Subversion Repositories Kolibri OS

Rev

Rev 3031 | Rev 3480 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2327 Serge 1
/*
2
 * Copyright © 2008 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Keith Packard 
25
 *
26
 */
27
 
28
#include 
2330 Serge 29
#include 
3031 serge 30
#include 
31
#include 
32
#include 
33
#include 
34
#include 
2327 Serge 35
#include "intel_drv.h"
3031 serge 36
#include 
2327 Serge 37
#include "i915_drv.h"
38
 
39
#define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
 
41
/**
42
 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43
 * @intel_dp: DP struct
44
 *
45
 * If a CPU or PCH DP output is attached to an eDP panel, this function
46
 * will return true, and false otherwise.
47
 */
48
static bool is_edp(struct intel_dp *intel_dp)
49
{
3243 Serge 50
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
51
 
52
	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
2327 Serge 53
}
54
 
55
/**
56
 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
57
 * @intel_dp: DP struct
58
 *
59
 * Returns true if the given DP struct corresponds to a PCH DP port attached
60
 * to an eDP panel, false otherwise.  Helpful for determining whether we
61
 * may need FDI resources for a given DP output or not.
62
 */
63
static bool is_pch_edp(struct intel_dp *intel_dp)
64
{
65
	return intel_dp->is_pch_edp;
66
}
67
 
2342 Serge 68
/**
69
 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
70
 * @intel_dp: DP struct
71
 *
72
 * Returns true if the given DP struct corresponds to a CPU eDP port.
73
 */
74
static bool is_cpu_edp(struct intel_dp *intel_dp)
75
{
76
	return is_edp(intel_dp) && !is_pch_edp(intel_dp);
77
}
78
 
3243 Serge 79
static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
2327 Serge 80
{
3243 Serge 81
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
82
 
83
	return intel_dig_port->base.base.dev;
2327 Serge 84
}
85
 
2330 Serge 86
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
87
{
3243 Serge 88
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
2330 Serge 89
}
2327 Serge 90
 
91
/**
92
 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
93
 * @encoder: DRM encoder
94
 *
95
 * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
96
 * by intel_display.c.
97
 */
98
bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
99
{
100
    struct intel_dp *intel_dp;
101
 
102
    if (!encoder)
103
        return false;
104
 
105
    intel_dp = enc_to_intel_dp(encoder);
106
 
107
    return is_pch_edp(intel_dp);
108
}
109
 
2330 Serge 110
static void intel_dp_link_down(struct intel_dp *intel_dp);
111
 
2327 Serge 112
void
2342 Serge 113
intel_edp_link_config(struct intel_encoder *intel_encoder,
2327 Serge 114
		       int *lane_num, int *link_bw)
115
{
3243 Serge 116
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2327 Serge 117
 
118
	*lane_num = intel_dp->lane_count;
3243 Serge 119
	*link_bw = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
2327 Serge 120
}
121
 
3031 serge 122
int
123
intel_edp_target_clock(struct intel_encoder *intel_encoder,
124
		       struct drm_display_mode *mode)
125
{
3243 Serge 126
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
127
	struct intel_connector *intel_connector = intel_dp->attached_connector;
3031 serge 128
 
3243 Serge 129
	if (intel_connector->panel.fixed_mode)
130
		return intel_connector->panel.fixed_mode->clock;
3031 serge 131
	else
132
		return mode->clock;
133
}
134
 
2330 Serge 135
static int
136
intel_dp_max_link_bw(struct intel_dp *intel_dp)
137
{
138
	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
2327 Serge 139
 
2330 Serge 140
	switch (max_link_bw) {
141
	case DP_LINK_BW_1_62:
142
	case DP_LINK_BW_2_7:
143
		break;
144
	default:
145
		max_link_bw = DP_LINK_BW_1_62;
146
		break;
147
	}
148
	return max_link_bw;
149
}
2327 Serge 150
 
2330 Serge 151
static int
152
intel_dp_link_clock(uint8_t link_bw)
153
{
154
	if (link_bw == DP_LINK_BW_2_7)
155
		return 270000;
156
	else
157
		return 162000;
158
}
2327 Serge 159
 
2342 Serge 160
/*
161
 * The units on the numbers in the next two are... bizarre.  Examples will
162
 * make it clearer; this one parallels an example in the eDP spec.
163
 *
164
 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
165
 *
166
 *     270000 * 1 * 8 / 10 == 216000
167
 *
168
 * The actual data capacity of that configuration is 2.16Gbit/s, so the
169
 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
170
 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
171
 * 119000.  At 18bpp that's 2142000 kilobits per second.
172
 *
173
 * Thus the strange-looking division by 10 in intel_dp_link_required, to
174
 * get the result in decakilobits instead of kilobits.
175
 */
176
 
2330 Serge 177
static int
2351 Serge 178
intel_dp_link_required(int pixel_clock, int bpp)
2330 Serge 179
{
2342 Serge 180
	return (pixel_clock * bpp + 9) / 10;
2330 Serge 181
}
2327 Serge 182
 
2330 Serge 183
static int
184
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
185
{
186
	return (max_link_clock * max_lanes * 8) / 10;
187
}
2327 Serge 188
 
3031 serge 189
static bool
190
intel_dp_adjust_dithering(struct intel_dp *intel_dp,
191
			  struct drm_display_mode *mode,
192
			  bool adjust_mode)
193
{
194
	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
3243 Serge 195
	int max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
3031 serge 196
	int max_rate, mode_rate;
197
 
198
	mode_rate = intel_dp_link_required(mode->clock, 24);
199
	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
200
 
201
	if (mode_rate > max_rate) {
202
		mode_rate = intel_dp_link_required(mode->clock, 18);
203
		if (mode_rate > max_rate)
204
			return false;
205
 
206
		if (adjust_mode)
207
			mode->private_flags
208
				|= INTEL_MODE_DP_FORCE_6BPC;
209
 
210
		return true;
211
	}
212
 
213
	return true;
214
}
215
 
2330 Serge 216
static int
217
intel_dp_mode_valid(struct drm_connector *connector,
218
		    struct drm_display_mode *mode)
219
{
220
	struct intel_dp *intel_dp = intel_attached_dp(connector);
3243 Serge 221
	struct intel_connector *intel_connector = to_intel_connector(connector);
222
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
2327 Serge 223
 
3243 Serge 224
	if (is_edp(intel_dp) && fixed_mode) {
225
		if (mode->hdisplay > fixed_mode->hdisplay)
2330 Serge 226
			return MODE_PANEL;
2327 Serge 227
 
3243 Serge 228
		if (mode->vdisplay > fixed_mode->vdisplay)
2330 Serge 229
			return MODE_PANEL;
230
	}
2327 Serge 231
 
3031 serge 232
	if (!intel_dp_adjust_dithering(intel_dp, mode, false))
2330 Serge 233
		return MODE_CLOCK_HIGH;
2327 Serge 234
 
2330 Serge 235
	if (mode->clock < 10000)
236
		return MODE_CLOCK_LOW;
237
 
3031 serge 238
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
239
		return MODE_H_ILLEGAL;
240
 
2330 Serge 241
	return MODE_OK;
242
}
243
 
244
static uint32_t
245
pack_aux(uint8_t *src, int src_bytes)
246
{
247
	int	i;
248
	uint32_t v = 0;
249
 
250
	if (src_bytes > 4)
251
		src_bytes = 4;
252
	for (i = 0; i < src_bytes; i++)
253
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
254
	return v;
255
}
256
 
257
static void
258
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
259
{
260
	int i;
261
	if (dst_bytes > 4)
262
		dst_bytes = 4;
263
	for (i = 0; i < dst_bytes; i++)
264
		dst[i] = src >> ((3-i) * 8);
265
}
266
 
267
/* hrawclock is 1/4 the FSB frequency */
268
static int
269
intel_hrawclk(struct drm_device *dev)
270
{
271
	struct drm_i915_private *dev_priv = dev->dev_private;
272
	uint32_t clkcfg;
273
 
3243 Serge 274
	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
275
	if (IS_VALLEYVIEW(dev))
276
		return 200;
277
 
2330 Serge 278
	clkcfg = I915_READ(CLKCFG);
279
	switch (clkcfg & CLKCFG_FSB_MASK) {
280
	case CLKCFG_FSB_400:
281
		return 100;
282
	case CLKCFG_FSB_533:
283
		return 133;
284
	case CLKCFG_FSB_667:
285
		return 166;
286
	case CLKCFG_FSB_800:
287
		return 200;
288
	case CLKCFG_FSB_1067:
289
		return 266;
290
	case CLKCFG_FSB_1333:
291
		return 333;
292
	/* these two are just a guess; one of them might be right */
293
	case CLKCFG_FSB_1600:
294
	case CLKCFG_FSB_1600_ALT:
295
		return 400;
296
	default:
297
		return 133;
298
	}
299
}
300
 
2342 Serge 301
static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
302
{
3243 Serge 303
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 304
	struct drm_i915_private *dev_priv = dev->dev_private;
305
 
306
	return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
307
}
308
 
309
static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
310
{
3243 Serge 311
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 312
	struct drm_i915_private *dev_priv = dev->dev_private;
313
 
314
	return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
315
}
316
 
317
static void
318
intel_dp_check_edp(struct intel_dp *intel_dp)
319
{
3243 Serge 320
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 321
	struct drm_i915_private *dev_priv = dev->dev_private;
322
 
323
	if (!is_edp(intel_dp))
324
		return;
325
	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
326
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
327
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
328
			      I915_READ(PCH_PP_STATUS),
329
			      I915_READ(PCH_PP_CONTROL));
330
	}
331
}
332
 
2330 Serge 333
static int
334
intel_dp_aux_ch(struct intel_dp *intel_dp,
335
		uint8_t *send, int send_bytes,
336
		uint8_t *recv, int recv_size)
337
{
338
	uint32_t output_reg = intel_dp->output_reg;
3243 Serge 339
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
340
	struct drm_device *dev = intel_dig_port->base.base.dev;
2330 Serge 341
	struct drm_i915_private *dev_priv = dev->dev_private;
342
	uint32_t ch_ctl = output_reg + 0x10;
343
	uint32_t ch_data = ch_ctl + 4;
344
	int i;
345
	int recv_bytes;
346
	uint32_t status;
347
	uint32_t aux_clock_divider;
348
	int try, precharge;
349
 
3243 Serge 350
	if (IS_HASWELL(dev)) {
351
		switch (intel_dig_port->port) {
352
		case PORT_A:
353
			ch_ctl = DPA_AUX_CH_CTL;
354
			ch_data = DPA_AUX_CH_DATA1;
355
			break;
356
		case PORT_B:
357
			ch_ctl = PCH_DPB_AUX_CH_CTL;
358
			ch_data = PCH_DPB_AUX_CH_DATA1;
359
			break;
360
		case PORT_C:
361
			ch_ctl = PCH_DPC_AUX_CH_CTL;
362
			ch_data = PCH_DPC_AUX_CH_DATA1;
363
			break;
364
		case PORT_D:
365
			ch_ctl = PCH_DPD_AUX_CH_CTL;
366
			ch_data = PCH_DPD_AUX_CH_DATA1;
367
			break;
368
		default:
369
			BUG();
370
		}
371
	}
372
 
2342 Serge 373
	intel_dp_check_edp(intel_dp);
2330 Serge 374
	/* The clock divider is based off the hrawclk,
375
	 * and would like to run at 2MHz. So, take the
376
	 * hrawclk value and divide by 2 and use that
377
	 *
378
	 * Note that PCH attached eDP panels should use a 125MHz input
379
	 * clock divider.
380
	 */
2342 Serge 381
	if (is_cpu_edp(intel_dp)) {
3243 Serge 382
		if (IS_HASWELL(dev))
383
			aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
384
		else if (IS_VALLEYVIEW(dev))
385
			aux_clock_divider = 100;
386
		else if (IS_GEN6(dev) || IS_GEN7(dev))
2342 Serge 387
			aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
2330 Serge 388
		else
389
			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
390
	} else if (HAS_PCH_SPLIT(dev))
3243 Serge 391
		aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
2330 Serge 392
	else
393
		aux_clock_divider = intel_hrawclk(dev) / 2;
394
 
395
	if (IS_GEN6(dev))
396
		precharge = 3;
397
	else
398
		precharge = 5;
399
 
400
	/* Try to wait for any previous AUX channel activity */
401
	for (try = 0; try < 3; try++) {
402
		status = I915_READ(ch_ctl);
403
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
404
			break;
405
		msleep(1);
406
	}
407
 
408
	if (try == 3) {
409
		WARN(1, "dp_aux_ch not started status 0x%08x\n",
410
		     I915_READ(ch_ctl));
411
		return -EBUSY;
412
	}
413
 
414
	/* Must try at least 3 times according to DP spec */
415
	for (try = 0; try < 5; try++) {
416
		/* Load the send data into the aux channel data registers */
417
		for (i = 0; i < send_bytes; i += 4)
418
			I915_WRITE(ch_data + i,
419
				   pack_aux(send + i, send_bytes - i));
420
 
421
		/* Send the command and wait for it to complete */
422
		I915_WRITE(ch_ctl,
423
			   DP_AUX_CH_CTL_SEND_BUSY |
424
			   DP_AUX_CH_CTL_TIME_OUT_400us |
425
			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
426
			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
427
			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
428
			   DP_AUX_CH_CTL_DONE |
429
			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
430
			   DP_AUX_CH_CTL_RECEIVE_ERROR);
431
		for (;;) {
432
			status = I915_READ(ch_ctl);
433
			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
434
				break;
435
			udelay(100);
436
		}
437
 
438
		/* Clear done status and any errors */
439
		I915_WRITE(ch_ctl,
440
			   status |
441
			   DP_AUX_CH_CTL_DONE |
442
			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
443
			   DP_AUX_CH_CTL_RECEIVE_ERROR);
3031 serge 444
 
445
		if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
446
			      DP_AUX_CH_CTL_RECEIVE_ERROR))
447
			continue;
2330 Serge 448
		if (status & DP_AUX_CH_CTL_DONE)
449
			break;
450
	}
451
 
452
	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
453
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
454
		return -EBUSY;
455
	}
456
 
457
	/* Check for timeout or receive error.
458
	 * Timeouts occur when the sink is not connected
459
	 */
460
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
461
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
462
		return -EIO;
463
	}
464
 
465
	/* Timeouts occur when the device isn't connected, so they're
466
	 * "normal" -- don't fill the kernel log with these */
467
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
468
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
469
		return -ETIMEDOUT;
470
	}
471
 
472
	/* Unload any bytes sent back from the other side */
473
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
474
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
475
	if (recv_bytes > recv_size)
476
		recv_bytes = recv_size;
477
 
478
	for (i = 0; i < recv_bytes; i += 4)
479
		unpack_aux(I915_READ(ch_data + i),
480
			   recv + i, recv_bytes - i);
481
 
482
	return recv_bytes;
483
}
484
 
485
/* Write data to the aux channel in native mode */
486
static int
487
intel_dp_aux_native_write(struct intel_dp *intel_dp,
488
			  uint16_t address, uint8_t *send, int send_bytes)
489
{
490
	int ret;
491
	uint8_t	msg[20];
492
	int msg_bytes;
493
	uint8_t	ack;
494
 
2342 Serge 495
	intel_dp_check_edp(intel_dp);
2330 Serge 496
	if (send_bytes > 16)
497
		return -1;
498
	msg[0] = AUX_NATIVE_WRITE << 4;
499
	msg[1] = address >> 8;
500
	msg[2] = address & 0xff;
501
	msg[3] = send_bytes - 1;
502
	memcpy(&msg[4], send, send_bytes);
503
	msg_bytes = send_bytes + 4;
504
	for (;;) {
505
		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
506
		if (ret < 0)
507
			return ret;
508
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
509
			break;
510
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
511
			udelay(100);
512
		else
513
			return -EIO;
514
	}
515
	return send_bytes;
516
}
517
 
518
/* Write a single byte to the aux channel in native mode */
519
static int
520
intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
521
			    uint16_t address, uint8_t byte)
522
{
523
	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
524
}
525
 
526
/* read bytes from a native aux channel */
527
static int
528
intel_dp_aux_native_read(struct intel_dp *intel_dp,
529
			 uint16_t address, uint8_t *recv, int recv_bytes)
530
{
531
	uint8_t msg[4];
532
	int msg_bytes;
533
	uint8_t reply[20];
534
	int reply_bytes;
535
	uint8_t ack;
536
	int ret;
537
 
2342 Serge 538
	intel_dp_check_edp(intel_dp);
2330 Serge 539
	msg[0] = AUX_NATIVE_READ << 4;
540
	msg[1] = address >> 8;
541
	msg[2] = address & 0xff;
542
	msg[3] = recv_bytes - 1;
543
 
544
	msg_bytes = 4;
545
	reply_bytes = recv_bytes + 1;
546
 
547
	for (;;) {
548
		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
549
				      reply, reply_bytes);
550
		if (ret == 0)
551
			return -EPROTO;
552
		if (ret < 0)
553
			return ret;
554
		ack = reply[0];
555
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
556
			memcpy(recv, reply + 1, ret - 1);
557
			return ret - 1;
558
		}
559
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
560
			udelay(100);
561
		else
562
			return -EIO;
563
	}
564
}
565
 
566
static int
567
intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
568
		    uint8_t write_byte, uint8_t *read_byte)
569
{
570
	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
571
	struct intel_dp *intel_dp = container_of(adapter,
572
						struct intel_dp,
573
						adapter);
574
	uint16_t address = algo_data->address;
575
	uint8_t msg[5];
576
	uint8_t reply[2];
577
	unsigned retry;
578
	int msg_bytes;
579
	int reply_bytes;
580
	int ret;
581
 
2342 Serge 582
	intel_dp_check_edp(intel_dp);
2330 Serge 583
	/* Set up the command byte */
584
	if (mode & MODE_I2C_READ)
585
		msg[0] = AUX_I2C_READ << 4;
586
	else
587
		msg[0] = AUX_I2C_WRITE << 4;
588
 
589
	if (!(mode & MODE_I2C_STOP))
590
		msg[0] |= AUX_I2C_MOT << 4;
591
 
592
	msg[1] = address >> 8;
593
	msg[2] = address;
594
 
595
	switch (mode) {
596
	case MODE_I2C_WRITE:
597
		msg[3] = 0;
598
		msg[4] = write_byte;
599
		msg_bytes = 5;
600
		reply_bytes = 1;
601
		break;
602
	case MODE_I2C_READ:
603
		msg[3] = 0;
604
		msg_bytes = 4;
605
		reply_bytes = 2;
606
		break;
607
	default:
608
		msg_bytes = 3;
609
		reply_bytes = 1;
610
		break;
611
	}
612
 
613
	for (retry = 0; retry < 5; retry++) {
614
		ret = intel_dp_aux_ch(intel_dp,
615
				      msg, msg_bytes,
616
				      reply, reply_bytes);
617
		if (ret < 0) {
618
			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
619
			return ret;
620
		}
621
 
622
		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
623
		case AUX_NATIVE_REPLY_ACK:
624
			/* I2C-over-AUX Reply field is only valid
625
			 * when paired with AUX ACK.
626
			 */
627
			break;
628
		case AUX_NATIVE_REPLY_NACK:
629
			DRM_DEBUG_KMS("aux_ch native nack\n");
630
			return -EREMOTEIO;
631
		case AUX_NATIVE_REPLY_DEFER:
632
			udelay(100);
633
			continue;
634
		default:
635
			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
636
				  reply[0]);
637
			return -EREMOTEIO;
638
		}
639
 
640
		switch (reply[0] & AUX_I2C_REPLY_MASK) {
641
		case AUX_I2C_REPLY_ACK:
642
			if (mode == MODE_I2C_READ) {
643
				*read_byte = reply[1];
644
			}
645
			return reply_bytes - 1;
646
		case AUX_I2C_REPLY_NACK:
647
			DRM_DEBUG_KMS("aux_i2c nack\n");
648
			return -EREMOTEIO;
649
		case AUX_I2C_REPLY_DEFER:
650
			DRM_DEBUG_KMS("aux_i2c defer\n");
651
			udelay(100);
652
			break;
653
		default:
654
			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
655
			return -EREMOTEIO;
656
		}
657
	}
658
 
659
	DRM_ERROR("too many retries, giving up\n");
660
	return -EREMOTEIO;
661
}
662
 
663
static int
664
intel_dp_i2c_init(struct intel_dp *intel_dp,
665
		  struct intel_connector *intel_connector, const char *name)
666
{
2342 Serge 667
	int	ret;
668
 
2330 Serge 669
	DRM_DEBUG_KMS("i2c_init %s\n", name);
670
	intel_dp->algo.running = false;
671
	intel_dp->algo.address = 0;
672
	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
673
 
2342 Serge 674
	memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
3031 serge 675
	intel_dp->adapter.owner = THIS_MODULE;
2330 Serge 676
	intel_dp->adapter.class = I2C_CLASS_DDC;
2342 Serge 677
	strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
2330 Serge 678
	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
679
	intel_dp->adapter.algo_data = &intel_dp->algo;
680
	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
681
 
2342 Serge 682
	ironlake_edp_panel_vdd_on(intel_dp);
683
	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
684
	ironlake_edp_panel_vdd_off(intel_dp, false);
685
	return ret;
2330 Serge 686
}
687
 
3243 Serge 688
bool
3031 serge 689
intel_dp_mode_fixup(struct drm_encoder *encoder,
690
		    const struct drm_display_mode *mode,
2330 Serge 691
		    struct drm_display_mode *adjusted_mode)
692
{
693
	struct drm_device *dev = encoder->dev;
694
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3243 Serge 695
	struct intel_connector *intel_connector = intel_dp->attached_connector;
2330 Serge 696
	int lane_count, clock;
3243 Serge 697
	int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
2330 Serge 698
	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
3031 serge 699
	int bpp, mode_rate;
2330 Serge 700
	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
701
 
3243 Serge 702
	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
703
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
704
				       adjusted_mode);
705
		intel_pch_panel_fitting(dev,
706
					intel_connector->panel.fitting_mode,
2330 Serge 707
					mode, adjusted_mode);
708
	}
709
 
3031 serge 710
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
711
		return false;
712
 
713
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
714
		      "max bw %02x pixel clock %iKHz\n",
715
		      max_lane_count, bws[max_clock], adjusted_mode->clock);
716
 
717
	if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
718
		return false;
719
 
720
	bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
721
	mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
722
 
723
	for (clock = 0; clock <= max_clock; clock++) {
2330 Serge 724
	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
725
			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
726
 
3031 serge 727
			if (mode_rate <= link_avail) {
2330 Serge 728
				intel_dp->link_bw = bws[clock];
729
				intel_dp->lane_count = lane_count;
730
				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
3031 serge 731
				DRM_DEBUG_KMS("DP link bw %02x lane "
732
						"count %d clock %d bpp %d\n",
2330 Serge 733
				       intel_dp->link_bw, intel_dp->lane_count,
3031 serge 734
				       adjusted_mode->clock, bpp);
735
				DRM_DEBUG_KMS("DP link bw required %i available %i\n",
736
					      mode_rate, link_avail);
2330 Serge 737
				return true;
738
			}
739
		}
740
	}
741
 
742
	return false;
743
}
744
 
2327 Serge 745
struct intel_dp_m_n {
746
	uint32_t	tu;
747
	uint32_t	gmch_m;
748
	uint32_t	gmch_n;
749
	uint32_t	link_m;
750
	uint32_t	link_n;
751
};
752
 
753
static void
754
intel_reduce_ratio(uint32_t *num, uint32_t *den)
755
{
756
	while (*num > 0xffffff || *den > 0xffffff) {
757
		*num >>= 1;
758
		*den >>= 1;
759
	}
760
}
761
 
762
static void
763
intel_dp_compute_m_n(int bpp,
764
		     int nlanes,
765
		     int pixel_clock,
766
		     int link_clock,
767
		     struct intel_dp_m_n *m_n)
768
{
769
	m_n->tu = 64;
770
	m_n->gmch_m = (pixel_clock * bpp) >> 3;
771
	m_n->gmch_n = link_clock * nlanes;
772
	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
773
	m_n->link_m = pixel_clock;
774
	m_n->link_n = link_clock;
775
	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
776
}
777
 
778
void
779
intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
780
         struct drm_display_mode *adjusted_mode)
781
{
782
    struct drm_device *dev = crtc->dev;
3243 Serge 783
	struct intel_encoder *intel_encoder;
784
	struct intel_dp *intel_dp;
2327 Serge 785
    struct drm_i915_private *dev_priv = dev->dev_private;
786
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
787
    int lane_count = 4;
788
    struct intel_dp_m_n m_n;
789
    int pipe = intel_crtc->pipe;
3243 Serge 790
	enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
2327 Serge 791
 
792
    /*
793
     * Find the lane count in the intel_encoder private
794
     */
3243 Serge 795
	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
796
		intel_dp = enc_to_intel_dp(&intel_encoder->base);
2327 Serge 797
 
3243 Serge 798
		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
799
		    intel_encoder->type == INTEL_OUTPUT_EDP)
2342 Serge 800
		{
2327 Serge 801
            lane_count = intel_dp->lane_count;
802
            break;
803
        }
804
    }
805
 
806
    /*
807
     * Compute the GMCH and Link ratios. The '3' here is
808
     * the number of bytes_per_pixel post-LUT, which we always
809
     * set up for 8-bits of R/G/B, or 3 bytes total.
810
     */
811
    intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
812
                 mode->clock, adjusted_mode->clock, &m_n);
813
 
3243 Serge 814
	if (IS_HASWELL(dev)) {
815
		I915_WRITE(PIPE_DATA_M1(cpu_transcoder),
816
			   TU_SIZE(m_n.tu) | m_n.gmch_m);
817
		I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
818
		I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
819
		I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
820
	} else if (HAS_PCH_SPLIT(dev)) {
821
		I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
2327 Serge 822
        I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
823
        I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
824
        I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
3243 Serge 825
	} else if (IS_VALLEYVIEW(dev)) {
826
		I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
827
		I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
828
		I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
829
		I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
2327 Serge 830
    } else {
831
        I915_WRITE(PIPE_GMCH_DATA_M(pipe),
3243 Serge 832
			   TU_SIZE(m_n.tu) | m_n.gmch_m);
2327 Serge 833
        I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
834
        I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
835
        I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
836
    }
837
}
838
 
3243 Serge 839
void intel_dp_init_link_config(struct intel_dp *intel_dp)
840
{
841
	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
842
	intel_dp->link_configuration[0] = intel_dp->link_bw;
843
	intel_dp->link_configuration[1] = intel_dp->lane_count;
844
	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
845
	/*
846
	 * Check for DPCD version > 1.1 and enhanced framing support
847
	 */
848
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
849
	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
850
		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
851
	}
852
}
853
 
2330 Serge 854
static void
855
intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
856
		  struct drm_display_mode *adjusted_mode)
857
{
858
	struct drm_device *dev = encoder->dev;
2342 Serge 859
	struct drm_i915_private *dev_priv = dev->dev_private;
2330 Serge 860
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3243 Serge 861
	struct drm_crtc *crtc = encoder->crtc;
2330 Serge 862
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 Serge 863
 
2342 Serge 864
	/*
865
	 * There are four kinds of DP registers:
866
	 *
867
	 * 	IBX PCH
868
	 * 	SNB CPU
869
	 *	IVB CPU
870
	 * 	CPT PCH
871
	 *
872
	 * IBX PCH and CPU are the same for almost everything,
873
	 * except that the CPU DP PLL is configured in this
874
	 * register
875
	 *
876
	 * CPT PCH is quite different, having many bits moved
877
	 * to the TRANS_DP_CTL register instead. That
878
	 * configuration happens (oddly) in ironlake_pch_enable
879
	 */
2327 Serge 880
 
2342 Serge 881
	/* Preserve the BIOS-computed detected bit. This is
882
	 * supposed to be read-only.
883
	 */
884
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2327 Serge 885
 
2342 Serge 886
	/* Handle DP bits in common between all three register formats */
887
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
888
 
2330 Serge 889
	switch (intel_dp->lane_count) {
890
	case 1:
891
		intel_dp->DP |= DP_PORT_WIDTH_1;
892
		break;
893
	case 2:
894
		intel_dp->DP |= DP_PORT_WIDTH_2;
895
		break;
896
	case 4:
897
		intel_dp->DP |= DP_PORT_WIDTH_4;
898
		break;
899
	}
2342 Serge 900
	if (intel_dp->has_audio) {
901
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
902
				 pipe_name(intel_crtc->pipe));
2330 Serge 903
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2342 Serge 904
		intel_write_eld(encoder, adjusted_mode);
905
	}
2327 Serge 906
 
3243 Serge 907
	intel_dp_init_link_config(intel_dp);
908
 
2342 Serge 909
	/* Split out the IBX/CPU vs CPT settings */
910
 
3243 Serge 911
	if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
2342 Serge 912
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
913
			intel_dp->DP |= DP_SYNC_HS_HIGH;
914
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
915
			intel_dp->DP |= DP_SYNC_VS_HIGH;
916
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
917
 
918
		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
919
			intel_dp->DP |= DP_ENHANCED_FRAMING;
920
 
921
		intel_dp->DP |= intel_crtc->pipe << 29;
922
 
923
		/* don't miss out required setting for eDP */
924
		if (adjusted_mode->clock < 200000)
925
			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
926
		else
927
			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
928
	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
929
		intel_dp->DP |= intel_dp->color_range;
930
 
931
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
932
			intel_dp->DP |= DP_SYNC_HS_HIGH;
933
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
934
			intel_dp->DP |= DP_SYNC_VS_HIGH;
935
		intel_dp->DP |= DP_LINK_TRAIN_OFF;
936
 
937
		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
938
		intel_dp->DP |= DP_ENHANCED_FRAMING;
939
 
940
		if (intel_crtc->pipe == 1)
2330 Serge 941
		intel_dp->DP |= DP_PIPEB_SELECT;
2327 Serge 942
 
2342 Serge 943
		if (is_cpu_edp(intel_dp)) {
2330 Serge 944
		/* don't miss out required setting for eDP */
945
		if (adjusted_mode->clock < 200000)
946
			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
947
		else
948
			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
949
	}
2342 Serge 950
	} else {
951
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
952
	}
2330 Serge 953
}
2327 Serge 954
 
2342 Serge 955
#define IDLE_ON_MASK		(PP_ON | 0 	  | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
956
#define IDLE_ON_VALUE   	(PP_ON | 0 	  | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
957
 
958
#define IDLE_OFF_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
959
#define IDLE_OFF_VALUE		(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
960
 
961
#define IDLE_CYCLE_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
962
#define IDLE_CYCLE_VALUE	(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
963
 
964
static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
965
				       u32 mask,
966
				       u32 value)
967
{
3243 Serge 968
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 969
	struct drm_i915_private *dev_priv = dev->dev_private;
970
 
971
	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
972
		      mask, value,
973
		      I915_READ(PCH_PP_STATUS),
974
		      I915_READ(PCH_PP_CONTROL));
975
 
976
	if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
977
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
978
			  I915_READ(PCH_PP_STATUS),
979
			  I915_READ(PCH_PP_CONTROL));
980
	}
981
}
982
 
983
static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
984
{
985
	DRM_DEBUG_KMS("Wait for panel power on\n");
986
	ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
987
}
988
 
989
static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
990
{
991
	DRM_DEBUG_KMS("Wait for panel power off time\n");
992
	ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
993
}
994
 
995
static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
996
{
997
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
998
	ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
999
}
1000
 
1001
 
1002
/* Read the current pp_control value, unlocking the register if it
1003
 * is locked
1004
 */
1005
 
1006
static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1007
{
1008
	u32	control = I915_READ(PCH_PP_CONTROL);
1009
 
1010
	control &= ~PANEL_UNLOCK_MASK;
1011
	control |= PANEL_UNLOCK_REGS;
1012
	return control;
1013
}
1014
 
3243 Serge 1015
void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
2330 Serge 1016
{
3243 Serge 1017
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 1018
	struct drm_i915_private *dev_priv = dev->dev_private;
1019
	u32 pp;
2327 Serge 1020
 
2342 Serge 1021
	if (!is_edp(intel_dp))
1022
		return;
1023
	DRM_DEBUG_KMS("Turn eDP VDD on\n");
2327 Serge 1024
 
2342 Serge 1025
	WARN(intel_dp->want_panel_vdd,
1026
	     "eDP VDD already requested on\n");
1027
 
1028
	intel_dp->want_panel_vdd = true;
1029
 
1030
	if (ironlake_edp_have_panel_vdd(intel_dp)) {
1031
		DRM_DEBUG_KMS("eDP VDD already on\n");
1032
		return;
1033
	}
1034
 
1035
	if (!ironlake_edp_have_panel_power(intel_dp))
1036
		ironlake_wait_panel_power_cycle(intel_dp);
1037
 
1038
	pp = ironlake_get_pp_control(dev_priv);
2330 Serge 1039
	pp |= EDP_FORCE_VDD;
1040
	I915_WRITE(PCH_PP_CONTROL, pp);
1041
	POSTING_READ(PCH_PP_CONTROL);
2342 Serge 1042
	DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1043
		      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1044
 
1045
	/*
1046
	 * If the panel wasn't on, delay before accessing aux channel
1047
	 */
1048
	if (!ironlake_edp_have_panel_power(intel_dp)) {
1049
		DRM_DEBUG_KMS("eDP was not running\n");
1050
		msleep(intel_dp->panel_power_up_delay);
1051
	}
2330 Serge 1052
}
2327 Serge 1053
 
2342 Serge 1054
static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
2330 Serge 1055
{
3243 Serge 1056
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 1057
	struct drm_i915_private *dev_priv = dev->dev_private;
1058
	u32 pp;
2327 Serge 1059
 
2342 Serge 1060
	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1061
		pp = ironlake_get_pp_control(dev_priv);
2330 Serge 1062
	pp &= ~EDP_FORCE_VDD;
1063
	I915_WRITE(PCH_PP_CONTROL, pp);
1064
	POSTING_READ(PCH_PP_CONTROL);
2327 Serge 1065
 
2330 Serge 1066
	/* Make sure sequencer is idle before allowing subsequent activity */
2342 Serge 1067
		DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1068
			      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1069
 
1070
		msleep(intel_dp->panel_power_down_delay);
1071
	}
2330 Serge 1072
}
2327 Serge 1073
 
3243 Serge 1074
static void ironlake_panel_vdd_work(struct work_struct *__work)
1075
{
1076
//    struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1077
//                        struct intel_dp, panel_vdd_work);
1078
//   struct drm_device *dev = intel_dp_to_dev(intel_dp);
1079
//
1080
//   mutex_lock(&dev->mode_config.mutex);
1081
//   ironlake_panel_vdd_off_sync(intel_dp);
1082
//   mutex_unlock(&dev->mode_config.mutex);
1083
}
2342 Serge 1084
 
3243 Serge 1085
void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2330 Serge 1086
{
2342 Serge 1087
	if (!is_edp(intel_dp))
1088
		return;
1089
 
1090
	DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1091
	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1092
 
1093
	intel_dp->want_panel_vdd = false;
1094
 
1095
	if (sync) {
1096
		ironlake_panel_vdd_off_sync(intel_dp);
1097
	} else {
1098
		/*
1099
		 * Queue the timer to fire a long
1100
		 * time from now (relative to the power down delay)
1101
		 * to keep the panel power up across a sequence of operations
1102
		 */
1103
//       schedule_delayed_work(&intel_dp->panel_vdd_work,
1104
//                     msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1105
	}
1106
}
1107
 
3243 Serge 1108
void ironlake_edp_panel_on(struct intel_dp *intel_dp)
2342 Serge 1109
{
3243 Serge 1110
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 1111
	struct drm_i915_private *dev_priv = dev->dev_private;
2342 Serge 1112
	u32 pp;
2327 Serge 1113
 
2342 Serge 1114
	if (!is_edp(intel_dp))
1115
		return;
2327 Serge 1116
 
2342 Serge 1117
	DRM_DEBUG_KMS("Turn eDP power on\n");
2327 Serge 1118
 
2342 Serge 1119
	if (ironlake_edp_have_panel_power(intel_dp)) {
1120
		DRM_DEBUG_KMS("eDP power already on\n");
1121
		return;
1122
	}
1123
 
1124
	ironlake_wait_panel_power_cycle(intel_dp);
1125
 
1126
	pp = ironlake_get_pp_control(dev_priv);
1127
	if (IS_GEN5(dev)) {
2330 Serge 1128
	/* ILK workaround: disable reset around power sequence */
1129
	pp &= ~PANEL_POWER_RESET;
1130
	I915_WRITE(PCH_PP_CONTROL, pp);
1131
	POSTING_READ(PCH_PP_CONTROL);
2342 Serge 1132
	}
2327 Serge 1133
 
2342 Serge 1134
	pp |= POWER_TARGET_ON;
1135
	if (!IS_GEN5(dev))
1136
		pp |= PANEL_POWER_RESET;
1137
 
2330 Serge 1138
	I915_WRITE(PCH_PP_CONTROL, pp);
1139
	POSTING_READ(PCH_PP_CONTROL);
2327 Serge 1140
 
2342 Serge 1141
	ironlake_wait_panel_on(intel_dp);
2327 Serge 1142
 
2342 Serge 1143
	if (IS_GEN5(dev)) {
2330 Serge 1144
	pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1145
	I915_WRITE(PCH_PP_CONTROL, pp);
1146
	POSTING_READ(PCH_PP_CONTROL);
2342 Serge 1147
	}
2330 Serge 1148
}
2327 Serge 1149
 
3243 Serge 1150
void ironlake_edp_panel_off(struct intel_dp *intel_dp)
2330 Serge 1151
{
3243 Serge 1152
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 1153
	struct drm_i915_private *dev_priv = dev->dev_private;
2342 Serge 1154
	u32 pp;
2327 Serge 1155
 
2342 Serge 1156
	if (!is_edp(intel_dp))
1157
		return;
2327 Serge 1158
 
2342 Serge 1159
	DRM_DEBUG_KMS("Turn eDP power off\n");
2327 Serge 1160
 
3031 serge 1161
	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
2342 Serge 1162
 
1163
	pp = ironlake_get_pp_control(dev_priv);
3031 serge 1164
	/* We need to switch off panel power _and_ force vdd, for otherwise some
1165
	 * panels get very unhappy and cease to work. */
2342 Serge 1166
	pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
2330 Serge 1167
	I915_WRITE(PCH_PP_CONTROL, pp);
1168
	POSTING_READ(PCH_PP_CONTROL);
2327 Serge 1169
 
3031 serge 1170
	intel_dp->want_panel_vdd = false;
1171
 
2342 Serge 1172
	ironlake_wait_panel_off(intel_dp);
2330 Serge 1173
}
2327 Serge 1174
 
3243 Serge 1175
void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
2330 Serge 1176
{
3243 Serge 1177
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1178
	struct drm_device *dev = intel_dig_port->base.base.dev;
2330 Serge 1179
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 1180
	int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
2330 Serge 1181
	u32 pp;
2327 Serge 1182
 
2342 Serge 1183
	if (!is_edp(intel_dp))
1184
		return;
1185
 
2330 Serge 1186
	DRM_DEBUG_KMS("\n");
1187
	/*
1188
	 * If we enable the backlight right away following a panel power
1189
	 * on, we may see slight flicker as the panel syncs with the eDP
1190
	 * link.  So delay a bit to make sure the image is solid before
1191
	 * allowing it to appear.
1192
	 */
2342 Serge 1193
	msleep(intel_dp->backlight_on_delay);
1194
	pp = ironlake_get_pp_control(dev_priv);
2330 Serge 1195
	pp |= EDP_BLC_ENABLE;
1196
	I915_WRITE(PCH_PP_CONTROL, pp);
2342 Serge 1197
	POSTING_READ(PCH_PP_CONTROL);
3243 Serge 1198
 
1199
	intel_panel_enable_backlight(dev, pipe);
2330 Serge 1200
}
2327 Serge 1201
 
3243 Serge 1202
void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
2330 Serge 1203
{
3243 Serge 1204
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 1205
	struct drm_i915_private *dev_priv = dev->dev_private;
1206
	u32 pp;
2327 Serge 1207
 
2342 Serge 1208
	if (!is_edp(intel_dp))
1209
		return;
1210
 
3243 Serge 1211
	intel_panel_disable_backlight(dev);
1212
 
2330 Serge 1213
	DRM_DEBUG_KMS("\n");
2342 Serge 1214
	pp = ironlake_get_pp_control(dev_priv);
2330 Serge 1215
	pp &= ~EDP_BLC_ENABLE;
1216
	I915_WRITE(PCH_PP_CONTROL, pp);
2342 Serge 1217
	POSTING_READ(PCH_PP_CONTROL);
1218
	msleep(intel_dp->backlight_off_delay);
2330 Serge 1219
}
2327 Serge 1220
 
3031 serge 1221
static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2330 Serge 1222
{
3243 Serge 1223
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1224
	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1225
	struct drm_device *dev = crtc->dev;
2330 Serge 1226
	struct drm_i915_private *dev_priv = dev->dev_private;
1227
	u32 dpa_ctl;
2327 Serge 1228
 
3031 serge 1229
	assert_pipe_disabled(dev_priv,
1230
			     to_intel_crtc(crtc)->pipe);
1231
 
2330 Serge 1232
	DRM_DEBUG_KMS("\n");
1233
	dpa_ctl = I915_READ(DP_A);
3031 serge 1234
	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1235
	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1236
 
1237
	/* We don't adjust intel_dp->DP while tearing down the link, to
1238
	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1239
	 * enable bits here to ensure that we don't enable too much. */
1240
	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1241
	intel_dp->DP |= DP_PLL_ENABLE;
1242
	I915_WRITE(DP_A, intel_dp->DP);
2330 Serge 1243
	POSTING_READ(DP_A);
1244
	udelay(200);
1245
}
2327 Serge 1246
 
3031 serge 1247
static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2330 Serge 1248
{
3243 Serge 1249
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1250
	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1251
	struct drm_device *dev = crtc->dev;
2330 Serge 1252
	struct drm_i915_private *dev_priv = dev->dev_private;
1253
	u32 dpa_ctl;
2327 Serge 1254
 
3031 serge 1255
	assert_pipe_disabled(dev_priv,
1256
			     to_intel_crtc(crtc)->pipe);
1257
 
2330 Serge 1258
	dpa_ctl = I915_READ(DP_A);
3031 serge 1259
	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1260
	     "dp pll off, should be on\n");
1261
	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1262
 
1263
	/* We can't rely on the value tracked for the DP register in
1264
	 * intel_dp->DP because link_down must not change that (otherwise link
1265
	 * re-training will fail. */
2330 Serge 1266
	dpa_ctl &= ~DP_PLL_ENABLE;
1267
	I915_WRITE(DP_A, dpa_ctl);
1268
	POSTING_READ(DP_A);
1269
	udelay(200);
1270
}
2327 Serge 1271
 
2330 Serge 1272
/* If the sink supports it, try to set the power state appropriately */
3243 Serge 1273
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2330 Serge 1274
{
1275
	int ret, i;
2327 Serge 1276
 
2330 Serge 1277
	/* Should have a valid DPCD by this point */
1278
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1279
		return;
2327 Serge 1280
 
2330 Serge 1281
	if (mode != DRM_MODE_DPMS_ON) {
1282
		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1283
						  DP_SET_POWER_D3);
1284
		if (ret != 1)
1285
			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1286
	} else {
1287
		/*
1288
		 * When turning on, we need to retry for 1ms to give the sink
1289
		 * time to wake up.
1290
		 */
1291
		for (i = 0; i < 3; i++) {
1292
			ret = intel_dp_aux_native_write_1(intel_dp,
1293
							  DP_SET_POWER,
1294
							  DP_SET_POWER_D0);
1295
			if (ret == 1)
1296
				break;
1297
			msleep(1);
1298
		}
1299
	}
1300
}
2327 Serge 1301
 
3031 serge 1302
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1303
				  enum pipe *pipe)
2330 Serge 1304
{
3031 serge 1305
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1306
	struct drm_device *dev = encoder->base.dev;
1307
	struct drm_i915_private *dev_priv = dev->dev_private;
1308
	u32 tmp = I915_READ(intel_dp->output_reg);
2327 Serge 1309
 
3031 serge 1310
	if (!(tmp & DP_PORT_EN))
1311
		return false;
2342 Serge 1312
 
3031 serge 1313
	if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1314
		*pipe = PORT_TO_PIPE_CPT(tmp);
1315
	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1316
		*pipe = PORT_TO_PIPE(tmp);
1317
	} else {
1318
		u32 trans_sel;
1319
		u32 trans_dp;
1320
		int i;
2327 Serge 1321
 
3031 serge 1322
		switch (intel_dp->output_reg) {
1323
		case PCH_DP_B:
1324
			trans_sel = TRANS_DP_PORT_SEL_B;
1325
			break;
1326
		case PCH_DP_C:
1327
			trans_sel = TRANS_DP_PORT_SEL_C;
1328
			break;
1329
		case PCH_DP_D:
1330
			trans_sel = TRANS_DP_PORT_SEL_D;
1331
			break;
1332
		default:
1333
			return true;
1334
		}
1335
 
1336
		for_each_pipe(i) {
1337
			trans_dp = I915_READ(TRANS_DP_CTL(i));
1338
			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1339
				*pipe = i;
1340
				return true;
1341
			}
1342
		}
3243 Serge 1343
 
1344
		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1345
			      intel_dp->output_reg);
3031 serge 1346
	}
1347
 
1348
	return true;
2330 Serge 1349
}
2327 Serge 1350
 
3031 serge 1351
static void intel_disable_dp(struct intel_encoder *encoder)
2330 Serge 1352
{
3031 serge 1353
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2327 Serge 1354
 
3031 serge 1355
	/* Make sure the panel is off before trying to change the mode. But also
1356
	 * ensure that we have vdd while we switch off the panel. */
2330 Serge 1357
		ironlake_edp_panel_vdd_on(intel_dp);
3031 serge 1358
	ironlake_edp_backlight_off(intel_dp);
2342 Serge 1359
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3031 serge 1360
	ironlake_edp_panel_off(intel_dp);
2330 Serge 1361
 
3031 serge 1362
	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1363
	if (!is_cpu_edp(intel_dp))
1364
		intel_dp_link_down(intel_dp);
1365
}
2330 Serge 1366
 
3031 serge 1367
static void intel_post_disable_dp(struct intel_encoder *encoder)
1368
{
1369
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1370
 
1371
	if (is_cpu_edp(intel_dp)) {
1372
		intel_dp_link_down(intel_dp);
1373
		ironlake_edp_pll_off(intel_dp);
1374
	}
2330 Serge 1375
}
1376
 
3031 serge 1377
static void intel_enable_dp(struct intel_encoder *encoder)
2330 Serge 1378
{
3031 serge 1379
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1380
	struct drm_device *dev = encoder->base.dev;
2330 Serge 1381
	struct drm_i915_private *dev_priv = dev->dev_private;
1382
	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1383
 
3031 serge 1384
	if (WARN_ON(dp_reg & DP_PORT_EN))
1385
		return;
2342 Serge 1386
 
1387
		ironlake_edp_panel_vdd_on(intel_dp);
3031 serge 1388
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2330 Serge 1389
			intel_dp_start_link_train(intel_dp);
1390
				ironlake_edp_panel_on(intel_dp);
2342 Serge 1391
			ironlake_edp_panel_vdd_off(intel_dp, true);
2330 Serge 1392
			intel_dp_complete_link_train(intel_dp);
2342 Serge 1393
		ironlake_edp_backlight_on(intel_dp);
2330 Serge 1394
}
1395
 
3031 serge 1396
static void intel_pre_enable_dp(struct intel_encoder *encoder)
1397
{
1398
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1399
 
1400
	if (is_cpu_edp(intel_dp))
1401
		ironlake_edp_pll_on(intel_dp);
1402
}
1403
 
2330 Serge 1404
/*
1405
 * Native read with retry for link status and receiver capability reads for
1406
 * cases where the sink may still be asleep.
1407
 */
1408
static bool
1409
intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1410
			       uint8_t *recv, int recv_bytes)
1411
{
1412
	int ret, i;
1413
 
1414
	/*
1415
	 * Sinks are *supposed* to come up within 1ms from an off state,
1416
	 * but we're also supposed to retry 3 times per the spec.
1417
	 */
1418
	for (i = 0; i < 3; i++) {
1419
		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1420
					       recv_bytes);
1421
		if (ret == recv_bytes)
1422
			return true;
1423
		msleep(1);
1424
	}
1425
 
1426
	return false;
1427
}
1428
 
1429
/*
1430
 * Fetch AUX CH registers 0x202 - 0x207 which contain
1431
 * link status information
1432
 */
1433
static bool
2342 Serge 1434
intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2330 Serge 1435
{
1436
	return intel_dp_aux_native_read_retry(intel_dp,
1437
					      DP_LANE0_1_STATUS,
2342 Serge 1438
					      link_status,
2330 Serge 1439
					      DP_LINK_STATUS_SIZE);
1440
}
1441
 
1442
#if 0
1443
static char	*voltage_names[] = {
1444
	"0.4V", "0.6V", "0.8V", "1.2V"
1445
};
1446
static char	*pre_emph_names[] = {
1447
	"0dB", "3.5dB", "6dB", "9.5dB"
1448
};
1449
static char	*link_train_names[] = {
1450
	"pattern 1", "pattern 2", "idle", "off"
1451
};
1452
#endif
1453
 
1454
/*
1455
 * These are source-specific values; current Intel hardware supports
1456
 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1457
 */
1458
 
1459
static uint8_t
2342 Serge 1460
intel_dp_voltage_max(struct intel_dp *intel_dp)
2330 Serge 1461
{
3243 Serge 1462
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 1463
 
1464
	if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1465
		return DP_TRAIN_VOLTAGE_SWING_800;
1466
	else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1467
		return DP_TRAIN_VOLTAGE_SWING_1200;
1468
	else
1469
		return DP_TRAIN_VOLTAGE_SWING_800;
1470
}
1471
 
1472
static uint8_t
1473
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1474
{
3243 Serge 1475
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 1476
 
3243 Serge 1477
	if (IS_HASWELL(dev)) {
2342 Serge 1478
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1479
		case DP_TRAIN_VOLTAGE_SWING_400:
3243 Serge 1480
			return DP_TRAIN_PRE_EMPHASIS_9_5;
1481
		case DP_TRAIN_VOLTAGE_SWING_600:
2342 Serge 1482
			return DP_TRAIN_PRE_EMPHASIS_6;
3243 Serge 1483
		case DP_TRAIN_VOLTAGE_SWING_800:
1484
			return DP_TRAIN_PRE_EMPHASIS_3_5;
1485
		case DP_TRAIN_VOLTAGE_SWING_1200:
1486
		default:
1487
			return DP_TRAIN_PRE_EMPHASIS_0;
1488
		}
1489
	} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1490
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1491
		case DP_TRAIN_VOLTAGE_SWING_400:
1492
			return DP_TRAIN_PRE_EMPHASIS_6;
2342 Serge 1493
		case DP_TRAIN_VOLTAGE_SWING_600:
1494
		case DP_TRAIN_VOLTAGE_SWING_800:
1495
			return DP_TRAIN_PRE_EMPHASIS_3_5;
1496
		default:
1497
			return DP_TRAIN_PRE_EMPHASIS_0;
1498
		}
1499
	} else {
2330 Serge 1500
	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1501
	case DP_TRAIN_VOLTAGE_SWING_400:
1502
		return DP_TRAIN_PRE_EMPHASIS_6;
1503
	case DP_TRAIN_VOLTAGE_SWING_600:
1504
		return DP_TRAIN_PRE_EMPHASIS_6;
1505
	case DP_TRAIN_VOLTAGE_SWING_800:
1506
		return DP_TRAIN_PRE_EMPHASIS_3_5;
1507
	case DP_TRAIN_VOLTAGE_SWING_1200:
1508
	default:
1509
		return DP_TRAIN_PRE_EMPHASIS_0;
1510
	}
2342 Serge 1511
	}
2330 Serge 1512
}
1513
 
1514
static void
2342 Serge 1515
intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2330 Serge 1516
{
1517
	uint8_t v = 0;
1518
	uint8_t p = 0;
1519
	int lane;
2342 Serge 1520
	uint8_t voltage_max;
1521
	uint8_t preemph_max;
2330 Serge 1522
 
1523
	for (lane = 0; lane < intel_dp->lane_count; lane++) {
3243 Serge 1524
		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1525
		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2330 Serge 1526
 
1527
		if (this_v > v)
1528
			v = this_v;
1529
		if (this_p > p)
1530
			p = this_p;
1531
	}
1532
 
2342 Serge 1533
	voltage_max = intel_dp_voltage_max(intel_dp);
1534
	if (v >= voltage_max)
1535
		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2330 Serge 1536
 
2342 Serge 1537
	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1538
	if (p >= preemph_max)
1539
		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2330 Serge 1540
 
1541
	for (lane = 0; lane < 4; lane++)
1542
		intel_dp->train_set[lane] = v | p;
1543
}
1544
 
1545
static uint32_t
2342 Serge 1546
intel_dp_signal_levels(uint8_t train_set)
2330 Serge 1547
{
1548
	uint32_t	signal_levels = 0;
1549
 
1550
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1551
	case DP_TRAIN_VOLTAGE_SWING_400:
1552
	default:
1553
		signal_levels |= DP_VOLTAGE_0_4;
1554
		break;
1555
	case DP_TRAIN_VOLTAGE_SWING_600:
1556
		signal_levels |= DP_VOLTAGE_0_6;
1557
		break;
1558
	case DP_TRAIN_VOLTAGE_SWING_800:
1559
		signal_levels |= DP_VOLTAGE_0_8;
1560
		break;
1561
	case DP_TRAIN_VOLTAGE_SWING_1200:
1562
		signal_levels |= DP_VOLTAGE_1_2;
1563
		break;
1564
	}
1565
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1566
	case DP_TRAIN_PRE_EMPHASIS_0:
1567
	default:
1568
		signal_levels |= DP_PRE_EMPHASIS_0;
1569
		break;
1570
	case DP_TRAIN_PRE_EMPHASIS_3_5:
1571
		signal_levels |= DP_PRE_EMPHASIS_3_5;
1572
		break;
1573
	case DP_TRAIN_PRE_EMPHASIS_6:
1574
		signal_levels |= DP_PRE_EMPHASIS_6;
1575
		break;
1576
	case DP_TRAIN_PRE_EMPHASIS_9_5:
1577
		signal_levels |= DP_PRE_EMPHASIS_9_5;
1578
		break;
1579
	}
1580
	return signal_levels;
1581
}
1582
 
1583
/* Gen6's DP voltage swing and pre-emphasis control */
1584
static uint32_t
1585
intel_gen6_edp_signal_levels(uint8_t train_set)
1586
{
1587
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1588
					 DP_TRAIN_PRE_EMPHASIS_MASK);
1589
	switch (signal_levels) {
1590
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1591
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1592
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1593
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1594
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1595
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1596
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1597
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1598
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1599
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1600
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1601
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1602
	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1603
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1604
	default:
1605
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1606
			      "0x%x\n", signal_levels);
1607
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1608
	}
1609
}
1610
 
2342 Serge 1611
/* Gen7's DP voltage swing and pre-emphasis control */
1612
static uint32_t
1613
intel_gen7_edp_signal_levels(uint8_t train_set)
1614
{
1615
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1616
					 DP_TRAIN_PRE_EMPHASIS_MASK);
1617
	switch (signal_levels) {
1618
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1619
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
1620
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1621
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1622
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1623
		return EDP_LINK_TRAIN_400MV_6DB_IVB;
1624
 
1625
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1626
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
1627
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1628
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1629
 
1630
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1631
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
1632
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1633
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1634
 
1635
	default:
1636
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1637
			      "0x%x\n", signal_levels);
1638
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
1639
	}
1640
}
1641
 
3243 Serge 1642
/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1643
static uint32_t
1644
intel_dp_signal_levels_hsw(uint8_t train_set)
2330 Serge 1645
{
3243 Serge 1646
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1647
					 DP_TRAIN_PRE_EMPHASIS_MASK);
1648
	switch (signal_levels) {
1649
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1650
		return DDI_BUF_EMP_400MV_0DB_HSW;
1651
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1652
		return DDI_BUF_EMP_400MV_3_5DB_HSW;
1653
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1654
		return DDI_BUF_EMP_400MV_6DB_HSW;
1655
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1656
		return DDI_BUF_EMP_400MV_9_5DB_HSW;
2330 Serge 1657
 
3243 Serge 1658
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1659
		return DDI_BUF_EMP_600MV_0DB_HSW;
1660
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1661
		return DDI_BUF_EMP_600MV_3_5DB_HSW;
1662
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1663
		return DDI_BUF_EMP_600MV_6DB_HSW;
2330 Serge 1664
 
3243 Serge 1665
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1666
		return DDI_BUF_EMP_800MV_0DB_HSW;
1667
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1668
		return DDI_BUF_EMP_800MV_3_5DB_HSW;
1669
	default:
1670
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1671
			      "0x%x\n", signal_levels);
1672
		return DDI_BUF_EMP_400MV_0DB_HSW;
2330 Serge 1673
	}
1674
}
1675
 
1676
static bool
1677
intel_dp_set_link_train(struct intel_dp *intel_dp,
1678
			uint32_t dp_reg_value,
1679
			uint8_t dp_train_pat)
1680
{
3243 Serge 1681
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1682
	struct drm_device *dev = intel_dig_port->base.base.dev;
2330 Serge 1683
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 1684
	enum port port = intel_dig_port->port;
2330 Serge 1685
	int ret;
3243 Serge 1686
	uint32_t temp;
2330 Serge 1687
 
3243 Serge 1688
	if (IS_HASWELL(dev)) {
1689
		temp = I915_READ(DP_TP_CTL(port));
1690
 
1691
		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1692
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1693
		else
1694
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1695
 
1696
		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1697
		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1698
		case DP_TRAINING_PATTERN_DISABLE:
1699
			temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
1700
			I915_WRITE(DP_TP_CTL(port), temp);
1701
 
1702
			if (wait_for((I915_READ(DP_TP_STATUS(port)) &
1703
				      DP_TP_STATUS_IDLE_DONE), 1))
1704
				DRM_ERROR("Timed out waiting for DP idle patterns\n");
1705
 
1706
			temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1707
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1708
 
1709
			break;
1710
		case DP_TRAINING_PATTERN_1:
1711
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1712
			break;
1713
		case DP_TRAINING_PATTERN_2:
1714
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1715
			break;
1716
		case DP_TRAINING_PATTERN_3:
1717
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1718
			break;
1719
		}
1720
		I915_WRITE(DP_TP_CTL(port), temp);
1721
 
1722
	} else if (HAS_PCH_CPT(dev) &&
1723
		   (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
3031 serge 1724
		dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1725
 
1726
		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1727
		case DP_TRAINING_PATTERN_DISABLE:
1728
			dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1729
			break;
1730
		case DP_TRAINING_PATTERN_1:
1731
			dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1732
			break;
1733
		case DP_TRAINING_PATTERN_2:
1734
			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1735
			break;
1736
		case DP_TRAINING_PATTERN_3:
1737
			DRM_ERROR("DP training pattern 3 not supported\n");
1738
			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1739
			break;
1740
		}
1741
 
1742
	} else {
1743
		dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1744
 
1745
		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1746
		case DP_TRAINING_PATTERN_DISABLE:
1747
			dp_reg_value |= DP_LINK_TRAIN_OFF;
1748
			break;
1749
		case DP_TRAINING_PATTERN_1:
1750
			dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1751
			break;
1752
		case DP_TRAINING_PATTERN_2:
1753
			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1754
			break;
1755
		case DP_TRAINING_PATTERN_3:
1756
			DRM_ERROR("DP training pattern 3 not supported\n");
1757
			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1758
			break;
1759
		}
1760
	}
1761
 
2330 Serge 1762
	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1763
	POSTING_READ(intel_dp->output_reg);
1764
 
1765
	intel_dp_aux_native_write_1(intel_dp,
1766
				    DP_TRAINING_PATTERN_SET,
1767
				    dp_train_pat);
1768
 
3031 serge 1769
	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1770
	    DP_TRAINING_PATTERN_DISABLE) {
2330 Serge 1771
	ret = intel_dp_aux_native_write(intel_dp,
1772
					DP_TRAINING_LANE0_SET,
2342 Serge 1773
					intel_dp->train_set,
1774
					intel_dp->lane_count);
1775
	if (ret != intel_dp->lane_count)
2330 Serge 1776
		return false;
3031 serge 1777
	}
2330 Serge 1778
 
1779
	return true;
1780
}
1781
 
1782
/* Enable corresponding port and start training pattern 1 */
3243 Serge 1783
void
2330 Serge 1784
intel_dp_start_link_train(struct intel_dp *intel_dp)
1785
{
3243 Serge 1786
	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
1787
	struct drm_device *dev = encoder->dev;
2330 Serge 1788
	int i;
1789
	uint8_t voltage;
1790
	bool clock_recovery = false;
2342 Serge 1791
	int voltage_tries, loop_tries;
2330 Serge 1792
	uint32_t DP = intel_dp->DP;
1793
 
3243 Serge 1794
	if (IS_HASWELL(dev))
1795
		intel_ddi_prepare_link_retrain(encoder);
1796
 
2330 Serge 1797
	/* Write the link configuration data */
1798
	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1799
				  intel_dp->link_configuration,
1800
				  DP_LINK_CONFIGURATION_SIZE);
1801
 
1802
	DP |= DP_PORT_EN;
2342 Serge 1803
 
2330 Serge 1804
	memset(intel_dp->train_set, 0, 4);
1805
	voltage = 0xff;
2342 Serge 1806
	voltage_tries = 0;
1807
	loop_tries = 0;
2330 Serge 1808
	clock_recovery = false;
1809
	for (;;) {
1810
		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
2342 Serge 1811
		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
2330 Serge 1812
		uint32_t    signal_levels;
2342 Serge 1813
 
3243 Serge 1814
		if (IS_HASWELL(dev)) {
1815
			signal_levels = intel_dp_signal_levels_hsw(
1816
							intel_dp->train_set[0]);
1817
			DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1818
		} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
2342 Serge 1819
			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1820
			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1821
		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
2330 Serge 1822
			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1823
			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1824
		} else {
2342 Serge 1825
			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
2330 Serge 1826
			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1827
		}
3243 Serge 1828
		DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n",
1829
			      signal_levels);
2330 Serge 1830
 
3243 Serge 1831
		/* Set training pattern 1 */
3031 serge 1832
		if (!intel_dp_set_link_train(intel_dp, DP,
2330 Serge 1833
					     DP_TRAINING_PATTERN_1 |
1834
					     DP_LINK_SCRAMBLING_DISABLE))
1835
			break;
1836
 
3243 Serge 1837
		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2342 Serge 1838
		if (!intel_dp_get_link_status(intel_dp, link_status)) {
1839
			DRM_ERROR("failed to get link status\n");
2330 Serge 1840
			break;
2342 Serge 1841
		}
2330 Serge 1842
 
3243 Serge 1843
		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2342 Serge 1844
			DRM_DEBUG_KMS("clock recovery OK\n");
2330 Serge 1845
			clock_recovery = true;
1846
			break;
1847
		}
1848
 
1849
		/* Check to see if we've tried the max voltage */
1850
		for (i = 0; i < intel_dp->lane_count; i++)
1851
			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1852
				break;
3031 serge 1853
		if (i == intel_dp->lane_count && voltage_tries == 5) {
2342 Serge 1854
			++loop_tries;
1855
			if (loop_tries == 5) {
1856
				DRM_DEBUG_KMS("too many full retries, give up\n");
2330 Serge 1857
			break;
2342 Serge 1858
			}
1859
			memset(intel_dp->train_set, 0, 4);
1860
			voltage_tries = 0;
1861
			continue;
1862
		}
2330 Serge 1863
 
1864
		/* Check to see if we've tried the same voltage 5 times */
1865
		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2342 Serge 1866
			++voltage_tries;
1867
			if (voltage_tries == 5) {
1868
				DRM_DEBUG_KMS("too many voltage retries, give up\n");
2330 Serge 1869
				break;
2342 Serge 1870
			}
2330 Serge 1871
		} else
2342 Serge 1872
			voltage_tries = 0;
2330 Serge 1873
		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1874
 
1875
		/* Compute new intel_dp->train_set as requested by target */
2342 Serge 1876
		intel_get_adjust_train(intel_dp, link_status);
2330 Serge 1877
	}
1878
 
1879
	intel_dp->DP = DP;
1880
}
1881
 
3243 Serge 1882
void
2330 Serge 1883
intel_dp_complete_link_train(struct intel_dp *intel_dp)
1884
{
3243 Serge 1885
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 1886
	bool channel_eq = false;
1887
	int tries, cr_tries;
1888
	uint32_t DP = intel_dp->DP;
1889
 
1890
	/* channel equalization */
1891
	tries = 0;
1892
	cr_tries = 0;
1893
	channel_eq = false;
1894
	for (;;) {
1895
		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1896
		uint32_t    signal_levels;
2342 Serge 1897
		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
2330 Serge 1898
 
1899
		if (cr_tries > 5) {
1900
			DRM_ERROR("failed to train DP, aborting\n");
1901
			intel_dp_link_down(intel_dp);
1902
			break;
1903
		}
1904
 
3243 Serge 1905
		if (IS_HASWELL(dev)) {
1906
			signal_levels = intel_dp_signal_levels_hsw(intel_dp->train_set[0]);
1907
			DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1908
		} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
2342 Serge 1909
			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1910
			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1911
		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
2330 Serge 1912
			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1913
			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1914
		} else {
2342 Serge 1915
			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
2330 Serge 1916
			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1917
		}
1918
 
1919
		/* channel eq pattern */
3031 serge 1920
		if (!intel_dp_set_link_train(intel_dp, DP,
2330 Serge 1921
					     DP_TRAINING_PATTERN_2 |
1922
					     DP_LINK_SCRAMBLING_DISABLE))
1923
			break;
1924
 
3243 Serge 1925
		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2342 Serge 1926
		if (!intel_dp_get_link_status(intel_dp, link_status))
2330 Serge 1927
			break;
1928
 
1929
		/* Make sure clock is still ok */
3243 Serge 1930
		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2330 Serge 1931
			intel_dp_start_link_train(intel_dp);
1932
			cr_tries++;
1933
			continue;
1934
		}
1935
 
3243 Serge 1936
		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2330 Serge 1937
			channel_eq = true;
1938
			break;
1939
		}
1940
 
1941
		/* Try 5 times, then try clock recovery if that fails */
1942
		if (tries > 5) {
1943
			intel_dp_link_down(intel_dp);
1944
			intel_dp_start_link_train(intel_dp);
1945
			tries = 0;
1946
			cr_tries++;
1947
			continue;
1948
		}
1949
 
1950
		/* Compute new intel_dp->train_set as requested by target */
2342 Serge 1951
		intel_get_adjust_train(intel_dp, link_status);
2330 Serge 1952
		++tries;
1953
	}
1954
 
3243 Serge 1955
	if (channel_eq)
1956
		DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
1957
 
3031 serge 1958
	intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
2330 Serge 1959
}
1960
 
1961
static void
1962
intel_dp_link_down(struct intel_dp *intel_dp)
1963
{
3243 Serge 1964
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1965
	struct drm_device *dev = intel_dig_port->base.base.dev;
2330 Serge 1966
	struct drm_i915_private *dev_priv = dev->dev_private;
1967
	uint32_t DP = intel_dp->DP;
1968
 
3243 Serge 1969
	/*
1970
	 * DDI code has a strict mode set sequence and we should try to respect
1971
	 * it, otherwise we might hang the machine in many different ways. So we
1972
	 * really should be disabling the port only on a complete crtc_disable
1973
	 * sequence. This function is just called under two conditions on DDI
1974
	 * code:
1975
	 * - Link train failed while doing crtc_enable, and on this case we
1976
	 *   really should respect the mode set sequence and wait for a
1977
	 *   crtc_disable.
1978
	 * - Someone turned the monitor off and intel_dp_check_link_status
1979
	 *   called us. We don't need to disable the whole port on this case, so
1980
	 *   when someone turns the monitor on again,
1981
	 *   intel_ddi_prepare_link_retrain will take care of redoing the link
1982
	 *   train.
1983
	 */
1984
	if (IS_HASWELL(dev))
1985
		return;
1986
 
3031 serge 1987
	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2330 Serge 1988
		return;
1989
 
1990
	DRM_DEBUG_KMS("\n");
1991
 
2342 Serge 1992
	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
2330 Serge 1993
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1994
		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1995
	} else {
1996
		DP &= ~DP_LINK_TRAIN_MASK;
1997
		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1998
	}
1999
	POSTING_READ(intel_dp->output_reg);
2000
 
2001
	msleep(17);
2002
 
3031 serge 2003
	if (HAS_PCH_IBX(dev) &&
2330 Serge 2004
	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3243 Serge 2005
		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2330 Serge 2006
 
2007
		/* Hardware workaround: leaving our transcoder select
2008
		 * set to transcoder B while it's off will prevent the
2009
		 * corresponding HDMI output on transcoder A.
2010
		 *
2011
		 * Combine this with another hardware workaround:
2012
		 * transcoder select bit can only be cleared while the
2013
		 * port is enabled.
2014
		 */
2015
		DP &= ~DP_PIPEB_SELECT;
2016
		I915_WRITE(intel_dp->output_reg, DP);
2017
 
2018
		/* Changes to enable or select take place the vblank
2019
		 * after being written.
2020
		 */
2021
		if (crtc == NULL) {
2022
			/* We can arrive here never having been attached
2023
			 * to a CRTC, for instance, due to inheriting
2024
			 * random state from the BIOS.
2025
			 *
2026
			 * If the pipe is not running, play safe and
2027
			 * wait for the clocks to stabilise before
2028
			 * continuing.
2029
			 */
2030
			POSTING_READ(intel_dp->output_reg);
2031
			msleep(50);
2032
		} else
2033
			intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
2034
	}
2035
 
2342 Serge 2036
	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2330 Serge 2037
	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2038
	POSTING_READ(intel_dp->output_reg);
2342 Serge 2039
	msleep(intel_dp->panel_power_down_delay);
2330 Serge 2040
}
2041
 
2042
static bool
2043
intel_dp_get_dpcd(struct intel_dp *intel_dp)
2044
{
2045
	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
3031 serge 2046
					   sizeof(intel_dp->dpcd)) == 0)
2047
		return false; /* aux transfer failed */
2048
 
2049
	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2050
		return false; /* DPCD not present */
2051
 
2052
	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2053
	      DP_DWN_STRM_PORT_PRESENT))
2054
		return true; /* native DP sink */
2055
 
2056
	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2057
		return true; /* no per-port downstream info */
2058
 
2059
	if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2060
					   intel_dp->downstream_ports,
2061
					   DP_MAX_DOWNSTREAM_PORTS) == 0)
2062
		return false; /* downstream port status fetch failed */
2063
 
2330 Serge 2064
		return true;
3031 serge 2065
}
2330 Serge 2066
 
3031 serge 2067
static void
2068
intel_dp_probe_oui(struct intel_dp *intel_dp)
2069
{
2070
	u8 buf[3];
2071
 
2072
	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2073
		return;
2074
 
2075
	ironlake_edp_panel_vdd_on(intel_dp);
2076
 
2077
	if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2078
		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2079
			      buf[0], buf[1], buf[2]);
2080
 
2081
	if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2082
		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2083
			      buf[0], buf[1], buf[2]);
2084
 
2085
	ironlake_edp_panel_vdd_off(intel_dp, false);
2330 Serge 2086
}
2087
 
2342 Serge 2088
static bool
2089
intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2090
{
2091
	int ret;
2092
 
2093
	ret = intel_dp_aux_native_read_retry(intel_dp,
2094
					     DP_DEVICE_SERVICE_IRQ_VECTOR,
2095
					     sink_irq_vector, 1);
2096
	if (!ret)
2097
		return false;
2098
 
2099
	return true;
2100
}
2101
 
2102
static void
2103
intel_dp_handle_test_request(struct intel_dp *intel_dp)
2104
{
2105
	/* NAK by default */
3243 Serge 2106
	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2342 Serge 2107
}
2108
 
2330 Serge 2109
/*
2110
 * According to DP spec
2111
 * 5.1.2:
2112
 *  1. Read DPCD
2113
 *  2. Configure link according to Receiver Capabilities
2114
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2115
 *  4. Check link status on receipt of hot-plug interrupt
2116
 */
2117
 
3243 Serge 2118
void
2330 Serge 2119
intel_dp_check_link_status(struct intel_dp *intel_dp)
2120
{
3243 Serge 2121
	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2342 Serge 2122
	u8 sink_irq_vector;
2123
	u8 link_status[DP_LINK_STATUS_SIZE];
2124
 
3243 Serge 2125
	if (!intel_encoder->connectors_active)
2330 Serge 2126
		return;
2127
 
3243 Serge 2128
	if (WARN_ON(!intel_encoder->base.crtc))
2330 Serge 2129
		return;
2130
 
2131
	/* Try to read receiver status if the link appears to be up */
2342 Serge 2132
	if (!intel_dp_get_link_status(intel_dp, link_status)) {
2330 Serge 2133
		intel_dp_link_down(intel_dp);
2134
		return;
2135
	}
2136
 
2137
	/* Now read the DPCD to see if it's actually running */
2138
	if (!intel_dp_get_dpcd(intel_dp)) {
2139
		intel_dp_link_down(intel_dp);
2140
		return;
2141
	}
2142
 
2342 Serge 2143
	/* Try to read the source of the interrupt */
2144
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2145
	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2146
		/* Clear interrupt source */
2147
		intel_dp_aux_native_write_1(intel_dp,
2148
					    DP_DEVICE_SERVICE_IRQ_VECTOR,
2149
					    sink_irq_vector);
2150
 
2151
		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2152
			intel_dp_handle_test_request(intel_dp);
2153
		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2154
			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2155
	}
2156
 
3243 Serge 2157
	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2330 Serge 2158
		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3243 Serge 2159
			      drm_get_encoder_name(&intel_encoder->base));
2330 Serge 2160
		intel_dp_start_link_train(intel_dp);
2161
		intel_dp_complete_link_train(intel_dp);
2162
	}
2163
}
2164
 
3031 serge 2165
/* XXX this is probably wrong for multiple downstream ports */
2330 Serge 2166
static enum drm_connector_status
2167
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2168
{
3031 serge 2169
	uint8_t *dpcd = intel_dp->dpcd;
2170
	bool hpd;
2171
	uint8_t type;
2172
 
2173
	if (!intel_dp_get_dpcd(intel_dp))
2174
		return connector_status_disconnected;
2175
 
2176
	/* if there's no downstream port, we're done */
2177
	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2330 Serge 2178
		return connector_status_connected;
3031 serge 2179
 
2180
	/* If we're HPD-aware, SINK_COUNT changes dynamically */
2181
	hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2182
	if (hpd) {
2183
		uint8_t reg;
2184
		if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2185
						    ®, 1))
2186
			return connector_status_unknown;
2187
		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2188
					      : connector_status_disconnected;
2189
	}
2190
 
2191
	/* If no HPD, poke DDC gently */
2192
	if (drm_probe_ddc(&intel_dp->adapter))
2193
		return connector_status_connected;
2194
 
2195
	/* Well we tried, say unknown for unreliable port types */
2196
	type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2197
	if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2198
		return connector_status_unknown;
2199
 
2200
	/* Anything else is out of spec, warn and ignore */
2201
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2330 Serge 2202
	return connector_status_disconnected;
2203
}
2204
 
2205
static enum drm_connector_status
2206
ironlake_dp_detect(struct intel_dp *intel_dp)
2207
{
3243 Serge 2208
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 2209
	enum drm_connector_status status;
2210
 
2211
	/* Can't disconnect eDP, but you can close the lid... */
2212
	if (is_edp(intel_dp)) {
3243 Serge 2213
		status = intel_panel_detect(dev);
2330 Serge 2214
		if (status == connector_status_unknown)
2215
			status = connector_status_connected;
2216
		return status;
2217
	}
2218
 
2219
	return intel_dp_detect_dpcd(intel_dp);
2220
}
2221
 
2222
static enum drm_connector_status
2223
g4x_dp_detect(struct intel_dp *intel_dp)
2224
{
3243 Serge 2225
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 2226
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2227
	uint32_t bit;
2330 Serge 2228
 
2229
	switch (intel_dp->output_reg) {
2230
	case DP_B:
3031 serge 2231
		bit = DPB_HOTPLUG_LIVE_STATUS;
2330 Serge 2232
		break;
2233
	case DP_C:
3031 serge 2234
		bit = DPC_HOTPLUG_LIVE_STATUS;
2330 Serge 2235
		break;
2236
	case DP_D:
3031 serge 2237
		bit = DPD_HOTPLUG_LIVE_STATUS;
2330 Serge 2238
		break;
2239
	default:
2240
		return connector_status_unknown;
2241
	}
2242
 
3031 serge 2243
	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2330 Serge 2244
		return connector_status_disconnected;
2245
 
2246
	return intel_dp_detect_dpcd(intel_dp);
2247
}
2248
 
2342 Serge 2249
static struct edid *
2250
intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2251
{
3243 Serge 2252
	struct intel_connector *intel_connector = to_intel_connector(connector);
2253
 
2254
	/* use cached edid if we have one */
2255
	if (intel_connector->edid) {
2342 Serge 2256
	struct edid	*edid;
3031 serge 2257
	int size;
2342 Serge 2258
 
3243 Serge 2259
		/* invalid edid */
2260
		if (IS_ERR(intel_connector->edid))
3031 serge 2261
			return NULL;
2262
 
3243 Serge 2263
		size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
3031 serge 2264
		edid = kmalloc(size, GFP_KERNEL);
2265
		if (!edid)
2266
			return NULL;
2267
 
3243 Serge 2268
		memcpy(edid, intel_connector->edid, size);
3031 serge 2269
		return edid;
2270
	}
2271
 
3243 Serge 2272
	return drm_get_edid(connector, adapter);
2342 Serge 2273
}
2274
 
2275
static int
2276
intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2277
{
3243 Serge 2278
	struct intel_connector *intel_connector = to_intel_connector(connector);
2342 Serge 2279
 
3243 Serge 2280
	/* use cached edid if we have one */
2281
	if (intel_connector->edid) {
2282
		/* invalid edid */
2283
		if (IS_ERR(intel_connector->edid))
2284
			return 0;
2285
 
2286
		return intel_connector_update_modes(connector,
2287
						    intel_connector->edid);
3031 serge 2288
	}
2289
 
3243 Serge 2290
	return intel_ddc_get_modes(connector, adapter);
2342 Serge 2291
}
2292
 
2293
 
2330 Serge 2294
/**
2295
 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2296
 *
2297
 * \return true if DP port is connected.
2298
 * \return false if DP port is disconnected.
2299
 */
2300
static enum drm_connector_status
2301
intel_dp_detect(struct drm_connector *connector, bool force)
2302
{
2303
	struct intel_dp *intel_dp = intel_attached_dp(connector);
3243 Serge 2304
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2305
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
2306
	struct drm_device *dev = connector->dev;
2330 Serge 2307
	enum drm_connector_status status;
2308
	struct edid *edid = NULL;
3243 Serge 2309
	char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2330 Serge 2310
 
2311
	intel_dp->has_audio = false;
2312
 
2313
	if (HAS_PCH_SPLIT(dev))
2314
		status = ironlake_dp_detect(intel_dp);
2315
	else
2316
		status = g4x_dp_detect(intel_dp);
2317
 
3243 Serge 2318
//   hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2319
//              32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2320
//   DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2330 Serge 2321
 
2322
	if (status != connector_status_connected)
2323
		return status;
3031 serge 2324
 
2325
	intel_dp_probe_oui(intel_dp);
2326
 
3243 Serge 2327
	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2328
		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2330 Serge 2329
	} else {
3031 serge 2330
		edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2330 Serge 2331
		if (edid) {
2332
			intel_dp->has_audio = drm_detect_monitor_audio(edid);
2333
			kfree(edid);
2334
		}
2335
	}
3243 Serge 2336
 
2337
	if (intel_encoder->type != INTEL_OUTPUT_EDP)
2338
		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2330 Serge 2339
	return connector_status_connected;
2340
}
2341
 
2342
static int intel_dp_get_modes(struct drm_connector *connector)
2343
{
2344
	struct intel_dp *intel_dp = intel_attached_dp(connector);
3243 Serge 2345
	struct intel_connector *intel_connector = to_intel_connector(connector);
2346
	struct drm_device *dev = connector->dev;
2330 Serge 2347
	int ret;
2348
 
2349
	/* We should parse the EDID data and find out if it has an audio sink
2350
	 */
2351
 
2342 Serge 2352
	ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
3243 Serge 2353
	if (ret)
2330 Serge 2354
		return ret;
2355
 
3243 Serge 2356
	/* if eDP has no EDID, fall back to fixed mode */
2357
	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2330 Serge 2358
			struct drm_display_mode *mode;
3243 Serge 2359
		mode = drm_mode_duplicate(dev,
2360
					  intel_connector->panel.fixed_mode);
2361
		if (mode) {
2330 Serge 2362
			drm_mode_probed_add(connector, mode);
2363
			return 1;
2364
		}
2365
	}
2366
	return 0;
2367
}
2368
 
3243 Serge 2369
static bool
2370
intel_dp_detect_audio(struct drm_connector *connector)
2371
{
2372
	struct intel_dp *intel_dp = intel_attached_dp(connector);
2373
	struct edid *edid;
2374
	bool has_audio = false;
2330 Serge 2375
 
3243 Serge 2376
	edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2377
	if (edid) {
2378
		has_audio = drm_detect_monitor_audio(edid);
2379
		kfree(edid);
2380
	}
2330 Serge 2381
 
3243 Serge 2382
	return has_audio;
2383
}
2330 Serge 2384
 
2385
static int
2386
intel_dp_set_property(struct drm_connector *connector,
2387
		      struct drm_property *property,
2388
		      uint64_t val)
2389
{
2390
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
3243 Serge 2391
	struct intel_connector *intel_connector = to_intel_connector(connector);
2392
	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2393
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2330 Serge 2394
	int ret;
2395
 
3243 Serge 2396
	ret = drm_object_property_set_value(&connector->base, property, val);
2330 Serge 2397
	if (ret)
2398
		return ret;
2399
#if 0
2400
	if (property == dev_priv->force_audio_property) {
2401
		int i = val;
2402
		bool has_audio;
2403
 
2404
		if (i == intel_dp->force_audio)
2405
			return 0;
2406
 
2407
		intel_dp->force_audio = i;
2408
 
3031 serge 2409
		if (i == HDMI_AUDIO_AUTO)
2330 Serge 2410
			has_audio = intel_dp_detect_audio(connector);
2411
		else
3031 serge 2412
			has_audio = (i == HDMI_AUDIO_ON);
2330 Serge 2413
 
2414
		if (has_audio == intel_dp->has_audio)
2415
			return 0;
2416
 
2417
		intel_dp->has_audio = has_audio;
2418
		goto done;
2419
	}
2420
 
2421
	if (property == dev_priv->broadcast_rgb_property) {
2422
		if (val == !!intel_dp->color_range)
2423
			return 0;
2424
 
2425
		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2426
	goto done;
2427
	}
2428
#endif
2429
 
3243 Serge 2430
	if (is_edp(intel_dp) &&
2431
	    property == connector->dev->mode_config.scaling_mode_property) {
2432
		if (val == DRM_MODE_SCALE_NONE) {
2433
			DRM_DEBUG_KMS("no scaling not supported\n");
2434
			return -EINVAL;
2435
		}
2436
 
2437
		if (intel_connector->panel.fitting_mode == val) {
2438
			/* the eDP scaling property is not changed */
2439
			return 0;
2440
		}
2441
		intel_connector->panel.fitting_mode = val;
2442
 
2443
		goto done;
2444
	}
2445
 
2330 Serge 2446
	return -EINVAL;
2447
 
2448
done:
3243 Serge 2449
	if (intel_encoder->base.crtc) {
2450
		struct drm_crtc *crtc = intel_encoder->base.crtc;
3031 serge 2451
		intel_set_mode(crtc, &crtc->mode,
2452
			       crtc->x, crtc->y, crtc->fb);
2330 Serge 2453
	}
2454
 
2455
	return 0;
2456
}
2457
 
2458
static void
2342 Serge 2459
intel_dp_destroy(struct drm_connector *connector)
2330 Serge 2460
{
2461
	struct drm_device *dev = connector->dev;
3031 serge 2462
	struct intel_dp *intel_dp = intel_attached_dp(connector);
3243 Serge 2463
	struct intel_connector *intel_connector = to_intel_connector(connector);
2330 Serge 2464
 
3243 Serge 2465
	if (!IS_ERR_OR_NULL(intel_connector->edid))
2466
		kfree(intel_connector->edid);
2467
 
2468
	if (is_edp(intel_dp)) {
2330 Serge 2469
		intel_panel_destroy_backlight(dev);
3243 Serge 2470
		intel_panel_fini(&intel_connector->panel);
2471
	}
2330 Serge 2472
 
2473
	drm_sysfs_connector_remove(connector);
2474
	drm_connector_cleanup(connector);
2475
	kfree(connector);
2476
}
2477
 
3243 Serge 2478
void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2330 Serge 2479
{
3243 Serge 2480
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2481
	struct intel_dp *intel_dp = &intel_dig_port->dp;
2330 Serge 2482
 
3243 Serge 2483
	i2c_del_adapter(&intel_dp->adapter);
2330 Serge 2484
	drm_encoder_cleanup(encoder);
2342 Serge 2485
	if (is_edp(intel_dp)) {
2486
//		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2487
		ironlake_panel_vdd_off_sync(intel_dp);
2488
	}
3243 Serge 2489
	kfree(intel_dig_port);
2330 Serge 2490
}
2491
 
2492
static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2493
	.mode_fixup = intel_dp_mode_fixup,
2494
	.mode_set = intel_dp_mode_set,
3031 serge 2495
	.disable = intel_encoder_noop,
2330 Serge 2496
};
2497
 
2498
static const struct drm_connector_funcs intel_dp_connector_funcs = {
3031 serge 2499
	.dpms = intel_connector_dpms,
2330 Serge 2500
	.detect = intel_dp_detect,
2501
	.fill_modes = drm_helper_probe_single_connector_modes,
2502
	.set_property = intel_dp_set_property,
2503
	.destroy = intel_dp_destroy,
2504
};
2505
 
2506
static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2507
	.get_modes = intel_dp_get_modes,
2508
	.mode_valid = intel_dp_mode_valid,
2509
	.best_encoder = intel_best_encoder,
2510
};
2511
 
2512
static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2513
	.destroy = intel_dp_encoder_destroy,
2514
};
2515
 
2516
static void
2517
intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2518
{
3243 Serge 2519
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2330 Serge 2520
 
2521
	intel_dp_check_link_status(intel_dp);
2522
}
2523
 
2327 Serge 2524
/* Return which DP Port should be selected for Transcoder DP control */
2525
int
2342 Serge 2526
intel_trans_dp_port_sel(struct drm_crtc *crtc)
2327 Serge 2527
{
2528
	struct drm_device *dev = crtc->dev;
3243 Serge 2529
	struct intel_encoder *intel_encoder;
2530
	struct intel_dp *intel_dp;
2327 Serge 2531
 
3243 Serge 2532
	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2533
		intel_dp = enc_to_intel_dp(&intel_encoder->base);
2327 Serge 2534
 
3243 Serge 2535
		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2536
		    intel_encoder->type == INTEL_OUTPUT_EDP)
2327 Serge 2537
			return intel_dp->output_reg;
2538
	}
2539
 
2540
	return -1;
2541
}
2330 Serge 2542
 
2543
/* check the VBT to see whether the eDP is on DP-D port */
2544
bool intel_dpd_is_edp(struct drm_device *dev)
2545
{
2546
	struct drm_i915_private *dev_priv = dev->dev_private;
2547
	struct child_device_config *p_child;
2548
	int i;
2549
 
2550
	if (!dev_priv->child_dev_num)
2551
		return false;
2552
 
2553
	for (i = 0; i < dev_priv->child_dev_num; i++) {
2554
		p_child = dev_priv->child_dev + i;
2555
 
2556
		if (p_child->dvo_port == PORT_IDPD &&
2557
		    p_child->device_type == DEVICE_TYPE_eDP)
2558
			return true;
2559
	}
2560
	return false;
2561
}
2562
 
2563
static void
2564
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2565
{
3243 Serge 2566
	struct intel_connector *intel_connector = to_intel_connector(connector);
2567
 
2330 Serge 2568
	intel_attach_force_audio_property(connector);
2569
	intel_attach_broadcast_rgb_property(connector);
3243 Serge 2570
 
2571
	if (is_edp(intel_dp)) {
2572
		drm_mode_create_scaling_mode_property(connector->dev);
2573
		drm_object_attach_property(
2574
			&connector->base,
2575
			connector->dev->mode_config.scaling_mode_property,
2576
			DRM_MODE_SCALE_ASPECT);
2577
		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
2578
	}
2330 Serge 2579
}
2580
 
3243 Serge 2581
static void
2582
intel_dp_init_panel_power_sequencer(struct drm_device *dev,
2583
				    struct intel_dp *intel_dp,
2584
				    struct edp_power_seq *out)
2585
{
2586
	struct drm_i915_private *dev_priv = dev->dev_private;
2587
	struct edp_power_seq cur, vbt, spec, final;
2588
	u32 pp_on, pp_off, pp_div, pp;
2589
 
2590
	/* Workaround: Need to write PP_CONTROL with the unlock key as
2591
	 * the very first thing. */
2592
	pp = ironlake_get_pp_control(dev_priv);
2593
	I915_WRITE(PCH_PP_CONTROL, pp);
2594
 
2595
	pp_on = I915_READ(PCH_PP_ON_DELAYS);
2596
	pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2597
	pp_div = I915_READ(PCH_PP_DIVISOR);
2598
 
2599
	/* Pull timing values out of registers */
2600
	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2601
		PANEL_POWER_UP_DELAY_SHIFT;
2602
 
2603
	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2604
		PANEL_LIGHT_ON_DELAY_SHIFT;
2605
 
2606
	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2607
		PANEL_LIGHT_OFF_DELAY_SHIFT;
2608
 
2609
	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2610
		PANEL_POWER_DOWN_DELAY_SHIFT;
2611
 
2612
	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2613
		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2614
 
2615
	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2616
		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2617
 
2618
	vbt = dev_priv->edp.pps;
2619
 
2620
	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
2621
	 * our hw here, which are all in 100usec. */
2622
	spec.t1_t3 = 210 * 10;
2623
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
2624
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
2625
	spec.t10 = 500 * 10;
2626
	/* This one is special and actually in units of 100ms, but zero
2627
	 * based in the hw (so we need to add 100 ms). But the sw vbt
2628
	 * table multiplies it with 1000 to make it in units of 100usec,
2629
	 * too. */
2630
	spec.t11_t12 = (510 + 100) * 10;
2631
 
2632
	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2633
		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2634
 
2635
	/* Use the max of the register settings and vbt. If both are
2636
	 * unset, fall back to the spec limits. */
2637
#define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
2638
				       spec.field : \
2639
				       max(cur.field, vbt.field))
2640
	assign_final(t1_t3);
2641
	assign_final(t8);
2642
	assign_final(t9);
2643
	assign_final(t10);
2644
	assign_final(t11_t12);
2645
#undef assign_final
2646
 
2647
#define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
2648
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
2649
	intel_dp->backlight_on_delay = get_delay(t8);
2650
	intel_dp->backlight_off_delay = get_delay(t9);
2651
	intel_dp->panel_power_down_delay = get_delay(t10);
2652
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2653
#undef get_delay
2654
 
2655
	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2656
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2657
		      intel_dp->panel_power_cycle_delay);
2658
 
2659
	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2660
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2661
 
2662
	if (out)
2663
		*out = final;
2664
}
2665
 
2666
static void
2667
intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
2668
					      struct intel_dp *intel_dp,
2669
					      struct edp_power_seq *seq)
2670
{
2671
	struct drm_i915_private *dev_priv = dev->dev_private;
2672
	u32 pp_on, pp_off, pp_div;
2673
 
2674
	/* And finally store the new values in the power sequencer. */
2675
	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
2676
		(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
2677
	pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
2678
		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
2679
	/* Compute the divisor for the pp clock, simply match the Bspec
2680
	 * formula. */
2681
	pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
2682
			<< PP_REFERENCE_DIVIDER_SHIFT;
2683
	pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
2684
			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
2685
 
2686
	/* Haswell doesn't have any port selection bits for the panel
2687
	 * power sequencer any more. */
2688
	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
2689
		if (is_cpu_edp(intel_dp))
2690
			pp_on |= PANEL_POWER_PORT_DP_A;
2691
		else
2692
			pp_on |= PANEL_POWER_PORT_DP_D;
2693
	}
2694
 
2695
	I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
2696
	I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
2697
	I915_WRITE(PCH_PP_DIVISOR, pp_div);
2698
 
2699
	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
2700
		      I915_READ(PCH_PP_ON_DELAYS),
2701
		      I915_READ(PCH_PP_OFF_DELAYS),
2702
		      I915_READ(PCH_PP_DIVISOR));
2703
}
2704
 
2330 Serge 2705
void
3243 Serge 2706
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
2707
			struct intel_connector *intel_connector)
2330 Serge 2708
{
3243 Serge 2709
	struct drm_connector *connector = &intel_connector->base;
2710
	struct intel_dp *intel_dp = &intel_dig_port->dp;
2711
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
2712
	struct drm_device *dev = intel_encoder->base.dev;
2330 Serge 2713
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 2714
	struct drm_display_mode *fixed_mode = NULL;
2715
	struct edp_power_seq power_seq = { 0 };
2716
	enum port port = intel_dig_port->port;
2330 Serge 2717
	const char *name = NULL;
2718
	int type;
2719
 
3031 serge 2720
	/* Preserve the current hw state. */
2721
	intel_dp->DP = I915_READ(intel_dp->output_reg);
3243 Serge 2722
	intel_dp->attached_connector = intel_connector;
2330 Serge 2723
 
3243 Serge 2724
	if (HAS_PCH_SPLIT(dev) && port == PORT_D)
2330 Serge 2725
		if (intel_dpd_is_edp(dev))
2726
			intel_dp->is_pch_edp = true;
2727
 
3243 Serge 2728
	/*
2729
	 * FIXME : We need to initialize built-in panels before external panels.
2730
	 * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2731
	 */
2732
	if (IS_VALLEYVIEW(dev) && port == PORT_C) {
2330 Serge 2733
		type = DRM_MODE_CONNECTOR_eDP;
2734
		intel_encoder->type = INTEL_OUTPUT_EDP;
3243 Serge 2735
	} else if (port == PORT_A || is_pch_edp(intel_dp)) {
2736
		type = DRM_MODE_CONNECTOR_eDP;
2737
		intel_encoder->type = INTEL_OUTPUT_EDP;
2330 Serge 2738
	} else {
3243 Serge 2739
		/* The intel_encoder->type value may be INTEL_OUTPUT_UNKNOWN for
2740
		 * DDI or INTEL_OUTPUT_DISPLAYPORT for the older gens, so don't
2741
		 * rewrite it.
2742
		 */
2330 Serge 2743
		type = DRM_MODE_CONNECTOR_DisplayPort;
2744
	}
2745
 
2746
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2747
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2748
 
2749
	connector->polled = DRM_CONNECTOR_POLL_HPD;
2750
	connector->interlace_allowed = true;
2751
	connector->doublescan_allowed = 0;
2752
 
3243 Serge 2753
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2754
			  ironlake_panel_vdd_work);
2330 Serge 2755
 
2756
	intel_connector_attach_encoder(intel_connector, intel_encoder);
2757
	drm_sysfs_connector_add(connector);
2758
 
3243 Serge 2759
	if (IS_HASWELL(dev))
2760
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2761
	else
3031 serge 2762
	intel_connector->get_hw_state = intel_connector_get_hw_state;
2763
 
3243 Serge 2764
 
2330 Serge 2765
	/* Set up the DDC bus. */
3031 serge 2766
	switch (port) {
2767
	case PORT_A:
2330 Serge 2768
			name = "DPDDC-A";
2769
			break;
3031 serge 2770
	case PORT_B:
2771
		dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
2330 Serge 2772
			name = "DPDDC-B";
2773
			break;
3031 serge 2774
	case PORT_C:
2775
		dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
2330 Serge 2776
			name = "DPDDC-C";
2777
			break;
3031 serge 2778
	case PORT_D:
2779
		dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
2330 Serge 2780
			name = "DPDDC-D";
2781
			break;
3031 serge 2782
	default:
2783
		WARN(1, "Invalid port %c\n", port_name(port));
2784
		break;
2330 Serge 2785
	}
2786
 
3243 Serge 2787
	if (is_edp(intel_dp))
2788
		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2330 Serge 2789
 
3031 serge 2790
	intel_dp_i2c_init(intel_dp, intel_connector, name);
2791
 
3243 Serge 2792
	/* Cache DPCD and EDID for edp. */
3031 serge 2793
	if (is_edp(intel_dp)) {
2794
		bool ret;
3243 Serge 2795
		struct drm_display_mode *scan;
3031 serge 2796
		struct edid *edid;
2797
 
2330 Serge 2798
		ironlake_edp_panel_vdd_on(intel_dp);
2799
		ret = intel_dp_get_dpcd(intel_dp);
2342 Serge 2800
		ironlake_edp_panel_vdd_off(intel_dp, false);
2801
 
2330 Serge 2802
		if (ret) {
2803
			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2804
				dev_priv->no_aux_handshake =
2805
					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2806
					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2807
		} else {
2808
			/* if this fails, presume the device is a ghost */
2809
			DRM_INFO("failed to retrieve link info, disabling eDP\n");
3243 Serge 2810
			intel_dp_encoder_destroy(&intel_encoder->base);
2811
			intel_dp_destroy(connector);
2330 Serge 2812
			return;
2813
		}
3031 serge 2814
 
3243 Serge 2815
		/* We now know it's not a ghost, init power sequence regs. */
2816
		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2817
							      &power_seq);
2818
 
3031 serge 2819
		ironlake_edp_panel_vdd_on(intel_dp);
2820
		edid = drm_get_edid(connector, &intel_dp->adapter);
2821
		if (edid) {
3243 Serge 2822
			if (drm_add_edid_modes(connector, edid)) {
2823
				drm_mode_connector_update_edid_property(connector, edid);
3031 serge 2824
			drm_edid_to_eld(connector, edid);
3243 Serge 2825
			} else {
2826
				kfree(edid);
2827
				edid = ERR_PTR(-EINVAL);
2828
			}
2829
		} else {
2830
			edid = ERR_PTR(-ENOENT);
3031 serge 2831
		}
3243 Serge 2832
		intel_connector->edid = edid;
2833
 
2834
		/* prefer fixed mode from EDID if available */
2835
		list_for_each_entry(scan, &connector->probed_modes, head) {
2836
			if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
2837
				fixed_mode = drm_mode_duplicate(dev, scan);
2838
				break;
2839
			}
2840
		}
2841
 
2842
		/* fallback to VBT if available for eDP */
2843
		if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
2844
			fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2845
			if (fixed_mode)
2846
				fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
2847
		}
2848
 
3031 serge 2849
		ironlake_edp_panel_vdd_off(intel_dp, false);
2330 Serge 2850
	}
2851
 
2852
	if (is_edp(intel_dp)) {
3243 Serge 2853
		intel_panel_init(&intel_connector->panel, fixed_mode);
2854
		intel_panel_setup_backlight(connector);
2330 Serge 2855
	}
2856
 
2857
	intel_dp_add_properties(intel_dp, connector);
2858
 
2859
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2860
	 * 0xd.  Failure to do so will result in spurious interrupts being
2861
	 * generated on the port when a cable is not attached.
2862
	 */
2863
	if (IS_G4X(dev) && !IS_GM45(dev)) {
2864
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2865
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2866
	}
2867
}
3243 Serge 2868
 
2869
void
2870
intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2871
{
2872
	struct intel_digital_port *intel_dig_port;
2873
	struct intel_encoder *intel_encoder;
2874
	struct drm_encoder *encoder;
2875
	struct intel_connector *intel_connector;
2876
 
2877
	intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
2878
	if (!intel_dig_port)
2879
		return;
2880
 
2881
	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2882
	if (!intel_connector) {
2883
		kfree(intel_dig_port);
2884
		return;
2885
	}
2886
 
2887
	intel_encoder = &intel_dig_port->base;
2888
	encoder = &intel_encoder->base;
2889
 
2890
	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2891
			 DRM_MODE_ENCODER_TMDS);
2892
	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2893
 
2894
	intel_encoder->enable = intel_enable_dp;
2895
	intel_encoder->pre_enable = intel_pre_enable_dp;
2896
	intel_encoder->disable = intel_disable_dp;
2897
	intel_encoder->post_disable = intel_post_disable_dp;
2898
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
2899
 
2900
	intel_dig_port->port = port;
2901
	intel_dig_port->dp.output_reg = output_reg;
2902
 
2903
	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2904
	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2905
	intel_encoder->cloneable = false;
2906
	intel_encoder->hot_plug = intel_dp_hot_plug;
2907
 
2908
	intel_dp_init_connector(intel_dig_port, intel_connector);
2909
}