
753
intel_dp_set_clock(struct intel_encoder *encoder,
754
		   struct intel_crtc_config *pipe_config, int link_bw)
755
{
756
	struct drm_device *dev = encoder->base.dev;
4560 Serge 757
	const struct dp_link_dpll *divisor = NULL;
758
	int i, count = 0;
4104 Serge 759
 
760
	if (IS_G4X(dev)) {
4560 Serge 761
		divisor = gen4_dpll;
762
		count = ARRAY_SIZE(gen4_dpll);
4104 Serge 763
	} else if (HAS_PCH_SPLIT(dev)) {
4560 Serge 764
		divisor = pch_dpll;
765
		count = ARRAY_SIZE(pch_dpll);
5060 serge 766
	} else if (IS_CHERRYVIEW(dev)) {
767
		divisor = chv_dpll;
768
		count = ARRAY_SIZE(chv_dpll);
4560 Serge 769
	} else if (IS_VALLEYVIEW(dev)) {
770
		divisor = vlv_dpll;
771
		count = ARRAY_SIZE(vlv_dpll);
5060 serge 772
	}
4560 Serge 773
 
774
	if (divisor && count) {
775
		for (i = 0; i < count; i++) {
776
			if (link_bw == divisor[i].link_bw) {
777
				pipe_config->dpll = divisor[i].dpll;
5060 serge 778
				pipe_config->clock_set = true;
4560 Serge 779
				break;
780
			}
781
		}
4104 Serge 782
	}
783
}
784
 
5060 serge 785
static void
786
intel_dp_set_m2_n2(struct intel_crtc *crtc, struct intel_link_m_n *m_n)
787
{
788
	struct drm_device *dev = crtc->base.dev;
789
	struct drm_i915_private *dev_priv = dev->dev_private;
790
	enum transcoder transcoder = crtc->config.cpu_transcoder;
791
 
792
	I915_WRITE(PIPE_DATA_M2(transcoder),
793
		TU_SIZE(m_n->tu) | m_n->gmch_m);
794
	I915_WRITE(PIPE_DATA_N2(transcoder), m_n->gmch_n);
795
	I915_WRITE(PIPE_LINK_M2(transcoder), m_n->link_m);
796
	I915_WRITE(PIPE_LINK_N2(transcoder), m_n->link_n);
797
}
798
 
3243 Serge 799
bool
3746 Serge 800
intel_dp_compute_config(struct intel_encoder *encoder,
801
			struct intel_crtc_config *pipe_config)
2330 Serge 802
{
3746 Serge 803
	struct drm_device *dev = encoder->base.dev;
804
	struct drm_i915_private *dev_priv = dev->dev_private;
805
	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
806
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4104 Serge 807
	enum port port = dp_to_dig_port(intel_dp)->port;
808
	struct intel_crtc *intel_crtc = encoder->new_crtc;
3243 Serge 809
	struct intel_connector *intel_connector = intel_dp->attached_connector;
2330 Serge 810
	int lane_count, clock;
5060 serge 811
	int min_lane_count = 1;
812
	int max_lane_count = intel_dp_max_lane_count(intel_dp);
813
	/* Conveniently, the link BW constants become indices with a shift...*/
814
	int min_clock = 0;
815
	int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
3031 serge 816
	int bpp, mode_rate;
5060 serge 817
	static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
4104 Serge 818
	int link_avail, link_clock;
2330 Serge 819
 
4104 Serge 820
	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
3746 Serge 821
		pipe_config->has_pch_encoder = true;
822
 
823
	pipe_config->has_dp_encoder = true;
5060 serge 824
	pipe_config->has_audio = intel_dp->has_audio;
3746 Serge 825
 
3243 Serge 826
	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
827
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
828
				       adjusted_mode);
4104 Serge 829
		if (!HAS_PCH_SPLIT(dev))
830
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
831
						 intel_connector->panel.fitting_mode);
832
		else
833
			intel_pch_panel_fitting(intel_crtc, pipe_config,
834
						intel_connector->panel.fitting_mode);
2330 Serge 835
	}
836
 
3031 serge 837
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
838
		return false;
839
 
840
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
841
		      "max bw %02x pixel clock %iKHz\n",
4560 Serge 842
		      max_lane_count, bws[max_clock],
843
		      adjusted_mode->crtc_clock);
3031 serge 844
 
3746 Serge 845
	/* Walk through all bpp values. Luckily they're all nicely spaced with 2
846
	 * bpc in between. */
4104 Serge 847
	bpp = pipe_config->pipe_bpp;
5060 serge 848
	if (is_edp(intel_dp)) {
849
		if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
4104 Serge 850
		DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
851
			      dev_priv->vbt.edp_bpp);
4560 Serge 852
		bpp = dev_priv->vbt.edp_bpp;
4104 Serge 853
	}
3746 Serge 854
 
5060 serge 855
		if (IS_BROADWELL(dev)) {
856
			/* Yes, it's an ugly hack. */
857
			min_lane_count = max_lane_count;
858
			DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
859
				      min_lane_count);
860
		} else if (dev_priv->vbt.edp_lanes) {
861
			min_lane_count = min(dev_priv->vbt.edp_lanes,
862
					     max_lane_count);
863
			DRM_DEBUG_KMS("using min %u lanes per VBT\n",
864
				      min_lane_count);
865
		}
866
 
867
		if (dev_priv->vbt.edp_rate) {
868
			min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
869
			DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
870
				      bws[min_clock]);
871
		}
872
	}
873
 
3746 Serge 874
	for (; bpp >= 6*3; bpp -= 2*3) {
4560 Serge 875
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
876
						   bpp);
3746 Serge 877
 
5060 serge 878
		for (clock = min_clock; clock <= max_clock; clock++) {
879
		for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
3746 Serge 880
				link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
881
				link_avail = intel_dp_max_data_rate(link_clock,
882
								    lane_count);
883
 
884
				if (mode_rate <= link_avail) {
885
					goto found;
886
				}
887
			}
888
		}
889
	}
890
 
3031 serge 891
		return false;
892
 
3746 Serge 893
found:
3480 Serge 894
	if (intel_dp->color_range_auto) {
895
		/*
896
		 * See:
897
		 * CEA-861-E - 5.1 Default Encoding Parameters
898
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
899
		 */
900
		if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
901
			intel_dp->color_range = DP_COLOR_RANGE_16_235;
902
		else
903
			intel_dp->color_range = 0;
904
	}
905
 
906
	if (intel_dp->color_range)
3746 Serge 907
		pipe_config->limited_color_range = true;
3480 Serge 908
 
2330 Serge 909
				intel_dp->link_bw = bws[clock];
910
				intel_dp->lane_count = lane_count;
3746 Serge 911
	pipe_config->pipe_bpp = bpp;
4104 Serge 912
	pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
3746 Serge 913
 
914
	DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
2330 Serge 915
				       intel_dp->link_bw, intel_dp->lane_count,
4104 Serge 916
		      pipe_config->port_clock, bpp);
3031 serge 917
				DRM_DEBUG_KMS("DP link bw required %i available %i\n",
918
					      mode_rate, link_avail);
2330 Serge 919
 
3746 Serge 920
	intel_link_compute_m_n(bpp, lane_count,
4560 Serge 921
			       adjusted_mode->crtc_clock,
922
			       pipe_config->port_clock,
3746 Serge 923
			       &pipe_config->dp_m_n);
2330 Serge 924
 
5060 serge 925
	if (intel_connector->panel.downclock_mode != NULL &&
926
		intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
927
			intel_link_compute_m_n(bpp, lane_count,
928
				intel_connector->panel.downclock_mode->clock,
929
				pipe_config->port_clock,
930
				&pipe_config->dp_m2_n2);
931
	}
932
 
933
	if (HAS_DDI(dev))
934
		hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
935
	else
4104 Serge 936
	intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
937
 
3746 Serge 938
	return true;
2327 Serge 939
}
940
 
4104 Serge 941
static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
3480 Serge 942
{
4104 Serge 943
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
944
	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
945
	struct drm_device *dev = crtc->base.dev;
3480 Serge 946
	struct drm_i915_private *dev_priv = dev->dev_private;
947
	u32 dpa_ctl;
948
 
4104 Serge 949
	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
3480 Serge 950
	dpa_ctl = I915_READ(DP_A);
951
	dpa_ctl &= ~DP_PLL_FREQ_MASK;
952
 
4104 Serge 953
	if (crtc->config.port_clock == 162000) {
3480 Serge 954
		/* For a long time we've carried around a ILK-DevA w/a for the
955
		 * 160MHz clock. If we're really unlucky, it's still required.
956
		 */
957
		DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
958
		dpa_ctl |= DP_PLL_FREQ_160MHZ;
4104 Serge 959
		intel_dp->DP |= DP_PLL_FREQ_160MHZ;
3480 Serge 960
	} else {
961
		dpa_ctl |= DP_PLL_FREQ_270MHZ;
4104 Serge 962
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3480 Serge 963
	}
964
 
965
	I915_WRITE(DP_A, dpa_ctl);
966
 
967
	POSTING_READ(DP_A);
968
	udelay(500);
969
}
970
 
5060 serge 971
static void intel_dp_prepare(struct intel_encoder *encoder)
2330 Serge 972
{
4104 Serge 973
	struct drm_device *dev = encoder->base.dev;
2342 Serge 974
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 975
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
976
	enum port port = dp_to_dig_port(intel_dp)->port;
977
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
978
	struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
2327 Serge 979
 
2342 Serge 980
	/*
981
	 * There are four kinds of DP registers:
982
	 *
983
	 * 	IBX PCH
984
	 * 	SNB CPU
985
	 *	IVB CPU
986
	 * 	CPT PCH
987
	 *
988
	 * IBX PCH and CPU are the same for almost everything,
989
	 * except that the CPU DP PLL is configured in this
990
	 * register
991
	 *
992
	 * CPT PCH is quite different, having many bits moved
993
	 * to the TRANS_DP_CTL register instead. That
994
	 * configuration happens (oddly) in ironlake_pch_enable
995
	 */
2327 Serge 996
 
2342 Serge 997
	/* Preserve the BIOS-computed detected bit. This is
998
	 * supposed to be read-only.
999
	 */
1000
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2327 Serge 1001
 
2342 Serge 1002
	/* Handle DP bits in common between all three register formats */
1003
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
4104 Serge 1004
	intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
2342 Serge 1005
 
5060 serge 1006
	if (crtc->config.has_audio) {
2342 Serge 1007
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
4104 Serge 1008
				 pipe_name(crtc->pipe));
2330 Serge 1009
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
4104 Serge 1010
		intel_write_eld(&encoder->base, adjusted_mode);
2342 Serge 1011
	}
2327 Serge 1012
 
2342 Serge 1013
	/* Split out the IBX/CPU vs CPT settings */
1014
 
4104 Serge 1015
	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
2342 Serge 1016
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1017
			intel_dp->DP |= DP_SYNC_HS_HIGH;
1018
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1019
			intel_dp->DP |= DP_SYNC_VS_HIGH;
1020
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1021
 
4560 Serge 1022
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2342 Serge 1023
			intel_dp->DP |= DP_ENHANCED_FRAMING;
1024
 
4104 Serge 1025
		intel_dp->DP |= crtc->pipe << 29;
1026
	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
3746 Serge 1027
		if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
2342 Serge 1028
		intel_dp->DP |= intel_dp->color_range;
1029
 
1030
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1031
			intel_dp->DP |= DP_SYNC_HS_HIGH;
1032
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1033
			intel_dp->DP |= DP_SYNC_VS_HIGH;
1034
		intel_dp->DP |= DP_LINK_TRAIN_OFF;
1035
 
4560 Serge 1036
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2342 Serge 1037
		intel_dp->DP |= DP_ENHANCED_FRAMING;
1038
 
5060 serge 1039
		if (!IS_CHERRYVIEW(dev)) {
4104 Serge 1040
		if (crtc->pipe == 1)
2330 Serge 1041
		intel_dp->DP |= DP_PIPEB_SELECT;
2342 Serge 1042
	} else {
5060 serge 1043
			intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1044
		}
1045
	} else {
2342 Serge 1046
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1047
	}
2330 Serge 1048
}
2327 Serge 1049
 
5060 serge 1050
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1051
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2342 Serge 1052
 
5060 serge 1053
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1054
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2342 Serge 1055
 
5060 serge 1056
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1057
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2342 Serge 1058
 
5060 serge 1059
static void wait_panel_status(struct intel_dp *intel_dp,
2342 Serge 1060
				       u32 mask,
1061
				       u32 value)
1062
{
3243 Serge 1063
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 1064
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 1065
	u32 pp_stat_reg, pp_ctrl_reg;
2342 Serge 1066
 
4560 Serge 1067
	pp_stat_reg = _pp_stat_reg(intel_dp);
1068
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3746 Serge 1069
 
2342 Serge 1070
	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1071
		      mask, value,
3746 Serge 1072
			I915_READ(pp_stat_reg),
1073
			I915_READ(pp_ctrl_reg));
2342 Serge 1074
 
3746 Serge 1075
	if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
2342 Serge 1076
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
3746 Serge 1077
				I915_READ(pp_stat_reg),
1078
				I915_READ(pp_ctrl_reg));
2342 Serge 1079
	}
4560 Serge 1080
 
1081
	DRM_DEBUG_KMS("Wait complete\n");
2342 Serge 1082
}
1083
 
5060 serge 1084
static void wait_panel_on(struct intel_dp *intel_dp)
2342 Serge 1085
{
1086
	DRM_DEBUG_KMS("Wait for panel power on\n");
5060 serge 1087
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2342 Serge 1088
}
1089
 
5060 serge 1090
static void wait_panel_off(struct intel_dp *intel_dp)
2342 Serge 1091
{
1092
	DRM_DEBUG_KMS("Wait for panel power off time\n");
5060 serge 1093
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2342 Serge 1094
}
1095
 
5060 serge 1096
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2342 Serge 1097
{
1098
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
5060 serge 1099
 
1100
	/* When we disable the VDD override bit last we have to do the manual
1101
	 * wait. */
1102
	wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1103
				       intel_dp->panel_power_cycle_delay);
1104
 
1105
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2342 Serge 1106
}
1107
 
5060 serge 1108
static void wait_backlight_on(struct intel_dp *intel_dp)
1109
{
1110
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1111
				       intel_dp->backlight_on_delay);
1112
}
2342 Serge 1113
 
5060 serge 1114
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1115
{
1116
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1117
				       intel_dp->backlight_off_delay);
1118
}
1119
 
2342 Serge 1120
/* Read the current pp_control value, unlocking the register if it
1121
 * is locked
1122
 */
1123
 
3746 Serge 1124
static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2342 Serge 1125
{
3746 Serge 1126
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1127
	struct drm_i915_private *dev_priv = dev->dev_private;
1128
	u32 control;
2342 Serge 1129
 
4560 Serge 1130
	control = I915_READ(_pp_ctrl_reg(intel_dp));
2342 Serge 1131
	control &= ~PANEL_UNLOCK_MASK;
1132
	control |= PANEL_UNLOCK_REGS;
1133
	return control;
1134
}
1135
 
5060 serge 1136
static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
2330 Serge 1137
{
3243 Serge 1138
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
5060 serge 1139
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1140
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
2330 Serge 1141
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 1142
	enum intel_display_power_domain power_domain;
2330 Serge 1143
	u32 pp;
3746 Serge 1144
	u32 pp_stat_reg, pp_ctrl_reg;
5060 serge 1145
	bool need_to_disable = !intel_dp->want_panel_vdd;
2327 Serge 1146
 
2342 Serge 1147
	if (!is_edp(intel_dp))
5060 serge 1148
		return false;
2327 Serge 1149
 
2342 Serge 1150
	intel_dp->want_panel_vdd = true;
1151
 
5060 serge 1152
	if (edp_have_panel_vdd(intel_dp))
1153
		return need_to_disable;
2342 Serge 1154
 
5060 serge 1155
	power_domain = intel_display_port_power_domain(intel_encoder);
1156
	intel_display_power_get(dev_priv, power_domain);
4560 Serge 1157
 
1158
	DRM_DEBUG_KMS("Turning eDP VDD on\n");
1159
 
5060 serge 1160
	if (!edp_have_panel_power(intel_dp))
1161
		wait_panel_power_cycle(intel_dp);
2342 Serge 1162
 
3746 Serge 1163
	pp = ironlake_get_pp_control(intel_dp);
2330 Serge 1164
	pp |= EDP_FORCE_VDD;
2342 Serge 1165
 
4560 Serge 1166
	pp_stat_reg = _pp_stat_reg(intel_dp);
1167
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3746 Serge 1168
 
1169
	I915_WRITE(pp_ctrl_reg, pp);
1170
	POSTING_READ(pp_ctrl_reg);
1171
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1172
			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2342 Serge 1173
	/*
1174
	 * If the panel wasn't on, delay before accessing aux channel
1175
	 */
5060 serge 1176
	if (!edp_have_panel_power(intel_dp)) {
2342 Serge 1177
		DRM_DEBUG_KMS("eDP was not running\n");
1178
		msleep(intel_dp->panel_power_up_delay);
1179
	}
5060 serge 1180
 
1181
	return need_to_disable;
2330 Serge 1182
}
2327 Serge 1183
 
5060 serge 1184
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2330 Serge 1185
{
5060 serge 1186
	if (is_edp(intel_dp)) {
1187
		bool vdd = _edp_panel_vdd_on(intel_dp);
1188
 
1189
		WARN(!vdd, "eDP VDD already requested on\n");
1190
	}
1191
}
1192
 
1193
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1194
{
3243 Serge 1195
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 1196
	struct drm_i915_private *dev_priv = dev->dev_private;
1197
	u32 pp;
3746 Serge 1198
	u32 pp_stat_reg, pp_ctrl_reg;
2327 Serge 1199
 
5060 serge 1200
	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3480 Serge 1201
 
5060 serge 1202
	if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1203
		struct intel_digital_port *intel_dig_port =
1204
						dp_to_dig_port(intel_dp);
1205
		struct intel_encoder *intel_encoder = &intel_dig_port->base;
1206
		enum intel_display_power_domain power_domain;
1207
 
4560 Serge 1208
		DRM_DEBUG_KMS("Turning eDP VDD off\n");
1209
 
3746 Serge 1210
		pp = ironlake_get_pp_control(intel_dp);
2330 Serge 1211
	pp &= ~EDP_FORCE_VDD;
2327 Serge 1212
 
4560 Serge 1213
		pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1214
		pp_stat_reg = _pp_stat_reg(intel_dp);
3746 Serge 1215
 
1216
		I915_WRITE(pp_ctrl_reg, pp);
1217
		POSTING_READ(pp_ctrl_reg);
1218
 
2330 Serge 1219
	/* Make sure sequencer is idle before allowing subsequent activity */
3746 Serge 1220
		DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1221
		I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
4560 Serge 1222
 
1223
		if ((pp & POWER_TARGET_ON) == 0)
5060 serge 1224
			intel_dp->last_power_cycle = jiffies;
4560 Serge 1225
 
5060 serge 1226
		power_domain = intel_display_port_power_domain(intel_encoder);
1227
		intel_display_power_put(dev_priv, power_domain);
2342 Serge 1228
	}
2330 Serge 1229
}
2327 Serge 1230
 
5060 serge 1231
static void edp_panel_vdd_work(struct work_struct *__work)
3243 Serge 1232
{
3482 Serge 1233
	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1234
						 struct intel_dp, panel_vdd_work);
1235
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1236
 
5060 serge 1237
	drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
1238
	edp_panel_vdd_off_sync(intel_dp);
1239
	drm_modeset_unlock(&dev->mode_config.connection_mutex);
3243 Serge 1240
}
2342 Serge 1241
 
5060 serge 1242
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2330 Serge 1243
{
5060 serge 1244
	unsigned long delay;
1245
 
1246
	/*
1247
	 * Queue the timer to fire a long time from now (relative to the power
1248
	 * down delay) to keep the panel power up across a sequence of
1249
	 * operations.
1250
	 */
1251
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1252
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1253
}
1254
 
1255
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1256
{
2342 Serge 1257
	if (!is_edp(intel_dp))
1258
		return;
1259
 
1260
	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1261
 
1262
	intel_dp->want_panel_vdd = false;
1263
 
5060 serge 1264
	if (sync)
1265
		edp_panel_vdd_off_sync(intel_dp);
1266
	else
1267
		edp_panel_vdd_schedule_off(intel_dp);
2342 Serge 1268
}
1269
 
5060 serge 1270
void intel_edp_panel_on(struct intel_dp *intel_dp)
2342 Serge 1271
{
3243 Serge 1272
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 1273
	struct drm_i915_private *dev_priv = dev->dev_private;
2342 Serge 1274
	u32 pp;
3746 Serge 1275
	u32 pp_ctrl_reg;
2327 Serge 1276
 
2342 Serge 1277
	if (!is_edp(intel_dp))
1278
		return;
2327 Serge 1279
 
2342 Serge 1280
	DRM_DEBUG_KMS("Turn eDP power on\n");
2327 Serge 1281
 
5060 serge 1282
	if (edp_have_panel_power(intel_dp)) {
2342 Serge 1283
		DRM_DEBUG_KMS("eDP power already on\n");
1284
		return;
1285
	}
1286
 
5060 serge 1287
	wait_panel_power_cycle(intel_dp);
2342 Serge 1288
 
4560 Serge 1289
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3746 Serge 1290
	pp = ironlake_get_pp_control(intel_dp);
2342 Serge 1291
	if (IS_GEN5(dev)) {
2330 Serge 1292
	/* ILK workaround: disable reset around power sequence */
1293
	pp &= ~PANEL_POWER_RESET;
4560 Serge 1294
		I915_WRITE(pp_ctrl_reg, pp);
1295
		POSTING_READ(pp_ctrl_reg);
2342 Serge 1296
	}
2327 Serge 1297
 
2342 Serge 1298
	pp |= POWER_TARGET_ON;
1299
	if (!IS_GEN5(dev))
1300
		pp |= PANEL_POWER_RESET;
1301
 
3746 Serge 1302
	I915_WRITE(pp_ctrl_reg, pp);
1303
	POSTING_READ(pp_ctrl_reg);
1304
 
5060 serge 1305
	wait_panel_on(intel_dp);
1306
	intel_dp->last_power_on = jiffies;
2327 Serge 1307
 
2342 Serge 1308
	if (IS_GEN5(dev)) {
2330 Serge 1309
	pp |= PANEL_POWER_RESET; /* restore panel reset bit */
4560 Serge 1310
		I915_WRITE(pp_ctrl_reg, pp);
1311
		POSTING_READ(pp_ctrl_reg);
2342 Serge 1312
	}
2330 Serge 1313
}
2327 Serge 1314
 
5060 serge 1315
void intel_edp_panel_off(struct intel_dp *intel_dp)
2330 Serge 1316
{
5060 serge 1317
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1318
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3243 Serge 1319
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 1320
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 1321
	enum intel_display_power_domain power_domain;
2342 Serge 1322
	u32 pp;
3746 Serge 1323
	u32 pp_ctrl_reg;
2327 Serge 1324
 
2342 Serge 1325
	if (!is_edp(intel_dp))
1326
		return;
2327 Serge 1327
 
2342 Serge 1328
	DRM_DEBUG_KMS("Turn eDP power off\n");
2327 Serge 1329
 
5060 serge 1330
	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1331
 
3746 Serge 1332
	pp = ironlake_get_pp_control(intel_dp);
3031 serge 1333
	/* We need to switch off panel power _and_ force vdd, for otherwise some
1334
	 * panels get very unhappy and cease to work. */
5060 serge 1335
	pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1336
		EDP_BLC_ENABLE);
2327 Serge 1337
 
4560 Serge 1338
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3746 Serge 1339
 
5060 serge 1340
	intel_dp->want_panel_vdd = false;
1341
 
3746 Serge 1342
	I915_WRITE(pp_ctrl_reg, pp);
1343
	POSTING_READ(pp_ctrl_reg);
1344
 
5060 serge 1345
	intel_dp->last_power_cycle = jiffies;
1346
	wait_panel_off(intel_dp);
1347
 
1348
	/* We got a reference when we enabled the VDD. */
1349
	power_domain = intel_display_port_power_domain(intel_encoder);
1350
	intel_display_power_put(dev_priv, power_domain);
2330 Serge 1351
}
2327 Serge 1352
 
5060 serge 1353
void intel_edp_backlight_on(struct intel_dp *intel_dp)
2330 Serge 1354
{
3243 Serge 1355
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1356
	struct drm_device *dev = intel_dig_port->base.base.dev;
2330 Serge 1357
	struct drm_i915_private *dev_priv = dev->dev_private;
1358
	u32 pp;
3746 Serge 1359
	u32 pp_ctrl_reg;
2327 Serge 1360
 
2342 Serge 1361
	if (!is_edp(intel_dp))
1362
		return;
1363
 
2330 Serge 1364
	DRM_DEBUG_KMS("\n");
5060 serge 1365
 
1366
	intel_panel_enable_backlight(intel_dp->attached_connector);
1367
 
2330 Serge 1368
	/*
1369
	 * If we enable the backlight right away following a panel power
1370
	 * on, we may see slight flicker as the panel syncs with the eDP
1371
	 * link.  So delay a bit to make sure the image is solid before
1372
	 * allowing it to appear.
1373
	 */
5060 serge 1374
	wait_backlight_on(intel_dp);
3746 Serge 1375
	pp = ironlake_get_pp_control(intel_dp);
2330 Serge 1376
	pp |= EDP_BLC_ENABLE;
3243 Serge 1377
 
4560 Serge 1378
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3746 Serge 1379
 
1380
	I915_WRITE(pp_ctrl_reg, pp);
1381
	POSTING_READ(pp_ctrl_reg);
2330 Serge 1382
}
2327 Serge 1383
 
5060 serge 1384
void intel_edp_backlight_off(struct intel_dp *intel_dp)
2330 Serge 1385
{
3243 Serge 1386
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 1387
	struct drm_i915_private *dev_priv = dev->dev_private;
1388
	u32 pp;
3746 Serge 1389
	u32 pp_ctrl_reg;
2327 Serge 1390
 
2342 Serge 1391
	if (!is_edp(intel_dp))
1392
		return;
1393
 
2330 Serge 1394
	DRM_DEBUG_KMS("\n");
3746 Serge 1395
	pp = ironlake_get_pp_control(intel_dp);
2330 Serge 1396
	pp &= ~EDP_BLC_ENABLE;
3746 Serge 1397
 
4560 Serge 1398
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3746 Serge 1399
 
1400
	I915_WRITE(pp_ctrl_reg, pp);
1401
	POSTING_READ(pp_ctrl_reg);
5060 serge 1402
	intel_dp->last_backlight_off = jiffies;
1403
 
1404
	edp_wait_backlight_off(intel_dp);
1405
 
1406
	intel_panel_disable_backlight(intel_dp->attached_connector);
2330 Serge 1407
}
2327 Serge 1408
 
3031 serge 1409
static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2330 Serge 1410
{
3243 Serge 1411
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1412
	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1413
	struct drm_device *dev = crtc->dev;
2330 Serge 1414
	struct drm_i915_private *dev_priv = dev->dev_private;
1415
	u32 dpa_ctl;
2327 Serge 1416
 
3031 serge 1417
	assert_pipe_disabled(dev_priv,
1418
			     to_intel_crtc(crtc)->pipe);
1419
 
2330 Serge 1420
	DRM_DEBUG_KMS("\n");
1421
	dpa_ctl = I915_READ(DP_A);
3031 serge 1422
	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1423
	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1424
 
1425
	/* We don't adjust intel_dp->DP while tearing down the link, to
1426
	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1427
	 * enable bits here to ensure that we don't enable too much. */
1428
	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1429
	intel_dp->DP |= DP_PLL_ENABLE;
1430
	I915_WRITE(DP_A, intel_dp->DP);
2330 Serge 1431
	POSTING_READ(DP_A);
1432
	udelay(200);
1433
}
2327 Serge 1434
 
3031 serge 1435
static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2330 Serge 1436
{
3243 Serge 1437
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1438
	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1439
	struct drm_device *dev = crtc->dev;
2330 Serge 1440
	struct drm_i915_private *dev_priv = dev->dev_private;
1441
	u32 dpa_ctl;
2327 Serge 1442
 
3031 serge 1443
	assert_pipe_disabled(dev_priv,
1444
			     to_intel_crtc(crtc)->pipe);
1445
 
2330 Serge 1446
	dpa_ctl = I915_READ(DP_A);
3031 serge 1447
	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1448
	     "dp pll off, should be on\n");
1449
	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1450
 
1451
	/* We can't rely on the value tracked for the DP register in
1452
	 * intel_dp->DP because link_down must not change that (otherwise link
1453
	 * re-training will fail. */
2330 Serge 1454
	dpa_ctl &= ~DP_PLL_ENABLE;
1455
	I915_WRITE(DP_A, dpa_ctl);
1456
	POSTING_READ(DP_A);
1457
	udelay(200);
1458
}
2327 Serge 1459
 
2330 Serge 1460
/* If the sink supports it, try to set the power state appropriately */
3243 Serge 1461
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2330 Serge 1462
{
1463
	int ret, i;
2327 Serge 1464
 
2330 Serge 1465
	/* Should have a valid DPCD by this point */
1466
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1467
		return;
2327 Serge 1468
 
2330 Serge 1469
	if (mode != DRM_MODE_DPMS_ON) {
5060 serge 1470
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2330 Serge 1471
						  DP_SET_POWER_D3);
1472
		if (ret != 1)
1473
			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1474
	} else {
1475
		/*
1476
		 * When turning on, we need to retry for 1ms to give the sink
1477
		 * time to wake up.
1478
		 */
1479
		for (i = 0; i < 3; i++) {
5060 serge 1480
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2330 Serge 1481
							  DP_SET_POWER_D0);
1482
			if (ret == 1)
1483
				break;
1484
			msleep(1);
1485
		}
1486
	}
1487
}
2327 Serge 1488
 
3031 serge 1489
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1490
				  enum pipe *pipe)
2330 Serge 1491
{
3031 serge 1492
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4104 Serge 1493
	enum port port = dp_to_dig_port(intel_dp)->port;
3031 serge 1494
	struct drm_device *dev = encoder->base.dev;
1495
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 1496
	enum intel_display_power_domain power_domain;
1497
	u32 tmp;
2327 Serge 1498
 
5060 serge 1499
	power_domain = intel_display_port_power_domain(encoder);
1500
	if (!intel_display_power_enabled(dev_priv, power_domain))
1501
		return false;
1502
 
1503
	tmp = I915_READ(intel_dp->output_reg);
1504
 
3031 serge 1505
	if (!(tmp & DP_PORT_EN))
1506
		return false;
2342 Serge 1507
 
4104 Serge 1508
	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
3031 serge 1509
		*pipe = PORT_TO_PIPE_CPT(tmp);
5060 serge 1510
	} else if (IS_CHERRYVIEW(dev)) {
1511
		*pipe = DP_PORT_TO_PIPE_CHV(tmp);
4104 Serge 1512
	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
3031 serge 1513
		*pipe = PORT_TO_PIPE(tmp);
1514
	} else {
1515
		u32 trans_sel;
1516
		u32 trans_dp;
1517
		int i;
2327 Serge 1518
 
3031 serge 1519
		switch (intel_dp->output_reg) {
1520
		case PCH_DP_B:
1521
			trans_sel = TRANS_DP_PORT_SEL_B;
1522
			break;
1523
		case PCH_DP_C:
1524
			trans_sel = TRANS_DP_PORT_SEL_C;
1525
			break;
1526
		case PCH_DP_D:
1527
			trans_sel = TRANS_DP_PORT_SEL_D;
1528
			break;
1529
		default:
1530
			return true;
1531
		}
1532
 
1533
		for_each_pipe(i) {
1534
			trans_dp = I915_READ(TRANS_DP_CTL(i));
1535
			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1536
				*pipe = i;
1537
				return true;
1538
			}
1539
		}
3243 Serge 1540
 
1541
		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1542
			      intel_dp->output_reg);
3031 serge 1543
	}
1544
 
1545
	return true;
2330 Serge 1546
}
2327 Serge 1547
 
4104 Serge 1548
static void intel_dp_get_config(struct intel_encoder *encoder,
1549
				struct intel_crtc_config *pipe_config)
1550
{
1551
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1552
	u32 tmp, flags = 0;
1553
	struct drm_device *dev = encoder->base.dev;
1554
	struct drm_i915_private *dev_priv = dev->dev_private;
1555
	enum port port = dp_to_dig_port(intel_dp)->port;
1556
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
4560 Serge 1557
	int dotclock;
4104 Serge 1558
 
5060 serge 1559
	tmp = I915_READ(intel_dp->output_reg);
1560
	if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1561
		pipe_config->has_audio = true;
1562
 
4104 Serge 1563
	if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1564
		if (tmp & DP_SYNC_HS_HIGH)
1565
			flags |= DRM_MODE_FLAG_PHSYNC;
1566
		else
1567
			flags |= DRM_MODE_FLAG_NHSYNC;
1568
 
1569
		if (tmp & DP_SYNC_VS_HIGH)
1570
			flags |= DRM_MODE_FLAG_PVSYNC;
1571
		else
1572
			flags |= DRM_MODE_FLAG_NVSYNC;
1573
	} else {
1574
		tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1575
		if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1576
			flags |= DRM_MODE_FLAG_PHSYNC;
1577
		else
1578
			flags |= DRM_MODE_FLAG_NHSYNC;
1579
 
1580
		if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1581
			flags |= DRM_MODE_FLAG_PVSYNC;
1582
		else
1583
			flags |= DRM_MODE_FLAG_NVSYNC;
1584
	}
1585
 
1586
	pipe_config->adjusted_mode.flags |= flags;
1587
 
4560 Serge 1588
	pipe_config->has_dp_encoder = true;
1589
 
1590
	intel_dp_get_m_n(crtc, pipe_config);
1591
 
1592
	if (port == PORT_A) {
4104 Serge 1593
		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1594
			pipe_config->port_clock = 162000;
1595
		else
1596
			pipe_config->port_clock = 270000;
1597
	}
4280 Serge 1598
 
4560 Serge 1599
	dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1600
					    &pipe_config->dp_m_n);
1601
 
1602
	if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1603
		ironlake_check_encoder_dotclock(pipe_config, dotclock);
1604
 
1605
	pipe_config->adjusted_mode.crtc_clock = dotclock;
1606
 
4280 Serge 1607
	if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1608
	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1609
		/*
1610
		 * This is a big fat ugly hack.
1611
		 *
1612
		 * Some machines in UEFI boot mode provide us a VBT that has 18
1613
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1614
		 * unknown we fail to light up. Yet the same BIOS boots up with
1615
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1616
		 * max, not what it tells us to use.
1617
		 *
1618
		 * Note: This will still be broken if the eDP panel is not lit
1619
		 * up by the BIOS, and thus we can't get the mode at module
1620
		 * load.
1621
		 */
1622
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1623
			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1624
		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1625
	}
4104 Serge 1626
}
1627
 
5060 serge 1628
static bool is_edp_psr(struct intel_dp *intel_dp)
4104 Serge 1629
{
5060 serge 1630
	return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
4104 Serge 1631
}
1632
 
1633
static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1634
{
1635
	struct drm_i915_private *dev_priv = dev->dev_private;
1636
 
4560 Serge 1637
	if (!HAS_PSR(dev))
4104 Serge 1638
		return false;
1639
 
4560 Serge 1640
	return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
4104 Serge 1641
}
1642
 
1643
static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1644
				    struct edp_vsc_psr *vsc_psr)
1645
{
1646
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1647
	struct drm_device *dev = dig_port->base.base.dev;
1648
	struct drm_i915_private *dev_priv = dev->dev_private;
1649
	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1650
	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1651
	u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1652
	uint32_t *data = (uint32_t *) vsc_psr;
1653
	unsigned int i;
1654
 
1655
	/* As per BSPec (Pipe Video Data Island Packet), we need to disable
1656
	   the video DIP being updated before program video DIP data buffer
1657
	   registers for DIP being updated. */
1658
	I915_WRITE(ctl_reg, 0);
1659
	POSTING_READ(ctl_reg);
1660
 
1661
	for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1662
		if (i < sizeof(struct edp_vsc_psr))
1663
			I915_WRITE(data_reg + i, *data++);
1664
		else
1665
			I915_WRITE(data_reg + i, 0);
1666
	}
1667
 
1668
	I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1669
	POSTING_READ(ctl_reg);
1670
}
1671
 
1672
static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1673
{
1674
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1675
	struct drm_i915_private *dev_priv = dev->dev_private;
1676
	struct edp_vsc_psr psr_vsc;
1677
 
1678
	/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1679
	memset(&psr_vsc, 0, sizeof(psr_vsc));
1680
	psr_vsc.sdp_header.HB0 = 0;
1681
	psr_vsc.sdp_header.HB1 = 0x7;
1682
	psr_vsc.sdp_header.HB2 = 0x2;
1683
	psr_vsc.sdp_header.HB3 = 0x8;
1684
	intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1685
 
1686
	/* Avoid continuous PSR exit by masking memup and hpd */
4560 Serge 1687
	I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
4104 Serge 1688
		   EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1689
}
1690
 
1691
static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1692
{
5060 serge 1693
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1694
	struct drm_device *dev = dig_port->base.base.dev;
4104 Serge 1695
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 1696
	uint32_t aux_clock_divider;
4104 Serge 1697
	int precharge = 0x3;
1698
	int msg_size = 5;       /* Header(4) + Message(1) */
5060 serge 1699
	bool only_standby = false;
4104 Serge 1700
 
5060 serge 1701
	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1702
 
1703
	if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1704
		only_standby = true;
1705
 
4104 Serge 1706
	/* Enable PSR in sink */
5060 serge 1707
	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
1708
		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1709
				   DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
4104 Serge 1710
	else
5060 serge 1711
		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1712
				   DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
4104 Serge 1713
 
1714
	/* Setup AUX registers */
4560 Serge 1715
	I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1716
	I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1717
	I915_WRITE(EDP_PSR_AUX_CTL(dev),
4104 Serge 1718
		   DP_AUX_CH_CTL_TIME_OUT_400us |
1719
		   (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1720
		   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1721
		   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1722
}
1723
 
1724
static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1725
{
5060 serge 1726
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1727
	struct drm_device *dev = dig_port->base.base.dev;
4104 Serge 1728
	struct drm_i915_private *dev_priv = dev->dev_private;
1729
	uint32_t max_sleep_time = 0x1f;
1730
	uint32_t idle_frames = 1;
1731
	uint32_t val = 0x0;
4560 Serge 1732
	const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
5060 serge 1733
	bool only_standby = false;
4104 Serge 1734
 
5060 serge 1735
	if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1736
		only_standby = true;
1737
 
1738
	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
4104 Serge 1739
		val |= EDP_PSR_LINK_STANDBY;
1740
		val |= EDP_PSR_TP2_TP3_TIME_0us;
1741
		val |= EDP_PSR_TP1_TIME_0us;
1742
		val |= EDP_PSR_SKIP_AUX_EXIT;
5060 serge 1743
		val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
4104 Serge 1744
	} else
1745
		val |= EDP_PSR_LINK_DISABLE;
1746
 
4560 Serge 1747
	I915_WRITE(EDP_PSR_CTL(dev), val |
5060 serge 1748
		   (IS_BROADWELL(dev) ? 0 : link_entry_time) |
4104 Serge 1749
		   max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1750
		   idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1751
		   EDP_PSR_ENABLE);
1752
}
1753
 
1754
static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1755
{
1756
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1757
	struct drm_device *dev = dig_port->base.base.dev;
1758
	struct drm_i915_private *dev_priv = dev->dev_private;
1759
	struct drm_crtc *crtc = dig_port->base.base.crtc;
1760
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1761
 
5060 serge 1762
	lockdep_assert_held(&dev_priv->psr.lock);
1763
	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1764
	WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
1765
 
4560 Serge 1766
	dev_priv->psr.source_ok = false;
1767
 
5060 serge 1768
	if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
4104 Serge 1769
		DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1770
		return false;
1771
	}
1772
 
5060 serge 1773
	if (!i915.enable_psr) {
4104 Serge 1774
		DRM_DEBUG_KMS("PSR disable by flag\n");
1775
		return false;
1776
	}
1777
 
5060 serge 1778
	/* Below limitations aren't valid for Broadwell */
1779
	if (IS_BROADWELL(dev))
1780
		goto out;
4104 Serge 1781
 
1782
	if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1783
	    S3D_ENABLE) {
1784
		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1785
		return false;
1786
	}
1787
 
4560 Serge 1788
	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
4104 Serge 1789
		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1790
		return false;
1791
	}
1792
 
5060 serge 1793
 out:
4560 Serge 1794
	dev_priv->psr.source_ok = true;
4104 Serge 1795
	return true;
1796
}
1797
 
1798
static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1799
{
5060 serge 1800
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1801
	struct drm_device *dev = intel_dig_port->base.base.dev;
1802
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 1803
 
5060 serge 1804
	WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1805
	WARN_ON(dev_priv->psr.active);
1806
	lockdep_assert_held(&dev_priv->psr.lock);
4104 Serge 1807
 
1808
	/* Enable PSR on the panel */
1809
	intel_edp_psr_enable_sink(intel_dp);
1810
 
1811
	/* Enable PSR on the host */
1812
	intel_edp_psr_enable_source(intel_dp);
5060 serge 1813
 
1814
	dev_priv->psr.active = true;
4104 Serge 1815
}
1816
 
1817
void intel_edp_psr_enable(struct intel_dp *intel_dp)
1818
{
1819
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
5060 serge 1820
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 1821
 
5060 serge 1822
	if (!HAS_PSR(dev)) {
1823
		DRM_DEBUG_KMS("PSR not supported on this platform\n");
1824
		return;
1825
	}
1826
 
1827
	if (!is_edp_psr(intel_dp)) {
1828
		DRM_DEBUG_KMS("PSR not supported by this panel\n");
1829
		return;
1830
	}
1831
 
1832
	mutex_lock(&dev_priv->psr.lock);
1833
	if (dev_priv->psr.enabled) {
1834
		DRM_DEBUG_KMS("PSR already in use\n");
1835
		mutex_unlock(&dev_priv->psr.lock);
1836
		return;
1837
	}
1838
 
1839
	dev_priv->psr.busy_frontbuffer_bits = 0;
1840
 
1841
	/* Setup PSR once */
1842
	intel_edp_psr_setup(intel_dp);
1843
 
1844
	if (intel_edp_psr_match_conditions(intel_dp))
1845
		dev_priv->psr.enabled = intel_dp;
1846
	mutex_unlock(&dev_priv->psr.lock);
4104 Serge 1847
}
1848
 
1849
void intel_edp_psr_disable(struct intel_dp *intel_dp)
1850
{
1851
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1852
	struct drm_i915_private *dev_priv = dev->dev_private;
1853
 
5060 serge 1854
	mutex_lock(&dev_priv->psr.lock);
1855
	if (!dev_priv->psr.enabled) {
1856
		mutex_unlock(&dev_priv->psr.lock);
4104 Serge 1857
		return;
5060 serge 1858
	}
4104 Serge 1859
 
5060 serge 1860
	if (dev_priv->psr.active) {
4560 Serge 1861
	I915_WRITE(EDP_PSR_CTL(dev),
1862
		   I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
4104 Serge 1863
 
1864
	/* Wait till PSR is idle */
4560 Serge 1865
	if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
4104 Serge 1866
		       EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1867
		DRM_ERROR("Timed out waiting for PSR Idle State\n");
5060 serge 1868
 
1869
		dev_priv->psr.active = false;
1870
	} else {
1871
		WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1872
	}
1873
 
1874
	dev_priv->psr.enabled = NULL;
1875
	mutex_unlock(&dev_priv->psr.lock);
1876
 
1877
	cancel_delayed_work_sync(&dev_priv->psr.work);
4104 Serge 1878
}
1879
 
5060 serge 1880
static void intel_edp_psr_work(struct work_struct *work)
4104 Serge 1881
{
5060 serge 1882
	struct drm_i915_private *dev_priv =
1883
		container_of(work, typeof(*dev_priv), psr.work.work);
1884
	struct intel_dp *intel_dp = dev_priv->psr.enabled;
4104 Serge 1885
 
5060 serge 1886
	mutex_lock(&dev_priv->psr.lock);
1887
	intel_dp = dev_priv->psr.enabled;
4104 Serge 1888
 
5060 serge 1889
	if (!intel_dp)
1890
		goto unlock;
1891
 
1892
	/*
1893
	 * The delayed work can race with an invalidate hence we need to
1894
	 * recheck. Since psr_flush first clears this and then reschedules we
1895
	 * won't ever miss a flush when bailing out here.
1896
	 */
1897
	if (dev_priv->psr.busy_frontbuffer_bits)
1898
		goto unlock;
1899
 
1900
	intel_edp_psr_do_enable(intel_dp);
1901
unlock:
1902
	mutex_unlock(&dev_priv->psr.lock);
1903
}
1904
 
1905
static void intel_edp_psr_do_exit(struct drm_device *dev)
1906
{
1907
	struct drm_i915_private *dev_priv = dev->dev_private;
1908
 
1909
	if (dev_priv->psr.active) {
1910
		u32 val = I915_READ(EDP_PSR_CTL(dev));
1911
 
1912
		WARN_ON(!(val & EDP_PSR_ENABLE));
1913
 
1914
		I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
1915
 
1916
		dev_priv->psr.active = false;
1917
	}
1918
 
1919
}
1920
 
1921
void intel_edp_psr_invalidate(struct drm_device *dev,
1922
			      unsigned frontbuffer_bits)
1923
{
1924
	struct drm_i915_private *dev_priv = dev->dev_private;
1925
	struct drm_crtc *crtc;
1926
	enum pipe pipe;
1927
 
1928
	mutex_lock(&dev_priv->psr.lock);
1929
	if (!dev_priv->psr.enabled) {
1930
		mutex_unlock(&dev_priv->psr.lock);
4104 Serge 1931
				return;
5060 serge 1932
	}
4104 Serge 1933
 
5060 serge 1934
	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
1935
	pipe = to_intel_crtc(crtc)->pipe;
1936
 
1937
	intel_edp_psr_do_exit(dev);
1938
 
1939
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
1940
 
1941
	dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
1942
	mutex_unlock(&dev_priv->psr.lock);
1943
}
1944
 
1945
void intel_edp_psr_flush(struct drm_device *dev,
1946
			 unsigned frontbuffer_bits)
1947
{
1948
	struct drm_i915_private *dev_priv = dev->dev_private;
1949
	struct drm_crtc *crtc;
1950
	enum pipe pipe;
1951
 
1952
	mutex_lock(&dev_priv->psr.lock);
1953
	if (!dev_priv->psr.enabled) {
1954
		mutex_unlock(&dev_priv->psr.lock);
1955
		return;
4104 Serge 1956
		}
5060 serge 1957
 
1958
	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
1959
	pipe = to_intel_crtc(crtc)->pipe;
1960
	dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
1961
 
1962
	/*
1963
	 * On Haswell sprite plane updates don't result in a psr invalidating
1964
	 * signal in the hardware. Which means we need to manually fake this in
1965
	 * software for all flushes, not just when we've seen a preceding
1966
	 * invalidation through frontbuffer rendering.
1967
	 */
1968
	if (IS_HASWELL(dev) &&
1969
	    (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
1970
		intel_edp_psr_do_exit(dev);
1971
 
1972
	if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
1973
		schedule_delayed_work(&dev_priv->psr.work,
1974
				      msecs_to_jiffies(100));
1975
	mutex_unlock(&dev_priv->psr.lock);
4104 Serge 1976
}
1977
 
5060 serge 1978
void intel_edp_psr_init(struct drm_device *dev)
1979
{
1980
	struct drm_i915_private *dev_priv = dev->dev_private;
1981
 
1982
	INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
1983
	mutex_init(&dev_priv->psr.lock);
1984
}
1985
 
3031 serge 1986
static void intel_disable_dp(struct intel_encoder *encoder)
2330 Serge 1987
{
3031 serge 1988
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4104 Serge 1989
	enum port port = dp_to_dig_port(intel_dp)->port;
1990
	struct drm_device *dev = encoder->base.dev;
2327 Serge 1991
 
3031 serge 1992
	/* Make sure the panel is off before trying to change the mode. But also
1993
	 * ensure that we have vdd while we switch off the panel. */
5060 serge 1994
	intel_edp_panel_vdd_on(intel_dp);
1995
	intel_edp_backlight_off(intel_dp);
4560 Serge 1996
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
5060 serge 1997
	intel_edp_panel_off(intel_dp);
2330 Serge 1998
 
3031 serge 1999
	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
4104 Serge 2000
	if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
3031 serge 2001
		intel_dp_link_down(intel_dp);
2002
}
2330 Serge 2003
 
5060 serge 2004
static void g4x_post_disable_dp(struct intel_encoder *encoder)
3031 serge 2005
{
2006
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4104 Serge 2007
	enum port port = dp_to_dig_port(intel_dp)->port;
5060 serge 2008
 
2009
	if (port != PORT_A)
2010
		return;
2011
 
2012
	intel_dp_link_down(intel_dp);
2013
	ironlake_edp_pll_off(intel_dp);
2014
}
2015
 
2016
static void vlv_post_disable_dp(struct intel_encoder *encoder)
2017
{
2018
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2019
 
2020
	intel_dp_link_down(intel_dp);
2021
}
2022
 
2023
static void chv_post_disable_dp(struct intel_encoder *encoder)
2024
{
2025
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2026
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3746 Serge 2027
	struct drm_device *dev = encoder->base.dev;
5060 serge 2028
	struct drm_i915_private *dev_priv = dev->dev_private;
2029
	struct intel_crtc *intel_crtc =
2030
		to_intel_crtc(encoder->base.crtc);
2031
	enum dpio_channel ch = vlv_dport_to_channel(dport);
2032
	enum pipe pipe = intel_crtc->pipe;
2033
	u32 val;
3031 serge 2034
 
2035
		intel_dp_link_down(intel_dp);
5060 serge 2036
 
2037
	mutex_lock(&dev_priv->dpio_lock);
2038
 
2039
	/* Propagate soft reset to data lane reset */
2040
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2041
	val |= CHV_PCS_REQ_SOFTRESET_EN;
2042
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2043
 
2044
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2045
	val |= CHV_PCS_REQ_SOFTRESET_EN;
2046
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2047
 
2048
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2049
	val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2050
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2051
 
2052
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2053
	val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2054
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2055
 
2056
	mutex_unlock(&dev_priv->dpio_lock);
2330 Serge 2057
}
2058
 
3031 serge 2059
static void intel_enable_dp(struct intel_encoder *encoder)
2330 Serge 2060
{
3031 serge 2061
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2062
	struct drm_device *dev = encoder->base.dev;
2330 Serge 2063
	struct drm_i915_private *dev_priv = dev->dev_private;
2064
	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2065
 
3031 serge 2066
	if (WARN_ON(dp_reg & DP_PORT_EN))
2067
		return;
2342 Serge 2068
 
5060 serge 2069
	intel_edp_panel_vdd_on(intel_dp);
3031 serge 2070
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2330 Serge 2071
			intel_dp_start_link_train(intel_dp);
5060 serge 2072
	intel_edp_panel_on(intel_dp);
2073
	edp_panel_vdd_off(intel_dp, true);
2330 Serge 2074
			intel_dp_complete_link_train(intel_dp);
3746 Serge 2075
	intel_dp_stop_link_train(intel_dp);
4560 Serge 2076
}
2077
 
2078
static void g4x_enable_dp(struct intel_encoder *encoder)
2079
{
2080
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2081
 
2082
	intel_enable_dp(encoder);
5060 serge 2083
	intel_edp_backlight_on(intel_dp);
2330 Serge 2084
}
2085
 
4104 Serge 2086
static void vlv_enable_dp(struct intel_encoder *encoder)
2087
{
4560 Serge 2088
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2089
 
5060 serge 2090
	intel_edp_backlight_on(intel_dp);
4104 Serge 2091
}
2092
 
4560 Serge 2093
static void g4x_pre_enable_dp(struct intel_encoder *encoder)
3031 serge 2094
{
2095
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4104 Serge 2096
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3031 serge 2097
 
5060 serge 2098
	intel_dp_prepare(encoder);
2099
 
2100
	/* Only ilk+ has port A */
2101
	if (dport->port == PORT_A) {
2102
		ironlake_set_pll_cpu_edp(intel_dp);
3031 serge 2103
		ironlake_edp_pll_on(intel_dp);
5060 serge 2104
	}
3031 serge 2105
}
2106
 
4104 Serge 2107
static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2108
{
2109
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2110
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2111
	struct drm_device *dev = encoder->base.dev;
2112
	struct drm_i915_private *dev_priv = dev->dev_private;
2113
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
4560 Serge 2114
	enum dpio_channel port = vlv_dport_to_channel(dport);
4104 Serge 2115
		int pipe = intel_crtc->pipe;
4560 Serge 2116
	struct edp_power_seq power_seq;
4104 Serge 2117
		u32 val;
2118
 
2119
	mutex_lock(&dev_priv->dpio_lock);
2120
 
4560 Serge 2121
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
4104 Serge 2122
		val = 0;
2123
		if (pipe)
2124
			val |= (1<<21);
2125
		else
2126
			val &= ~(1<<21);
2127
		val |= 0x001000c4;
4560 Serge 2128
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2129
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2130
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
4104 Serge 2131
 
2132
	mutex_unlock(&dev_priv->dpio_lock);
2133
 
5060 serge 2134
	if (is_edp(intel_dp)) {
4560 Serge 2135
	/* init power sequencer on this pipe and port */
2136
	intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2137
	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2138
						      &power_seq);
5060 serge 2139
	}
4560 Serge 2140
 
4104 Serge 2141
	intel_enable_dp(encoder);
2142
 
4560 Serge 2143
	vlv_wait_port_ready(dev_priv, dport);
4539 Serge 2144
}
4104 Serge 2145
 
4560 Serge 2146
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
4104 Serge 2147
{
2148
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2149
	struct drm_device *dev = encoder->base.dev;
2150
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 2151
	struct intel_crtc *intel_crtc =
2152
		to_intel_crtc(encoder->base.crtc);
2153
	enum dpio_channel port = vlv_dport_to_channel(dport);
2154
	int pipe = intel_crtc->pipe;
4104 Serge 2155
 
5060 serge 2156
	intel_dp_prepare(encoder);
2157
 
4104 Serge 2158
	/* Program Tx lane resets to default */
2159
	mutex_lock(&dev_priv->dpio_lock);
4560 Serge 2160
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
4104 Serge 2161
			 DPIO_PCS_TX_LANE2_RESET |
2162
			 DPIO_PCS_TX_LANE1_RESET);
4560 Serge 2163
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
4104 Serge 2164
			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2165
			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2166
			 (1<
2167
				 DPIO_PCS_CLK_SOFT_RESET);
2168
 
2169
	/* Fix up inter-pair skew failure */
4560 Serge 2170
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2171
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2172
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
4104 Serge 2173
	mutex_unlock(&dev_priv->dpio_lock);
2174
}
2175
 
5060 serge 2176
static void chv_pre_enable_dp(struct intel_encoder *encoder)
2177
{
2178
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2179
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2180
	struct drm_device *dev = encoder->base.dev;
2181
	struct drm_i915_private *dev_priv = dev->dev_private;
2182
	struct edp_power_seq power_seq;
2183
	struct intel_crtc *intel_crtc =
2184
		to_intel_crtc(encoder->base.crtc);
2185
	enum dpio_channel ch = vlv_dport_to_channel(dport);
2186
	int pipe = intel_crtc->pipe;
2187
	int data, i;
2188
	u32 val;
2189
 
2190
	mutex_lock(&dev_priv->dpio_lock);
2191
 
2192
	/* Deassert soft data lane reset*/
2193
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2194
	val |= CHV_PCS_REQ_SOFTRESET_EN;
2195
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2196
 
2197
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2198
	val |= CHV_PCS_REQ_SOFTRESET_EN;
2199
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2200
 
2201
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2202
	val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2203
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2204
 
2205
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2206
	val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2207
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2208
 
2209
	/* Program Tx lane latency optimal setting*/
2210
	for (i = 0; i < 4; i++) {
2211
		/* Set the latency optimal bit */
2212
		data = (i == 1) ? 0x0 : 0x6;
2213
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2214
				data << DPIO_FRC_LATENCY_SHFIT);
2215
 
2216
		/* Set the upar bit */
2217
		data = (i == 1) ? 0x0 : 0x1;
2218
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2219
				data << DPIO_UPAR_SHIFT);
2220
	}
2221
 
2222
	/* Data lane stagger programming */
2223
	/* FIXME: Fix up value only after power analysis */
2224
 
2225
	mutex_unlock(&dev_priv->dpio_lock);
2226
 
2227
	if (is_edp(intel_dp)) {
2228
		/* init power sequencer on this pipe and port */
2229
		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2230
		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2231
							      &power_seq);
2232
	}
2233
 
2234
	intel_enable_dp(encoder);
2235
 
2236
	vlv_wait_port_ready(dev_priv, dport);
2237
}
2238
 
2239
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2240
{
2241
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2242
	struct drm_device *dev = encoder->base.dev;
2243
	struct drm_i915_private *dev_priv = dev->dev_private;
2244
	struct intel_crtc *intel_crtc =
2245
		to_intel_crtc(encoder->base.crtc);
2246
	enum dpio_channel ch = vlv_dport_to_channel(dport);
2247
	enum pipe pipe = intel_crtc->pipe;
2248
	u32 val;
2249
 
2250
	mutex_lock(&dev_priv->dpio_lock);
2251
 
2252
	/* program left/right clock distribution */
2253
	if (pipe != PIPE_B) {
2254
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2255
		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2256
		if (ch == DPIO_CH0)
2257
			val |= CHV_BUFLEFTENA1_FORCE;
2258
		if (ch == DPIO_CH1)
2259
			val |= CHV_BUFRIGHTENA1_FORCE;
2260
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2261
	} else {
2262
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2263
		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2264
		if (ch == DPIO_CH0)
2265
			val |= CHV_BUFLEFTENA2_FORCE;
2266
		if (ch == DPIO_CH1)
2267
			val |= CHV_BUFRIGHTENA2_FORCE;
2268
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2269
	}
2270
 
2271
	/* program clock channel usage */
2272
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2273
	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2274
	if (pipe != PIPE_B)
2275
		val &= ~CHV_PCS_USEDCLKCHANNEL;
2276
	else
2277
		val |= CHV_PCS_USEDCLKCHANNEL;
2278
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2279
 
2280
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2281
	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2282
	if (pipe != PIPE_B)
2283
		val &= ~CHV_PCS_USEDCLKCHANNEL;
2284
	else
2285
		val |= CHV_PCS_USEDCLKCHANNEL;
2286
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2287
 
2288
	/*
2289
	 * This a a bit weird since generally CL
2290
	 * matches the pipe, but here we need to
2291
	 * pick the CL based on the port.
2292
	 */
2293
	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2294
	if (pipe != PIPE_B)
2295
		val &= ~CHV_CMN_USEDCLKCHANNEL;
2296
	else
2297
		val |= CHV_CMN_USEDCLKCHANNEL;
2298
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2299
 
2300
	mutex_unlock(&dev_priv->dpio_lock);
2301
}
2302
 
2330 Serge 2303
/*
2304
 * Native read with retry for link status and receiver capability reads for
2305
 * cases where the sink may still be asleep.
5060 serge 2306
 *
2307
 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2308
 * supposed to retry 3 times per the spec.
2330 Serge 2309
 */
5060 serge 2310
static ssize_t
2311
intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2312
			void *buffer, size_t size)
2330 Serge 2313
{
5060 serge 2314
	ssize_t ret;
2315
	int i;
2330 Serge 2316
 
2317
	for (i = 0; i < 3; i++) {
5060 serge 2318
		ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2319
		if (ret == size)
2320
			return ret;
2330 Serge 2321
		msleep(1);
2322
	}
2323
 
5060 serge 2324
	return ret;
2330 Serge 2325
}
2326
 
2327
/*
2328
 * Fetch AUX CH registers 0x202 - 0x207 which contain
2329
 * link status information
2330
 */
2331
static bool
2342 Serge 2332
intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2330 Serge 2333
{
5060 serge 2334
	return intel_dp_dpcd_read_wake(&intel_dp->aux,
2330 Serge 2335
					      DP_LANE0_1_STATUS,
2342 Serge 2336
					      link_status,
5060 serge 2337
				       DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2330 Serge 2338
}
2339
 
5060 serge 2340
/* These are source-specific values. */
2330 Serge 2341
static uint8_t
2342 Serge 2342
intel_dp_voltage_max(struct intel_dp *intel_dp)
2330 Serge 2343
{
3243 Serge 2344
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
4104 Serge 2345
	enum port port = dp_to_dig_port(intel_dp)->port;
2342 Serge 2346
 
5060 serge 2347
	if (IS_VALLEYVIEW(dev))
4104 Serge 2348
		return DP_TRAIN_VOLTAGE_SWING_1200;
2349
	else if (IS_GEN7(dev) && port == PORT_A)
2342 Serge 2350
		return DP_TRAIN_VOLTAGE_SWING_800;
4104 Serge 2351
	else if (HAS_PCH_CPT(dev) && port != PORT_A)
2342 Serge 2352
		return DP_TRAIN_VOLTAGE_SWING_1200;
2353
	else
2354
		return DP_TRAIN_VOLTAGE_SWING_800;
2355
}
2356
 
2357
static uint8_t
2358
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2359
{
3243 Serge 2360
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
4104 Serge 2361
	enum port port = dp_to_dig_port(intel_dp)->port;
2342 Serge 2362
 
5060 serge 2363
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2342 Serge 2364
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2365
		case DP_TRAIN_VOLTAGE_SWING_400:
3243 Serge 2366
			return DP_TRAIN_PRE_EMPHASIS_9_5;
2367
		case DP_TRAIN_VOLTAGE_SWING_600:
2342 Serge 2368
			return DP_TRAIN_PRE_EMPHASIS_6;
3243 Serge 2369
		case DP_TRAIN_VOLTAGE_SWING_800:
2370
			return DP_TRAIN_PRE_EMPHASIS_3_5;
2371
		case DP_TRAIN_VOLTAGE_SWING_1200:
2372
		default:
2373
			return DP_TRAIN_PRE_EMPHASIS_0;
2374
		}
4104 Serge 2375
	} else if (IS_VALLEYVIEW(dev)) {
3243 Serge 2376
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2377
		case DP_TRAIN_VOLTAGE_SWING_400:
4104 Serge 2378
			return DP_TRAIN_PRE_EMPHASIS_9_5;
2379
		case DP_TRAIN_VOLTAGE_SWING_600:
3243 Serge 2380
			return DP_TRAIN_PRE_EMPHASIS_6;
4104 Serge 2381
		case DP_TRAIN_VOLTAGE_SWING_800:
2382
			return DP_TRAIN_PRE_EMPHASIS_3_5;
2383
		case DP_TRAIN_VOLTAGE_SWING_1200:
2384
		default:
2385
			return DP_TRAIN_PRE_EMPHASIS_0;
2386
		}
2387
	} else if (IS_GEN7(dev) && port == PORT_A) {
2388
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2389
		case DP_TRAIN_VOLTAGE_SWING_400:
2390
			return DP_TRAIN_PRE_EMPHASIS_6;
2342 Serge 2391
		case DP_TRAIN_VOLTAGE_SWING_600:
2392
		case DP_TRAIN_VOLTAGE_SWING_800:
2393
			return DP_TRAIN_PRE_EMPHASIS_3_5;
2394
		default:
2395
			return DP_TRAIN_PRE_EMPHASIS_0;
2396
		}
2397
	} else {
2330 Serge 2398
	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2399
	case DP_TRAIN_VOLTAGE_SWING_400:
2400
		return DP_TRAIN_PRE_EMPHASIS_6;
2401
	case DP_TRAIN_VOLTAGE_SWING_600:
2402
		return DP_TRAIN_PRE_EMPHASIS_6;
2403
	case DP_TRAIN_VOLTAGE_SWING_800:
2404
		return DP_TRAIN_PRE_EMPHASIS_3_5;
2405
	case DP_TRAIN_VOLTAGE_SWING_1200:
2406
	default:
2407
		return DP_TRAIN_PRE_EMPHASIS_0;
2408
	}
2342 Serge 2409
	}
2330 Serge 2410
}
2411
 
4104 Serge 2412
static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2413
{
2414
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2415
	struct drm_i915_private *dev_priv = dev->dev_private;
2416
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
4560 Serge 2417
	struct intel_crtc *intel_crtc =
2418
		to_intel_crtc(dport->base.base.crtc);
4104 Serge 2419
	unsigned long demph_reg_value, preemph_reg_value,
2420
		uniqtranscale_reg_value;
2421
	uint8_t train_set = intel_dp->train_set[0];
4560 Serge 2422
	enum dpio_channel port = vlv_dport_to_channel(dport);
2423
	int pipe = intel_crtc->pipe;
4104 Serge 2424
 
2425
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2426
	case DP_TRAIN_PRE_EMPHASIS_0:
2427
		preemph_reg_value = 0x0004000;
2428
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2429
		case DP_TRAIN_VOLTAGE_SWING_400:
2430
			demph_reg_value = 0x2B405555;
2431
			uniqtranscale_reg_value = 0x552AB83A;
2432
			break;
2433
		case DP_TRAIN_VOLTAGE_SWING_600:
2434
			demph_reg_value = 0x2B404040;
2435
			uniqtranscale_reg_value = 0x5548B83A;
2436
			break;
2437
		case DP_TRAIN_VOLTAGE_SWING_800:
2438
			demph_reg_value = 0x2B245555;
2439
			uniqtranscale_reg_value = 0x5560B83A;
2440
			break;
2441
		case DP_TRAIN_VOLTAGE_SWING_1200:
2442
			demph_reg_value = 0x2B405555;
2443
			uniqtranscale_reg_value = 0x5598DA3A;
2444
			break;
2445
		default:
2446
			return 0;
2447
		}
2448
		break;
2449
	case DP_TRAIN_PRE_EMPHASIS_3_5:
2450
		preemph_reg_value = 0x0002000;
2451
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2452
		case DP_TRAIN_VOLTAGE_SWING_400:
2453
			demph_reg_value = 0x2B404040;
2454
			uniqtranscale_reg_value = 0x5552B83A;
2455
			break;
2456
		case DP_TRAIN_VOLTAGE_SWING_600:
2457
			demph_reg_value = 0x2B404848;
2458
			uniqtranscale_reg_value = 0x5580B83A;
2459
			break;
2460
		case DP_TRAIN_VOLTAGE_SWING_800:
2461
			demph_reg_value = 0x2B404040;
2462
			uniqtranscale_reg_value = 0x55ADDA3A;
2463
			break;
2464
		default:
2465
			return 0;
2466
		}
2467
		break;
2468
	case DP_TRAIN_PRE_EMPHASIS_6:
2469
		preemph_reg_value = 0x0000000;
2470
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2471
		case DP_TRAIN_VOLTAGE_SWING_400:
2472
			demph_reg_value = 0x2B305555;
2473
			uniqtranscale_reg_value = 0x5570B83A;
2474
			break;
2475
		case DP_TRAIN_VOLTAGE_SWING_600:
2476
			demph_reg_value = 0x2B2B4040;
2477
			uniqtranscale_reg_value = 0x55ADDA3A;
2478
			break;
2479
		default:
2480
			return 0;
2481
		}
2482
		break;
2483
	case DP_TRAIN_PRE_EMPHASIS_9_5:
2484
		preemph_reg_value = 0x0006000;
2485
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2486
		case DP_TRAIN_VOLTAGE_SWING_400:
2487
			demph_reg_value = 0x1B405555;
2488
			uniqtranscale_reg_value = 0x55ADDA3A;
2489
			break;
2490
		default:
2491
			return 0;
2492
		}
2493
		break;
2494
	default:
2495
		return 0;
2496
	}
2497
 
2498
	mutex_lock(&dev_priv->dpio_lock);
4560 Serge 2499
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2500
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2501
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
4104 Serge 2502
			 uniqtranscale_reg_value);
4560 Serge 2503
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2504
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2505
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2506
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
4104 Serge 2507
	mutex_unlock(&dev_priv->dpio_lock);
2508
 
2509
	return 0;
2510
}
2511
 
5060 serge 2512
static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2513
{
2514
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2515
	struct drm_i915_private *dev_priv = dev->dev_private;
2516
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2517
	struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2518
	u32 deemph_reg_value, margin_reg_value, val;
2519
	uint8_t train_set = intel_dp->train_set[0];
2520
	enum dpio_channel ch = vlv_dport_to_channel(dport);
2521
	enum pipe pipe = intel_crtc->pipe;
2522
	int i;
2523
 
2524
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2525
	case DP_TRAIN_PRE_EMPHASIS_0:
2526
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2527
		case DP_TRAIN_VOLTAGE_SWING_400:
2528
			deemph_reg_value = 128;
2529
			margin_reg_value = 52;
2530
			break;
2531
		case DP_TRAIN_VOLTAGE_SWING_600:
2532
			deemph_reg_value = 128;
2533
			margin_reg_value = 77;
2534
			break;
2535
		case DP_TRAIN_VOLTAGE_SWING_800:
2536
			deemph_reg_value = 128;
2537
			margin_reg_value = 102;
2538
			break;
2539
		case DP_TRAIN_VOLTAGE_SWING_1200:
2540
			deemph_reg_value = 128;
2541
			margin_reg_value = 154;
2542
			/* FIXME extra to set for 1200 */
2543
			break;
2544
		default:
2545
			return 0;
2546
		}
2547
		break;
2548
	case DP_TRAIN_PRE_EMPHASIS_3_5:
2549
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2550
		case DP_TRAIN_VOLTAGE_SWING_400:
2551
			deemph_reg_value = 85;
2552
			margin_reg_value = 78;
2553
			break;
2554
		case DP_TRAIN_VOLTAGE_SWING_600:
2555
			deemph_reg_value = 85;
2556
			margin_reg_value = 116;
2557
			break;
2558
		case DP_TRAIN_VOLTAGE_SWING_800:
2559
			deemph_reg_value = 85;
2560
			margin_reg_value = 154;
2561
			break;
2562
		default:
2563
			return 0;
2564
		}
2565
		break;
2566
	case DP_TRAIN_PRE_EMPHASIS_6:
2567
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2568
		case DP_TRAIN_VOLTAGE_SWING_400:
2569
			deemph_reg_value = 64;
2570
			margin_reg_value = 104;
2571
			break;
2572
		case DP_TRAIN_VOLTAGE_SWING_600:
2573
			deemph_reg_value = 64;
2574
			margin_reg_value = 154;
2575
			break;
2576
		default:
2577
			return 0;
2578
		}
2579
		break;
2580
	case DP_TRAIN_PRE_EMPHASIS_9_5:
2581
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2582
		case DP_TRAIN_VOLTAGE_SWING_400:
2583
			deemph_reg_value = 43;
2584
			margin_reg_value = 154;
2585
			break;
2586
		default:
2587
			return 0;
2588
		}
2589
		break;
2590
	default:
2591
		return 0;
2592
	}
2593
 
2594
	mutex_lock(&dev_priv->dpio_lock);
2595
 
2596
	/* Clear calc init */
2597
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2598
	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2599
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2600
 
2601
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2602
	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2603
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2604
 
2605
	/* Program swing deemph */
2606
	for (i = 0; i < 4; i++) {
2607
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2608
		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2609
		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2610
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2611
	}
2612
 
2613
	/* Program swing margin */
2614
	for (i = 0; i < 4; i++) {
2615
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2616
		val &= ~DPIO_SWING_MARGIN_MASK;
2617
		val |= margin_reg_value << DPIO_SWING_MARGIN_SHIFT;
2618
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2619
	}
2620
 
2621
	/* Disable unique transition scale */
2622
	for (i = 0; i < 4; i++) {
2623
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2624
		val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2625
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2626
	}
2627
 
2628
	if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2629
			== DP_TRAIN_PRE_EMPHASIS_0) &&
2630
		((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2631
			== DP_TRAIN_VOLTAGE_SWING_1200)) {
2632
 
2633
		/*
2634
		 * The document said it needs to set bit 27 for ch0 and bit 26
2635
		 * for ch1. Might be a typo in the doc.
2636
		 * For now, for this unique transition scale selection, set bit
2637
		 * 27 for ch0 and ch1.
2638
		 */
2639
		for (i = 0; i < 4; i++) {
2640
			val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2641
			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2642
			vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2643
		}
2644
 
2645
		for (i = 0; i < 4; i++) {
2646
			val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2647
			val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2648
			val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2649
			vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2650
		}
2651
	}
2652
 
2653
	/* Start swing calculation */
2654
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2655
	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2656
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2657
 
2658
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2659
	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2660
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2661
 
2662
	/* LRC Bypass */
2663
	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2664
	val |= DPIO_LRC_BYPASS;
2665
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2666
 
2667
	mutex_unlock(&dev_priv->dpio_lock);
2668
 
2669
	return 0;
2670
}
2671
 
2330 Serge 2672
static void
4560 Serge 2673
intel_get_adjust_train(struct intel_dp *intel_dp,
2674
		       const uint8_t link_status[DP_LINK_STATUS_SIZE])
2330 Serge 2675
{
2676
	uint8_t v = 0;
2677
	uint8_t p = 0;
2678
	int lane;
2342 Serge 2679
	uint8_t voltage_max;
2680
	uint8_t preemph_max;
2330 Serge 2681
 
2682
	for (lane = 0; lane < intel_dp->lane_count; lane++) {
3243 Serge 2683
		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2684
		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2330 Serge 2685
 
2686
		if (this_v > v)
2687
			v = this_v;
2688
		if (this_p > p)
2689
			p = this_p;
2690
	}
2691
 
2342 Serge 2692
	voltage_max = intel_dp_voltage_max(intel_dp);
2693
	if (v >= voltage_max)
2694
		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2330 Serge 2695
 
2342 Serge 2696
	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2697
	if (p >= preemph_max)
2698
		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2330 Serge 2699
 
2700
	for (lane = 0; lane < 4; lane++)
2701
		intel_dp->train_set[lane] = v | p;
2702
}
2703
 
2704
static uint32_t
3480 Serge 2705
intel_gen4_signal_levels(uint8_t train_set)
2330 Serge 2706
{
2707
	uint32_t	signal_levels = 0;
2708
 
2709
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2710
	case DP_TRAIN_VOLTAGE_SWING_400:
2711
	default:
2712
		signal_levels |= DP_VOLTAGE_0_4;
2713
		break;
2714
	case DP_TRAIN_VOLTAGE_SWING_600:
2715
		signal_levels |= DP_VOLTAGE_0_6;
2716
		break;
2717
	case DP_TRAIN_VOLTAGE_SWING_800:
2718
		signal_levels |= DP_VOLTAGE_0_8;
2719
		break;
2720
	case DP_TRAIN_VOLTAGE_SWING_1200:
2721
		signal_levels |= DP_VOLTAGE_1_2;
2722
		break;
2723
	}
2724
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2725
	case DP_TRAIN_PRE_EMPHASIS_0:
2726
	default:
2727
		signal_levels |= DP_PRE_EMPHASIS_0;
2728
		break;
2729
	case DP_TRAIN_PRE_EMPHASIS_3_5:
2730
		signal_levels |= DP_PRE_EMPHASIS_3_5;
2731
		break;
2732
	case DP_TRAIN_PRE_EMPHASIS_6:
2733
		signal_levels |= DP_PRE_EMPHASIS_6;
2734
		break;
2735
	case DP_TRAIN_PRE_EMPHASIS_9_5:
2736
		signal_levels |= DP_PRE_EMPHASIS_9_5;
2737
		break;
2738
	}
2739
	return signal_levels;
2740
}
2741
 
2742
/* Gen6's DP voltage swing and pre-emphasis control */
2743
static uint32_t
2744
intel_gen6_edp_signal_levels(uint8_t train_set)
2745
{
2746
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2747
					 DP_TRAIN_PRE_EMPHASIS_MASK);
2748
	switch (signal_levels) {
2749
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2750
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2751
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2752
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2753
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2754
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2755
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2756
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2757
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2758
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2759
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2760
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2761
	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2762
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2763
	default:
2764
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2765
			      "0x%x\n", signal_levels);
2766
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2767
	}
2768
}
2769
 
2342 Serge 2770
/* Gen7's DP voltage swing and pre-emphasis control */
2771
static uint32_t
2772
intel_gen7_edp_signal_levels(uint8_t train_set)
2773
{
2774
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2775
					 DP_TRAIN_PRE_EMPHASIS_MASK);
2776
	switch (signal_levels) {
2777
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2778
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
2779
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2780
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2781
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2782
		return EDP_LINK_TRAIN_400MV_6DB_IVB;
2783
 
2784
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2785
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
2786
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2787
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2788
 
2789
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2790
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
2791
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2792
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2793
 
2794
	default:
2795
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2796
			      "0x%x\n", signal_levels);
2797
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
2798
	}
2799
}
2800
 
3243 Serge 2801
/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2802
static uint32_t
3480 Serge 2803
intel_hsw_signal_levels(uint8_t train_set)
2330 Serge 2804
{
3243 Serge 2805
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2806
					 DP_TRAIN_PRE_EMPHASIS_MASK);
2807
	switch (signal_levels) {
2808
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2809
		return DDI_BUF_EMP_400MV_0DB_HSW;
2810
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2811
		return DDI_BUF_EMP_400MV_3_5DB_HSW;
2812
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2813
		return DDI_BUF_EMP_400MV_6DB_HSW;
2814
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2815
		return DDI_BUF_EMP_400MV_9_5DB_HSW;
2330 Serge 2816
 
3243 Serge 2817
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2818
		return DDI_BUF_EMP_600MV_0DB_HSW;
2819
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2820
		return DDI_BUF_EMP_600MV_3_5DB_HSW;
2821
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2822
		return DDI_BUF_EMP_600MV_6DB_HSW;
2330 Serge 2823
 
3243 Serge 2824
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2825
		return DDI_BUF_EMP_800MV_0DB_HSW;
2826
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2827
		return DDI_BUF_EMP_800MV_3_5DB_HSW;
2828
	default:
2829
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2830
			      "0x%x\n", signal_levels);
2831
		return DDI_BUF_EMP_400MV_0DB_HSW;
2330 Serge 2832
	}
2833
}
2834
 
3480 Serge 2835
/* Properly updates "DP" with the correct signal levels. */
2836
static void
2837
intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2838
{
2839
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4104 Serge 2840
	enum port port = intel_dig_port->port;
3480 Serge 2841
	struct drm_device *dev = intel_dig_port->base.base.dev;
2842
	uint32_t signal_levels, mask;
2843
	uint8_t train_set = intel_dp->train_set[0];
2844
 
5060 serge 2845
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3480 Serge 2846
		signal_levels = intel_hsw_signal_levels(train_set);
2847
		mask = DDI_BUF_EMP_MASK;
5060 serge 2848
	} else if (IS_CHERRYVIEW(dev)) {
2849
		signal_levels = intel_chv_signal_levels(intel_dp);
2850
		mask = 0;
4104 Serge 2851
	} else if (IS_VALLEYVIEW(dev)) {
2852
		signal_levels = intel_vlv_signal_levels(intel_dp);
2853
		mask = 0;
2854
	} else if (IS_GEN7(dev) && port == PORT_A) {
3480 Serge 2855
		signal_levels = intel_gen7_edp_signal_levels(train_set);
2856
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4104 Serge 2857
	} else if (IS_GEN6(dev) && port == PORT_A) {
3480 Serge 2858
		signal_levels = intel_gen6_edp_signal_levels(train_set);
2859
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2860
	} else {
2861
		signal_levels = intel_gen4_signal_levels(train_set);
2862
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2863
	}
2864
 
2865
	DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2866
 
2867
	*DP = (*DP & ~mask) | signal_levels;
2868
}
2869
 
2330 Serge 2870
static bool
2871
intel_dp_set_link_train(struct intel_dp *intel_dp,
4560 Serge 2872
			uint32_t *DP,
2330 Serge 2873
			uint8_t dp_train_pat)
2874
{
3243 Serge 2875
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2876
	struct drm_device *dev = intel_dig_port->base.base.dev;
2330 Serge 2877
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 2878
	enum port port = intel_dig_port->port;
4560 Serge 2879
	uint8_t buf[sizeof(intel_dp->train_set) + 1];
2880
	int ret, len;
2330 Serge 2881
 
3746 Serge 2882
	if (HAS_DDI(dev)) {
2883
		uint32_t temp = I915_READ(DP_TP_CTL(port));
3243 Serge 2884
 
2885
		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2886
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2887
		else
2888
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2889
 
2890
		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2891
		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2892
		case DP_TRAINING_PATTERN_DISABLE:
2893
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2894
 
2895
			break;
2896
		case DP_TRAINING_PATTERN_1:
2897
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2898
			break;
2899
		case DP_TRAINING_PATTERN_2:
2900
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2901
			break;
2902
		case DP_TRAINING_PATTERN_3:
2903
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2904
			break;
2905
		}
2906
		I915_WRITE(DP_TP_CTL(port), temp);
2907
 
4104 Serge 2908
	} else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
4560 Serge 2909
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
3031 serge 2910
 
2911
		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2912
		case DP_TRAINING_PATTERN_DISABLE:
4560 Serge 2913
			*DP |= DP_LINK_TRAIN_OFF_CPT;
3031 serge 2914
			break;
2915
		case DP_TRAINING_PATTERN_1:
4560 Serge 2916
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
3031 serge 2917
			break;
2918
		case DP_TRAINING_PATTERN_2:
4560 Serge 2919
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3031 serge 2920
			break;
2921
		case DP_TRAINING_PATTERN_3:
2922
			DRM_ERROR("DP training pattern 3 not supported\n");
4560 Serge 2923
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3031 serge 2924
			break;
2925
		}
2926
 
2927
	} else {
4560 Serge 2928
		*DP &= ~DP_LINK_TRAIN_MASK;
3031 serge 2929
 
2930
		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2931
		case DP_TRAINING_PATTERN_DISABLE:
4560 Serge 2932
			*DP |= DP_LINK_TRAIN_OFF;
3031 serge 2933
			break;
2934
		case DP_TRAINING_PATTERN_1:
4560 Serge 2935
			*DP |= DP_LINK_TRAIN_PAT_1;
3031 serge 2936
			break;
2937
		case DP_TRAINING_PATTERN_2:
4560 Serge 2938
			*DP |= DP_LINK_TRAIN_PAT_2;
3031 serge 2939
			break;
2940
		case DP_TRAINING_PATTERN_3:
2941
			DRM_ERROR("DP training pattern 3 not supported\n");
4560 Serge 2942
			*DP |= DP_LINK_TRAIN_PAT_2;
3031 serge 2943
			break;
2944
		}
2945
	}
2946
 
4560 Serge 2947
	I915_WRITE(intel_dp->output_reg, *DP);
2330 Serge 2948
	POSTING_READ(intel_dp->output_reg);
2949
 
4560 Serge 2950
	buf[0] = dp_train_pat;
2951
	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2952
	    DP_TRAINING_PATTERN_DISABLE) {
2953
		/* don't write DP_TRAINING_LANEx_SET on disable */
2954
		len = 1;
2955
	} else {
2956
		/* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2957
		memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2958
		len = intel_dp->lane_count + 1;
2959
	}
2330 Serge 2960
 
5060 serge 2961
	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
4560 Serge 2962
					buf, len);
2963
 
2964
	return ret == len;
2965
}
2966
 
2967
static bool
2968
intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2969
			uint8_t dp_train_pat)
2970
{
2971
	memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2972
	intel_dp_set_signal_levels(intel_dp, DP);
2973
	return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2974
}
2975
 
2976
static bool
2977
intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2978
			   const uint8_t link_status[DP_LINK_STATUS_SIZE])
2979
{
2980
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2981
	struct drm_device *dev = intel_dig_port->base.base.dev;
2982
	struct drm_i915_private *dev_priv = dev->dev_private;
2983
	int ret;
2984
 
2985
	intel_get_adjust_train(intel_dp, link_status);
2986
	intel_dp_set_signal_levels(intel_dp, DP);
2987
 
2988
	I915_WRITE(intel_dp->output_reg, *DP);
2989
	POSTING_READ(intel_dp->output_reg);
2990
 
5060 serge 2991
	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
2992
				intel_dp->train_set, intel_dp->lane_count);
2330 Serge 2993
 
4560 Serge 2994
	return ret == intel_dp->lane_count;
2330 Serge 2995
}
2996
 
3746 Serge 2997
static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2998
{
2999
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3000
	struct drm_device *dev = intel_dig_port->base.base.dev;
3001
	struct drm_i915_private *dev_priv = dev->dev_private;
3002
	enum port port = intel_dig_port->port;
3003
	uint32_t val;
3004
 
3005
	if (!HAS_DDI(dev))
3006
		return;
3007
 
3008
	val = I915_READ(DP_TP_CTL(port));
3009
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3010
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3011
	I915_WRITE(DP_TP_CTL(port), val);
3012
 
3013
	/*
3014
	 * On PORT_A we can have only eDP in SST mode. There the only reason
3015
	 * we need to set idle transmission mode is to work around a HW issue
3016
	 * where we enable the pipe while not in idle link-training mode.
3017
	 * In this case there is requirement to wait for a minimum number of
3018
	 * idle patterns to be sent.
3019
	 */
3020
	if (port == PORT_A)
3021
		return;
3022
 
3023
	if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3024
		     1))
3025
		DRM_ERROR("Timed out waiting for DP idle patterns\n");
3026
}
3027
 
2330 Serge 3028
/* Enable corresponding port and start training pattern 1 */
3243 Serge 3029
void
2330 Serge 3030
intel_dp_start_link_train(struct intel_dp *intel_dp)
3031
{
3243 Serge 3032
	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3033
	struct drm_device *dev = encoder->dev;
2330 Serge 3034
	int i;
3035
	uint8_t voltage;
2342 Serge 3036
	int voltage_tries, loop_tries;
2330 Serge 3037
	uint32_t DP = intel_dp->DP;
4560 Serge 3038
	uint8_t link_config[2];
2330 Serge 3039
 
3480 Serge 3040
	if (HAS_DDI(dev))
3243 Serge 3041
		intel_ddi_prepare_link_retrain(encoder);
3042
 
2330 Serge 3043
	/* Write the link configuration data */
4560 Serge 3044
	link_config[0] = intel_dp->link_bw;
3045
	link_config[1] = intel_dp->lane_count;
3046
	if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3047
		link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
5060 serge 3048
	drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
2330 Serge 3049
 
4560 Serge 3050
	link_config[0] = 0;
3051
	link_config[1] = DP_SET_ANSI_8B10B;
5060 serge 3052
	drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
4560 Serge 3053
 
2330 Serge 3054
	DP |= DP_PORT_EN;
2342 Serge 3055
 
4560 Serge 3056
	/* clock recovery */
3057
	if (!intel_dp_reset_link_train(intel_dp, &DP,
3058
				       DP_TRAINING_PATTERN_1 |
3059
				       DP_LINK_SCRAMBLING_DISABLE)) {
3060
		DRM_ERROR("failed to enable link training\n");
3061
		return;
3062
	}
3063
 
2330 Serge 3064
	voltage = 0xff;
2342 Serge 3065
	voltage_tries = 0;
3066
	loop_tries = 0;
2330 Serge 3067
	for (;;) {
2342 Serge 3068
		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
3069
 
3243 Serge 3070
		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2342 Serge 3071
		if (!intel_dp_get_link_status(intel_dp, link_status)) {
3072
			DRM_ERROR("failed to get link status\n");
2330 Serge 3073
			break;
2342 Serge 3074
		}
2330 Serge 3075
 
3243 Serge 3076
		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2342 Serge 3077
			DRM_DEBUG_KMS("clock recovery OK\n");
2330 Serge 3078
			break;
3079
		}
3080
 
3081
		/* Check to see if we've tried the max voltage */
3082
		for (i = 0; i < intel_dp->lane_count; i++)
3083
			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3084
				break;
3480 Serge 3085
		if (i == intel_dp->lane_count) {
2342 Serge 3086
			++loop_tries;
3087
			if (loop_tries == 5) {
4560 Serge 3088
				DRM_ERROR("too many full retries, give up\n");
2330 Serge 3089
			break;
2342 Serge 3090
			}
4560 Serge 3091
			intel_dp_reset_link_train(intel_dp, &DP,
3092
						  DP_TRAINING_PATTERN_1 |
3093
						  DP_LINK_SCRAMBLING_DISABLE);
2342 Serge 3094
			voltage_tries = 0;
3095
			continue;
3096
		}
2330 Serge 3097
 
3098
		/* Check to see if we've tried the same voltage 5 times */
3099
		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2342 Serge 3100
			++voltage_tries;
3101
			if (voltage_tries == 5) {
4560 Serge 3102
				DRM_ERROR("too many voltage retries, give up\n");
2330 Serge 3103
				break;
2342 Serge 3104
			}
2330 Serge 3105
		} else
2342 Serge 3106
			voltage_tries = 0;
2330 Serge 3107
		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3108
 
4560 Serge 3109
		/* Update training set as requested by target */
3110
		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3111
			DRM_ERROR("failed to update link training\n");
3112
			break;
3113
		}
2330 Serge 3114
	}
3115
 
3116
	intel_dp->DP = DP;
3117
}
3118
 
3243 Serge 3119
void
2330 Serge 3120
intel_dp_complete_link_train(struct intel_dp *intel_dp)
3121
{
3122
	bool channel_eq = false;
3123
	int tries, cr_tries;
3124
	uint32_t DP = intel_dp->DP;
5060 serge 3125
	uint32_t training_pattern = DP_TRAINING_PATTERN_2;
2330 Serge 3126
 
5060 serge 3127
	/* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3128
	if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3129
		training_pattern = DP_TRAINING_PATTERN_3;
3130
 
2330 Serge 3131
	/* channel equalization */
4560 Serge 3132
	if (!intel_dp_set_link_train(intel_dp, &DP,
5060 serge 3133
				     training_pattern |
4560 Serge 3134
				     DP_LINK_SCRAMBLING_DISABLE)) {
3135
		DRM_ERROR("failed to start channel equalization\n");
3136
		return;
3137
	}
3138
 
2330 Serge 3139
	tries = 0;
3140
	cr_tries = 0;
3141
	channel_eq = false;
3142
	for (;;) {
2342 Serge 3143
		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
2330 Serge 3144
 
3145
		if (cr_tries > 5) {
3146
			DRM_ERROR("failed to train DP, aborting\n");
3147
			break;
3148
		}
3149
 
3243 Serge 3150
		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
4560 Serge 3151
		if (!intel_dp_get_link_status(intel_dp, link_status)) {
3152
			DRM_ERROR("failed to get link status\n");
2330 Serge 3153
			break;
4560 Serge 3154
		}
2330 Serge 3155
 
3156
		/* Make sure clock is still ok */
3243 Serge 3157
		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2330 Serge 3158
			intel_dp_start_link_train(intel_dp);
4560 Serge 3159
			intel_dp_set_link_train(intel_dp, &DP,
5060 serge 3160
						training_pattern |
4560 Serge 3161
						DP_LINK_SCRAMBLING_DISABLE);
2330 Serge 3162
			cr_tries++;
3163
			continue;
3164
		}
3165
 
3243 Serge 3166
		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2330 Serge 3167
			channel_eq = true;
3168
			break;
3169
		}
3170
 
3171
		/* Try 5 times, then try clock recovery if that fails */
3172
		if (tries > 5) {
3173
			intel_dp_link_down(intel_dp);
3174
			intel_dp_start_link_train(intel_dp);
4560 Serge 3175
			intel_dp_set_link_train(intel_dp, &DP,
5060 serge 3176
						training_pattern |
4560 Serge 3177
						DP_LINK_SCRAMBLING_DISABLE);
2330 Serge 3178
			tries = 0;
3179
			cr_tries++;
3180
			continue;
3181
		}
3182
 
4560 Serge 3183
		/* Update training set as requested by target */
3184
		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3185
			DRM_ERROR("failed to update link training\n");
3186
			break;
3187
		}
2330 Serge 3188
		++tries;
3189
	}
3190
 
3746 Serge 3191
	intel_dp_set_idle_link_train(intel_dp);
3192
 
3193
	intel_dp->DP = DP;
3194
 
3243 Serge 3195
	if (channel_eq)
3746 Serge 3196
		DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3243 Serge 3197
 
2330 Serge 3198
}
3199
 
3746 Serge 3200
void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3201
{
4560 Serge 3202
	intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3746 Serge 3203
				DP_TRAINING_PATTERN_DISABLE);
3204
}
3205
 
2330 Serge 3206
static void
3207
intel_dp_link_down(struct intel_dp *intel_dp)
3208
{
3243 Serge 3209
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4104 Serge 3210
	enum port port = intel_dig_port->port;
3243 Serge 3211
	struct drm_device *dev = intel_dig_port->base.base.dev;
2330 Serge 3212
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 3213
	struct intel_crtc *intel_crtc =
3214
		to_intel_crtc(intel_dig_port->base.base.crtc);
2330 Serge 3215
	uint32_t DP = intel_dp->DP;
3216
 
5060 serge 3217
	if (WARN_ON(HAS_DDI(dev)))
3243 Serge 3218
		return;
3219
 
3031 serge 3220
	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2330 Serge 3221
		return;
3222
 
3223
	DRM_DEBUG_KMS("\n");
3224
 
4104 Serge 3225
	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2330 Serge 3226
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3227
		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3228
	} else {
3229
		DP &= ~DP_LINK_TRAIN_MASK;
3230
		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3231
	}
3232
	POSTING_READ(intel_dp->output_reg);
3233
 
3031 serge 3234
	if (HAS_PCH_IBX(dev) &&
2330 Serge 3235
	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3243 Serge 3236
		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2330 Serge 3237
 
3238
		/* Hardware workaround: leaving our transcoder select
3239
		 * set to transcoder B while it's off will prevent the
3240
		 * corresponding HDMI output on transcoder A.
3241
		 *
3242
		 * Combine this with another hardware workaround:
3243
		 * transcoder select bit can only be cleared while the
3244
		 * port is enabled.
3245
		 */
3246
		DP &= ~DP_PIPEB_SELECT;
3247
		I915_WRITE(intel_dp->output_reg, DP);
3248
 
3249
		/* Changes to enable or select take place the vblank
3250
		 * after being written.
3251
		 */
3480 Serge 3252
		if (WARN_ON(crtc == NULL)) {
3253
			/* We should never try to disable a port without a crtc
3254
			 * attached. For paranoia keep the code around for a
3255
			 * bit. */
2330 Serge 3256
			POSTING_READ(intel_dp->output_reg);
3257
			msleep(50);
3258
		} else
3480 Serge 3259
			intel_wait_for_vblank(dev, intel_crtc->pipe);
2330 Serge 3260
	}
3261
 
2342 Serge 3262
	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2330 Serge 3263
	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3264
	POSTING_READ(intel_dp->output_reg);
2342 Serge 3265
	msleep(intel_dp->panel_power_down_delay);
2330 Serge 3266
}
3267
 
3268
static bool
3269
intel_dp_get_dpcd(struct intel_dp *intel_dp)
3270
{
4560 Serge 3271
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3272
	struct drm_device *dev = dig_port->base.base.dev;
3273
	struct drm_i915_private *dev_priv = dev->dev_private;
3274
 
3480 Serge 3275
	char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
3276
 
5060 serge 3277
	if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3278
				    sizeof(intel_dp->dpcd)) < 0)
3031 serge 3279
		return false; /* aux transfer failed */
3280
 
3480 Serge 3281
	hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
3282
			   32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
3283
	DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
3284
 
3031 serge 3285
	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3286
		return false; /* DPCD not present */
3287
 
4104 Serge 3288
	/* Check if the panel supports PSR */
3289
	memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
4560 Serge 3290
	if (is_edp(intel_dp)) {
5060 serge 3291
		intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
4104 Serge 3292
				       intel_dp->psr_dpcd,
3293
				       sizeof(intel_dp->psr_dpcd));
4560 Serge 3294
		if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3295
			dev_priv->psr.sink_support = true;
4104 Serge 3296
		DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
4560 Serge 3297
		}
3298
	}
3299
 
5060 serge 3300
	/* Training Pattern 3 support */
3301
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3302
	    intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3303
		intel_dp->use_tps3 = true;
3304
		DRM_DEBUG_KMS("Displayport TPS3 supported");
3305
	} else
3306
		intel_dp->use_tps3 = false;
3307
 
3031 serge 3308
	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3309
	      DP_DWN_STRM_PORT_PRESENT))
3310
		return true; /* native DP sink */
3311
 
3312
	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3313
		return true; /* no per-port downstream info */
3314
 
5060 serge 3315
	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3031 serge 3316
					   intel_dp->downstream_ports,
5060 serge 3317
				    DP_MAX_DOWNSTREAM_PORTS) < 0)
3031 serge 3318
		return false; /* downstream port status fetch failed */
3319
 
2330 Serge 3320
		return true;
3031 serge 3321
}
2330 Serge 3322
 
3031 serge 3323
static void
3324
intel_dp_probe_oui(struct intel_dp *intel_dp)
3325
{
3326
	u8 buf[3];
3327
 
3328
	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3329
		return;
3330
 
5060 serge 3331
	intel_edp_panel_vdd_on(intel_dp);
3031 serge 3332
 
5060 serge 3333
	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3031 serge 3334
		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3335
			      buf[0], buf[1], buf[2]);
3336
 
5060 serge 3337
	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3031 serge 3338
		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3339
			      buf[0], buf[1], buf[2]);
3340
 
5060 serge 3341
	edp_panel_vdd_off(intel_dp, false);
2330 Serge 3342
}
3343
 
2342 Serge 3344
static bool
5060 serge 3345
intel_dp_probe_mst(struct intel_dp *intel_dp)
3346
{
3347
	u8 buf[1];
3348
 
3349
	if (!intel_dp->can_mst)
3350
		return false;
3351
 
3352
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3353
		return false;
3354
 
3355
	_edp_panel_vdd_on(intel_dp);
3356
	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3357
		if (buf[0] & DP_MST_CAP) {
3358
			DRM_DEBUG_KMS("Sink is MST capable\n");
3359
			intel_dp->is_mst = true;
3360
		} else {
3361
			DRM_DEBUG_KMS("Sink is not MST capable\n");
3362
			intel_dp->is_mst = false;
3363
		}
3364
	}
3365
	edp_panel_vdd_off(intel_dp, false);
3366
 
3367
	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3368
	return intel_dp->is_mst;
3369
}
3370
 
3371
int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3372
{
3373
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3374
	struct drm_device *dev = intel_dig_port->base.base.dev;
3375
	struct intel_crtc *intel_crtc =
3376
		to_intel_crtc(intel_dig_port->base.base.crtc);
3377
	u8 buf[1];
3378
 
3379
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3380
		return -EAGAIN;
3381
 
3382
	if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3383
		return -ENOTTY;
3384
 
3385
	if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3386
			       DP_TEST_SINK_START) < 0)
3387
		return -EAGAIN;
3388
 
3389
	/* Wait 2 vblanks to be sure we will have the correct CRC value */
3390
	intel_wait_for_vblank(dev, intel_crtc->pipe);
3391
	intel_wait_for_vblank(dev, intel_crtc->pipe);
3392
 
3393
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3394
		return -EAGAIN;
3395
 
3396
	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3397
	return 0;
3398
}
3399
 
3400
static bool
2342 Serge 3401
intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3402
{
5060 serge 3403
	return intel_dp_dpcd_read_wake(&intel_dp->aux,
3404
					     DP_DEVICE_SERVICE_IRQ_VECTOR,
3405
				       sink_irq_vector, 1) == 1;
3406
}
3407
 
3408
static bool
3409
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3410
{
2342 Serge 3411
	int ret;
3412
 
5060 serge 3413
	ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3414
					     DP_SINK_COUNT_ESI,
3415
					     sink_irq_vector, 14);
3416
	if (ret != 14)
2342 Serge 3417
		return false;
3418
 
3419
	return true;
3420
}
3421
 
3422
static void
3423
intel_dp_handle_test_request(struct intel_dp *intel_dp)
3424
{
3425
	/* NAK by default */
5060 serge 3426
	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
2342 Serge 3427
}
3428
 
5060 serge 3429
static int
3430
intel_dp_check_mst_status(struct intel_dp *intel_dp)
3431
{
3432
	bool bret;
3433
 
3434
	if (intel_dp->is_mst) {
3435
		u8 esi[16] = { 0 };
3436
		int ret = 0;
3437
		int retry;
3438
		bool handled;
3439
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3440
go_again:
3441
		if (bret == true) {
3442
 
3443
			/* check link status - esi[10] = 0x200c */
3444
			if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3445
				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3446
				intel_dp_start_link_train(intel_dp);
3447
				intel_dp_complete_link_train(intel_dp);
3448
				intel_dp_stop_link_train(intel_dp);
3449
			}
3450
 
3451
			DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3452
			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3453
 
3454
			if (handled) {
3455
				for (retry = 0; retry < 3; retry++) {
3456
					int wret;
3457
					wret = drm_dp_dpcd_write(&intel_dp->aux,
3458
								 DP_SINK_COUNT_ESI+1,
3459
								 &esi[1], 3);
3460
					if (wret == 3) {
3461
						break;
3462
					}
3463
				}
3464
 
3465
				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3466
				if (bret == true) {
3467
					DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3468
					goto go_again;
3469
				}
3470
			} else
3471
				ret = 0;
3472
 
3473
			return ret;
3474
		} else {
3475
			struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3476
			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3477
			intel_dp->is_mst = false;
3478
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3479
			/* send a hotplug event */
3480
			drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3481
		}
3482
	}
3483
	return -EINVAL;
3484
}
3485
 
2330 Serge 3486
/*
3487
 * According to DP spec
3488
 * 5.1.2:
3489
 *  1. Read DPCD
3490
 *  2. Configure link according to Receiver Capabilities
3491
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3492
 *  4. Check link status on receipt of hot-plug interrupt
3493
 */
3243 Serge 3494
void
2330 Serge 3495
intel_dp_check_link_status(struct intel_dp *intel_dp)
3496
{
5060 serge 3497
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3243 Serge 3498
	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2342 Serge 3499
	u8 sink_irq_vector;
3500
	u8 link_status[DP_LINK_STATUS_SIZE];
3501
 
5060 serge 3502
	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3503
 
3243 Serge 3504
	if (!intel_encoder->connectors_active)
2330 Serge 3505
		return;
3506
 
3243 Serge 3507
	if (WARN_ON(!intel_encoder->base.crtc))
2330 Serge 3508
		return;
3509
 
5060 serge 3510
	if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3511
		return;
3512
 
2330 Serge 3513
	/* Try to read receiver status if the link appears to be up */
2342 Serge 3514
	if (!intel_dp_get_link_status(intel_dp, link_status)) {
2330 Serge 3515
		return;
3516
	}
3517
 
3518
	/* Now read the DPCD to see if it's actually running */
3519
	if (!intel_dp_get_dpcd(intel_dp)) {
3520
		return;
3521
	}
3522
 
2342 Serge 3523
	/* Try to read the source of the interrupt */
3524
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3525
	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3526
		/* Clear interrupt source */
5060 serge 3527
		drm_dp_dpcd_writeb(&intel_dp->aux,
2342 Serge 3528
					    DP_DEVICE_SERVICE_IRQ_VECTOR,
3529
					    sink_irq_vector);
3530
 
3531
		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3532
			intel_dp_handle_test_request(intel_dp);
3533
		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3534
			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3535
	}
3536
 
3243 Serge 3537
	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2330 Serge 3538
		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
5060 serge 3539
			      intel_encoder->base.name);
2330 Serge 3540
		intel_dp_start_link_train(intel_dp);
3541
		intel_dp_complete_link_train(intel_dp);
3746 Serge 3542
		intel_dp_stop_link_train(intel_dp);
2330 Serge 3543
	}
3544
}
3545
 
3031 serge 3546
/* XXX this is probably wrong for multiple downstream ports */
2330 Serge 3547
static enum drm_connector_status
3548
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3549
{
3031 serge 3550
	uint8_t *dpcd = intel_dp->dpcd;
3551
	uint8_t type;
3552
 
3553
	if (!intel_dp_get_dpcd(intel_dp))
3554
		return connector_status_disconnected;
3555
 
3556
	/* if there's no downstream port, we're done */
3557
	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2330 Serge 3558
		return connector_status_connected;
3031 serge 3559
 
3560
	/* If we're HPD-aware, SINK_COUNT changes dynamically */
4560 Serge 3561
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3562
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3031 serge 3563
		uint8_t reg;
5060 serge 3564
 
3565
		if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3566
					    ®, 1) < 0)
3031 serge 3567
			return connector_status_unknown;
5060 serge 3568
 
3031 serge 3569
		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3570
					      : connector_status_disconnected;
3571
	}
3572
 
3573
	/* If no HPD, poke DDC gently */
5060 serge 3574
	if (drm_probe_ddc(&intel_dp->aux.ddc))
3031 serge 3575
		return connector_status_connected;
3576
 
3577
	/* Well we tried, say unknown for unreliable port types */
4560 Serge 3578
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3031 serge 3579
	type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4560 Serge 3580
		if (type == DP_DS_PORT_TYPE_VGA ||
3581
		    type == DP_DS_PORT_TYPE_NON_EDID)
3031 serge 3582
		return connector_status_unknown;
4560 Serge 3583
	} else {
3584
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3585
			DP_DWN_STRM_PORT_TYPE_MASK;
3586
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3587
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
5060 serge 3588
			return connector_status_unknown;
4560 Serge 3589
	}
3031 serge 3590
 
3591
	/* Anything else is out of spec, warn and ignore */
3592
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2330 Serge 3593
	return connector_status_disconnected;
3594
}
3595
 
3596
static enum drm_connector_status
3597
ironlake_dp_detect(struct intel_dp *intel_dp)
3598
{
3243 Serge 3599
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3480 Serge 3600
	struct drm_i915_private *dev_priv = dev->dev_private;
3601
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2330 Serge 3602
	enum drm_connector_status status;
3603
 
3604
	/* Can't disconnect eDP, but you can close the lid... */
3605
	if (is_edp(intel_dp)) {
3243 Serge 3606
		status = intel_panel_detect(dev);
2330 Serge 3607
		if (status == connector_status_unknown)
3608
			status = connector_status_connected;
3609
		return status;
3610
	}
3611
 
3480 Serge 3612
	if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3613
		return connector_status_disconnected;
3614
 
2330 Serge 3615
	return intel_dp_detect_dpcd(intel_dp);
3616
}
3617
 
5097 serge 3618
static int g4x_digital_port_connected(struct drm_device *dev,
3619
				       struct intel_digital_port *intel_dig_port)
2330 Serge 3620
{
3621
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3622
	uint32_t bit;
2330 Serge 3623
 
4560 Serge 3624
	if (IS_VALLEYVIEW(dev)) {
3625
		switch (intel_dig_port->port) {
3626
		case PORT_B:
3627
			bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3628
			break;
3629
		case PORT_C:
3630
			bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3631
			break;
3632
		case PORT_D:
3633
			bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3634
			break;
3635
		default:
5097 serge 3636
			return -EINVAL;
4560 Serge 3637
		}
3638
	} else {
3480 Serge 3639
	switch (intel_dig_port->port) {
3640
	case PORT_B:
4560 Serge 3641
			bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
2330 Serge 3642
		break;
3480 Serge 3643
	case PORT_C:
4560 Serge 3644
			bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
2330 Serge 3645
		break;
3480 Serge 3646
	case PORT_D:
4560 Serge 3647
			bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
2330 Serge 3648
		break;
3649
	default:
5097 serge 3650
			return -EINVAL;
2330 Serge 3651
	}
4560 Serge 3652
	}
2330 Serge 3653
 
3031 serge 3654
	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
5097 serge 3655
		return 0;
3656
	return 1;
3657
}
3658
 
3659
static enum drm_connector_status
3660
g4x_dp_detect(struct intel_dp *intel_dp)
3661
{
3662
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3663
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3664
	int ret;
3665
 
3666
	/* Can't disconnect eDP, but you can close the lid... */
3667
	if (is_edp(intel_dp)) {
3668
		enum drm_connector_status status;
3669
 
3670
		status = intel_panel_detect(dev);
3671
		if (status == connector_status_unknown)
3672
			status = connector_status_connected;
3673
		return status;
3674
	}
3675
 
3676
	ret = g4x_digital_port_connected(dev, intel_dig_port);
3677
	if (ret == -EINVAL)
3678
		return connector_status_unknown;
3679
	else if (ret == 0)
2330 Serge 3680
		return connector_status_disconnected;
3681
 
3682
	return intel_dp_detect_dpcd(intel_dp);
3683
}
3684
 
2342 Serge 3685
static struct edid *
3686
intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3687
{
3243 Serge 3688
	struct intel_connector *intel_connector = to_intel_connector(connector);
3689
 
3690
	/* use cached edid if we have one */
3691
	if (intel_connector->edid) {
3692
		/* invalid edid */
3693
		if (IS_ERR(intel_connector->edid))
3031 serge 3694
			return NULL;
3695
 
4560 Serge 3696
		return drm_edid_duplicate(intel_connector->edid);
3031 serge 3697
	}
3698
 
3243 Serge 3699
	return drm_get_edid(connector, adapter);
2342 Serge 3700
}
3701
 
3702
static int
3703
intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3704
{
3243 Serge 3705
	struct intel_connector *intel_connector = to_intel_connector(connector);
2342 Serge 3706
 
3243 Serge 3707
	/* use cached edid if we have one */
3708
	if (intel_connector->edid) {
3709
		/* invalid edid */
3710
		if (IS_ERR(intel_connector->edid))
3711
			return 0;
3712
 
3713
		return intel_connector_update_modes(connector,
3714
						    intel_connector->edid);
3031 serge 3715
	}
3716
 
3243 Serge 3717
	return intel_ddc_get_modes(connector, adapter);
2342 Serge 3718
}
3719
 
2330 Serge 3720
static enum drm_connector_status
3721
intel_dp_detect(struct drm_connector *connector, bool force)
3722
{
3723
	struct intel_dp *intel_dp = intel_attached_dp(connector);
3243 Serge 3724
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3725
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3726
	struct drm_device *dev = connector->dev;
4560 Serge 3727
	struct drm_i915_private *dev_priv = dev->dev_private;
2330 Serge 3728
	enum drm_connector_status status;
5060 serge 3729
	enum intel_display_power_domain power_domain;
2330 Serge 3730
	struct edid *edid = NULL;
5060 serge 3731
	bool ret;
2330 Serge 3732
 
5060 serge 3733
	power_domain = intel_display_port_power_domain(intel_encoder);
3734
	intel_display_power_get(dev_priv, power_domain);
4560 Serge 3735
 
4104 Serge 3736
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5060 serge 3737
		      connector->base.id, connector->name);
4104 Serge 3738
 
5060 serge 3739
	if (intel_dp->is_mst) {
3740
		/* MST devices are disconnected from a monitor POV */
3741
		if (intel_encoder->type != INTEL_OUTPUT_EDP)
3742
			intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3743
		status = connector_status_disconnected;
3744
		goto out;
3745
	}
3746
 
2330 Serge 3747
	intel_dp->has_audio = false;
3748
 
3749
	if (HAS_PCH_SPLIT(dev))
3750
		status = ironlake_dp_detect(intel_dp);
3751
	else
3752
		status = g4x_dp_detect(intel_dp);
3753
 
3754
	if (status != connector_status_connected)
4560 Serge 3755
		goto out;
3031 serge 3756
 
3757
	intel_dp_probe_oui(intel_dp);
3758
 
5060 serge 3759
	ret = intel_dp_probe_mst(intel_dp);
3760
	if (ret) {
3761
		/* if we are in MST mode then this connector
3762
		   won't appear connected or have anything with EDID on it */
3763
		if (intel_encoder->type != INTEL_OUTPUT_EDP)
3764
			intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3765
		status = connector_status_disconnected;
3766
		goto out;
3767
	}
3768
 
3243 Serge 3769
	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3770
		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2330 Serge 3771
	} else {
5060 serge 3772
		edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
2330 Serge 3773
		if (edid) {
3774
			intel_dp->has_audio = drm_detect_monitor_audio(edid);
3775
			kfree(edid);
3776
		}
3777
	}
3243 Serge 3778
 
3779
	if (intel_encoder->type != INTEL_OUTPUT_EDP)
3780
		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4560 Serge 3781
	status = connector_status_connected;
3782
 
3783
out:
5060 serge 3784
	intel_display_power_put(dev_priv, power_domain);
4560 Serge 3785
	return status;
2330 Serge 3786
}
3787
 
3788
static int intel_dp_get_modes(struct drm_connector *connector)
3789
{
3790
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5060 serge 3791
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3792
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3243 Serge 3793
	struct intel_connector *intel_connector = to_intel_connector(connector);
3794
	struct drm_device *dev = connector->dev;
5060 serge 3795
	struct drm_i915_private *dev_priv = dev->dev_private;
3796
	enum intel_display_power_domain power_domain;
2330 Serge 3797
	int ret;
3798
 
3799
	/* We should parse the EDID data and find out if it has an audio sink
3800
	 */
3801
 
5060 serge 3802
	power_domain = intel_display_port_power_domain(intel_encoder);
3803
	intel_display_power_get(dev_priv, power_domain);
3804
 
3805
	ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3806
	intel_display_power_put(dev_priv, power_domain);
3243 Serge 3807
	if (ret)
2330 Serge 3808
		return ret;
3809
 
3243 Serge 3810
	/* if eDP has no EDID, fall back to fixed mode */
3811
	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2330 Serge 3812
			struct drm_display_mode *mode;
3243 Serge 3813
		mode = drm_mode_duplicate(dev,
3814
					  intel_connector->panel.fixed_mode);
3815
		if (mode) {
2330 Serge 3816
			drm_mode_probed_add(connector, mode);
3817
			return 1;
3818
		}
3819
	}
3820
	return 0;
3821
}
3822
 
3243 Serge 3823
static bool
3824
intel_dp_detect_audio(struct drm_connector *connector)
3825
{
3826
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5060 serge 3827
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3828
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3829
	struct drm_device *dev = connector->dev;
3830
	struct drm_i915_private *dev_priv = dev->dev_private;
3831
	enum intel_display_power_domain power_domain;
3243 Serge 3832
	struct edid *edid;
3833
	bool has_audio = false;
2330 Serge 3834
 
5060 serge 3835
	power_domain = intel_display_port_power_domain(intel_encoder);
3836
	intel_display_power_get(dev_priv, power_domain);
3837
 
3838
	edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3243 Serge 3839
	if (edid) {
3840
		has_audio = drm_detect_monitor_audio(edid);
3841
		kfree(edid);
3842
	}
2330 Serge 3843
 
5060 serge 3844
	intel_display_power_put(dev_priv, power_domain);
3845
 
3243 Serge 3846
	return has_audio;
3847
}
2330 Serge 3848
 
3849
static int
3850
intel_dp_set_property(struct drm_connector *connector,
3851
		      struct drm_property *property,
3852
		      uint64_t val)
3853
{
3854
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
3243 Serge 3855
	struct intel_connector *intel_connector = to_intel_connector(connector);
3856
	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3857
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2330 Serge 3858
	int ret;
3859
 
3243 Serge 3860
	ret = drm_object_property_set_value(&connector->base, property, val);
2330 Serge 3861
	if (ret)
3862
		return ret;
3480 Serge 3863
 
2330 Serge 3864
	if (property == dev_priv->force_audio_property) {
3865
		int i = val;
3866
		bool has_audio;
3867
 
3868
		if (i == intel_dp->force_audio)
3869
			return 0;
3870
 
3871
		intel_dp->force_audio = i;
3872
 
3031 serge 3873
		if (i == HDMI_AUDIO_AUTO)
2330 Serge 3874
			has_audio = intel_dp_detect_audio(connector);
3875
		else
3031 serge 3876
			has_audio = (i == HDMI_AUDIO_ON);
2330 Serge 3877
 
3878
		if (has_audio == intel_dp->has_audio)
3879
			return 0;
3880
 
3881
		intel_dp->has_audio = has_audio;
3882
		goto done;
3883
	}
3884
 
3885
	if (property == dev_priv->broadcast_rgb_property) {
3746 Serge 3886
		bool old_auto = intel_dp->color_range_auto;
3887
		uint32_t old_range = intel_dp->color_range;
3888
 
3480 Serge 3889
		switch (val) {
3890
		case INTEL_BROADCAST_RGB_AUTO:
3891
			intel_dp->color_range_auto = true;
3892
			break;
3893
		case INTEL_BROADCAST_RGB_FULL:
3894
			intel_dp->color_range_auto = false;
3895
			intel_dp->color_range = 0;
3896
			break;
3897
		case INTEL_BROADCAST_RGB_LIMITED:
3898
			intel_dp->color_range_auto = false;
3899
			intel_dp->color_range = DP_COLOR_RANGE_16_235;
3900
			break;
3901
		default:
3902
			return -EINVAL;
3903
		}
3746 Serge 3904
 
3905
		if (old_auto == intel_dp->color_range_auto &&
3906
		    old_range == intel_dp->color_range)
3907
			return 0;
3908
 
2330 Serge 3909
	goto done;
3910
	}
3911
 
3243 Serge 3912
	if (is_edp(intel_dp) &&
3913
	    property == connector->dev->mode_config.scaling_mode_property) {
3914
		if (val == DRM_MODE_SCALE_NONE) {
3915
			DRM_DEBUG_KMS("no scaling not supported\n");
3916
			return -EINVAL;
3917
		}
3918
 
3919
		if (intel_connector->panel.fitting_mode == val) {
3920
			/* the eDP scaling property is not changed */
3921
			return 0;
3922
		}
3923
		intel_connector->panel.fitting_mode = val;
3924
 
3925
		goto done;
3926
	}
3927
 
2330 Serge 3928
	return -EINVAL;
3929
 
3930
done:
3480 Serge 3931
	if (intel_encoder->base.crtc)
3932
		intel_crtc_restore_mode(intel_encoder->base.crtc);
2330 Serge 3933
 
3934
	return 0;
3935
}
3936
 
3937
static void
4104 Serge 3938
intel_dp_connector_destroy(struct drm_connector *connector)
2330 Serge 3939
{
3243 Serge 3940
	struct intel_connector *intel_connector = to_intel_connector(connector);
2330 Serge 3941
 
3243 Serge 3942
	if (!IS_ERR_OR_NULL(intel_connector->edid))
3943
		kfree(intel_connector->edid);
3944
 
4104 Serge 3945
	/* Can't call is_edp() since the encoder may have been destroyed
3946
	 * already. */
3947
	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3243 Serge 3948
		intel_panel_fini(&intel_connector->panel);
2330 Serge 3949
 
3950
	drm_connector_cleanup(connector);
3951
	kfree(connector);
3952
}
3953
 
3243 Serge 3954
void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2330 Serge 3955
{
3243 Serge 3956
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3957
	struct intel_dp *intel_dp = &intel_dig_port->dp;
3480 Serge 3958
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 3959
 
5060 serge 3960
	drm_dp_aux_unregister(&intel_dp->aux);
3961
	intel_dp_mst_encoder_cleanup(intel_dig_port);
2330 Serge 3962
	drm_encoder_cleanup(encoder);
2342 Serge 3963
	if (is_edp(intel_dp)) {
4293 Serge 3964
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5060 serge 3965
		drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
3966
		edp_panel_vdd_off_sync(intel_dp);
3967
		drm_modeset_unlock(&dev->mode_config.connection_mutex);
2342 Serge 3968
	}
3243 Serge 3969
	kfree(intel_dig_port);
2330 Serge 3970
}
3971
 
5060 serge 3972
static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
3973
{
3974
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3975
 
3976
	if (!is_edp(intel_dp))
3977
		return;
3978
 
3979
	edp_panel_vdd_off_sync(intel_dp);
3980
}
3981
 
3982
static void intel_dp_encoder_reset(struct drm_encoder *encoder)
3983
{
3984
	intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder));
3985
}
3986
 
2330 Serge 3987
static const struct drm_connector_funcs intel_dp_connector_funcs = {
3031 serge 3988
	.dpms = intel_connector_dpms,
2330 Serge 3989
	.detect = intel_dp_detect,
3990
	.fill_modes = drm_helper_probe_single_connector_modes,
3991
	.set_property = intel_dp_set_property,
4104 Serge 3992
	.destroy = intel_dp_connector_destroy,
2330 Serge 3993
};
3994
 
3995
static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3996
	.get_modes = intel_dp_get_modes,
3997
	.mode_valid = intel_dp_mode_valid,
3998
	.best_encoder = intel_best_encoder,
3999
};
4000
 
4001
static const struct drm_encoder_funcs intel_dp_enc_funcs = {
5060 serge 4002
	.reset = intel_dp_encoder_reset,
2330 Serge 4003
	.destroy = intel_dp_encoder_destroy,
4004
};
4005
 
5060 serge 4006
void
2330 Serge 4007
intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4008
{
5060 serge 4009
	return;
4010
}
2330 Serge 4011
 
5060 serge 4012
bool
4013
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4014
{
4015
	struct intel_dp *intel_dp = &intel_dig_port->dp;
4016
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4017
	struct drm_device *dev = intel_dig_port->base.base.dev;
4018
	struct drm_i915_private *dev_priv = dev->dev_private;
4019
	enum intel_display_power_domain power_domain;
4020
	bool ret = true;
4021
 
4022
	if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4023
		intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4024
 
4025
	DRM_DEBUG_KMS("got hpd irq on port %d - %s\n", intel_dig_port->port,
4026
		      long_hpd ? "long" : "short");
4027
 
4028
	power_domain = intel_display_port_power_domain(intel_encoder);
4029
	intel_display_power_get(dev_priv, power_domain);
4030
 
4031
	if (long_hpd) {
5097 serge 4032
 
4033
		if (HAS_PCH_SPLIT(dev)) {
5060 serge 4034
		if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4035
			goto mst_fail;
5097 serge 4036
		} else {
4037
			if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4038
				goto mst_fail;
4039
		}
5060 serge 4040
 
4041
		if (!intel_dp_get_dpcd(intel_dp)) {
4042
			goto mst_fail;
4043
		}
4044
 
4045
		intel_dp_probe_oui(intel_dp);
4046
 
4047
		if (!intel_dp_probe_mst(intel_dp))
4048
			goto mst_fail;
4049
 
4050
	} else {
4051
		if (intel_dp->is_mst) {
4052
			if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4053
				goto mst_fail;
4054
		}
4055
 
4056
		if (!intel_dp->is_mst) {
4057
			/*
4058
			 * we'll check the link status via the normal hot plug path later -
4059
			 * but for short hpds we should check it now
4060
			 */
4061
			drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4062
			intel_dp_check_link_status(intel_dp);
4063
			drm_modeset_unlock(&dev->mode_config.connection_mutex);
4064
		}
4065
	}
4066
	ret = false;
4067
	goto put_power;
4068
mst_fail:
4069
	/* if we were in MST mode, and device is not there get out of MST mode */
4070
	if (intel_dp->is_mst) {
4071
		DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4072
		intel_dp->is_mst = false;
4073
		drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4074
	}
4075
put_power:
4076
	intel_display_power_put(dev_priv, power_domain);
4077
 
4078
	return ret;
2330 Serge 4079
}
4080
 
2327 Serge 4081
/* Return which DP Port should be selected for Transcoder DP control */
4082
int
2342 Serge 4083
intel_trans_dp_port_sel(struct drm_crtc *crtc)
2327 Serge 4084
{
4085
	struct drm_device *dev = crtc->dev;
3243 Serge 4086
	struct intel_encoder *intel_encoder;
4087
	struct intel_dp *intel_dp;
2327 Serge 4088
 
3243 Serge 4089
	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4090
		intel_dp = enc_to_intel_dp(&intel_encoder->base);
2327 Serge 4091
 
3243 Serge 4092
		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4093
		    intel_encoder->type == INTEL_OUTPUT_EDP)
2327 Serge 4094
			return intel_dp->output_reg;
4095
	}
4096
 
4097
	return -1;
4098
}
2330 Serge 4099
 
4100
/* check the VBT to see whether the eDP is on DP-D port */
4560 Serge 4101
bool intel_dp_is_edp(struct drm_device *dev, enum port port)
2330 Serge 4102
{
4103
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 4104
	union child_device_config *p_child;
2330 Serge 4105
	int i;
4560 Serge 4106
	static const short port_mapping[] = {
4107
		[PORT_B] = PORT_IDPB,
4108
		[PORT_C] = PORT_IDPC,
4109
		[PORT_D] = PORT_IDPD,
4110
	};
2330 Serge 4111
 
4560 Serge 4112
	if (port == PORT_A)
4113
		return true;
4114
 
4104 Serge 4115
	if (!dev_priv->vbt.child_dev_num)
2330 Serge 4116
		return false;
4117
 
4104 Serge 4118
	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4119
		p_child = dev_priv->vbt.child_dev + i;
2330 Serge 4120
 
4560 Serge 4121
		if (p_child->common.dvo_port == port_mapping[port] &&
4122
		    (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4123
		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
2330 Serge 4124
			return true;
4125
	}
4126
	return false;
4127
}
4128
 
5060 serge 4129
void
2330 Serge 4130
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4131
{
3243 Serge 4132
	struct intel_connector *intel_connector = to_intel_connector(connector);
4133
 
2330 Serge 4134
	intel_attach_force_audio_property(connector);
4135
	intel_attach_broadcast_rgb_property(connector);
3480 Serge 4136
	intel_dp->color_range_auto = true;
3243 Serge 4137
 
4138
	if (is_edp(intel_dp)) {
4139
		drm_mode_create_scaling_mode_property(connector->dev);
4140
		drm_object_attach_property(
4141
			&connector->base,
4142
			connector->dev->mode_config.scaling_mode_property,
4143
			DRM_MODE_SCALE_ASPECT);
4144
		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4145
	}
2330 Serge 4146
}
4147
 
5060 serge 4148
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4149
{
4150
	intel_dp->last_power_cycle = jiffies;
4151
	intel_dp->last_power_on = jiffies;
4152
	intel_dp->last_backlight_off = jiffies;
4153
}
4154
 
3243 Serge 4155
static void
4156
intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4157
				    struct intel_dp *intel_dp,
4158
				    struct edp_power_seq *out)
4159
{
4160
	struct drm_i915_private *dev_priv = dev->dev_private;
4161
	struct edp_power_seq cur, vbt, spec, final;
4162
	u32 pp_on, pp_off, pp_div, pp;
4560 Serge 4163
	int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3243 Serge 4164
 
3746 Serge 4165
	if (HAS_PCH_SPLIT(dev)) {
4560 Serge 4166
		pp_ctrl_reg = PCH_PP_CONTROL;
3746 Serge 4167
		pp_on_reg = PCH_PP_ON_DELAYS;
4168
		pp_off_reg = PCH_PP_OFF_DELAYS;
4169
		pp_div_reg = PCH_PP_DIVISOR;
4170
	} else {
4560 Serge 4171
		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4172
 
4173
		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4174
		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4175
		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4176
		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3746 Serge 4177
	}
4178
 
3243 Serge 4179
	/* Workaround: Need to write PP_CONTROL with the unlock key as
4180
	 * the very first thing. */
3746 Serge 4181
	pp = ironlake_get_pp_control(intel_dp);
4560 Serge 4182
	I915_WRITE(pp_ctrl_reg, pp);
3243 Serge 4183
 
3746 Serge 4184
	pp_on = I915_READ(pp_on_reg);
4185
	pp_off = I915_READ(pp_off_reg);
4186
	pp_div = I915_READ(pp_div_reg);
3243 Serge 4187
 
4188
	/* Pull timing values out of registers */
4189
	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4190
		PANEL_POWER_UP_DELAY_SHIFT;
4191
 
4192
	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4193
		PANEL_LIGHT_ON_DELAY_SHIFT;
4194
 
4195
	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4196
		PANEL_LIGHT_OFF_DELAY_SHIFT;
4197
 
4198
	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4199
		PANEL_POWER_DOWN_DELAY_SHIFT;
4200
 
4201
	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4202
		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4203
 
4204
	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4205
		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4206
 
4104 Serge 4207
	vbt = dev_priv->vbt.edp_pps;
3243 Serge 4208
 
4209
	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4210
	 * our hw here, which are all in 100usec. */
4211
	spec.t1_t3 = 210 * 10;
4212
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4213
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4214
	spec.t10 = 500 * 10;
4215
	/* This one is special and actually in units of 100ms, but zero
4216
	 * based in the hw (so we need to add 100 ms). But the sw vbt
4217
	 * table multiplies it with 1000 to make it in units of 100usec,
4218
	 * too. */
4219
	spec.t11_t12 = (510 + 100) * 10;
4220
 
4221
	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4222
		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4223
 
4224
	/* Use the max of the register settings and vbt. If both are
4225
	 * unset, fall back to the spec limits. */
4226
#define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
4227
				       spec.field : \
4228
				       max(cur.field, vbt.field))
4229
	assign_final(t1_t3);
4230
	assign_final(t8);
4231
	assign_final(t9);
4232
	assign_final(t10);
4233
	assign_final(t11_t12);
4234
#undef assign_final
4235
 
4236
#define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
4237
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
4238
	intel_dp->backlight_on_delay = get_delay(t8);
4239
	intel_dp->backlight_off_delay = get_delay(t9);
4240
	intel_dp->panel_power_down_delay = get_delay(t10);
4241
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4242
#undef get_delay
4243
 
4244
	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4245
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4246
		      intel_dp->panel_power_cycle_delay);
4247
 
4248
	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4249
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4250
 
4251
	if (out)
4252
		*out = final;
4253
}
4254
 
4255
static void
4256
intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4257
					      struct intel_dp *intel_dp,
4258
					      struct edp_power_seq *seq)
4259
{
4260
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 4261
	u32 pp_on, pp_off, pp_div, port_sel = 0;
4262
	int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4263
	int pp_on_reg, pp_off_reg, pp_div_reg;
3243 Serge 4264
 
3746 Serge 4265
	if (HAS_PCH_SPLIT(dev)) {
4266
		pp_on_reg = PCH_PP_ON_DELAYS;
4267
		pp_off_reg = PCH_PP_OFF_DELAYS;
4268
		pp_div_reg = PCH_PP_DIVISOR;
4269
	} else {
4560 Serge 4270
		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4271
 
4272
		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4273
		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4274
		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3746 Serge 4275
	}
4276
 
5060 serge 4277
	/*
4278
	 * And finally store the new values in the power sequencer. The
4279
	 * backlight delays are set to 1 because we do manual waits on them. For
4280
	 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4281
	 * we'll end up waiting for the backlight off delay twice: once when we
4282
	 * do the manual sleep, and once when we disable the panel and wait for
4283
	 * the PP_STATUS bit to become zero.
4284
	 */
3243 Serge 4285
	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5060 serge 4286
		(1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4287
	pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3243 Serge 4288
		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4289
	/* Compute the divisor for the pp clock, simply match the Bspec
4290
	 * formula. */
3746 Serge 4291
	pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3243 Serge 4292
	pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4293
			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
4294
 
4295
	/* Haswell doesn't have any port selection bits for the panel
4296
	 * power sequencer any more. */
4104 Serge 4297
	if (IS_VALLEYVIEW(dev)) {
4560 Serge 4298
		if (dp_to_dig_port(intel_dp)->port == PORT_B)
4299
			port_sel = PANEL_PORT_SELECT_DPB_VLV;
4300
		else
4301
			port_sel = PANEL_PORT_SELECT_DPC_VLV;
4104 Serge 4302
	} else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4303
		if (dp_to_dig_port(intel_dp)->port == PORT_A)
4560 Serge 4304
			port_sel = PANEL_PORT_SELECT_DPA;
3243 Serge 4305
		else
4560 Serge 4306
			port_sel = PANEL_PORT_SELECT_DPD;
3243 Serge 4307
	}
4308
 
3746 Serge 4309
	pp_on |= port_sel;
3243 Serge 4310
 
3746 Serge 4311
	I915_WRITE(pp_on_reg, pp_on);
4312
	I915_WRITE(pp_off_reg, pp_off);
4313
	I915_WRITE(pp_div_reg, pp_div);
4314
 
3243 Serge 4315
	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3746 Serge 4316
		      I915_READ(pp_on_reg),
4317
		      I915_READ(pp_off_reg),
4318
		      I915_READ(pp_div_reg));
3243 Serge 4319
}
4320
 
5060 serge 4321
void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4322
{
4323
	struct drm_i915_private *dev_priv = dev->dev_private;
4324
	struct intel_encoder *encoder;
4325
	struct intel_dp *intel_dp = NULL;
4326
	struct intel_crtc_config *config = NULL;
4327
	struct intel_crtc *intel_crtc = NULL;
4328
	struct intel_connector *intel_connector = dev_priv->drrs.connector;
4329
	u32 reg, val;
4330
	enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4331
 
4332
	if (refresh_rate <= 0) {
4333
		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4334
		return;
4335
	}
4336
 
4337
	if (intel_connector == NULL) {
4338
		DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4339
		return;
4340
	}
4341
 
4342
	/*
4343
	 * FIXME: This needs proper synchronization with psr state. But really
4344
	 * hard to tell without seeing the user of this function of this code.
4345
	 * Check locking and ordering once that lands.
4346
	 */
4347
	if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4348
		DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4349
		return;
4350
	}
4351
 
4352
	encoder = intel_attached_encoder(&intel_connector->base);
4353
	intel_dp = enc_to_intel_dp(&encoder->base);
4354
	intel_crtc = encoder->new_crtc;
4355
 
4356
	if (!intel_crtc) {
4357
		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4358
		return;
4359
	}
4360
 
4361
	config = &intel_crtc->config;
4362
 
4363
	if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4364
		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4365
		return;
4366
	}
4367
 
4368
	if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4369
		index = DRRS_LOW_RR;
4370
 
4371
	if (index == intel_dp->drrs_state.refresh_rate_type) {
4372
		DRM_DEBUG_KMS(
4373
			"DRRS requested for previously set RR...ignoring\n");
4374
		return;
4375
	}
4376
 
4377
	if (!intel_crtc->active) {
4378
		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4379
		return;
4380
	}
4381
 
4382
	if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4383
		reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4384
		val = I915_READ(reg);
4385
		if (index > DRRS_HIGH_RR) {
4386
			val |= PIPECONF_EDP_RR_MODE_SWITCH;
4387
			intel_dp_set_m2_n2(intel_crtc, &config->dp_m2_n2);
4388
		} else {
4389
			val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4390
		}
4391
		I915_WRITE(reg, val);
4392
	}
4393
 
4394
	/*
4395
	 * mutex taken to ensure that there is no race between differnt
4396
	 * drrs calls trying to update refresh rate. This scenario may occur
4397
	 * in future when idleness detection based DRRS in kernel and
4398
	 * possible calls from user space to set differnt RR are made.
4399
	 */
4400
 
4401
	mutex_lock(&intel_dp->drrs_state.mutex);
4402
 
4403
	intel_dp->drrs_state.refresh_rate_type = index;
4404
 
4405
	mutex_unlock(&intel_dp->drrs_state.mutex);
4406
 
4407
	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4408
}
4409
 
4410
static struct drm_display_mode *
4411
intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4412
			struct intel_connector *intel_connector,
4413
			struct drm_display_mode *fixed_mode)
4414
{
4415
	struct drm_connector *connector = &intel_connector->base;
4416
	struct intel_dp *intel_dp = &intel_dig_port->dp;
4417
	struct drm_device *dev = intel_dig_port->base.base.dev;
4418
	struct drm_i915_private *dev_priv = dev->dev_private;
4419
	struct drm_display_mode *downclock_mode = NULL;
4420
 
4421
	if (INTEL_INFO(dev)->gen <= 6) {
4422
		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4423
		return NULL;
4424
	}
4425
 
4426
	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4427
		DRM_INFO("VBT doesn't support DRRS\n");
4428
		return NULL;
4429
	}
4430
 
4431
	downclock_mode = intel_find_panel_downclock
4432
					(dev, fixed_mode, connector);
4433
 
4434
	if (!downclock_mode) {
4435
		DRM_INFO("DRRS not supported\n");
4436
		return NULL;
4437
	}
4438
 
4439
	dev_priv->drrs.connector = intel_connector;
4440
 
4441
	mutex_init(&intel_dp->drrs_state.mutex);
4442
 
4443
	intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4444
 
4445
	intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4446
	DRM_INFO("seamless DRRS supported for eDP panel.\n");
4447
	return downclock_mode;
4448
}
4449
 
4450
void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder)
4451
{
4452
	struct drm_device *dev = intel_encoder->base.dev;
4453
	struct drm_i915_private *dev_priv = dev->dev_private;
4454
	struct intel_dp *intel_dp;
4455
	enum intel_display_power_domain power_domain;
4456
 
4457
	if (intel_encoder->type != INTEL_OUTPUT_EDP)
4458
		return;
4459
 
4460
	intel_dp = enc_to_intel_dp(&intel_encoder->base);
4461
	if (!edp_have_panel_vdd(intel_dp))
4462
		return;
4463
	/*
4464
	 * The VDD bit needs a power domain reference, so if the bit is
4465
	 * already enabled when we boot or resume, grab this reference and
4466
	 * schedule a vdd off, so we don't hold on to the reference
4467
	 * indefinitely.
4468
	 */
4469
	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4470
	power_domain = intel_display_port_power_domain(intel_encoder);
4471
	intel_display_power_get(dev_priv, power_domain);
4472
 
4473
	edp_panel_vdd_schedule_off(intel_dp);
4474
}
4475
 
4104 Serge 4476
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5060 serge 4477
				     struct intel_connector *intel_connector,
4478
				     struct edp_power_seq *power_seq)
4104 Serge 4479
{
4480
	struct drm_connector *connector = &intel_connector->base;
4481
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5060 serge 4482
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4483
	struct drm_device *dev = intel_encoder->base.dev;
4104 Serge 4484
	struct drm_i915_private *dev_priv = dev->dev_private;
4485
	struct drm_display_mode *fixed_mode = NULL;
5060 serge 4486
	struct drm_display_mode *downclock_mode = NULL;
4104 Serge 4487
	bool has_dpcd;
4488
	struct drm_display_mode *scan;
4489
	struct edid *edid;
4490
 
5060 serge 4491
	intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4492
 
4104 Serge 4493
	if (!is_edp(intel_dp))
4494
		return true;
4495
 
5060 serge 4496
	intel_edp_panel_vdd_sanitize(intel_encoder);
4104 Serge 4497
 
4498
	/* Cache DPCD and EDID for edp. */
5060 serge 4499
	intel_edp_panel_vdd_on(intel_dp);
4104 Serge 4500
	has_dpcd = intel_dp_get_dpcd(intel_dp);
5060 serge 4501
	edp_panel_vdd_off(intel_dp, false);
4104 Serge 4502
 
4503
	if (has_dpcd) {
4504
		if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4505
			dev_priv->no_aux_handshake =
4506
				intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4507
				DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4508
	} else {
4509
		/* if this fails, presume the device is a ghost */
4510
		DRM_INFO("failed to retrieve link info, disabling eDP\n");
4511
		return false;
4512
	}
4513
 
4514
	/* We now know it's not a ghost, init power sequence regs. */
5060 serge 4515
	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4104 Serge 4516
 
5060 serge 4517
	mutex_lock(&dev->mode_config.mutex);
4518
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4104 Serge 4519
	if (edid) {
4520
		if (drm_add_edid_modes(connector, edid)) {
4521
			drm_mode_connector_update_edid_property(connector,
4522
								edid);
4523
			drm_edid_to_eld(connector, edid);
4524
		} else {
4525
			kfree(edid);
4526
			edid = ERR_PTR(-EINVAL);
4527
		}
4528
	} else {
4529
		edid = ERR_PTR(-ENOENT);
4530
	}
4531
	intel_connector->edid = edid;
4532
 
4533
	/* prefer fixed mode from EDID if available */
4534
	list_for_each_entry(scan, &connector->probed_modes, head) {
4535
		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4536
			fixed_mode = drm_mode_duplicate(dev, scan);
5060 serge 4537
			downclock_mode = intel_dp_drrs_init(
4538
						intel_dig_port,
4539
						intel_connector, fixed_mode);
4104 Serge 4540
			break;
4541
		}
4542
	}
4543
 
4544
	/* fallback to VBT if available for eDP */
4545
	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4546
		fixed_mode = drm_mode_duplicate(dev,
4547
					dev_priv->vbt.lfp_lvds_vbt_mode);
4548
		if (fixed_mode)
4549
			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4550
	}
5060 serge 4551
	mutex_unlock(&dev->mode_config.mutex);
4104 Serge 4552
 
5060 serge 4553
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4104 Serge 4554
	intel_panel_setup_backlight(connector);
4555
 
4556
	return true;
4557
}
4558
 
4559
bool
3243 Serge 4560
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4561
			struct intel_connector *intel_connector)
2330 Serge 4562
{
3243 Serge 4563
	struct drm_connector *connector = &intel_connector->base;
4564
	struct intel_dp *intel_dp = &intel_dig_port->dp;
4565
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4566
	struct drm_device *dev = intel_encoder->base.dev;
2330 Serge 4567
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 4568
	enum port port = intel_dig_port->port;
5060 serge 4569
	struct edp_power_seq power_seq = { 0 };
4570
	int type;
2330 Serge 4571
 
5060 serge 4572
	/* intel_dp vfuncs */
4573
	if (IS_VALLEYVIEW(dev))
4574
		intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4575
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4576
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4577
	else if (HAS_PCH_SPLIT(dev))
4578
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4579
	else
4580
		intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4581
 
4582
	intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4583
 
3031 serge 4584
	/* Preserve the current hw state. */
4585
	intel_dp->DP = I915_READ(intel_dp->output_reg);
3243 Serge 4586
	intel_dp->attached_connector = intel_connector;
2330 Serge 4587
 
4560 Serge 4588
	if (intel_dp_is_edp(dev, port))
4589
		type = DRM_MODE_CONNECTOR_eDP;
4590
	else
4104 Serge 4591
	type = DRM_MODE_CONNECTOR_DisplayPort;
2330 Serge 4592
 
4104 Serge 4593
	/*
4594
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4595
	 * for DP the encoder type can be set by the caller to
4596
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4597
	 */
4598
	if (type == DRM_MODE_CONNECTOR_eDP)
4599
		intel_encoder->type = INTEL_OUTPUT_EDP;
4600
 
4601
	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4602
			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4603
			port_name(port));
4604
 
2330 Serge 4605
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4606
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4607
 
4608
	connector->interlace_allowed = true;
4609
	connector->doublescan_allowed = 0;
4610
 
3243 Serge 4611
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5060 serge 4612
			  edp_panel_vdd_work);
2330 Serge 4613
 
4614
	intel_connector_attach_encoder(intel_connector, intel_encoder);
5060 serge 4615
	drm_connector_register(connector);
2330 Serge 4616
 
3480 Serge 4617
	if (HAS_DDI(dev))
3243 Serge 4618
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4619
	else
3031 serge 4620
	intel_connector->get_hw_state = intel_connector_get_hw_state;
5060 serge 4621
	intel_connector->unregister = intel_dp_connector_unregister;
3031 serge 4622
 
5060 serge 4623
	/* Set up the hotplug pin. */
3031 serge 4624
	switch (port) {
4625
	case PORT_A:
3746 Serge 4626
		intel_encoder->hpd_pin = HPD_PORT_A;
2330 Serge 4627
			break;
3031 serge 4628
	case PORT_B:
3746 Serge 4629
		intel_encoder->hpd_pin = HPD_PORT_B;
2330 Serge 4630
			break;
3031 serge 4631
	case PORT_C:
3746 Serge 4632
		intel_encoder->hpd_pin = HPD_PORT_C;
2330 Serge 4633
			break;
3031 serge 4634
	case PORT_D:
3746 Serge 4635
		intel_encoder->hpd_pin = HPD_PORT_D;
2330 Serge 4636
			break;
3031 serge 4637
	default:
3746 Serge 4638
		BUG();
2330 Serge 4639
	}
4640
 
5060 serge 4641
	if (is_edp(intel_dp)) {
4642
		intel_dp_init_panel_power_timestamps(intel_dp);
4643
		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4644
	}
2330 Serge 4645
 
5060 serge 4646
	intel_dp_aux_init(intel_dp, intel_connector);
3031 serge 4647
 
5060 serge 4648
	/* init MST on ports that can support it */
4649
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4650
		if (port == PORT_B || port == PORT_C || port == PORT_D) {
4651
			intel_dp_mst_encoder_init(intel_dig_port, intel_connector->base.base.id);
4652
		}
4653
	}
4654
 
4655
	if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4656
		drm_dp_aux_unregister(&intel_dp->aux);
3031 serge 4657
	if (is_edp(intel_dp)) {
4293 Serge 4658
			cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5060 serge 4659
			drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4660
			edp_panel_vdd_off_sync(intel_dp);
4661
			drm_modeset_unlock(&dev->mode_config.connection_mutex);
2330 Serge 4662
		}
5060 serge 4663
		drm_connector_unregister(connector);
4104 Serge 4664
		drm_connector_cleanup(connector);
4665
		return false;
2330 Serge 4666
	}
4667
 
4668
	intel_dp_add_properties(intel_dp, connector);
4669
 
4670
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4671
	 * 0xd.  Failure to do so will result in spurious interrupts being
4672
	 * generated on the port when a cable is not attached.
4673
	 */
4674
	if (IS_G4X(dev) && !IS_GM45(dev)) {
4675
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4676
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4677
	}
4104 Serge 4678
 
4679
	return true;
2330 Serge 4680
}
3243 Serge 4681
 
4682
void
4683
intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4684
{
5060 serge 4685
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 4686
	struct intel_digital_port *intel_dig_port;
4687
	struct intel_encoder *intel_encoder;
4688
	struct drm_encoder *encoder;
4689
	struct intel_connector *intel_connector;
4690
 
4560 Serge 4691
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3243 Serge 4692
	if (!intel_dig_port)
4693
		return;
4694
 
4560 Serge 4695
	intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3243 Serge 4696
	if (!intel_connector) {
4697
		kfree(intel_dig_port);
4698
		return;
4699
	}
4700
 
4701
	intel_encoder = &intel_dig_port->base;
4702
	encoder = &intel_encoder->base;
4703
 
4704
	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4705
			 DRM_MODE_ENCODER_TMDS);
4706
 
3746 Serge 4707
	intel_encoder->compute_config = intel_dp_compute_config;
3243 Serge 4708
	intel_encoder->disable = intel_disable_dp;
4709
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
4104 Serge 4710
	intel_encoder->get_config = intel_dp_get_config;
5060 serge 4711
	intel_encoder->suspend = intel_dp_encoder_suspend;
4712
	if (IS_CHERRYVIEW(dev)) {
4713
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
4714
		intel_encoder->pre_enable = chv_pre_enable_dp;
4715
		intel_encoder->enable = vlv_enable_dp;
4716
		intel_encoder->post_disable = chv_post_disable_dp;
4717
	} else if (IS_VALLEYVIEW(dev)) {
4560 Serge 4718
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4104 Serge 4719
		intel_encoder->pre_enable = vlv_pre_enable_dp;
4720
		intel_encoder->enable = vlv_enable_dp;
5060 serge 4721
		intel_encoder->post_disable = vlv_post_disable_dp;
4104 Serge 4722
	} else {
4560 Serge 4723
		intel_encoder->pre_enable = g4x_pre_enable_dp;
4724
		intel_encoder->enable = g4x_enable_dp;
5060 serge 4725
		intel_encoder->post_disable = g4x_post_disable_dp;
4104 Serge 4726
	}
3243 Serge 4727
 
4728
	intel_dig_port->port = port;
4729
	intel_dig_port->dp.output_reg = output_reg;
4730
 
4731
	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5060 serge 4732
	if (IS_CHERRYVIEW(dev)) {
4733
		if (port == PORT_D)
4734
			intel_encoder->crtc_mask = 1 << 2;
4735
		else
4736
			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4737
	} else {
3243 Serge 4738
	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5060 serge 4739
	}
4740
	intel_encoder->cloneable = 0;
3243 Serge 4741
	intel_encoder->hot_plug = intel_dp_hot_plug;
4742
 
5060 serge 4743
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
4744
	dev_priv->hpd_irq_port[port] = intel_dig_port;
4745
 
4104 Serge 4746
	if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4747
		drm_encoder_cleanup(encoder);
4748
		kfree(intel_dig_port);
4749
		kfree(intel_connector);
4750
	}
3243 Serge 4751
}
5060 serge 4752
 
4753
void intel_dp_mst_suspend(struct drm_device *dev)
4754
{
4755
	struct drm_i915_private *dev_priv = dev->dev_private;
4756
	int i;
4757
 
4758
	/* disable MST */
4759
	for (i = 0; i < I915_MAX_PORTS; i++) {
4760
		struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4761
		if (!intel_dig_port)
4762
			continue;
4763
 
4764
		if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4765
			if (!intel_dig_port->dp.can_mst)
4766
				continue;
4767
			if (intel_dig_port->dp.is_mst)
4768
				drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
4769
		}
4770
	}
4771
}
4772
 
4773
void intel_dp_mst_resume(struct drm_device *dev)
4774
{
4775
	struct drm_i915_private *dev_priv = dev->dev_private;
4776
	int i;
4777
 
4778
	for (i = 0; i < I915_MAX_PORTS; i++) {
4779
		struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4780
		if (!intel_dig_port)
4781
			continue;
4782
		if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4783
			int ret;
4784
 
4785
			if (!intel_dig_port->dp.can_mst)
4786
				continue;
4787
 
4788
			ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
4789
			if (ret != 0) {
4790
				intel_dp_check_mst_status(&intel_dig_port->dp);
4791
			}
4792
		}
4793
	}
4794
}