Subversion Repositories Kolibri OS

Rev

Rev 3480 | Rev 3746 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2327 Serge 1
/*
2
 * Copyright © 2008 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Keith Packard 
25
 *
26
 */
27
 
28
#include 
2330 Serge 29
#include 
3031 serge 30
#include 
31
#include 
32
#include 
33
#include 
34
#include 
2327 Serge 35
#include "intel_drv.h"
3031 serge 36
#include 
2327 Serge 37
#include "i915_drv.h"
38
 
39
#define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
 
41
/**
42
 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43
 * @intel_dp: DP struct
44
 *
45
 * If a CPU or PCH DP output is attached to an eDP panel, this function
46
 * will return true, and false otherwise.
47
 */
48
static bool is_edp(struct intel_dp *intel_dp)
49
{
3243 Serge 50
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
51
 
52
	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
2327 Serge 53
}
54
 
55
/**
56
 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
57
 * @intel_dp: DP struct
58
 *
59
 * Returns true if the given DP struct corresponds to a PCH DP port attached
60
 * to an eDP panel, false otherwise.  Helpful for determining whether we
61
 * may need FDI resources for a given DP output or not.
62
 */
63
static bool is_pch_edp(struct intel_dp *intel_dp)
64
{
65
	return intel_dp->is_pch_edp;
66
}
67
 
2342 Serge 68
/**
69
 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
70
 * @intel_dp: DP struct
71
 *
72
 * Returns true if the given DP struct corresponds to a CPU eDP port.
73
 */
74
static bool is_cpu_edp(struct intel_dp *intel_dp)
75
{
76
	return is_edp(intel_dp) && !is_pch_edp(intel_dp);
77
}
78
 
3243 Serge 79
static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
2327 Serge 80
{
3243 Serge 81
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
82
 
83
	return intel_dig_port->base.base.dev;
2327 Serge 84
}
85
 
2330 Serge 86
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
87
{
3243 Serge 88
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
2330 Serge 89
}
2327 Serge 90
 
91
/**
92
 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
93
 * @encoder: DRM encoder
94
 *
95
 * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
96
 * by intel_display.c.
97
 */
98
bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
99
{
100
    struct intel_dp *intel_dp;
101
 
102
    if (!encoder)
103
        return false;
104
 
105
    intel_dp = enc_to_intel_dp(encoder);
106
 
107
    return is_pch_edp(intel_dp);
108
}
109
 
2330 Serge 110
static void intel_dp_link_down(struct intel_dp *intel_dp);
111
 
2327 Serge 112
void
2342 Serge 113
intel_edp_link_config(struct intel_encoder *intel_encoder,
2327 Serge 114
		       int *lane_num, int *link_bw)
115
{
3243 Serge 116
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2327 Serge 117
 
118
	*lane_num = intel_dp->lane_count;
3243 Serge 119
	*link_bw = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
2327 Serge 120
}
121
 
3031 serge 122
int
123
intel_edp_target_clock(struct intel_encoder *intel_encoder,
124
		       struct drm_display_mode *mode)
125
{
3243 Serge 126
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
127
	struct intel_connector *intel_connector = intel_dp->attached_connector;
3031 serge 128
 
3243 Serge 129
	if (intel_connector->panel.fixed_mode)
130
		return intel_connector->panel.fixed_mode->clock;
3031 serge 131
	else
132
		return mode->clock;
133
}
134
 
2330 Serge 135
static int
136
intel_dp_max_link_bw(struct intel_dp *intel_dp)
137
{
138
	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
2327 Serge 139
 
2330 Serge 140
	switch (max_link_bw) {
141
	case DP_LINK_BW_1_62:
142
	case DP_LINK_BW_2_7:
143
		break;
144
	default:
145
		max_link_bw = DP_LINK_BW_1_62;
146
		break;
147
	}
148
	return max_link_bw;
149
}
2327 Serge 150
 
2342 Serge 151
/*
152
 * The units on the numbers in the next two are... bizarre.  Examples will
153
 * make it clearer; this one parallels an example in the eDP spec.
154
 *
155
 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
156
 *
157
 *     270000 * 1 * 8 / 10 == 216000
158
 *
159
 * The actual data capacity of that configuration is 2.16Gbit/s, so the
160
 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
161
 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
162
 * 119000.  At 18bpp that's 2142000 kilobits per second.
163
 *
164
 * Thus the strange-looking division by 10 in intel_dp_link_required, to
165
 * get the result in decakilobits instead of kilobits.
166
 */
167
 
2330 Serge 168
static int
2351 Serge 169
intel_dp_link_required(int pixel_clock, int bpp)
2330 Serge 170
{
2342 Serge 171
	return (pixel_clock * bpp + 9) / 10;
2330 Serge 172
}
2327 Serge 173
 
2330 Serge 174
static int
175
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
176
{
177
	return (max_link_clock * max_lanes * 8) / 10;
178
}
2327 Serge 179
 
3031 serge 180
static bool
181
intel_dp_adjust_dithering(struct intel_dp *intel_dp,
182
			  struct drm_display_mode *mode,
183
			  bool adjust_mode)
184
{
3480 Serge 185
	int max_link_clock =
186
		drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
3243 Serge 187
	int max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
3031 serge 188
	int max_rate, mode_rate;
189
 
190
	mode_rate = intel_dp_link_required(mode->clock, 24);
191
	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
192
 
193
	if (mode_rate > max_rate) {
194
		mode_rate = intel_dp_link_required(mode->clock, 18);
195
		if (mode_rate > max_rate)
196
			return false;
197
 
198
		if (adjust_mode)
199
			mode->private_flags
200
				|= INTEL_MODE_DP_FORCE_6BPC;
201
 
202
		return true;
203
	}
204
 
205
	return true;
206
}
207
 
2330 Serge 208
static int
209
intel_dp_mode_valid(struct drm_connector *connector,
210
		    struct drm_display_mode *mode)
211
{
212
	struct intel_dp *intel_dp = intel_attached_dp(connector);
3243 Serge 213
	struct intel_connector *intel_connector = to_intel_connector(connector);
214
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
2327 Serge 215
 
3243 Serge 216
	if (is_edp(intel_dp) && fixed_mode) {
217
		if (mode->hdisplay > fixed_mode->hdisplay)
2330 Serge 218
			return MODE_PANEL;
2327 Serge 219
 
3243 Serge 220
		if (mode->vdisplay > fixed_mode->vdisplay)
2330 Serge 221
			return MODE_PANEL;
222
	}
2327 Serge 223
 
3031 serge 224
	if (!intel_dp_adjust_dithering(intel_dp, mode, false))
2330 Serge 225
		return MODE_CLOCK_HIGH;
2327 Serge 226
 
2330 Serge 227
	if (mode->clock < 10000)
228
		return MODE_CLOCK_LOW;
229
 
3031 serge 230
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
231
		return MODE_H_ILLEGAL;
232
 
2330 Serge 233
	return MODE_OK;
234
}
235
 
236
static uint32_t
237
pack_aux(uint8_t *src, int src_bytes)
238
{
239
	int	i;
240
	uint32_t v = 0;
241
 
242
	if (src_bytes > 4)
243
		src_bytes = 4;
244
	for (i = 0; i < src_bytes; i++)
245
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
246
	return v;
247
}
248
 
249
static void
250
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
251
{
252
	int i;
253
	if (dst_bytes > 4)
254
		dst_bytes = 4;
255
	for (i = 0; i < dst_bytes; i++)
256
		dst[i] = src >> ((3-i) * 8);
257
}
258
 
259
/* hrawclock is 1/4 the FSB frequency */
260
static int
261
intel_hrawclk(struct drm_device *dev)
262
{
263
	struct drm_i915_private *dev_priv = dev->dev_private;
264
	uint32_t clkcfg;
265
 
3243 Serge 266
	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
267
	if (IS_VALLEYVIEW(dev))
268
		return 200;
269
 
2330 Serge 270
	clkcfg = I915_READ(CLKCFG);
271
	switch (clkcfg & CLKCFG_FSB_MASK) {
272
	case CLKCFG_FSB_400:
273
		return 100;
274
	case CLKCFG_FSB_533:
275
		return 133;
276
	case CLKCFG_FSB_667:
277
		return 166;
278
	case CLKCFG_FSB_800:
279
		return 200;
280
	case CLKCFG_FSB_1067:
281
		return 266;
282
	case CLKCFG_FSB_1333:
283
		return 333;
284
	/* these two are just a guess; one of them might be right */
285
	case CLKCFG_FSB_1600:
286
	case CLKCFG_FSB_1600_ALT:
287
		return 400;
288
	default:
289
		return 133;
290
	}
291
}
292
 
2342 Serge 293
static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
294
{
3243 Serge 295
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 296
	struct drm_i915_private *dev_priv = dev->dev_private;
297
 
298
	return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
299
}
300
 
301
static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
302
{
3243 Serge 303
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 304
	struct drm_i915_private *dev_priv = dev->dev_private;
305
 
306
	return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
307
}
308
 
309
static void
310
intel_dp_check_edp(struct intel_dp *intel_dp)
311
{
3243 Serge 312
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 313
	struct drm_i915_private *dev_priv = dev->dev_private;
314
 
315
	if (!is_edp(intel_dp))
316
		return;
317
	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
318
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
319
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
320
			      I915_READ(PCH_PP_STATUS),
321
			      I915_READ(PCH_PP_CONTROL));
322
	}
323
}
324
 
3480 Serge 325
static uint32_t
326
intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
327
{
328
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
329
	struct drm_device *dev = intel_dig_port->base.base.dev;
330
	struct drm_i915_private *dev_priv = dev->dev_private;
331
	uint32_t ch_ctl = intel_dp->output_reg + 0x10;
332
	uint32_t status;
333
	bool done;
334
 
335
	if (IS_HASWELL(dev)) {
336
		switch (intel_dig_port->port) {
337
		case PORT_A:
338
			ch_ctl = DPA_AUX_CH_CTL;
339
			break;
340
		case PORT_B:
341
			ch_ctl = PCH_DPB_AUX_CH_CTL;
342
			break;
343
		case PORT_C:
344
			ch_ctl = PCH_DPC_AUX_CH_CTL;
345
			break;
346
		case PORT_D:
347
			ch_ctl = PCH_DPD_AUX_CH_CTL;
348
			break;
349
		default:
350
			BUG();
351
		}
352
	}
353
 
354
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
355
	if (has_aux_irq)
356
		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
357
					  msecs_to_jiffies(10));
358
	else
359
		done = wait_for_atomic(C, 10) == 0;
360
	if (!done)
361
		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
362
			  has_aux_irq);
363
#undef C
364
 
365
	return status;
366
}
367
 
2330 Serge 368
static int
369
intel_dp_aux_ch(struct intel_dp *intel_dp,
370
		uint8_t *send, int send_bytes,
371
		uint8_t *recv, int recv_size)
372
{
373
	uint32_t output_reg = intel_dp->output_reg;
3243 Serge 374
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
375
	struct drm_device *dev = intel_dig_port->base.base.dev;
2330 Serge 376
	struct drm_i915_private *dev_priv = dev->dev_private;
377
	uint32_t ch_ctl = output_reg + 0x10;
378
	uint32_t ch_data = ch_ctl + 4;
3480 Serge 379
	int i, ret, recv_bytes;
2330 Serge 380
	uint32_t status;
381
	uint32_t aux_clock_divider;
382
	int try, precharge;
3480 Serge 383
	bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
2330 Serge 384
 
3480 Serge 385
	/* dp aux is extremely sensitive to irq latency, hence request the
386
	 * lowest possible wakeup latency and so prevent the cpu from going into
387
	 * deep sleep states.
388
	 */
389
//	pm_qos_update_request(&dev_priv->pm_qos, 0);
390
 
3243 Serge 391
	if (IS_HASWELL(dev)) {
392
		switch (intel_dig_port->port) {
393
		case PORT_A:
394
			ch_ctl = DPA_AUX_CH_CTL;
395
			ch_data = DPA_AUX_CH_DATA1;
396
			break;
397
		case PORT_B:
398
			ch_ctl = PCH_DPB_AUX_CH_CTL;
399
			ch_data = PCH_DPB_AUX_CH_DATA1;
400
			break;
401
		case PORT_C:
402
			ch_ctl = PCH_DPC_AUX_CH_CTL;
403
			ch_data = PCH_DPC_AUX_CH_DATA1;
404
			break;
405
		case PORT_D:
406
			ch_ctl = PCH_DPD_AUX_CH_CTL;
407
			ch_data = PCH_DPD_AUX_CH_DATA1;
408
			break;
409
		default:
410
			BUG();
411
		}
412
	}
413
 
2342 Serge 414
	intel_dp_check_edp(intel_dp);
2330 Serge 415
	/* The clock divider is based off the hrawclk,
416
	 * and would like to run at 2MHz. So, take the
417
	 * hrawclk value and divide by 2 and use that
418
	 *
419
	 * Note that PCH attached eDP panels should use a 125MHz input
420
	 * clock divider.
421
	 */
2342 Serge 422
	if (is_cpu_edp(intel_dp)) {
3480 Serge 423
		if (HAS_DDI(dev))
3243 Serge 424
			aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
425
		else if (IS_VALLEYVIEW(dev))
426
			aux_clock_divider = 100;
427
		else if (IS_GEN6(dev) || IS_GEN7(dev))
2342 Serge 428
			aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
2330 Serge 429
		else
430
			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
431
	} else if (HAS_PCH_SPLIT(dev))
3243 Serge 432
		aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
2330 Serge 433
	else
434
		aux_clock_divider = intel_hrawclk(dev) / 2;
435
 
436
	if (IS_GEN6(dev))
437
		precharge = 3;
438
	else
439
		precharge = 5;
440
 
441
	/* Try to wait for any previous AUX channel activity */
442
	for (try = 0; try < 3; try++) {
3480 Serge 443
		status = I915_READ_NOTRACE(ch_ctl);
2330 Serge 444
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
445
			break;
446
		msleep(1);
447
	}
448
 
449
	if (try == 3) {
450
		WARN(1, "dp_aux_ch not started status 0x%08x\n",
451
		     I915_READ(ch_ctl));
3480 Serge 452
		ret = -EBUSY;
453
		goto out;
2330 Serge 454
	}
455
 
456
	/* Must try at least 3 times according to DP spec */
457
	for (try = 0; try < 5; try++) {
458
		/* Load the send data into the aux channel data registers */
459
		for (i = 0; i < send_bytes; i += 4)
460
			I915_WRITE(ch_data + i,
461
				   pack_aux(send + i, send_bytes - i));
462
 
463
		/* Send the command and wait for it to complete */
464
		I915_WRITE(ch_ctl,
465
			   DP_AUX_CH_CTL_SEND_BUSY |
3480 Serge 466
			   (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
2330 Serge 467
			   DP_AUX_CH_CTL_TIME_OUT_400us |
468
			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
469
			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
470
			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
471
			   DP_AUX_CH_CTL_DONE |
472
			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
473
			   DP_AUX_CH_CTL_RECEIVE_ERROR);
474
 
3480 Serge 475
		status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
476
 
2330 Serge 477
		/* Clear done status and any errors */
478
		I915_WRITE(ch_ctl,
479
			   status |
480
			   DP_AUX_CH_CTL_DONE |
481
			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
482
			   DP_AUX_CH_CTL_RECEIVE_ERROR);
3031 serge 483
 
484
		if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
485
			      DP_AUX_CH_CTL_RECEIVE_ERROR))
486
			continue;
2330 Serge 487
		if (status & DP_AUX_CH_CTL_DONE)
488
			break;
489
	}
490
 
491
	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
492
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
3480 Serge 493
		ret = -EBUSY;
494
		goto out;
2330 Serge 495
	}
496
 
497
	/* Check for timeout or receive error.
498
	 * Timeouts occur when the sink is not connected
499
	 */
500
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
501
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
3480 Serge 502
		ret = -EIO;
503
		goto out;
2330 Serge 504
	}
505
 
506
	/* Timeouts occur when the device isn't connected, so they're
507
	 * "normal" -- don't fill the kernel log with these */
508
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
509
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
3480 Serge 510
		ret = -ETIMEDOUT;
511
		goto out;
2330 Serge 512
	}
513
 
514
	/* Unload any bytes sent back from the other side */
515
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
516
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
517
	if (recv_bytes > recv_size)
518
		recv_bytes = recv_size;
519
 
520
	for (i = 0; i < recv_bytes; i += 4)
521
		unpack_aux(I915_READ(ch_data + i),
522
			   recv + i, recv_bytes - i);
523
 
3480 Serge 524
	ret = recv_bytes;
525
out:
526
//	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
527
 
528
	return ret;
2330 Serge 529
}
530
 
531
/* Write data to the aux channel in native mode */
532
static int
533
intel_dp_aux_native_write(struct intel_dp *intel_dp,
534
			  uint16_t address, uint8_t *send, int send_bytes)
535
{
536
	int ret;
537
	uint8_t	msg[20];
538
	int msg_bytes;
539
	uint8_t	ack;
540
 
2342 Serge 541
	intel_dp_check_edp(intel_dp);
2330 Serge 542
	if (send_bytes > 16)
543
		return -1;
544
	msg[0] = AUX_NATIVE_WRITE << 4;
545
	msg[1] = address >> 8;
546
	msg[2] = address & 0xff;
547
	msg[3] = send_bytes - 1;
548
	memcpy(&msg[4], send, send_bytes);
549
	msg_bytes = send_bytes + 4;
550
	for (;;) {
551
		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
552
		if (ret < 0)
553
			return ret;
554
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
555
			break;
556
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
557
			udelay(100);
558
		else
559
			return -EIO;
560
	}
561
	return send_bytes;
562
}
563
 
564
/* Write a single byte to the aux channel in native mode */
565
static int
566
intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
567
			    uint16_t address, uint8_t byte)
568
{
569
	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
570
}
571
 
572
/* read bytes from a native aux channel */
573
static int
574
intel_dp_aux_native_read(struct intel_dp *intel_dp,
575
			 uint16_t address, uint8_t *recv, int recv_bytes)
576
{
577
	uint8_t msg[4];
578
	int msg_bytes;
579
	uint8_t reply[20];
580
	int reply_bytes;
581
	uint8_t ack;
582
	int ret;
583
 
2342 Serge 584
	intel_dp_check_edp(intel_dp);
2330 Serge 585
	msg[0] = AUX_NATIVE_READ << 4;
586
	msg[1] = address >> 8;
587
	msg[2] = address & 0xff;
588
	msg[3] = recv_bytes - 1;
589
 
590
	msg_bytes = 4;
591
	reply_bytes = recv_bytes + 1;
592
 
593
	for (;;) {
594
		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
595
				      reply, reply_bytes);
596
		if (ret == 0)
597
			return -EPROTO;
598
		if (ret < 0)
599
			return ret;
600
		ack = reply[0];
601
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
602
			memcpy(recv, reply + 1, ret - 1);
603
			return ret - 1;
604
		}
605
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
606
			udelay(100);
607
		else
608
			return -EIO;
609
	}
610
}
611
 
612
static int
613
intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
614
		    uint8_t write_byte, uint8_t *read_byte)
615
{
616
	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
617
	struct intel_dp *intel_dp = container_of(adapter,
618
						struct intel_dp,
619
						adapter);
620
	uint16_t address = algo_data->address;
621
	uint8_t msg[5];
622
	uint8_t reply[2];
623
	unsigned retry;
624
	int msg_bytes;
625
	int reply_bytes;
626
	int ret;
627
 
2342 Serge 628
	intel_dp_check_edp(intel_dp);
2330 Serge 629
	/* Set up the command byte */
630
	if (mode & MODE_I2C_READ)
631
		msg[0] = AUX_I2C_READ << 4;
632
	else
633
		msg[0] = AUX_I2C_WRITE << 4;
634
 
635
	if (!(mode & MODE_I2C_STOP))
636
		msg[0] |= AUX_I2C_MOT << 4;
637
 
638
	msg[1] = address >> 8;
639
	msg[2] = address;
640
 
641
	switch (mode) {
642
	case MODE_I2C_WRITE:
643
		msg[3] = 0;
644
		msg[4] = write_byte;
645
		msg_bytes = 5;
646
		reply_bytes = 1;
647
		break;
648
	case MODE_I2C_READ:
649
		msg[3] = 0;
650
		msg_bytes = 4;
651
		reply_bytes = 2;
652
		break;
653
	default:
654
		msg_bytes = 3;
655
		reply_bytes = 1;
656
		break;
657
	}
658
 
659
	for (retry = 0; retry < 5; retry++) {
660
		ret = intel_dp_aux_ch(intel_dp,
661
				      msg, msg_bytes,
662
				      reply, reply_bytes);
663
		if (ret < 0) {
664
			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
665
			return ret;
666
		}
667
 
668
		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
669
		case AUX_NATIVE_REPLY_ACK:
670
			/* I2C-over-AUX Reply field is only valid
671
			 * when paired with AUX ACK.
672
			 */
673
			break;
674
		case AUX_NATIVE_REPLY_NACK:
675
			DRM_DEBUG_KMS("aux_ch native nack\n");
676
			return -EREMOTEIO;
677
		case AUX_NATIVE_REPLY_DEFER:
678
			udelay(100);
679
			continue;
680
		default:
681
			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
682
				  reply[0]);
683
			return -EREMOTEIO;
684
		}
685
 
686
		switch (reply[0] & AUX_I2C_REPLY_MASK) {
687
		case AUX_I2C_REPLY_ACK:
688
			if (mode == MODE_I2C_READ) {
689
				*read_byte = reply[1];
690
			}
691
			return reply_bytes - 1;
692
		case AUX_I2C_REPLY_NACK:
693
			DRM_DEBUG_KMS("aux_i2c nack\n");
694
			return -EREMOTEIO;
695
		case AUX_I2C_REPLY_DEFER:
696
			DRM_DEBUG_KMS("aux_i2c defer\n");
697
			udelay(100);
698
			break;
699
		default:
700
			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
701
			return -EREMOTEIO;
702
		}
703
	}
704
 
705
	DRM_ERROR("too many retries, giving up\n");
706
	return -EREMOTEIO;
707
}
708
 
709
static int
710
intel_dp_i2c_init(struct intel_dp *intel_dp,
711
		  struct intel_connector *intel_connector, const char *name)
712
{
2342 Serge 713
	int	ret;
714
 
2330 Serge 715
	DRM_DEBUG_KMS("i2c_init %s\n", name);
716
	intel_dp->algo.running = false;
717
	intel_dp->algo.address = 0;
718
	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
719
 
2342 Serge 720
	memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
3031 serge 721
	intel_dp->adapter.owner = THIS_MODULE;
2330 Serge 722
	intel_dp->adapter.class = I2C_CLASS_DDC;
2342 Serge 723
	strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
2330 Serge 724
	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
725
	intel_dp->adapter.algo_data = &intel_dp->algo;
726
	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
727
 
2342 Serge 728
	ironlake_edp_panel_vdd_on(intel_dp);
729
	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
730
	ironlake_edp_panel_vdd_off(intel_dp, false);
731
	return ret;
2330 Serge 732
}
733
 
3243 Serge 734
bool
3031 serge 735
intel_dp_mode_fixup(struct drm_encoder *encoder,
736
		    const struct drm_display_mode *mode,
2330 Serge 737
		    struct drm_display_mode *adjusted_mode)
738
{
739
	struct drm_device *dev = encoder->dev;
740
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3243 Serge 741
	struct intel_connector *intel_connector = intel_dp->attached_connector;
2330 Serge 742
	int lane_count, clock;
3243 Serge 743
	int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
2330 Serge 744
	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
3031 serge 745
	int bpp, mode_rate;
2330 Serge 746
	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
747
 
3243 Serge 748
	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
749
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
750
				       adjusted_mode);
751
		intel_pch_panel_fitting(dev,
752
					intel_connector->panel.fitting_mode,
2330 Serge 753
					mode, adjusted_mode);
754
	}
755
 
3031 serge 756
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
757
		return false;
758
 
759
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
760
		      "max bw %02x pixel clock %iKHz\n",
761
		      max_lane_count, bws[max_clock], adjusted_mode->clock);
762
 
763
	if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
764
		return false;
765
 
766
	bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
3480 Serge 767
 
768
	if (intel_dp->color_range_auto) {
769
		/*
770
		 * See:
771
		 * CEA-861-E - 5.1 Default Encoding Parameters
772
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
773
		 */
774
		if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
775
			intel_dp->color_range = DP_COLOR_RANGE_16_235;
776
		else
777
			intel_dp->color_range = 0;
778
	}
779
 
780
	if (intel_dp->color_range)
781
		adjusted_mode->private_flags |= INTEL_MODE_LIMITED_COLOR_RANGE;
782
 
3031 serge 783
	mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
784
 
785
	for (clock = 0; clock <= max_clock; clock++) {
2330 Serge 786
	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
3480 Serge 787
			int link_bw_clock =
788
				drm_dp_bw_code_to_link_rate(bws[clock]);
789
			int link_avail = intel_dp_max_data_rate(link_bw_clock,
790
								lane_count);
2330 Serge 791
 
3031 serge 792
			if (mode_rate <= link_avail) {
2330 Serge 793
				intel_dp->link_bw = bws[clock];
794
				intel_dp->lane_count = lane_count;
3480 Serge 795
				adjusted_mode->clock = link_bw_clock;
3031 serge 796
				DRM_DEBUG_KMS("DP link bw %02x lane "
797
						"count %d clock %d bpp %d\n",
2330 Serge 798
				       intel_dp->link_bw, intel_dp->lane_count,
3031 serge 799
				       adjusted_mode->clock, bpp);
800
				DRM_DEBUG_KMS("DP link bw required %i available %i\n",
801
					      mode_rate, link_avail);
2330 Serge 802
				return true;
803
			}
804
		}
805
	}
806
 
807
	return false;
808
}
809
 
2327 Serge 810
void
811
intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
812
         struct drm_display_mode *adjusted_mode)
813
{
814
    struct drm_device *dev = crtc->dev;
3243 Serge 815
	struct intel_encoder *intel_encoder;
816
	struct intel_dp *intel_dp;
2327 Serge 817
    struct drm_i915_private *dev_priv = dev->dev_private;
818
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
819
    int lane_count = 4;
3480 Serge 820
	struct intel_link_m_n m_n;
2327 Serge 821
    int pipe = intel_crtc->pipe;
3243 Serge 822
	enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3480 Serge 823
	int target_clock;
2327 Serge 824
 
825
    /*
826
     * Find the lane count in the intel_encoder private
827
     */
3243 Serge 828
	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
829
		intel_dp = enc_to_intel_dp(&intel_encoder->base);
2327 Serge 830
 
3243 Serge 831
		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
832
		    intel_encoder->type == INTEL_OUTPUT_EDP)
2342 Serge 833
		{
2327 Serge 834
            lane_count = intel_dp->lane_count;
835
            break;
836
        }
837
    }
838
 
3480 Serge 839
	target_clock = mode->clock;
840
	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
841
		if (intel_encoder->type == INTEL_OUTPUT_EDP) {
842
			target_clock = intel_edp_target_clock(intel_encoder,
843
							      mode);
844
			break;
845
		}
846
	}
847
 
2327 Serge 848
    /*
849
     * Compute the GMCH and Link ratios. The '3' here is
850
     * the number of bytes_per_pixel post-LUT, which we always
851
     * set up for 8-bits of R/G/B, or 3 bytes total.
852
     */
3480 Serge 853
	intel_link_compute_m_n(intel_crtc->bpp, lane_count,
854
			       target_clock, adjusted_mode->clock, &m_n);
2327 Serge 855
 
3243 Serge 856
	if (IS_HASWELL(dev)) {
857
		I915_WRITE(PIPE_DATA_M1(cpu_transcoder),
858
			   TU_SIZE(m_n.tu) | m_n.gmch_m);
859
		I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
860
		I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
861
		I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
862
	} else if (HAS_PCH_SPLIT(dev)) {
863
		I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
2327 Serge 864
        I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
865
        I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
866
        I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
3243 Serge 867
	} else if (IS_VALLEYVIEW(dev)) {
868
		I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
869
		I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
870
		I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
871
		I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
2327 Serge 872
    } else {
873
        I915_WRITE(PIPE_GMCH_DATA_M(pipe),
3243 Serge 874
			   TU_SIZE(m_n.tu) | m_n.gmch_m);
2327 Serge 875
        I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
876
        I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
877
        I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
878
    }
879
}
880
 
3243 Serge 881
void intel_dp_init_link_config(struct intel_dp *intel_dp)
882
{
883
	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
884
	intel_dp->link_configuration[0] = intel_dp->link_bw;
885
	intel_dp->link_configuration[1] = intel_dp->lane_count;
886
	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
887
	/*
888
	 * Check for DPCD version > 1.1 and enhanced framing support
889
	 */
890
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
891
	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
892
		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
893
	}
894
}
895
 
3480 Serge 896
static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
897
{
898
	struct drm_device *dev = crtc->dev;
899
	struct drm_i915_private *dev_priv = dev->dev_private;
900
	u32 dpa_ctl;
901
 
902
	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
903
	dpa_ctl = I915_READ(DP_A);
904
	dpa_ctl &= ~DP_PLL_FREQ_MASK;
905
 
906
	if (clock < 200000) {
907
		/* For a long time we've carried around a ILK-DevA w/a for the
908
		 * 160MHz clock. If we're really unlucky, it's still required.
909
		 */
910
		DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
911
		dpa_ctl |= DP_PLL_FREQ_160MHZ;
912
	} else {
913
		dpa_ctl |= DP_PLL_FREQ_270MHZ;
914
	}
915
 
916
	I915_WRITE(DP_A, dpa_ctl);
917
 
918
	POSTING_READ(DP_A);
919
	udelay(500);
920
}
921
 
2330 Serge 922
static void
923
intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
924
		  struct drm_display_mode *adjusted_mode)
925
{
926
	struct drm_device *dev = encoder->dev;
2342 Serge 927
	struct drm_i915_private *dev_priv = dev->dev_private;
2330 Serge 928
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3243 Serge 929
	struct drm_crtc *crtc = encoder->crtc;
2330 Serge 930
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 Serge 931
 
2342 Serge 932
	/*
933
	 * There are four kinds of DP registers:
934
	 *
935
	 * 	IBX PCH
936
	 * 	SNB CPU
937
	 *	IVB CPU
938
	 * 	CPT PCH
939
	 *
940
	 * IBX PCH and CPU are the same for almost everything,
941
	 * except that the CPU DP PLL is configured in this
942
	 * register
943
	 *
944
	 * CPT PCH is quite different, having many bits moved
945
	 * to the TRANS_DP_CTL register instead. That
946
	 * configuration happens (oddly) in ironlake_pch_enable
947
	 */
2327 Serge 948
 
2342 Serge 949
	/* Preserve the BIOS-computed detected bit. This is
950
	 * supposed to be read-only.
951
	 */
952
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2327 Serge 953
 
2342 Serge 954
	/* Handle DP bits in common between all three register formats */
955
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
956
 
2330 Serge 957
	switch (intel_dp->lane_count) {
958
	case 1:
959
		intel_dp->DP |= DP_PORT_WIDTH_1;
960
		break;
961
	case 2:
962
		intel_dp->DP |= DP_PORT_WIDTH_2;
963
		break;
964
	case 4:
965
		intel_dp->DP |= DP_PORT_WIDTH_4;
966
		break;
967
	}
2342 Serge 968
	if (intel_dp->has_audio) {
969
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
970
				 pipe_name(intel_crtc->pipe));
2330 Serge 971
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2342 Serge 972
		intel_write_eld(encoder, adjusted_mode);
973
	}
2327 Serge 974
 
3243 Serge 975
	intel_dp_init_link_config(intel_dp);
976
 
2342 Serge 977
	/* Split out the IBX/CPU vs CPT settings */
978
 
3243 Serge 979
	if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
2342 Serge 980
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
981
			intel_dp->DP |= DP_SYNC_HS_HIGH;
982
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
983
			intel_dp->DP |= DP_SYNC_VS_HIGH;
984
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
985
 
986
		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
987
			intel_dp->DP |= DP_ENHANCED_FRAMING;
988
 
989
		intel_dp->DP |= intel_crtc->pipe << 29;
990
 
991
		/* don't miss out required setting for eDP */
992
		if (adjusted_mode->clock < 200000)
993
			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
994
		else
995
			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
996
	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
3480 Serge 997
		if (!HAS_PCH_SPLIT(dev))
2342 Serge 998
		intel_dp->DP |= intel_dp->color_range;
999
 
1000
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1001
			intel_dp->DP |= DP_SYNC_HS_HIGH;
1002
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1003
			intel_dp->DP |= DP_SYNC_VS_HIGH;
1004
		intel_dp->DP |= DP_LINK_TRAIN_OFF;
1005
 
1006
		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
1007
		intel_dp->DP |= DP_ENHANCED_FRAMING;
1008
 
1009
		if (intel_crtc->pipe == 1)
2330 Serge 1010
		intel_dp->DP |= DP_PIPEB_SELECT;
2327 Serge 1011
 
2342 Serge 1012
		if (is_cpu_edp(intel_dp)) {
2330 Serge 1013
		/* don't miss out required setting for eDP */
1014
		if (adjusted_mode->clock < 200000)
1015
			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1016
		else
1017
			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1018
	}
2342 Serge 1019
	} else {
1020
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1021
	}
3480 Serge 1022
 
1023
	if (is_cpu_edp(intel_dp))
1024
		ironlake_set_pll_edp(crtc, adjusted_mode->clock);
2330 Serge 1025
}
2327 Serge 1026
 
2342 Serge 1027
#define IDLE_ON_MASK		(PP_ON | 0 	  | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1028
#define IDLE_ON_VALUE   	(PP_ON | 0 	  | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1029
 
1030
#define IDLE_OFF_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1031
#define IDLE_OFF_VALUE		(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1032
 
1033
#define IDLE_CYCLE_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1034
#define IDLE_CYCLE_VALUE	(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1035
 
1036
static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
1037
				       u32 mask,
1038
				       u32 value)
1039
{
3243 Serge 1040
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 1041
	struct drm_i915_private *dev_priv = dev->dev_private;
1042
 
1043
	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1044
		      mask, value,
1045
		      I915_READ(PCH_PP_STATUS),
1046
		      I915_READ(PCH_PP_CONTROL));
1047
 
1048
	if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
1049
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1050
			  I915_READ(PCH_PP_STATUS),
1051
			  I915_READ(PCH_PP_CONTROL));
1052
	}
1053
}
1054
 
1055
static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
1056
{
1057
	DRM_DEBUG_KMS("Wait for panel power on\n");
1058
	ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1059
}
1060
 
1061
static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1062
{
1063
	DRM_DEBUG_KMS("Wait for panel power off time\n");
1064
	ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1065
}
1066
 
1067
static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1068
{
1069
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1070
	ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1071
}
1072
 
1073
 
1074
/* Read the current pp_control value, unlocking the register if it
1075
 * is locked
1076
 */
1077
 
1078
static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1079
{
1080
	u32	control = I915_READ(PCH_PP_CONTROL);
1081
 
1082
	control &= ~PANEL_UNLOCK_MASK;
1083
	control |= PANEL_UNLOCK_REGS;
1084
	return control;
1085
}
1086
 
3243 Serge 1087
void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
2330 Serge 1088
{
3243 Serge 1089
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 1090
	struct drm_i915_private *dev_priv = dev->dev_private;
1091
	u32 pp;
2327 Serge 1092
 
2342 Serge 1093
	if (!is_edp(intel_dp))
1094
		return;
1095
	DRM_DEBUG_KMS("Turn eDP VDD on\n");
2327 Serge 1096
 
2342 Serge 1097
	WARN(intel_dp->want_panel_vdd,
1098
	     "eDP VDD already requested on\n");
1099
 
1100
	intel_dp->want_panel_vdd = true;
1101
 
1102
	if (ironlake_edp_have_panel_vdd(intel_dp)) {
1103
		DRM_DEBUG_KMS("eDP VDD already on\n");
1104
		return;
1105
	}
1106
 
1107
	if (!ironlake_edp_have_panel_power(intel_dp))
1108
		ironlake_wait_panel_power_cycle(intel_dp);
1109
 
1110
	pp = ironlake_get_pp_control(dev_priv);
2330 Serge 1111
	pp |= EDP_FORCE_VDD;
1112
	I915_WRITE(PCH_PP_CONTROL, pp);
1113
	POSTING_READ(PCH_PP_CONTROL);
2342 Serge 1114
	DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1115
		      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1116
 
1117
	/*
1118
	 * If the panel wasn't on, delay before accessing aux channel
1119
	 */
1120
	if (!ironlake_edp_have_panel_power(intel_dp)) {
1121
		DRM_DEBUG_KMS("eDP was not running\n");
1122
		msleep(intel_dp->panel_power_up_delay);
1123
	}
2330 Serge 1124
}
2327 Serge 1125
 
2342 Serge 1126
static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
2330 Serge 1127
{
3243 Serge 1128
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 1129
	struct drm_i915_private *dev_priv = dev->dev_private;
1130
	u32 pp;
2327 Serge 1131
 
3480 Serge 1132
	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1133
 
2342 Serge 1134
	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1135
		pp = ironlake_get_pp_control(dev_priv);
2330 Serge 1136
	pp &= ~EDP_FORCE_VDD;
1137
	I915_WRITE(PCH_PP_CONTROL, pp);
1138
	POSTING_READ(PCH_PP_CONTROL);
2327 Serge 1139
 
2330 Serge 1140
	/* Make sure sequencer is idle before allowing subsequent activity */
2342 Serge 1141
		DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1142
			      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1143
 
1144
		msleep(intel_dp->panel_power_down_delay);
1145
	}
2330 Serge 1146
}
2327 Serge 1147
 
3243 Serge 1148
static void ironlake_panel_vdd_work(struct work_struct *__work)
1149
{
3482 Serge 1150
	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1151
						 struct intel_dp, panel_vdd_work);
1152
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1153
 
1154
	mutex_lock(&dev->mode_config.mutex);
1155
	ironlake_panel_vdd_off_sync(intel_dp);
1156
	mutex_unlock(&dev->mode_config.mutex);
3243 Serge 1157
}
2342 Serge 1158
 
3243 Serge 1159
void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2330 Serge 1160
{
2342 Serge 1161
	if (!is_edp(intel_dp))
1162
		return;
1163
 
1164
	DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1165
	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1166
 
1167
	intel_dp->want_panel_vdd = false;
1168
 
1169
	if (sync) {
1170
		ironlake_panel_vdd_off_sync(intel_dp);
1171
	} else {
1172
		/*
1173
		 * Queue the timer to fire a long
1174
		 * time from now (relative to the power down delay)
1175
		 * to keep the panel power up across a sequence of operations
1176
		 */
3482 Serge 1177
		schedule_delayed_work(&intel_dp->panel_vdd_work,
1178
				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
2342 Serge 1179
	}
1180
}
1181
 
3243 Serge 1182
void ironlake_edp_panel_on(struct intel_dp *intel_dp)
2342 Serge 1183
{
3243 Serge 1184
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 1185
	struct drm_i915_private *dev_priv = dev->dev_private;
2342 Serge 1186
	u32 pp;
2327 Serge 1187
 
2342 Serge 1188
	if (!is_edp(intel_dp))
1189
		return;
2327 Serge 1190
 
2342 Serge 1191
	DRM_DEBUG_KMS("Turn eDP power on\n");
2327 Serge 1192
 
2342 Serge 1193
	if (ironlake_edp_have_panel_power(intel_dp)) {
1194
		DRM_DEBUG_KMS("eDP power already on\n");
1195
		return;
1196
	}
1197
 
1198
	ironlake_wait_panel_power_cycle(intel_dp);
1199
 
1200
	pp = ironlake_get_pp_control(dev_priv);
1201
	if (IS_GEN5(dev)) {
2330 Serge 1202
	/* ILK workaround: disable reset around power sequence */
1203
	pp &= ~PANEL_POWER_RESET;
1204
	I915_WRITE(PCH_PP_CONTROL, pp);
1205
	POSTING_READ(PCH_PP_CONTROL);
2342 Serge 1206
	}
2327 Serge 1207
 
2342 Serge 1208
	pp |= POWER_TARGET_ON;
1209
	if (!IS_GEN5(dev))
1210
		pp |= PANEL_POWER_RESET;
1211
 
2330 Serge 1212
	I915_WRITE(PCH_PP_CONTROL, pp);
1213
	POSTING_READ(PCH_PP_CONTROL);
2327 Serge 1214
 
2342 Serge 1215
	ironlake_wait_panel_on(intel_dp);
2327 Serge 1216
 
2342 Serge 1217
	if (IS_GEN5(dev)) {
2330 Serge 1218
	pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1219
	I915_WRITE(PCH_PP_CONTROL, pp);
1220
	POSTING_READ(PCH_PP_CONTROL);
2342 Serge 1221
	}
2330 Serge 1222
}
2327 Serge 1223
 
3243 Serge 1224
void ironlake_edp_panel_off(struct intel_dp *intel_dp)
2330 Serge 1225
{
3243 Serge 1226
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 1227
	struct drm_i915_private *dev_priv = dev->dev_private;
2342 Serge 1228
	u32 pp;
2327 Serge 1229
 
2342 Serge 1230
	if (!is_edp(intel_dp))
1231
		return;
2327 Serge 1232
 
2342 Serge 1233
	DRM_DEBUG_KMS("Turn eDP power off\n");
2327 Serge 1234
 
3031 serge 1235
	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
2342 Serge 1236
 
1237
	pp = ironlake_get_pp_control(dev_priv);
3031 serge 1238
	/* We need to switch off panel power _and_ force vdd, for otherwise some
1239
	 * panels get very unhappy and cease to work. */
2342 Serge 1240
	pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
2330 Serge 1241
	I915_WRITE(PCH_PP_CONTROL, pp);
1242
	POSTING_READ(PCH_PP_CONTROL);
2327 Serge 1243
 
3031 serge 1244
	intel_dp->want_panel_vdd = false;
1245
 
2342 Serge 1246
	ironlake_wait_panel_off(intel_dp);
2330 Serge 1247
}
2327 Serge 1248
 
3243 Serge 1249
void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
2330 Serge 1250
{
3243 Serge 1251
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1252
	struct drm_device *dev = intel_dig_port->base.base.dev;
2330 Serge 1253
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 1254
	int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
2330 Serge 1255
	u32 pp;
2327 Serge 1256
 
2342 Serge 1257
	if (!is_edp(intel_dp))
1258
		return;
1259
 
2330 Serge 1260
	DRM_DEBUG_KMS("\n");
1261
	/*
1262
	 * If we enable the backlight right away following a panel power
1263
	 * on, we may see slight flicker as the panel syncs with the eDP
1264
	 * link.  So delay a bit to make sure the image is solid before
1265
	 * allowing it to appear.
1266
	 */
2342 Serge 1267
	msleep(intel_dp->backlight_on_delay);
1268
	pp = ironlake_get_pp_control(dev_priv);
2330 Serge 1269
	pp |= EDP_BLC_ENABLE;
1270
	I915_WRITE(PCH_PP_CONTROL, pp);
2342 Serge 1271
	POSTING_READ(PCH_PP_CONTROL);
3243 Serge 1272
 
1273
	intel_panel_enable_backlight(dev, pipe);
2330 Serge 1274
}
2327 Serge 1275
 
3243 Serge 1276
void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
2330 Serge 1277
{
3243 Serge 1278
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 1279
	struct drm_i915_private *dev_priv = dev->dev_private;
1280
	u32 pp;
2327 Serge 1281
 
2342 Serge 1282
	if (!is_edp(intel_dp))
1283
		return;
1284
 
3243 Serge 1285
	intel_panel_disable_backlight(dev);
1286
 
2330 Serge 1287
	DRM_DEBUG_KMS("\n");
2342 Serge 1288
	pp = ironlake_get_pp_control(dev_priv);
2330 Serge 1289
	pp &= ~EDP_BLC_ENABLE;
1290
	I915_WRITE(PCH_PP_CONTROL, pp);
2342 Serge 1291
	POSTING_READ(PCH_PP_CONTROL);
1292
	msleep(intel_dp->backlight_off_delay);
2330 Serge 1293
}
2327 Serge 1294
 
3031 serge 1295
static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2330 Serge 1296
{
3243 Serge 1297
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1298
	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1299
	struct drm_device *dev = crtc->dev;
2330 Serge 1300
	struct drm_i915_private *dev_priv = dev->dev_private;
1301
	u32 dpa_ctl;
2327 Serge 1302
 
3031 serge 1303
	assert_pipe_disabled(dev_priv,
1304
			     to_intel_crtc(crtc)->pipe);
1305
 
2330 Serge 1306
	DRM_DEBUG_KMS("\n");
1307
	dpa_ctl = I915_READ(DP_A);
3031 serge 1308
	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1309
	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1310
 
1311
	/* We don't adjust intel_dp->DP while tearing down the link, to
1312
	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1313
	 * enable bits here to ensure that we don't enable too much. */
1314
	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1315
	intel_dp->DP |= DP_PLL_ENABLE;
1316
	I915_WRITE(DP_A, intel_dp->DP);
2330 Serge 1317
	POSTING_READ(DP_A);
1318
	udelay(200);
1319
}
2327 Serge 1320
 
3031 serge 1321
static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2330 Serge 1322
{
3243 Serge 1323
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1324
	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1325
	struct drm_device *dev = crtc->dev;
2330 Serge 1326
	struct drm_i915_private *dev_priv = dev->dev_private;
1327
	u32 dpa_ctl;
2327 Serge 1328
 
3031 serge 1329
	assert_pipe_disabled(dev_priv,
1330
			     to_intel_crtc(crtc)->pipe);
1331
 
2330 Serge 1332
	dpa_ctl = I915_READ(DP_A);
3031 serge 1333
	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1334
	     "dp pll off, should be on\n");
1335
	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1336
 
1337
	/* We can't rely on the value tracked for the DP register in
1338
	 * intel_dp->DP because link_down must not change that (otherwise link
1339
	 * re-training will fail. */
2330 Serge 1340
	dpa_ctl &= ~DP_PLL_ENABLE;
1341
	I915_WRITE(DP_A, dpa_ctl);
1342
	POSTING_READ(DP_A);
1343
	udelay(200);
1344
}
2327 Serge 1345
 
2330 Serge 1346
/* If the sink supports it, try to set the power state appropriately */
3243 Serge 1347
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2330 Serge 1348
{
1349
	int ret, i;
2327 Serge 1350
 
2330 Serge 1351
	/* Should have a valid DPCD by this point */
1352
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1353
		return;
2327 Serge 1354
 
2330 Serge 1355
	if (mode != DRM_MODE_DPMS_ON) {
1356
		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1357
						  DP_SET_POWER_D3);
1358
		if (ret != 1)
1359
			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1360
	} else {
1361
		/*
1362
		 * When turning on, we need to retry for 1ms to give the sink
1363
		 * time to wake up.
1364
		 */
1365
		for (i = 0; i < 3; i++) {
1366
			ret = intel_dp_aux_native_write_1(intel_dp,
1367
							  DP_SET_POWER,
1368
							  DP_SET_POWER_D0);
1369
			if (ret == 1)
1370
				break;
1371
			msleep(1);
1372
		}
1373
	}
1374
}
2327 Serge 1375
 
3031 serge 1376
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1377
				  enum pipe *pipe)
2330 Serge 1378
{
3031 serge 1379
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1380
	struct drm_device *dev = encoder->base.dev;
1381
	struct drm_i915_private *dev_priv = dev->dev_private;
1382
	u32 tmp = I915_READ(intel_dp->output_reg);
2327 Serge 1383
 
3031 serge 1384
	if (!(tmp & DP_PORT_EN))
1385
		return false;
2342 Serge 1386
 
3031 serge 1387
	if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1388
		*pipe = PORT_TO_PIPE_CPT(tmp);
1389
	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1390
		*pipe = PORT_TO_PIPE(tmp);
1391
	} else {
1392
		u32 trans_sel;
1393
		u32 trans_dp;
1394
		int i;
2327 Serge 1395
 
3031 serge 1396
		switch (intel_dp->output_reg) {
1397
		case PCH_DP_B:
1398
			trans_sel = TRANS_DP_PORT_SEL_B;
1399
			break;
1400
		case PCH_DP_C:
1401
			trans_sel = TRANS_DP_PORT_SEL_C;
1402
			break;
1403
		case PCH_DP_D:
1404
			trans_sel = TRANS_DP_PORT_SEL_D;
1405
			break;
1406
		default:
1407
			return true;
1408
		}
1409
 
1410
		for_each_pipe(i) {
1411
			trans_dp = I915_READ(TRANS_DP_CTL(i));
1412
			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1413
				*pipe = i;
1414
				return true;
1415
			}
1416
		}
3243 Serge 1417
 
1418
		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1419
			      intel_dp->output_reg);
3031 serge 1420
	}
1421
 
1422
	return true;
2330 Serge 1423
}
2327 Serge 1424
 
3031 serge 1425
static void intel_disable_dp(struct intel_encoder *encoder)
2330 Serge 1426
{
3031 serge 1427
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2327 Serge 1428
 
3031 serge 1429
	/* Make sure the panel is off before trying to change the mode. But also
1430
	 * ensure that we have vdd while we switch off the panel. */
2330 Serge 1431
		ironlake_edp_panel_vdd_on(intel_dp);
3031 serge 1432
	ironlake_edp_backlight_off(intel_dp);
2342 Serge 1433
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3031 serge 1434
	ironlake_edp_panel_off(intel_dp);
2330 Serge 1435
 
3031 serge 1436
	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1437
	if (!is_cpu_edp(intel_dp))
1438
		intel_dp_link_down(intel_dp);
1439
}
2330 Serge 1440
 
3031 serge 1441
static void intel_post_disable_dp(struct intel_encoder *encoder)
1442
{
1443
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1444
 
1445
	if (is_cpu_edp(intel_dp)) {
1446
		intel_dp_link_down(intel_dp);
1447
		ironlake_edp_pll_off(intel_dp);
1448
	}
2330 Serge 1449
}
1450
 
3031 serge 1451
static void intel_enable_dp(struct intel_encoder *encoder)
2330 Serge 1452
{
3031 serge 1453
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1454
	struct drm_device *dev = encoder->base.dev;
2330 Serge 1455
	struct drm_i915_private *dev_priv = dev->dev_private;
1456
	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1457
 
3031 serge 1458
	if (WARN_ON(dp_reg & DP_PORT_EN))
1459
		return;
2342 Serge 1460
 
1461
		ironlake_edp_panel_vdd_on(intel_dp);
3031 serge 1462
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2330 Serge 1463
			intel_dp_start_link_train(intel_dp);
1464
				ironlake_edp_panel_on(intel_dp);
2342 Serge 1465
			ironlake_edp_panel_vdd_off(intel_dp, true);
2330 Serge 1466
			intel_dp_complete_link_train(intel_dp);
2342 Serge 1467
		ironlake_edp_backlight_on(intel_dp);
2330 Serge 1468
}
1469
 
3031 serge 1470
static void intel_pre_enable_dp(struct intel_encoder *encoder)
1471
{
1472
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1473
 
1474
	if (is_cpu_edp(intel_dp))
1475
		ironlake_edp_pll_on(intel_dp);
1476
}
1477
 
2330 Serge 1478
/*
1479
 * Native read with retry for link status and receiver capability reads for
1480
 * cases where the sink may still be asleep.
1481
 */
1482
static bool
1483
intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1484
			       uint8_t *recv, int recv_bytes)
1485
{
1486
	int ret, i;
1487
 
1488
	/*
1489
	 * Sinks are *supposed* to come up within 1ms from an off state,
1490
	 * but we're also supposed to retry 3 times per the spec.
1491
	 */
1492
	for (i = 0; i < 3; i++) {
1493
		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1494
					       recv_bytes);
1495
		if (ret == recv_bytes)
1496
			return true;
1497
		msleep(1);
1498
	}
1499
 
1500
	return false;
1501
}
1502
 
1503
/*
1504
 * Fetch AUX CH registers 0x202 - 0x207 which contain
1505
 * link status information
1506
 */
1507
static bool
2342 Serge 1508
intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2330 Serge 1509
{
1510
	return intel_dp_aux_native_read_retry(intel_dp,
1511
					      DP_LANE0_1_STATUS,
2342 Serge 1512
					      link_status,
2330 Serge 1513
					      DP_LINK_STATUS_SIZE);
1514
}
1515
 
1516
#if 0
1517
static char	*voltage_names[] = {
1518
	"0.4V", "0.6V", "0.8V", "1.2V"
1519
};
1520
static char	*pre_emph_names[] = {
1521
	"0dB", "3.5dB", "6dB", "9.5dB"
1522
};
1523
static char	*link_train_names[] = {
1524
	"pattern 1", "pattern 2", "idle", "off"
1525
};
1526
#endif
1527
 
1528
/*
1529
 * These are source-specific values; current Intel hardware supports
1530
 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1531
 */
1532
 
1533
static uint8_t
2342 Serge 1534
intel_dp_voltage_max(struct intel_dp *intel_dp)
2330 Serge 1535
{
3243 Serge 1536
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 1537
 
1538
	if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1539
		return DP_TRAIN_VOLTAGE_SWING_800;
1540
	else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1541
		return DP_TRAIN_VOLTAGE_SWING_1200;
1542
	else
1543
		return DP_TRAIN_VOLTAGE_SWING_800;
1544
}
1545
 
1546
static uint8_t
1547
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1548
{
3243 Serge 1549
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 1550
 
3243 Serge 1551
	if (IS_HASWELL(dev)) {
2342 Serge 1552
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1553
		case DP_TRAIN_VOLTAGE_SWING_400:
3243 Serge 1554
			return DP_TRAIN_PRE_EMPHASIS_9_5;
1555
		case DP_TRAIN_VOLTAGE_SWING_600:
2342 Serge 1556
			return DP_TRAIN_PRE_EMPHASIS_6;
3243 Serge 1557
		case DP_TRAIN_VOLTAGE_SWING_800:
1558
			return DP_TRAIN_PRE_EMPHASIS_3_5;
1559
		case DP_TRAIN_VOLTAGE_SWING_1200:
1560
		default:
1561
			return DP_TRAIN_PRE_EMPHASIS_0;
1562
		}
1563
	} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1564
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1565
		case DP_TRAIN_VOLTAGE_SWING_400:
1566
			return DP_TRAIN_PRE_EMPHASIS_6;
2342 Serge 1567
		case DP_TRAIN_VOLTAGE_SWING_600:
1568
		case DP_TRAIN_VOLTAGE_SWING_800:
1569
			return DP_TRAIN_PRE_EMPHASIS_3_5;
1570
		default:
1571
			return DP_TRAIN_PRE_EMPHASIS_0;
1572
		}
1573
	} else {
2330 Serge 1574
	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1575
	case DP_TRAIN_VOLTAGE_SWING_400:
1576
		return DP_TRAIN_PRE_EMPHASIS_6;
1577
	case DP_TRAIN_VOLTAGE_SWING_600:
1578
		return DP_TRAIN_PRE_EMPHASIS_6;
1579
	case DP_TRAIN_VOLTAGE_SWING_800:
1580
		return DP_TRAIN_PRE_EMPHASIS_3_5;
1581
	case DP_TRAIN_VOLTAGE_SWING_1200:
1582
	default:
1583
		return DP_TRAIN_PRE_EMPHASIS_0;
1584
	}
2342 Serge 1585
	}
2330 Serge 1586
}
1587
 
1588
static void
2342 Serge 1589
intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2330 Serge 1590
{
1591
	uint8_t v = 0;
1592
	uint8_t p = 0;
1593
	int lane;
2342 Serge 1594
	uint8_t voltage_max;
1595
	uint8_t preemph_max;
2330 Serge 1596
 
1597
	for (lane = 0; lane < intel_dp->lane_count; lane++) {
3243 Serge 1598
		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1599
		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2330 Serge 1600
 
1601
		if (this_v > v)
1602
			v = this_v;
1603
		if (this_p > p)
1604
			p = this_p;
1605
	}
1606
 
2342 Serge 1607
	voltage_max = intel_dp_voltage_max(intel_dp);
1608
	if (v >= voltage_max)
1609
		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2330 Serge 1610
 
2342 Serge 1611
	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1612
	if (p >= preemph_max)
1613
		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2330 Serge 1614
 
1615
	for (lane = 0; lane < 4; lane++)
1616
		intel_dp->train_set[lane] = v | p;
1617
}
1618
 
1619
static uint32_t
3480 Serge 1620
intel_gen4_signal_levels(uint8_t train_set)
2330 Serge 1621
{
1622
	uint32_t	signal_levels = 0;
1623
 
1624
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1625
	case DP_TRAIN_VOLTAGE_SWING_400:
1626
	default:
1627
		signal_levels |= DP_VOLTAGE_0_4;
1628
		break;
1629
	case DP_TRAIN_VOLTAGE_SWING_600:
1630
		signal_levels |= DP_VOLTAGE_0_6;
1631
		break;
1632
	case DP_TRAIN_VOLTAGE_SWING_800:
1633
		signal_levels |= DP_VOLTAGE_0_8;
1634
		break;
1635
	case DP_TRAIN_VOLTAGE_SWING_1200:
1636
		signal_levels |= DP_VOLTAGE_1_2;
1637
		break;
1638
	}
1639
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1640
	case DP_TRAIN_PRE_EMPHASIS_0:
1641
	default:
1642
		signal_levels |= DP_PRE_EMPHASIS_0;
1643
		break;
1644
	case DP_TRAIN_PRE_EMPHASIS_3_5:
1645
		signal_levels |= DP_PRE_EMPHASIS_3_5;
1646
		break;
1647
	case DP_TRAIN_PRE_EMPHASIS_6:
1648
		signal_levels |= DP_PRE_EMPHASIS_6;
1649
		break;
1650
	case DP_TRAIN_PRE_EMPHASIS_9_5:
1651
		signal_levels |= DP_PRE_EMPHASIS_9_5;
1652
		break;
1653
	}
1654
	return signal_levels;
1655
}
1656
 
1657
/* Gen6's DP voltage swing and pre-emphasis control */
1658
static uint32_t
1659
intel_gen6_edp_signal_levels(uint8_t train_set)
1660
{
1661
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1662
					 DP_TRAIN_PRE_EMPHASIS_MASK);
1663
	switch (signal_levels) {
1664
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1665
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1666
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1667
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1668
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1669
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1670
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1671
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1672
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1673
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1674
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1675
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1676
	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1677
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1678
	default:
1679
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1680
			      "0x%x\n", signal_levels);
1681
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1682
	}
1683
}
1684
 
2342 Serge 1685
/* Gen7's DP voltage swing and pre-emphasis control */
1686
static uint32_t
1687
intel_gen7_edp_signal_levels(uint8_t train_set)
1688
{
1689
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1690
					 DP_TRAIN_PRE_EMPHASIS_MASK);
1691
	switch (signal_levels) {
1692
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1693
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
1694
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1695
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1696
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1697
		return EDP_LINK_TRAIN_400MV_6DB_IVB;
1698
 
1699
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1700
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
1701
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1702
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1703
 
1704
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1705
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
1706
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1707
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1708
 
1709
	default:
1710
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1711
			      "0x%x\n", signal_levels);
1712
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
1713
	}
1714
}
1715
 
3243 Serge 1716
/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1717
static uint32_t
3480 Serge 1718
intel_hsw_signal_levels(uint8_t train_set)
2330 Serge 1719
{
3243 Serge 1720
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1721
					 DP_TRAIN_PRE_EMPHASIS_MASK);
1722
	switch (signal_levels) {
1723
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1724
		return DDI_BUF_EMP_400MV_0DB_HSW;
1725
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1726
		return DDI_BUF_EMP_400MV_3_5DB_HSW;
1727
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1728
		return DDI_BUF_EMP_400MV_6DB_HSW;
1729
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1730
		return DDI_BUF_EMP_400MV_9_5DB_HSW;
2330 Serge 1731
 
3243 Serge 1732
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1733
		return DDI_BUF_EMP_600MV_0DB_HSW;
1734
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1735
		return DDI_BUF_EMP_600MV_3_5DB_HSW;
1736
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1737
		return DDI_BUF_EMP_600MV_6DB_HSW;
2330 Serge 1738
 
3243 Serge 1739
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1740
		return DDI_BUF_EMP_800MV_0DB_HSW;
1741
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1742
		return DDI_BUF_EMP_800MV_3_5DB_HSW;
1743
	default:
1744
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1745
			      "0x%x\n", signal_levels);
1746
		return DDI_BUF_EMP_400MV_0DB_HSW;
2330 Serge 1747
	}
1748
}
1749
 
3480 Serge 1750
/* Properly updates "DP" with the correct signal levels. */
1751
static void
1752
intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
1753
{
1754
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1755
	struct drm_device *dev = intel_dig_port->base.base.dev;
1756
	uint32_t signal_levels, mask;
1757
	uint8_t train_set = intel_dp->train_set[0];
1758
 
1759
	if (IS_HASWELL(dev)) {
1760
		signal_levels = intel_hsw_signal_levels(train_set);
1761
		mask = DDI_BUF_EMP_MASK;
1762
	} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1763
		signal_levels = intel_gen7_edp_signal_levels(train_set);
1764
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
1765
	} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1766
		signal_levels = intel_gen6_edp_signal_levels(train_set);
1767
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
1768
	} else {
1769
		signal_levels = intel_gen4_signal_levels(train_set);
1770
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
1771
	}
1772
 
1773
	DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
1774
 
1775
	*DP = (*DP & ~mask) | signal_levels;
1776
}
1777
 
2330 Serge 1778
static bool
1779
intel_dp_set_link_train(struct intel_dp *intel_dp,
1780
			uint32_t dp_reg_value,
1781
			uint8_t dp_train_pat)
1782
{
3243 Serge 1783
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1784
	struct drm_device *dev = intel_dig_port->base.base.dev;
2330 Serge 1785
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 1786
	enum port port = intel_dig_port->port;
2330 Serge 1787
	int ret;
3243 Serge 1788
	uint32_t temp;
2330 Serge 1789
 
3243 Serge 1790
	if (IS_HASWELL(dev)) {
1791
		temp = I915_READ(DP_TP_CTL(port));
1792
 
1793
		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1794
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1795
		else
1796
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1797
 
1798
		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1799
		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1800
		case DP_TRAINING_PATTERN_DISABLE:
3480 Serge 1801
 
1802
			if (port != PORT_A) {
3243 Serge 1803
			temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
1804
			I915_WRITE(DP_TP_CTL(port), temp);
1805
 
1806
			if (wait_for((I915_READ(DP_TP_STATUS(port)) &
1807
				      DP_TP_STATUS_IDLE_DONE), 1))
1808
				DRM_ERROR("Timed out waiting for DP idle patterns\n");
1809
 
1810
			temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3480 Serge 1811
			}
1812
 
3243 Serge 1813
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1814
 
1815
			break;
1816
		case DP_TRAINING_PATTERN_1:
1817
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1818
			break;
1819
		case DP_TRAINING_PATTERN_2:
1820
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1821
			break;
1822
		case DP_TRAINING_PATTERN_3:
1823
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1824
			break;
1825
		}
1826
		I915_WRITE(DP_TP_CTL(port), temp);
1827
 
1828
	} else if (HAS_PCH_CPT(dev) &&
1829
		   (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
3031 serge 1830
		dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1831
 
1832
		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1833
		case DP_TRAINING_PATTERN_DISABLE:
1834
			dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1835
			break;
1836
		case DP_TRAINING_PATTERN_1:
1837
			dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1838
			break;
1839
		case DP_TRAINING_PATTERN_2:
1840
			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1841
			break;
1842
		case DP_TRAINING_PATTERN_3:
1843
			DRM_ERROR("DP training pattern 3 not supported\n");
1844
			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1845
			break;
1846
		}
1847
 
1848
	} else {
1849
		dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1850
 
1851
		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1852
		case DP_TRAINING_PATTERN_DISABLE:
1853
			dp_reg_value |= DP_LINK_TRAIN_OFF;
1854
			break;
1855
		case DP_TRAINING_PATTERN_1:
1856
			dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1857
			break;
1858
		case DP_TRAINING_PATTERN_2:
1859
			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1860
			break;
1861
		case DP_TRAINING_PATTERN_3:
1862
			DRM_ERROR("DP training pattern 3 not supported\n");
1863
			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1864
			break;
1865
		}
1866
	}
1867
 
2330 Serge 1868
	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1869
	POSTING_READ(intel_dp->output_reg);
1870
 
1871
	intel_dp_aux_native_write_1(intel_dp,
1872
				    DP_TRAINING_PATTERN_SET,
1873
				    dp_train_pat);
1874
 
3031 serge 1875
	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1876
	    DP_TRAINING_PATTERN_DISABLE) {
2330 Serge 1877
	ret = intel_dp_aux_native_write(intel_dp,
1878
					DP_TRAINING_LANE0_SET,
2342 Serge 1879
					intel_dp->train_set,
1880
					intel_dp->lane_count);
1881
	if (ret != intel_dp->lane_count)
2330 Serge 1882
		return false;
3031 serge 1883
	}
2330 Serge 1884
 
1885
	return true;
1886
}
1887
 
1888
/* Enable corresponding port and start training pattern 1 */
3243 Serge 1889
void
2330 Serge 1890
intel_dp_start_link_train(struct intel_dp *intel_dp)
1891
{
3243 Serge 1892
	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
1893
	struct drm_device *dev = encoder->dev;
2330 Serge 1894
	int i;
1895
	uint8_t voltage;
1896
	bool clock_recovery = false;
2342 Serge 1897
	int voltage_tries, loop_tries;
2330 Serge 1898
	uint32_t DP = intel_dp->DP;
1899
 
3480 Serge 1900
	if (HAS_DDI(dev))
3243 Serge 1901
		intel_ddi_prepare_link_retrain(encoder);
1902
 
2330 Serge 1903
	/* Write the link configuration data */
1904
	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1905
				  intel_dp->link_configuration,
1906
				  DP_LINK_CONFIGURATION_SIZE);
1907
 
1908
	DP |= DP_PORT_EN;
2342 Serge 1909
 
2330 Serge 1910
	memset(intel_dp->train_set, 0, 4);
1911
	voltage = 0xff;
2342 Serge 1912
	voltage_tries = 0;
1913
	loop_tries = 0;
2330 Serge 1914
	clock_recovery = false;
1915
	for (;;) {
1916
		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
2342 Serge 1917
		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1918
 
3480 Serge 1919
		intel_dp_set_signal_levels(intel_dp, &DP);
2330 Serge 1920
 
3243 Serge 1921
		/* Set training pattern 1 */
3031 serge 1922
		if (!intel_dp_set_link_train(intel_dp, DP,
2330 Serge 1923
					     DP_TRAINING_PATTERN_1 |
1924
					     DP_LINK_SCRAMBLING_DISABLE))
1925
			break;
1926
 
3243 Serge 1927
		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2342 Serge 1928
		if (!intel_dp_get_link_status(intel_dp, link_status)) {
1929
			DRM_ERROR("failed to get link status\n");
2330 Serge 1930
			break;
2342 Serge 1931
		}
2330 Serge 1932
 
3243 Serge 1933
		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2342 Serge 1934
			DRM_DEBUG_KMS("clock recovery OK\n");
2330 Serge 1935
			clock_recovery = true;
1936
			break;
1937
		}
1938
 
1939
		/* Check to see if we've tried the max voltage */
1940
		for (i = 0; i < intel_dp->lane_count; i++)
1941
			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1942
				break;
3480 Serge 1943
		if (i == intel_dp->lane_count) {
2342 Serge 1944
			++loop_tries;
1945
			if (loop_tries == 5) {
1946
				DRM_DEBUG_KMS("too many full retries, give up\n");
2330 Serge 1947
			break;
2342 Serge 1948
			}
1949
			memset(intel_dp->train_set, 0, 4);
1950
			voltage_tries = 0;
1951
			continue;
1952
		}
2330 Serge 1953
 
1954
		/* Check to see if we've tried the same voltage 5 times */
1955
		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2342 Serge 1956
			++voltage_tries;
1957
			if (voltage_tries == 5) {
1958
				DRM_DEBUG_KMS("too many voltage retries, give up\n");
2330 Serge 1959
				break;
2342 Serge 1960
			}
2330 Serge 1961
		} else
2342 Serge 1962
			voltage_tries = 0;
2330 Serge 1963
		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1964
 
1965
		/* Compute new intel_dp->train_set as requested by target */
2342 Serge 1966
		intel_get_adjust_train(intel_dp, link_status);
2330 Serge 1967
	}
1968
 
1969
	intel_dp->DP = DP;
1970
}
1971
 
3243 Serge 1972
void
2330 Serge 1973
intel_dp_complete_link_train(struct intel_dp *intel_dp)
1974
{
1975
	bool channel_eq = false;
1976
	int tries, cr_tries;
1977
	uint32_t DP = intel_dp->DP;
1978
 
1979
	/* channel equalization */
1980
	tries = 0;
1981
	cr_tries = 0;
1982
	channel_eq = false;
1983
	for (;;) {
2342 Serge 1984
		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
2330 Serge 1985
 
1986
		if (cr_tries > 5) {
1987
			DRM_ERROR("failed to train DP, aborting\n");
1988
			intel_dp_link_down(intel_dp);
1989
			break;
1990
		}
1991
 
3480 Serge 1992
		intel_dp_set_signal_levels(intel_dp, &DP);
2330 Serge 1993
 
1994
		/* channel eq pattern */
3031 serge 1995
		if (!intel_dp_set_link_train(intel_dp, DP,
2330 Serge 1996
					     DP_TRAINING_PATTERN_2 |
1997
					     DP_LINK_SCRAMBLING_DISABLE))
1998
			break;
1999
 
3243 Serge 2000
		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2342 Serge 2001
		if (!intel_dp_get_link_status(intel_dp, link_status))
2330 Serge 2002
			break;
2003
 
2004
		/* Make sure clock is still ok */
3243 Serge 2005
		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2330 Serge 2006
			intel_dp_start_link_train(intel_dp);
2007
			cr_tries++;
2008
			continue;
2009
		}
2010
 
3243 Serge 2011
		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2330 Serge 2012
			channel_eq = true;
2013
			break;
2014
		}
2015
 
2016
		/* Try 5 times, then try clock recovery if that fails */
2017
		if (tries > 5) {
2018
			intel_dp_link_down(intel_dp);
2019
			intel_dp_start_link_train(intel_dp);
2020
			tries = 0;
2021
			cr_tries++;
2022
			continue;
2023
		}
2024
 
2025
		/* Compute new intel_dp->train_set as requested by target */
2342 Serge 2026
		intel_get_adjust_train(intel_dp, link_status);
2330 Serge 2027
		++tries;
2028
	}
2029
 
3243 Serge 2030
	if (channel_eq)
2031
		DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
2032
 
3031 serge 2033
	intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
2330 Serge 2034
}
2035
 
2036
static void
2037
intel_dp_link_down(struct intel_dp *intel_dp)
2038
{
3243 Serge 2039
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2040
	struct drm_device *dev = intel_dig_port->base.base.dev;
2330 Serge 2041
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 2042
	struct intel_crtc *intel_crtc =
2043
		to_intel_crtc(intel_dig_port->base.base.crtc);
2330 Serge 2044
	uint32_t DP = intel_dp->DP;
2045
 
3243 Serge 2046
	/*
2047
	 * DDI code has a strict mode set sequence and we should try to respect
2048
	 * it, otherwise we might hang the machine in many different ways. So we
2049
	 * really should be disabling the port only on a complete crtc_disable
2050
	 * sequence. This function is just called under two conditions on DDI
2051
	 * code:
2052
	 * - Link train failed while doing crtc_enable, and on this case we
2053
	 *   really should respect the mode set sequence and wait for a
2054
	 *   crtc_disable.
2055
	 * - Someone turned the monitor off and intel_dp_check_link_status
2056
	 *   called us. We don't need to disable the whole port on this case, so
2057
	 *   when someone turns the monitor on again,
2058
	 *   intel_ddi_prepare_link_retrain will take care of redoing the link
2059
	 *   train.
2060
	 */
3480 Serge 2061
	if (HAS_DDI(dev))
3243 Serge 2062
		return;
2063
 
3031 serge 2064
	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2330 Serge 2065
		return;
2066
 
2067
	DRM_DEBUG_KMS("\n");
2068
 
2342 Serge 2069
	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
2330 Serge 2070
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
2071
		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2072
	} else {
2073
		DP &= ~DP_LINK_TRAIN_MASK;
2074
		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2075
	}
2076
	POSTING_READ(intel_dp->output_reg);
2077
 
3480 Serge 2078
	/* We don't really know why we're doing this */
2079
	intel_wait_for_vblank(dev, intel_crtc->pipe);
2330 Serge 2080
 
3031 serge 2081
	if (HAS_PCH_IBX(dev) &&
2330 Serge 2082
	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3243 Serge 2083
		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2330 Serge 2084
 
2085
		/* Hardware workaround: leaving our transcoder select
2086
		 * set to transcoder B while it's off will prevent the
2087
		 * corresponding HDMI output on transcoder A.
2088
		 *
2089
		 * Combine this with another hardware workaround:
2090
		 * transcoder select bit can only be cleared while the
2091
		 * port is enabled.
2092
		 */
2093
		DP &= ~DP_PIPEB_SELECT;
2094
		I915_WRITE(intel_dp->output_reg, DP);
2095
 
2096
		/* Changes to enable or select take place the vblank
2097
		 * after being written.
2098
		 */
3480 Serge 2099
		if (WARN_ON(crtc == NULL)) {
2100
			/* We should never try to disable a port without a crtc
2101
			 * attached. For paranoia keep the code around for a
2102
			 * bit. */
2330 Serge 2103
			POSTING_READ(intel_dp->output_reg);
2104
			msleep(50);
2105
		} else
3480 Serge 2106
			intel_wait_for_vblank(dev, intel_crtc->pipe);
2330 Serge 2107
	}
2108
 
2342 Serge 2109
	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2330 Serge 2110
	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2111
	POSTING_READ(intel_dp->output_reg);
2342 Serge 2112
	msleep(intel_dp->panel_power_down_delay);
2330 Serge 2113
}
2114
 
2115
static bool
2116
intel_dp_get_dpcd(struct intel_dp *intel_dp)
2117
{
3480 Serge 2118
	char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2119
 
2330 Serge 2120
	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
3031 serge 2121
					   sizeof(intel_dp->dpcd)) == 0)
2122
		return false; /* aux transfer failed */
2123
 
3480 Serge 2124
	hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2125
			   32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2126
	DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2127
 
3031 serge 2128
	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2129
		return false; /* DPCD not present */
2130
 
2131
	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2132
	      DP_DWN_STRM_PORT_PRESENT))
2133
		return true; /* native DP sink */
2134
 
2135
	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2136
		return true; /* no per-port downstream info */
2137
 
2138
	if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2139
					   intel_dp->downstream_ports,
2140
					   DP_MAX_DOWNSTREAM_PORTS) == 0)
2141
		return false; /* downstream port status fetch failed */
2142
 
2330 Serge 2143
		return true;
3031 serge 2144
}
2330 Serge 2145
 
3031 serge 2146
static void
2147
intel_dp_probe_oui(struct intel_dp *intel_dp)
2148
{
2149
	u8 buf[3];
2150
 
2151
	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2152
		return;
2153
 
2154
	ironlake_edp_panel_vdd_on(intel_dp);
2155
 
2156
	if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2157
		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2158
			      buf[0], buf[1], buf[2]);
2159
 
2160
	if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2161
		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2162
			      buf[0], buf[1], buf[2]);
2163
 
2164
	ironlake_edp_panel_vdd_off(intel_dp, false);
2330 Serge 2165
}
2166
 
2342 Serge 2167
static bool
2168
intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2169
{
2170
	int ret;
2171
 
2172
	ret = intel_dp_aux_native_read_retry(intel_dp,
2173
					     DP_DEVICE_SERVICE_IRQ_VECTOR,
2174
					     sink_irq_vector, 1);
2175
	if (!ret)
2176
		return false;
2177
 
2178
	return true;
2179
}
2180
 
2181
static void
2182
intel_dp_handle_test_request(struct intel_dp *intel_dp)
2183
{
2184
	/* NAK by default */
3243 Serge 2185
	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2342 Serge 2186
}
2187
 
2330 Serge 2188
/*
2189
 * According to DP spec
2190
 * 5.1.2:
2191
 *  1. Read DPCD
2192
 *  2. Configure link according to Receiver Capabilities
2193
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2194
 *  4. Check link status on receipt of hot-plug interrupt
2195
 */
2196
 
3243 Serge 2197
void
2330 Serge 2198
intel_dp_check_link_status(struct intel_dp *intel_dp)
2199
{
3243 Serge 2200
	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2342 Serge 2201
	u8 sink_irq_vector;
2202
	u8 link_status[DP_LINK_STATUS_SIZE];
2203
 
3243 Serge 2204
	if (!intel_encoder->connectors_active)
2330 Serge 2205
		return;
2206
 
3243 Serge 2207
	if (WARN_ON(!intel_encoder->base.crtc))
2330 Serge 2208
		return;
2209
 
2210
	/* Try to read receiver status if the link appears to be up */
2342 Serge 2211
	if (!intel_dp_get_link_status(intel_dp, link_status)) {
2330 Serge 2212
		intel_dp_link_down(intel_dp);
2213
		return;
2214
	}
2215
 
2216
	/* Now read the DPCD to see if it's actually running */
2217
	if (!intel_dp_get_dpcd(intel_dp)) {
2218
		intel_dp_link_down(intel_dp);
2219
		return;
2220
	}
2221
 
2342 Serge 2222
	/* Try to read the source of the interrupt */
2223
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2224
	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2225
		/* Clear interrupt source */
2226
		intel_dp_aux_native_write_1(intel_dp,
2227
					    DP_DEVICE_SERVICE_IRQ_VECTOR,
2228
					    sink_irq_vector);
2229
 
2230
		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2231
			intel_dp_handle_test_request(intel_dp);
2232
		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2233
			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2234
	}
2235
 
3243 Serge 2236
	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2330 Serge 2237
		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3243 Serge 2238
			      drm_get_encoder_name(&intel_encoder->base));
2330 Serge 2239
		intel_dp_start_link_train(intel_dp);
2240
		intel_dp_complete_link_train(intel_dp);
2241
	}
2242
}
2243
 
3031 serge 2244
/* XXX this is probably wrong for multiple downstream ports */
2330 Serge 2245
static enum drm_connector_status
2246
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2247
{
3031 serge 2248
	uint8_t *dpcd = intel_dp->dpcd;
2249
	bool hpd;
2250
	uint8_t type;
2251
 
2252
	if (!intel_dp_get_dpcd(intel_dp))
2253
		return connector_status_disconnected;
2254
 
2255
	/* if there's no downstream port, we're done */
2256
	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2330 Serge 2257
		return connector_status_connected;
3031 serge 2258
 
2259
	/* If we're HPD-aware, SINK_COUNT changes dynamically */
2260
	hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2261
	if (hpd) {
2262
		uint8_t reg;
2263
		if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2264
						    ®, 1))
2265
			return connector_status_unknown;
2266
		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2267
					      : connector_status_disconnected;
2268
	}
2269
 
2270
	/* If no HPD, poke DDC gently */
2271
	if (drm_probe_ddc(&intel_dp->adapter))
2272
		return connector_status_connected;
2273
 
2274
	/* Well we tried, say unknown for unreliable port types */
2275
	type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2276
	if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2277
		return connector_status_unknown;
2278
 
2279
	/* Anything else is out of spec, warn and ignore */
2280
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2330 Serge 2281
	return connector_status_disconnected;
2282
}
2283
 
2284
static enum drm_connector_status
2285
ironlake_dp_detect(struct intel_dp *intel_dp)
2286
{
3243 Serge 2287
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3480 Serge 2288
	struct drm_i915_private *dev_priv = dev->dev_private;
2289
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2330 Serge 2290
	enum drm_connector_status status;
2291
 
2292
	/* Can't disconnect eDP, but you can close the lid... */
2293
	if (is_edp(intel_dp)) {
3243 Serge 2294
		status = intel_panel_detect(dev);
2330 Serge 2295
		if (status == connector_status_unknown)
2296
			status = connector_status_connected;
2297
		return status;
2298
	}
2299
 
3480 Serge 2300
	if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2301
		return connector_status_disconnected;
2302
 
2330 Serge 2303
	return intel_dp_detect_dpcd(intel_dp);
2304
}
2305
 
2306
static enum drm_connector_status
2307
g4x_dp_detect(struct intel_dp *intel_dp)
2308
{
3243 Serge 2309
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 2310
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 2311
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3031 serge 2312
	uint32_t bit;
2330 Serge 2313
 
3480 Serge 2314
	switch (intel_dig_port->port) {
2315
	case PORT_B:
2316
		bit = PORTB_HOTPLUG_LIVE_STATUS;
2330 Serge 2317
		break;
3480 Serge 2318
	case PORT_C:
2319
		bit = PORTC_HOTPLUG_LIVE_STATUS;
2330 Serge 2320
		break;
3480 Serge 2321
	case PORT_D:
2322
		bit = PORTD_HOTPLUG_LIVE_STATUS;
2330 Serge 2323
		break;
2324
	default:
2325
		return connector_status_unknown;
2326
	}
2327
 
3031 serge 2328
	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2330 Serge 2329
		return connector_status_disconnected;
2330
 
2331
	return intel_dp_detect_dpcd(intel_dp);
2332
}
2333
 
2342 Serge 2334
static struct edid *
2335
intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2336
{
3243 Serge 2337
	struct intel_connector *intel_connector = to_intel_connector(connector);
2338
 
2339
	/* use cached edid if we have one */
2340
	if (intel_connector->edid) {
2342 Serge 2341
	struct edid	*edid;
3031 serge 2342
	int size;
2342 Serge 2343
 
3243 Serge 2344
		/* invalid edid */
2345
		if (IS_ERR(intel_connector->edid))
3031 serge 2346
			return NULL;
2347
 
3243 Serge 2348
		size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
3031 serge 2349
		edid = kmalloc(size, GFP_KERNEL);
2350
		if (!edid)
2351
			return NULL;
2352
 
3243 Serge 2353
		memcpy(edid, intel_connector->edid, size);
3031 serge 2354
		return edid;
2355
	}
2356
 
3243 Serge 2357
	return drm_get_edid(connector, adapter);
2342 Serge 2358
}
2359
 
2360
static int
2361
intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2362
{
3243 Serge 2363
	struct intel_connector *intel_connector = to_intel_connector(connector);
2342 Serge 2364
 
3243 Serge 2365
	/* use cached edid if we have one */
2366
	if (intel_connector->edid) {
2367
		/* invalid edid */
2368
		if (IS_ERR(intel_connector->edid))
2369
			return 0;
2370
 
2371
		return intel_connector_update_modes(connector,
2372
						    intel_connector->edid);
3031 serge 2373
	}
2374
 
3243 Serge 2375
	return intel_ddc_get_modes(connector, adapter);
2342 Serge 2376
}
2377
 
2330 Serge 2378
static enum drm_connector_status
2379
intel_dp_detect(struct drm_connector *connector, bool force)
2380
{
2381
	struct intel_dp *intel_dp = intel_attached_dp(connector);
3243 Serge 2382
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2383
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
2384
	struct drm_device *dev = connector->dev;
2330 Serge 2385
	enum drm_connector_status status;
2386
	struct edid *edid = NULL;
2387
 
2388
	intel_dp->has_audio = false;
2389
 
2390
	if (HAS_PCH_SPLIT(dev))
2391
		status = ironlake_dp_detect(intel_dp);
2392
	else
2393
		status = g4x_dp_detect(intel_dp);
2394
 
2395
	if (status != connector_status_connected)
2396
		return status;
3031 serge 2397
 
2398
	intel_dp_probe_oui(intel_dp);
2399
 
3243 Serge 2400
	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2401
		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2330 Serge 2402
	} else {
3031 serge 2403
		edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2330 Serge 2404
		if (edid) {
2405
			intel_dp->has_audio = drm_detect_monitor_audio(edid);
2406
			kfree(edid);
2407
		}
2408
	}
3243 Serge 2409
 
2410
	if (intel_encoder->type != INTEL_OUTPUT_EDP)
2411
		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2330 Serge 2412
	return connector_status_connected;
2413
}
2414
 
2415
static int intel_dp_get_modes(struct drm_connector *connector)
2416
{
2417
	struct intel_dp *intel_dp = intel_attached_dp(connector);
3243 Serge 2418
	struct intel_connector *intel_connector = to_intel_connector(connector);
2419
	struct drm_device *dev = connector->dev;
2330 Serge 2420
	int ret;
2421
 
2422
	/* We should parse the EDID data and find out if it has an audio sink
2423
	 */
2424
 
2342 Serge 2425
	ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
3243 Serge 2426
	if (ret)
2330 Serge 2427
		return ret;
2428
 
3243 Serge 2429
	/* if eDP has no EDID, fall back to fixed mode */
2430
	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2330 Serge 2431
			struct drm_display_mode *mode;
3243 Serge 2432
		mode = drm_mode_duplicate(dev,
2433
					  intel_connector->panel.fixed_mode);
2434
		if (mode) {
2330 Serge 2435
			drm_mode_probed_add(connector, mode);
2436
			return 1;
2437
		}
2438
	}
2439
	return 0;
2440
}
2441
 
3243 Serge 2442
static bool
2443
intel_dp_detect_audio(struct drm_connector *connector)
2444
{
2445
	struct intel_dp *intel_dp = intel_attached_dp(connector);
2446
	struct edid *edid;
2447
	bool has_audio = false;
2330 Serge 2448
 
3243 Serge 2449
	edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2450
	if (edid) {
2451
		has_audio = drm_detect_monitor_audio(edid);
2452
		kfree(edid);
2453
	}
2330 Serge 2454
 
3243 Serge 2455
	return has_audio;
2456
}
2330 Serge 2457
 
2458
static int
2459
intel_dp_set_property(struct drm_connector *connector,
2460
		      struct drm_property *property,
2461
		      uint64_t val)
2462
{
2463
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
3243 Serge 2464
	struct intel_connector *intel_connector = to_intel_connector(connector);
2465
	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2466
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2330 Serge 2467
	int ret;
2468
 
3243 Serge 2469
	ret = drm_object_property_set_value(&connector->base, property, val);
2330 Serge 2470
	if (ret)
2471
		return ret;
3480 Serge 2472
 
2330 Serge 2473
	if (property == dev_priv->force_audio_property) {
2474
		int i = val;
2475
		bool has_audio;
2476
 
2477
		if (i == intel_dp->force_audio)
2478
			return 0;
2479
 
2480
		intel_dp->force_audio = i;
2481
 
3031 serge 2482
		if (i == HDMI_AUDIO_AUTO)
2330 Serge 2483
			has_audio = intel_dp_detect_audio(connector);
2484
		else
3031 serge 2485
			has_audio = (i == HDMI_AUDIO_ON);
2330 Serge 2486
 
2487
		if (has_audio == intel_dp->has_audio)
2488
			return 0;
2489
 
2490
		intel_dp->has_audio = has_audio;
2491
		goto done;
2492
	}
2493
 
2494
	if (property == dev_priv->broadcast_rgb_property) {
3480 Serge 2495
		switch (val) {
2496
		case INTEL_BROADCAST_RGB_AUTO:
2497
			intel_dp->color_range_auto = true;
2498
			break;
2499
		case INTEL_BROADCAST_RGB_FULL:
2500
			intel_dp->color_range_auto = false;
2501
			intel_dp->color_range = 0;
2502
			break;
2503
		case INTEL_BROADCAST_RGB_LIMITED:
2504
			intel_dp->color_range_auto = false;
2505
			intel_dp->color_range = DP_COLOR_RANGE_16_235;
2506
			break;
2507
		default:
2508
			return -EINVAL;
2509
		}
2330 Serge 2510
	goto done;
2511
	}
2512
 
3243 Serge 2513
	if (is_edp(intel_dp) &&
2514
	    property == connector->dev->mode_config.scaling_mode_property) {
2515
		if (val == DRM_MODE_SCALE_NONE) {
2516
			DRM_DEBUG_KMS("no scaling not supported\n");
2517
			return -EINVAL;
2518
		}
2519
 
2520
		if (intel_connector->panel.fitting_mode == val) {
2521
			/* the eDP scaling property is not changed */
2522
			return 0;
2523
		}
2524
		intel_connector->panel.fitting_mode = val;
2525
 
2526
		goto done;
2527
	}
2528
 
2330 Serge 2529
	return -EINVAL;
2530
 
2531
done:
3480 Serge 2532
	if (intel_encoder->base.crtc)
2533
		intel_crtc_restore_mode(intel_encoder->base.crtc);
2330 Serge 2534
 
2535
	return 0;
2536
}
2537
 
2538
static void
2342 Serge 2539
intel_dp_destroy(struct drm_connector *connector)
2330 Serge 2540
{
2541
	struct drm_device *dev = connector->dev;
3031 serge 2542
	struct intel_dp *intel_dp = intel_attached_dp(connector);
3243 Serge 2543
	struct intel_connector *intel_connector = to_intel_connector(connector);
2330 Serge 2544
 
3243 Serge 2545
	if (!IS_ERR_OR_NULL(intel_connector->edid))
2546
		kfree(intel_connector->edid);
2547
 
2548
	if (is_edp(intel_dp)) {
2330 Serge 2549
		intel_panel_destroy_backlight(dev);
3243 Serge 2550
		intel_panel_fini(&intel_connector->panel);
2551
	}
2330 Serge 2552
 
2553
	drm_sysfs_connector_remove(connector);
2554
	drm_connector_cleanup(connector);
2555
	kfree(connector);
2556
}
2557
 
3243 Serge 2558
void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2330 Serge 2559
{
3243 Serge 2560
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2561
	struct intel_dp *intel_dp = &intel_dig_port->dp;
3480 Serge 2562
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 2563
 
3243 Serge 2564
	i2c_del_adapter(&intel_dp->adapter);
2330 Serge 2565
	drm_encoder_cleanup(encoder);
2342 Serge 2566
	if (is_edp(intel_dp)) {
2567
//		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3480 Serge 2568
		mutex_lock(&dev->mode_config.mutex);
2342 Serge 2569
		ironlake_panel_vdd_off_sync(intel_dp);
3480 Serge 2570
		mutex_unlock(&dev->mode_config.mutex);
2342 Serge 2571
	}
3243 Serge 2572
	kfree(intel_dig_port);
2330 Serge 2573
}
2574
 
2575
static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2576
	.mode_fixup = intel_dp_mode_fixup,
2577
	.mode_set = intel_dp_mode_set,
2578
};
2579
 
2580
static const struct drm_connector_funcs intel_dp_connector_funcs = {
3031 serge 2581
	.dpms = intel_connector_dpms,
2330 Serge 2582
	.detect = intel_dp_detect,
2583
	.fill_modes = drm_helper_probe_single_connector_modes,
2584
	.set_property = intel_dp_set_property,
2585
	.destroy = intel_dp_destroy,
2586
};
2587
 
2588
static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2589
	.get_modes = intel_dp_get_modes,
2590
	.mode_valid = intel_dp_mode_valid,
2591
	.best_encoder = intel_best_encoder,
2592
};
2593
 
2594
static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2595
	.destroy = intel_dp_encoder_destroy,
2596
};
2597
 
2598
static void
2599
intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2600
{
3243 Serge 2601
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2330 Serge 2602
 
2603
	intel_dp_check_link_status(intel_dp);
2604
}
2605
 
2327 Serge 2606
/* Return which DP Port should be selected for Transcoder DP control */
2607
int
2342 Serge 2608
intel_trans_dp_port_sel(struct drm_crtc *crtc)
2327 Serge 2609
{
2610
	struct drm_device *dev = crtc->dev;
3243 Serge 2611
	struct intel_encoder *intel_encoder;
2612
	struct intel_dp *intel_dp;
2327 Serge 2613
 
3243 Serge 2614
	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2615
		intel_dp = enc_to_intel_dp(&intel_encoder->base);
2327 Serge 2616
 
3243 Serge 2617
		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2618
		    intel_encoder->type == INTEL_OUTPUT_EDP)
2327 Serge 2619
			return intel_dp->output_reg;
2620
	}
2621
 
2622
	return -1;
2623
}
2330 Serge 2624
 
2625
/* check the VBT to see whether the eDP is on DP-D port */
2626
bool intel_dpd_is_edp(struct drm_device *dev)
2627
{
2628
	struct drm_i915_private *dev_priv = dev->dev_private;
2629
	struct child_device_config *p_child;
2630
	int i;
2631
 
2632
	if (!dev_priv->child_dev_num)
2633
		return false;
2634
 
2635
	for (i = 0; i < dev_priv->child_dev_num; i++) {
2636
		p_child = dev_priv->child_dev + i;
2637
 
2638
		if (p_child->dvo_port == PORT_IDPD &&
2639
		    p_child->device_type == DEVICE_TYPE_eDP)
2640
			return true;
2641
	}
2642
	return false;
2643
}
2644
 
2645
static void
2646
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2647
{
3243 Serge 2648
	struct intel_connector *intel_connector = to_intel_connector(connector);
2649
 
2330 Serge 2650
	intel_attach_force_audio_property(connector);
2651
	intel_attach_broadcast_rgb_property(connector);
3480 Serge 2652
	intel_dp->color_range_auto = true;
3243 Serge 2653
 
2654
	if (is_edp(intel_dp)) {
2655
		drm_mode_create_scaling_mode_property(connector->dev);
2656
		drm_object_attach_property(
2657
			&connector->base,
2658
			connector->dev->mode_config.scaling_mode_property,
2659
			DRM_MODE_SCALE_ASPECT);
2660
		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
2661
	}
2330 Serge 2662
}
2663
 
3243 Serge 2664
static void
2665
intel_dp_init_panel_power_sequencer(struct drm_device *dev,
2666
				    struct intel_dp *intel_dp,
2667
				    struct edp_power_seq *out)
2668
{
2669
	struct drm_i915_private *dev_priv = dev->dev_private;
2670
	struct edp_power_seq cur, vbt, spec, final;
2671
	u32 pp_on, pp_off, pp_div, pp;
2672
 
2673
	/* Workaround: Need to write PP_CONTROL with the unlock key as
2674
	 * the very first thing. */
2675
	pp = ironlake_get_pp_control(dev_priv);
2676
	I915_WRITE(PCH_PP_CONTROL, pp);
2677
 
2678
	pp_on = I915_READ(PCH_PP_ON_DELAYS);
2679
	pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2680
	pp_div = I915_READ(PCH_PP_DIVISOR);
2681
 
2682
	/* Pull timing values out of registers */
2683
	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2684
		PANEL_POWER_UP_DELAY_SHIFT;
2685
 
2686
	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2687
		PANEL_LIGHT_ON_DELAY_SHIFT;
2688
 
2689
	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2690
		PANEL_LIGHT_OFF_DELAY_SHIFT;
2691
 
2692
	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2693
		PANEL_POWER_DOWN_DELAY_SHIFT;
2694
 
2695
	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2696
		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2697
 
2698
	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2699
		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2700
 
2701
	vbt = dev_priv->edp.pps;
2702
 
2703
	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
2704
	 * our hw here, which are all in 100usec. */
2705
	spec.t1_t3 = 210 * 10;
2706
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
2707
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
2708
	spec.t10 = 500 * 10;
2709
	/* This one is special and actually in units of 100ms, but zero
2710
	 * based in the hw (so we need to add 100 ms). But the sw vbt
2711
	 * table multiplies it with 1000 to make it in units of 100usec,
2712
	 * too. */
2713
	spec.t11_t12 = (510 + 100) * 10;
2714
 
2715
	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2716
		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2717
 
2718
	/* Use the max of the register settings and vbt. If both are
2719
	 * unset, fall back to the spec limits. */
2720
#define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
2721
				       spec.field : \
2722
				       max(cur.field, vbt.field))
2723
	assign_final(t1_t3);
2724
	assign_final(t8);
2725
	assign_final(t9);
2726
	assign_final(t10);
2727
	assign_final(t11_t12);
2728
#undef assign_final
2729
 
2730
#define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
2731
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
2732
	intel_dp->backlight_on_delay = get_delay(t8);
2733
	intel_dp->backlight_off_delay = get_delay(t9);
2734
	intel_dp->panel_power_down_delay = get_delay(t10);
2735
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2736
#undef get_delay
2737
 
2738
	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2739
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2740
		      intel_dp->panel_power_cycle_delay);
2741
 
2742
	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2743
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2744
 
2745
	if (out)
2746
		*out = final;
2747
}
2748
 
2749
static void
2750
intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
2751
					      struct intel_dp *intel_dp,
2752
					      struct edp_power_seq *seq)
2753
{
2754
	struct drm_i915_private *dev_priv = dev->dev_private;
2755
	u32 pp_on, pp_off, pp_div;
2756
 
2757
	/* And finally store the new values in the power sequencer. */
2758
	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
2759
		(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
2760
	pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
2761
		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
2762
	/* Compute the divisor for the pp clock, simply match the Bspec
2763
	 * formula. */
2764
	pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
2765
			<< PP_REFERENCE_DIVIDER_SHIFT;
2766
	pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
2767
			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
2768
 
2769
	/* Haswell doesn't have any port selection bits for the panel
2770
	 * power sequencer any more. */
2771
	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
2772
		if (is_cpu_edp(intel_dp))
2773
			pp_on |= PANEL_POWER_PORT_DP_A;
2774
		else
2775
			pp_on |= PANEL_POWER_PORT_DP_D;
2776
	}
2777
 
2778
	I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
2779
	I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
2780
	I915_WRITE(PCH_PP_DIVISOR, pp_div);
2781
 
2782
	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
2783
		      I915_READ(PCH_PP_ON_DELAYS),
2784
		      I915_READ(PCH_PP_OFF_DELAYS),
2785
		      I915_READ(PCH_PP_DIVISOR));
2786
}
2787
 
2330 Serge 2788
void
3243 Serge 2789
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
2790
			struct intel_connector *intel_connector)
2330 Serge 2791
{
3243 Serge 2792
	struct drm_connector *connector = &intel_connector->base;
2793
	struct intel_dp *intel_dp = &intel_dig_port->dp;
2794
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
2795
	struct drm_device *dev = intel_encoder->base.dev;
2330 Serge 2796
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 2797
	struct drm_display_mode *fixed_mode = NULL;
2798
	struct edp_power_seq power_seq = { 0 };
2799
	enum port port = intel_dig_port->port;
2330 Serge 2800
	const char *name = NULL;
2801
	int type;
2802
 
3031 serge 2803
	/* Preserve the current hw state. */
2804
	intel_dp->DP = I915_READ(intel_dp->output_reg);
3243 Serge 2805
	intel_dp->attached_connector = intel_connector;
2330 Serge 2806
 
3243 Serge 2807
	if (HAS_PCH_SPLIT(dev) && port == PORT_D)
2330 Serge 2808
		if (intel_dpd_is_edp(dev))
2809
			intel_dp->is_pch_edp = true;
2810
 
3243 Serge 2811
	/*
2812
	 * FIXME : We need to initialize built-in panels before external panels.
2813
	 * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2814
	 */
2815
	if (IS_VALLEYVIEW(dev) && port == PORT_C) {
2330 Serge 2816
		type = DRM_MODE_CONNECTOR_eDP;
2817
		intel_encoder->type = INTEL_OUTPUT_EDP;
3243 Serge 2818
	} else if (port == PORT_A || is_pch_edp(intel_dp)) {
2819
		type = DRM_MODE_CONNECTOR_eDP;
2820
		intel_encoder->type = INTEL_OUTPUT_EDP;
2330 Serge 2821
	} else {
3243 Serge 2822
		/* The intel_encoder->type value may be INTEL_OUTPUT_UNKNOWN for
2823
		 * DDI or INTEL_OUTPUT_DISPLAYPORT for the older gens, so don't
2824
		 * rewrite it.
2825
		 */
2330 Serge 2826
		type = DRM_MODE_CONNECTOR_DisplayPort;
2827
	}
2828
 
2829
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2830
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2831
 
2832
	connector->polled = DRM_CONNECTOR_POLL_HPD;
2833
	connector->interlace_allowed = true;
2834
	connector->doublescan_allowed = 0;
2835
 
3243 Serge 2836
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2837
			  ironlake_panel_vdd_work);
2330 Serge 2838
 
2839
	intel_connector_attach_encoder(intel_connector, intel_encoder);
2840
	drm_sysfs_connector_add(connector);
2841
 
3480 Serge 2842
	if (HAS_DDI(dev))
3243 Serge 2843
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2844
	else
3031 serge 2845
	intel_connector->get_hw_state = intel_connector_get_hw_state;
2846
 
3243 Serge 2847
 
2330 Serge 2848
	/* Set up the DDC bus. */
3031 serge 2849
	switch (port) {
2850
	case PORT_A:
2330 Serge 2851
			name = "DPDDC-A";
2852
			break;
3031 serge 2853
	case PORT_B:
3480 Serge 2854
		dev_priv->hotplug_supported_mask |= PORTB_HOTPLUG_INT_STATUS;
2330 Serge 2855
			name = "DPDDC-B";
2856
			break;
3031 serge 2857
	case PORT_C:
3480 Serge 2858
		dev_priv->hotplug_supported_mask |= PORTC_HOTPLUG_INT_STATUS;
2330 Serge 2859
			name = "DPDDC-C";
2860
			break;
3031 serge 2861
	case PORT_D:
3480 Serge 2862
		dev_priv->hotplug_supported_mask |= PORTD_HOTPLUG_INT_STATUS;
2330 Serge 2863
			name = "DPDDC-D";
2864
			break;
3031 serge 2865
	default:
2866
		WARN(1, "Invalid port %c\n", port_name(port));
2867
		break;
2330 Serge 2868
	}
2869
 
3243 Serge 2870
	if (is_edp(intel_dp))
2871
		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2330 Serge 2872
 
3031 serge 2873
	intel_dp_i2c_init(intel_dp, intel_connector, name);
2874
 
3243 Serge 2875
	/* Cache DPCD and EDID for edp. */
3031 serge 2876
	if (is_edp(intel_dp)) {
2877
		bool ret;
3243 Serge 2878
		struct drm_display_mode *scan;
3031 serge 2879
		struct edid *edid;
2880
 
2330 Serge 2881
		ironlake_edp_panel_vdd_on(intel_dp);
2882
		ret = intel_dp_get_dpcd(intel_dp);
2342 Serge 2883
		ironlake_edp_panel_vdd_off(intel_dp, false);
2884
 
2330 Serge 2885
		if (ret) {
2886
			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2887
				dev_priv->no_aux_handshake =
2888
					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2889
					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2890
		} else {
2891
			/* if this fails, presume the device is a ghost */
2892
			DRM_INFO("failed to retrieve link info, disabling eDP\n");
3243 Serge 2893
			intel_dp_encoder_destroy(&intel_encoder->base);
2894
			intel_dp_destroy(connector);
2330 Serge 2895
			return;
2896
		}
3031 serge 2897
 
3243 Serge 2898
		/* We now know it's not a ghost, init power sequence regs. */
2899
		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2900
							      &power_seq);
2901
 
3031 serge 2902
		ironlake_edp_panel_vdd_on(intel_dp);
2903
		edid = drm_get_edid(connector, &intel_dp->adapter);
2904
		if (edid) {
3243 Serge 2905
			if (drm_add_edid_modes(connector, edid)) {
2906
				drm_mode_connector_update_edid_property(connector, edid);
3031 serge 2907
			drm_edid_to_eld(connector, edid);
3243 Serge 2908
			} else {
2909
				kfree(edid);
2910
				edid = ERR_PTR(-EINVAL);
2911
			}
2912
		} else {
2913
			edid = ERR_PTR(-ENOENT);
3031 serge 2914
		}
3243 Serge 2915
		intel_connector->edid = edid;
2916
 
2917
		/* prefer fixed mode from EDID if available */
2918
		list_for_each_entry(scan, &connector->probed_modes, head) {
2919
			if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
2920
				fixed_mode = drm_mode_duplicate(dev, scan);
2921
				break;
2922
			}
2923
		}
2924
 
2925
		/* fallback to VBT if available for eDP */
2926
		if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
2927
			fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2928
			if (fixed_mode)
2929
				fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
2930
		}
2931
 
3031 serge 2932
		ironlake_edp_panel_vdd_off(intel_dp, false);
2330 Serge 2933
	}
2934
 
2935
	if (is_edp(intel_dp)) {
3243 Serge 2936
		intel_panel_init(&intel_connector->panel, fixed_mode);
2937
		intel_panel_setup_backlight(connector);
2330 Serge 2938
	}
2939
 
2940
	intel_dp_add_properties(intel_dp, connector);
2941
 
2942
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2943
	 * 0xd.  Failure to do so will result in spurious interrupts being
2944
	 * generated on the port when a cable is not attached.
2945
	 */
2946
	if (IS_G4X(dev) && !IS_GM45(dev)) {
2947
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2948
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2949
	}
2950
}
3243 Serge 2951
 
2952
void
2953
intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2954
{
2955
	struct intel_digital_port *intel_dig_port;
2956
	struct intel_encoder *intel_encoder;
2957
	struct drm_encoder *encoder;
2958
	struct intel_connector *intel_connector;
2959
 
2960
	intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
2961
	if (!intel_dig_port)
2962
		return;
2963
 
2964
	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2965
	if (!intel_connector) {
2966
		kfree(intel_dig_port);
2967
		return;
2968
	}
2969
 
2970
	intel_encoder = &intel_dig_port->base;
2971
	encoder = &intel_encoder->base;
2972
 
2973
	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2974
			 DRM_MODE_ENCODER_TMDS);
2975
	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2976
 
2977
	intel_encoder->enable = intel_enable_dp;
2978
	intel_encoder->pre_enable = intel_pre_enable_dp;
2979
	intel_encoder->disable = intel_disable_dp;
2980
	intel_encoder->post_disable = intel_post_disable_dp;
2981
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
2982
 
2983
	intel_dig_port->port = port;
2984
	intel_dig_port->dp.output_reg = output_reg;
2985
 
2986
	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2987
	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2988
	intel_encoder->cloneable = false;
2989
	intel_encoder->hot_plug = intel_dp_hot_plug;
2990
 
2991
	intel_dp_init_connector(intel_dig_port, intel_connector);
2992
}