Subversion Repositories Kolibri OS

Rev

Rev 6296 | Rev 6660 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2327 Serge 1
/*
2
 * Copyright © 2006-2007 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21
 * DEALINGS IN THE SOFTWARE.
22
 *
23
 * Authors:
6084 serge 24
 *	Eric Anholt 
2327 Serge 25
 */
26
 
5097 serge 27
#include 
2327 Serge 28
#include 
6088 serge 29
#include 
2327 Serge 30
#include 
31
#include 
2330 Serge 32
#include 
5354 serge 33
#include 
2342 Serge 34
#include 
3031 serge 35
#include 
2327 Serge 36
#include "intel_drv.h"
3031 serge 37
#include 
2327 Serge 38
#include "i915_drv.h"
2351 Serge 39
#include "i915_trace.h"
6084 serge 40
#include 
41
#include 
3031 serge 42
#include 
43
#include 
5060 serge 44
#include 
45
#include 
46
#include 
2327 Serge 47
 
5060 serge 48
/* Primary plane formats for gen <= 3 */
6084 serge 49
static const uint32_t i8xx_primary_formats[] = {
50
	DRM_FORMAT_C8,
51
	DRM_FORMAT_RGB565,
5060 serge 52
	DRM_FORMAT_XRGB1555,
6084 serge 53
	DRM_FORMAT_XRGB8888,
5060 serge 54
};
55
 
56
/* Primary plane formats for gen >= 4 */
6084 serge 57
static const uint32_t i965_primary_formats[] = {
58
	DRM_FORMAT_C8,
59
	DRM_FORMAT_RGB565,
60
	DRM_FORMAT_XRGB8888,
5060 serge 61
	DRM_FORMAT_XBGR8888,
6084 serge 62
	DRM_FORMAT_XRGB2101010,
63
	DRM_FORMAT_XBGR2101010,
64
};
65
 
66
static const uint32_t skl_primary_formats[] = {
67
	DRM_FORMAT_C8,
68
	DRM_FORMAT_RGB565,
69
	DRM_FORMAT_XRGB8888,
70
	DRM_FORMAT_XBGR8888,
71
	DRM_FORMAT_ARGB8888,
5060 serge 72
	DRM_FORMAT_ABGR8888,
73
	DRM_FORMAT_XRGB2101010,
74
	DRM_FORMAT_XBGR2101010,
6084 serge 75
	DRM_FORMAT_YUYV,
76
	DRM_FORMAT_YVYU,
77
	DRM_FORMAT_UYVY,
78
	DRM_FORMAT_VYUY,
5060 serge 79
};
80
 
81
/* Cursor formats */
82
static const uint32_t intel_cursor_formats[] = {
83
	DRM_FORMAT_ARGB8888,
84
};
85
 
86
void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
2327 Serge 87
 
4104 Serge 88
static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
6084 serge 89
				struct intel_crtc_state *pipe_config);
4560 Serge 90
static void ironlake_pch_clock_get(struct intel_crtc *crtc,
6084 serge 91
				   struct intel_crtc_state *pipe_config);
2327 Serge 92
 
5060 serge 93
static int intel_framebuffer_init(struct drm_device *dev,
94
				  struct intel_framebuffer *ifb,
95
				  struct drm_mode_fb_cmd2 *mode_cmd,
96
				  struct drm_i915_gem_object *obj);
97
static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98
static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99
static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5354 serge 100
					 struct intel_link_m_n *m_n,
101
					 struct intel_link_m_n *m2_n2);
5060 serge 102
static void ironlake_set_pipeconf(struct drm_crtc *crtc);
103
static void haswell_set_pipeconf(struct drm_crtc *crtc);
104
static void intel_set_pipe_csc(struct drm_crtc *crtc);
5354 serge 105
static void vlv_prepare_pll(struct intel_crtc *crtc,
6084 serge 106
			    const struct intel_crtc_state *pipe_config);
5354 serge 107
static void chv_prepare_pll(struct intel_crtc *crtc,
6084 serge 108
			    const struct intel_crtc_state *pipe_config);
109
static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110
static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111
static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112
	struct intel_crtc_state *crtc_state);
113
static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114
			   int num_connectors);
115
static void skylake_pfit_enable(struct intel_crtc *crtc);
116
static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117
static void ironlake_pfit_enable(struct intel_crtc *crtc);
118
static void intel_modeset_setup_hw_state(struct drm_device *dev);
119
static void intel_pre_disable_primary(struct drm_crtc *crtc);
4104 Serge 120
 
2327 Serge 121
typedef struct {
6084 serge 122
	int	min, max;
2327 Serge 123
} intel_range_t;
124
 
125
typedef struct {
6084 serge 126
	int	dot_limit;
127
	int	p2_slow, p2_fast;
2327 Serge 128
} intel_p2_t;
129
 
130
typedef struct intel_limit intel_limit_t;
131
struct intel_limit {
6084 serge 132
	intel_range_t   dot, vco, n, m, m1, m2, p, p1;
133
	intel_p2_t	    p2;
2327 Serge 134
};
135
 
6084 serge 136
/* returns HPLL frequency in kHz */
137
static int valleyview_get_vco(struct drm_i915_private *dev_priv)
138
{
139
	int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
140
 
141
	/* Obtain SKU information */
142
	mutex_lock(&dev_priv->sb_lock);
143
	hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
144
		CCK_FUSE_HPLL_FREQ_MASK;
145
	mutex_unlock(&dev_priv->sb_lock);
146
 
147
	return vco_freq[hpll_freq] * 1000;
148
}
149
 
150
static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
151
				  const char *name, u32 reg)
152
{
153
	u32 val;
154
	int divider;
155
 
156
	if (dev_priv->hpll_freq == 0)
157
		dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
158
 
159
	mutex_lock(&dev_priv->sb_lock);
160
	val = vlv_cck_read(dev_priv, reg);
161
	mutex_unlock(&dev_priv->sb_lock);
162
 
163
	divider = val & CCK_FREQUENCY_VALUES;
164
 
165
	WARN((val & CCK_FREQUENCY_STATUS) !=
166
	     (divider << CCK_FREQUENCY_STATUS_SHIFT),
167
	     "%s change in progress\n", name);
168
 
169
	return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
170
}
171
 
3243 Serge 172
int
173
intel_pch_rawclk(struct drm_device *dev)
174
{
175
	struct drm_i915_private *dev_priv = dev->dev_private;
176
 
177
	WARN_ON(!HAS_PCH_SPLIT(dev));
178
 
179
	return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
180
}
181
 
6084 serge 182
/* hrawclock is 1/4 the FSB frequency */
183
int intel_hrawclk(struct drm_device *dev)
184
{
185
	struct drm_i915_private *dev_priv = dev->dev_private;
186
	uint32_t clkcfg;
187
 
188
	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
189
	if (IS_VALLEYVIEW(dev))
190
		return 200;
191
 
192
	clkcfg = I915_READ(CLKCFG);
193
	switch (clkcfg & CLKCFG_FSB_MASK) {
194
	case CLKCFG_FSB_400:
195
		return 100;
196
	case CLKCFG_FSB_533:
197
		return 133;
198
	case CLKCFG_FSB_667:
199
		return 166;
200
	case CLKCFG_FSB_800:
201
		return 200;
202
	case CLKCFG_FSB_1067:
203
		return 266;
204
	case CLKCFG_FSB_1333:
205
		return 333;
206
	/* these two are just a guess; one of them might be right */
207
	case CLKCFG_FSB_1600:
208
	case CLKCFG_FSB_1600_ALT:
209
		return 400;
210
	default:
211
		return 133;
212
	}
213
}
214
 
215
static void intel_update_czclk(struct drm_i915_private *dev_priv)
216
{
217
	if (!IS_VALLEYVIEW(dev_priv))
218
		return;
219
 
220
	dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
221
						      CCK_CZ_CLOCK_CONTROL);
222
 
223
	DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
224
}
225
 
2327 Serge 226
static inline u32 /* units of 100MHz */
227
intel_fdi_link_freq(struct drm_device *dev)
228
{
229
	if (IS_GEN5(dev)) {
230
		struct drm_i915_private *dev_priv = dev->dev_private;
231
		return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
232
	} else
233
		return 27;
234
}
235
 
4104 Serge 236
static const intel_limit_t intel_limits_i8xx_dac = {
237
	.dot = { .min = 25000, .max = 350000 },
4560 Serge 238
	.vco = { .min = 908000, .max = 1512000 },
239
	.n = { .min = 2, .max = 16 },
4104 Serge 240
	.m = { .min = 96, .max = 140 },
241
	.m1 = { .min = 18, .max = 26 },
242
	.m2 = { .min = 6, .max = 16 },
243
	.p = { .min = 4, .max = 128 },
244
	.p1 = { .min = 2, .max = 33 },
245
	.p2 = { .dot_limit = 165000,
246
		.p2_slow = 4, .p2_fast = 2 },
247
};
248
 
2327 Serge 249
static const intel_limit_t intel_limits_i8xx_dvo = {
6084 serge 250
	.dot = { .min = 25000, .max = 350000 },
4560 Serge 251
	.vco = { .min = 908000, .max = 1512000 },
252
	.n = { .min = 2, .max = 16 },
6084 serge 253
	.m = { .min = 96, .max = 140 },
254
	.m1 = { .min = 18, .max = 26 },
255
	.m2 = { .min = 6, .max = 16 },
256
	.p = { .min = 4, .max = 128 },
257
	.p1 = { .min = 2, .max = 33 },
2327 Serge 258
	.p2 = { .dot_limit = 165000,
4104 Serge 259
		.p2_slow = 4, .p2_fast = 4 },
2327 Serge 260
};
261
 
262
static const intel_limit_t intel_limits_i8xx_lvds = {
6084 serge 263
	.dot = { .min = 25000, .max = 350000 },
4560 Serge 264
	.vco = { .min = 908000, .max = 1512000 },
265
	.n = { .min = 2, .max = 16 },
6084 serge 266
	.m = { .min = 96, .max = 140 },
267
	.m1 = { .min = 18, .max = 26 },
268
	.m2 = { .min = 6, .max = 16 },
269
	.p = { .min = 4, .max = 128 },
270
	.p1 = { .min = 1, .max = 6 },
2327 Serge 271
	.p2 = { .dot_limit = 165000,
272
		.p2_slow = 14, .p2_fast = 7 },
273
};
274
 
275
static const intel_limit_t intel_limits_i9xx_sdvo = {
6084 serge 276
	.dot = { .min = 20000, .max = 400000 },
277
	.vco = { .min = 1400000, .max = 2800000 },
278
	.n = { .min = 1, .max = 6 },
279
	.m = { .min = 70, .max = 120 },
3480 Serge 280
	.m1 = { .min = 8, .max = 18 },
281
	.m2 = { .min = 3, .max = 7 },
6084 serge 282
	.p = { .min = 5, .max = 80 },
283
	.p1 = { .min = 1, .max = 8 },
2327 Serge 284
	.p2 = { .dot_limit = 200000,
285
		.p2_slow = 10, .p2_fast = 5 },
286
};
287
 
288
static const intel_limit_t intel_limits_i9xx_lvds = {
6084 serge 289
	.dot = { .min = 20000, .max = 400000 },
290
	.vco = { .min = 1400000, .max = 2800000 },
291
	.n = { .min = 1, .max = 6 },
292
	.m = { .min = 70, .max = 120 },
3480 Serge 293
	.m1 = { .min = 8, .max = 18 },
294
	.m2 = { .min = 3, .max = 7 },
6084 serge 295
	.p = { .min = 7, .max = 98 },
296
	.p1 = { .min = 1, .max = 8 },
2327 Serge 297
	.p2 = { .dot_limit = 112000,
298
		.p2_slow = 14, .p2_fast = 7 },
299
};
300
 
301
 
302
static const intel_limit_t intel_limits_g4x_sdvo = {
303
	.dot = { .min = 25000, .max = 270000 },
304
	.vco = { .min = 1750000, .max = 3500000},
305
	.n = { .min = 1, .max = 4 },
306
	.m = { .min = 104, .max = 138 },
307
	.m1 = { .min = 17, .max = 23 },
308
	.m2 = { .min = 5, .max = 11 },
309
	.p = { .min = 10, .max = 30 },
310
	.p1 = { .min = 1, .max = 3},
311
	.p2 = { .dot_limit = 270000,
312
		.p2_slow = 10,
313
		.p2_fast = 10
314
	},
315
};
316
 
317
static const intel_limit_t intel_limits_g4x_hdmi = {
318
	.dot = { .min = 22000, .max = 400000 },
319
	.vco = { .min = 1750000, .max = 3500000},
320
	.n = { .min = 1, .max = 4 },
321
	.m = { .min = 104, .max = 138 },
322
	.m1 = { .min = 16, .max = 23 },
323
	.m2 = { .min = 5, .max = 11 },
324
	.p = { .min = 5, .max = 80 },
325
	.p1 = { .min = 1, .max = 8},
326
	.p2 = { .dot_limit = 165000,
327
		.p2_slow = 10, .p2_fast = 5 },
328
};
329
 
330
static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
331
	.dot = { .min = 20000, .max = 115000 },
332
	.vco = { .min = 1750000, .max = 3500000 },
333
	.n = { .min = 1, .max = 3 },
334
	.m = { .min = 104, .max = 138 },
335
	.m1 = { .min = 17, .max = 23 },
336
	.m2 = { .min = 5, .max = 11 },
337
	.p = { .min = 28, .max = 112 },
338
	.p1 = { .min = 2, .max = 8 },
339
	.p2 = { .dot_limit = 0,
340
		.p2_slow = 14, .p2_fast = 14
341
	},
342
};
343
 
344
static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
345
	.dot = { .min = 80000, .max = 224000 },
346
	.vco = { .min = 1750000, .max = 3500000 },
347
	.n = { .min = 1, .max = 3 },
348
	.m = { .min = 104, .max = 138 },
349
	.m1 = { .min = 17, .max = 23 },
350
	.m2 = { .min = 5, .max = 11 },
351
	.p = { .min = 14, .max = 42 },
352
	.p1 = { .min = 2, .max = 6 },
353
	.p2 = { .dot_limit = 0,
354
		.p2_slow = 7, .p2_fast = 7
355
	},
356
};
357
 
358
static const intel_limit_t intel_limits_pineview_sdvo = {
6084 serge 359
	.dot = { .min = 20000, .max = 400000},
360
	.vco = { .min = 1700000, .max = 3500000 },
2327 Serge 361
	/* Pineview's Ncounter is a ring counter */
6084 serge 362
	.n = { .min = 3, .max = 6 },
363
	.m = { .min = 2, .max = 256 },
2327 Serge 364
	/* Pineview only has one combined m divider, which we treat as m2. */
6084 serge 365
	.m1 = { .min = 0, .max = 0 },
366
	.m2 = { .min = 0, .max = 254 },
367
	.p = { .min = 5, .max = 80 },
368
	.p1 = { .min = 1, .max = 8 },
2327 Serge 369
	.p2 = { .dot_limit = 200000,
370
		.p2_slow = 10, .p2_fast = 5 },
371
};
372
 
373
static const intel_limit_t intel_limits_pineview_lvds = {
6084 serge 374
	.dot = { .min = 20000, .max = 400000 },
375
	.vco = { .min = 1700000, .max = 3500000 },
376
	.n = { .min = 3, .max = 6 },
377
	.m = { .min = 2, .max = 256 },
378
	.m1 = { .min = 0, .max = 0 },
379
	.m2 = { .min = 0, .max = 254 },
380
	.p = { .min = 7, .max = 112 },
381
	.p1 = { .min = 1, .max = 8 },
2327 Serge 382
	.p2 = { .dot_limit = 112000,
383
		.p2_slow = 14, .p2_fast = 14 },
384
};
385
 
386
/* Ironlake / Sandybridge
387
 *
388
 * We calculate clock using (register_value + 2) for N/M1/M2, so here
389
 * the range value for them is (actual_value - 2).
390
 */
391
static const intel_limit_t intel_limits_ironlake_dac = {
392
	.dot = { .min = 25000, .max = 350000 },
393
	.vco = { .min = 1760000, .max = 3510000 },
394
	.n = { .min = 1, .max = 5 },
395
	.m = { .min = 79, .max = 127 },
396
	.m1 = { .min = 12, .max = 22 },
397
	.m2 = { .min = 5, .max = 9 },
398
	.p = { .min = 5, .max = 80 },
399
	.p1 = { .min = 1, .max = 8 },
400
	.p2 = { .dot_limit = 225000,
401
		.p2_slow = 10, .p2_fast = 5 },
402
};
403
 
404
static const intel_limit_t intel_limits_ironlake_single_lvds = {
405
	.dot = { .min = 25000, .max = 350000 },
406
	.vco = { .min = 1760000, .max = 3510000 },
407
	.n = { .min = 1, .max = 3 },
408
	.m = { .min = 79, .max = 118 },
409
	.m1 = { .min = 12, .max = 22 },
410
	.m2 = { .min = 5, .max = 9 },
411
	.p = { .min = 28, .max = 112 },
412
	.p1 = { .min = 2, .max = 8 },
413
	.p2 = { .dot_limit = 225000,
414
		.p2_slow = 14, .p2_fast = 14 },
415
};
416
 
417
static const intel_limit_t intel_limits_ironlake_dual_lvds = {
418
	.dot = { .min = 25000, .max = 350000 },
419
	.vco = { .min = 1760000, .max = 3510000 },
420
	.n = { .min = 1, .max = 3 },
421
	.m = { .min = 79, .max = 127 },
422
	.m1 = { .min = 12, .max = 22 },
423
	.m2 = { .min = 5, .max = 9 },
424
	.p = { .min = 14, .max = 56 },
425
	.p1 = { .min = 2, .max = 8 },
426
	.p2 = { .dot_limit = 225000,
427
		.p2_slow = 7, .p2_fast = 7 },
428
};
429
 
430
/* LVDS 100mhz refclk limits. */
431
static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
432
	.dot = { .min = 25000, .max = 350000 },
433
	.vco = { .min = 1760000, .max = 3510000 },
434
	.n = { .min = 1, .max = 2 },
435
	.m = { .min = 79, .max = 126 },
436
	.m1 = { .min = 12, .max = 22 },
437
	.m2 = { .min = 5, .max = 9 },
438
	.p = { .min = 28, .max = 112 },
2342 Serge 439
	.p1 = { .min = 2, .max = 8 },
2327 Serge 440
	.p2 = { .dot_limit = 225000,
441
		.p2_slow = 14, .p2_fast = 14 },
442
};
443
 
444
static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
445
	.dot = { .min = 25000, .max = 350000 },
446
	.vco = { .min = 1760000, .max = 3510000 },
447
	.n = { .min = 1, .max = 3 },
448
	.m = { .min = 79, .max = 126 },
449
	.m1 = { .min = 12, .max = 22 },
450
	.m2 = { .min = 5, .max = 9 },
451
	.p = { .min = 14, .max = 42 },
2342 Serge 452
	.p1 = { .min = 2, .max = 6 },
2327 Serge 453
	.p2 = { .dot_limit = 225000,
454
		.p2_slow = 7, .p2_fast = 7 },
455
};
456
 
4560 Serge 457
static const intel_limit_t intel_limits_vlv = {
458
	 /*
459
	  * These are the data rate limits (measured in fast clocks)
460
	  * since those are the strictest limits we have. The fast
461
	  * clock and actual rate limits are more relaxed, so checking
462
	  * them would make no difference.
463
	  */
464
	.dot = { .min = 25000 * 5, .max = 270000 * 5 },
3031 serge 465
	.vco = { .min = 4000000, .max = 6000000 },
466
	.n = { .min = 1, .max = 7 },
467
	.m1 = { .min = 2, .max = 3 },
468
	.m2 = { .min = 11, .max = 156 },
469
	.p1 = { .min = 2, .max = 3 },
4560 Serge 470
	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
3031 serge 471
};
472
 
5060 serge 473
static const intel_limit_t intel_limits_chv = {
474
	/*
475
	 * These are the data rate limits (measured in fast clocks)
476
	 * since those are the strictest limits we have.  The fast
477
	 * clock and actual rate limits are more relaxed, so checking
478
	 * them would make no difference.
479
	 */
480
	.dot = { .min = 25000 * 5, .max = 540000 * 5},
6084 serge 481
	.vco = { .min = 4800000, .max = 6480000 },
5060 serge 482
	.n = { .min = 1, .max = 1 },
483
	.m1 = { .min = 2, .max = 2 },
484
	.m2 = { .min = 24 << 22, .max = 175 << 22 },
485
	.p1 = { .min = 2, .max = 4 },
486
	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
487
};
488
 
6084 serge 489
static const intel_limit_t intel_limits_bxt = {
490
	/* FIXME: find real dot limits */
491
	.dot = { .min = 0, .max = INT_MAX },
492
	.vco = { .min = 4800000, .max = 6700000 },
493
	.n = { .min = 1, .max = 1 },
494
	.m1 = { .min = 2, .max = 2 },
495
	/* FIXME: find real m2 limits */
496
	.m2 = { .min = 2 << 22, .max = 255 << 22 },
497
	.p1 = { .min = 2, .max = 4 },
498
	.p2 = { .p2_slow = 1, .p2_fast = 20 },
499
};
500
 
501
static bool
502
needs_modeset(struct drm_crtc_state *state)
4560 Serge 503
{
6084 serge 504
	return drm_atomic_crtc_needs_modeset(state);
4560 Serge 505
}
3031 serge 506
 
4560 Serge 507
/**
508
 * Returns whether any output on the specified pipe is of the specified type
509
 */
5354 serge 510
bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
4560 Serge 511
{
5354 serge 512
	struct drm_device *dev = crtc->base.dev;
4560 Serge 513
	struct intel_encoder *encoder;
514
 
5354 serge 515
	for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4560 Serge 516
		if (encoder->type == type)
517
			return true;
518
 
519
	return false;
520
}
521
 
5354 serge 522
/**
523
 * Returns whether any output on the specified pipe will have the specified
524
 * type after a staged modeset is complete, i.e., the same as
525
 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
526
 * encoder->crtc.
527
 */
6084 serge 528
static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
529
				      int type)
5354 serge 530
{
6084 serge 531
	struct drm_atomic_state *state = crtc_state->base.state;
532
	struct drm_connector *connector;
533
	struct drm_connector_state *connector_state;
5354 serge 534
	struct intel_encoder *encoder;
6084 serge 535
	int i, num_connectors = 0;
5354 serge 536
 
6084 serge 537
	for_each_connector_in_state(state, connector, connector_state, i) {
538
		if (connector_state->crtc != crtc_state->base.crtc)
539
			continue;
540
 
541
		num_connectors++;
542
 
543
		encoder = to_intel_encoder(connector_state->best_encoder);
544
		if (encoder->type == type)
5354 serge 545
			return true;
6084 serge 546
	}
5354 serge 547
 
6084 serge 548
	WARN_ON(num_connectors == 0);
549
 
5354 serge 550
	return false;
551
}
552
 
6084 serge 553
static const intel_limit_t *
554
intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
2327 Serge 555
{
6084 serge 556
	struct drm_device *dev = crtc_state->base.crtc->dev;
2327 Serge 557
	const intel_limit_t *limit;
558
 
6084 serge 559
	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
3480 Serge 560
		if (intel_is_dual_link_lvds(dev)) {
2327 Serge 561
			if (refclk == 100000)
562
				limit = &intel_limits_ironlake_dual_lvds_100m;
563
			else
564
				limit = &intel_limits_ironlake_dual_lvds;
565
		} else {
566
			if (refclk == 100000)
567
				limit = &intel_limits_ironlake_single_lvds_100m;
568
			else
569
				limit = &intel_limits_ironlake_single_lvds;
570
		}
4104 Serge 571
	} else
2327 Serge 572
		limit = &intel_limits_ironlake_dac;
573
 
574
	return limit;
575
}
576
 
6084 serge 577
static const intel_limit_t *
578
intel_g4x_limit(struct intel_crtc_state *crtc_state)
2327 Serge 579
{
6084 serge 580
	struct drm_device *dev = crtc_state->base.crtc->dev;
2327 Serge 581
	const intel_limit_t *limit;
582
 
6084 serge 583
	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
3480 Serge 584
		if (intel_is_dual_link_lvds(dev))
2327 Serge 585
			limit = &intel_limits_g4x_dual_channel_lvds;
586
		else
587
			limit = &intel_limits_g4x_single_channel_lvds;
6084 serge 588
	} else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
589
		   intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
2327 Serge 590
		limit = &intel_limits_g4x_hdmi;
6084 serge 591
	} else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
2327 Serge 592
		limit = &intel_limits_g4x_sdvo;
593
	} else /* The option is for other outputs */
594
		limit = &intel_limits_i9xx_sdvo;
595
 
596
	return limit;
597
}
598
 
6084 serge 599
static const intel_limit_t *
600
intel_limit(struct intel_crtc_state *crtc_state, int refclk)
2327 Serge 601
{
6084 serge 602
	struct drm_device *dev = crtc_state->base.crtc->dev;
2327 Serge 603
	const intel_limit_t *limit;
604
 
6084 serge 605
	if (IS_BROXTON(dev))
606
		limit = &intel_limits_bxt;
607
	else if (HAS_PCH_SPLIT(dev))
608
		limit = intel_ironlake_limit(crtc_state, refclk);
2327 Serge 609
	else if (IS_G4X(dev)) {
6084 serge 610
		limit = intel_g4x_limit(crtc_state);
2327 Serge 611
	} else if (IS_PINEVIEW(dev)) {
6084 serge 612
		if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
2327 Serge 613
			limit = &intel_limits_pineview_lvds;
614
		else
615
			limit = &intel_limits_pineview_sdvo;
5060 serge 616
	} else if (IS_CHERRYVIEW(dev)) {
617
		limit = &intel_limits_chv;
3031 serge 618
	} else if (IS_VALLEYVIEW(dev)) {
4560 Serge 619
		limit = &intel_limits_vlv;
2327 Serge 620
	} else if (!IS_GEN2(dev)) {
6084 serge 621
		if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
2327 Serge 622
			limit = &intel_limits_i9xx_lvds;
623
		else
624
			limit = &intel_limits_i9xx_sdvo;
625
	} else {
6084 serge 626
		if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
2327 Serge 627
			limit = &intel_limits_i8xx_lvds;
6084 serge 628
		else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
4104 Serge 629
			limit = &intel_limits_i8xx_dvo;
2327 Serge 630
		else
4104 Serge 631
			limit = &intel_limits_i8xx_dac;
2327 Serge 632
	}
633
	return limit;
634
}
635
 
6084 serge 636
/*
637
 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
638
 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
639
 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
640
 * The helpers' return value is the rate of the clock that is fed to the
641
 * display engine's pipe which can be the above fast dot clock rate or a
642
 * divided-down version of it.
643
 */
2327 Serge 644
/* m1 is reserved as 0 in Pineview, n is a ring counter */
6084 serge 645
static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
2327 Serge 646
{
647
	clock->m = clock->m2 + 2;
648
	clock->p = clock->p1 * clock->p2;
4560 Serge 649
	if (WARN_ON(clock->n == 0 || clock->p == 0))
6084 serge 650
		return 0;
4560 Serge 651
	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
652
	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6084 serge 653
 
654
	return clock->dot;
2327 Serge 655
}
656
 
4104 Serge 657
static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
2327 Serge 658
{
4104 Serge 659
	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
660
}
661
 
6084 serge 662
static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
4104 Serge 663
{
664
	clock->m = i9xx_dpll_compute_m(clock);
2327 Serge 665
	clock->p = clock->p1 * clock->p2;
4560 Serge 666
	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
6084 serge 667
		return 0;
4560 Serge 668
	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
669
	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6084 serge 670
 
671
	return clock->dot;
2327 Serge 672
}
673
 
6084 serge 674
static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
5060 serge 675
{
676
	clock->m = clock->m1 * clock->m2;
677
	clock->p = clock->p1 * clock->p2;
678
	if (WARN_ON(clock->n == 0 || clock->p == 0))
6084 serge 679
		return 0;
680
	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
681
	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
682
 
683
	return clock->dot / 5;
684
}
685
 
686
int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
687
{
688
	clock->m = clock->m1 * clock->m2;
689
	clock->p = clock->p1 * clock->p2;
690
	if (WARN_ON(clock->n == 0 || clock->p == 0))
691
		return 0;
5060 serge 692
	clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
693
			clock->n << 22);
694
	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6084 serge 695
 
696
	return clock->dot / 5;
5060 serge 697
}
698
 
2327 Serge 699
#define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
700
/**
701
 * Returns whether the given set of divisors are valid for a given refclk with
702
 * the given connectors.
703
 */
704
 
705
static bool intel_PLL_is_valid(struct drm_device *dev,
706
			       const intel_limit_t *limit,
707
			       const intel_clock_t *clock)
708
{
4560 Serge 709
	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
710
		INTELPllInvalid("n out of range\n");
2327 Serge 711
	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
2342 Serge 712
		INTELPllInvalid("p1 out of range\n");
2327 Serge 713
	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
2342 Serge 714
		INTELPllInvalid("m2 out of range\n");
2327 Serge 715
	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
2342 Serge 716
		INTELPllInvalid("m1 out of range\n");
4560 Serge 717
 
6084 serge 718
	if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
4560 Serge 719
		if (clock->m1 <= clock->m2)
6084 serge 720
			INTELPllInvalid("m1 <= m2\n");
4560 Serge 721
 
6084 serge 722
	if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
4560 Serge 723
		if (clock->p < limit->p.min || limit->p.max < clock->p)
724
			INTELPllInvalid("p out of range\n");
6084 serge 725
		if (clock->m < limit->m.min || limit->m.max < clock->m)
726
			INTELPllInvalid("m out of range\n");
4560 Serge 727
	}
728
 
2327 Serge 729
	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
2342 Serge 730
		INTELPllInvalid("vco out of range\n");
2327 Serge 731
	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
732
	 * connector, etc., rather than just a single range.
733
	 */
734
	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
2342 Serge 735
		INTELPllInvalid("dot out of range\n");
2327 Serge 736
 
737
	return true;
738
}
739
 
6084 serge 740
static int
741
i9xx_select_p2_div(const intel_limit_t *limit,
742
		   const struct intel_crtc_state *crtc_state,
743
		   int target)
2327 Serge 744
{
6084 serge 745
	struct drm_device *dev = crtc_state->base.crtc->dev;
2327 Serge 746
 
6084 serge 747
	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
2327 Serge 748
		/*
3480 Serge 749
		 * For LVDS just rely on its current settings for dual-channel.
750
		 * We haven't figured out how to reliably set up different
751
		 * single/dual channel state, if we even can.
2327 Serge 752
		 */
3480 Serge 753
		if (intel_is_dual_link_lvds(dev))
6084 serge 754
			return limit->p2.p2_fast;
2327 Serge 755
		else
6084 serge 756
			return limit->p2.p2_slow;
2327 Serge 757
	} else {
758
		if (target < limit->p2.dot_limit)
6084 serge 759
			return limit->p2.p2_slow;
2327 Serge 760
		else
6084 serge 761
			return limit->p2.p2_fast;
2327 Serge 762
	}
6084 serge 763
}
2327 Serge 764
 
6084 serge 765
static bool
766
i9xx_find_best_dpll(const intel_limit_t *limit,
767
		    struct intel_crtc_state *crtc_state,
768
		    int target, int refclk, intel_clock_t *match_clock,
769
		    intel_clock_t *best_clock)
770
{
771
	struct drm_device *dev = crtc_state->base.crtc->dev;
772
	intel_clock_t clock;
773
	int err = target;
774
 
2342 Serge 775
	memset(best_clock, 0, sizeof(*best_clock));
2327 Serge 776
 
6084 serge 777
	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
778
 
2327 Serge 779
	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
780
	     clock.m1++) {
781
		for (clock.m2 = limit->m2.min;
782
		     clock.m2 <= limit->m2.max; clock.m2++) {
4104 Serge 783
			if (clock.m2 >= clock.m1)
2327 Serge 784
				break;
785
			for (clock.n = limit->n.min;
786
			     clock.n <= limit->n.max; clock.n++) {
787
				for (clock.p1 = limit->p1.min;
788
					clock.p1 <= limit->p1.max; clock.p1++) {
789
					int this_err;
790
 
6084 serge 791
					i9xx_calc_dpll_params(refclk, &clock);
2327 Serge 792
					if (!intel_PLL_is_valid(dev, limit,
793
								&clock))
794
						continue;
3031 serge 795
					if (match_clock &&
796
					    clock.p != match_clock->p)
797
						continue;
2327 Serge 798
 
799
					this_err = abs(clock.dot - target);
800
					if (this_err < err) {
801
						*best_clock = clock;
802
						err = this_err;
803
					}
804
				}
805
			}
806
		}
807
	}
808
 
809
	return (err != target);
810
}
811
 
812
static bool
6084 serge 813
pnv_find_best_dpll(const intel_limit_t *limit,
814
		   struct intel_crtc_state *crtc_state,
4104 Serge 815
		   int target, int refclk, intel_clock_t *match_clock,
816
		   intel_clock_t *best_clock)
817
{
6084 serge 818
	struct drm_device *dev = crtc_state->base.crtc->dev;
4104 Serge 819
	intel_clock_t clock;
820
	int err = target;
821
 
822
	memset(best_clock, 0, sizeof(*best_clock));
823
 
6084 serge 824
	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
825
 
4104 Serge 826
	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
827
	     clock.m1++) {
828
		for (clock.m2 = limit->m2.min;
829
		     clock.m2 <= limit->m2.max; clock.m2++) {
830
			for (clock.n = limit->n.min;
831
			     clock.n <= limit->n.max; clock.n++) {
832
				for (clock.p1 = limit->p1.min;
833
					clock.p1 <= limit->p1.max; clock.p1++) {
834
					int this_err;
835
 
6084 serge 836
					pnv_calc_dpll_params(refclk, &clock);
4104 Serge 837
					if (!intel_PLL_is_valid(dev, limit,
838
								&clock))
839
						continue;
840
					if (match_clock &&
841
					    clock.p != match_clock->p)
842
						continue;
843
 
844
					this_err = abs(clock.dot - target);
845
					if (this_err < err) {
846
						*best_clock = clock;
847
						err = this_err;
848
					}
849
				}
850
			}
851
		}
852
	}
853
 
854
	return (err != target);
855
}
856
 
857
static bool
6084 serge 858
g4x_find_best_dpll(const intel_limit_t *limit,
859
		   struct intel_crtc_state *crtc_state,
860
		   int target, int refclk, intel_clock_t *match_clock,
861
		   intel_clock_t *best_clock)
2327 Serge 862
{
6084 serge 863
	struct drm_device *dev = crtc_state->base.crtc->dev;
2327 Serge 864
	intel_clock_t clock;
865
	int max_n;
6084 serge 866
	bool found = false;
2327 Serge 867
	/* approximately equals target * 0.00585 */
868
	int err_most = (target >> 8) + (target >> 9);
869
 
6084 serge 870
	memset(best_clock, 0, sizeof(*best_clock));
2327 Serge 871
 
6084 serge 872
	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
873
 
2327 Serge 874
	max_n = limit->n.max;
875
	/* based on hardware requirement, prefer smaller n to precision */
876
	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
877
		/* based on hardware requirement, prefere larger m1,m2 */
878
		for (clock.m1 = limit->m1.max;
879
		     clock.m1 >= limit->m1.min; clock.m1--) {
880
			for (clock.m2 = limit->m2.max;
881
			     clock.m2 >= limit->m2.min; clock.m2--) {
882
				for (clock.p1 = limit->p1.max;
883
				     clock.p1 >= limit->p1.min; clock.p1--) {
884
					int this_err;
885
 
6084 serge 886
					i9xx_calc_dpll_params(refclk, &clock);
2327 Serge 887
					if (!intel_PLL_is_valid(dev, limit,
888
								&clock))
889
						continue;
890
 
891
					this_err = abs(clock.dot - target);
892
					if (this_err < err_most) {
893
						*best_clock = clock;
894
						err_most = this_err;
895
						max_n = clock.n;
896
						found = true;
897
					}
898
				}
899
			}
900
		}
901
	}
902
	return found;
903
}
904
 
6084 serge 905
/*
906
 * Check if the calculated PLL configuration is more optimal compared to the
907
 * best configuration and error found so far. Return the calculated error.
908
 */
909
static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
910
			       const intel_clock_t *calculated_clock,
911
			       const intel_clock_t *best_clock,
912
			       unsigned int best_error_ppm,
913
			       unsigned int *error_ppm)
914
{
915
	/*
916
	 * For CHV ignore the error and consider only the P value.
917
	 * Prefer a bigger P value based on HW requirements.
918
	 */
919
	if (IS_CHERRYVIEW(dev)) {
920
		*error_ppm = 0;
921
 
922
		return calculated_clock->p > best_clock->p;
923
	}
924
 
925
	if (WARN_ON_ONCE(!target_freq))
926
		return false;
927
 
928
	*error_ppm = div_u64(1000000ULL *
929
				abs(target_freq - calculated_clock->dot),
930
			     target_freq);
931
	/*
932
	 * Prefer a better P value over a better (smaller) error if the error
933
	 * is small. Ensure this preference for future configurations too by
934
	 * setting the error to 0.
935
	 */
936
	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
937
		*error_ppm = 0;
938
 
939
		return true;
940
	}
941
 
942
	return *error_ppm + 10 < best_error_ppm;
943
}
944
 
2327 Serge 945
static bool
6084 serge 946
vlv_find_best_dpll(const intel_limit_t *limit,
947
		   struct intel_crtc_state *crtc_state,
948
		   int target, int refclk, intel_clock_t *match_clock,
949
		   intel_clock_t *best_clock)
3031 serge 950
{
6084 serge 951
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5354 serge 952
	struct drm_device *dev = crtc->base.dev;
4560 Serge 953
	intel_clock_t clock;
954
	unsigned int bestppm = 1000000;
955
	/* min update 19.2 MHz */
956
	int max_n = min(limit->n.max, refclk / 19200);
957
	bool found = false;
2327 Serge 958
 
4560 Serge 959
	target *= 5; /* fast clock */
3031 serge 960
 
4560 Serge 961
	memset(best_clock, 0, sizeof(*best_clock));
962
 
3031 serge 963
	/* based on hardware requirement, prefer smaller n to precision */
4560 Serge 964
	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
965
		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
966
			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
967
			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
968
				clock.p = clock.p1 * clock.p2;
3031 serge 969
				/* based on hardware requirement, prefer bigger m1,m2 values */
4560 Serge 970
				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
6084 serge 971
					unsigned int ppm;
4560 Serge 972
 
973
					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
974
								     refclk * clock.m1);
975
 
6084 serge 976
					vlv_calc_dpll_params(refclk, &clock);
4560 Serge 977
 
978
					if (!intel_PLL_is_valid(dev, limit,
979
								&clock))
980
						continue;
981
 
6084 serge 982
					if (!vlv_PLL_is_optimal(dev, target,
983
								&clock,
984
								best_clock,
985
								bestppm, &ppm))
986
						continue;
4560 Serge 987
 
6084 serge 988
					*best_clock = clock;
989
					bestppm = ppm;
990
					found = true;
3031 serge 991
				}
992
			}
6084 serge 993
		}
994
	}
3031 serge 995
 
4560 Serge 996
	return found;
3031 serge 997
}
998
 
5060 serge 999
static bool
6084 serge 1000
chv_find_best_dpll(const intel_limit_t *limit,
1001
		   struct intel_crtc_state *crtc_state,
5060 serge 1002
		   int target, int refclk, intel_clock_t *match_clock,
1003
		   intel_clock_t *best_clock)
1004
{
6084 serge 1005
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5354 serge 1006
	struct drm_device *dev = crtc->base.dev;
6084 serge 1007
	unsigned int best_error_ppm;
5060 serge 1008
	intel_clock_t clock;
1009
	uint64_t m2;
1010
	int found = false;
1011
 
1012
	memset(best_clock, 0, sizeof(*best_clock));
6084 serge 1013
	best_error_ppm = 1000000;
5060 serge 1014
 
1015
	/*
1016
	 * Based on hardware doc, the n always set to 1, and m1 always
1017
	 * set to 2.  If requires to support 200Mhz refclk, we need to
1018
	 * revisit this because n may not 1 anymore.
1019
	 */
1020
	clock.n = 1, clock.m1 = 2;
1021
	target *= 5;	/* fast clock */
1022
 
1023
	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1024
		for (clock.p2 = limit->p2.p2_fast;
1025
				clock.p2 >= limit->p2.p2_slow;
1026
				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6084 serge 1027
			unsigned int error_ppm;
5060 serge 1028
 
1029
			clock.p = clock.p1 * clock.p2;
1030
 
1031
			m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1032
					clock.n) << 22, refclk * clock.m1);
1033
 
1034
			if (m2 > INT_MAX/clock.m1)
1035
				continue;
1036
 
1037
			clock.m2 = m2;
1038
 
6084 serge 1039
			chv_calc_dpll_params(refclk, &clock);
5060 serge 1040
 
1041
			if (!intel_PLL_is_valid(dev, limit, &clock))
1042
				continue;
1043
 
6084 serge 1044
			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1045
						best_error_ppm, &error_ppm))
1046
				continue;
1047
 
1048
			*best_clock = clock;
1049
			best_error_ppm = error_ppm;
1050
			found = true;
5060 serge 1051
		}
1052
	}
1053
 
1054
	return found;
1055
}
1056
 
6084 serge 1057
bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1058
			intel_clock_t *best_clock)
1059
{
1060
	int refclk = i9xx_get_refclk(crtc_state, 0);
1061
 
1062
	return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1063
				  target_clock, refclk, NULL, best_clock);
1064
}
1065
 
4560 Serge 1066
bool intel_crtc_active(struct drm_crtc *crtc)
1067
{
1068
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1069
 
1070
	/* Be paranoid as we can arrive here with only partial
1071
	 * state retrieved from the hardware during setup.
1072
	 *
1073
	 * We can ditch the adjusted_mode.crtc_clock check as soon
1074
	 * as Haswell has gained clock readout/fastboot support.
1075
	 *
5060 serge 1076
	 * We can ditch the crtc->primary->fb check as soon as we can
4560 Serge 1077
	 * properly reconstruct framebuffers.
6084 serge 1078
	 *
1079
	 * FIXME: The intel_crtc->active here should be switched to
1080
	 * crtc->state->active once we have proper CRTC states wired up
1081
	 * for atomic.
4560 Serge 1082
	 */
6084 serge 1083
	return intel_crtc->active && crtc->primary->state->fb &&
1084
		intel_crtc->config->base.adjusted_mode.crtc_clock;
4560 Serge 1085
}
1086
 
3243 Serge 1087
enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1088
					     enum pipe pipe)
1089
{
1090
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1091
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1092
 
6084 serge 1093
	return intel_crtc->config->cpu_transcoder;
3243 Serge 1094
}
1095
 
4560 Serge 1096
static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1097
{
1098
	struct drm_i915_private *dev_priv = dev->dev_private;
1099
	u32 reg = PIPEDSL(pipe);
1100
	u32 line1, line2;
1101
	u32 line_mask;
1102
 
1103
	if (IS_GEN2(dev))
1104
		line_mask = DSL_LINEMASK_GEN2;
1105
	else
1106
		line_mask = DSL_LINEMASK_GEN3;
1107
 
1108
	line1 = I915_READ(reg) & line_mask;
6084 serge 1109
	msleep(5);
4560 Serge 1110
	line2 = I915_READ(reg) & line_mask;
1111
 
1112
	return line1 == line2;
1113
}
1114
 
2327 Serge 1115
/*
1116
 * intel_wait_for_pipe_off - wait for pipe to turn off
5354 serge 1117
 * @crtc: crtc whose pipe to wait for
2327 Serge 1118
 *
1119
 * After disabling a pipe, we can't wait for vblank in the usual way,
1120
 * spinning on the vblank interrupt status bit, since we won't actually
1121
 * see an interrupt when the pipe is disabled.
1122
 *
1123
 * On Gen4 and above:
1124
 *   wait for the pipe register state bit to turn off
1125
 *
1126
 * Otherwise:
1127
 *   wait for the display line value to settle (it usually
1128
 *   ends up stopping at the start of the next frame).
1129
 *
1130
 */
5354 serge 1131
static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
2327 Serge 1132
{
5354 serge 1133
	struct drm_device *dev = crtc->base.dev;
2327 Serge 1134
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 1135
	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
5354 serge 1136
	enum pipe pipe = crtc->pipe;
2327 Serge 1137
 
1138
	if (INTEL_INFO(dev)->gen >= 4) {
3243 Serge 1139
		int reg = PIPECONF(cpu_transcoder);
2327 Serge 1140
 
1141
		/* Wait for the Pipe State to go off */
1142
		if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1143
			     100))
3031 serge 1144
			WARN(1, "pipe_off wait timed out\n");
2327 Serge 1145
	} else {
1146
		/* Wait for the display line to settle */
4560 Serge 1147
		if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
3031 serge 1148
			WARN(1, "pipe_off wait timed out\n");
2327 Serge 1149
	}
1150
}
1151
 
1152
static const char *state_string(bool enabled)
1153
{
1154
	return enabled ? "on" : "off";
1155
}
1156
 
1157
/* Only for pre-ILK configs */
4104 Serge 1158
void assert_pll(struct drm_i915_private *dev_priv,
6084 serge 1159
		enum pipe pipe, bool state)
2327 Serge 1160
{
1161
	u32 val;
1162
	bool cur_state;
1163
 
6084 serge 1164
	val = I915_READ(DPLL(pipe));
2327 Serge 1165
	cur_state = !!(val & DPLL_VCO_ENABLE);
6084 serge 1166
	I915_STATE_WARN(cur_state != state,
2327 Serge 1167
	     "PLL state assertion failure (expected %s, current %s)\n",
1168
	     state_string(state), state_string(cur_state));
1169
}
1170
 
4560 Serge 1171
/* XXX: the dsi pll is shared between MIPI DSI ports */
1172
static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1173
{
1174
	u32 val;
1175
	bool cur_state;
1176
 
6084 serge 1177
	mutex_lock(&dev_priv->sb_lock);
4560 Serge 1178
	val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
6084 serge 1179
	mutex_unlock(&dev_priv->sb_lock);
4560 Serge 1180
 
1181
	cur_state = val & DSI_PLL_VCO_EN;
6084 serge 1182
	I915_STATE_WARN(cur_state != state,
4560 Serge 1183
	     "DSI PLL state assertion failure (expected %s, current %s)\n",
1184
	     state_string(state), state_string(cur_state));
1185
}
1186
#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1187
#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1188
 
4104 Serge 1189
struct intel_shared_dpll *
1190
intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1191
{
1192
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1193
 
6084 serge 1194
	if (crtc->config->shared_dpll < 0)
4104 Serge 1195
		return NULL;
1196
 
6084 serge 1197
	return &dev_priv->shared_dplls[crtc->config->shared_dpll];
4104 Serge 1198
}
1199
 
2327 Serge 1200
/* For ILK+ */
4104 Serge 1201
void assert_shared_dpll(struct drm_i915_private *dev_priv,
6084 serge 1202
			struct intel_shared_dpll *pll,
1203
			bool state)
2327 Serge 1204
{
1205
	bool cur_state;
4104 Serge 1206
	struct intel_dpll_hw_state hw_state;
2327 Serge 1207
 
3031 serge 1208
	if (WARN (!pll,
4104 Serge 1209
		  "asserting DPLL %s with no DPLL\n", state_string(state)))
3031 serge 1210
		return;
2342 Serge 1211
 
4104 Serge 1212
	cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
6084 serge 1213
	I915_STATE_WARN(cur_state != state,
4104 Serge 1214
	     "%s assertion failure (expected %s, current %s)\n",
1215
	     pll->name, state_string(state), state_string(cur_state));
2327 Serge 1216
}
1217
 
1218
static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1219
			  enum pipe pipe, bool state)
1220
{
1221
	bool cur_state;
3243 Serge 1222
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223
								      pipe);
2327 Serge 1224
 
3480 Serge 1225
	if (HAS_DDI(dev_priv->dev)) {
1226
		/* DDI does not have a specific FDI_TX register */
6084 serge 1227
		u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
3243 Serge 1228
		cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
3031 serge 1229
	} else {
6084 serge 1230
		u32 val = I915_READ(FDI_TX_CTL(pipe));
1231
		cur_state = !!(val & FDI_TX_ENABLE);
3031 serge 1232
	}
6084 serge 1233
	I915_STATE_WARN(cur_state != state,
2327 Serge 1234
	     "FDI TX state assertion failure (expected %s, current %s)\n",
1235
	     state_string(state), state_string(cur_state));
1236
}
1237
#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1238
#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1239
 
1240
static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1241
			  enum pipe pipe, bool state)
1242
{
1243
	u32 val;
1244
	bool cur_state;
1245
 
6084 serge 1246
	val = I915_READ(FDI_RX_CTL(pipe));
2327 Serge 1247
	cur_state = !!(val & FDI_RX_ENABLE);
6084 serge 1248
	I915_STATE_WARN(cur_state != state,
2327 Serge 1249
	     "FDI RX state assertion failure (expected %s, current %s)\n",
1250
	     state_string(state), state_string(cur_state));
1251
}
1252
#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1253
#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1254
 
1255
static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1256
				      enum pipe pipe)
1257
{
1258
	u32 val;
1259
 
1260
	/* ILK FDI PLL is always enabled */
5060 serge 1261
	if (INTEL_INFO(dev_priv->dev)->gen == 5)
2327 Serge 1262
		return;
1263
 
3031 serge 1264
	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
3480 Serge 1265
	if (HAS_DDI(dev_priv->dev))
3031 serge 1266
		return;
1267
 
6084 serge 1268
	val = I915_READ(FDI_TX_CTL(pipe));
1269
	I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
2327 Serge 1270
}
1271
 
4104 Serge 1272
void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1273
		       enum pipe pipe, bool state)
2327 Serge 1274
{
1275
	u32 val;
4104 Serge 1276
	bool cur_state;
2327 Serge 1277
 
6084 serge 1278
	val = I915_READ(FDI_RX_CTL(pipe));
4104 Serge 1279
	cur_state = !!(val & FDI_RX_PLL_ENABLE);
6084 serge 1280
	I915_STATE_WARN(cur_state != state,
4104 Serge 1281
	     "FDI RX PLL assertion failure (expected %s, current %s)\n",
1282
	     state_string(state), state_string(cur_state));
2327 Serge 1283
}
1284
 
5354 serge 1285
void assert_panel_unlocked(struct drm_i915_private *dev_priv,
6084 serge 1286
			   enum pipe pipe)
2327 Serge 1287
{
5354 serge 1288
	struct drm_device *dev = dev_priv->dev;
1289
	int pp_reg;
2327 Serge 1290
	u32 val;
1291
	enum pipe panel_pipe = PIPE_A;
1292
	bool locked = true;
1293
 
5354 serge 1294
	if (WARN_ON(HAS_DDI(dev)))
1295
		return;
1296
 
1297
	if (HAS_PCH_SPLIT(dev)) {
1298
		u32 port_sel;
1299
 
2327 Serge 1300
		pp_reg = PCH_PP_CONTROL;
5354 serge 1301
		port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1302
 
1303
		if (port_sel == PANEL_PORT_SELECT_LVDS &&
1304
		    I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1305
			panel_pipe = PIPE_B;
1306
		/* XXX: else fix for eDP */
1307
	} else if (IS_VALLEYVIEW(dev)) {
1308
		/* presumably write lock depends on pipe, not port select */
1309
		pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1310
		panel_pipe = pipe;
2327 Serge 1311
	} else {
1312
		pp_reg = PP_CONTROL;
5354 serge 1313
		if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1314
			panel_pipe = PIPE_B;
2327 Serge 1315
	}
1316
 
1317
	val = I915_READ(pp_reg);
1318
	if (!(val & PANEL_POWER_ON) ||
5354 serge 1319
	    ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
2327 Serge 1320
		locked = false;
1321
 
6084 serge 1322
	I915_STATE_WARN(panel_pipe == pipe && locked,
2327 Serge 1323
	     "panel assertion failure, pipe %c regs locked\n",
1324
	     pipe_name(pipe));
1325
}
1326
 
4560 Serge 1327
static void assert_cursor(struct drm_i915_private *dev_priv,
1328
			  enum pipe pipe, bool state)
1329
{
1330
	struct drm_device *dev = dev_priv->dev;
1331
	bool cur_state;
1332
 
5060 serge 1333
	if (IS_845G(dev) || IS_I865G(dev))
6084 serge 1334
		cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
4560 Serge 1335
	else
1336
		cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1337
 
6084 serge 1338
	I915_STATE_WARN(cur_state != state,
4560 Serge 1339
	     "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1340
	     pipe_name(pipe), state_string(state), state_string(cur_state));
1341
}
1342
#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1343
#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1344
 
2342 Serge 1345
void assert_pipe(struct drm_i915_private *dev_priv,
6084 serge 1346
		 enum pipe pipe, bool state)
2327 Serge 1347
{
1348
	bool cur_state;
3243 Serge 1349
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1350
								      pipe);
2327 Serge 1351
 
5354 serge 1352
	/* if we need the pipe quirk it must be always on */
1353
	if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1354
	    (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
3031 serge 1355
		state = true;
1356
 
5354 serge 1357
	if (!intel_display_power_is_enabled(dev_priv,
4104 Serge 1358
				POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
3480 Serge 1359
		cur_state = false;
1360
	} else {
6084 serge 1361
		u32 val = I915_READ(PIPECONF(cpu_transcoder));
1362
		cur_state = !!(val & PIPECONF_ENABLE);
3480 Serge 1363
	}
1364
 
6084 serge 1365
	I915_STATE_WARN(cur_state != state,
2327 Serge 1366
	     "pipe %c assertion failure (expected %s, current %s)\n",
1367
	     pipe_name(pipe), state_string(state), state_string(cur_state));
1368
}
1369
 
3031 serge 1370
static void assert_plane(struct drm_i915_private *dev_priv,
1371
			 enum plane plane, bool state)
2327 Serge 1372
{
1373
	u32 val;
3031 serge 1374
	bool cur_state;
2327 Serge 1375
 
6084 serge 1376
	val = I915_READ(DSPCNTR(plane));
3031 serge 1377
	cur_state = !!(val & DISPLAY_PLANE_ENABLE);
6084 serge 1378
	I915_STATE_WARN(cur_state != state,
3031 serge 1379
	     "plane %c assertion failure (expected %s, current %s)\n",
1380
	     plane_name(plane), state_string(state), state_string(cur_state));
2327 Serge 1381
}
1382
 
3031 serge 1383
#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1384
#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1385
 
2327 Serge 1386
static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1387
				   enum pipe pipe)
1388
{
4104 Serge 1389
	struct drm_device *dev = dev_priv->dev;
6084 serge 1390
	int i;
2327 Serge 1391
 
4104 Serge 1392
	/* Primary planes are fixed to pipes on gen4+ */
1393
	if (INTEL_INFO(dev)->gen >= 4) {
6084 serge 1394
		u32 val = I915_READ(DSPCNTR(pipe));
1395
		I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
3031 serge 1396
		     "plane %c assertion failure, should be disabled but not\n",
1397
		     plane_name(pipe));
2327 Serge 1398
		return;
3031 serge 1399
	}
2327 Serge 1400
 
1401
	/* Need to check both planes against the pipe */
5354 serge 1402
	for_each_pipe(dev_priv, i) {
6084 serge 1403
		u32 val = I915_READ(DSPCNTR(i));
1404
		enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
2327 Serge 1405
			DISPPLANE_SEL_PIPE_SHIFT;
6084 serge 1406
		I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
2327 Serge 1407
		     "plane %c assertion failure, should be off on pipe %c but is still active\n",
1408
		     plane_name(i), pipe_name(pipe));
1409
	}
1410
}
1411
 
3746 Serge 1412
static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1413
				    enum pipe pipe)
1414
{
4104 Serge 1415
	struct drm_device *dev = dev_priv->dev;
6084 serge 1416
	int sprite;
3746 Serge 1417
 
5354 serge 1418
	if (INTEL_INFO(dev)->gen >= 9) {
6084 serge 1419
		for_each_sprite(dev_priv, pipe, sprite) {
1420
			u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1421
			I915_STATE_WARN(val & PLANE_CTL_ENABLE,
5354 serge 1422
			     "plane %d assertion failure, should be off on pipe %c but is still active\n",
1423
			     sprite, pipe_name(pipe));
1424
		}
1425
	} else if (IS_VALLEYVIEW(dev)) {
6084 serge 1426
		for_each_sprite(dev_priv, pipe, sprite) {
1427
			u32 val = I915_READ(SPCNTR(pipe, sprite));
1428
			I915_STATE_WARN(val & SP_ENABLE,
4104 Serge 1429
			     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
5060 serge 1430
			     sprite_name(pipe, sprite), pipe_name(pipe));
4104 Serge 1431
		}
1432
	} else if (INTEL_INFO(dev)->gen >= 7) {
6084 serge 1433
		u32 val = I915_READ(SPRCTL(pipe));
1434
		I915_STATE_WARN(val & SPRITE_ENABLE,
4104 Serge 1435
		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1436
		     plane_name(pipe), pipe_name(pipe));
1437
	} else if (INTEL_INFO(dev)->gen >= 5) {
6084 serge 1438
		u32 val = I915_READ(DVSCNTR(pipe));
1439
		I915_STATE_WARN(val & DVS_ENABLE,
4104 Serge 1440
		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1441
		     plane_name(pipe), pipe_name(pipe));
3746 Serge 1442
	}
1443
}
1444
 
5354 serge 1445
static void assert_vblank_disabled(struct drm_crtc *crtc)
1446
{
6084 serge 1447
	if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
5354 serge 1448
		drm_crtc_vblank_put(crtc);
1449
}
1450
 
4560 Serge 1451
static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
2327 Serge 1452
{
1453
	u32 val;
1454
	bool enabled;
1455
 
6084 serge 1456
	I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
3031 serge 1457
 
2327 Serge 1458
	val = I915_READ(PCH_DREF_CONTROL);
1459
	enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1460
			    DREF_SUPERSPREAD_SOURCE_MASK));
6084 serge 1461
	I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
2327 Serge 1462
}
1463
 
4104 Serge 1464
static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
6084 serge 1465
					   enum pipe pipe)
2327 Serge 1466
{
1467
	u32 val;
1468
	bool enabled;
1469
 
6084 serge 1470
	val = I915_READ(PCH_TRANSCONF(pipe));
2327 Serge 1471
	enabled = !!(val & TRANS_ENABLE);
6084 serge 1472
	I915_STATE_WARN(enabled,
2327 Serge 1473
	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
1474
	     pipe_name(pipe));
1475
}
1476
 
1477
static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1478
			    enum pipe pipe, u32 port_sel, u32 val)
1479
{
1480
	if ((val & DP_PORT_EN) == 0)
1481
		return false;
1482
 
1483
	if (HAS_PCH_CPT(dev_priv->dev)) {
1484
		u32	trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1485
		u32	trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1486
		if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1487
			return false;
5060 serge 1488
	} else if (IS_CHERRYVIEW(dev_priv->dev)) {
1489
		if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1490
			return false;
2327 Serge 1491
	} else {
1492
		if ((val & DP_PIPE_MASK) != (pipe << 30))
1493
			return false;
1494
	}
1495
	return true;
1496
}
1497
 
1498
static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1499
			      enum pipe pipe, u32 val)
1500
{
3746 Serge 1501
	if ((val & SDVO_ENABLE) == 0)
2327 Serge 1502
		return false;
1503
 
1504
	if (HAS_PCH_CPT(dev_priv->dev)) {
3746 Serge 1505
		if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
2327 Serge 1506
			return false;
5060 serge 1507
	} else if (IS_CHERRYVIEW(dev_priv->dev)) {
1508
		if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1509
			return false;
2327 Serge 1510
	} else {
3746 Serge 1511
		if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
2327 Serge 1512
			return false;
1513
	}
1514
	return true;
1515
}
1516
 
1517
static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1518
			      enum pipe pipe, u32 val)
1519
{
1520
	if ((val & LVDS_PORT_EN) == 0)
1521
		return false;
1522
 
1523
	if (HAS_PCH_CPT(dev_priv->dev)) {
1524
		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1525
			return false;
1526
	} else {
1527
		if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1528
			return false;
1529
	}
1530
	return true;
1531
}
1532
 
1533
static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1534
			      enum pipe pipe, u32 val)
1535
{
1536
	if ((val & ADPA_DAC_ENABLE) == 0)
1537
		return false;
1538
	if (HAS_PCH_CPT(dev_priv->dev)) {
1539
		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1540
			return false;
1541
	} else {
1542
		if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1543
			return false;
1544
	}
1545
	return true;
1546
}
1547
 
1548
static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1549
				   enum pipe pipe, int reg, u32 port_sel)
1550
{
1551
	u32 val = I915_READ(reg);
6084 serge 1552
	I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
2327 Serge 1553
	     "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1554
	     reg, pipe_name(pipe));
3031 serge 1555
 
6084 serge 1556
	I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
3031 serge 1557
	     && (val & DP_PIPEB_SELECT),
1558
	     "IBX PCH dp port still using transcoder B\n");
2327 Serge 1559
}
1560
 
1561
static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1562
				     enum pipe pipe, int reg)
1563
{
1564
	u32 val = I915_READ(reg);
6084 serge 1565
	I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
3031 serge 1566
	     "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
2327 Serge 1567
	     reg, pipe_name(pipe));
3031 serge 1568
 
6084 serge 1569
	I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
3031 serge 1570
	     && (val & SDVO_PIPE_B_SELECT),
1571
	     "IBX PCH hdmi port still using transcoder B\n");
2327 Serge 1572
}
1573
 
1574
static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1575
				      enum pipe pipe)
1576
{
1577
	u32 val;
1578
 
1579
	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1580
	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1581
	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1582
 
6084 serge 1583
	val = I915_READ(PCH_ADPA);
1584
	I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
2327 Serge 1585
	     "PCH VGA enabled on transcoder %c, should be disabled\n",
1586
	     pipe_name(pipe));
1587
 
6084 serge 1588
	val = I915_READ(PCH_LVDS);
1589
	I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
2327 Serge 1590
	     "PCH LVDS enabled on transcoder %c, should be disabled\n",
1591
	     pipe_name(pipe));
1592
 
3746 Serge 1593
	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1594
	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1595
	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
2327 Serge 1596
}
1597
 
5354 serge 1598
static void vlv_enable_pll(struct intel_crtc *crtc,
6084 serge 1599
			   const struct intel_crtc_state *pipe_config)
4560 Serge 1600
{
4104 Serge 1601
	struct drm_device *dev = crtc->base.dev;
1602
	struct drm_i915_private *dev_priv = dev->dev_private;
1603
	int reg = DPLL(crtc->pipe);
5354 serge 1604
	u32 dpll = pipe_config->dpll_hw_state.dpll;
2327 Serge 1605
 
4104 Serge 1606
	assert_pipe_disabled(dev_priv, crtc->pipe);
1607
 
6084 serge 1608
	/* No really, not for ILK+ */
4104 Serge 1609
	BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
2327 Serge 1610
 
6084 serge 1611
	/* PLL is protected by panel, make sure we can write it */
5354 serge 1612
	if (IS_MOBILE(dev_priv->dev))
4104 Serge 1613
		assert_panel_unlocked(dev_priv, crtc->pipe);
2327 Serge 1614
 
4104 Serge 1615
	I915_WRITE(reg, dpll);
1616
	POSTING_READ(reg);
1617
	udelay(150);
2327 Serge 1618
 
4104 Serge 1619
	if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1620
		DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1621
 
5354 serge 1622
	I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
4104 Serge 1623
	POSTING_READ(DPLL_MD(crtc->pipe));
1624
 
1625
	/* We do this three times for luck */
1626
	I915_WRITE(reg, dpll);
1627
	POSTING_READ(reg);
1628
	udelay(150); /* wait for warmup */
1629
	I915_WRITE(reg, dpll);
1630
	POSTING_READ(reg);
1631
	udelay(150); /* wait for warmup */
1632
	I915_WRITE(reg, dpll);
1633
	POSTING_READ(reg);
1634
	udelay(150); /* wait for warmup */
1635
}
1636
 
5354 serge 1637
static void chv_enable_pll(struct intel_crtc *crtc,
6084 serge 1638
			   const struct intel_crtc_state *pipe_config)
5060 serge 1639
{
1640
	struct drm_device *dev = crtc->base.dev;
1641
	struct drm_i915_private *dev_priv = dev->dev_private;
1642
	int pipe = crtc->pipe;
1643
	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1644
	u32 tmp;
1645
 
1646
	assert_pipe_disabled(dev_priv, crtc->pipe);
1647
 
1648
	BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1649
 
6084 serge 1650
	mutex_lock(&dev_priv->sb_lock);
5060 serge 1651
 
1652
	/* Enable back the 10bit clock to display controller */
1653
	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1654
	tmp |= DPIO_DCLKP_EN;
1655
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1656
 
6084 serge 1657
	mutex_unlock(&dev_priv->sb_lock);
1658
 
5060 serge 1659
	/*
1660
	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1661
	 */
1662
	udelay(1);
1663
 
1664
	/* Enable PLL */
5354 serge 1665
	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
5060 serge 1666
 
1667
	/* Check PLL is locked */
1668
	if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1669
		DRM_ERROR("PLL %d failed to lock\n", pipe);
1670
 
1671
	/* not sure when this should be written */
5354 serge 1672
	I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
5060 serge 1673
	POSTING_READ(DPLL_MD(pipe));
1674
}
1675
 
5354 serge 1676
static int intel_num_dvo_pipes(struct drm_device *dev)
1677
{
1678
	struct intel_crtc *crtc;
1679
	int count = 0;
1680
 
1681
	for_each_intel_crtc(dev, crtc)
6084 serge 1682
		count += crtc->base.state->active &&
5354 serge 1683
			intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1684
 
1685
	return count;
1686
}
1687
 
4104 Serge 1688
static void i9xx_enable_pll(struct intel_crtc *crtc)
1689
{
1690
	struct drm_device *dev = crtc->base.dev;
1691
	struct drm_i915_private *dev_priv = dev->dev_private;
1692
	int reg = DPLL(crtc->pipe);
6084 serge 1693
	u32 dpll = crtc->config->dpll_hw_state.dpll;
4104 Serge 1694
 
1695
	assert_pipe_disabled(dev_priv, crtc->pipe);
1696
 
1697
	/* No really, not for ILK+ */
5060 serge 1698
	BUG_ON(INTEL_INFO(dev)->gen >= 5);
4104 Serge 1699
 
1700
	/* PLL is protected by panel, make sure we can write it */
1701
	if (IS_MOBILE(dev) && !IS_I830(dev))
1702
		assert_panel_unlocked(dev_priv, crtc->pipe);
1703
 
5354 serge 1704
	/* Enable DVO 2x clock on both PLLs if necessary */
1705
	if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1706
		/*
1707
		 * It appears to be important that we don't enable this
1708
		 * for the current pipe before otherwise configuring the
1709
		 * PLL. No idea how this should be handled if multiple
1710
		 * DVO outputs are enabled simultaneosly.
1711
		 */
1712
		dpll |= DPLL_DVO_2X_MODE;
1713
		I915_WRITE(DPLL(!crtc->pipe),
1714
			   I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1715
	}
4104 Serge 1716
 
6084 serge 1717
	/*
1718
	 * Apparently we need to have VGA mode enabled prior to changing
1719
	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1720
	 * dividers, even though the register value does change.
1721
	 */
1722
	I915_WRITE(reg, 0);
1723
 
1724
	I915_WRITE(reg, dpll);
1725
 
4104 Serge 1726
	/* Wait for the clocks to stabilize. */
1727
	POSTING_READ(reg);
1728
	udelay(150);
1729
 
1730
	if (INTEL_INFO(dev)->gen >= 4) {
1731
		I915_WRITE(DPLL_MD(crtc->pipe),
6084 serge 1732
			   crtc->config->dpll_hw_state.dpll_md);
4104 Serge 1733
	} else {
1734
		/* The pixel multiplier can only be updated once the
1735
		 * DPLL is enabled and the clocks are stable.
1736
		 *
1737
		 * So write it again.
1738
		 */
1739
		I915_WRITE(reg, dpll);
1740
	}
1741
 
6084 serge 1742
	/* We do this three times for luck */
4104 Serge 1743
	I915_WRITE(reg, dpll);
6084 serge 1744
	POSTING_READ(reg);
1745
	udelay(150); /* wait for warmup */
4104 Serge 1746
	I915_WRITE(reg, dpll);
6084 serge 1747
	POSTING_READ(reg);
1748
	udelay(150); /* wait for warmup */
4104 Serge 1749
	I915_WRITE(reg, dpll);
6084 serge 1750
	POSTING_READ(reg);
1751
	udelay(150); /* wait for warmup */
2327 Serge 1752
}
1753
 
1754
/**
4104 Serge 1755
 * i9xx_disable_pll - disable a PLL
2327 Serge 1756
 * @dev_priv: i915 private structure
1757
 * @pipe: pipe PLL to disable
1758
 *
1759
 * Disable the PLL for @pipe, making sure the pipe is off first.
1760
 *
1761
 * Note!  This is for pre-ILK only.
1762
 */
5354 serge 1763
static void i9xx_disable_pll(struct intel_crtc *crtc)
2327 Serge 1764
{
5354 serge 1765
	struct drm_device *dev = crtc->base.dev;
1766
	struct drm_i915_private *dev_priv = dev->dev_private;
1767
	enum pipe pipe = crtc->pipe;
1768
 
1769
	/* Disable DVO 2x clock on both PLLs if necessary */
1770
	if (IS_I830(dev) &&
1771
	    intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
6084 serge 1772
	    !intel_num_dvo_pipes(dev)) {
5354 serge 1773
		I915_WRITE(DPLL(PIPE_B),
1774
			   I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1775
		I915_WRITE(DPLL(PIPE_A),
1776
			   I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1777
	}
1778
 
1779
	/* Don't disable pipe or pipe PLLs if needed */
1780
	if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1781
	    (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2327 Serge 1782
		return;
1783
 
1784
	/* Make sure the pipe isn't still relying on us */
1785
	assert_pipe_disabled(dev_priv, pipe);
1786
 
6084 serge 1787
	I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
4104 Serge 1788
	POSTING_READ(DPLL(pipe));
2327 Serge 1789
}
1790
 
4539 Serge 1791
static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1792
{
6084 serge 1793
	u32 val;
4539 Serge 1794
 
1795
	/* Make sure the pipe isn't still relying on us */
1796
	assert_pipe_disabled(dev_priv, pipe);
1797
 
4560 Serge 1798
	/*
1799
	 * Leave integrated clock source and reference clock enabled for pipe B.
1800
	 * The latter is needed for VGA hotplug / manual detection.
1801
	 */
6084 serge 1802
	val = DPLL_VGA_MODE_DIS;
4539 Serge 1803
	if (pipe == PIPE_B)
6084 serge 1804
		val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
4539 Serge 1805
	I915_WRITE(DPLL(pipe), val);
1806
	POSTING_READ(DPLL(pipe));
5060 serge 1807
 
4539 Serge 1808
}
1809
 
5060 serge 1810
static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1811
{
1812
	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1813
	u32 val;
1814
 
1815
	/* Make sure the pipe isn't still relying on us */
1816
	assert_pipe_disabled(dev_priv, pipe);
1817
 
1818
	/* Set PLL en = 0 */
6084 serge 1819
	val = DPLL_SSC_REF_CLK_CHV |
1820
		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
5060 serge 1821
	if (pipe != PIPE_A)
1822
		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1823
	I915_WRITE(DPLL(pipe), val);
1824
	POSTING_READ(DPLL(pipe));
1825
 
6084 serge 1826
	mutex_lock(&dev_priv->sb_lock);
5060 serge 1827
 
1828
	/* Disable 10bit clock to display controller */
1829
	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1830
	val &= ~DPIO_DCLKP_EN;
1831
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1832
 
6084 serge 1833
	mutex_unlock(&dev_priv->sb_lock);
5060 serge 1834
}
1835
 
4560 Serge 1836
void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
6084 serge 1837
			 struct intel_digital_port *dport,
1838
			 unsigned int expected_mask)
3031 serge 1839
{
4104 Serge 1840
	u32 port_mask;
5060 serge 1841
	int dpll_reg;
3031 serge 1842
 
4560 Serge 1843
	switch (dport->port) {
1844
	case PORT_B:
4104 Serge 1845
		port_mask = DPLL_PORTB_READY_MASK;
5060 serge 1846
		dpll_reg = DPLL(0);
4560 Serge 1847
		break;
1848
	case PORT_C:
4104 Serge 1849
		port_mask = DPLL_PORTC_READY_MASK;
5060 serge 1850
		dpll_reg = DPLL(0);
6084 serge 1851
		expected_mask <<= 4;
4560 Serge 1852
		break;
5060 serge 1853
	case PORT_D:
1854
		port_mask = DPLL_PORTD_READY_MASK;
1855
		dpll_reg = DPIO_PHY_STATUS;
1856
		break;
4560 Serge 1857
	default:
1858
		BUG();
1859
	}
3243 Serge 1860
 
6084 serge 1861
	if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1862
		WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1863
		     port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
3031 serge 1864
}
1865
 
5060 serge 1866
static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1867
{
1868
	struct drm_device *dev = crtc->base.dev;
1869
	struct drm_i915_private *dev_priv = dev->dev_private;
1870
	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1871
 
1872
	if (WARN_ON(pll == NULL))
1873
		return;
1874
 
5354 serge 1875
	WARN_ON(!pll->config.crtc_mask);
5060 serge 1876
	if (pll->active == 0) {
1877
		DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1878
		WARN_ON(pll->on);
1879
		assert_shared_dpll_disabled(dev_priv, pll);
1880
 
1881
		pll->mode_set(dev_priv, pll);
1882
	}
1883
}
1884
 
2327 Serge 1885
/**
5060 serge 1886
 * intel_enable_shared_dpll - enable PCH PLL
2327 Serge 1887
 * @dev_priv: i915 private structure
1888
 * @pipe: pipe PLL to enable
1889
 *
1890
 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1891
 * drives the transcoder clock.
1892
 */
5060 serge 1893
static void intel_enable_shared_dpll(struct intel_crtc *crtc)
2327 Serge 1894
{
5060 serge 1895
	struct drm_device *dev = crtc->base.dev;
1896
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 1897
	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
2327 Serge 1898
 
4104 Serge 1899
	if (WARN_ON(pll == NULL))
2342 Serge 1900
		return;
1901
 
5354 serge 1902
	if (WARN_ON(pll->config.crtc_mask == 0))
3031 serge 1903
		return;
2327 Serge 1904
 
5354 serge 1905
	DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
4104 Serge 1906
		      pll->name, pll->active, pll->on,
1907
		      crtc->base.base.id);
3031 serge 1908
 
4104 Serge 1909
	if (pll->active++) {
1910
		WARN_ON(!pll->on);
1911
		assert_shared_dpll_enabled(dev_priv, pll);
3031 serge 1912
		return;
1913
	}
4104 Serge 1914
	WARN_ON(pll->on);
3031 serge 1915
 
5060 serge 1916
	intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1917
 
4104 Serge 1918
	DRM_DEBUG_KMS("enabling %s\n", pll->name);
1919
	pll->enable(dev_priv, pll);
3031 serge 1920
	pll->on = true;
2327 Serge 1921
}
1922
 
5354 serge 1923
static void intel_disable_shared_dpll(struct intel_crtc *crtc)
2327 Serge 1924
{
5060 serge 1925
	struct drm_device *dev = crtc->base.dev;
1926
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 1927
	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
2327 Serge 1928
 
1929
	/* PCH only available on ILK+ */
6084 serge 1930
	if (INTEL_INFO(dev)->gen < 5)
1931
		return;
2327 Serge 1932
 
6084 serge 1933
	if (pll == NULL)
3031 serge 1934
		return;
2327 Serge 1935
 
6084 serge 1936
	if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1937
		return;
1938
 
4104 Serge 1939
	DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1940
		      pll->name, pll->active, pll->on,
1941
		      crtc->base.base.id);
2342 Serge 1942
 
3031 serge 1943
	if (WARN_ON(pll->active == 0)) {
4104 Serge 1944
		assert_shared_dpll_disabled(dev_priv, pll);
3031 serge 1945
		return;
1946
	}
2342 Serge 1947
 
4104 Serge 1948
	assert_shared_dpll_enabled(dev_priv, pll);
1949
	WARN_ON(!pll->on);
1950
	if (--pll->active)
2342 Serge 1951
		return;
1952
 
4104 Serge 1953
	DRM_DEBUG_KMS("disabling %s\n", pll->name);
1954
	pll->disable(dev_priv, pll);
3031 serge 1955
	pll->on = false;
5060 serge 1956
 
1957
	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
2327 Serge 1958
}
1959
 
3243 Serge 1960
static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
6084 serge 1961
					   enum pipe pipe)
2327 Serge 1962
{
3243 Serge 1963
	struct drm_device *dev = dev_priv->dev;
3031 serge 1964
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4104 Serge 1965
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3243 Serge 1966
	uint32_t reg, val, pipeconf_val;
2327 Serge 1967
 
1968
	/* PCH only available on ILK+ */
5354 serge 1969
	BUG_ON(!HAS_PCH_SPLIT(dev));
2327 Serge 1970
 
1971
	/* Make sure PCH DPLL is enabled */
4104 Serge 1972
	assert_shared_dpll_enabled(dev_priv,
1973
				   intel_crtc_to_shared_dpll(intel_crtc));
2327 Serge 1974
 
1975
	/* FDI must be feeding us bits for PCH ports */
1976
	assert_fdi_tx_enabled(dev_priv, pipe);
1977
	assert_fdi_rx_enabled(dev_priv, pipe);
1978
 
3243 Serge 1979
	if (HAS_PCH_CPT(dev)) {
1980
		/* Workaround: Set the timing override bit before enabling the
1981
		 * pch transcoder. */
1982
		reg = TRANS_CHICKEN2(pipe);
1983
		val = I915_READ(reg);
1984
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1985
		I915_WRITE(reg, val);
3031 serge 1986
	}
3243 Serge 1987
 
4104 Serge 1988
	reg = PCH_TRANSCONF(pipe);
2327 Serge 1989
	val = I915_READ(reg);
3031 serge 1990
	pipeconf_val = I915_READ(PIPECONF(pipe));
2327 Serge 1991
 
1992
	if (HAS_PCH_IBX(dev_priv->dev)) {
1993
		/*
6084 serge 1994
		 * Make the BPC in transcoder be consistent with
1995
		 * that in pipeconf reg. For HDMI we must use 8bpc
1996
		 * here for both 8bpc and 12bpc.
2327 Serge 1997
		 */
3480 Serge 1998
		val &= ~PIPECONF_BPC_MASK;
6084 serge 1999
		if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2000
			val |= PIPECONF_8BPC;
2001
		else
2002
			val |= pipeconf_val & PIPECONF_BPC_MASK;
2327 Serge 2003
	}
3031 serge 2004
 
2005
	val &= ~TRANS_INTERLACE_MASK;
2006
	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2007
		if (HAS_PCH_IBX(dev_priv->dev) &&
5354 serge 2008
		    intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
3031 serge 2009
			val |= TRANS_LEGACY_INTERLACED_ILK;
2010
		else
2011
			val |= TRANS_INTERLACED;
2012
	else
2013
		val |= TRANS_PROGRESSIVE;
2014
 
2327 Serge 2015
	I915_WRITE(reg, val | TRANS_ENABLE);
2016
	if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4104 Serge 2017
		DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2327 Serge 2018
}
2019
 
3243 Serge 2020
static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2021
				      enum transcoder cpu_transcoder)
2022
{
2023
	u32 val, pipeconf_val;
2024
 
2025
	/* PCH only available on ILK+ */
5354 serge 2026
	BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
3243 Serge 2027
 
2028
	/* FDI must be feeding us bits for PCH ports */
3480 Serge 2029
	assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
3243 Serge 2030
	assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2031
 
2032
	/* Workaround: set timing override bit. */
6084 serge 2033
	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
3243 Serge 2034
	val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6084 serge 2035
	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
3243 Serge 2036
 
2037
	val = TRANS_ENABLE;
2038
	pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2039
 
2040
	if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2041
	    PIPECONF_INTERLACED_ILK)
2042
		val |= TRANS_INTERLACED;
2043
	else
2044
		val |= TRANS_PROGRESSIVE;
2045
 
4104 Serge 2046
	I915_WRITE(LPT_TRANSCONF, val);
2047
	if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
3243 Serge 2048
		DRM_ERROR("Failed to enable PCH transcoder\n");
2049
}
2050
 
2051
static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
6084 serge 2052
					    enum pipe pipe)
2327 Serge 2053
{
3243 Serge 2054
	struct drm_device *dev = dev_priv->dev;
2055
	uint32_t reg, val;
2327 Serge 2056
 
2057
	/* FDI relies on the transcoder */
2058
	assert_fdi_tx_disabled(dev_priv, pipe);
2059
	assert_fdi_rx_disabled(dev_priv, pipe);
2060
 
2061
	/* Ports must be off as well */
2062
	assert_pch_ports_disabled(dev_priv, pipe);
2063
 
4104 Serge 2064
	reg = PCH_TRANSCONF(pipe);
2327 Serge 2065
	val = I915_READ(reg);
2066
	val &= ~TRANS_ENABLE;
2067
	I915_WRITE(reg, val);
2068
	/* wait for PCH transcoder off, transcoder state */
2069
	if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4104 Serge 2070
		DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
3243 Serge 2071
 
2072
	if (!HAS_PCH_IBX(dev)) {
2073
		/* Workaround: Clear the timing override chicken bit again. */
2074
		reg = TRANS_CHICKEN2(pipe);
2075
		val = I915_READ(reg);
2076
		val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2077
		I915_WRITE(reg, val);
2078
	}
2327 Serge 2079
}
2080
 
3243 Serge 2081
static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2082
{
2083
	u32 val;
2084
 
4104 Serge 2085
	val = I915_READ(LPT_TRANSCONF);
3243 Serge 2086
	val &= ~TRANS_ENABLE;
4104 Serge 2087
	I915_WRITE(LPT_TRANSCONF, val);
3243 Serge 2088
	/* wait for PCH transcoder off, transcoder state */
4104 Serge 2089
	if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
3243 Serge 2090
		DRM_ERROR("Failed to disable PCH transcoder\n");
2091
 
2092
	/* Workaround: clear timing override bit. */
6084 serge 2093
	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
3243 Serge 2094
	val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
6084 serge 2095
	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
3243 Serge 2096
}
2097
 
2327 Serge 2098
/**
2099
 * intel_enable_pipe - enable a pipe, asserting requirements
5060 serge 2100
 * @crtc: crtc responsible for the pipe
2327 Serge 2101
 *
5060 serge 2102
 * Enable @crtc's pipe, making sure that various hardware specific requirements
2327 Serge 2103
 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2104
 */
5060 serge 2105
static void intel_enable_pipe(struct intel_crtc *crtc)
2327 Serge 2106
{
5060 serge 2107
	struct drm_device *dev = crtc->base.dev;
2108
	struct drm_i915_private *dev_priv = dev->dev_private;
2109
	enum pipe pipe = crtc->pipe;
3243 Serge 2110
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2111
								      pipe);
3480 Serge 2112
	enum pipe pch_transcoder;
2327 Serge 2113
	int reg;
2114
	u32 val;
2115
 
6084 serge 2116
	DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2117
 
4104 Serge 2118
	assert_planes_disabled(dev_priv, pipe);
4560 Serge 2119
	assert_cursor_disabled(dev_priv, pipe);
4104 Serge 2120
	assert_sprites_disabled(dev_priv, pipe);
2121
 
3480 Serge 2122
	if (HAS_PCH_LPT(dev_priv->dev))
3243 Serge 2123
		pch_transcoder = TRANSCODER_A;
2124
	else
2125
		pch_transcoder = pipe;
2126
 
2327 Serge 2127
	/*
2128
	 * A pipe without a PLL won't actually be able to drive bits from
2129
	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2130
	 * need the check.
2131
	 */
6084 serge 2132
	if (HAS_GMCH_DISPLAY(dev_priv->dev))
5354 serge 2133
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4560 Serge 2134
			assert_dsi_pll_enabled(dev_priv);
2135
		else
6084 serge 2136
			assert_pll_enabled(dev_priv, pipe);
2327 Serge 2137
	else {
6084 serge 2138
		if (crtc->config->has_pch_encoder) {
2327 Serge 2139
			/* if driving the PCH, we need FDI enabled */
3243 Serge 2140
			assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
3480 Serge 2141
			assert_fdi_tx_pll_enabled(dev_priv,
2142
						  (enum pipe) cpu_transcoder);
2327 Serge 2143
		}
2144
		/* FIXME: assert CPU port conditions for SNB+ */
2145
	}
2146
 
3243 Serge 2147
	reg = PIPECONF(cpu_transcoder);
2327 Serge 2148
	val = I915_READ(reg);
5060 serge 2149
	if (val & PIPECONF_ENABLE) {
5354 serge 2150
		WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2151
			  (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2327 Serge 2152
		return;
5060 serge 2153
	}
2327 Serge 2154
 
2155
	I915_WRITE(reg, val | PIPECONF_ENABLE);
5060 serge 2156
	POSTING_READ(reg);
2327 Serge 2157
}
2158
 
2159
/**
2160
 * intel_disable_pipe - disable a pipe, asserting requirements
5354 serge 2161
 * @crtc: crtc whose pipes is to be disabled
2327 Serge 2162
 *
5354 serge 2163
 * Disable the pipe of @crtc, making sure that various hardware
2164
 * specific requirements are met, if applicable, e.g. plane
2165
 * disabled, panel fitter off, etc.
2327 Serge 2166
 *
2167
 * Will wait until the pipe has shut down before returning.
2168
 */
5354 serge 2169
static void intel_disable_pipe(struct intel_crtc *crtc)
2327 Serge 2170
{
5354 serge 2171
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6084 serge 2172
	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
5354 serge 2173
	enum pipe pipe = crtc->pipe;
2327 Serge 2174
	int reg;
2175
	u32 val;
2176
 
6084 serge 2177
	DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2178
 
2179
	/*
2327 Serge 2180
	 * Make sure planes won't keep trying to pump pixels to us,
2181
	 * or we might hang the display.
2182
	 */
2183
	assert_planes_disabled(dev_priv, pipe);
4560 Serge 2184
	assert_cursor_disabled(dev_priv, pipe);
3746 Serge 2185
	assert_sprites_disabled(dev_priv, pipe);
2327 Serge 2186
 
3243 Serge 2187
	reg = PIPECONF(cpu_transcoder);
2327 Serge 2188
	val = I915_READ(reg);
2189
	if ((val & PIPECONF_ENABLE) == 0)
2190
		return;
2191
 
5354 serge 2192
	/*
2193
	 * Double wide has implications for planes
2194
	 * so best keep it disabled when not needed.
2195
	 */
6084 serge 2196
	if (crtc->config->double_wide)
5354 serge 2197
		val &= ~PIPECONF_DOUBLE_WIDE;
2198
 
2199
	/* Don't disable pipe or pipe PLLs if needed */
2200
	if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2201
	    !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2202
		val &= ~PIPECONF_ENABLE;
2203
 
2204
	I915_WRITE(reg, val);
2205
	if ((val & PIPECONF_ENABLE) == 0)
2206
		intel_wait_for_pipe_off(crtc);
2327 Serge 2207
}
2208
 
6084 serge 2209
static bool need_vtd_wa(struct drm_device *dev)
2327 Serge 2210
{
6084 serge 2211
#ifdef CONFIG_INTEL_IOMMU
2212
	if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2213
		return true;
2214
#endif
2215
	return false;
2327 Serge 2216
}
2217
 
6084 serge 2218
unsigned int
2219
intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2220
		  uint64_t fb_format_modifier, unsigned int plane)
2327 Serge 2221
{
6084 serge 2222
	unsigned int tile_height;
2223
	uint32_t pixel_bytes;
2327 Serge 2224
 
6084 serge 2225
	switch (fb_format_modifier) {
2226
	case DRM_FORMAT_MOD_NONE:
2227
		tile_height = 1;
2228
		break;
2229
	case I915_FORMAT_MOD_X_TILED:
2230
		tile_height = IS_GEN2(dev) ? 16 : 8;
2231
		break;
2232
	case I915_FORMAT_MOD_Y_TILED:
2233
		tile_height = 32;
2234
		break;
2235
	case I915_FORMAT_MOD_Yf_TILED:
2236
		pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
2237
		switch (pixel_bytes) {
2238
		default:
2239
		case 1:
2240
			tile_height = 64;
2241
			break;
2242
		case 2:
2243
		case 4:
2244
			tile_height = 32;
2245
			break;
2246
		case 8:
2247
			tile_height = 16;
2248
			break;
2249
		case 16:
2250
			WARN_ONCE(1,
2251
				  "128-bit pixels are not supported for display!");
2252
			tile_height = 16;
2253
			break;
2254
		}
2255
		break;
2256
	default:
2257
		MISSING_CASE(fb_format_modifier);
2258
		tile_height = 1;
2259
		break;
2260
	}
2327 Serge 2261
 
6084 serge 2262
	return tile_height;
2263
}
4560 Serge 2264
 
6084 serge 2265
unsigned int
2266
intel_fb_align_height(struct drm_device *dev, unsigned int height,
2267
		      uint32_t pixel_format, uint64_t fb_format_modifier)
2268
{
2269
	return ALIGN(height, intel_tile_height(dev, pixel_format,
2270
					       fb_format_modifier, 0));
2327 Serge 2271
}
2272
 
6084 serge 2273
static int
2274
intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2275
			const struct drm_plane_state *plane_state)
2327 Serge 2276
{
6084 serge 2277
	struct intel_rotation_info *info = &view->rotation_info;
2278
	unsigned int tile_height, tile_pitch;
2327 Serge 2279
 
6084 serge 2280
	*view = i915_ggtt_view_normal;
5354 serge 2281
 
6084 serge 2282
	if (!plane_state)
2283
		return 0;
4560 Serge 2284
 
6084 serge 2285
	if (!intel_rotation_90_or_270(plane_state->rotation))
2286
		return 0;
4560 Serge 2287
 
6084 serge 2288
	*view = i915_ggtt_view_rotated;
2327 Serge 2289
 
6084 serge 2290
	info->height = fb->height;
2291
	info->pixel_format = fb->pixel_format;
2292
	info->pitch = fb->pitches[0];
2293
	info->uv_offset = fb->offsets[1];
2294
	info->fb_modifier = fb->modifier[0];
2295
 
2296
	tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2297
					fb->modifier[0], 0);
2298
	tile_pitch = PAGE_SIZE / tile_height;
2299
	info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2300
	info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2301
	info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2302
 
2303
	if (info->pixel_format == DRM_FORMAT_NV12) {
2304
		tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2305
						fb->modifier[0], 1);
2306
		tile_pitch = PAGE_SIZE / tile_height;
2307
		info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2308
		info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
2309
						     tile_height);
2310
		info->size_uv = info->width_pages_uv * info->height_pages_uv *
2311
				PAGE_SIZE;
2312
	}
2313
 
2314
	return 0;
3746 Serge 2315
}
2316
 
6084 serge 2317
static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
5060 serge 2318
{
6084 serge 2319
	if (INTEL_INFO(dev_priv)->gen >= 9)
2320
		return 256 * 1024;
2321
	else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2322
		 IS_VALLEYVIEW(dev_priv))
2323
		return 128 * 1024;
2324
	else if (INTEL_INFO(dev_priv)->gen >= 4)
2325
		return 4 * 1024;
2326
	else
2327
		return 0;
5060 serge 2328
}
2329
 
2335 Serge 2330
int
5354 serge 2331
intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2332
			   struct drm_framebuffer *fb,
6084 serge 2333
			   const struct drm_plane_state *plane_state,
2334
			   struct intel_engine_cs *pipelined,
2335
			   struct drm_i915_gem_request **pipelined_request)
2335 Serge 2336
{
5354 serge 2337
	struct drm_device *dev = fb->dev;
2335 Serge 2338
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 2339
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6084 serge 2340
	struct i915_ggtt_view view;
2335 Serge 2341
	u32 alignment;
2342
	int ret;
2327 Serge 2343
 
5060 serge 2344
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2345
 
6084 serge 2346
	switch (fb->modifier[0]) {
2347
	case DRM_FORMAT_MOD_NONE:
2348
		alignment = intel_linear_alignment(dev_priv);
2335 Serge 2349
		break;
6084 serge 2350
	case I915_FORMAT_MOD_X_TILED:
5354 serge 2351
		if (INTEL_INFO(dev)->gen >= 9)
2352
			alignment = 256 * 1024;
2353
		else {
6084 serge 2354
			/* pin() will align the object as required by fence */
2355
			alignment = 0;
5354 serge 2356
		}
2335 Serge 2357
		break;
6084 serge 2358
	case I915_FORMAT_MOD_Y_TILED:
2359
	case I915_FORMAT_MOD_Yf_TILED:
2360
		if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2361
			  "Y tiling bo slipped through, driver bug!\n"))
2362
			return -EINVAL;
2363
		alignment = 1 * 1024 * 1024;
2364
		break;
2365
	default:
2366
		MISSING_CASE(fb->modifier[0]);
2335 Serge 2367
		return -EINVAL;
2368
	}
2327 Serge 2369
 
6084 serge 2370
	ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2371
	if (ret)
2372
		return ret;
2373
 
3746 Serge 2374
	/* Note that the w/a also requires 64 PTE of padding following the
2375
	 * bo. We currently fill all unused PTE with the shadow page and so
2376
	 * we should always have valid PTE following the scanout preventing
2377
	 * the VT-d warning.
2378
	 */
2379
	if (need_vtd_wa(dev) && alignment < 256 * 1024)
2380
		alignment = 256 * 1024;
2381
 
5097 serge 2382
	/*
2383
	 * Global gtt pte registers are special registers which actually forward
2384
	 * writes to a chunk of system memory. Which means that there is no risk
2385
	 * that the register values disappear as soon as we call
2386
	 * intel_runtime_pm_put(), so it is correct to wrap only the
2387
	 * pin/unpin/fence and not more.
2388
	 */
2389
	intel_runtime_pm_get(dev_priv);
2390
 
2335 Serge 2391
	dev_priv->mm.interruptible = false;
6084 serge 2392
	ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2393
						   pipelined_request, &view);
2335 Serge 2394
	if (ret)
2395
		goto err_interruptible;
2327 Serge 2396
 
2335 Serge 2397
	/* Install a fence for tiled scan-out. Pre-i965 always needs a
2398
	 * fence, whereas 965+ only requires a fence if using
2399
	 * framebuffer compression.  For simplicity, we always install
2400
	 * a fence as the cost is not that onerous.
2401
	 */
6084 serge 2402
	if (view.type == I915_GGTT_VIEW_NORMAL) {
2403
		ret = i915_gem_object_get_fence(obj);
2404
		if (ret == -EDEADLK) {
2405
			/*
2406
			 * -EDEADLK means there are no free fences
2407
			 * no pending flips.
2408
			 *
2409
			 * This is propagated to atomic, but it uses
2410
			 * -EDEADLK to force a locking recovery, so
2411
			 * change the returned error to -EBUSY.
2412
			 */
2413
			ret = -EBUSY;
2414
			goto err_unpin;
2415
		} else if (ret)
2416
			goto err_unpin;
2327 Serge 2417
 
6084 serge 2418
		i915_gem_object_pin_fence(obj);
2419
	}
3480 Serge 2420
 
2335 Serge 2421
	dev_priv->mm.interruptible = true;
5097 serge 2422
	intel_runtime_pm_put(dev_priv);
2335 Serge 2423
	return 0;
2327 Serge 2424
 
2335 Serge 2425
err_unpin:
6084 serge 2426
	i915_gem_object_unpin_from_display_plane(obj, &view);
2335 Serge 2427
err_interruptible:
2428
	dev_priv->mm.interruptible = true;
5097 serge 2429
	intel_runtime_pm_put(dev_priv);
2335 Serge 2430
	return ret;
2431
}
2327 Serge 2432
 
6084 serge 2433
static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2434
			       const struct drm_plane_state *plane_state)
3031 serge 2435
{
6084 serge 2436
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2437
	struct i915_ggtt_view view;
2438
	int ret;
2439
 
5060 serge 2440
	WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2441
 
6084 serge 2442
	ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2443
	WARN_ONCE(ret, "Couldn't get view from plane state!");
2444
 
2445
	if (view.type == I915_GGTT_VIEW_NORMAL)
2446
		i915_gem_object_unpin_fence(obj);
2447
 
2448
	i915_gem_object_unpin_from_display_plane(obj, &view);
3031 serge 2449
}
2450
 
2451
/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2452
 * is assumed to be a power-of-two. */
6084 serge 2453
unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2454
					     int *x, int *y,
3480 Serge 2455
					     unsigned int tiling_mode,
2456
					     unsigned int cpp,
6084 serge 2457
					     unsigned int pitch)
3031 serge 2458
{
3480 Serge 2459
	if (tiling_mode != I915_TILING_NONE) {
2460
		unsigned int tile_rows, tiles;
3031 serge 2461
 
6084 serge 2462
		tile_rows = *y / 8;
2463
		*y %= 8;
3031 serge 2464
 
3480 Serge 2465
		tiles = *x / (512/cpp);
2466
		*x %= 512/cpp;
2467
 
6084 serge 2468
		return tile_rows * pitch * 8 + tiles * 4096;
3480 Serge 2469
	} else {
6084 serge 2470
		unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
3480 Serge 2471
		unsigned int offset;
2472
 
2473
		offset = *y * pitch + *x * cpp;
6084 serge 2474
		*y = (offset & alignment) / pitch;
2475
		*x = ((offset & alignment) - *y * pitch) / cpp;
2476
		return offset & ~alignment;
3480 Serge 2477
	}
3031 serge 2478
}
2479
 
6084 serge 2480
static int i9xx_format_to_fourcc(int format)
2327 Serge 2481
{
5060 serge 2482
	switch (format) {
2483
	case DISPPLANE_8BPP:
2484
		return DRM_FORMAT_C8;
2485
	case DISPPLANE_BGRX555:
2486
		return DRM_FORMAT_XRGB1555;
2487
	case DISPPLANE_BGRX565:
2488
		return DRM_FORMAT_RGB565;
2489
	default:
2490
	case DISPPLANE_BGRX888:
2491
		return DRM_FORMAT_XRGB8888;
2492
	case DISPPLANE_RGBX888:
2493
		return DRM_FORMAT_XBGR8888;
2494
	case DISPPLANE_BGRX101010:
2495
		return DRM_FORMAT_XRGB2101010;
2496
	case DISPPLANE_RGBX101010:
2497
		return DRM_FORMAT_XBGR2101010;
2498
	}
2499
}
2500
 
6084 serge 2501
static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
5060 serge 2502
{
6084 serge 2503
	switch (format) {
2504
	case PLANE_CTL_FORMAT_RGB_565:
2505
		return DRM_FORMAT_RGB565;
2506
	default:
2507
	case PLANE_CTL_FORMAT_XRGB_8888:
2508
		if (rgb_order) {
2509
			if (alpha)
2510
				return DRM_FORMAT_ABGR8888;
2511
			else
2512
				return DRM_FORMAT_XBGR8888;
2513
		} else {
2514
			if (alpha)
2515
				return DRM_FORMAT_ARGB8888;
2516
			else
2517
				return DRM_FORMAT_XRGB8888;
2518
		}
2519
	case PLANE_CTL_FORMAT_XRGB_2101010:
2520
		if (rgb_order)
2521
			return DRM_FORMAT_XBGR2101010;
2522
		else
2523
			return DRM_FORMAT_XRGB2101010;
2524
	}
2525
}
2526
 
2527
static bool
2528
intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2529
			      struct intel_initial_plane_config *plane_config)
2530
{
5060 serge 2531
	struct drm_device *dev = crtc->base.dev;
6084 serge 2532
	struct drm_i915_private *dev_priv = to_i915(dev);
5060 serge 2533
	struct drm_i915_gem_object *obj = NULL;
2534
	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6084 serge 2535
	struct drm_framebuffer *fb = &plane_config->fb->base;
2536
	u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2537
	u32 size_aligned = round_up(plane_config->base + plane_config->size,
2538
				    PAGE_SIZE);
5060 serge 2539
 
6084 serge 2540
	size_aligned -= base_aligned;
2541
 
5060 serge 2542
	if (plane_config->size == 0)
2543
		return false;
2544
 
6084 serge 2545
	/* If the FB is too big, just don't use it since fbdev is not very
2546
	 * important and we should probably use that space with FBC or other
2547
	 * features. */
2548
	if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2549
		return false;
2550
 
2551
	obj = i915_gem_object_create_stolen_for_preallocated(dev,
2552
							     base_aligned,
2553
							     base_aligned,
2554
							     size_aligned);
5060 serge 2555
	if (!obj)
2556
		return false;
2557
 
6084 serge 2558
	obj->tiling_mode = plane_config->tiling;
2559
	if (obj->tiling_mode == I915_TILING_X)
2560
		obj->stride = fb->pitches[0];
5060 serge 2561
 
6084 serge 2562
	mode_cmd.pixel_format = fb->pixel_format;
2563
	mode_cmd.width = fb->width;
2564
	mode_cmd.height = fb->height;
2565
	mode_cmd.pitches[0] = fb->pitches[0];
2566
	mode_cmd.modifier[0] = fb->modifier[0];
2567
	mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
5060 serge 2568
 
2569
	mutex_lock(&dev->struct_mutex);
6084 serge 2570
	if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
5060 serge 2571
				   &mode_cmd, obj)) {
2572
		DRM_DEBUG_KMS("intel fb init failed\n");
2573
		goto out_unref_obj;
2574
	}
2575
	mutex_unlock(&dev->struct_mutex);
2576
 
6084 serge 2577
	DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
5060 serge 2578
	return true;
2579
 
2580
out_unref_obj:
2581
	drm_gem_object_unreference(&obj->base);
2582
	mutex_unlock(&dev->struct_mutex);
2583
	return false;
2584
}
2585
 
6084 serge 2586
/* Update plane->state->fb to match plane->fb after driver-internal updates */
2587
static void
2588
update_state_fb(struct drm_plane *plane)
5060 serge 2589
{
6084 serge 2590
	if (plane->fb == plane->state->fb)
2591
		return;
2592
 
2593
	if (plane->state->fb)
2594
		drm_framebuffer_unreference(plane->state->fb);
2595
	plane->state->fb = plane->fb;
2596
	if (plane->state->fb)
2597
		drm_framebuffer_reference(plane->state->fb);
2598
}
2599
 
2600
static void
2601
intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2602
			     struct intel_initial_plane_config *plane_config)
2603
{
5060 serge 2604
	struct drm_device *dev = intel_crtc->base.dev;
5354 serge 2605
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 2606
	struct drm_crtc *c;
2607
	struct intel_crtc *i;
2608
	struct drm_i915_gem_object *obj;
6084 serge 2609
	struct drm_plane *primary = intel_crtc->base.primary;
2610
	struct drm_plane_state *plane_state = primary->state;
2611
	struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2612
	struct intel_plane *intel_plane = to_intel_plane(primary);
2613
	struct drm_framebuffer *fb;
5060 serge 2614
 
6084 serge 2615
	if (!plane_config->fb)
5060 serge 2616
		return;
2617
 
6084 serge 2618
	if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2619
		fb = &plane_config->fb->base;
2620
		goto valid_fb;
2621
	}
5060 serge 2622
 
6084 serge 2623
	kfree(plane_config->fb);
5060 serge 2624
 
2625
	/*
2626
	 * Failed to alloc the obj, check to see if we should share
2627
	 * an fb with another CRTC instead
2628
	 */
2629
	for_each_crtc(dev, c) {
2630
		i = to_intel_crtc(c);
2631
 
2632
		if (c == &intel_crtc->base)
2633
			continue;
2634
 
2635
		if (!i->active)
2636
			continue;
2637
 
6084 serge 2638
		fb = c->primary->fb;
2639
		if (!fb)
5060 serge 2640
			continue;
2641
 
6084 serge 2642
		obj = intel_fb_obj(fb);
5060 serge 2643
		if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
6084 serge 2644
			drm_framebuffer_reference(fb);
2645
			goto valid_fb;
5060 serge 2646
		}
2647
	}
6084 serge 2648
 
2649
	/*
2650
	 * We've failed to reconstruct the BIOS FB.  Current display state
2651
	 * indicates that the primary plane is visible, but has a NULL FB,
2652
	 * which will lead to problems later if we don't fix it up.  The
2653
	 * simplest solution is to just disable the primary plane now and
2654
	 * pretend the BIOS never had it enabled.
2655
	 */
2656
	to_intel_plane_state(plane_state)->visible = false;
2657
	crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2658
	intel_pre_disable_primary(&intel_crtc->base);
2659
	intel_plane->disable_plane(primary, &intel_crtc->base);
2660
 
2661
	return;
2662
 
2663
valid_fb:
2664
	plane_state->src_x = 0;
2665
	plane_state->src_y = 0;
2666
	plane_state->src_w = fb->width << 16;
2667
	plane_state->src_h = fb->height << 16;
2668
 
2669
	plane_state->crtc_x = 0;
2670
	plane_state->crtc_y = 0;
2671
	plane_state->crtc_w = fb->width;
2672
	plane_state->crtc_h = fb->height;
2673
 
2674
	obj = intel_fb_obj(fb);
2675
	if (obj->tiling_mode != I915_TILING_NONE)
2676
		dev_priv->preserve_bios_swizzle = true;
2677
 
2678
	drm_framebuffer_reference(fb);
2679
	primary->fb = primary->state->fb = fb;
2680
	primary->crtc = primary->state->crtc = &intel_crtc->base;
2681
	intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2682
	obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
5060 serge 2683
}
2684
 
2685
static void i9xx_update_primary_plane(struct drm_crtc *crtc,
6084 serge 2686
				      struct drm_framebuffer *fb,
2687
				      int x, int y)
5060 serge 2688
{
6084 serge 2689
	struct drm_device *dev = crtc->dev;
2690
	struct drm_i915_private *dev_priv = dev->dev_private;
2691
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2692
	struct drm_plane *primary = crtc->primary;
2693
	bool visible = to_intel_plane_state(primary->state)->visible;
5354 serge 2694
	struct drm_i915_gem_object *obj;
6084 serge 2695
	int plane = intel_crtc->plane;
3031 serge 2696
	unsigned long linear_offset;
6084 serge 2697
	u32 dspcntr;
5354 serge 2698
	u32 reg = DSPCNTR(plane);
2699
	int pixel_size;
2327 Serge 2700
 
6084 serge 2701
	if (!visible || !fb) {
5354 serge 2702
		I915_WRITE(reg, 0);
2703
		if (INTEL_INFO(dev)->gen >= 4)
2704
			I915_WRITE(DSPSURF(plane), 0);
2705
		else
2706
			I915_WRITE(DSPADDR(plane), 0);
2707
		POSTING_READ(reg);
2708
		return;
2709
	}
2710
 
2711
	obj = intel_fb_obj(fb);
2712
	if (WARN_ON(obj == NULL))
2713
		return;
2714
 
2715
	pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2716
 
2717
	dspcntr = DISPPLANE_GAMMA_ENABLE;
2718
 
2719
	dspcntr |= DISPLAY_PLANE_ENABLE;
2720
 
2721
	if (INTEL_INFO(dev)->gen < 4) {
2722
		if (intel_crtc->pipe == PIPE_B)
2723
			dspcntr |= DISPPLANE_SEL_PIPE_B;
2724
 
2725
		/* pipesrc and dspsize control the size that is scaled from,
2726
		 * which should always be the user's requested size.
2727
		 */
2728
		I915_WRITE(DSPSIZE(plane),
6084 serge 2729
			   ((intel_crtc->config->pipe_src_h - 1) << 16) |
2730
			   (intel_crtc->config->pipe_src_w - 1));
5354 serge 2731
		I915_WRITE(DSPPOS(plane), 0);
2732
	} else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2733
		I915_WRITE(PRIMSIZE(plane),
6084 serge 2734
			   ((intel_crtc->config->pipe_src_h - 1) << 16) |
2735
			   (intel_crtc->config->pipe_src_w - 1));
5354 serge 2736
		I915_WRITE(PRIMPOS(plane), 0);
2737
		I915_WRITE(PRIMCNSTALPHA(plane), 0);
2738
	}
2739
 
3243 Serge 2740
	switch (fb->pixel_format) {
2741
	case DRM_FORMAT_C8:
6084 serge 2742
		dspcntr |= DISPPLANE_8BPP;
2743
		break;
3243 Serge 2744
	case DRM_FORMAT_XRGB1555:
2745
		dspcntr |= DISPPLANE_BGRX555;
2746
		break;
2747
	case DRM_FORMAT_RGB565:
2748
		dspcntr |= DISPPLANE_BGRX565;
2749
		break;
2750
	case DRM_FORMAT_XRGB8888:
2751
		dspcntr |= DISPPLANE_BGRX888;
2752
		break;
2753
	case DRM_FORMAT_XBGR8888:
2754
		dspcntr |= DISPPLANE_RGBX888;
2755
		break;
2756
	case DRM_FORMAT_XRGB2101010:
2757
		dspcntr |= DISPPLANE_BGRX101010;
6084 serge 2758
		break;
3243 Serge 2759
	case DRM_FORMAT_XBGR2101010:
2760
		dspcntr |= DISPPLANE_RGBX101010;
6084 serge 2761
		break;
2762
	default:
3746 Serge 2763
		BUG();
6084 serge 2764
	}
3243 Serge 2765
 
5354 serge 2766
	if (INTEL_INFO(dev)->gen >= 4 &&
2767
	    obj->tiling_mode != I915_TILING_NONE)
6084 serge 2768
		dspcntr |= DISPPLANE_TILED;
2327 Serge 2769
 
4104 Serge 2770
	if (IS_G4X(dev))
2771
		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2772
 
5354 serge 2773
	linear_offset = y * fb->pitches[0] + x * pixel_size;
2327 Serge 2774
 
3031 serge 2775
	if (INTEL_INFO(dev)->gen >= 4) {
2776
		intel_crtc->dspaddr_offset =
6084 serge 2777
			intel_gen4_compute_page_offset(dev_priv,
2778
						       &x, &y, obj->tiling_mode,
5354 serge 2779
						       pixel_size,
6084 serge 2780
						       fb->pitches[0]);
3031 serge 2781
		linear_offset -= intel_crtc->dspaddr_offset;
2782
	} else {
2783
		intel_crtc->dspaddr_offset = linear_offset;
2784
	}
2785
 
6084 serge 2786
	if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
5354 serge 2787
		dspcntr |= DISPPLANE_ROTATE_180;
2788
 
6084 serge 2789
		x += (intel_crtc->config->pipe_src_w - 1);
2790
		y += (intel_crtc->config->pipe_src_h - 1);
5354 serge 2791
 
2792
		/* Finding the last pixel of the last line of the display
2793
		data and adding to linear_offset*/
2794
		linear_offset +=
6084 serge 2795
			(intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2796
			(intel_crtc->config->pipe_src_w - 1) * pixel_size;
5354 serge 2797
	}
2798
 
6084 serge 2799
	intel_crtc->adjusted_x = x;
2800
	intel_crtc->adjusted_y = y;
2801
 
5354 serge 2802
	I915_WRITE(reg, dspcntr);
2803
 
2342 Serge 2804
	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
6084 serge 2805
	if (INTEL_INFO(dev)->gen >= 4) {
4560 Serge 2806
		I915_WRITE(DSPSURF(plane),
6084 serge 2807
			   i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2808
		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3031 serge 2809
		I915_WRITE(DSPLINOFF(plane), linear_offset);
6084 serge 2810
	} else
4104 Serge 2811
		I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
6084 serge 2812
	POSTING_READ(reg);
2327 Serge 2813
}
2814
 
5060 serge 2815
static void ironlake_update_primary_plane(struct drm_crtc *crtc,
6084 serge 2816
					  struct drm_framebuffer *fb,
2817
					  int x, int y)
2327 Serge 2818
{
6084 serge 2819
	struct drm_device *dev = crtc->dev;
2820
	struct drm_i915_private *dev_priv = dev->dev_private;
2821
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2822
	struct drm_plane *primary = crtc->primary;
2823
	bool visible = to_intel_plane_state(primary->state)->visible;
5354 serge 2824
	struct drm_i915_gem_object *obj;
6084 serge 2825
	int plane = intel_crtc->plane;
3031 serge 2826
	unsigned long linear_offset;
6084 serge 2827
	u32 dspcntr;
5354 serge 2828
	u32 reg = DSPCNTR(plane);
2829
	int pixel_size;
2327 Serge 2830
 
6084 serge 2831
	if (!visible || !fb) {
5354 serge 2832
		I915_WRITE(reg, 0);
2833
		I915_WRITE(DSPSURF(plane), 0);
2834
		POSTING_READ(reg);
2835
		return;
2836
	}
2837
 
2838
	obj = intel_fb_obj(fb);
2839
	if (WARN_ON(obj == NULL))
2840
		return;
2841
 
2842
	pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2843
 
2844
	dspcntr = DISPPLANE_GAMMA_ENABLE;
2845
 
2846
	dspcntr |= DISPLAY_PLANE_ENABLE;
2847
 
2848
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2849
		dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2850
 
3243 Serge 2851
	switch (fb->pixel_format) {
2852
	case DRM_FORMAT_C8:
6084 serge 2853
		dspcntr |= DISPPLANE_8BPP;
2854
		break;
3243 Serge 2855
	case DRM_FORMAT_RGB565:
2856
		dspcntr |= DISPPLANE_BGRX565;
6084 serge 2857
		break;
3243 Serge 2858
	case DRM_FORMAT_XRGB8888:
2859
		dspcntr |= DISPPLANE_BGRX888;
2860
		break;
2861
	case DRM_FORMAT_XBGR8888:
2862
		dspcntr |= DISPPLANE_RGBX888;
2863
		break;
2864
	case DRM_FORMAT_XRGB2101010:
2865
		dspcntr |= DISPPLANE_BGRX101010;
2866
		break;
2867
	case DRM_FORMAT_XBGR2101010:
2868
		dspcntr |= DISPPLANE_RGBX101010;
6084 serge 2869
		break;
2870
	default:
3746 Serge 2871
		BUG();
6084 serge 2872
	}
2327 Serge 2873
 
3480 Serge 2874
	if (obj->tiling_mode != I915_TILING_NONE)
2875
		dspcntr |= DISPPLANE_TILED;
2327 Serge 2876
 
5354 serge 2877
	if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
6084 serge 2878
		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2327 Serge 2879
 
5354 serge 2880
	linear_offset = y * fb->pitches[0] + x * pixel_size;
3031 serge 2881
	intel_crtc->dspaddr_offset =
6084 serge 2882
		intel_gen4_compute_page_offset(dev_priv,
2883
					       &x, &y, obj->tiling_mode,
5354 serge 2884
					       pixel_size,
6084 serge 2885
					       fb->pitches[0]);
3031 serge 2886
	linear_offset -= intel_crtc->dspaddr_offset;
6084 serge 2887
	if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
5354 serge 2888
		dspcntr |= DISPPLANE_ROTATE_180;
2327 Serge 2889
 
5354 serge 2890
		if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
6084 serge 2891
			x += (intel_crtc->config->pipe_src_w - 1);
2892
			y += (intel_crtc->config->pipe_src_h - 1);
5354 serge 2893
 
2894
			/* Finding the last pixel of the last line of the display
2895
			data and adding to linear_offset*/
2896
			linear_offset +=
6084 serge 2897
				(intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2898
				(intel_crtc->config->pipe_src_w - 1) * pixel_size;
5354 serge 2899
		}
2900
	}
2901
 
6084 serge 2902
	intel_crtc->adjusted_x = x;
2903
	intel_crtc->adjusted_y = y;
2904
 
5354 serge 2905
	I915_WRITE(reg, dspcntr);
2906
 
2342 Serge 2907
	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
4560 Serge 2908
	I915_WRITE(DSPSURF(plane),
6084 serge 2909
		   i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
4560 Serge 2910
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3243 Serge 2911
		I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2912
	} else {
6084 serge 2913
		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2914
		I915_WRITE(DSPLINOFF(plane), linear_offset);
3243 Serge 2915
	}
2330 Serge 2916
	POSTING_READ(reg);
2327 Serge 2917
}
2918
 
6084 serge 2919
u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2920
			      uint32_t pixel_format)
2921
{
2922
	u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2923
 
2924
	/*
2925
	 * The stride is either expressed as a multiple of 64 bytes
2926
	 * chunks for linear buffers or in number of tiles for tiled
2927
	 * buffers.
2928
	 */
2929
	switch (fb_modifier) {
2930
	case DRM_FORMAT_MOD_NONE:
2931
		return 64;
2932
	case I915_FORMAT_MOD_X_TILED:
2933
		if (INTEL_INFO(dev)->gen == 2)
2934
			return 128;
2935
		return 512;
2936
	case I915_FORMAT_MOD_Y_TILED:
2937
		/* No need to check for old gens and Y tiling since this is
2938
		 * about the display engine and those will be blocked before
2939
		 * we get here.
2940
		 */
2941
		return 128;
2942
	case I915_FORMAT_MOD_Yf_TILED:
2943
		if (bits_per_pixel == 8)
2944
			return 64;
2945
		else
2946
			return 128;
2947
	default:
2948
		MISSING_CASE(fb_modifier);
2949
		return 64;
2950
	}
2951
}
2952
 
2953
unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2954
				     struct drm_i915_gem_object *obj,
2955
				     unsigned int plane)
2956
{
2957
	const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2958
	struct i915_vma *vma;
2959
	unsigned char *offset;
2960
 
2961
	if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2962
		view = &i915_ggtt_view_rotated;
2963
 
2964
	vma = i915_gem_obj_to_ggtt_view(obj, view);
2965
	if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2966
		view->type))
2967
		return -1;
2968
 
2969
	offset = (unsigned char *)vma->node.start;
2970
 
2971
	if (plane == 1) {
2972
		offset += vma->ggtt_view.rotation_info.uv_start_page *
2973
			  PAGE_SIZE;
2974
	}
2975
 
2976
	return (unsigned long)offset;
2977
}
2978
 
2979
static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2980
{
2981
	struct drm_device *dev = intel_crtc->base.dev;
2982
	struct drm_i915_private *dev_priv = dev->dev_private;
2983
 
2984
	I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2985
	I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2986
	I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2987
}
2988
 
2989
/*
2990
 * This function detaches (aka. unbinds) unused scalers in hardware
2991
 */
2992
static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2993
{
2994
	struct intel_crtc_scaler_state *scaler_state;
2995
	int i;
2996
 
2997
	scaler_state = &intel_crtc->config->scaler_state;
2998
 
2999
	/* loop through and disable scalers that aren't in use */
3000
	for (i = 0; i < intel_crtc->num_scalers; i++) {
3001
		if (!scaler_state->scalers[i].in_use)
3002
			skl_detach_scaler(intel_crtc, i);
3003
	}
3004
}
3005
 
3006
u32 skl_plane_ctl_format(uint32_t pixel_format)
3007
{
3008
	switch (pixel_format) {
3009
	case DRM_FORMAT_C8:
3010
		return PLANE_CTL_FORMAT_INDEXED;
3011
	case DRM_FORMAT_RGB565:
3012
		return PLANE_CTL_FORMAT_RGB_565;
3013
	case DRM_FORMAT_XBGR8888:
3014
		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3015
	case DRM_FORMAT_XRGB8888:
3016
		return PLANE_CTL_FORMAT_XRGB_8888;
3017
	/*
3018
	 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3019
	 * to be already pre-multiplied. We need to add a knob (or a different
3020
	 * DRM_FORMAT) for user-space to configure that.
3021
	 */
3022
	case DRM_FORMAT_ABGR8888:
3023
		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3024
			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3025
	case DRM_FORMAT_ARGB8888:
3026
		return PLANE_CTL_FORMAT_XRGB_8888 |
3027
			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3028
	case DRM_FORMAT_XRGB2101010:
3029
		return PLANE_CTL_FORMAT_XRGB_2101010;
3030
	case DRM_FORMAT_XBGR2101010:
3031
		return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3032
	case DRM_FORMAT_YUYV:
3033
		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3034
	case DRM_FORMAT_YVYU:
3035
		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3036
	case DRM_FORMAT_UYVY:
3037
		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3038
	case DRM_FORMAT_VYUY:
3039
		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3040
	default:
3041
		MISSING_CASE(pixel_format);
3042
	}
3043
 
3044
	return 0;
3045
}
3046
 
3047
u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3048
{
3049
	switch (fb_modifier) {
3050
	case DRM_FORMAT_MOD_NONE:
3051
		break;
3052
	case I915_FORMAT_MOD_X_TILED:
3053
		return PLANE_CTL_TILED_X;
3054
	case I915_FORMAT_MOD_Y_TILED:
3055
		return PLANE_CTL_TILED_Y;
3056
	case I915_FORMAT_MOD_Yf_TILED:
3057
		return PLANE_CTL_TILED_YF;
3058
	default:
3059
		MISSING_CASE(fb_modifier);
3060
	}
3061
 
3062
	return 0;
3063
}
3064
 
3065
u32 skl_plane_ctl_rotation(unsigned int rotation)
3066
{
3067
	switch (rotation) {
3068
	case BIT(DRM_ROTATE_0):
3069
		break;
3070
	/*
3071
	 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3072
	 * while i915 HW rotation is clockwise, thats why this swapping.
3073
	 */
3074
	case BIT(DRM_ROTATE_90):
3075
		return PLANE_CTL_ROTATE_270;
3076
	case BIT(DRM_ROTATE_180):
3077
		return PLANE_CTL_ROTATE_180;
3078
	case BIT(DRM_ROTATE_270):
3079
		return PLANE_CTL_ROTATE_90;
3080
	default:
3081
		MISSING_CASE(rotation);
3082
	}
3083
 
3084
	return 0;
3085
}
3086
 
5354 serge 3087
static void skylake_update_primary_plane(struct drm_crtc *crtc,
3088
					 struct drm_framebuffer *fb,
3089
					 int x, int y)
3090
{
3091
	struct drm_device *dev = crtc->dev;
3092
	struct drm_i915_private *dev_priv = dev->dev_private;
3093
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6084 serge 3094
	struct drm_plane *plane = crtc->primary;
3095
	bool visible = to_intel_plane_state(plane->state)->visible;
5354 serge 3096
	struct drm_i915_gem_object *obj;
3097
	int pipe = intel_crtc->pipe;
6084 serge 3098
	u32 plane_ctl, stride_div, stride;
3099
	u32 tile_height, plane_offset, plane_size;
3100
	unsigned int rotation;
3101
	int x_offset, y_offset;
3102
	unsigned long surf_addr;
3103
	struct intel_crtc_state *crtc_state = intel_crtc->config;
3104
	struct intel_plane_state *plane_state;
3105
	int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3106
	int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3107
	int scaler_id = -1;
5354 serge 3108
 
6084 serge 3109
	plane_state = to_intel_plane_state(plane->state);
3110
 
3111
	if (!visible || !fb) {
5354 serge 3112
		I915_WRITE(PLANE_CTL(pipe, 0), 0);
3113
		I915_WRITE(PLANE_SURF(pipe, 0), 0);
3114
		POSTING_READ(PLANE_CTL(pipe, 0));
3115
		return;
3116
	}
3117
 
3118
	plane_ctl = PLANE_CTL_ENABLE |
3119
		    PLANE_CTL_PIPE_GAMMA_ENABLE |
3120
		    PLANE_CTL_PIPE_CSC_ENABLE;
3121
 
6084 serge 3122
	plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3123
	plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3124
	plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
5354 serge 3125
 
6084 serge 3126
	rotation = plane->state->rotation;
3127
	plane_ctl |= skl_plane_ctl_rotation(rotation);
5354 serge 3128
 
6084 serge 3129
	obj = intel_fb_obj(fb);
3130
	stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3131
					       fb->pixel_format);
3132
	surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3133
 
3134
	WARN_ON(drm_rect_width(&plane_state->src) == 0);
3135
 
3136
	scaler_id = plane_state->scaler_id;
3137
	src_x = plane_state->src.x1 >> 16;
3138
	src_y = plane_state->src.y1 >> 16;
3139
	src_w = drm_rect_width(&plane_state->src) >> 16;
3140
	src_h = drm_rect_height(&plane_state->src) >> 16;
3141
	dst_x = plane_state->dst.x1;
3142
	dst_y = plane_state->dst.y1;
3143
	dst_w = drm_rect_width(&plane_state->dst);
3144
	dst_h = drm_rect_height(&plane_state->dst);
3145
 
3146
	WARN_ON(x != src_x || y != src_y);
3147
 
3148
	if (intel_rotation_90_or_270(rotation)) {
3149
		/* stride = Surface height in tiles */
3150
		tile_height = intel_tile_height(dev, fb->pixel_format,
3151
						fb->modifier[0], 0);
3152
		stride = DIV_ROUND_UP(fb->height, tile_height);
3153
		x_offset = stride * tile_height - y - src_h;
3154
		y_offset = x;
3155
		plane_size = (src_w - 1) << 16 | (src_h - 1);
3156
	} else {
3157
		stride = fb->pitches[0] / stride_div;
3158
		x_offset = x;
3159
		y_offset = y;
3160
		plane_size = (src_h - 1) << 16 | (src_w - 1);
5354 serge 3161
	}
6084 serge 3162
	plane_offset = y_offset << 16 | x_offset;
5354 serge 3163
 
6084 serge 3164
	intel_crtc->adjusted_x = x_offset;
3165
	intel_crtc->adjusted_y = y_offset;
5354 serge 3166
 
3167
	I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
6084 serge 3168
	I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3169
	I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3170
	I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
5354 serge 3171
 
6084 serge 3172
	if (scaler_id >= 0) {
3173
		uint32_t ps_ctrl = 0;
5354 serge 3174
 
6084 serge 3175
		WARN_ON(!dst_w || !dst_h);
3176
		ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3177
			crtc_state->scaler_state.scalers[scaler_id].mode;
3178
		I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3179
		I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3180
		I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3181
		I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3182
		I915_WRITE(PLANE_POS(pipe, 0), 0);
3183
	} else {
3184
		I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3185
	}
5354 serge 3186
 
6084 serge 3187
	I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3188
 
5354 serge 3189
	POSTING_READ(PLANE_SURF(pipe, 0));
3190
}
3191
 
2327 Serge 3192
/* Assume fb object is pinned & idle & fenced and just update base pointers */
3193
static int
3194
intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3195
			   int x, int y, enum mode_set_atomic state)
3196
{
3197
	struct drm_device *dev = crtc->dev;
3198
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3199
 
6084 serge 3200
	if (dev_priv->fbc.disable_fbc)
3201
		dev_priv->fbc.disable_fbc(dev_priv);
3031 serge 3202
 
5060 serge 3203
	dev_priv->display.update_primary_plane(crtc, fb, x, y);
3204
 
3205
	return 0;
3031 serge 3206
}
3207
 
5354 serge 3208
static void intel_complete_page_flips(struct drm_device *dev)
4104 Serge 3209
{
3210
	struct drm_crtc *crtc;
3211
 
5060 serge 3212
	for_each_crtc(dev, crtc) {
4104 Serge 3213
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3214
		enum plane plane = intel_crtc->plane;
3215
 
3216
		intel_prepare_page_flip(dev, plane);
3217
		intel_finish_page_flip_plane(dev, plane);
3218
	}
5354 serge 3219
}
4104 Serge 3220
 
5354 serge 3221
static void intel_update_primary_planes(struct drm_device *dev)
3222
{
3223
	struct drm_crtc *crtc;
3224
 
5060 serge 3225
	for_each_crtc(dev, crtc) {
6084 serge 3226
		struct intel_plane *plane = to_intel_plane(crtc->primary);
3227
		struct intel_plane_state *plane_state;
4104 Serge 3228
 
6084 serge 3229
		drm_modeset_lock_crtc(crtc, &plane->base);
3230
 
3231
		plane_state = to_intel_plane_state(plane->base.state);
3232
 
3233
		if (plane_state->base.fb)
3234
			plane->commit_plane(&plane->base, plane_state);
3235
 
3236
		drm_modeset_unlock_crtc(crtc);
4104 Serge 3237
	}
3238
}
3239
 
5354 serge 3240
void intel_prepare_reset(struct drm_device *dev)
3241
{
3242
	/* no reset support for gen2 */
3243
	if (IS_GEN2(dev))
3244
		return;
3245
 
3246
	/* reset doesn't touch the display */
3247
	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3248
		return;
3249
 
3250
	drm_modeset_lock_all(dev);
3251
	/*
3252
	 * Disabling the crtcs gracefully seems nicer. Also the
3253
	 * g33 docs say we should at least disable all the planes.
3254
	 */
6084 serge 3255
	intel_display_suspend(dev);
5354 serge 3256
}
3257
 
3258
void intel_finish_reset(struct drm_device *dev)
3259
{
3260
	struct drm_i915_private *dev_priv = to_i915(dev);
3261
 
3262
	/*
3263
	 * Flips in the rings will be nuked by the reset,
3264
	 * so complete all pending flips so that user space
3265
	 * will get its events and not get stuck.
3266
	 */
3267
	intel_complete_page_flips(dev);
3268
 
3269
	/* no reset support for gen2 */
3270
	if (IS_GEN2(dev))
3271
		return;
3272
 
3273
	/* reset doesn't touch the display */
3274
	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3275
		/*
3276
		 * Flips in the rings have been nuked by the reset,
3277
		 * so update the base address of all primary
3278
		 * planes to the the last fb to make sure we're
3279
		 * showing the correct fb after a reset.
6084 serge 3280
		 *
3281
		 * FIXME: Atomic will make this obsolete since we won't schedule
3282
		 * CS-based flips (which might get lost in gpu resets) any more.
5354 serge 3283
		 */
3284
		intel_update_primary_planes(dev);
3285
		return;
3286
	}
3287
 
3288
	/*
3289
	 * The display has been reset as well,
3290
	 * so need a full re-initialization.
3291
	 */
3292
	intel_runtime_pm_disable_interrupts(dev_priv);
3293
	intel_runtime_pm_enable_interrupts(dev_priv);
3294
 
3295
	intel_modeset_init_hw(dev);
3296
 
3297
	spin_lock_irq(&dev_priv->irq_lock);
3298
	if (dev_priv->display.hpd_irq_setup)
3299
		dev_priv->display.hpd_irq_setup(dev);
3300
	spin_unlock_irq(&dev_priv->irq_lock);
3301
 
6084 serge 3302
	intel_display_resume(dev);
5354 serge 3303
 
6296 serge 3304
	intel_hpd_init(dev_priv);
5354 serge 3305
 
3306
	drm_modeset_unlock_all(dev);
3307
}
3308
 
6084 serge 3309
static void
3031 serge 3310
intel_finish_fb(struct drm_framebuffer *old_fb)
3311
{
5060 serge 3312
	struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
6084 serge 3313
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3031 serge 3314
	bool was_interruptible = dev_priv->mm.interruptible;
2327 Serge 3315
	int ret;
3316
 
3031 serge 3317
	/* Big Hammer, we also need to ensure that any pending
3318
	 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3319
	 * current scanout is retired before unpinning the old
6084 serge 3320
	 * framebuffer. Note that we rely on userspace rendering
3321
	 * into the buffer attached to the pipe they are waiting
3322
	 * on. If not, userspace generates a GPU hang with IPEHR
3323
	 * point to the MI_WAIT_FOR_EVENT.
3031 serge 3324
	 *
3325
	 * This should only fail upon a hung GPU, in which case we
3326
	 * can safely continue.
3327
	 */
3328
	dev_priv->mm.interruptible = false;
6084 serge 3329
	ret = i915_gem_object_wait_rendering(obj, true);
3031 serge 3330
	dev_priv->mm.interruptible = was_interruptible;
2327 Serge 3331
 
6084 serge 3332
	WARN_ON(ret);
2327 Serge 3333
}
4104 Serge 3334
 
5060 serge 3335
static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
4104 Serge 3336
{
3337
	struct drm_device *dev = crtc->dev;
5060 serge 3338
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 3339
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5060 serge 3340
	bool pending;
4104 Serge 3341
 
5060 serge 3342
	if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3343
	    intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3344
		return false;
4104 Serge 3345
 
5354 serge 3346
	spin_lock_irq(&dev->event_lock);
5060 serge 3347
	pending = to_intel_crtc(crtc)->unpin_work != NULL;
5354 serge 3348
	spin_unlock_irq(&dev->event_lock);
4104 Serge 3349
 
5060 serge 3350
	return pending;
4104 Serge 3351
}
2327 Serge 3352
 
6084 serge 3353
static void intel_update_pipe_config(struct intel_crtc *crtc,
3354
				     struct intel_crtc_state *old_crtc_state)
5354 serge 3355
{
3356
	struct drm_device *dev = crtc->base.dev;
3357
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 3358
	struct intel_crtc_state *pipe_config =
3359
		to_intel_crtc_state(crtc->base.state);
5354 serge 3360
 
6084 serge 3361
	/* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3362
	crtc->base.mode = crtc->base.state->mode;
5354 serge 3363
 
6084 serge 3364
	DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3365
		      old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3366
		      pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3367
 
3368
	if (HAS_DDI(dev))
3369
		intel_set_pipe_csc(&crtc->base);
3370
 
5354 serge 3371
	/*
3372
	 * Update pipe size and adjust fitter if needed: the reason for this is
3373
	 * that in compute_mode_changes we check the native mode (not the pfit
3374
	 * mode) to see if we can flip rather than do a full mode set. In the
3375
	 * fastboot case, we'll flip, but if we don't update the pipesrc and
3376
	 * pfit state, we'll end up with a big fb scanned out into the wrong
3377
	 * sized surface.
3378
	 */
3379
 
3380
	I915_WRITE(PIPESRC(crtc->pipe),
6084 serge 3381
		   ((pipe_config->pipe_src_w - 1) << 16) |
3382
		   (pipe_config->pipe_src_h - 1));
5354 serge 3383
 
6084 serge 3384
	/* on skylake this is done by detaching scalers */
3385
	if (INTEL_INFO(dev)->gen >= 9) {
3386
		skl_detach_scalers(crtc);
2327 Serge 3387
 
6084 serge 3388
		if (pipe_config->pch_pfit.enabled)
3389
			skylake_pfit_enable(crtc);
3390
	} else if (HAS_PCH_SPLIT(dev)) {
3391
		if (pipe_config->pch_pfit.enabled)
3392
			ironlake_pfit_enable(crtc);
3393
		else if (old_crtc_state->pch_pfit.enabled)
3394
			ironlake_pfit_disable(crtc, true);
2327 Serge 3395
	}
3396
}
3397
 
3398
static void intel_fdi_normal_train(struct drm_crtc *crtc)
3399
{
3400
	struct drm_device *dev = crtc->dev;
3401
	struct drm_i915_private *dev_priv = dev->dev_private;
3402
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3403
	int pipe = intel_crtc->pipe;
3404
	u32 reg, temp;
3405
 
3406
	/* enable normal train */
3407
	reg = FDI_TX_CTL(pipe);
3408
	temp = I915_READ(reg);
3409
	if (IS_IVYBRIDGE(dev)) {
3410
		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3411
		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3412
	} else {
3413
		temp &= ~FDI_LINK_TRAIN_NONE;
3414
		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3415
	}
3416
	I915_WRITE(reg, temp);
3417
 
3418
	reg = FDI_RX_CTL(pipe);
3419
	temp = I915_READ(reg);
3420
	if (HAS_PCH_CPT(dev)) {
3421
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3422
		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3423
	} else {
3424
		temp &= ~FDI_LINK_TRAIN_NONE;
3425
		temp |= FDI_LINK_TRAIN_NONE;
3426
	}
3427
	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3428
 
3429
	/* wait one idle pattern time */
3430
	POSTING_READ(reg);
3431
	udelay(1000);
3432
 
3433
	/* IVB wants error correction enabled */
3434
	if (IS_IVYBRIDGE(dev))
3435
		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3436
			   FDI_FE_ERRC_ENABLE);
3437
}
3438
 
3439
/* The FDI link training functions for ILK/Ibexpeak. */
3440
static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3441
{
6084 serge 3442
	struct drm_device *dev = crtc->dev;
3443
	struct drm_i915_private *dev_priv = dev->dev_private;
3444
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3445
	int pipe = intel_crtc->pipe;
3446
	u32 reg, temp, tries;
2327 Serge 3447
 
5060 serge 3448
	/* FDI needs bits from pipe first */
6084 serge 3449
	assert_pipe_enabled(dev_priv, pipe);
2327 Serge 3450
 
6084 serge 3451
	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3452
	   for train result */
3453
	reg = FDI_RX_IMR(pipe);
3454
	temp = I915_READ(reg);
3455
	temp &= ~FDI_RX_SYMBOL_LOCK;
3456
	temp &= ~FDI_RX_BIT_LOCK;
3457
	I915_WRITE(reg, temp);
3458
	I915_READ(reg);
3459
	udelay(150);
2327 Serge 3460
 
6084 serge 3461
	/* enable CPU FDI TX and PCH FDI RX */
3462
	reg = FDI_TX_CTL(pipe);
3463
	temp = I915_READ(reg);
4104 Serge 3464
	temp &= ~FDI_DP_PORT_WIDTH_MASK;
6084 serge 3465
	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3466
	temp &= ~FDI_LINK_TRAIN_NONE;
3467
	temp |= FDI_LINK_TRAIN_PATTERN_1;
3468
	I915_WRITE(reg, temp | FDI_TX_ENABLE);
2327 Serge 3469
 
6084 serge 3470
	reg = FDI_RX_CTL(pipe);
3471
	temp = I915_READ(reg);
3472
	temp &= ~FDI_LINK_TRAIN_NONE;
3473
	temp |= FDI_LINK_TRAIN_PATTERN_1;
3474
	I915_WRITE(reg, temp | FDI_RX_ENABLE);
2327 Serge 3475
 
6084 serge 3476
	POSTING_READ(reg);
3477
	udelay(150);
2327 Serge 3478
 
6084 serge 3479
	/* Ironlake workaround, enable clock pointer after FDI enable*/
3480
	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3481
	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3482
		   FDI_RX_PHASE_SYNC_POINTER_EN);
2327 Serge 3483
 
6084 serge 3484
	reg = FDI_RX_IIR(pipe);
3485
	for (tries = 0; tries < 5; tries++) {
3486
		temp = I915_READ(reg);
3487
		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2327 Serge 3488
 
6084 serge 3489
		if ((temp & FDI_RX_BIT_LOCK)) {
3490
			DRM_DEBUG_KMS("FDI train 1 done.\n");
3491
			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3492
			break;
3493
		}
3494
	}
3495
	if (tries == 5)
3496
		DRM_ERROR("FDI train 1 fail!\n");
2327 Serge 3497
 
6084 serge 3498
	/* Train 2 */
3499
	reg = FDI_TX_CTL(pipe);
3500
	temp = I915_READ(reg);
3501
	temp &= ~FDI_LINK_TRAIN_NONE;
3502
	temp |= FDI_LINK_TRAIN_PATTERN_2;
3503
	I915_WRITE(reg, temp);
2327 Serge 3504
 
6084 serge 3505
	reg = FDI_RX_CTL(pipe);
3506
	temp = I915_READ(reg);
3507
	temp &= ~FDI_LINK_TRAIN_NONE;
3508
	temp |= FDI_LINK_TRAIN_PATTERN_2;
3509
	I915_WRITE(reg, temp);
2327 Serge 3510
 
6084 serge 3511
	POSTING_READ(reg);
3512
	udelay(150);
2327 Serge 3513
 
6084 serge 3514
	reg = FDI_RX_IIR(pipe);
3515
	for (tries = 0; tries < 5; tries++) {
3516
		temp = I915_READ(reg);
3517
		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2327 Serge 3518
 
6084 serge 3519
		if (temp & FDI_RX_SYMBOL_LOCK) {
3520
			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3521
			DRM_DEBUG_KMS("FDI train 2 done.\n");
3522
			break;
3523
		}
3524
	}
3525
	if (tries == 5)
3526
		DRM_ERROR("FDI train 2 fail!\n");
2327 Serge 3527
 
6084 serge 3528
	DRM_DEBUG_KMS("FDI train done\n");
2327 Serge 3529
 
3530
}
3531
 
2342 Serge 3532
static const int snb_b_fdi_train_param[] = {
6084 serge 3533
	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3534
	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3535
	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3536
	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2327 Serge 3537
};
3538
 
3539
/* The FDI link training functions for SNB/Cougarpoint. */
3540
static void gen6_fdi_link_train(struct drm_crtc *crtc)
3541
{
6084 serge 3542
	struct drm_device *dev = crtc->dev;
3543
	struct drm_i915_private *dev_priv = dev->dev_private;
3544
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3545
	int pipe = intel_crtc->pipe;
3031 serge 3546
	u32 reg, temp, i, retry;
2327 Serge 3547
 
6084 serge 3548
	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3549
	   for train result */
3550
	reg = FDI_RX_IMR(pipe);
3551
	temp = I915_READ(reg);
3552
	temp &= ~FDI_RX_SYMBOL_LOCK;
3553
	temp &= ~FDI_RX_BIT_LOCK;
3554
	I915_WRITE(reg, temp);
2327 Serge 3555
 
6084 serge 3556
	POSTING_READ(reg);
3557
	udelay(150);
2327 Serge 3558
 
6084 serge 3559
	/* enable CPU FDI TX and PCH FDI RX */
3560
	reg = FDI_TX_CTL(pipe);
3561
	temp = I915_READ(reg);
4104 Serge 3562
	temp &= ~FDI_DP_PORT_WIDTH_MASK;
6084 serge 3563
	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3564
	temp &= ~FDI_LINK_TRAIN_NONE;
3565
	temp |= FDI_LINK_TRAIN_PATTERN_1;
3566
	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3567
	/* SNB-B */
3568
	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3569
	I915_WRITE(reg, temp | FDI_TX_ENABLE);
2327 Serge 3570
 
3243 Serge 3571
	I915_WRITE(FDI_RX_MISC(pipe),
3572
		   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3573
 
6084 serge 3574
	reg = FDI_RX_CTL(pipe);
3575
	temp = I915_READ(reg);
3576
	if (HAS_PCH_CPT(dev)) {
3577
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3578
		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3579
	} else {
3580
		temp &= ~FDI_LINK_TRAIN_NONE;
3581
		temp |= FDI_LINK_TRAIN_PATTERN_1;
3582
	}
3583
	I915_WRITE(reg, temp | FDI_RX_ENABLE);
2327 Serge 3584
 
6084 serge 3585
	POSTING_READ(reg);
3586
	udelay(150);
2327 Serge 3587
 
2342 Serge 3588
	for (i = 0; i < 4; i++) {
6084 serge 3589
		reg = FDI_TX_CTL(pipe);
3590
		temp = I915_READ(reg);
3591
		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3592
		temp |= snb_b_fdi_train_param[i];
3593
		I915_WRITE(reg, temp);
2327 Serge 3594
 
6084 serge 3595
		POSTING_READ(reg);
3596
		udelay(500);
2327 Serge 3597
 
3031 serge 3598
		for (retry = 0; retry < 5; retry++) {
6084 serge 3599
			reg = FDI_RX_IIR(pipe);
3600
			temp = I915_READ(reg);
3601
			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3602
			if (temp & FDI_RX_BIT_LOCK) {
3603
				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3604
				DRM_DEBUG_KMS("FDI train 1 done.\n");
3605
				break;
3606
			}
3031 serge 3607
			udelay(50);
3608
		}
3609
		if (retry < 5)
3610
			break;
6084 serge 3611
	}
3612
	if (i == 4)
3613
		DRM_ERROR("FDI train 1 fail!\n");
2327 Serge 3614
 
6084 serge 3615
	/* Train 2 */
3616
	reg = FDI_TX_CTL(pipe);
3617
	temp = I915_READ(reg);
3618
	temp &= ~FDI_LINK_TRAIN_NONE;
3619
	temp |= FDI_LINK_TRAIN_PATTERN_2;
3620
	if (IS_GEN6(dev)) {
3621
		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3622
		/* SNB-B */
3623
		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3624
	}
3625
	I915_WRITE(reg, temp);
2327 Serge 3626
 
6084 serge 3627
	reg = FDI_RX_CTL(pipe);
3628
	temp = I915_READ(reg);
3629
	if (HAS_PCH_CPT(dev)) {
3630
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3631
		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3632
	} else {
3633
		temp &= ~FDI_LINK_TRAIN_NONE;
3634
		temp |= FDI_LINK_TRAIN_PATTERN_2;
3635
	}
3636
	I915_WRITE(reg, temp);
2327 Serge 3637
 
6084 serge 3638
	POSTING_READ(reg);
3639
	udelay(150);
2327 Serge 3640
 
2342 Serge 3641
	for (i = 0; i < 4; i++) {
6084 serge 3642
		reg = FDI_TX_CTL(pipe);
3643
		temp = I915_READ(reg);
3644
		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3645
		temp |= snb_b_fdi_train_param[i];
3646
		I915_WRITE(reg, temp);
2327 Serge 3647
 
6084 serge 3648
		POSTING_READ(reg);
3649
		udelay(500);
2327 Serge 3650
 
3031 serge 3651
		for (retry = 0; retry < 5; retry++) {
6084 serge 3652
			reg = FDI_RX_IIR(pipe);
3653
			temp = I915_READ(reg);
3654
			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3655
			if (temp & FDI_RX_SYMBOL_LOCK) {
3656
				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3657
				DRM_DEBUG_KMS("FDI train 2 done.\n");
3658
				break;
3659
			}
3031 serge 3660
			udelay(50);
3661
		}
3662
		if (retry < 5)
3663
			break;
6084 serge 3664
	}
3665
	if (i == 4)
3666
		DRM_ERROR("FDI train 2 fail!\n");
2327 Serge 3667
 
6084 serge 3668
	DRM_DEBUG_KMS("FDI train done.\n");
2327 Serge 3669
}
3670
 
3671
/* Manual link training for Ivy Bridge A0 parts */
3672
static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3673
{
6084 serge 3674
	struct drm_device *dev = crtc->dev;
3675
	struct drm_i915_private *dev_priv = dev->dev_private;
3676
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3677
	int pipe = intel_crtc->pipe;
4104 Serge 3678
	u32 reg, temp, i, j;
2327 Serge 3679
 
6084 serge 3680
	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3681
	   for train result */
3682
	reg = FDI_RX_IMR(pipe);
3683
	temp = I915_READ(reg);
3684
	temp &= ~FDI_RX_SYMBOL_LOCK;
3685
	temp &= ~FDI_RX_BIT_LOCK;
3686
	I915_WRITE(reg, temp);
2327 Serge 3687
 
6084 serge 3688
	POSTING_READ(reg);
3689
	udelay(150);
2327 Serge 3690
 
3243 Serge 3691
	DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3692
		      I915_READ(FDI_RX_IIR(pipe)));
3693
 
4104 Serge 3694
	/* Try each vswing and preemphasis setting twice before moving on */
3695
	for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3696
		/* disable first in case we need to retry */
3697
		reg = FDI_TX_CTL(pipe);
3698
		temp = I915_READ(reg);
3699
		temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3700
		temp &= ~FDI_TX_ENABLE;
3701
		I915_WRITE(reg, temp);
3702
 
3703
		reg = FDI_RX_CTL(pipe);
3704
		temp = I915_READ(reg);
3705
		temp &= ~FDI_LINK_TRAIN_AUTO;
3706
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3707
		temp &= ~FDI_RX_ENABLE;
3708
		I915_WRITE(reg, temp);
3709
 
6084 serge 3710
		/* enable CPU FDI TX and PCH FDI RX */
3711
		reg = FDI_TX_CTL(pipe);
3712
		temp = I915_READ(reg);
3713
		temp &= ~FDI_DP_PORT_WIDTH_MASK;
3714
		temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3715
		temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3716
		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4104 Serge 3717
		temp |= snb_b_fdi_train_param[j/2];
6084 serge 3718
		temp |= FDI_COMPOSITE_SYNC;
3719
		I915_WRITE(reg, temp | FDI_TX_ENABLE);
2327 Serge 3720
 
6084 serge 3721
		I915_WRITE(FDI_RX_MISC(pipe),
3722
			   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3243 Serge 3723
 
6084 serge 3724
		reg = FDI_RX_CTL(pipe);
3725
		temp = I915_READ(reg);
3726
		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3727
		temp |= FDI_COMPOSITE_SYNC;
3728
		I915_WRITE(reg, temp | FDI_RX_ENABLE);
2327 Serge 3729
 
6084 serge 3730
		POSTING_READ(reg);
4104 Serge 3731
		udelay(1); /* should be 0.5us */
2327 Serge 3732
 
6084 serge 3733
		for (i = 0; i < 4; i++) {
3734
			reg = FDI_RX_IIR(pipe);
3735
			temp = I915_READ(reg);
3736
			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2327 Serge 3737
 
6084 serge 3738
			if (temp & FDI_RX_BIT_LOCK ||
3739
			    (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3740
				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4104 Serge 3741
				DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3742
					      i);
6084 serge 3743
				break;
3744
			}
4104 Serge 3745
			udelay(1); /* should be 0.5us */
3746
		}
3747
		if (i == 4) {
3748
			DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3749
			continue;
6084 serge 3750
		}
2327 Serge 3751
 
6084 serge 3752
		/* Train 2 */
3753
		reg = FDI_TX_CTL(pipe);
3754
		temp = I915_READ(reg);
3755
		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3756
		temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3757
		I915_WRITE(reg, temp);
2327 Serge 3758
 
6084 serge 3759
		reg = FDI_RX_CTL(pipe);
3760
		temp = I915_READ(reg);
3761
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3762
		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3763
		I915_WRITE(reg, temp);
2327 Serge 3764
 
6084 serge 3765
		POSTING_READ(reg);
4104 Serge 3766
		udelay(2); /* should be 1.5us */
2327 Serge 3767
 
6084 serge 3768
		for (i = 0; i < 4; i++) {
3769
			reg = FDI_RX_IIR(pipe);
3770
			temp = I915_READ(reg);
3771
			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2327 Serge 3772
 
4104 Serge 3773
			if (temp & FDI_RX_SYMBOL_LOCK ||
3774
			    (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
6084 serge 3775
				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4104 Serge 3776
				DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3777
					      i);
3778
				goto train_done;
6084 serge 3779
			}
4104 Serge 3780
			udelay(2); /* should be 1.5us */
6084 serge 3781
		}
3782
		if (i == 4)
4104 Serge 3783
			DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3784
	}
2327 Serge 3785
 
4104 Serge 3786
train_done:
6084 serge 3787
	DRM_DEBUG_KMS("FDI train done.\n");
2327 Serge 3788
}
3789
 
3031 serge 3790
static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2327 Serge 3791
{
3031 serge 3792
	struct drm_device *dev = intel_crtc->base.dev;
2327 Serge 3793
	struct drm_i915_private *dev_priv = dev->dev_private;
3794
	int pipe = intel_crtc->pipe;
3795
	u32 reg, temp;
3796
 
3797
 
3798
	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3799
	reg = FDI_RX_CTL(pipe);
3800
	temp = I915_READ(reg);
4104 Serge 3801
	temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6084 serge 3802
	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3480 Serge 3803
	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2327 Serge 3804
	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3805
 
3806
	POSTING_READ(reg);
3807
	udelay(200);
3808
 
3809
	/* Switch from Rawclk to PCDclk */
3810
	temp = I915_READ(reg);
3811
	I915_WRITE(reg, temp | FDI_PCDCLK);
3812
 
3813
	POSTING_READ(reg);
3814
	udelay(200);
3815
 
3816
	/* Enable CPU FDI TX PLL, always on for Ironlake */
3817
	reg = FDI_TX_CTL(pipe);
3818
	temp = I915_READ(reg);
3819
	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3820
		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3821
 
3822
		POSTING_READ(reg);
3823
		udelay(100);
3824
	}
3825
}
3826
 
3031 serge 3827
static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3828
{
3829
	struct drm_device *dev = intel_crtc->base.dev;
3830
	struct drm_i915_private *dev_priv = dev->dev_private;
3831
	int pipe = intel_crtc->pipe;
3832
	u32 reg, temp;
3833
 
3834
	/* Switch from PCDclk to Rawclk */
3835
	reg = FDI_RX_CTL(pipe);
3836
	temp = I915_READ(reg);
3837
	I915_WRITE(reg, temp & ~FDI_PCDCLK);
3838
 
3839
	/* Disable CPU FDI TX PLL */
3840
	reg = FDI_TX_CTL(pipe);
3841
	temp = I915_READ(reg);
3842
	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3843
 
3844
	POSTING_READ(reg);
3845
	udelay(100);
3846
 
3847
	reg = FDI_RX_CTL(pipe);
3848
	temp = I915_READ(reg);
3849
	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3850
 
3851
	/* Wait for the clocks to turn off. */
3852
	POSTING_READ(reg);
3853
	udelay(100);
3854
}
3855
 
2327 Serge 3856
static void ironlake_fdi_disable(struct drm_crtc *crtc)
3857
{
3858
	struct drm_device *dev = crtc->dev;
3859
	struct drm_i915_private *dev_priv = dev->dev_private;
3860
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3861
	int pipe = intel_crtc->pipe;
3862
	u32 reg, temp;
3863
 
3864
	/* disable CPU FDI tx and PCH FDI rx */
3865
	reg = FDI_TX_CTL(pipe);
3866
	temp = I915_READ(reg);
3867
	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3868
	POSTING_READ(reg);
3869
 
3870
	reg = FDI_RX_CTL(pipe);
3871
	temp = I915_READ(reg);
3872
	temp &= ~(0x7 << 16);
3480 Serge 3873
	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2327 Serge 3874
	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3875
 
3876
	POSTING_READ(reg);
3877
	udelay(100);
3878
 
3879
	/* Ironlake workaround, disable clock pointer after downing FDI */
5060 serge 3880
	if (HAS_PCH_IBX(dev))
2327 Serge 3881
		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3882
 
3883
	/* still set train pattern 1 */
3884
	reg = FDI_TX_CTL(pipe);
3885
	temp = I915_READ(reg);
3886
	temp &= ~FDI_LINK_TRAIN_NONE;
3887
	temp |= FDI_LINK_TRAIN_PATTERN_1;
3888
	I915_WRITE(reg, temp);
3889
 
3890
	reg = FDI_RX_CTL(pipe);
3891
	temp = I915_READ(reg);
3892
	if (HAS_PCH_CPT(dev)) {
3893
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3894
		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3895
	} else {
3896
		temp &= ~FDI_LINK_TRAIN_NONE;
3897
		temp |= FDI_LINK_TRAIN_PATTERN_1;
3898
	}
3899
	/* BPC in FDI rx is consistent with that in PIPECONF */
3900
	temp &= ~(0x07 << 16);
3480 Serge 3901
	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2327 Serge 3902
	I915_WRITE(reg, temp);
3903
 
3904
	POSTING_READ(reg);
3905
	udelay(100);
3906
}
3907
 
5060 serge 3908
bool intel_has_pending_fb_unpin(struct drm_device *dev)
2327 Serge 3909
{
5060 serge 3910
	struct intel_crtc *crtc;
2327 Serge 3911
 
5060 serge 3912
	/* Note that we don't need to be called with mode_config.lock here
3913
	 * as our list of CRTC objects is static for the lifetime of the
3914
	 * device and so cannot disappear as we iterate. Similarly, we can
3915
	 * happily treat the predicates as racy, atomic checks as userspace
3916
	 * cannot claim and pin a new fb without at least acquring the
3917
	 * struct_mutex and so serialising with us.
3918
	 */
3919
	for_each_intel_crtc(dev, crtc) {
3920
		if (atomic_read(&crtc->unpin_work_count) == 0)
3921
			continue;
2327 Serge 3922
 
5060 serge 3923
		if (crtc->unpin_work)
3924
			intel_wait_for_vblank(dev, crtc->pipe);
3031 serge 3925
 
5060 serge 3926
		return true;
3927
	}
3928
 
3929
	return false;
2327 Serge 3930
}
3931
 
6283 serge 3932
static void page_flip_completed(struct intel_crtc *intel_crtc)
3933
{
3934
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3935
	struct intel_unpin_work *work = intel_crtc->unpin_work;
3936
 
3937
	/* ensure that the unpin work is consistent wrt ->pending. */
3938
	smp_rmb();
3939
	intel_crtc->unpin_work = NULL;
3940
 
3941
	if (work->event)
3942
		drm_send_vblank_event(intel_crtc->base.dev,
3943
				      intel_crtc->pipe,
3944
				      work->event);
3945
 
3946
	drm_crtc_vblank_put(&intel_crtc->base);
3947
 
6320 serge 3948
	wake_up_all(&dev_priv->pending_flip_queue);
3949
	queue_work(dev_priv->wq, &work->work);
6283 serge 3950
 
6320 serge 3951
	trace_i915_flip_complete(intel_crtc->plane,
3952
				 work->pending_flip_obj);
6283 serge 3953
}
6320 serge 3954
 
5060 serge 3955
void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2327 Serge 3956
{
3031 serge 3957
	struct drm_device *dev = crtc->dev;
3958
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 3959
 
3480 Serge 3960
	WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
5354 serge 3961
	if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3962
				       !intel_crtc_has_pending_flip(crtc),
3963
				       60*HZ) == 0)) {
3964
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3480 Serge 3965
 
5354 serge 3966
		spin_lock_irq(&dev->event_lock);
3967
		if (intel_crtc->unpin_work) {
3968
			WARN_ONCE(1, "Removing stuck page flip\n");
3969
			page_flip_completed(intel_crtc);
3970
		}
3971
		spin_unlock_irq(&dev->event_lock);
3972
	}
3031 serge 3973
 
5354 serge 3974
	if (crtc->primary->fb) {
6084 serge 3975
		mutex_lock(&dev->struct_mutex);
3976
		intel_finish_fb(crtc->primary->fb);
3977
		mutex_unlock(&dev->struct_mutex);
5354 serge 3978
	}
2327 Serge 3979
}
3980
 
3031 serge 3981
/* Program iCLKIP clock to the desired frequency */
3982
static void lpt_program_iclkip(struct drm_crtc *crtc)
3983
{
3984
	struct drm_device *dev = crtc->dev;
3985
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 3986
	int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3031 serge 3987
	u32 divsel, phaseinc, auxdiv, phasedir = 0;
3988
	u32 temp;
3989
 
6084 serge 3990
	mutex_lock(&dev_priv->sb_lock);
3480 Serge 3991
 
3031 serge 3992
	/* It is necessary to ungate the pixclk gate prior to programming
3993
	 * the divisors, and gate it back when it is done.
3994
	 */
3995
	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3996
 
3997
	/* Disable SSCCTL */
3998
	intel_sbi_write(dev_priv, SBI_SSCCTL6,
3243 Serge 3999
			intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
4000
				SBI_SSCCTL_DISABLE,
4001
			SBI_ICLK);
3031 serge 4002
 
4003
	/* 20MHz is a corner case which is out of range for the 7-bit divisor */
4560 Serge 4004
	if (clock == 20000) {
3031 serge 4005
		auxdiv = 1;
4006
		divsel = 0x41;
4007
		phaseinc = 0x20;
4008
	} else {
4009
		/* The iCLK virtual clock root frequency is in MHz,
4560 Serge 4010
		 * but the adjusted_mode->crtc_clock in in KHz. To get the
4011
		 * divisors, it is necessary to divide one by another, so we
3031 serge 4012
		 * convert the virtual clock precision to KHz here for higher
4013
		 * precision.
4014
		 */
4015
		u32 iclk_virtual_root_freq = 172800 * 1000;
4016
		u32 iclk_pi_range = 64;
4017
		u32 desired_divisor, msb_divisor_value, pi_value;
4018
 
4560 Serge 4019
		desired_divisor = (iclk_virtual_root_freq / clock);
3031 serge 4020
		msb_divisor_value = desired_divisor / iclk_pi_range;
4021
		pi_value = desired_divisor % iclk_pi_range;
4022
 
4023
		auxdiv = 0;
4024
		divsel = msb_divisor_value - 2;
4025
		phaseinc = pi_value;
4026
	}
4027
 
4028
	/* This should not happen with any sane values */
4029
	WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4030
		~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4031
	WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4032
		~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4033
 
4034
	DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4560 Serge 4035
			clock,
3031 serge 4036
			auxdiv,
4037
			divsel,
4038
			phasedir,
4039
			phaseinc);
4040
 
4041
	/* Program SSCDIVINTPHASE6 */
3243 Serge 4042
	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3031 serge 4043
	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4044
	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4045
	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4046
	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4047
	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4048
	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3243 Serge 4049
	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3031 serge 4050
 
4051
	/* Program SSCAUXDIV */
3243 Serge 4052
	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3031 serge 4053
	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4054
	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3243 Serge 4055
	intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3031 serge 4056
 
4057
	/* Enable modulator and associated divider */
3243 Serge 4058
	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3031 serge 4059
	temp &= ~SBI_SSCCTL_DISABLE;
3243 Serge 4060
	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3031 serge 4061
 
4062
	/* Wait for initialization time */
4063
	udelay(24);
4064
 
4065
	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3480 Serge 4066
 
6084 serge 4067
	mutex_unlock(&dev_priv->sb_lock);
3031 serge 4068
}
4069
 
4104 Serge 4070
static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4071
						enum pipe pch_transcoder)
4072
{
4073
	struct drm_device *dev = crtc->base.dev;
4074
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 4075
	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4104 Serge 4076
 
4077
	I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4078
		   I915_READ(HTOTAL(cpu_transcoder)));
4079
	I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4080
		   I915_READ(HBLANK(cpu_transcoder)));
4081
	I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4082
		   I915_READ(HSYNC(cpu_transcoder)));
4083
 
4084
	I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4085
		   I915_READ(VTOTAL(cpu_transcoder)));
4086
	I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4087
		   I915_READ(VBLANK(cpu_transcoder)));
4088
	I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4089
		   I915_READ(VSYNC(cpu_transcoder)));
4090
	I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4091
		   I915_READ(VSYNCSHIFT(cpu_transcoder)));
4092
}
4093
 
6084 serge 4094
static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4280 Serge 4095
{
4096
	struct drm_i915_private *dev_priv = dev->dev_private;
4097
	uint32_t temp;
4098
 
4099
	temp = I915_READ(SOUTH_CHICKEN1);
6084 serge 4100
	if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4280 Serge 4101
		return;
4102
 
4103
	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4104
	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4105
 
6084 serge 4106
	temp &= ~FDI_BC_BIFURCATION_SELECT;
4107
	if (enable)
4108
		temp |= FDI_BC_BIFURCATION_SELECT;
4109
 
4110
	DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4280 Serge 4111
	I915_WRITE(SOUTH_CHICKEN1, temp);
4112
	POSTING_READ(SOUTH_CHICKEN1);
4113
}
4114
 
4115
static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4116
{
4117
	struct drm_device *dev = intel_crtc->base.dev;
4118
 
4119
	switch (intel_crtc->pipe) {
4120
	case PIPE_A:
4121
		break;
4122
	case PIPE_B:
6084 serge 4123
		if (intel_crtc->config->fdi_lanes > 2)
4124
			cpt_set_fdi_bc_bifurcation(dev, false);
4280 Serge 4125
		else
6084 serge 4126
			cpt_set_fdi_bc_bifurcation(dev, true);
4280 Serge 4127
 
4128
		break;
4129
	case PIPE_C:
6084 serge 4130
		cpt_set_fdi_bc_bifurcation(dev, true);
4280 Serge 4131
 
4132
		break;
4133
	default:
4134
		BUG();
4135
	}
4136
}
4137
 
2327 Serge 4138
/*
4139
 * Enable PCH resources required for PCH ports:
4140
 *   - PCH PLLs
4141
 *   - FDI training & RX/TX
4142
 *   - update transcoder timings
4143
 *   - DP transcoding bits
4144
 *   - transcoder
4145
 */
4146
static void ironlake_pch_enable(struct drm_crtc *crtc)
4147
{
4148
	struct drm_device *dev = crtc->dev;
4149
	struct drm_i915_private *dev_priv = dev->dev_private;
4150
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4151
	int pipe = intel_crtc->pipe;
3031 serge 4152
	u32 reg, temp;
2327 Serge 4153
 
4104 Serge 4154
	assert_pch_transcoder_disabled(dev_priv, pipe);
3031 serge 4155
 
4280 Serge 4156
	if (IS_IVYBRIDGE(dev))
4157
		ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4158
 
3243 Serge 4159
	/* Write the TU size bits before fdi link training, so that error
4160
	 * detection works. */
4161
	I915_WRITE(FDI_RX_TUSIZE1(pipe),
4162
		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4163
 
2327 Serge 4164
	/* For PCH output, training FDI link */
4165
	dev_priv->display.fdi_link_train(crtc);
4166
 
4104 Serge 4167
	/* We need to program the right clock selection before writing the pixel
4168
	 * mutliplier into the DPLL. */
3243 Serge 4169
	if (HAS_PCH_CPT(dev)) {
3031 serge 4170
		u32 sel;
2342 Serge 4171
 
2327 Serge 4172
		temp = I915_READ(PCH_DPLL_SEL);
4104 Serge 4173
		temp |= TRANS_DPLL_ENABLE(pipe);
4174
		sel = TRANS_DPLLB_SEL(pipe);
6084 serge 4175
		if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
3031 serge 4176
			temp |= sel;
4177
		else
4178
			temp &= ~sel;
2327 Serge 4179
		I915_WRITE(PCH_DPLL_SEL, temp);
4180
	}
4181
 
4104 Serge 4182
	/* XXX: pch pll's can be enabled any time before we enable the PCH
4183
	 * transcoder, and we actually should do this to not upset any PCH
4184
	 * transcoder that already use the clock when we share it.
4185
	 *
4186
	 * Note that enable_shared_dpll tries to do the right thing, but
4187
	 * get_shared_dpll unconditionally resets the pll - we need that to have
4188
	 * the right LVDS enable sequence. */
5060 serge 4189
	intel_enable_shared_dpll(intel_crtc);
4104 Serge 4190
 
2327 Serge 4191
	/* set transcoder timing, panel must allow it */
4192
	assert_panel_unlocked(dev_priv, pipe);
4104 Serge 4193
	ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
2327 Serge 4194
 
4195
	intel_fdi_normal_train(crtc);
4196
 
4197
	/* For PCH DP, enable TRANS_DP_CTL */
6084 serge 4198
	if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
3480 Serge 4199
		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
2327 Serge 4200
		reg = TRANS_DP_CTL(pipe);
4201
		temp = I915_READ(reg);
4202
		temp &= ~(TRANS_DP_PORT_SEL_MASK |
4203
			  TRANS_DP_SYNC_MASK |
4204
			  TRANS_DP_BPC_MASK);
6084 serge 4205
		temp |= TRANS_DP_OUTPUT_ENABLE;
2327 Serge 4206
		temp |= bpc << 9; /* same format but at 11:9 */
4207
 
4208
		if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4209
			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4210
		if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4211
			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4212
 
4213
		switch (intel_trans_dp_port_sel(crtc)) {
4214
		case PCH_DP_B:
4215
			temp |= TRANS_DP_PORT_SEL_B;
4216
			break;
4217
		case PCH_DP_C:
4218
			temp |= TRANS_DP_PORT_SEL_C;
4219
			break;
4220
		case PCH_DP_D:
4221
			temp |= TRANS_DP_PORT_SEL_D;
4222
			break;
4223
		default:
3243 Serge 4224
			BUG();
2327 Serge 4225
		}
4226
 
4227
		I915_WRITE(reg, temp);
4228
	}
4229
 
3243 Serge 4230
	ironlake_enable_pch_transcoder(dev_priv, pipe);
2327 Serge 4231
}
4232
 
3243 Serge 4233
static void lpt_pch_enable(struct drm_crtc *crtc)
4234
{
4235
	struct drm_device *dev = crtc->dev;
4236
	struct drm_i915_private *dev_priv = dev->dev_private;
4237
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6084 serge 4238
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
3243 Serge 4239
 
4104 Serge 4240
	assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3243 Serge 4241
 
4242
	lpt_program_iclkip(crtc);
4243
 
4244
	/* Set transcoder timing. */
4104 Serge 4245
	ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3243 Serge 4246
 
4247
	lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4248
}
4249
 
6084 serge 4250
struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4251
						struct intel_crtc_state *crtc_state)
3031 serge 4252
{
4104 Serge 4253
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
5354 serge 4254
	struct intel_shared_dpll *pll;
6084 serge 4255
	struct intel_shared_dpll_config *shared_dpll;
4104 Serge 4256
	enum intel_dpll_id i;
6084 serge 4257
	int max = dev_priv->num_shared_dpll;
3031 serge 4258
 
6084 serge 4259
	shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4260
 
3031 serge 4261
	if (HAS_PCH_IBX(dev_priv->dev)) {
4262
		/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4104 Serge 4263
		i = (enum intel_dpll_id) crtc->pipe;
4264
		pll = &dev_priv->shared_dplls[i];
3031 serge 4265
 
4104 Serge 4266
		DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4267
			      crtc->base.base.id, pll->name);
3031 serge 4268
 
6084 serge 4269
		WARN_ON(shared_dpll[i].crtc_mask);
5060 serge 4270
 
3031 serge 4271
		goto found;
4272
	}
4273
 
6084 serge 4274
	if (IS_BROXTON(dev_priv->dev)) {
4275
		/* PLL is attached to port in bxt */
4276
		struct intel_encoder *encoder;
4277
		struct intel_digital_port *intel_dig_port;
4278
 
4279
		encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4280
		if (WARN_ON(!encoder))
4281
			return NULL;
4282
 
4283
		intel_dig_port = enc_to_dig_port(&encoder->base);
4284
		/* 1:1 mapping between ports and PLLs */
4285
		i = (enum intel_dpll_id)intel_dig_port->port;
4104 Serge 4286
		pll = &dev_priv->shared_dplls[i];
6084 serge 4287
		DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4288
			crtc->base.base.id, pll->name);
4289
		WARN_ON(shared_dpll[i].crtc_mask);
3031 serge 4290
 
6084 serge 4291
		goto found;
4292
	} else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
4293
		/* Do not consider SPLL */
4294
		max = 2;
4295
 
4296
	for (i = 0; i < max; i++) {
4297
		pll = &dev_priv->shared_dplls[i];
4298
 
3031 serge 4299
		/* Only want to check enabled timings first */
6084 serge 4300
		if (shared_dpll[i].crtc_mask == 0)
3031 serge 4301
			continue;
4302
 
6084 serge 4303
		if (memcmp(&crtc_state->dpll_hw_state,
4304
			   &shared_dpll[i].hw_state,
4305
			   sizeof(crtc_state->dpll_hw_state)) == 0) {
5354 serge 4306
			DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4307
				      crtc->base.base.id, pll->name,
6084 serge 4308
				      shared_dpll[i].crtc_mask,
5354 serge 4309
				      pll->active);
3031 serge 4310
			goto found;
4311
		}
4312
	}
4313
 
4314
	/* Ok no matching timings, maybe there's a free one? */
4104 Serge 4315
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4316
		pll = &dev_priv->shared_dplls[i];
6084 serge 4317
		if (shared_dpll[i].crtc_mask == 0) {
4104 Serge 4318
			DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4319
				      crtc->base.base.id, pll->name);
3031 serge 4320
			goto found;
4321
		}
4322
	}
4323
 
4324
	return NULL;
4325
 
4326
found:
6084 serge 4327
	if (shared_dpll[i].crtc_mask == 0)
4328
		shared_dpll[i].hw_state =
4329
			crtc_state->dpll_hw_state;
5060 serge 4330
 
6084 serge 4331
	crtc_state->shared_dpll = i;
4104 Serge 4332
	DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4333
			 pipe_name(crtc->pipe));
4334
 
6084 serge 4335
	shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
3031 serge 4336
 
4337
	return pll;
4338
}
4339
 
6084 serge 4340
static void intel_shared_dpll_commit(struct drm_atomic_state *state)
5354 serge 4341
{
6084 serge 4342
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4343
	struct intel_shared_dpll_config *shared_dpll;
5354 serge 4344
	struct intel_shared_dpll *pll;
4345
	enum intel_dpll_id i;
4346
 
6084 serge 4347
	if (!to_intel_atomic_state(state)->dpll_set)
4348
		return;
4349
 
4350
	shared_dpll = to_intel_atomic_state(state)->shared_dpll;
5354 serge 4351
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4352
		pll = &dev_priv->shared_dplls[i];
6084 serge 4353
		pll->config = shared_dpll[i];
4354
	}
4355
}
5354 serge 4356
 
6084 serge 4357
static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4358
{
4359
	struct drm_i915_private *dev_priv = dev->dev_private;
4360
	int dslreg = PIPEDSL(pipe);
4361
	u32 temp;
5354 serge 4362
 
6084 serge 4363
	temp = I915_READ(dslreg);
4364
	udelay(500);
4365
	if (wait_for(I915_READ(dslreg) != temp, 5)) {
4366
		if (wait_for(I915_READ(dslreg) != temp, 5))
4367
			DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
5354 serge 4368
	}
6084 serge 4369
}
5354 serge 4370
 
6084 serge 4371
static int
4372
skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4373
		  unsigned scaler_user, int *scaler_id, unsigned int rotation,
4374
		  int src_w, int src_h, int dst_w, int dst_h)
4375
{
4376
	struct intel_crtc_scaler_state *scaler_state =
4377
		&crtc_state->scaler_state;
4378
	struct intel_crtc *intel_crtc =
4379
		to_intel_crtc(crtc_state->base.crtc);
4380
	int need_scaling;
5354 serge 4381
 
6084 serge 4382
	need_scaling = intel_rotation_90_or_270(rotation) ?
4383
		(src_h != dst_w || src_w != dst_h):
4384
		(src_w != dst_w || src_h != dst_h);
4385
 
4386
	/*
4387
	 * if plane is being disabled or scaler is no more required or force detach
4388
	 *  - free scaler binded to this plane/crtc
4389
	 *  - in order to do this, update crtc->scaler_usage
4390
	 *
4391
	 * Here scaler state in crtc_state is set free so that
4392
	 * scaler can be assigned to other user. Actual register
4393
	 * update to free the scaler is done in plane/panel-fit programming.
4394
	 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4395
	 */
4396
	if (force_detach || !need_scaling) {
4397
		if (*scaler_id >= 0) {
4398
			scaler_state->scaler_users &= ~(1 << scaler_user);
4399
			scaler_state->scalers[*scaler_id].in_use = 0;
4400
 
4401
			DRM_DEBUG_KMS("scaler_user index %u.%u: "
4402
				"Staged freeing scaler id %d scaler_users = 0x%x\n",
4403
				intel_crtc->pipe, scaler_user, *scaler_id,
4404
				scaler_state->scaler_users);
4405
			*scaler_id = -1;
4406
		}
4407
		return 0;
5354 serge 4408
	}
4409
 
6084 serge 4410
	/* range checks */
4411
	if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4412
		dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4413
 
4414
		src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4415
		dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4416
		DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4417
			"size is out of scaler range\n",
4418
			intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4419
		return -EINVAL;
4420
	}
4421
 
4422
	/* mark this plane as a scaler user in crtc_state */
4423
	scaler_state->scaler_users |= (1 << scaler_user);
4424
	DRM_DEBUG_KMS("scaler_user index %u.%u: "
4425
		"staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4426
		intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4427
		scaler_state->scaler_users);
4428
 
4429
	return 0;
5354 serge 4430
}
4431
 
6084 serge 4432
/**
4433
 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4434
 *
4435
 * @state: crtc's scaler state
4436
 *
4437
 * Return
4438
 *     0 - scaler_usage updated successfully
4439
 *    error - requested scaling cannot be supported or other error condition
4440
 */
4441
int skl_update_scaler_crtc(struct intel_crtc_state *state)
5354 serge 4442
{
6084 serge 4443
	struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4444
	const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
5354 serge 4445
 
6084 serge 4446
	DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4447
		      intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
5354 serge 4448
 
6084 serge 4449
	return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4450
		&state->scaler_state.scaler_id, DRM_ROTATE_0,
4451
		state->pipe_src_w, state->pipe_src_h,
4452
		adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
5354 serge 4453
}
4454
 
6084 serge 4455
/**
4456
 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4457
 *
4458
 * @state: crtc's scaler state
4459
 * @plane_state: atomic plane state to update
4460
 *
4461
 * Return
4462
 *     0 - scaler_usage updated successfully
4463
 *    error - requested scaling cannot be supported or other error condition
4464
 */
4465
static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4466
				   struct intel_plane_state *plane_state)
5354 serge 4467
{
4468
 
6084 serge 4469
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4470
	struct intel_plane *intel_plane =
4471
		to_intel_plane(plane_state->base.plane);
4472
	struct drm_framebuffer *fb = plane_state->base.fb;
4473
	int ret;
5354 serge 4474
 
6084 serge 4475
	bool force_detach = !fb || !plane_state->visible;
5354 serge 4476
 
6084 serge 4477
	DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4478
		      intel_plane->base.base.id, intel_crtc->pipe,
4479
		      drm_plane_index(&intel_plane->base));
4480
 
4481
	ret = skl_update_scaler(crtc_state, force_detach,
4482
				drm_plane_index(&intel_plane->base),
4483
				&plane_state->scaler_id,
4484
				plane_state->base.rotation,
4485
				drm_rect_width(&plane_state->src) >> 16,
4486
				drm_rect_height(&plane_state->src) >> 16,
4487
				drm_rect_width(&plane_state->dst),
4488
				drm_rect_height(&plane_state->dst));
4489
 
4490
	if (ret || plane_state->scaler_id < 0)
4491
		return ret;
4492
 
4493
	/* check colorkey */
4494
	if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4495
		DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4496
			      intel_plane->base.base.id);
4497
		return -EINVAL;
5354 serge 4498
	}
6084 serge 4499
 
4500
	/* Check src format */
4501
	switch (fb->pixel_format) {
4502
	case DRM_FORMAT_RGB565:
4503
	case DRM_FORMAT_XBGR8888:
4504
	case DRM_FORMAT_XRGB8888:
4505
	case DRM_FORMAT_ABGR8888:
4506
	case DRM_FORMAT_ARGB8888:
4507
	case DRM_FORMAT_XRGB2101010:
4508
	case DRM_FORMAT_XBGR2101010:
4509
	case DRM_FORMAT_YUYV:
4510
	case DRM_FORMAT_YVYU:
4511
	case DRM_FORMAT_UYVY:
4512
	case DRM_FORMAT_VYUY:
4513
		break;
4514
	default:
4515
		DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4516
			intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4517
		return -EINVAL;
4518
	}
4519
 
4520
	return 0;
5354 serge 4521
}
4522
 
6084 serge 4523
static void skylake_scaler_disable(struct intel_crtc *crtc)
2342 Serge 4524
{
6084 serge 4525
	int i;
2342 Serge 4526
 
6084 serge 4527
	for (i = 0; i < crtc->num_scalers; i++)
4528
		skl_detach_scaler(crtc, i);
2342 Serge 4529
}
4530
 
5354 serge 4531
static void skylake_pfit_enable(struct intel_crtc *crtc)
4532
{
4533
	struct drm_device *dev = crtc->base.dev;
4534
	struct drm_i915_private *dev_priv = dev->dev_private;
4535
	int pipe = crtc->pipe;
6084 serge 4536
	struct intel_crtc_scaler_state *scaler_state =
4537
		&crtc->config->scaler_state;
5354 serge 4538
 
6084 serge 4539
	DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4540
 
4541
	if (crtc->config->pch_pfit.enabled) {
4542
		int id;
4543
 
4544
		if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4545
			DRM_ERROR("Requesting pfit without getting a scaler first\n");
4546
			return;
4547
		}
4548
 
4549
		id = scaler_state->scaler_id;
4550
		I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4551
			PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4552
		I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4553
		I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4554
 
4555
		DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
5354 serge 4556
	}
4557
}
4558
 
4104 Serge 4559
static void ironlake_pfit_enable(struct intel_crtc *crtc)
4560
{
4561
	struct drm_device *dev = crtc->base.dev;
4562
	struct drm_i915_private *dev_priv = dev->dev_private;
4563
	int pipe = crtc->pipe;
4564
 
6084 serge 4565
	if (crtc->config->pch_pfit.enabled) {
4104 Serge 4566
		/* Force use of hard-coded filter coefficients
4567
		 * as some pre-programmed values are broken,
4568
		 * e.g. x201.
4569
		 */
4570
		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4571
			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4572
						 PF_PIPE_SEL_IVB(pipe));
4573
		else
4574
			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6084 serge 4575
		I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4576
		I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4104 Serge 4577
	}
4578
}
4579
 
4560 Serge 4580
void hsw_enable_ips(struct intel_crtc *crtc)
4581
{
5060 serge 4582
	struct drm_device *dev = crtc->base.dev;
4583
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 4584
 
6084 serge 4585
	if (!crtc->config->ips_enabled)
4560 Serge 4586
		return;
4587
 
5060 serge 4588
	/* We can only enable IPS after we enable a plane and wait for a vblank */
4589
	intel_wait_for_vblank(dev, crtc->pipe);
4590
 
4560 Serge 4591
	assert_plane_enabled(dev_priv, crtc->plane);
5060 serge 4592
	if (IS_BROADWELL(dev)) {
4560 Serge 4593
		mutex_lock(&dev_priv->rps.hw_lock);
4594
		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4595
		mutex_unlock(&dev_priv->rps.hw_lock);
4596
		/* Quoting Art Runyan: "its not safe to expect any particular
4597
		 * value in IPS_CTL bit 31 after enabling IPS through the
4598
		 * mailbox." Moreover, the mailbox may return a bogus state,
4599
		 * so we need to just enable it and continue on.
4600
		 */
4601
	} else {
4602
		I915_WRITE(IPS_CTL, IPS_ENABLE);
4603
		/* The bit only becomes 1 in the next vblank, so this wait here
4604
		 * is essentially intel_wait_for_vblank. If we don't have this
4605
		 * and don't wait for vblanks until the end of crtc_enable, then
4606
		 * the HW state readout code will complain that the expected
4607
		 * IPS_CTL value is not the one we read. */
4608
		if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4609
			DRM_ERROR("Timed out waiting for IPS enable\n");
4610
	}
4611
}
4612
 
4613
void hsw_disable_ips(struct intel_crtc *crtc)
4614
{
4615
	struct drm_device *dev = crtc->base.dev;
4616
	struct drm_i915_private *dev_priv = dev->dev_private;
4617
 
6084 serge 4618
	if (!crtc->config->ips_enabled)
4560 Serge 4619
		return;
4620
 
4621
	assert_plane_enabled(dev_priv, crtc->plane);
5060 serge 4622
	if (IS_BROADWELL(dev)) {
4560 Serge 4623
		mutex_lock(&dev_priv->rps.hw_lock);
4624
		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4625
		mutex_unlock(&dev_priv->rps.hw_lock);
5060 serge 4626
		/* wait for pcode to finish disabling IPS, which may take up to 42ms */
4627
		if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4628
			DRM_ERROR("Timed out waiting for IPS disable\n");
4560 Serge 4629
	} else {
4630
		I915_WRITE(IPS_CTL, 0);
4631
		POSTING_READ(IPS_CTL);
4632
	}
4633
 
4634
	/* We need to wait for a vblank before we can disable the plane. */
4635
	intel_wait_for_vblank(dev, crtc->pipe);
4636
}
4637
 
4638
/** Loads the palette/gamma unit for the CRTC with the prepared values */
4639
static void intel_crtc_load_lut(struct drm_crtc *crtc)
4640
{
4641
	struct drm_device *dev = crtc->dev;
4642
	struct drm_i915_private *dev_priv = dev->dev_private;
4643
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4644
	enum pipe pipe = intel_crtc->pipe;
4645
	int i;
4646
	bool reenable_ips = false;
4647
 
4648
	/* The clocks have to be on to load the palette. */
6084 serge 4649
	if (!crtc->state->active)
4560 Serge 4650
		return;
4651
 
6084 serge 4652
	if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
5354 serge 4653
		if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4560 Serge 4654
			assert_dsi_pll_enabled(dev_priv);
4655
		else
4656
			assert_pll_enabled(dev_priv, pipe);
4657
	}
4658
 
4659
	/* Workaround : Do not read or write the pipe palette/gamma data while
4660
	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4661
	 */
6084 serge 4662
	if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4560 Serge 4663
	    ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4664
	     GAMMA_MODE_MODE_SPLIT)) {
4665
		hsw_disable_ips(intel_crtc);
4666
		reenable_ips = true;
4667
	}
4668
 
4669
	for (i = 0; i < 256; i++) {
6084 serge 4670
		u32 palreg;
4671
 
4672
		if (HAS_GMCH_DISPLAY(dev))
4673
			palreg = PALETTE(pipe, i);
4674
		else
4675
			palreg = LGC_PALETTE(pipe, i);
4676
 
4677
		I915_WRITE(palreg,
4560 Serge 4678
			   (intel_crtc->lut_r[i] << 16) |
4679
			   (intel_crtc->lut_g[i] << 8) |
4680
			   intel_crtc->lut_b[i]);
4681
	}
4682
 
4683
	if (reenable_ips)
4684
		hsw_enable_ips(intel_crtc);
4685
}
4686
 
6084 serge 4687
static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
5060 serge 4688
{
6084 serge 4689
	if (intel_crtc->overlay) {
5060 serge 4690
		struct drm_device *dev = intel_crtc->base.dev;
4691
		struct drm_i915_private *dev_priv = dev->dev_private;
4692
 
4693
		mutex_lock(&dev->struct_mutex);
4694
		dev_priv->mm.interruptible = false;
5354 serge 4695
//       (void) intel_overlay_switch_off(intel_crtc->overlay);
6084 serge 4696
		dev_priv->mm.interruptible = true;
5060 serge 4697
		mutex_unlock(&dev->struct_mutex);
4698
	}
4699
 
4700
	/* Let userspace switch the overlay on again. In most cases userspace
4701
	 * has to recompute where to put it anyway.
4702
	 */
4703
}
4704
 
6084 serge 4705
/**
4706
 * intel_post_enable_primary - Perform operations after enabling primary plane
4707
 * @crtc: the CRTC whose primary plane was just enabled
4708
 *
4709
 * Performs potentially sleeping operations that must be done after the primary
4710
 * plane is enabled, such as updating FBC and IPS.  Note that this may be
4711
 * called due to an explicit primary plane update, or due to an implicit
4712
 * re-enable that is caused when a sprite plane is updated to no longer
4713
 * completely hide the primary plane.
4714
 */
4715
static void
4716
intel_post_enable_primary(struct drm_crtc *crtc)
5060 serge 4717
{
4718
	struct drm_device *dev = crtc->dev;
6084 serge 4719
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 4720
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4721
	int pipe = intel_crtc->pipe;
4722
 
6084 serge 4723
	/*
4724
	 * BDW signals flip done immediately if the plane
4725
	 * is disabled, even if the plane enable is already
4726
	 * armed to occur at the next vblank :(
4727
	 */
4728
	if (IS_BROADWELL(dev))
4729
		intel_wait_for_vblank(dev, pipe);
5060 serge 4730
 
6084 serge 4731
	/*
4732
	 * FIXME IPS should be fine as long as one plane is
4733
	 * enabled, but in practice it seems to have problems
4734
	 * when going from primary only to sprite only and vice
4735
	 * versa.
4736
	 */
5060 serge 4737
	hsw_enable_ips(intel_crtc);
4738
 
5354 serge 4739
	/*
6084 serge 4740
	 * Gen2 reports pipe underruns whenever all planes are disabled.
4741
	 * So don't enable underrun reporting before at least some planes
4742
	 * are enabled.
4743
	 * FIXME: Need to fix the logic to work when we turn off all planes
4744
	 * but leave the pipe running.
5354 serge 4745
	 */
6084 serge 4746
	if (IS_GEN2(dev))
4747
		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4748
 
4749
	/* Underruns don't raise interrupts, so check manually. */
4750
	if (HAS_GMCH_DISPLAY(dev))
4751
		i9xx_check_fifo_underruns(dev_priv);
5060 serge 4752
}
4753
 
6084 serge 4754
/**
4755
 * intel_pre_disable_primary - Perform operations before disabling primary plane
4756
 * @crtc: the CRTC whose primary plane is to be disabled
4757
 *
4758
 * Performs potentially sleeping operations that must be done before the
4759
 * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4760
 * be called due to an explicit primary plane update, or due to an implicit
4761
 * disable that is caused when a sprite plane completely hides the primary
4762
 * plane.
4763
 */
4764
static void
4765
intel_pre_disable_primary(struct drm_crtc *crtc)
5060 serge 4766
{
4767
	struct drm_device *dev = crtc->dev;
4768
	struct drm_i915_private *dev_priv = dev->dev_private;
4769
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4770
	int pipe = intel_crtc->pipe;
4771
 
6084 serge 4772
	/*
4773
	 * Gen2 reports pipe underruns whenever all planes are disabled.
4774
	 * So diasble underrun reporting before all the planes get disabled.
4775
	 * FIXME: Need to fix the logic to work when we turn off all planes
4776
	 * but leave the pipe running.
4777
	 */
4778
	if (IS_GEN2(dev))
4779
		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5060 serge 4780
 
6084 serge 4781
	/*
4782
	 * Vblank time updates from the shadow to live plane control register
4783
	 * are blocked if the memory self-refresh mode is active at that
4784
	 * moment. So to make sure the plane gets truly disabled, disable
4785
	 * first the self-refresh mode. The self-refresh enable bit in turn
4786
	 * will be checked/applied by the HW only at the next frame start
4787
	 * event which is after the vblank start event, so we need to have a
4788
	 * wait-for-vblank between disabling the plane and the pipe.
4789
	 */
4790
	if (HAS_GMCH_DISPLAY(dev)) {
4791
		intel_set_memory_cxsr(dev_priv, false);
4792
		dev_priv->wm.vlv.cxsr = false;
4793
		intel_wait_for_vblank(dev, pipe);
4794
	}
5060 serge 4795
 
6084 serge 4796
	/*
4797
	 * FIXME IPS should be fine as long as one plane is
4798
	 * enabled, but in practice it seems to have problems
4799
	 * when going from primary only to sprite only and vice
4800
	 * versa.
4801
	 */
5060 serge 4802
	hsw_disable_ips(intel_crtc);
6084 serge 4803
}
5060 serge 4804
 
6084 serge 4805
static void intel_post_plane_update(struct intel_crtc *crtc)
4806
{
4807
	struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4808
	struct drm_device *dev = crtc->base.dev;
4809
	struct drm_i915_private *dev_priv = dev->dev_private;
4810
	struct drm_plane *plane;
5354 serge 4811
 
6084 serge 4812
	if (atomic->wait_vblank)
4813
		intel_wait_for_vblank(dev, crtc->pipe);
4814
 
4815
	intel_frontbuffer_flip(dev, atomic->fb_bits);
4816
 
4817
	if (atomic->disable_cxsr)
4818
		crtc->wm.cxsr_allowed = true;
4819
 
4820
	if (crtc->atomic.update_wm_post)
4821
		intel_update_watermarks(&crtc->base);
4822
 
4823
	if (atomic->update_fbc)
4824
		intel_fbc_update(dev_priv);
4825
 
4826
	if (atomic->post_enable_primary)
4827
		intel_post_enable_primary(&crtc->base);
4828
 
4829
	drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4830
		intel_update_sprite_watermarks(plane, &crtc->base,
4831
					       0, 0, 0, false, false);
4832
 
4833
	memset(atomic, 0, sizeof(*atomic));
4834
}
4835
 
4836
static void intel_pre_plane_update(struct intel_crtc *crtc)
4837
{
4838
	struct drm_device *dev = crtc->base.dev;
4839
	struct drm_i915_private *dev_priv = dev->dev_private;
4840
	struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4841
	struct drm_plane *p;
4842
 
4843
	/* Track fb's for any planes being disabled */
4844
	drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4845
		struct intel_plane *plane = to_intel_plane(p);
4846
 
4847
		mutex_lock(&dev->struct_mutex);
4848
		i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4849
				  plane->frontbuffer_bit);
4850
		mutex_unlock(&dev->struct_mutex);
4851
	}
4852
 
6320 serge 4853
	if (atomic->wait_for_flips)
4854
		intel_crtc_wait_for_pending_flips(&crtc->base);
4855
 
6084 serge 4856
	if (atomic->disable_fbc)
4857
		intel_fbc_disable_crtc(crtc);
4858
 
4859
	if (crtc->atomic.disable_ips)
4860
		hsw_disable_ips(crtc);
4861
 
4862
	if (atomic->pre_disable_primary)
4863
		intel_pre_disable_primary(&crtc->base);
4864
 
4865
	if (atomic->disable_cxsr) {
4866
		crtc->wm.cxsr_allowed = false;
4867
		intel_set_memory_cxsr(dev_priv, false);
4868
	}
4869
}
4870
 
4871
static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4872
{
4873
	struct drm_device *dev = crtc->dev;
4874
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4875
	struct drm_plane *p;
4876
	int pipe = intel_crtc->pipe;
4877
 
4878
	intel_crtc_dpms_overlay_disable(intel_crtc);
4879
 
4880
	drm_for_each_plane_mask(p, dev, plane_mask)
4881
		to_intel_plane(p)->disable_plane(p, crtc);
4882
 
5354 serge 4883
	/*
4884
	 * FIXME: Once we grow proper nuclear flip support out of this we need
4885
	 * to compute the mask of flip planes precisely. For the time being
4886
	 * consider this a flip to a NULL plane.
4887
	 */
6320 serge 4888
	intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
5060 serge 4889
}
4890
 
2327 Serge 4891
static void ironlake_crtc_enable(struct drm_crtc *crtc)
4892
{
6084 serge 4893
	struct drm_device *dev = crtc->dev;
4894
	struct drm_i915_private *dev_priv = dev->dev_private;
4895
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 4896
	struct intel_encoder *encoder;
6084 serge 4897
	int pipe = intel_crtc->pipe;
2327 Serge 4898
 
6084 serge 4899
	if (WARN_ON(intel_crtc->active))
4900
		return;
3031 serge 4901
 
6084 serge 4902
	if (intel_crtc->config->has_pch_encoder)
5060 serge 4903
		intel_prepare_shared_dpll(intel_crtc);
4904
 
6084 serge 4905
	if (intel_crtc->config->has_dp_encoder)
4906
		intel_dp_set_m_n(intel_crtc, M1_N1);
5060 serge 4907
 
4908
	intel_set_pipe_timings(intel_crtc);
4909
 
6084 serge 4910
	if (intel_crtc->config->has_pch_encoder) {
5060 serge 4911
		intel_cpu_transcoder_set_m_n(intel_crtc,
6084 serge 4912
				     &intel_crtc->config->fdi_m_n, NULL);
5060 serge 4913
	}
4914
 
4915
	ironlake_set_pipeconf(crtc);
4916
 
6084 serge 4917
	intel_crtc->active = true;
4104 Serge 4918
 
5354 serge 4919
	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4920
	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4104 Serge 4921
 
4922
	for_each_encoder_on_crtc(dev, crtc, encoder)
4923
		if (encoder->pre_enable)
4924
			encoder->pre_enable(encoder);
2327 Serge 4925
 
6084 serge 4926
	if (intel_crtc->config->has_pch_encoder) {
3243 Serge 4927
		/* Note: FDI PLL enabling _must_ be done before we enable the
4928
		 * cpu pipes, hence this is separate from all the other fdi/pch
4929
		 * enabling. */
3031 serge 4930
		ironlake_fdi_pll_enable(intel_crtc);
4931
	} else {
4932
		assert_fdi_tx_disabled(dev_priv, pipe);
4933
		assert_fdi_rx_disabled(dev_priv, pipe);
4934
	}
2327 Serge 4935
 
4104 Serge 4936
	ironlake_pfit_enable(intel_crtc);
3031 serge 4937
 
6084 serge 4938
	/*
4939
	 * On ILK+ LUT must be loaded before the pipe is running but with
4940
	 * clocks enabled
4941
	 */
4942
	intel_crtc_load_lut(crtc);
2327 Serge 4943
 
4560 Serge 4944
	intel_update_watermarks(crtc);
5060 serge 4945
	intel_enable_pipe(intel_crtc);
2327 Serge 4946
 
6084 serge 4947
	if (intel_crtc->config->has_pch_encoder)
4948
		ironlake_pch_enable(crtc);
2327 Serge 4949
 
6084 serge 4950
	assert_vblank_disabled(crtc);
4951
	drm_crtc_vblank_on(crtc);
4952
 
3031 serge 4953
	for_each_encoder_on_crtc(dev, crtc, encoder)
4954
		encoder->enable(encoder);
4955
 
4956
	if (HAS_PCH_CPT(dev))
4104 Serge 4957
		cpt_verify_modeset(dev, intel_crtc->pipe);
2327 Serge 4958
}
4959
 
4104 Serge 4960
/* IPS only exists on ULT machines and is tied to pipe A. */
4961
static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4962
{
4963
	return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4964
}
4965
 
3243 Serge 4966
static void haswell_crtc_enable(struct drm_crtc *crtc)
4967
{
4968
	struct drm_device *dev = crtc->dev;
4969
	struct drm_i915_private *dev_priv = dev->dev_private;
4970
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4971
	struct intel_encoder *encoder;
6084 serge 4972
	int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4973
	struct intel_crtc_state *pipe_config =
4974
		to_intel_crtc_state(crtc->state);
4975
	bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
3243 Serge 4976
 
6084 serge 4977
	if (WARN_ON(intel_crtc->active))
3243 Serge 4978
		return;
4979
 
5060 serge 4980
	if (intel_crtc_to_shared_dpll(intel_crtc))
4981
		intel_enable_shared_dpll(intel_crtc);
4982
 
6084 serge 4983
	if (intel_crtc->config->has_dp_encoder)
4984
		intel_dp_set_m_n(intel_crtc, M1_N1);
5060 serge 4985
 
4986
	intel_set_pipe_timings(intel_crtc);
4987
 
6084 serge 4988
	if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4989
		I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4990
			   intel_crtc->config->pixel_multiplier - 1);
5354 serge 4991
	}
4992
 
6084 serge 4993
	if (intel_crtc->config->has_pch_encoder) {
5060 serge 4994
		intel_cpu_transcoder_set_m_n(intel_crtc,
6084 serge 4995
				     &intel_crtc->config->fdi_m_n, NULL);
5060 serge 4996
	}
4997
 
4998
	haswell_set_pipeconf(crtc);
4999
 
5000
	intel_set_pipe_csc(crtc);
5001
 
3243 Serge 5002
	intel_crtc->active = true;
4104 Serge 5003
 
5354 serge 5004
	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6084 serge 5005
	for_each_encoder_on_crtc(dev, crtc, encoder) {
5006
		if (encoder->pre_pll_enable)
5007
			encoder->pre_pll_enable(encoder);
3243 Serge 5008
		if (encoder->pre_enable)
5009
			encoder->pre_enable(encoder);
6084 serge 5010
	}
3243 Serge 5011
 
6084 serge 5012
	if (intel_crtc->config->has_pch_encoder) {
5354 serge 5013
		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5014
						      true);
5060 serge 5015
		dev_priv->display.fdi_link_train(crtc);
5016
	}
5017
 
6084 serge 5018
	if (!is_dsi)
5019
		intel_ddi_enable_pipe_clock(intel_crtc);
3243 Serge 5020
 
6084 serge 5021
	if (INTEL_INFO(dev)->gen >= 9)
5354 serge 5022
		skylake_pfit_enable(intel_crtc);
5023
	else
6084 serge 5024
		ironlake_pfit_enable(intel_crtc);
3243 Serge 5025
 
5026
	/*
5027
	 * On ILK+ LUT must be loaded before the pipe is running but with
5028
	 * clocks enabled
5029
	 */
5030
	intel_crtc_load_lut(crtc);
5031
 
5032
	intel_ddi_set_pipe_settings(crtc);
6084 serge 5033
	if (!is_dsi)
5034
		intel_ddi_enable_transcoder_func(crtc);
3243 Serge 5035
 
4560 Serge 5036
	intel_update_watermarks(crtc);
5060 serge 5037
	intel_enable_pipe(intel_crtc);
3243 Serge 5038
 
6084 serge 5039
	if (intel_crtc->config->has_pch_encoder)
3243 Serge 5040
		lpt_pch_enable(crtc);
5041
 
6084 serge 5042
	if (intel_crtc->config->dp_encoder_is_mst && !is_dsi)
5060 serge 5043
		intel_ddi_set_vc_payload_alloc(crtc, true);
5044
 
6084 serge 5045
	assert_vblank_disabled(crtc);
5046
	drm_crtc_vblank_on(crtc);
5047
 
4560 Serge 5048
	for_each_encoder_on_crtc(dev, crtc, encoder) {
3243 Serge 5049
		encoder->enable(encoder);
4560 Serge 5050
		intel_opregion_notify_encoder(encoder, true);
5051
	}
3243 Serge 5052
 
4560 Serge 5053
	/* If we change the relative order between pipe/planes enabling, we need
5054
	 * to change the workaround. */
6084 serge 5055
	hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5056
	if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5057
		intel_wait_for_vblank(dev, hsw_workaround_pipe);
5058
		intel_wait_for_vblank(dev, hsw_workaround_pipe);
5354 serge 5059
	}
5060
}
5061
 
6084 serge 5062
static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
4104 Serge 5063
{
5064
	struct drm_device *dev = crtc->base.dev;
5065
	struct drm_i915_private *dev_priv = dev->dev_private;
5066
	int pipe = crtc->pipe;
5067
 
5068
	/* To avoid upsetting the power well on haswell only disable the pfit if
5069
	 * it's in use. The hw state code will make sure we get this right. */
6084 serge 5070
	if (force || crtc->config->pch_pfit.enabled) {
4104 Serge 5071
		I915_WRITE(PF_CTL(pipe), 0);
5072
		I915_WRITE(PF_WIN_POS(pipe), 0);
5073
		I915_WRITE(PF_WIN_SZ(pipe), 0);
5074
	}
5075
}
5076
 
2327 Serge 5077
static void ironlake_crtc_disable(struct drm_crtc *crtc)
5078
{
6084 serge 5079
	struct drm_device *dev = crtc->dev;
5080
	struct drm_i915_private *dev_priv = dev->dev_private;
5081
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 5082
	struct intel_encoder *encoder;
6084 serge 5083
	int pipe = intel_crtc->pipe;
5084
	u32 reg, temp;
2327 Serge 5085
 
6084 serge 5086
	for_each_encoder_on_crtc(dev, crtc, encoder)
5087
		encoder->disable(encoder);
2327 Serge 5088
 
5354 serge 5089
	drm_crtc_vblank_off(crtc);
5090
	assert_vblank_disabled(crtc);
5091
 
6084 serge 5092
	if (intel_crtc->config->has_pch_encoder)
5354 serge 5093
		intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
2327 Serge 5094
 
5354 serge 5095
	intel_disable_pipe(intel_crtc);
5096
 
6084 serge 5097
	ironlake_pfit_disable(intel_crtc, false);
2327 Serge 5098
 
6084 serge 5099
	if (intel_crtc->config->has_pch_encoder)
5100
		ironlake_fdi_disable(crtc);
5101
 
3031 serge 5102
	for_each_encoder_on_crtc(dev, crtc, encoder)
5103
		if (encoder->post_disable)
5104
			encoder->post_disable(encoder);
5105
 
6084 serge 5106
	if (intel_crtc->config->has_pch_encoder) {
5107
		ironlake_disable_pch_transcoder(dev_priv, pipe);
2327 Serge 5108
 
6084 serge 5109
		if (HAS_PCH_CPT(dev)) {
5110
			/* disable TRANS_DP_CTL */
5111
			reg = TRANS_DP_CTL(pipe);
5112
			temp = I915_READ(reg);
4104 Serge 5113
			temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5114
				  TRANS_DP_PORT_SEL_MASK);
6084 serge 5115
			temp |= TRANS_DP_PORT_SEL_NONE;
5116
			I915_WRITE(reg, temp);
2327 Serge 5117
 
6084 serge 5118
			/* disable DPLL_SEL */
5119
			temp = I915_READ(PCH_DPLL_SEL);
4104 Serge 5120
			temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
6084 serge 5121
			I915_WRITE(PCH_DPLL_SEL, temp);
5122
		}
2327 Serge 5123
 
6084 serge 5124
		ironlake_fdi_pll_disable(intel_crtc);
4104 Serge 5125
	}
2327 Serge 5126
}
5127
 
3243 Serge 5128
static void haswell_crtc_disable(struct drm_crtc *crtc)
5129
{
5130
	struct drm_device *dev = crtc->dev;
5131
	struct drm_i915_private *dev_priv = dev->dev_private;
5132
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5133
	struct intel_encoder *encoder;
6084 serge 5134
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5135
	bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
3243 Serge 5136
 
4560 Serge 5137
	for_each_encoder_on_crtc(dev, crtc, encoder) {
5138
		intel_opregion_notify_encoder(encoder, false);
3243 Serge 5139
		encoder->disable(encoder);
4560 Serge 5140
	}
3243 Serge 5141
 
6084 serge 5142
	drm_crtc_vblank_off(crtc);
5143
	assert_vblank_disabled(crtc);
5144
 
5145
	if (intel_crtc->config->has_pch_encoder)
5354 serge 5146
		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5147
						      false);
5148
	intel_disable_pipe(intel_crtc);
3243 Serge 5149
 
6084 serge 5150
	if (intel_crtc->config->dp_encoder_is_mst)
5097 serge 5151
		intel_ddi_set_vc_payload_alloc(crtc, false);
5152
 
6084 serge 5153
	if (!is_dsi)
5154
		intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3243 Serge 5155
 
6084 serge 5156
	if (INTEL_INFO(dev)->gen >= 9)
5157
		skylake_scaler_disable(intel_crtc);
5354 serge 5158
	else
6084 serge 5159
		ironlake_pfit_disable(intel_crtc, false);
3243 Serge 5160
 
6084 serge 5161
	if (!is_dsi)
5162
		intel_ddi_disable_pipe_clock(intel_crtc);
3243 Serge 5163
 
6084 serge 5164
	if (intel_crtc->config->has_pch_encoder) {
3243 Serge 5165
		lpt_disable_pch_transcoder(dev_priv);
5166
		intel_ddi_fdi_disable(crtc);
5167
	}
5168
 
5060 serge 5169
	for_each_encoder_on_crtc(dev, crtc, encoder)
5170
		if (encoder->post_disable)
5171
			encoder->post_disable(encoder);
3243 Serge 5172
}
5173
 
4104 Serge 5174
static void i9xx_pfit_enable(struct intel_crtc *crtc)
5175
{
5176
	struct drm_device *dev = crtc->base.dev;
5177
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 5178
	struct intel_crtc_state *pipe_config = crtc->config;
4104 Serge 5179
 
6084 serge 5180
	if (!pipe_config->gmch_pfit.control)
4104 Serge 5181
		return;
5182
 
5183
	/*
5184
	 * The panel fitter should only be adjusted whilst the pipe is disabled,
5185
	 * according to register description and PRM.
5186
	 */
5187
	WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5188
	assert_pipe_disabled(dev_priv, crtc->pipe);
5189
 
5190
	I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5191
	I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5192
 
5193
	/* Border color in case we don't scale up to the full screen. Black by
5194
	 * default, change to something else for debugging. */
5195
	I915_WRITE(BCLRPAT(crtc->pipe), 0);
5196
}
5197
 
5060 serge 5198
static enum intel_display_power_domain port_to_power_domain(enum port port)
4560 Serge 5199
{
5060 serge 5200
	switch (port) {
5201
	case PORT_A:
5202
		return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5203
	case PORT_B:
5204
		return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5205
	case PORT_C:
5206
		return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5207
	case PORT_D:
5208
		return POWER_DOMAIN_PORT_DDI_D_4_LANES;
6084 serge 5209
	case PORT_E:
5210
		return POWER_DOMAIN_PORT_DDI_E_2_LANES;
5060 serge 5211
	default:
6084 serge 5212
		MISSING_CASE(port);
5060 serge 5213
		return POWER_DOMAIN_PORT_OTHER;
5214
	}
5215
}
5216
 
6084 serge 5217
static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5218
{
5219
	switch (port) {
5220
	case PORT_A:
5221
		return POWER_DOMAIN_AUX_A;
5222
	case PORT_B:
5223
		return POWER_DOMAIN_AUX_B;
5224
	case PORT_C:
5225
		return POWER_DOMAIN_AUX_C;
5226
	case PORT_D:
5227
		return POWER_DOMAIN_AUX_D;
5228
	case PORT_E:
5229
		/* FIXME: Check VBT for actual wiring of PORT E */
5230
		return POWER_DOMAIN_AUX_D;
5231
	default:
5232
		MISSING_CASE(port);
5233
		return POWER_DOMAIN_AUX_A;
5234
	}
5235
}
5236
 
5060 serge 5237
#define for_each_power_domain(domain, mask)				\
5238
	for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)	\
5239
		if ((1 << (domain)) & (mask))
5240
 
5241
enum intel_display_power_domain
5242
intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5243
{
5244
	struct drm_device *dev = intel_encoder->base.dev;
5245
	struct intel_digital_port *intel_dig_port;
5246
 
5247
	switch (intel_encoder->type) {
5248
	case INTEL_OUTPUT_UNKNOWN:
5249
		/* Only DDI platforms should ever use this output type */
5250
		WARN_ON_ONCE(!HAS_DDI(dev));
5251
	case INTEL_OUTPUT_DISPLAYPORT:
5252
	case INTEL_OUTPUT_HDMI:
5253
	case INTEL_OUTPUT_EDP:
5254
		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5255
		return port_to_power_domain(intel_dig_port->port);
5256
	case INTEL_OUTPUT_DP_MST:
5257
		intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5258
		return port_to_power_domain(intel_dig_port->port);
5259
	case INTEL_OUTPUT_ANALOG:
5260
		return POWER_DOMAIN_PORT_CRT;
5261
	case INTEL_OUTPUT_DSI:
5262
		return POWER_DOMAIN_PORT_DSI;
5263
	default:
5264
		return POWER_DOMAIN_PORT_OTHER;
5265
	}
5266
}
5267
 
6084 serge 5268
enum intel_display_power_domain
5269
intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5270
{
5271
	struct drm_device *dev = intel_encoder->base.dev;
5272
	struct intel_digital_port *intel_dig_port;
5273
 
5274
	switch (intel_encoder->type) {
5275
	case INTEL_OUTPUT_UNKNOWN:
5276
	case INTEL_OUTPUT_HDMI:
5277
		/*
5278
		 * Only DDI platforms should ever use these output types.
5279
		 * We can get here after the HDMI detect code has already set
5280
		 * the type of the shared encoder. Since we can't be sure
5281
		 * what's the status of the given connectors, play safe and
5282
		 * run the DP detection too.
5283
		 */
5284
		WARN_ON_ONCE(!HAS_DDI(dev));
5285
	case INTEL_OUTPUT_DISPLAYPORT:
5286
	case INTEL_OUTPUT_EDP:
5287
		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5288
		return port_to_aux_power_domain(intel_dig_port->port);
5289
	case INTEL_OUTPUT_DP_MST:
5290
		intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5291
		return port_to_aux_power_domain(intel_dig_port->port);
5292
	default:
5293
		MISSING_CASE(intel_encoder->type);
5294
		return POWER_DOMAIN_AUX_A;
5295
	}
5296
}
5297
 
5060 serge 5298
static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5299
{
5300
	struct drm_device *dev = crtc->dev;
5301
	struct intel_encoder *intel_encoder;
5302
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5303
	enum pipe pipe = intel_crtc->pipe;
5304
	unsigned long mask;
5305
	enum transcoder transcoder;
5306
 
6084 serge 5307
	if (!crtc->state->active)
5308
		return 0;
5309
 
5060 serge 5310
	transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5311
 
5312
	mask = BIT(POWER_DOMAIN_PIPE(pipe));
5313
	mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6084 serge 5314
	if (intel_crtc->config->pch_pfit.enabled ||
5315
	    intel_crtc->config->pch_pfit.force_thru)
5060 serge 5316
		mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5317
 
5318
	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5319
		mask |= BIT(intel_display_port_power_domain(intel_encoder));
5320
 
5321
	return mask;
5322
}
5323
 
6084 serge 5324
static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5060 serge 5325
{
6084 serge 5326
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5327
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5328
	enum intel_display_power_domain domain;
5329
	unsigned long domains, new_domains, old_domains;
5060 serge 5330
 
6084 serge 5331
	old_domains = intel_crtc->enabled_power_domains;
5332
	intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5060 serge 5333
 
6084 serge 5334
	domains = new_domains & ~old_domains;
5060 serge 5335
 
6084 serge 5336
	for_each_power_domain(domain, domains)
5337
		intel_display_power_get(dev_priv, domain);
5060 serge 5338
 
6084 serge 5339
	return old_domains & ~new_domains;
5340
}
5060 serge 5341
 
6084 serge 5342
static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5343
				      unsigned long domains)
5344
{
5345
	enum intel_display_power_domain domain;
5354 serge 5346
 
6084 serge 5347
	for_each_power_domain(domain, domains)
5348
		intel_display_power_put(dev_priv, domain);
5349
}
5060 serge 5350
 
6084 serge 5351
static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5352
{
5353
	struct drm_device *dev = state->dev;
5354
	struct drm_i915_private *dev_priv = dev->dev_private;
5355
	unsigned long put_domains[I915_MAX_PIPES] = {};
5356
	struct drm_crtc_state *crtc_state;
5357
	struct drm_crtc *crtc;
5358
	int i;
5060 serge 5359
 
6084 serge 5360
	for_each_crtc_in_state(state, crtc, crtc_state, i) {
5361
		if (needs_modeset(crtc->state))
5362
			put_domains[to_intel_crtc(crtc)->pipe] =
5363
				modeset_get_crtc_power_domains(crtc);
5060 serge 5364
	}
5365
 
6084 serge 5366
	if (dev_priv->display.modeset_commit_cdclk) {
5367
		unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5368
 
5369
		if (cdclk != dev_priv->cdclk_freq &&
5370
		    !WARN_ON(!state->allow_modeset))
5371
			dev_priv->display.modeset_commit_cdclk(state);
5372
	}
5373
 
5374
	for (i = 0; i < I915_MAX_PIPES; i++)
5375
		if (put_domains[i])
5376
			modeset_put_power_domains(dev_priv, put_domains[i]);
5060 serge 5377
}
5378
 
6084 serge 5379
static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5060 serge 5380
{
6084 serge 5381
	int max_cdclk_freq = dev_priv->max_cdclk_freq;
4560 Serge 5382
 
6084 serge 5383
	if (INTEL_INFO(dev_priv)->gen >= 9 ||
5384
	    IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5385
		return max_cdclk_freq;
5386
	else if (IS_CHERRYVIEW(dev_priv))
5387
		return max_cdclk_freq*95/100;
5388
	else if (INTEL_INFO(dev_priv)->gen < 4)
5389
		return 2*max_cdclk_freq*90/100;
5390
	else
5391
		return max_cdclk_freq*90/100;
5392
}
4560 Serge 5393
 
6084 serge 5394
static void intel_update_max_cdclk(struct drm_device *dev)
5395
{
5396
	struct drm_i915_private *dev_priv = dev->dev_private;
5397
 
5398
	if (IS_SKYLAKE(dev)) {
5399
		u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5400
 
5401
		if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5402
			dev_priv->max_cdclk_freq = 675000;
5403
		else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5404
			dev_priv->max_cdclk_freq = 540000;
5405
		else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5406
			dev_priv->max_cdclk_freq = 450000;
5407
		else
5408
			dev_priv->max_cdclk_freq = 337500;
5409
	} else if (IS_BROADWELL(dev))  {
5410
		/*
5411
		 * FIXME with extra cooling we can allow
5412
		 * 540 MHz for ULX and 675 Mhz for ULT.
5413
		 * How can we know if extra cooling is
5414
		 * available? PCI ID, VTB, something else?
5415
		 */
5416
		if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5417
			dev_priv->max_cdclk_freq = 450000;
5418
		else if (IS_BDW_ULX(dev))
5419
			dev_priv->max_cdclk_freq = 450000;
5420
		else if (IS_BDW_ULT(dev))
5421
			dev_priv->max_cdclk_freq = 540000;
5422
		else
5423
			dev_priv->max_cdclk_freq = 675000;
5424
	} else if (IS_CHERRYVIEW(dev)) {
5425
		dev_priv->max_cdclk_freq = 320000;
5426
	} else if (IS_VALLEYVIEW(dev)) {
5427
		dev_priv->max_cdclk_freq = 400000;
5428
	} else {
5429
		/* otherwise assume cdclk is fixed */
5430
		dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5431
	}
5432
 
5433
	dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5434
 
5435
	DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5436
			 dev_priv->max_cdclk_freq);
5437
 
5438
	DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5439
			 dev_priv->max_dotclk_freq);
4560 Serge 5440
}
5441
 
6084 serge 5442
static void intel_update_cdclk(struct drm_device *dev)
5060 serge 5443
{
5444
	struct drm_i915_private *dev_priv = dev->dev_private;
5445
 
6084 serge 5446
	dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5354 serge 5447
	DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
6084 serge 5448
			 dev_priv->cdclk_freq);
5060 serge 5449
 
5450
	/*
5451
	 * Program the gmbus_freq based on the cdclk frequency.
5452
	 * BSpec erroneously claims we should aim for 4MHz, but
5453
	 * in fact 1MHz is the correct frequency.
5454
	 */
6084 serge 5455
	if (IS_VALLEYVIEW(dev)) {
5456
		/*
5457
		 * Program the gmbus_freq based on the cdclk frequency.
5458
		 * BSpec erroneously claims we should aim for 4MHz, but
5459
		 * in fact 1MHz is the correct frequency.
5460
		 */
5461
		I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5462
	}
5463
 
5464
	if (dev_priv->max_cdclk_freq == 0)
5465
		intel_update_max_cdclk(dev);
5060 serge 5466
}
5467
 
6084 serge 5468
static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5469
{
5470
	struct drm_i915_private *dev_priv = dev->dev_private;
5471
	uint32_t divider;
5472
	uint32_t ratio;
5473
	uint32_t current_freq;
5474
	int ret;
5475
 
5476
	/* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5477
	switch (frequency) {
5478
	case 144000:
5479
		divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5480
		ratio = BXT_DE_PLL_RATIO(60);
5481
		break;
5482
	case 288000:
5483
		divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5484
		ratio = BXT_DE_PLL_RATIO(60);
5485
		break;
5486
	case 384000:
5487
		divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5488
		ratio = BXT_DE_PLL_RATIO(60);
5489
		break;
5490
	case 576000:
5491
		divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5492
		ratio = BXT_DE_PLL_RATIO(60);
5493
		break;
5494
	case 624000:
5495
		divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5496
		ratio = BXT_DE_PLL_RATIO(65);
5497
		break;
5498
	case 19200:
5499
		/*
5500
		 * Bypass frequency with DE PLL disabled. Init ratio, divider
5501
		 * to suppress GCC warning.
5502
		 */
5503
		ratio = 0;
5504
		divider = 0;
5505
		break;
5506
	default:
5507
		DRM_ERROR("unsupported CDCLK freq %d", frequency);
5508
 
5509
		return;
5510
	}
5511
 
5512
	mutex_lock(&dev_priv->rps.hw_lock);
5513
	/* Inform power controller of upcoming frequency change */
5514
	ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5515
				      0x80000000);
5516
	mutex_unlock(&dev_priv->rps.hw_lock);
5517
 
5518
	if (ret) {
5519
		DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5520
			  ret, frequency);
5521
		return;
5522
	}
5523
 
5524
	current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5525
	/* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5526
	current_freq = current_freq * 500 + 1000;
5527
 
5528
	/*
5529
	 * DE PLL has to be disabled when
5530
	 * - setting to 19.2MHz (bypass, PLL isn't used)
5531
	 * - before setting to 624MHz (PLL needs toggling)
5532
	 * - before setting to any frequency from 624MHz (PLL needs toggling)
5533
	 */
5534
	if (frequency == 19200 || frequency == 624000 ||
5535
	    current_freq == 624000) {
5536
		I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5537
		/* Timeout 200us */
5538
		if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5539
			     1))
5540
			DRM_ERROR("timout waiting for DE PLL unlock\n");
5541
	}
5542
 
5543
	if (frequency != 19200) {
5544
		uint32_t val;
5545
 
5546
		val = I915_READ(BXT_DE_PLL_CTL);
5547
		val &= ~BXT_DE_PLL_RATIO_MASK;
5548
		val |= ratio;
5549
		I915_WRITE(BXT_DE_PLL_CTL, val);
5550
 
5551
		I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5552
		/* Timeout 200us */
5553
		if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5554
			DRM_ERROR("timeout waiting for DE PLL lock\n");
5555
 
5556
		val = I915_READ(CDCLK_CTL);
5557
		val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5558
		val |= divider;
5559
		/*
5560
		 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5561
		 * enable otherwise.
5562
		 */
5563
		val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5564
		if (frequency >= 500000)
5565
			val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5566
 
5567
		val &= ~CDCLK_FREQ_DECIMAL_MASK;
5568
		/* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5569
		val |= (frequency - 1000) / 500;
5570
		I915_WRITE(CDCLK_CTL, val);
5571
	}
5572
 
5573
	mutex_lock(&dev_priv->rps.hw_lock);
5574
	ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5575
				      DIV_ROUND_UP(frequency, 25000));
5576
	mutex_unlock(&dev_priv->rps.hw_lock);
5577
 
5578
	if (ret) {
5579
		DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5580
			  ret, frequency);
5581
		return;
5582
	}
5583
 
5584
	intel_update_cdclk(dev);
5585
}
5586
 
5587
void broxton_init_cdclk(struct drm_device *dev)
5588
{
5589
	struct drm_i915_private *dev_priv = dev->dev_private;
5590
	uint32_t val;
5591
 
5592
	/*
5593
	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5594
	 * or else the reset will hang because there is no PCH to respond.
5595
	 * Move the handshake programming to initialization sequence.
5596
	 * Previously was left up to BIOS.
5597
	 */
5598
	val = I915_READ(HSW_NDE_RSTWRN_OPT);
5599
	val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5600
	I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5601
 
5602
	/* Enable PG1 for cdclk */
5603
	intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5604
 
5605
	/* check if cd clock is enabled */
5606
	if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5607
		DRM_DEBUG_KMS("Display already initialized\n");
5608
		return;
5609
	}
5610
 
5611
	/*
5612
	 * FIXME:
5613
	 * - The initial CDCLK needs to be read from VBT.
5614
	 *   Need to make this change after VBT has changes for BXT.
5615
	 * - check if setting the max (or any) cdclk freq is really necessary
5616
	 *   here, it belongs to modeset time
5617
	 */
5618
	broxton_set_cdclk(dev, 624000);
5619
 
5620
	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5621
	POSTING_READ(DBUF_CTL);
5622
 
5623
	udelay(10);
5624
 
5625
	if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5626
		DRM_ERROR("DBuf power enable timeout!\n");
5627
}
5628
 
5629
void broxton_uninit_cdclk(struct drm_device *dev)
5630
{
5631
	struct drm_i915_private *dev_priv = dev->dev_private;
5632
 
5633
	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5634
	POSTING_READ(DBUF_CTL);
5635
 
5636
	udelay(10);
5637
 
5638
	if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5639
		DRM_ERROR("DBuf power disable timeout!\n");
5640
 
5641
	/* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5642
	broxton_set_cdclk(dev, 19200);
5643
 
5644
	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5645
}
5646
 
5647
static const struct skl_cdclk_entry {
5648
	unsigned int freq;
5649
	unsigned int vco;
5650
} skl_cdclk_frequencies[] = {
5651
	{ .freq = 308570, .vco = 8640 },
5652
	{ .freq = 337500, .vco = 8100 },
5653
	{ .freq = 432000, .vco = 8640 },
5654
	{ .freq = 450000, .vco = 8100 },
5655
	{ .freq = 540000, .vco = 8100 },
5656
	{ .freq = 617140, .vco = 8640 },
5657
	{ .freq = 675000, .vco = 8100 },
5658
};
5659
 
5660
static unsigned int skl_cdclk_decimal(unsigned int freq)
5661
{
5662
	return (freq - 1000) / 500;
5663
}
5664
 
5665
static unsigned int skl_cdclk_get_vco(unsigned int freq)
5666
{
5667
	unsigned int i;
5668
 
5669
	for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5670
		const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5671
 
5672
		if (e->freq == freq)
5673
			return e->vco;
5674
	}
5675
 
5676
	return 8100;
5677
}
5678
 
5679
static void
5680
skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5681
{
5682
	unsigned int min_freq;
5683
	u32 val;
5684
 
5685
	/* select the minimum CDCLK before enabling DPLL 0 */
5686
	val = I915_READ(CDCLK_CTL);
5687
	val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5688
	val |= CDCLK_FREQ_337_308;
5689
 
5690
	if (required_vco == 8640)
5691
		min_freq = 308570;
5692
	else
5693
		min_freq = 337500;
5694
 
5695
	val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5696
 
5697
	I915_WRITE(CDCLK_CTL, val);
5698
	POSTING_READ(CDCLK_CTL);
5699
 
5700
	/*
5701
	 * We always enable DPLL0 with the lowest link rate possible, but still
5702
	 * taking into account the VCO required to operate the eDP panel at the
5703
	 * desired frequency. The usual DP link rates operate with a VCO of
5704
	 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5705
	 * The modeset code is responsible for the selection of the exact link
5706
	 * rate later on, with the constraint of choosing a frequency that
5707
	 * works with required_vco.
5708
	 */
5709
	val = I915_READ(DPLL_CTRL1);
5710
 
5711
	val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5712
		 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5713
	val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5714
	if (required_vco == 8640)
5715
		val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5716
					    SKL_DPLL0);
5717
	else
5718
		val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5719
					    SKL_DPLL0);
5720
 
5721
	I915_WRITE(DPLL_CTRL1, val);
5722
	POSTING_READ(DPLL_CTRL1);
5723
 
5724
	I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5725
 
5726
	if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5727
		DRM_ERROR("DPLL0 not locked\n");
5728
}
5729
 
5730
static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5731
{
5732
	int ret;
5733
	u32 val;
5734
 
5735
	/* inform PCU we want to change CDCLK */
5736
	val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5737
	mutex_lock(&dev_priv->rps.hw_lock);
5738
	ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5739
	mutex_unlock(&dev_priv->rps.hw_lock);
5740
 
5741
	return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5742
}
5743
 
5744
static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5745
{
5746
	unsigned int i;
5747
 
5748
	for (i = 0; i < 15; i++) {
5749
		if (skl_cdclk_pcu_ready(dev_priv))
5750
			return true;
5751
		udelay(10);
5752
	}
5753
 
5754
	return false;
5755
}
5756
 
5757
static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5758
{
5759
	struct drm_device *dev = dev_priv->dev;
5760
	u32 freq_select, pcu_ack;
5761
 
5762
	DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5763
 
5764
	if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5765
		DRM_ERROR("failed to inform PCU about cdclk change\n");
5766
		return;
5767
	}
5768
 
5769
	/* set CDCLK_CTL */
5770
	switch(freq) {
5771
	case 450000:
5772
	case 432000:
5773
		freq_select = CDCLK_FREQ_450_432;
5774
		pcu_ack = 1;
5775
		break;
5776
	case 540000:
5777
		freq_select = CDCLK_FREQ_540;
5778
		pcu_ack = 2;
5779
		break;
5780
	case 308570:
5781
	case 337500:
5782
	default:
5783
		freq_select = CDCLK_FREQ_337_308;
5784
		pcu_ack = 0;
5785
		break;
5786
	case 617140:
5787
	case 675000:
5788
		freq_select = CDCLK_FREQ_675_617;
5789
		pcu_ack = 3;
5790
		break;
5791
	}
5792
 
5793
	I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5794
	POSTING_READ(CDCLK_CTL);
5795
 
5796
	/* inform PCU of the change */
5797
	mutex_lock(&dev_priv->rps.hw_lock);
5798
	sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5799
	mutex_unlock(&dev_priv->rps.hw_lock);
5800
 
5801
	intel_update_cdclk(dev);
5802
}
5803
 
5804
void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5805
{
5806
	/* disable DBUF power */
5807
	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5808
	POSTING_READ(DBUF_CTL);
5809
 
5810
	udelay(10);
5811
 
5812
	if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5813
		DRM_ERROR("DBuf power disable timeout\n");
5814
 
5815
	/*
5816
	 * DMC assumes ownership of LCPLL and will get confused if we touch it.
5817
	 */
5818
	if (dev_priv->csr.dmc_payload) {
5819
		/* disable DPLL0 */
5820
		I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) &
5821
					~LCPLL_PLL_ENABLE);
5822
		if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5823
			DRM_ERROR("Couldn't disable DPLL0\n");
5824
	}
5825
 
5826
	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5827
}
5828
 
5829
void skl_init_cdclk(struct drm_i915_private *dev_priv)
5830
{
5831
	u32 val;
5832
	unsigned int required_vco;
5833
 
5834
	/* enable PCH reset handshake */
5835
	val = I915_READ(HSW_NDE_RSTWRN_OPT);
5836
	I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5837
 
5838
	/* enable PG1 and Misc I/O */
5839
	intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5840
 
5841
	/* DPLL0 not enabled (happens on early BIOS versions) */
5842
	if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5843
		/* enable DPLL0 */
5844
		required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5845
		skl_dpll0_enable(dev_priv, required_vco);
5846
	}
5847
 
5848
	/* set CDCLK to the frequency the BIOS chose */
5849
	skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5850
 
5851
	/* enable DBUF power */
5852
	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5853
	POSTING_READ(DBUF_CTL);
5854
 
5855
	udelay(10);
5856
 
5857
	if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5858
		DRM_ERROR("DBuf power enable timeout\n");
5859
}
5860
 
4560 Serge 5861
/* Adjust CDclk dividers to allow high res or save power if possible */
5862
static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5863
{
5864
	struct drm_i915_private *dev_priv = dev->dev_private;
5865
	u32 val, cmd;
5866
 
6084 serge 5867
	WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5868
					!= dev_priv->cdclk_freq);
5060 serge 5869
 
5870
	if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4560 Serge 5871
		cmd = 2;
5060 serge 5872
	else if (cdclk == 266667)
4560 Serge 5873
		cmd = 1;
5874
	else
5875
		cmd = 0;
5876
 
5877
	mutex_lock(&dev_priv->rps.hw_lock);
5878
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5879
	val &= ~DSPFREQGUAR_MASK;
5880
	val |= (cmd << DSPFREQGUAR_SHIFT);
5881
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5882
	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5883
		      DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5884
		     50)) {
5885
		DRM_ERROR("timed out waiting for CDclk change\n");
5886
	}
5887
	mutex_unlock(&dev_priv->rps.hw_lock);
5888
 
6084 serge 5889
	mutex_lock(&dev_priv->sb_lock);
5890
 
5060 serge 5891
	if (cdclk == 400000) {
5354 serge 5892
		u32 divider;
4560 Serge 5893
 
5354 serge 5894
		divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
4560 Serge 5895
 
5896
		/* adjust cdclk divider */
5897
		val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6084 serge 5898
		val &= ~CCK_FREQUENCY_VALUES;
4560 Serge 5899
		val |= divider;
5900
		vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5060 serge 5901
 
5902
		if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
6084 serge 5903
			      CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5060 serge 5904
			     50))
5905
			DRM_ERROR("timed out waiting for CDclk change\n");
4560 Serge 5906
	}
5907
 
5908
	/* adjust self-refresh exit latency value */
5909
	val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5910
	val &= ~0x7f;
5911
 
5912
	/*
5913
	 * For high bandwidth configs, we set a higher latency in the bunit
5914
	 * so that the core display fetch happens in time to avoid underruns.
5915
	 */
5060 serge 5916
	if (cdclk == 400000)
4560 Serge 5917
		val |= 4500 / 250; /* 4.5 usec */
5918
	else
5919
		val |= 3000 / 250; /* 3.0 usec */
5920
	vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5921
 
6084 serge 5922
	mutex_unlock(&dev_priv->sb_lock);
5923
 
5924
	intel_update_cdclk(dev);
4560 Serge 5925
}
5926
 
5354 serge 5927
static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5928
{
5929
	struct drm_i915_private *dev_priv = dev->dev_private;
5930
	u32 val, cmd;
5931
 
6084 serge 5932
	WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5933
						!= dev_priv->cdclk_freq);
5354 serge 5934
 
5935
	switch (cdclk) {
5936
	case 333333:
5937
	case 320000:
5938
	case 266667:
5939
	case 200000:
5940
		break;
5941
	default:
6084 serge 5942
		MISSING_CASE(cdclk);
5354 serge 5943
		return;
5944
	}
5945
 
6084 serge 5946
	/*
5947
	 * Specs are full of misinformation, but testing on actual
5948
	 * hardware has shown that we just need to write the desired
5949
	 * CCK divider into the Punit register.
5950
	 */
5951
	cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5952
 
5354 serge 5953
	mutex_lock(&dev_priv->rps.hw_lock);
5954
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5955
	val &= ~DSPFREQGUAR_MASK_CHV;
5956
	val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5957
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5958
	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5959
		      DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5960
		     50)) {
5961
		DRM_ERROR("timed out waiting for CDclk change\n");
5962
	}
5963
	mutex_unlock(&dev_priv->rps.hw_lock);
5964
 
6084 serge 5965
	intel_update_cdclk(dev);
5354 serge 5966
}
5967
 
4560 Serge 5968
static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5969
				 int max_pixclk)
5970
{
5354 serge 5971
	int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
6084 serge 5972
	int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
4560 Serge 5973
 
5974
	/*
5975
	 * Really only a few cases to deal with, as only 4 CDclks are supported:
5976
	 *   200MHz
5977
	 *   267MHz
5060 serge 5978
	 *   320/333MHz (depends on HPLL freq)
6084 serge 5979
	 *   400MHz (VLV only)
5980
	 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5981
	 * of the lower bin and adjust if needed.
5060 serge 5982
	 *
5983
	 * We seem to get an unstable or solid color picture at 200MHz.
5984
	 * Not sure what's wrong. For now use 200MHz only when all pipes
5985
	 * are off.
4560 Serge 5986
	 */
6084 serge 5987
	if (!IS_CHERRYVIEW(dev_priv) &&
5988
	    max_pixclk > freq_320*limit/100)
5060 serge 5989
		return 400000;
6084 serge 5990
	else if (max_pixclk > 266667*limit/100)
5060 serge 5991
		return freq_320;
5992
	else if (max_pixclk > 0)
5993
		return 266667;
5994
	else
5995
		return 200000;
4560 Serge 5996
}
5997
 
6084 serge 5998
static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5999
			      int max_pixclk)
4560 Serge 6000
{
6084 serge 6001
	/*
6002
	 * FIXME:
6003
	 * - remove the guardband, it's not needed on BXT
6004
	 * - set 19.2MHz bypass frequency if there are no active pipes
6005
	 */
6006
	if (max_pixclk > 576000*9/10)
6007
		return 624000;
6008
	else if (max_pixclk > 384000*9/10)
6009
		return 576000;
6010
	else if (max_pixclk > 288000*9/10)
6011
		return 384000;
6012
	else if (max_pixclk > 144000*9/10)
6013
		return 288000;
6014
	else
6015
		return 144000;
6016
}
6017
 
6018
/* Compute the max pixel clock for new configuration. Uses atomic state if
6019
 * that's non-NULL, look at current state otherwise. */
6020
static int intel_mode_max_pixclk(struct drm_device *dev,
6021
				 struct drm_atomic_state *state)
6022
{
4560 Serge 6023
	struct intel_crtc *intel_crtc;
6084 serge 6024
	struct intel_crtc_state *crtc_state;
4560 Serge 6025
	int max_pixclk = 0;
6026
 
5060 serge 6027
	for_each_intel_crtc(dev, intel_crtc) {
6084 serge 6028
		crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6029
		if (IS_ERR(crtc_state))
6030
			return PTR_ERR(crtc_state);
6031
 
6032
		if (!crtc_state->base.enable)
6033
			continue;
6034
 
6035
		max_pixclk = max(max_pixclk,
6036
				 crtc_state->base.adjusted_mode.crtc_clock);
4560 Serge 6037
	}
6038
 
6039
	return max_pixclk;
6040
}
6041
 
6084 serge 6042
static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
4560 Serge 6043
{
6084 serge 6044
	struct drm_device *dev = state->dev;
4560 Serge 6045
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 6046
	int max_pixclk = intel_mode_max_pixclk(dev, state);
4560 Serge 6047
 
6084 serge 6048
	if (max_pixclk < 0)
6049
		return max_pixclk;
4560 Serge 6050
 
6084 serge 6051
	to_intel_atomic_state(state)->cdclk =
6052
		valleyview_calc_cdclk(dev_priv, max_pixclk);
6053
 
6054
	return 0;
4560 Serge 6055
}
6056
 
6084 serge 6057
static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
4560 Serge 6058
{
6084 serge 6059
	struct drm_device *dev = state->dev;
4560 Serge 6060
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 6061
	int max_pixclk = intel_mode_max_pixclk(dev, state);
4560 Serge 6062
 
6084 serge 6063
	if (max_pixclk < 0)
6064
		return max_pixclk;
5354 serge 6065
 
6084 serge 6066
	to_intel_atomic_state(state)->cdclk =
6067
		broxton_calc_cdclk(dev_priv, max_pixclk);
6068
 
6069
	return 0;
6070
}
6071
 
6072
static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6073
{
6074
	unsigned int credits, default_credits;
6075
 
6076
	if (IS_CHERRYVIEW(dev_priv))
6077
		default_credits = PFI_CREDIT(12);
6078
	else
6079
		default_credits = PFI_CREDIT(8);
6080
 
6081
	if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6082
		/* CHV suggested value is 31 or 63 */
6083
		if (IS_CHERRYVIEW(dev_priv))
6084
			credits = PFI_CREDIT_63;
5354 serge 6085
		else
6084 serge 6086
			credits = PFI_CREDIT(15);
6087
	} else {
6088
		credits = default_credits;
6089
	}
6090
 
6091
	/*
6092
	 * WA - write default credits before re-programming
6093
	 * FIXME: should we also set the resend bit here?
6094
	 */
6095
	I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6096
		   default_credits);
6097
 
6098
	I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6099
		   credits | PFI_CREDIT_RESEND);
6100
 
6101
	/*
6102
	 * FIXME is this guaranteed to clear
6103
	 * immediately or should we poll for it?
6104
	 */
6105
	WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6106
}
6107
 
6108
static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6109
{
6110
	struct drm_device *dev = old_state->dev;
6111
	unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
6112
	struct drm_i915_private *dev_priv = dev->dev_private;
6113
 
6114
	/*
6115
	 * FIXME: We can end up here with all power domains off, yet
6116
	 * with a CDCLK frequency other than the minimum. To account
6117
	 * for this take the PIPE-A power domain, which covers the HW
6118
	 * blocks needed for the following programming. This can be
6119
	 * removed once it's guaranteed that we get here either with
6120
	 * the minimum CDCLK set, or the required power domains
6121
	 * enabled.
6122
	 */
6123
	intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6124
 
6125
	if (IS_CHERRYVIEW(dev))
6126
		cherryview_set_cdclk(dev, req_cdclk);
6127
	else
4560 Serge 6128
		valleyview_set_cdclk(dev, req_cdclk);
5354 serge 6129
 
6084 serge 6130
	vlv_program_pfi_credits(dev_priv);
6131
 
6132
	intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
4560 Serge 6133
}
6134
 
4104 Serge 6135
static void valleyview_crtc_enable(struct drm_crtc *crtc)
6136
{
6137
	struct drm_device *dev = crtc->dev;
5354 serge 6138
	struct drm_i915_private *dev_priv = to_i915(dev);
4104 Serge 6139
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6140
	struct intel_encoder *encoder;
6141
	int pipe = intel_crtc->pipe;
4560 Serge 6142
	bool is_dsi;
4104 Serge 6143
 
6084 serge 6144
	if (WARN_ON(intel_crtc->active))
4104 Serge 6145
		return;
6146
 
5354 serge 6147
	is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5060 serge 6148
 
6084 serge 6149
	if (intel_crtc->config->has_dp_encoder)
6150
		intel_dp_set_m_n(intel_crtc, M1_N1);
5060 serge 6151
 
6152
	intel_set_pipe_timings(intel_crtc);
6153
 
5354 serge 6154
	if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6155
		struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 6156
 
5354 serge 6157
		I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6158
		I915_WRITE(CHV_CANVAS(pipe), 0);
6159
	}
6160
 
5060 serge 6161
	i9xx_set_pipeconf(intel_crtc);
6162
 
4104 Serge 6163
	intel_crtc->active = true;
6164
 
5354 serge 6165
	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5060 serge 6166
 
4104 Serge 6167
	for_each_encoder_on_crtc(dev, crtc, encoder)
6168
		if (encoder->pre_pll_enable)
6169
			encoder->pre_pll_enable(encoder);
6170
 
5060 serge 6171
	if (!is_dsi) {
6084 serge 6172
		if (IS_CHERRYVIEW(dev)) {
6173
			chv_prepare_pll(intel_crtc, intel_crtc->config);
6174
			chv_enable_pll(intel_crtc, intel_crtc->config);
6175
		} else {
6176
			vlv_prepare_pll(intel_crtc, intel_crtc->config);
6177
			vlv_enable_pll(intel_crtc, intel_crtc->config);
6178
		}
5060 serge 6179
	}
4104 Serge 6180
 
6181
	for_each_encoder_on_crtc(dev, crtc, encoder)
6182
		if (encoder->pre_enable)
6183
			encoder->pre_enable(encoder);
6184
 
6185
	i9xx_pfit_enable(intel_crtc);
6186
 
6187
	intel_crtc_load_lut(crtc);
6188
 
5060 serge 6189
	intel_enable_pipe(intel_crtc);
4104 Serge 6190
 
5354 serge 6191
	assert_vblank_disabled(crtc);
6192
	drm_crtc_vblank_on(crtc);
6193
 
6084 serge 6194
	for_each_encoder_on_crtc(dev, crtc, encoder)
6195
		encoder->enable(encoder);
4104 Serge 6196
}
6197
 
5060 serge 6198
static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6199
{
6200
	struct drm_device *dev = crtc->base.dev;
6201
	struct drm_i915_private *dev_priv = dev->dev_private;
6202
 
6084 serge 6203
	I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6204
	I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5060 serge 6205
}
6206
 
2327 Serge 6207
static void i9xx_crtc_enable(struct drm_crtc *crtc)
6208
{
6084 serge 6209
	struct drm_device *dev = crtc->dev;
5354 serge 6210
	struct drm_i915_private *dev_priv = to_i915(dev);
6084 serge 6211
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 6212
	struct intel_encoder *encoder;
6084 serge 6213
	int pipe = intel_crtc->pipe;
2327 Serge 6214
 
6084 serge 6215
	if (WARN_ON(intel_crtc->active))
6216
		return;
3031 serge 6217
 
5060 serge 6218
	i9xx_set_pll_dividers(intel_crtc);
6219
 
6084 serge 6220
	if (intel_crtc->config->has_dp_encoder)
6221
		intel_dp_set_m_n(intel_crtc, M1_N1);
5060 serge 6222
 
6223
	intel_set_pipe_timings(intel_crtc);
6224
 
6225
	i9xx_set_pipeconf(intel_crtc);
6226
 
6084 serge 6227
	intel_crtc->active = true;
2327 Serge 6228
 
5060 serge 6229
	if (!IS_GEN2(dev))
5354 serge 6230
		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5060 serge 6231
 
3480 Serge 6232
	for_each_encoder_on_crtc(dev, crtc, encoder)
6233
		if (encoder->pre_enable)
6234
			encoder->pre_enable(encoder);
6235
 
4104 Serge 6236
	i9xx_enable_pll(intel_crtc);
6237
 
6238
	i9xx_pfit_enable(intel_crtc);
6239
 
6240
	intel_crtc_load_lut(crtc);
6241
 
4560 Serge 6242
	intel_update_watermarks(crtc);
5060 serge 6243
	intel_enable_pipe(intel_crtc);
2327 Serge 6244
 
5354 serge 6245
	assert_vblank_disabled(crtc);
6246
	drm_crtc_vblank_on(crtc);
6247
 
6084 serge 6248
	for_each_encoder_on_crtc(dev, crtc, encoder)
6249
		encoder->enable(encoder);
2327 Serge 6250
}
6251
 
3746 Serge 6252
static void i9xx_pfit_disable(struct intel_crtc *crtc)
6253
{
6254
	struct drm_device *dev = crtc->base.dev;
6255
	struct drm_i915_private *dev_priv = dev->dev_private;
6256
 
6084 serge 6257
	if (!crtc->config->gmch_pfit.control)
4104 Serge 6258
		return;
6259
 
3746 Serge 6260
	assert_pipe_disabled(dev_priv, crtc->pipe);
6261
 
4104 Serge 6262
	DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6263
			 I915_READ(PFIT_CONTROL));
6084 serge 6264
	I915_WRITE(PFIT_CONTROL, 0);
3746 Serge 6265
}
6266
 
2327 Serge 6267
static void i9xx_crtc_disable(struct drm_crtc *crtc)
6268
{
6084 serge 6269
	struct drm_device *dev = crtc->dev;
6270
	struct drm_i915_private *dev_priv = dev->dev_private;
6271
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 6272
	struct intel_encoder *encoder;
6084 serge 6273
	int pipe = intel_crtc->pipe;
2327 Serge 6274
 
5060 serge 6275
	/*
6276
	 * On gen2 planes are double buffered but the pipe isn't, so we must
6277
	 * wait for planes to fully turn off before disabling the pipe.
6278
	 * We also need to wait on all gmch platforms because of the
6279
	 * self-refresh mode constraint explained above.
6280
	 */
6084 serge 6281
	intel_wait_for_vblank(dev, pipe);
2327 Serge 6282
 
6084 serge 6283
	for_each_encoder_on_crtc(dev, crtc, encoder)
6284
		encoder->disable(encoder);
6285
 
5354 serge 6286
	drm_crtc_vblank_off(crtc);
6287
	assert_vblank_disabled(crtc);
3480 Serge 6288
 
5354 serge 6289
	intel_disable_pipe(intel_crtc);
6290
 
3746 Serge 6291
	i9xx_pfit_disable(intel_crtc);
3480 Serge 6292
 
4104 Serge 6293
	for_each_encoder_on_crtc(dev, crtc, encoder)
6294
		if (encoder->post_disable)
6295
			encoder->post_disable(encoder);
2327 Serge 6296
 
5354 serge 6297
	if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5060 serge 6298
		if (IS_CHERRYVIEW(dev))
6299
			chv_disable_pll(dev_priv, pipe);
6300
		else if (IS_VALLEYVIEW(dev))
6084 serge 6301
			vlv_disable_pll(dev_priv, pipe);
5060 serge 6302
		else
5354 serge 6303
			i9xx_disable_pll(intel_crtc);
5060 serge 6304
	}
4104 Serge 6305
 
6084 serge 6306
	for_each_encoder_on_crtc(dev, crtc, encoder)
6307
		if (encoder->post_pll_disable)
6308
			encoder->post_pll_disable(encoder);
6309
 
5060 serge 6310
	if (!IS_GEN2(dev))
5354 serge 6311
		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
2327 Serge 6312
}
6313
 
6084 serge 6314
static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
2327 Serge 6315
{
5060 serge 6316
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6084 serge 6317
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5060 serge 6318
	enum intel_display_power_domain domain;
6319
	unsigned long domains;
6320
 
6084 serge 6321
	if (!intel_crtc->active)
6322
		return;
5060 serge 6323
 
6084 serge 6324
	if (to_intel_plane_state(crtc->primary->state)->visible) {
6320 serge 6325
		intel_crtc_wait_for_pending_flips(crtc);
6084 serge 6326
		intel_pre_disable_primary(crtc);
5060 serge 6327
 
6084 serge 6328
		intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6329
		to_intel_plane_state(crtc->primary->state)->visible = false;
5060 serge 6330
	}
6084 serge 6331
 
6332
	dev_priv->display.crtc_disable(crtc);
6333
	intel_crtc->active = false;
6334
	intel_update_watermarks(crtc);
6335
	intel_disable_shared_dpll(intel_crtc);
6336
 
6337
	domains = intel_crtc->enabled_power_domains;
6338
	for_each_power_domain(domain, domains)
6339
		intel_display_power_put(dev_priv, domain);
6340
	intel_crtc->enabled_power_domains = 0;
2330 Serge 6341
}
2327 Serge 6342
 
6084 serge 6343
/*
6344
 * turn all crtc's off, but do not adjust state
6345
 * This has to be paired with a call to intel_modeset_setup_hw_state.
3031 serge 6346
 */
6084 serge 6347
int intel_display_suspend(struct drm_device *dev)
3031 serge 6348
{
6084 serge 6349
	struct drm_mode_config *config = &dev->mode_config;
6350
	struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6351
	struct drm_atomic_state *state;
6352
	struct drm_crtc *crtc;
6353
	unsigned crtc_mask = 0;
6354
	int ret = 0;
3031 serge 6355
 
6084 serge 6356
	if (WARN_ON(!ctx))
6357
		return 0;
3031 serge 6358
 
6084 serge 6359
	lockdep_assert_held(&ctx->ww_ctx);
6360
	state = drm_atomic_state_alloc(dev);
6361
	if (WARN_ON(!state))
6362
		return -ENOMEM;
3031 serge 6363
 
6084 serge 6364
	state->acquire_ctx = ctx;
6365
	state->allow_modeset = true;
2327 Serge 6366
 
6084 serge 6367
	for_each_crtc(dev, crtc) {
6368
		struct drm_crtc_state *crtc_state =
6369
			drm_atomic_get_crtc_state(state, crtc);
2327 Serge 6370
 
6084 serge 6371
		ret = PTR_ERR_OR_ZERO(crtc_state);
6372
		if (ret)
6373
			goto free;
3031 serge 6374
 
6084 serge 6375
		if (!crtc_state->active)
6376
			continue;
6377
 
6378
		crtc_state->active = false;
6379
		crtc_mask |= 1 << drm_crtc_index(crtc);
4280 Serge 6380
	}
3031 serge 6381
 
6084 serge 6382
	if (crtc_mask) {
6383
		ret = drm_atomic_commit(state);
3031 serge 6384
 
6084 serge 6385
		if (!ret) {
6386
			for_each_crtc(dev, crtc)
6387
				if (crtc_mask & (1 << drm_crtc_index(crtc)))
6388
					crtc->state->active = true;
3031 serge 6389
 
6084 serge 6390
			return ret;
6391
		}
2330 Serge 6392
	}
6084 serge 6393
 
6394
free:
6395
	if (ret)
6396
		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6397
	drm_atomic_state_free(state);
6398
	return ret;
2330 Serge 6399
}
2327 Serge 6400
 
3031 serge 6401
void intel_encoder_destroy(struct drm_encoder *encoder)
2330 Serge 6402
{
3031 serge 6403
	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6404
 
6405
	drm_encoder_cleanup(encoder);
6406
	kfree(intel_encoder);
2330 Serge 6407
}
2327 Serge 6408
 
3031 serge 6409
/* Cross check the actual hw state with our own modeset state tracking (and it's
6410
 * internal consistency). */
6411
static void intel_connector_check_state(struct intel_connector *connector)
2330 Serge 6412
{
6084 serge 6413
	struct drm_crtc *crtc = connector->base.state->crtc;
6414
 
6415
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6416
		      connector->base.base.id,
6417
		      connector->base.name);
6418
 
3031 serge 6419
	if (connector->get_hw_state(connector)) {
6420
		struct intel_encoder *encoder = connector->encoder;
6084 serge 6421
		struct drm_connector_state *conn_state = connector->base.state;
3031 serge 6422
 
6084 serge 6423
		I915_STATE_WARN(!crtc,
6424
			 "connector enabled without attached crtc\n");
3031 serge 6425
 
6084 serge 6426
		if (!crtc)
5060 serge 6427
			return;
6428
 
6084 serge 6429
		I915_STATE_WARN(!crtc->state->active,
6430
		      "connector is active, but attached crtc isn't\n");
5060 serge 6431
 
6084 serge 6432
		if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
3031 serge 6433
			return;
6434
 
6084 serge 6435
		I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6436
			"atomic encoder doesn't match attached encoder\n");
3031 serge 6437
 
6084 serge 6438
		I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6439
			"attached encoder crtc differs from connector crtc\n");
6440
	} else {
6441
		I915_STATE_WARN(crtc && crtc->state->active,
6442
			"attached crtc is active, but connector isn't\n");
6443
		I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6444
			"best encoder set without crtc!\n");
3031 serge 6445
	}
2330 Serge 6446
}
2327 Serge 6447
 
6084 serge 6448
int intel_connector_init(struct intel_connector *connector)
2330 Serge 6449
{
6084 serge 6450
	struct drm_connector_state *connector_state;
2342 Serge 6451
 
6084 serge 6452
	connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6453
	if (!connector_state)
6454
		return -ENOMEM;
3031 serge 6455
 
6084 serge 6456
	connector->base.state = connector_state;
6457
	return 0;
6458
}
3031 serge 6459
 
6084 serge 6460
struct intel_connector *intel_connector_alloc(void)
6461
{
6462
	struct intel_connector *connector;
3031 serge 6463
 
6084 serge 6464
	connector = kzalloc(sizeof *connector, GFP_KERNEL);
6465
	if (!connector)
6466
		return NULL;
6467
 
6468
	if (intel_connector_init(connector) < 0) {
6469
		kfree(connector);
6470
		return NULL;
6471
	}
6472
 
6473
	return connector;
2330 Serge 6474
}
2327 Serge 6475
 
3031 serge 6476
/* Simple connector->get_hw_state implementation for encoders that support only
6477
 * one connector and no cloning and hence the encoder state determines the state
6478
 * of the connector. */
6479
bool intel_connector_get_hw_state(struct intel_connector *connector)
2330 Serge 6480
{
3031 serge 6481
	enum pipe pipe = 0;
6482
	struct intel_encoder *encoder = connector->encoder;
2330 Serge 6483
 
3031 serge 6484
	return encoder->get_hw_state(encoder, &pipe);
2330 Serge 6485
}
6486
 
6084 serge 6487
static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
4104 Serge 6488
{
6084 serge 6489
	if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6490
		return crtc_state->fdi_lanes;
4104 Serge 6491
 
6084 serge 6492
	return 0;
6493
}
6494
 
6495
static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6496
				     struct intel_crtc_state *pipe_config)
6497
{
6498
	struct drm_atomic_state *state = pipe_config->base.state;
6499
	struct intel_crtc *other_crtc;
6500
	struct intel_crtc_state *other_crtc_state;
6501
 
4104 Serge 6502
	DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6503
		      pipe_name(pipe), pipe_config->fdi_lanes);
6504
	if (pipe_config->fdi_lanes > 4) {
6505
		DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6506
			      pipe_name(pipe), pipe_config->fdi_lanes);
6084 serge 6507
		return -EINVAL;
4104 Serge 6508
	}
6509
 
4560 Serge 6510
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4104 Serge 6511
		if (pipe_config->fdi_lanes > 2) {
6512
			DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6513
				      pipe_config->fdi_lanes);
6084 serge 6514
			return -EINVAL;
4104 Serge 6515
		} else {
6084 serge 6516
			return 0;
4104 Serge 6517
		}
6518
	}
6519
 
6520
	if (INTEL_INFO(dev)->num_pipes == 2)
6084 serge 6521
		return 0;
4104 Serge 6522
 
6523
	/* Ivybridge 3 pipe is really complicated */
6524
	switch (pipe) {
6525
	case PIPE_A:
6084 serge 6526
		return 0;
4104 Serge 6527
	case PIPE_B:
6084 serge 6528
		if (pipe_config->fdi_lanes <= 2)
6529
			return 0;
6530
 
6531
		other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6532
		other_crtc_state =
6533
			intel_atomic_get_crtc_state(state, other_crtc);
6534
		if (IS_ERR(other_crtc_state))
6535
			return PTR_ERR(other_crtc_state);
6536
 
6537
		if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
4104 Serge 6538
			DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6539
				      pipe_name(pipe), pipe_config->fdi_lanes);
6084 serge 6540
			return -EINVAL;
4104 Serge 6541
		}
6084 serge 6542
		return 0;
4104 Serge 6543
	case PIPE_C:
6084 serge 6544
		if (pipe_config->fdi_lanes > 2) {
6545
			DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6546
				      pipe_name(pipe), pipe_config->fdi_lanes);
6547
			return -EINVAL;
6548
		}
6549
 
6550
		other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6551
		other_crtc_state =
6552
			intel_atomic_get_crtc_state(state, other_crtc);
6553
		if (IS_ERR(other_crtc_state))
6554
			return PTR_ERR(other_crtc_state);
6555
 
6556
		if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
4104 Serge 6557
			DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6084 serge 6558
			return -EINVAL;
4104 Serge 6559
		}
6084 serge 6560
		return 0;
4104 Serge 6561
	default:
6562
		BUG();
6563
	}
6564
}
6565
 
6566
#define RETRY 1
6567
static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6084 serge 6568
				       struct intel_crtc_state *pipe_config)
2330 Serge 6569
{
4104 Serge 6570
	struct drm_device *dev = intel_crtc->base.dev;
6084 serge 6571
	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6572
	int lane, link_bw, fdi_dotclock, ret;
6573
	bool needs_recompute = false;
2330 Serge 6574
 
4104 Serge 6575
retry:
6576
	/* FDI is a binary signal running at ~2.7GHz, encoding
6577
	 * each output octet as 10 bits. The actual frequency
6578
	 * is stored as a divider into a 100MHz clock, and the
6579
	 * mode pixel clock is stored in units of 1KHz.
6580
	 * Hence the bw of each lane in terms of the mode signal
6581
	 * is:
6582
	 */
6583
	link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6584
 
4560 Serge 6585
	fdi_dotclock = adjusted_mode->crtc_clock;
4104 Serge 6586
 
6587
	lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6588
					   pipe_config->pipe_bpp);
6589
 
6590
	pipe_config->fdi_lanes = lane;
6591
 
6592
	intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6593
			       link_bw, &pipe_config->fdi_m_n);
6594
 
6084 serge 6595
	ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6596
				       intel_crtc->pipe, pipe_config);
6597
	if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
4104 Serge 6598
		pipe_config->pipe_bpp -= 2*3;
6599
		DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6600
			      pipe_config->pipe_bpp);
6601
		needs_recompute = true;
6602
		pipe_config->bw_constrained = true;
6603
 
6604
		goto retry;
6605
	}
6606
 
6607
	if (needs_recompute)
6608
		return RETRY;
6609
 
6084 serge 6610
	return ret;
4104 Serge 6611
}
6612
 
6084 serge 6613
static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6614
				     struct intel_crtc_state *pipe_config)
6615
{
6616
	if (pipe_config->pipe_bpp > 24)
6617
		return false;
6618
 
6619
	/* HSW can handle pixel rate up to cdclk? */
6620
	if (IS_HASWELL(dev_priv->dev))
6621
		return true;
6622
 
6623
	/*
6624
	 * We compare against max which means we must take
6625
	 * the increased cdclk requirement into account when
6626
	 * calculating the new cdclk.
6627
	 *
6628
	 * Should measure whether using a lower cdclk w/o IPS
6629
	 */
6630
	return ilk_pipe_pixel_rate(pipe_config) <=
6631
		dev_priv->max_cdclk_freq * 95 / 100;
6632
}
6633
 
4104 Serge 6634
static void hsw_compute_ips_config(struct intel_crtc *crtc,
6084 serge 6635
				   struct intel_crtc_state *pipe_config)
4104 Serge 6636
{
6084 serge 6637
	struct drm_device *dev = crtc->base.dev;
6638
	struct drm_i915_private *dev_priv = dev->dev_private;
6639
 
5060 serge 6640
	pipe_config->ips_enabled = i915.enable_ips &&
6084 serge 6641
		hsw_crtc_supports_ips(crtc) &&
6642
		pipe_config_supports_ips(dev_priv, pipe_config);
4104 Serge 6643
}
6644
 
6645
static int intel_crtc_compute_config(struct intel_crtc *crtc,
6084 serge 6646
				     struct intel_crtc_state *pipe_config)
4104 Serge 6647
{
6648
	struct drm_device *dev = crtc->base.dev;
5354 serge 6649
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 6650
	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
4104 Serge 6651
 
4560 Serge 6652
	/* FIXME should check pixel clock limits on all platforms */
6653
	if (INTEL_INFO(dev)->gen < 4) {
6084 serge 6654
		int clock_limit = dev_priv->max_cdclk_freq;
4560 Serge 6655
 
6656
		/*
6657
		 * Enable pixel doubling when the dot clock
6658
		 * is > 90% of the (display) core speed.
6659
		 *
6660
		 * GDG double wide on either pipe,
6661
		 * otherwise pipe A only.
6662
		 */
6663
		if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6664
		    adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6665
			clock_limit *= 2;
6666
			pipe_config->double_wide = true;
6667
		}
6668
 
6669
		if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4104 Serge 6670
			return -EINVAL;
2330 Serge 6671
	}
6672
 
4560 Serge 6673
	/*
6674
	 * Pipe horizontal size must be even in:
6675
	 * - DVO ganged mode
6676
	 * - LVDS dual channel mode
6677
	 * - Double wide pipe
6678
	 */
6084 serge 6679
	if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
4560 Serge 6680
	     intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6681
		pipe_config->pipe_src_w &= ~1;
6682
 
4104 Serge 6683
	/* Cantiga+ cannot handle modes with a hsync front porch of 0.
6684
	 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
3031 serge 6685
	 */
6686
	if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6084 serge 6687
		adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
4104 Serge 6688
		return -EINVAL;
3031 serge 6689
 
4104 Serge 6690
	if (HAS_IPS(dev))
6691
		hsw_compute_ips_config(crtc, pipe_config);
6692
 
6693
	if (pipe_config->has_pch_encoder)
6694
		return ironlake_fdi_compute_config(crtc, pipe_config);
6695
 
6696
	return 0;
2330 Serge 6697
}
6698
 
6084 serge 6699
static int skylake_get_display_clock_speed(struct drm_device *dev)
3031 serge 6700
{
6084 serge 6701
	struct drm_i915_private *dev_priv = to_i915(dev);
6702
	uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6703
	uint32_t cdctl = I915_READ(CDCLK_CTL);
6704
	uint32_t linkrate;
5060 serge 6705
 
6084 serge 6706
	if (!(lcpll1 & LCPLL_PLL_ENABLE))
6707
		return 24000; /* 24MHz is the cd freq with NSSC ref */
5354 serge 6708
 
6084 serge 6709
	if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6710
		return 540000;
5354 serge 6711
 
6084 serge 6712
	linkrate = (I915_READ(DPLL_CTRL1) &
6713
		    DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
5060 serge 6714
 
6084 serge 6715
	if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6716
	    linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6717
		/* vco 8640 */
6718
		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6719
		case CDCLK_FREQ_450_432:
6720
			return 432000;
6721
		case CDCLK_FREQ_337_308:
6722
			return 308570;
6723
		case CDCLK_FREQ_675_617:
6724
			return 617140;
6725
		default:
6726
			WARN(1, "Unknown cd freq selection\n");
6727
		}
6728
	} else {
6729
		/* vco 8100 */
6730
		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6731
		case CDCLK_FREQ_450_432:
6732
			return 450000;
6733
		case CDCLK_FREQ_337_308:
6734
			return 337500;
6735
		case CDCLK_FREQ_675_617:
6736
			return 675000;
6737
		default:
6738
			WARN(1, "Unknown cd freq selection\n");
6739
		}
6740
	}
5060 serge 6741
 
6084 serge 6742
	/* error case, do as if DPLL0 isn't enabled */
6743
	return 24000;
6744
}
5060 serge 6745
 
6084 serge 6746
static int broxton_get_display_clock_speed(struct drm_device *dev)
6747
{
6748
	struct drm_i915_private *dev_priv = to_i915(dev);
6749
	uint32_t cdctl = I915_READ(CDCLK_CTL);
6750
	uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6751
	uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6752
	int cdclk;
6753
 
6754
	if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6755
		return 19200;
6756
 
6757
	cdclk = 19200 * pll_ratio / 2;
6758
 
6759
	switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6760
	case BXT_CDCLK_CD2X_DIV_SEL_1:
6761
		return cdclk;  /* 576MHz or 624MHz */
6762
	case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6763
		return cdclk * 2 / 3; /* 384MHz */
6764
	case BXT_CDCLK_CD2X_DIV_SEL_2:
6765
		return cdclk / 2; /* 288MHz */
6766
	case BXT_CDCLK_CD2X_DIV_SEL_4:
6767
		return cdclk / 4; /* 144MHz */
6768
	}
6769
 
6770
	/* error case, do as if DE PLL isn't enabled */
6771
	return 19200;
3031 serge 6772
}
6773
 
6084 serge 6774
static int broadwell_get_display_clock_speed(struct drm_device *dev)
6775
{
6776
	struct drm_i915_private *dev_priv = dev->dev_private;
6777
	uint32_t lcpll = I915_READ(LCPLL_CTL);
6778
	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6779
 
6780
	if (lcpll & LCPLL_CD_SOURCE_FCLK)
6781
		return 800000;
6782
	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6783
		return 450000;
6784
	else if (freq == LCPLL_CLK_FREQ_450)
6785
		return 450000;
6786
	else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6787
		return 540000;
6788
	else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6789
		return 337500;
6790
	else
6791
		return 675000;
6792
}
6793
 
6794
static int haswell_get_display_clock_speed(struct drm_device *dev)
6795
{
6796
	struct drm_i915_private *dev_priv = dev->dev_private;
6797
	uint32_t lcpll = I915_READ(LCPLL_CTL);
6798
	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6799
 
6800
	if (lcpll & LCPLL_CD_SOURCE_FCLK)
6801
		return 800000;
6802
	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6803
		return 450000;
6804
	else if (freq == LCPLL_CLK_FREQ_450)
6805
		return 450000;
6806
	else if (IS_HSW_ULT(dev))
6807
		return 337500;
6808
	else
6809
		return 540000;
6810
}
6811
 
6812
static int valleyview_get_display_clock_speed(struct drm_device *dev)
6813
{
6814
	return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6815
				      CCK_DISPLAY_CLOCK_CONTROL);
6816
}
6817
 
6818
static int ilk_get_display_clock_speed(struct drm_device *dev)
6819
{
6820
	return 450000;
6821
}
6822
 
2327 Serge 6823
static int i945_get_display_clock_speed(struct drm_device *dev)
6824
{
6825
	return 400000;
6826
}
6827
 
6828
static int i915_get_display_clock_speed(struct drm_device *dev)
6829
{
6084 serge 6830
	return 333333;
2327 Serge 6831
}
6832
 
6833
static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6834
{
6835
	return 200000;
6836
}
6837
 
4104 Serge 6838
static int pnv_get_display_clock_speed(struct drm_device *dev)
6839
{
6840
	u16 gcfgc = 0;
6841
 
6842
	pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6843
 
6844
	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6845
	case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6084 serge 6846
		return 266667;
4104 Serge 6847
	case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6084 serge 6848
		return 333333;
4104 Serge 6849
	case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6084 serge 6850
		return 444444;
4104 Serge 6851
	case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6852
		return 200000;
6853
	default:
6854
		DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6855
	case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6084 serge 6856
		return 133333;
4104 Serge 6857
	case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6084 serge 6858
		return 166667;
4104 Serge 6859
	}
6860
}
6861
 
2327 Serge 6862
static int i915gm_get_display_clock_speed(struct drm_device *dev)
6863
{
6864
	u16 gcfgc = 0;
6865
 
6866
	pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6867
 
6868
	if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6084 serge 6869
		return 133333;
2327 Serge 6870
	else {
6871
		switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6872
		case GC_DISPLAY_CLOCK_333_MHZ:
6084 serge 6873
			return 333333;
2327 Serge 6874
		default:
6875
		case GC_DISPLAY_CLOCK_190_200_MHZ:
6876
			return 190000;
6877
		}
6878
	}
6879
}
6880
 
6881
static int i865_get_display_clock_speed(struct drm_device *dev)
6882
{
6084 serge 6883
	return 266667;
2327 Serge 6884
}
6885
 
6084 serge 6886
static int i85x_get_display_clock_speed(struct drm_device *dev)
2327 Serge 6887
{
6888
	u16 hpllcc = 0;
6084 serge 6889
 
6890
	/*
6891
	 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6892
	 * encoding is different :(
6893
	 * FIXME is this the right way to detect 852GM/852GMV?
6894
	 */
6895
	if (dev->pdev->revision == 0x1)
6896
		return 133333;
6897
 
6898
//   pci_bus_read_config_word(dev->pdev->bus,
6899
//                PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6900
 
2327 Serge 6901
	/* Assume that the hardware is in the high speed state.  This
6902
	 * should be the default.
6903
	 */
6904
	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6905
	case GC_CLOCK_133_200:
6084 serge 6906
	case GC_CLOCK_133_200_2:
2327 Serge 6907
	case GC_CLOCK_100_200:
6908
		return 200000;
6909
	case GC_CLOCK_166_250:
6910
		return 250000;
6911
	case GC_CLOCK_100_133:
6084 serge 6912
		return 133333;
6913
	case GC_CLOCK_133_266:
6914
	case GC_CLOCK_133_266_2:
6915
	case GC_CLOCK_166_266:
6916
		return 266667;
2327 Serge 6917
	}
6918
 
6919
	/* Shouldn't happen */
6920
	return 0;
6921
}
6922
 
6923
static int i830_get_display_clock_speed(struct drm_device *dev)
6924
{
6084 serge 6925
	return 133333;
2327 Serge 6926
}
6927
 
6084 serge 6928
static unsigned int intel_hpll_vco(struct drm_device *dev)
6929
{
6930
	struct drm_i915_private *dev_priv = dev->dev_private;
6931
	static const unsigned int blb_vco[8] = {
6932
		[0] = 3200000,
6933
		[1] = 4000000,
6934
		[2] = 5333333,
6935
		[3] = 4800000,
6936
		[4] = 6400000,
6937
	};
6938
	static const unsigned int pnv_vco[8] = {
6939
		[0] = 3200000,
6940
		[1] = 4000000,
6941
		[2] = 5333333,
6942
		[3] = 4800000,
6943
		[4] = 2666667,
6944
	};
6945
	static const unsigned int cl_vco[8] = {
6946
		[0] = 3200000,
6947
		[1] = 4000000,
6948
		[2] = 5333333,
6949
		[3] = 6400000,
6950
		[4] = 3333333,
6951
		[5] = 3566667,
6952
		[6] = 4266667,
6953
	};
6954
	static const unsigned int elk_vco[8] = {
6955
		[0] = 3200000,
6956
		[1] = 4000000,
6957
		[2] = 5333333,
6958
		[3] = 4800000,
6959
	};
6960
	static const unsigned int ctg_vco[8] = {
6961
		[0] = 3200000,
6962
		[1] = 4000000,
6963
		[2] = 5333333,
6964
		[3] = 6400000,
6965
		[4] = 2666667,
6966
		[5] = 4266667,
6967
	};
6968
	const unsigned int *vco_table;
6969
	unsigned int vco;
6970
	uint8_t tmp = 0;
6971
 
6972
	/* FIXME other chipsets? */
6973
	if (IS_GM45(dev))
6974
		vco_table = ctg_vco;
6975
	else if (IS_G4X(dev))
6976
		vco_table = elk_vco;
6977
	else if (IS_CRESTLINE(dev))
6978
		vco_table = cl_vco;
6979
	else if (IS_PINEVIEW(dev))
6980
		vco_table = pnv_vco;
6981
	else if (IS_G33(dev))
6982
		vco_table = blb_vco;
6983
	else
6984
		return 0;
6985
 
6986
	tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6987
 
6988
	vco = vco_table[tmp & 0x7];
6989
	if (vco == 0)
6990
		DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6991
	else
6992
		DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6993
 
6994
	return vco;
6995
}
6996
 
6997
static int gm45_get_display_clock_speed(struct drm_device *dev)
6998
{
6999
	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7000
	uint16_t tmp = 0;
7001
 
7002
	pci_read_config_word(dev->pdev, GCFGC, &tmp);
7003
 
7004
	cdclk_sel = (tmp >> 12) & 0x1;
7005
 
7006
	switch (vco) {
7007
	case 2666667:
7008
	case 4000000:
7009
	case 5333333:
7010
		return cdclk_sel ? 333333 : 222222;
7011
	case 3200000:
7012
		return cdclk_sel ? 320000 : 228571;
7013
	default:
7014
		DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7015
		return 222222;
7016
	}
7017
}
7018
 
7019
static int i965gm_get_display_clock_speed(struct drm_device *dev)
7020
{
7021
	static const uint8_t div_3200[] = { 16, 10,  8 };
7022
	static const uint8_t div_4000[] = { 20, 12, 10 };
7023
	static const uint8_t div_5333[] = { 24, 16, 14 };
7024
	const uint8_t *div_table;
7025
	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7026
	uint16_t tmp = 0;
7027
 
7028
	pci_read_config_word(dev->pdev, GCFGC, &tmp);
7029
 
7030
	cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7031
 
7032
	if (cdclk_sel >= ARRAY_SIZE(div_3200))
7033
		goto fail;
7034
 
7035
	switch (vco) {
7036
	case 3200000:
7037
		div_table = div_3200;
7038
		break;
7039
	case 4000000:
7040
		div_table = div_4000;
7041
		break;
7042
	case 5333333:
7043
		div_table = div_5333;
7044
		break;
7045
	default:
7046
		goto fail;
7047
	}
7048
 
7049
	return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7050
 
7051
fail:
7052
	DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7053
	return 200000;
7054
}
7055
 
7056
static int g33_get_display_clock_speed(struct drm_device *dev)
7057
{
7058
	static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7059
	static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7060
	static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7061
	static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7062
	const uint8_t *div_table;
7063
	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7064
	uint16_t tmp = 0;
7065
 
7066
	pci_read_config_word(dev->pdev, GCFGC, &tmp);
7067
 
7068
	cdclk_sel = (tmp >> 4) & 0x7;
7069
 
7070
	if (cdclk_sel >= ARRAY_SIZE(div_3200))
7071
		goto fail;
7072
 
7073
	switch (vco) {
7074
	case 3200000:
7075
		div_table = div_3200;
7076
		break;
7077
	case 4000000:
7078
		div_table = div_4000;
7079
		break;
7080
	case 4800000:
7081
		div_table = div_4800;
7082
		break;
7083
	case 5333333:
7084
		div_table = div_5333;
7085
		break;
7086
	default:
7087
		goto fail;
7088
	}
7089
 
7090
	return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7091
 
7092
fail:
7093
	DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7094
	return 190476;
7095
}
7096
 
2327 Serge 7097
static void
3746 Serge 7098
intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2327 Serge 7099
{
3746 Serge 7100
	while (*num > DATA_LINK_M_N_MASK ||
7101
	       *den > DATA_LINK_M_N_MASK) {
2327 Serge 7102
		*num >>= 1;
7103
		*den >>= 1;
7104
	}
7105
}
7106
 
3746 Serge 7107
static void compute_m_n(unsigned int m, unsigned int n,
7108
			uint32_t *ret_m, uint32_t *ret_n)
7109
{
7110
	*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7111
	*ret_m = div_u64((uint64_t) m * *ret_n, n);
7112
	intel_reduce_m_n_ratio(ret_m, ret_n);
7113
}
7114
 
3480 Serge 7115
void
7116
intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7117
		       int pixel_clock, int link_clock,
7118
		       struct intel_link_m_n *m_n)
2327 Serge 7119
{
3480 Serge 7120
	m_n->tu = 64;
3746 Serge 7121
 
7122
	compute_m_n(bits_per_pixel * pixel_clock,
7123
		    link_clock * nlanes * 8,
7124
		    &m_n->gmch_m, &m_n->gmch_n);
7125
 
7126
	compute_m_n(pixel_clock, link_clock,
7127
		    &m_n->link_m, &m_n->link_n);
2327 Serge 7128
}
7129
 
7130
static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7131
{
5060 serge 7132
	if (i915.panel_use_ssc >= 0)
7133
		return i915.panel_use_ssc != 0;
4104 Serge 7134
	return dev_priv->vbt.lvds_use_ssc
2327 Serge 7135
		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7136
}
7137
 
6084 serge 7138
static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7139
			   int num_connectors)
3031 serge 7140
{
6084 serge 7141
	struct drm_device *dev = crtc_state->base.crtc->dev;
3031 serge 7142
	struct drm_i915_private *dev_priv = dev->dev_private;
7143
	int refclk;
2327 Serge 7144
 
6084 serge 7145
	WARN_ON(!crtc_state->base.state);
7146
 
7147
	if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
4560 Serge 7148
		refclk = 100000;
6084 serge 7149
	} else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
3031 serge 7150
	    intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4560 Serge 7151
		refclk = dev_priv->vbt.lvds_ssc_freq;
7152
		DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
3031 serge 7153
	} else if (!IS_GEN2(dev)) {
7154
		refclk = 96000;
7155
	} else {
7156
		refclk = 48000;
7157
	}
2327 Serge 7158
 
3031 serge 7159
	return refclk;
7160
}
2327 Serge 7161
 
4104 Serge 7162
static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
3031 serge 7163
{
4104 Serge 7164
	return (1 << dpll->n) << 16 | dpll->m2;
7165
}
3746 Serge 7166
 
4104 Serge 7167
static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7168
{
7169
	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
3031 serge 7170
}
2327 Serge 7171
 
3746 Serge 7172
static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6084 serge 7173
				     struct intel_crtc_state *crtc_state,
3031 serge 7174
				     intel_clock_t *reduced_clock)
7175
{
3746 Serge 7176
	struct drm_device *dev = crtc->base.dev;
3031 serge 7177
	u32 fp, fp2 = 0;
2327 Serge 7178
 
3031 serge 7179
	if (IS_PINEVIEW(dev)) {
6084 serge 7180
		fp = pnv_dpll_compute_fp(&crtc_state->dpll);
3031 serge 7181
		if (reduced_clock)
4104 Serge 7182
			fp2 = pnv_dpll_compute_fp(reduced_clock);
3031 serge 7183
	} else {
6084 serge 7184
		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
3031 serge 7185
		if (reduced_clock)
4104 Serge 7186
			fp2 = i9xx_dpll_compute_fp(reduced_clock);
3031 serge 7187
	}
2327 Serge 7188
 
6084 serge 7189
	crtc_state->dpll_hw_state.fp0 = fp;
2327 Serge 7190
 
3746 Serge 7191
	crtc->lowfreq_avail = false;
6084 serge 7192
	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7193
	    reduced_clock) {
7194
		crtc_state->dpll_hw_state.fp1 = fp2;
3746 Serge 7195
		crtc->lowfreq_avail = true;
3031 serge 7196
	} else {
6084 serge 7197
		crtc_state->dpll_hw_state.fp1 = fp;
3031 serge 7198
	}
7199
}
2327 Serge 7200
 
4560 Serge 7201
static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7202
		pipe)
4104 Serge 7203
{
7204
	u32 reg_val;
7205
 
7206
	/*
7207
	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7208
	 * and set it to a reasonable value instead.
7209
	 */
4560 Serge 7210
	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
4104 Serge 7211
	reg_val &= 0xffffff00;
7212
	reg_val |= 0x00000030;
4560 Serge 7213
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
4104 Serge 7214
 
4560 Serge 7215
	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
4104 Serge 7216
	reg_val &= 0x8cffffff;
7217
	reg_val = 0x8c000000;
4560 Serge 7218
	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
4104 Serge 7219
 
4560 Serge 7220
	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
4104 Serge 7221
	reg_val &= 0xffffff00;
4560 Serge 7222
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
4104 Serge 7223
 
4560 Serge 7224
	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
4104 Serge 7225
	reg_val &= 0x00ffffff;
7226
	reg_val |= 0xb0000000;
4560 Serge 7227
	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
4104 Serge 7228
}
7229
 
7230
static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7231
					 struct intel_link_m_n *m_n)
7232
{
7233
	struct drm_device *dev = crtc->base.dev;
7234
	struct drm_i915_private *dev_priv = dev->dev_private;
7235
	int pipe = crtc->pipe;
7236
 
7237
	I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7238
	I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7239
	I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7240
	I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7241
}
7242
 
7243
static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5354 serge 7244
					 struct intel_link_m_n *m_n,
7245
					 struct intel_link_m_n *m2_n2)
4104 Serge 7246
{
7247
	struct drm_device *dev = crtc->base.dev;
7248
	struct drm_i915_private *dev_priv = dev->dev_private;
7249
	int pipe = crtc->pipe;
6084 serge 7250
	enum transcoder transcoder = crtc->config->cpu_transcoder;
4104 Serge 7251
 
7252
	if (INTEL_INFO(dev)->gen >= 5) {
7253
		I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7254
		I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7255
		I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7256
		I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5354 serge 7257
		/* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7258
		 * for gen < 8) and if DRRS is supported (to make sure the
7259
		 * registers are not unnecessarily accessed).
7260
		 */
6084 serge 7261
		if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7262
			crtc->config->has_drrs) {
5354 serge 7263
			I915_WRITE(PIPE_DATA_M2(transcoder),
7264
					TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7265
			I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7266
			I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7267
			I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7268
		}
4104 Serge 7269
	} else {
7270
		I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7271
		I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7272
		I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7273
		I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7274
	}
7275
}
7276
 
6084 serge 7277
void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
3031 serge 7278
{
6084 serge 7279
	struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7280
 
7281
	if (m_n == M1_N1) {
7282
		dp_m_n = &crtc->config->dp_m_n;
7283
		dp_m2_n2 = &crtc->config->dp_m2_n2;
7284
	} else if (m_n == M2_N2) {
7285
 
7286
		/*
7287
		 * M2_N2 registers are not supported. Hence m2_n2 divider value
7288
		 * needs to be programmed into M1_N1.
7289
		 */
7290
		dp_m_n = &crtc->config->dp_m2_n2;
7291
	} else {
7292
		DRM_ERROR("Unsupported divider value\n");
7293
		return;
7294
	}
7295
 
7296
	if (crtc->config->has_pch_encoder)
7297
		intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
3746 Serge 7298
	else
6084 serge 7299
		intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
3746 Serge 7300
}
7301
 
6084 serge 7302
static void vlv_compute_dpll(struct intel_crtc *crtc,
7303
			     struct intel_crtc_state *pipe_config)
3746 Serge 7304
{
5060 serge 7305
	u32 dpll, dpll_md;
7306
 
7307
	/*
7308
	 * Enable DPIO clock input. We should never disable the reference
7309
	 * clock for pipe B, since VGA hotplug / manual detection depends
7310
	 * on it.
7311
	 */
6084 serge 7312
	dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7313
		DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
5060 serge 7314
	/* We should never disable this, set it here for state tracking */
7315
	if (crtc->pipe == PIPE_B)
7316
		dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7317
	dpll |= DPLL_VCO_ENABLE;
5354 serge 7318
	pipe_config->dpll_hw_state.dpll = dpll;
5060 serge 7319
 
5354 serge 7320
	dpll_md = (pipe_config->pixel_multiplier - 1)
5060 serge 7321
		<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
5354 serge 7322
	pipe_config->dpll_hw_state.dpll_md = dpll_md;
5060 serge 7323
}
7324
 
5354 serge 7325
static void vlv_prepare_pll(struct intel_crtc *crtc,
6084 serge 7326
			    const struct intel_crtc_state *pipe_config)
5060 serge 7327
{
3746 Serge 7328
	struct drm_device *dev = crtc->base.dev;
3031 serge 7329
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 7330
	int pipe = crtc->pipe;
5060 serge 7331
	u32 mdiv;
3031 serge 7332
	u32 bestn, bestm1, bestm2, bestp1, bestp2;
5060 serge 7333
	u32 coreclk, reg_val;
2327 Serge 7334
 
6084 serge 7335
	mutex_lock(&dev_priv->sb_lock);
3480 Serge 7336
 
5354 serge 7337
	bestn = pipe_config->dpll.n;
7338
	bestm1 = pipe_config->dpll.m1;
7339
	bestm2 = pipe_config->dpll.m2;
7340
	bestp1 = pipe_config->dpll.p1;
7341
	bestp2 = pipe_config->dpll.p2;
3031 serge 7342
 
4104 Serge 7343
	/* See eDP HDMI DPIO driver vbios notes doc */
7344
 
7345
	/* PLL B needs special handling */
5060 serge 7346
	if (pipe == PIPE_B)
4560 Serge 7347
		vlv_pllb_recal_opamp(dev_priv, pipe);
4104 Serge 7348
 
7349
	/* Set up Tx target for periodic Rcomp update */
4560 Serge 7350
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
4104 Serge 7351
 
7352
	/* Disable target IRef on PLL */
4560 Serge 7353
	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
4104 Serge 7354
	reg_val &= 0x00ffffff;
4560 Serge 7355
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
4104 Serge 7356
 
7357
	/* Disable fast lock */
4560 Serge 7358
	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
4104 Serge 7359
 
7360
	/* Set idtafcrecal before PLL is enabled */
3031 serge 7361
	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7362
	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7363
	mdiv |= ((bestn << DPIO_N_SHIFT));
7364
	mdiv |= (1 << DPIO_K_SHIFT);
4104 Serge 7365
 
7366
	/*
7367
	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7368
	 * but we don't support that).
7369
	 * Note: don't use the DAC post divider as it seems unstable.
7370
	 */
7371
	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4560 Serge 7372
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
4104 Serge 7373
 
3031 serge 7374
	mdiv |= DPIO_ENABLE_CALIBRATION;
4560 Serge 7375
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
3031 serge 7376
 
4104 Serge 7377
	/* Set HBR and RBR LPF coefficients */
5354 serge 7378
	if (pipe_config->port_clock == 162000 ||
7379
	    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7380
	    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4560 Serge 7381
		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
4104 Serge 7382
				 0x009f0003);
7383
	else
4560 Serge 7384
		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
4104 Serge 7385
				 0x00d0000f);
3031 serge 7386
 
6084 serge 7387
	if (pipe_config->has_dp_encoder) {
4104 Serge 7388
		/* Use SSC source */
5060 serge 7389
		if (pipe == PIPE_A)
4560 Serge 7390
			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4104 Serge 7391
					 0x0df40000);
7392
		else
4560 Serge 7393
			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4104 Serge 7394
					 0x0df70000);
7395
	} else { /* HDMI or VGA */
7396
		/* Use bend source */
5060 serge 7397
		if (pipe == PIPE_A)
4560 Serge 7398
			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4104 Serge 7399
					 0x0df70000);
7400
		else
4560 Serge 7401
			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4104 Serge 7402
					 0x0df40000);
7403
	}
3031 serge 7404
 
4560 Serge 7405
	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
4104 Serge 7406
	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5354 serge 7407
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7408
	    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
4104 Serge 7409
		coreclk |= 0x01000000;
4560 Serge 7410
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
3031 serge 7411
 
4560 Serge 7412
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6084 serge 7413
	mutex_unlock(&dev_priv->sb_lock);
5060 serge 7414
}
4104 Serge 7415
 
6084 serge 7416
static void chv_compute_dpll(struct intel_crtc *crtc,
7417
			     struct intel_crtc_state *pipe_config)
5060 serge 7418
{
6084 serge 7419
	pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7420
		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5354 serge 7421
		DPLL_VCO_ENABLE;
7422
	if (crtc->pipe != PIPE_A)
7423
		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7424
 
7425
	pipe_config->dpll_hw_state.dpll_md =
7426
		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7427
}
7428
 
7429
static void chv_prepare_pll(struct intel_crtc *crtc,
6084 serge 7430
			    const struct intel_crtc_state *pipe_config)
5354 serge 7431
{
5060 serge 7432
	struct drm_device *dev = crtc->base.dev;
7433
	struct drm_i915_private *dev_priv = dev->dev_private;
7434
	int pipe = crtc->pipe;
7435
	int dpll_reg = DPLL(crtc->pipe);
7436
	enum dpio_channel port = vlv_pipe_to_channel(pipe);
6084 serge 7437
	u32 loopfilter, tribuf_calcntr;
5060 serge 7438
	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6084 serge 7439
	u32 dpio_val;
7440
	int vco;
5060 serge 7441
 
5354 serge 7442
	bestn = pipe_config->dpll.n;
7443
	bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7444
	bestm1 = pipe_config->dpll.m1;
7445
	bestm2 = pipe_config->dpll.m2 >> 22;
7446
	bestp1 = pipe_config->dpll.p1;
7447
	bestp2 = pipe_config->dpll.p2;
6084 serge 7448
	vco = pipe_config->dpll.vco;
7449
	dpio_val = 0;
7450
	loopfilter = 0;
5060 serge 7451
 
4560 Serge 7452
	/*
5060 serge 7453
	 * Enable Refclk and SSC
4560 Serge 7454
	 */
5060 serge 7455
	I915_WRITE(dpll_reg,
5354 serge 7456
		   pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
3031 serge 7457
 
6084 serge 7458
	mutex_lock(&dev_priv->sb_lock);
3031 serge 7459
 
5060 serge 7460
	/* p1 and p2 divider */
7461
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7462
			5 << DPIO_CHV_S1_DIV_SHIFT |
7463
			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7464
			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7465
			1 << DPIO_CHV_K_DIV_SHIFT);
3243 Serge 7466
 
5060 serge 7467
	/* Feedback post-divider - m2 */
7468
	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7469
 
7470
	/* Feedback refclk divider - n and m1 */
7471
	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7472
			DPIO_CHV_M1_DIV_BY_2 |
7473
			1 << DPIO_CHV_N_DIV_SHIFT);
7474
 
7475
	/* M2 fraction division */
7476
	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7477
 
7478
	/* M2 fraction division enable */
6084 serge 7479
	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7480
	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7481
	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7482
	if (bestm2_frac)
7483
		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7484
	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
5060 serge 7485
 
6084 serge 7486
	/* Program digital lock detect threshold */
7487
	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7488
	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7489
					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7490
	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7491
	if (!bestm2_frac)
7492
		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7493
	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7494
 
5060 serge 7495
	/* Loop filter */
6084 serge 7496
	if (vco == 5400000) {
7497
		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7498
		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7499
		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7500
		tribuf_calcntr = 0x9;
7501
	} else if (vco <= 6200000) {
7502
		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7503
		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7504
		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7505
		tribuf_calcntr = 0x9;
7506
	} else if (vco <= 6480000) {
7507
		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7508
		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7509
		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7510
		tribuf_calcntr = 0x8;
7511
	} else {
7512
		/* Not supported. Apply the same limits as in the max case */
7513
		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7514
		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7515
		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7516
		tribuf_calcntr = 0;
7517
	}
5060 serge 7518
	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7519
 
6084 serge 7520
	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7521
	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7522
	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7523
	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7524
 
5060 serge 7525
	/* AFC Recal */
7526
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7527
			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7528
			DPIO_AFC_RECAL);
7529
 
6084 serge 7530
	mutex_unlock(&dev_priv->sb_lock);
3031 serge 7531
}
7532
 
5354 serge 7533
/**
7534
 * vlv_force_pll_on - forcibly enable just the PLL
7535
 * @dev_priv: i915 private structure
7536
 * @pipe: pipe PLL to enable
7537
 * @dpll: PLL configuration
7538
 *
7539
 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7540
 * in cases where we need the PLL enabled even when @pipe is not going to
7541
 * be enabled.
7542
 */
7543
void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7544
		      const struct dpll *dpll)
7545
{
7546
	struct intel_crtc *crtc =
7547
		to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6084 serge 7548
	struct intel_crtc_state pipe_config = {
7549
		.base.crtc = &crtc->base,
5354 serge 7550
		.pixel_multiplier = 1,
7551
		.dpll = *dpll,
7552
	};
7553
 
7554
	if (IS_CHERRYVIEW(dev)) {
6084 serge 7555
		chv_compute_dpll(crtc, &pipe_config);
5354 serge 7556
		chv_prepare_pll(crtc, &pipe_config);
7557
		chv_enable_pll(crtc, &pipe_config);
7558
	} else {
6084 serge 7559
		vlv_compute_dpll(crtc, &pipe_config);
5354 serge 7560
		vlv_prepare_pll(crtc, &pipe_config);
7561
		vlv_enable_pll(crtc, &pipe_config);
7562
	}
7563
}
7564
 
7565
/**
7566
 * vlv_force_pll_off - forcibly disable just the PLL
7567
 * @dev_priv: i915 private structure
7568
 * @pipe: pipe PLL to disable
7569
 *
7570
 * Disable the PLL for @pipe. To be used in cases where we need
7571
 * the PLL enabled even when @pipe is not going to be enabled.
7572
 */
7573
void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7574
{
7575
	if (IS_CHERRYVIEW(dev))
7576
		chv_disable_pll(to_i915(dev), pipe);
7577
	else
7578
		vlv_disable_pll(to_i915(dev), pipe);
7579
}
7580
 
6084 serge 7581
static void i9xx_compute_dpll(struct intel_crtc *crtc,
7582
			      struct intel_crtc_state *crtc_state,
7583
			      intel_clock_t *reduced_clock,
7584
			      int num_connectors)
3031 serge 7585
{
3746 Serge 7586
	struct drm_device *dev = crtc->base.dev;
3031 serge 7587
	struct drm_i915_private *dev_priv = dev->dev_private;
7588
	u32 dpll;
7589
	bool is_sdvo;
6084 serge 7590
	struct dpll *clock = &crtc_state->dpll;
3031 serge 7591
 
6084 serge 7592
	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
3243 Serge 7593
 
6084 serge 7594
	is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7595
		intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
3031 serge 7596
 
7597
	dpll = DPLL_VGA_MODE_DIS;
7598
 
6084 serge 7599
	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
3031 serge 7600
		dpll |= DPLLB_MODE_LVDS;
7601
	else
7602
		dpll |= DPLLB_MODE_DAC_SERIAL;
3746 Serge 7603
 
4104 Serge 7604
	if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6084 serge 7605
		dpll |= (crtc_state->pixel_multiplier - 1)
7606
			<< SDVO_MULTIPLIER_SHIFT_HIRES;
7607
	}
4104 Serge 7608
 
7609
	if (is_sdvo)
7610
		dpll |= DPLL_SDVO_HIGH_SPEED;
7611
 
6084 serge 7612
	if (crtc_state->has_dp_encoder)
4104 Serge 7613
		dpll |= DPLL_SDVO_HIGH_SPEED;
2342 Serge 7614
 
3031 serge 7615
	/* compute bitmask from p1 value */
7616
	if (IS_PINEVIEW(dev))
7617
		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7618
	else {
7619
		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7620
		if (IS_G4X(dev) && reduced_clock)
7621
			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7622
	}
7623
	switch (clock->p2) {
7624
	case 5:
7625
		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7626
		break;
7627
	case 7:
7628
		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7629
		break;
7630
	case 10:
7631
		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7632
		break;
7633
	case 14:
7634
		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7635
		break;
7636
	}
7637
	if (INTEL_INFO(dev)->gen >= 4)
7638
		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
2327 Serge 7639
 
6084 serge 7640
	if (crtc_state->sdvo_tv_clock)
3031 serge 7641
		dpll |= PLL_REF_INPUT_TVCLKINBC;
6084 serge 7642
	else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
3031 serge 7643
		 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7644
		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7645
	else
7646
		dpll |= PLL_REF_INPUT_DREFCLK;
2327 Serge 7647
 
3031 serge 7648
	dpll |= DPLL_VCO_ENABLE;
6084 serge 7649
	crtc_state->dpll_hw_state.dpll = dpll;
2327 Serge 7650
 
4104 Serge 7651
	if (INTEL_INFO(dev)->gen >= 4) {
6084 serge 7652
		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7653
			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
7654
		crtc_state->dpll_hw_state.dpll_md = dpll_md;
4104 Serge 7655
	}
3031 serge 7656
}
2327 Serge 7657
 
6084 serge 7658
static void i8xx_compute_dpll(struct intel_crtc *crtc,
7659
			      struct intel_crtc_state *crtc_state,
7660
			      intel_clock_t *reduced_clock,
7661
			      int num_connectors)
3031 serge 7662
{
3746 Serge 7663
	struct drm_device *dev = crtc->base.dev;
3031 serge 7664
	struct drm_i915_private *dev_priv = dev->dev_private;
7665
	u32 dpll;
6084 serge 7666
	struct dpll *clock = &crtc_state->dpll;
2327 Serge 7667
 
6084 serge 7668
	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
3243 Serge 7669
 
3031 serge 7670
	dpll = DPLL_VGA_MODE_DIS;
2327 Serge 7671
 
6084 serge 7672
	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
3031 serge 7673
		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7674
	} else {
7675
		if (clock->p1 == 2)
7676
			dpll |= PLL_P1_DIVIDE_BY_TWO;
7677
		else
7678
			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7679
		if (clock->p2 == 4)
7680
			dpll |= PLL_P2_DIVIDE_BY_4;
7681
	}
2327 Serge 7682
 
6084 serge 7683
	if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
4104 Serge 7684
		dpll |= DPLL_DVO_2X_MODE;
7685
 
6084 serge 7686
	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
3031 serge 7687
		 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7688
		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7689
	else
7690
		dpll |= PLL_REF_INPUT_DREFCLK;
7691
 
7692
	dpll |= DPLL_VCO_ENABLE;
6084 serge 7693
	crtc_state->dpll_hw_state.dpll = dpll;
3031 serge 7694
}
7695
 
4104 Serge 7696
static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
3243 Serge 7697
{
7698
	struct drm_device *dev = intel_crtc->base.dev;
7699
	struct drm_i915_private *dev_priv = dev->dev_private;
7700
	enum pipe pipe = intel_crtc->pipe;
6084 serge 7701
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7702
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
5060 serge 7703
	uint32_t crtc_vtotal, crtc_vblank_end;
7704
	int vsyncshift = 0;
3243 Serge 7705
 
4104 Serge 7706
	/* We need to be careful not to changed the adjusted mode, for otherwise
7707
	 * the hw state checker will get angry at the mismatch. */
7708
	crtc_vtotal = adjusted_mode->crtc_vtotal;
7709
	crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7710
 
5060 serge 7711
	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
3243 Serge 7712
		/* the chip adds 2 halflines automatically */
4104 Serge 7713
		crtc_vtotal -= 1;
7714
		crtc_vblank_end -= 1;
5060 serge 7715
 
5354 serge 7716
		if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
5060 serge 7717
			vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7718
		else
7719
			vsyncshift = adjusted_mode->crtc_hsync_start -
7720
				adjusted_mode->crtc_htotal / 2;
7721
		if (vsyncshift < 0)
7722
			vsyncshift += adjusted_mode->crtc_htotal;
3243 Serge 7723
	}
7724
 
7725
	if (INTEL_INFO(dev)->gen > 3)
7726
		I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7727
 
7728
	I915_WRITE(HTOTAL(cpu_transcoder),
7729
		   (adjusted_mode->crtc_hdisplay - 1) |
7730
		   ((adjusted_mode->crtc_htotal - 1) << 16));
7731
	I915_WRITE(HBLANK(cpu_transcoder),
7732
		   (adjusted_mode->crtc_hblank_start - 1) |
7733
		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
7734
	I915_WRITE(HSYNC(cpu_transcoder),
7735
		   (adjusted_mode->crtc_hsync_start - 1) |
7736
		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
7737
 
7738
	I915_WRITE(VTOTAL(cpu_transcoder),
7739
		   (adjusted_mode->crtc_vdisplay - 1) |
4104 Serge 7740
		   ((crtc_vtotal - 1) << 16));
3243 Serge 7741
	I915_WRITE(VBLANK(cpu_transcoder),
7742
		   (adjusted_mode->crtc_vblank_start - 1) |
4104 Serge 7743
		   ((crtc_vblank_end - 1) << 16));
3243 Serge 7744
	I915_WRITE(VSYNC(cpu_transcoder),
7745
		   (adjusted_mode->crtc_vsync_start - 1) |
7746
		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
7747
 
7748
	/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7749
	 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7750
	 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7751
	 * bits. */
7752
	if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7753
	    (pipe == PIPE_B || pipe == PIPE_C))
7754
		I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7755
 
7756
	/* pipesrc controls the size that is scaled from, which should
7757
	 * always be the user's requested size.
7758
	 */
7759
	I915_WRITE(PIPESRC(pipe),
6084 serge 7760
		   ((intel_crtc->config->pipe_src_w - 1) << 16) |
7761
		   (intel_crtc->config->pipe_src_h - 1));
3243 Serge 7762
}
7763
 
4104 Serge 7764
static void intel_get_pipe_timings(struct intel_crtc *crtc,
6084 serge 7765
				   struct intel_crtc_state *pipe_config)
4104 Serge 7766
{
7767
	struct drm_device *dev = crtc->base.dev;
7768
	struct drm_i915_private *dev_priv = dev->dev_private;
7769
	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7770
	uint32_t tmp;
7771
 
7772
	tmp = I915_READ(HTOTAL(cpu_transcoder));
6084 serge 7773
	pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7774
	pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4104 Serge 7775
	tmp = I915_READ(HBLANK(cpu_transcoder));
6084 serge 7776
	pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7777
	pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4104 Serge 7778
	tmp = I915_READ(HSYNC(cpu_transcoder));
6084 serge 7779
	pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7780
	pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4104 Serge 7781
 
7782
	tmp = I915_READ(VTOTAL(cpu_transcoder));
6084 serge 7783
	pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7784
	pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4104 Serge 7785
	tmp = I915_READ(VBLANK(cpu_transcoder));
6084 serge 7786
	pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7787
	pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4104 Serge 7788
	tmp = I915_READ(VSYNC(cpu_transcoder));
6084 serge 7789
	pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7790
	pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4104 Serge 7791
 
7792
	if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6084 serge 7793
		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7794
		pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7795
		pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
4104 Serge 7796
	}
7797
 
7798
	tmp = I915_READ(PIPESRC(crtc->pipe));
4560 Serge 7799
	pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7800
	pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7801
 
6084 serge 7802
	pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7803
	pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
4104 Serge 7804
}
7805
 
5060 serge 7806
void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6084 serge 7807
				 struct intel_crtc_state *pipe_config)
4104 Serge 7808
{
6084 serge 7809
	mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7810
	mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7811
	mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7812
	mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
4104 Serge 7813
 
6084 serge 7814
	mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7815
	mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7816
	mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7817
	mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
4104 Serge 7818
 
6084 serge 7819
	mode->flags = pipe_config->base.adjusted_mode.flags;
7820
	mode->type = DRM_MODE_TYPE_DRIVER;
4104 Serge 7821
 
6084 serge 7822
	mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7823
	mode->flags |= pipe_config->base.adjusted_mode.flags;
7824
 
7825
	mode->hsync = drm_mode_hsync(mode);
7826
	mode->vrefresh = drm_mode_vrefresh(mode);
7827
	drm_mode_set_name(mode);
4104 Serge 7828
}
7829
 
3746 Serge 7830
static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7831
{
7832
	struct drm_device *dev = intel_crtc->base.dev;
7833
	struct drm_i915_private *dev_priv = dev->dev_private;
7834
	uint32_t pipeconf;
7835
 
4104 Serge 7836
	pipeconf = 0;
3746 Serge 7837
 
5354 serge 7838
	if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7839
	    (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7840
		pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
4104 Serge 7841
 
6084 serge 7842
	if (intel_crtc->config->double_wide)
7843
		pipeconf |= PIPECONF_DOUBLE_WIDE;
3746 Serge 7844
 
4104 Serge 7845
	/* only g4x and later have fancy bpc/dither controls */
7846
	if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7847
		/* Bspec claims that we can't use dithering for 30bpp pipes. */
6084 serge 7848
		if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
4104 Serge 7849
			pipeconf |= PIPECONF_DITHER_EN |
3746 Serge 7850
				    PIPECONF_DITHER_TYPE_SP;
7851
 
6084 serge 7852
		switch (intel_crtc->config->pipe_bpp) {
4104 Serge 7853
		case 18:
7854
			pipeconf |= PIPECONF_6BPC;
7855
			break;
7856
		case 24:
7857
			pipeconf |= PIPECONF_8BPC;
7858
			break;
7859
		case 30:
7860
			pipeconf |= PIPECONF_10BPC;
7861
			break;
7862
		default:
7863
			/* Case prevented by intel_choose_pipe_bpp_dither. */
7864
			BUG();
3746 Serge 7865
		}
7866
	}
7867
 
7868
	if (HAS_PIPE_CXSR(dev)) {
7869
		if (intel_crtc->lowfreq_avail) {
7870
			DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7871
			pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7872
		} else {
7873
			DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7874
		}
7875
	}
7876
 
6084 serge 7877
	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
5060 serge 7878
		if (INTEL_INFO(dev)->gen < 4 ||
5354 serge 7879
		    intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6084 serge 7880
			pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7881
		else
5060 serge 7882
			pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7883
	} else
3746 Serge 7884
		pipeconf |= PIPECONF_PROGRESSIVE;
7885
 
6084 serge 7886
	if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7887
		pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
3746 Serge 7888
 
7889
	I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7890
	POSTING_READ(PIPECONF(intel_crtc->pipe));
7891
}
7892
 
6084 serge 7893
static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7894
				   struct intel_crtc_state *crtc_state)
3031 serge 7895
{
5354 serge 7896
	struct drm_device *dev = crtc->base.dev;
3031 serge 7897
	struct drm_i915_private *dev_priv = dev->dev_private;
7898
	int refclk, num_connectors = 0;
6084 serge 7899
	intel_clock_t clock;
7900
	bool ok;
7901
	bool is_dsi = false;
3031 serge 7902
	struct intel_encoder *encoder;
7903
	const intel_limit_t *limit;
6084 serge 7904
	struct drm_atomic_state *state = crtc_state->base.state;
7905
	struct drm_connector *connector;
7906
	struct drm_connector_state *connector_state;
7907
	int i;
3031 serge 7908
 
6084 serge 7909
	memset(&crtc_state->dpll_hw_state, 0,
7910
	       sizeof(crtc_state->dpll_hw_state));
7911
 
7912
	for_each_connector_in_state(state, connector, connector_state, i) {
7913
		if (connector_state->crtc != &crtc->base)
5354 serge 7914
			continue;
7915
 
6084 serge 7916
		encoder = to_intel_encoder(connector_state->best_encoder);
7917
 
3031 serge 7918
		switch (encoder->type) {
4560 Serge 7919
		case INTEL_OUTPUT_DSI:
7920
			is_dsi = true;
7921
			break;
5354 serge 7922
		default:
7923
			break;
3031 serge 7924
		}
7925
 
7926
		num_connectors++;
7927
	}
7928
 
4560 Serge 7929
	if (is_dsi)
5060 serge 7930
		return 0;
4560 Serge 7931
 
6084 serge 7932
	if (!crtc_state->clock_set) {
7933
		refclk = i9xx_get_refclk(crtc_state, num_connectors);
3031 serge 7934
 
6084 serge 7935
		/*
4560 Serge 7936
		 * Returns a set of divisors for the desired target clock with
7937
		 * the given refclk, or FALSE.  The returned values represent
7938
		 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7939
		 * 2) / p1 / p2.
6084 serge 7940
		 */
7941
		limit = intel_limit(crtc_state, refclk);
7942
		ok = dev_priv->display.find_dpll(limit, crtc_state,
7943
						 crtc_state->port_clock,
7944
						 refclk, NULL, &clock);
4560 Serge 7945
		if (!ok) {
6084 serge 7946
			DRM_ERROR("Couldn't find PLL settings for mode!\n");
7947
			return -EINVAL;
7948
		}
3031 serge 7949
 
6084 serge 7950
		/* Compat-code for transition, will disappear. */
7951
		crtc_state->dpll.n = clock.n;
7952
		crtc_state->dpll.m1 = clock.m1;
7953
		crtc_state->dpll.m2 = clock.m2;
7954
		crtc_state->dpll.p1 = clock.p1;
7955
		crtc_state->dpll.p2 = clock.p2;
3031 serge 7956
	}
7957
 
4560 Serge 7958
	if (IS_GEN2(dev)) {
6084 serge 7959
		i8xx_compute_dpll(crtc, crtc_state, NULL,
7960
				  num_connectors);
5060 serge 7961
	} else if (IS_CHERRYVIEW(dev)) {
6084 serge 7962
		chv_compute_dpll(crtc, crtc_state);
4560 Serge 7963
	} else if (IS_VALLEYVIEW(dev)) {
6084 serge 7964
		vlv_compute_dpll(crtc, crtc_state);
4560 Serge 7965
	} else {
6084 serge 7966
		i9xx_compute_dpll(crtc, crtc_state, NULL,
7967
				  num_connectors);
4560 Serge 7968
	}
3031 serge 7969
 
5060 serge 7970
	return 0;
2327 Serge 7971
}
7972
 
4104 Serge 7973
static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6084 serge 7974
				 struct intel_crtc_state *pipe_config)
4104 Serge 7975
{
7976
	struct drm_device *dev = crtc->base.dev;
7977
	struct drm_i915_private *dev_priv = dev->dev_private;
7978
	uint32_t tmp;
7979
 
4560 Serge 7980
	if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7981
		return;
7982
 
4104 Serge 7983
	tmp = I915_READ(PFIT_CONTROL);
7984
	if (!(tmp & PFIT_ENABLE))
7985
		return;
7986
 
7987
	/* Check whether the pfit is attached to our pipe. */
7988
	if (INTEL_INFO(dev)->gen < 4) {
7989
		if (crtc->pipe != PIPE_B)
7990
			return;
7991
	} else {
7992
		if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7993
			return;
7994
	}
7995
 
7996
	pipe_config->gmch_pfit.control = tmp;
7997
	pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7998
	if (INTEL_INFO(dev)->gen < 5)
7999
		pipe_config->gmch_pfit.lvds_border_bits =
8000
			I915_READ(LVDS) & LVDS_BORDER_ENABLE;
8001
}
8002
 
4398 Serge 8003
static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6084 serge 8004
			       struct intel_crtc_state *pipe_config)
4398 Serge 8005
{
8006
	struct drm_device *dev = crtc->base.dev;
8007
	struct drm_i915_private *dev_priv = dev->dev_private;
8008
	int pipe = pipe_config->cpu_transcoder;
8009
	intel_clock_t clock;
8010
	u32 mdiv;
8011
	int refclk = 100000;
8012
 
5060 serge 8013
	/* In case of MIPI DPLL will not even be used */
8014
	if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8015
		return;
8016
 
6084 serge 8017
	mutex_lock(&dev_priv->sb_lock);
4560 Serge 8018
	mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6084 serge 8019
	mutex_unlock(&dev_priv->sb_lock);
4398 Serge 8020
 
8021
	clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8022
	clock.m2 = mdiv & DPIO_M2DIV_MASK;
8023
	clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8024
	clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8025
	clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8026
 
6084 serge 8027
	pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
4398 Serge 8028
}
8029
 
6084 serge 8030
static void
8031
i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8032
			      struct intel_initial_plane_config *plane_config)
5060 serge 8033
{
8034
	struct drm_device *dev = crtc->base.dev;
8035
	struct drm_i915_private *dev_priv = dev->dev_private;
8036
	u32 val, base, offset;
8037
	int pipe = crtc->pipe, plane = crtc->plane;
8038
	int fourcc, pixel_format;
6084 serge 8039
	unsigned int aligned_height;
8040
	struct drm_framebuffer *fb;
8041
	struct intel_framebuffer *intel_fb;
5060 serge 8042
 
6084 serge 8043
	val = I915_READ(DSPCNTR(plane));
8044
	if (!(val & DISPLAY_PLANE_ENABLE))
8045
		return;
8046
 
8047
	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8048
	if (!intel_fb) {
5060 serge 8049
		DRM_DEBUG_KMS("failed to alloc fb\n");
8050
		return;
8051
	}
8052
 
6084 serge 8053
	fb = &intel_fb->base;
5060 serge 8054
 
6084 serge 8055
	if (INTEL_INFO(dev)->gen >= 4) {
8056
		if (val & DISPPLANE_TILED) {
8057
			plane_config->tiling = I915_TILING_X;
8058
			fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8059
		}
8060
	}
5060 serge 8061
 
8062
	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6084 serge 8063
	fourcc = i9xx_format_to_fourcc(pixel_format);
8064
	fb->pixel_format = fourcc;
8065
	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
5060 serge 8066
 
8067
	if (INTEL_INFO(dev)->gen >= 4) {
6084 serge 8068
		if (plane_config->tiling)
5060 serge 8069
			offset = I915_READ(DSPTILEOFF(plane));
8070
		else
8071
			offset = I915_READ(DSPLINOFF(plane));
8072
		base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8073
	} else {
8074
		base = I915_READ(DSPADDR(plane));
8075
	}
8076
	plane_config->base = base;
8077
 
8078
	val = I915_READ(PIPESRC(pipe));
6084 serge 8079
	fb->width = ((val >> 16) & 0xfff) + 1;
8080
	fb->height = ((val >> 0) & 0xfff) + 1;
5060 serge 8081
 
8082
	val = I915_READ(DSPSTRIDE(pipe));
6283 serge 8083
	fb->pitches[0] = val & 0xffffffc0;
5060 serge 8084
 
6084 serge 8085
	aligned_height = intel_fb_align_height(dev, fb->height,
8086
					       fb->pixel_format,
8087
					       fb->modifier[0]);
5060 serge 8088
 
6283 serge 8089
	plane_config->size = fb->pitches[0] * aligned_height;
5060 serge 8090
 
6084 serge 8091
	DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8092
		      pipe_name(pipe), plane, fb->width, fb->height,
8093
		      fb->bits_per_pixel, base, fb->pitches[0],
5060 serge 8094
		      plane_config->size);
8095
 
6084 serge 8096
	plane_config->fb = intel_fb;
5060 serge 8097
}
8098
 
8099
static void chv_crtc_clock_get(struct intel_crtc *crtc,
6084 serge 8100
			       struct intel_crtc_state *pipe_config)
5060 serge 8101
{
8102
	struct drm_device *dev = crtc->base.dev;
8103
	struct drm_i915_private *dev_priv = dev->dev_private;
8104
	int pipe = pipe_config->cpu_transcoder;
8105
	enum dpio_channel port = vlv_pipe_to_channel(pipe);
8106
	intel_clock_t clock;
6084 serge 8107
	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
5060 serge 8108
	int refclk = 100000;
8109
 
6084 serge 8110
	mutex_lock(&dev_priv->sb_lock);
5060 serge 8111
	cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8112
	pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8113
	pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8114
	pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6084 serge 8115
	pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8116
	mutex_unlock(&dev_priv->sb_lock);
5060 serge 8117
 
8118
	clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6084 serge 8119
	clock.m2 = (pll_dw0 & 0xff) << 22;
8120
	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8121
		clock.m2 |= pll_dw2 & 0x3fffff;
5060 serge 8122
	clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8123
	clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8124
	clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8125
 
6084 serge 8126
	pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
5060 serge 8127
}
8128
 
3746 Serge 8129
static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6084 serge 8130
				 struct intel_crtc_state *pipe_config)
3746 Serge 8131
{
8132
	struct drm_device *dev = crtc->base.dev;
8133
	struct drm_i915_private *dev_priv = dev->dev_private;
8134
	uint32_t tmp;
8135
 
5354 serge 8136
	if (!intel_display_power_is_enabled(dev_priv,
6084 serge 8137
					    POWER_DOMAIN_PIPE(crtc->pipe)))
5060 serge 8138
		return false;
8139
 
4104 Serge 8140
	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8141
	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8142
 
3746 Serge 8143
	tmp = I915_READ(PIPECONF(crtc->pipe));
8144
	if (!(tmp & PIPECONF_ENABLE))
8145
		return false;
8146
 
4280 Serge 8147
	if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8148
		switch (tmp & PIPECONF_BPC_MASK) {
8149
		case PIPECONF_6BPC:
8150
			pipe_config->pipe_bpp = 18;
8151
			break;
8152
		case PIPECONF_8BPC:
8153
			pipe_config->pipe_bpp = 24;
8154
			break;
8155
		case PIPECONF_10BPC:
8156
			pipe_config->pipe_bpp = 30;
8157
			break;
8158
		default:
8159
			break;
8160
		}
8161
	}
8162
 
5060 serge 8163
	if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8164
		pipe_config->limited_color_range = true;
8165
 
4560 Serge 8166
	if (INTEL_INFO(dev)->gen < 4)
8167
		pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8168
 
4104 Serge 8169
	intel_get_pipe_timings(crtc, pipe_config);
8170
 
8171
	i9xx_get_pfit_config(crtc, pipe_config);
8172
 
8173
	if (INTEL_INFO(dev)->gen >= 4) {
8174
		tmp = I915_READ(DPLL_MD(crtc->pipe));
8175
		pipe_config->pixel_multiplier =
8176
			((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8177
			 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8178
		pipe_config->dpll_hw_state.dpll_md = tmp;
8179
	} else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8180
		tmp = I915_READ(DPLL(crtc->pipe));
8181
		pipe_config->pixel_multiplier =
8182
			((tmp & SDVO_MULTIPLIER_MASK)
8183
			 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8184
	} else {
8185
		/* Note that on i915G/GM the pixel multiplier is in the sdvo
8186
		 * port and will be fixed up in the encoder->get_config
8187
		 * function. */
8188
		pipe_config->pixel_multiplier = 1;
8189
	}
8190
	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8191
	if (!IS_VALLEYVIEW(dev)) {
5354 serge 8192
		/*
8193
		 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8194
		 * on 830. Filter it out here so that we don't
8195
		 * report errors due to that.
8196
		 */
8197
		if (IS_I830(dev))
8198
			pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8199
 
4104 Serge 8200
		pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8201
		pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8202
	} else {
8203
		/* Mask out read-only status bits. */
8204
		pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8205
						     DPLL_PORTC_READY_MASK |
8206
						     DPLL_PORTB_READY_MASK);
8207
	}
8208
 
5060 serge 8209
	if (IS_CHERRYVIEW(dev))
8210
		chv_crtc_clock_get(crtc, pipe_config);
8211
	else if (IS_VALLEYVIEW(dev))
4560 Serge 8212
		vlv_crtc_clock_get(crtc, pipe_config);
8213
	else
8214
		i9xx_crtc_clock_get(crtc, pipe_config);
8215
 
6084 serge 8216
	/*
8217
	 * Normally the dotclock is filled in by the encoder .get_config()
8218
	 * but in case the pipe is enabled w/o any ports we need a sane
8219
	 * default.
8220
	 */
8221
	pipe_config->base.adjusted_mode.crtc_clock =
8222
		pipe_config->port_clock / pipe_config->pixel_multiplier;
8223
 
3746 Serge 8224
	return true;
8225
}
8226
 
3243 Serge 8227
static void ironlake_init_pch_refclk(struct drm_device *dev)
2327 Serge 8228
{
8229
	struct drm_i915_private *dev_priv = dev->dev_private;
8230
	struct intel_encoder *encoder;
3746 Serge 8231
	u32 val, final;
2327 Serge 8232
	bool has_lvds = false;
2342 Serge 8233
	bool has_cpu_edp = false;
8234
	bool has_panel = false;
8235
	bool has_ck505 = false;
8236
	bool can_ssc = false;
2327 Serge 8237
 
8238
	/* We need to take the global config into account */
5354 serge 8239
	for_each_intel_encoder(dev, encoder) {
6084 serge 8240
		switch (encoder->type) {
8241
		case INTEL_OUTPUT_LVDS:
2342 Serge 8242
			has_panel = true;
6084 serge 8243
			has_lvds = true;
2342 Serge 8244
			break;
6084 serge 8245
		case INTEL_OUTPUT_EDP:
2342 Serge 8246
			has_panel = true;
4104 Serge 8247
			if (enc_to_dig_port(&encoder->base)->port == PORT_A)
2342 Serge 8248
				has_cpu_edp = true;
6084 serge 8249
			break;
5354 serge 8250
		default:
8251
			break;
2327 Serge 8252
		}
6084 serge 8253
	}
2342 Serge 8254
 
8255
	if (HAS_PCH_IBX(dev)) {
4104 Serge 8256
		has_ck505 = dev_priv->vbt.display_clock_mode;
2342 Serge 8257
		can_ssc = has_ck505;
8258
	} else {
8259
		has_ck505 = false;
8260
		can_ssc = true;
2327 Serge 8261
	}
8262
 
4104 Serge 8263
	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8264
		      has_panel, has_lvds, has_ck505);
2342 Serge 8265
 
2327 Serge 8266
	/* Ironlake: try to setup display ref clock before DPLL
8267
	 * enabling. This is only under driver's control after
8268
	 * PCH B stepping, previous chipset stepping should be
8269
	 * ignoring this setting.
8270
	 */
3746 Serge 8271
	val = I915_READ(PCH_DREF_CONTROL);
8272
 
8273
	/* As we must carefully and slowly disable/enable each source in turn,
8274
	 * compute the final state we want first and check if we need to
8275
	 * make any changes at all.
8276
	 */
8277
	final = val;
8278
	final &= ~DREF_NONSPREAD_SOURCE_MASK;
8279
	if (has_ck505)
8280
		final |= DREF_NONSPREAD_CK505_ENABLE;
8281
	else
8282
		final |= DREF_NONSPREAD_SOURCE_ENABLE;
8283
 
8284
	final &= ~DREF_SSC_SOURCE_MASK;
8285
	final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8286
	final &= ~DREF_SSC1_ENABLE;
8287
 
8288
	if (has_panel) {
8289
		final |= DREF_SSC_SOURCE_ENABLE;
8290
 
8291
		if (intel_panel_use_ssc(dev_priv) && can_ssc)
8292
			final |= DREF_SSC1_ENABLE;
8293
 
8294
		if (has_cpu_edp) {
8295
			if (intel_panel_use_ssc(dev_priv) && can_ssc)
8296
				final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8297
			else
8298
				final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8299
		} else
8300
			final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8301
	} else {
8302
		final |= DREF_SSC_SOURCE_DISABLE;
8303
		final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8304
	}
8305
 
8306
	if (final == val)
8307
		return;
8308
 
2327 Serge 8309
	/* Always enable nonspread source */
3746 Serge 8310
	val &= ~DREF_NONSPREAD_SOURCE_MASK;
2342 Serge 8311
 
8312
	if (has_ck505)
3746 Serge 8313
		val |= DREF_NONSPREAD_CK505_ENABLE;
2342 Serge 8314
	else
3746 Serge 8315
		val |= DREF_NONSPREAD_SOURCE_ENABLE;
2342 Serge 8316
 
8317
	if (has_panel) {
3746 Serge 8318
		val &= ~DREF_SSC_SOURCE_MASK;
8319
		val |= DREF_SSC_SOURCE_ENABLE;
2327 Serge 8320
 
2342 Serge 8321
		/* SSC must be turned on before enabling the CPU output  */
8322
		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8323
			DRM_DEBUG_KMS("Using SSC on panel\n");
3746 Serge 8324
			val |= DREF_SSC1_ENABLE;
3031 serge 8325
		} else
3746 Serge 8326
			val &= ~DREF_SSC1_ENABLE;
2327 Serge 8327
 
2342 Serge 8328
		/* Get SSC going before enabling the outputs */
3746 Serge 8329
		I915_WRITE(PCH_DREF_CONTROL, val);
6084 serge 8330
		POSTING_READ(PCH_DREF_CONTROL);
8331
		udelay(200);
2342 Serge 8332
 
3746 Serge 8333
		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
2327 Serge 8334
 
8335
		/* Enable CPU source on CPU attached eDP */
2342 Serge 8336
		if (has_cpu_edp) {
8337
			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8338
				DRM_DEBUG_KMS("Using SSC on eDP\n");
3746 Serge 8339
				val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5060 serge 8340
			} else
3746 Serge 8341
				val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
2342 Serge 8342
		} else
3746 Serge 8343
			val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
2342 Serge 8344
 
3746 Serge 8345
		I915_WRITE(PCH_DREF_CONTROL, val);
2342 Serge 8346
		POSTING_READ(PCH_DREF_CONTROL);
8347
		udelay(200);
6084 serge 8348
	} else {
2342 Serge 8349
		DRM_DEBUG_KMS("Disabling SSC entirely\n");
8350
 
3746 Serge 8351
		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
2342 Serge 8352
 
8353
		/* Turn off CPU output */
3746 Serge 8354
		val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
2342 Serge 8355
 
3746 Serge 8356
		I915_WRITE(PCH_DREF_CONTROL, val);
2327 Serge 8357
		POSTING_READ(PCH_DREF_CONTROL);
8358
		udelay(200);
2342 Serge 8359
 
8360
		/* Turn off the SSC source */
3746 Serge 8361
		val &= ~DREF_SSC_SOURCE_MASK;
8362
		val |= DREF_SSC_SOURCE_DISABLE;
2342 Serge 8363
 
8364
		/* Turn off SSC1 */
3746 Serge 8365
		val &= ~DREF_SSC1_ENABLE;
2342 Serge 8366
 
3746 Serge 8367
		I915_WRITE(PCH_DREF_CONTROL, val);
2342 Serge 8368
		POSTING_READ(PCH_DREF_CONTROL);
8369
		udelay(200);
2327 Serge 8370
	}
3746 Serge 8371
 
8372
	BUG_ON(val != final);
2327 Serge 8373
}
8374
 
4104 Serge 8375
static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
3243 Serge 8376
{
4104 Serge 8377
	uint32_t tmp;
3243 Serge 8378
 
6084 serge 8379
	tmp = I915_READ(SOUTH_CHICKEN2);
8380
	tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8381
	I915_WRITE(SOUTH_CHICKEN2, tmp);
3243 Serge 8382
 
6084 serge 8383
	if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8384
			       FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8385
		DRM_ERROR("FDI mPHY reset assert timeout\n");
3243 Serge 8386
 
6084 serge 8387
	tmp = I915_READ(SOUTH_CHICKEN2);
8388
	tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8389
	I915_WRITE(SOUTH_CHICKEN2, tmp);
3243 Serge 8390
 
6084 serge 8391
	if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
4104 Serge 8392
				FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6084 serge 8393
		DRM_ERROR("FDI mPHY reset de-assert timeout\n");
4539 Serge 8394
}
3243 Serge 8395
 
4104 Serge 8396
/* WaMPhyProgramming:hsw */
8397
static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8398
{
8399
	uint32_t tmp;
8400
 
3243 Serge 8401
	tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8402
	tmp &= ~(0xFF << 24);
8403
	tmp |= (0x12 << 24);
8404
	intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8405
 
8406
	tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8407
	tmp |= (1 << 11);
8408
	intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8409
 
8410
	tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8411
	tmp |= (1 << 11);
8412
	intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8413
 
8414
	tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8415
	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8416
	intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8417
 
8418
	tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8419
	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8420
	intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8421
 
6084 serge 8422
	tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8423
	tmp &= ~(7 << 13);
8424
	tmp |= (5 << 13);
8425
	intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
3243 Serge 8426
 
6084 serge 8427
	tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8428
	tmp &= ~(7 << 13);
8429
	tmp |= (5 << 13);
8430
	intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
3243 Serge 8431
 
8432
	tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8433
	tmp &= ~0xFF;
8434
	tmp |= 0x1C;
8435
	intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8436
 
8437
	tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8438
	tmp &= ~0xFF;
8439
	tmp |= 0x1C;
8440
	intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8441
 
8442
	tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8443
	tmp &= ~(0xFF << 16);
8444
	tmp |= (0x1C << 16);
8445
	intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8446
 
8447
	tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8448
	tmp &= ~(0xFF << 16);
8449
	tmp |= (0x1C << 16);
8450
	intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8451
 
6084 serge 8452
	tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8453
	tmp |= (1 << 27);
8454
	intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
3243 Serge 8455
 
6084 serge 8456
	tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8457
	tmp |= (1 << 27);
8458
	intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
3243 Serge 8459
 
6084 serge 8460
	tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8461
	tmp &= ~(0xF << 28);
8462
	tmp |= (4 << 28);
8463
	intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
3243 Serge 8464
 
6084 serge 8465
	tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8466
	tmp &= ~(0xF << 28);
8467
	tmp |= (4 << 28);
8468
	intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
4539 Serge 8469
}
3243 Serge 8470
 
4104 Serge 8471
/* Implements 3 different sequences from BSpec chapter "Display iCLK
8472
 * Programming" based on the parameters passed:
8473
 * - Sequence to enable CLKOUT_DP
8474
 * - Sequence to enable CLKOUT_DP without spread
8475
 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8476
 */
8477
static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8478
				 bool with_fdi)
8479
{
8480
	struct drm_i915_private *dev_priv = dev->dev_private;
8481
	uint32_t reg, tmp;
3480 Serge 8482
 
4104 Serge 8483
	if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8484
		with_spread = true;
6084 serge 8485
	if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
4104 Serge 8486
		with_fdi = false;
8487
 
6084 serge 8488
	mutex_lock(&dev_priv->sb_lock);
4104 Serge 8489
 
8490
	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8491
	tmp &= ~SBI_SSCCTL_DISABLE;
8492
	tmp |= SBI_SSCCTL_PATHALT;
8493
	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8494
 
8495
	udelay(24);
8496
 
8497
	if (with_spread) {
8498
		tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8499
		tmp &= ~SBI_SSCCTL_PATHALT;
8500
		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8501
 
8502
		if (with_fdi) {
8503
			lpt_reset_fdi_mphy(dev_priv);
8504
			lpt_program_fdi_mphy(dev_priv);
8505
		}
8506
	}
8507
 
6084 serge 8508
	reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
4104 Serge 8509
	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8510
	tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8511
	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8512
 
6084 serge 8513
	mutex_unlock(&dev_priv->sb_lock);
3243 Serge 8514
}
8515
 
4104 Serge 8516
/* Sequence to disable CLKOUT_DP */
8517
static void lpt_disable_clkout_dp(struct drm_device *dev)
8518
{
8519
	struct drm_i915_private *dev_priv = dev->dev_private;
8520
	uint32_t reg, tmp;
8521
 
6084 serge 8522
	mutex_lock(&dev_priv->sb_lock);
4104 Serge 8523
 
6084 serge 8524
	reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
4104 Serge 8525
	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8526
	tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8527
	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8528
 
8529
	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8530
	if (!(tmp & SBI_SSCCTL_DISABLE)) {
8531
		if (!(tmp & SBI_SSCCTL_PATHALT)) {
8532
			tmp |= SBI_SSCCTL_PATHALT;
8533
			intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8534
			udelay(32);
8535
		}
8536
		tmp |= SBI_SSCCTL_DISABLE;
8537
		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8538
	}
8539
 
6084 serge 8540
	mutex_unlock(&dev_priv->sb_lock);
4104 Serge 8541
}
8542
 
8543
static void lpt_init_pch_refclk(struct drm_device *dev)
8544
{
8545
	struct intel_encoder *encoder;
8546
	bool has_vga = false;
8547
 
5354 serge 8548
	for_each_intel_encoder(dev, encoder) {
4104 Serge 8549
		switch (encoder->type) {
8550
		case INTEL_OUTPUT_ANALOG:
8551
			has_vga = true;
8552
			break;
5354 serge 8553
		default:
8554
			break;
4104 Serge 8555
		}
8556
	}
8557
 
8558
	if (has_vga)
8559
		lpt_enable_clkout_dp(dev, true, true);
8560
	else
8561
		lpt_disable_clkout_dp(dev);
8562
}
8563
 
3243 Serge 8564
/*
8565
 * Initialize reference clocks when the driver loads
8566
 */
8567
void intel_init_pch_refclk(struct drm_device *dev)
8568
{
8569
	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8570
		ironlake_init_pch_refclk(dev);
8571
	else if (HAS_PCH_LPT(dev))
8572
		lpt_init_pch_refclk(dev);
8573
}
8574
 
6084 serge 8575
static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
2342 Serge 8576
{
6084 serge 8577
	struct drm_device *dev = crtc_state->base.crtc->dev;
2342 Serge 8578
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 8579
	struct drm_atomic_state *state = crtc_state->base.state;
8580
	struct drm_connector *connector;
8581
	struct drm_connector_state *connector_state;
2342 Serge 8582
	struct intel_encoder *encoder;
6084 serge 8583
	int num_connectors = 0, i;
2342 Serge 8584
	bool is_lvds = false;
8585
 
6084 serge 8586
	for_each_connector_in_state(state, connector, connector_state, i) {
8587
		if (connector_state->crtc != crtc_state->base.crtc)
5354 serge 8588
			continue;
8589
 
6084 serge 8590
		encoder = to_intel_encoder(connector_state->best_encoder);
8591
 
2342 Serge 8592
		switch (encoder->type) {
8593
		case INTEL_OUTPUT_LVDS:
8594
			is_lvds = true;
8595
			break;
5354 serge 8596
		default:
8597
			break;
2342 Serge 8598
		}
8599
		num_connectors++;
8600
	}
8601
 
8602
	if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4560 Serge 8603
		DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
4104 Serge 8604
			      dev_priv->vbt.lvds_ssc_freq);
4560 Serge 8605
		return dev_priv->vbt.lvds_ssc_freq;
2342 Serge 8606
	}
8607
 
8608
	return 120000;
8609
}
8610
 
4104 Serge 8611
static void ironlake_set_pipeconf(struct drm_crtc *crtc)
3031 serge 8612
{
8613
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8614
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8615
	int pipe = intel_crtc->pipe;
8616
	uint32_t val;
8617
 
4104 Serge 8618
	val = 0;
3031 serge 8619
 
6084 serge 8620
	switch (intel_crtc->config->pipe_bpp) {
3031 serge 8621
	case 18:
3480 Serge 8622
		val |= PIPECONF_6BPC;
3031 serge 8623
		break;
8624
	case 24:
3480 Serge 8625
		val |= PIPECONF_8BPC;
3031 serge 8626
		break;
8627
	case 30:
3480 Serge 8628
		val |= PIPECONF_10BPC;
3031 serge 8629
		break;
8630
	case 36:
3480 Serge 8631
		val |= PIPECONF_12BPC;
3031 serge 8632
		break;
8633
	default:
3243 Serge 8634
		/* Case prevented by intel_choose_pipe_bpp_dither. */
8635
		BUG();
3031 serge 8636
	}
8637
 
6084 serge 8638
	if (intel_crtc->config->dither)
3031 serge 8639
		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8640
 
6084 serge 8641
	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3031 serge 8642
		val |= PIPECONF_INTERLACED_ILK;
8643
	else
8644
		val |= PIPECONF_PROGRESSIVE;
8645
 
6084 serge 8646
	if (intel_crtc->config->limited_color_range)
3480 Serge 8647
		val |= PIPECONF_COLOR_RANGE_SELECT;
8648
 
3031 serge 8649
	I915_WRITE(PIPECONF(pipe), val);
8650
	POSTING_READ(PIPECONF(pipe));
8651
}
8652
 
3480 Serge 8653
/*
8654
 * Set up the pipe CSC unit.
8655
 *
8656
 * Currently only full range RGB to limited range RGB conversion
8657
 * is supported, but eventually this should handle various
8658
 * RGB<->YCbCr scenarios as well.
8659
 */
3746 Serge 8660
static void intel_set_pipe_csc(struct drm_crtc *crtc)
3480 Serge 8661
{
8662
	struct drm_device *dev = crtc->dev;
8663
	struct drm_i915_private *dev_priv = dev->dev_private;
8664
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8665
	int pipe = intel_crtc->pipe;
8666
	uint16_t coeff = 0x7800; /* 1.0 */
8667
 
8668
	/*
8669
	 * TODO: Check what kind of values actually come out of the pipe
8670
	 * with these coeff/postoff values and adjust to get the best
8671
	 * accuracy. Perhaps we even need to take the bpc value into
8672
	 * consideration.
8673
	 */
8674
 
6084 serge 8675
	if (intel_crtc->config->limited_color_range)
3480 Serge 8676
		coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8677
 
8678
	/*
8679
	 * GY/GU and RY/RU should be the other way around according
8680
	 * to BSpec, but reality doesn't agree. Just set them up in
8681
	 * a way that results in the correct picture.
8682
	 */
8683
	I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8684
	I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8685
 
8686
	I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8687
	I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8688
 
8689
	I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8690
	I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8691
 
8692
	I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8693
	I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8694
	I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8695
 
8696
	if (INTEL_INFO(dev)->gen > 6) {
8697
		uint16_t postoff = 0;
8698
 
6084 serge 8699
		if (intel_crtc->config->limited_color_range)
4398 Serge 8700
			postoff = (16 * (1 << 12) / 255) & 0x1fff;
3480 Serge 8701
 
8702
		I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8703
		I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8704
		I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8705
 
8706
		I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8707
	} else {
8708
		uint32_t mode = CSC_MODE_YUV_TO_RGB;
8709
 
6084 serge 8710
		if (intel_crtc->config->limited_color_range)
3480 Serge 8711
			mode |= CSC_BLACK_SCREEN_OFFSET;
8712
 
8713
		I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8714
	}
8715
}
8716
 
4104 Serge 8717
static void haswell_set_pipeconf(struct drm_crtc *crtc)
3243 Serge 8718
{
4560 Serge 8719
	struct drm_device *dev = crtc->dev;
8720
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 8721
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4560 Serge 8722
	enum pipe pipe = intel_crtc->pipe;
6084 serge 8723
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
3243 Serge 8724
	uint32_t val;
8725
 
4104 Serge 8726
	val = 0;
3243 Serge 8727
 
6084 serge 8728
	if (IS_HASWELL(dev) && intel_crtc->config->dither)
3243 Serge 8729
		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8730
 
6084 serge 8731
	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3243 Serge 8732
		val |= PIPECONF_INTERLACED_ILK;
8733
	else
8734
		val |= PIPECONF_PROGRESSIVE;
8735
 
8736
	I915_WRITE(PIPECONF(cpu_transcoder), val);
8737
	POSTING_READ(PIPECONF(cpu_transcoder));
4104 Serge 8738
 
8739
	I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8740
	POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
4560 Serge 8741
 
5354 serge 8742
	if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
4560 Serge 8743
		val = 0;
8744
 
6084 serge 8745
		switch (intel_crtc->config->pipe_bpp) {
4560 Serge 8746
		case 18:
8747
			val |= PIPEMISC_DITHER_6_BPC;
8748
			break;
8749
		case 24:
8750
			val |= PIPEMISC_DITHER_8_BPC;
8751
			break;
8752
		case 30:
8753
			val |= PIPEMISC_DITHER_10_BPC;
8754
			break;
8755
		case 36:
8756
			val |= PIPEMISC_DITHER_12_BPC;
8757
			break;
8758
		default:
8759
			/* Case prevented by pipe_config_set_bpp. */
8760
			BUG();
8761
		}
8762
 
6084 serge 8763
		if (intel_crtc->config->dither)
4560 Serge 8764
			val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8765
 
8766
		I915_WRITE(PIPEMISC(pipe), val);
8767
	}
3243 Serge 8768
}
8769
 
3031 serge 8770
static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6084 serge 8771
				    struct intel_crtc_state *crtc_state,
3031 serge 8772
				    intel_clock_t *clock,
8773
				    bool *has_reduced_clock,
8774
				    intel_clock_t *reduced_clock)
8775
{
8776
	struct drm_device *dev = crtc->dev;
8777
	struct drm_i915_private *dev_priv = dev->dev_private;
8778
	int refclk;
8779
	const intel_limit_t *limit;
6084 serge 8780
	bool ret;
3031 serge 8781
 
6084 serge 8782
	refclk = ironlake_get_refclk(crtc_state);
3031 serge 8783
 
8784
	/*
8785
	 * Returns a set of divisors for the desired target clock with the given
8786
	 * refclk, or FALSE.  The returned values represent the clock equation:
8787
	 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8788
	 */
6084 serge 8789
	limit = intel_limit(crtc_state, refclk);
8790
	ret = dev_priv->display.find_dpll(limit, crtc_state,
8791
					  crtc_state->port_clock,
4104 Serge 8792
					  refclk, NULL, clock);
3031 serge 8793
	if (!ret)
8794
		return false;
8795
 
8796
	return true;
8797
}
8798
 
3243 Serge 8799
int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8800
{
8801
	/*
8802
	 * Account for spread spectrum to avoid
8803
	 * oversubscribing the link. Max center spread
8804
	 * is 2.5%; use 5% for safety's sake.
8805
	 */
8806
	u32 bps = target_clock * bpp * 21 / 20;
5060 serge 8807
	return DIV_ROUND_UP(bps, link_bw * 8);
3243 Serge 8808
}
8809
 
4104 Serge 8810
static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
2327 Serge 8811
{
4104 Serge 8812
	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
3746 Serge 8813
}
8814
 
3243 Serge 8815
static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6084 serge 8816
				      struct intel_crtc_state *crtc_state,
4104 Serge 8817
				      u32 *fp,
3746 Serge 8818
				      intel_clock_t *reduced_clock, u32 *fp2)
3243 Serge 8819
{
8820
	struct drm_crtc *crtc = &intel_crtc->base;
8821
	struct drm_device *dev = crtc->dev;
8822
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 8823
	struct drm_atomic_state *state = crtc_state->base.state;
8824
	struct drm_connector *connector;
8825
	struct drm_connector_state *connector_state;
8826
	struct intel_encoder *encoder;
3243 Serge 8827
	uint32_t dpll;
6084 serge 8828
	int factor, num_connectors = 0, i;
4104 Serge 8829
	bool is_lvds = false, is_sdvo = false;
3243 Serge 8830
 
6084 serge 8831
	for_each_connector_in_state(state, connector, connector_state, i) {
8832
		if (connector_state->crtc != crtc_state->base.crtc)
5354 serge 8833
			continue;
8834
 
6084 serge 8835
		encoder = to_intel_encoder(connector_state->best_encoder);
8836
 
8837
		switch (encoder->type) {
3243 Serge 8838
		case INTEL_OUTPUT_LVDS:
8839
			is_lvds = true;
8840
			break;
8841
		case INTEL_OUTPUT_SDVO:
8842
		case INTEL_OUTPUT_HDMI:
8843
			is_sdvo = true;
8844
			break;
5354 serge 8845
		default:
8846
			break;
3243 Serge 8847
		}
8848
 
8849
		num_connectors++;
8850
	}
8851
 
6084 serge 8852
	/* Enable autotuning of the PLL clock (if permissible) */
8853
	factor = 21;
8854
	if (is_lvds) {
8855
		if ((intel_panel_use_ssc(dev_priv) &&
4560 Serge 8856
		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
3746 Serge 8857
		    (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6084 serge 8858
			factor = 25;
8859
	} else if (crtc_state->sdvo_tv_clock)
8860
		factor = 20;
2327 Serge 8861
 
6084 serge 8862
	if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
3746 Serge 8863
		*fp |= FP_CB_TUNE;
2327 Serge 8864
 
3746 Serge 8865
	if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8866
		*fp2 |= FP_CB_TUNE;
8867
 
6084 serge 8868
	dpll = 0;
2327 Serge 8869
 
6084 serge 8870
	if (is_lvds)
8871
		dpll |= DPLLB_MODE_LVDS;
8872
	else
8873
		dpll |= DPLLB_MODE_DAC_SERIAL;
4104 Serge 8874
 
6084 serge 8875
	dpll |= (crtc_state->pixel_multiplier - 1)
8876
		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
2327 Serge 8877
 
4104 Serge 8878
	if (is_sdvo)
8879
		dpll |= DPLL_SDVO_HIGH_SPEED;
6084 serge 8880
	if (crtc_state->has_dp_encoder)
4104 Serge 8881
		dpll |= DPLL_SDVO_HIGH_SPEED;
8882
 
6084 serge 8883
	/* compute bitmask from p1 value */
8884
	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8885
	/* also FPA1 */
8886
	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2327 Serge 8887
 
6084 serge 8888
	switch (crtc_state->dpll.p2) {
8889
	case 5:
8890
		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8891
		break;
8892
	case 7:
8893
		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8894
		break;
8895
	case 10:
8896
		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8897
		break;
8898
	case 14:
8899
		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8900
		break;
8901
	}
2327 Serge 8902
 
4104 Serge 8903
	if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6084 serge 8904
		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8905
	else
8906
		dpll |= PLL_REF_INPUT_DREFCLK;
2327 Serge 8907
 
4104 Serge 8908
	return dpll | DPLL_VCO_ENABLE;
3243 Serge 8909
}
8910
 
6084 serge 8911
static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8912
				       struct intel_crtc_state *crtc_state)
3243 Serge 8913
{
5354 serge 8914
	struct drm_device *dev = crtc->base.dev;
3243 Serge 8915
	intel_clock_t clock, reduced_clock;
4104 Serge 8916
	u32 dpll = 0, fp = 0, fp2 = 0;
3243 Serge 8917
	bool ok, has_reduced_clock = false;
3746 Serge 8918
	bool is_lvds = false;
4104 Serge 8919
	struct intel_shared_dpll *pll;
3243 Serge 8920
 
6084 serge 8921
	memset(&crtc_state->dpll_hw_state, 0,
8922
	       sizeof(crtc_state->dpll_hw_state));
8923
 
5354 serge 8924
	is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
3243 Serge 8925
 
8926
	WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8927
	     "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8928
 
6084 serge 8929
	ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
3243 Serge 8930
				     &has_reduced_clock, &reduced_clock);
6084 serge 8931
	if (!ok && !crtc_state->clock_set) {
3243 Serge 8932
		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8933
		return -EINVAL;
8934
	}
3746 Serge 8935
	/* Compat-code for transition, will disappear. */
6084 serge 8936
	if (!crtc_state->clock_set) {
8937
		crtc_state->dpll.n = clock.n;
8938
		crtc_state->dpll.m1 = clock.m1;
8939
		crtc_state->dpll.m2 = clock.m2;
8940
		crtc_state->dpll.p1 = clock.p1;
8941
		crtc_state->dpll.p2 = clock.p2;
3746 Serge 8942
	}
3243 Serge 8943
 
4104 Serge 8944
	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6084 serge 8945
	if (crtc_state->has_pch_encoder) {
8946
		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8947
		if (has_reduced_clock)
4104 Serge 8948
			fp2 = i9xx_dpll_compute_fp(&reduced_clock);
3243 Serge 8949
 
6084 serge 8950
		dpll = ironlake_compute_dpll(crtc, crtc_state,
4104 Serge 8951
					     &fp, &reduced_clock,
5060 serge 8952
					     has_reduced_clock ? &fp2 : NULL);
3243 Serge 8953
 
6084 serge 8954
		crtc_state->dpll_hw_state.dpll = dpll;
8955
		crtc_state->dpll_hw_state.fp0 = fp;
4104 Serge 8956
		if (has_reduced_clock)
6084 serge 8957
			crtc_state->dpll_hw_state.fp1 = fp2;
4104 Serge 8958
		else
6084 serge 8959
			crtc_state->dpll_hw_state.fp1 = fp;
2327 Serge 8960
 
6084 serge 8961
		pll = intel_get_shared_dpll(crtc, crtc_state);
3031 serge 8962
		if (pll == NULL) {
4104 Serge 8963
			DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5354 serge 8964
					 pipe_name(crtc->pipe));
2342 Serge 8965
			return -EINVAL;
6084 serge 8966
		}
5354 serge 8967
	}
2327 Serge 8968
 
6084 serge 8969
	if (is_lvds && has_reduced_clock)
5354 serge 8970
		crtc->lowfreq_avail = true;
4104 Serge 8971
	else
5354 serge 8972
		crtc->lowfreq_avail = false;
2327 Serge 8973
 
5060 serge 8974
	return 0;
4104 Serge 8975
}
3243 Serge 8976
 
4560 Serge 8977
static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8978
					 struct intel_link_m_n *m_n)
4104 Serge 8979
{
8980
	struct drm_device *dev = crtc->base.dev;
8981
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 8982
	enum pipe pipe = crtc->pipe;
4104 Serge 8983
 
4560 Serge 8984
	m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8985
	m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8986
	m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8987
		& ~TU_SIZE_MASK;
8988
	m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8989
	m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8990
		    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8991
}
8992
 
8993
static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8994
					 enum transcoder transcoder,
5354 serge 8995
					 struct intel_link_m_n *m_n,
8996
					 struct intel_link_m_n *m2_n2)
4560 Serge 8997
{
8998
	struct drm_device *dev = crtc->base.dev;
8999
	struct drm_i915_private *dev_priv = dev->dev_private;
9000
	enum pipe pipe = crtc->pipe;
9001
 
9002
	if (INTEL_INFO(dev)->gen >= 5) {
9003
		m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9004
		m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9005
		m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6084 serge 9006
			& ~TU_SIZE_MASK;
4560 Serge 9007
		m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9008
		m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6084 serge 9009
			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5354 serge 9010
		/* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9011
		 * gen < 8) and if DRRS is supported (to make sure the
9012
		 * registers are not unnecessarily read).
9013
		 */
9014
		if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6084 serge 9015
			crtc->config->has_drrs) {
5354 serge 9016
			m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9017
			m2_n2->link_n =	I915_READ(PIPE_LINK_N2(transcoder));
9018
			m2_n2->gmch_m =	I915_READ(PIPE_DATA_M2(transcoder))
9019
					& ~TU_SIZE_MASK;
9020
			m2_n2->gmch_n =	I915_READ(PIPE_DATA_N2(transcoder));
9021
			m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9022
					& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9023
		}
4560 Serge 9024
	} else {
9025
		m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9026
		m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9027
		m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9028
			& ~TU_SIZE_MASK;
9029
		m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9030
		m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9031
			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9032
	}
3243 Serge 9033
}
9034
 
4560 Serge 9035
void intel_dp_get_m_n(struct intel_crtc *crtc,
6084 serge 9036
		      struct intel_crtc_state *pipe_config)
4560 Serge 9037
{
6084 serge 9038
	if (pipe_config->has_pch_encoder)
4560 Serge 9039
		intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9040
	else
9041
		intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
5354 serge 9042
					     &pipe_config->dp_m_n,
9043
					     &pipe_config->dp_m2_n2);
4560 Serge 9044
}
9045
 
9046
static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6084 serge 9047
					struct intel_crtc_state *pipe_config)
4560 Serge 9048
{
9049
	intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
5354 serge 9050
				     &pipe_config->fdi_m_n, NULL);
4560 Serge 9051
}
9052
 
5354 serge 9053
static void skylake_get_pfit_config(struct intel_crtc *crtc,
6084 serge 9054
				    struct intel_crtc_state *pipe_config)
5354 serge 9055
{
9056
	struct drm_device *dev = crtc->base.dev;
9057
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 9058
	struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9059
	uint32_t ps_ctrl = 0;
9060
	int id = -1;
9061
	int i;
5354 serge 9062
 
6084 serge 9063
	/* find scaler attached to this pipe */
9064
	for (i = 0; i < crtc->num_scalers; i++) {
9065
		ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9066
		if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9067
			id = i;
9068
			pipe_config->pch_pfit.enabled = true;
9069
			pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9070
			pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9071
			break;
9072
		}
9073
	}
5354 serge 9074
 
6084 serge 9075
	scaler_state->scaler_id = id;
9076
	if (id >= 0) {
9077
		scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9078
	} else {
9079
		scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
5354 serge 9080
	}
9081
}
9082
 
6084 serge 9083
static void
9084
skylake_get_initial_plane_config(struct intel_crtc *crtc,
9085
				 struct intel_initial_plane_config *plane_config)
9086
{
9087
	struct drm_device *dev = crtc->base.dev;
9088
	struct drm_i915_private *dev_priv = dev->dev_private;
9089
	u32 val, base, offset, stride_mult, tiling;
9090
	int pipe = crtc->pipe;
9091
	int fourcc, pixel_format;
9092
	unsigned int aligned_height;
9093
	struct drm_framebuffer *fb;
9094
	struct intel_framebuffer *intel_fb;
9095
 
9096
	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9097
	if (!intel_fb) {
9098
		DRM_DEBUG_KMS("failed to alloc fb\n");
9099
		return;
9100
	}
9101
 
9102
	fb = &intel_fb->base;
9103
 
9104
	val = I915_READ(PLANE_CTL(pipe, 0));
9105
	if (!(val & PLANE_CTL_ENABLE))
9106
		goto error;
9107
 
9108
	pixel_format = val & PLANE_CTL_FORMAT_MASK;
9109
	fourcc = skl_format_to_fourcc(pixel_format,
9110
				      val & PLANE_CTL_ORDER_RGBX,
9111
				      val & PLANE_CTL_ALPHA_MASK);
9112
	fb->pixel_format = fourcc;
9113
	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9114
 
9115
	tiling = val & PLANE_CTL_TILED_MASK;
9116
	switch (tiling) {
9117
	case PLANE_CTL_TILED_LINEAR:
9118
		fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9119
		break;
9120
	case PLANE_CTL_TILED_X:
9121
		plane_config->tiling = I915_TILING_X;
9122
		fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9123
		break;
9124
	case PLANE_CTL_TILED_Y:
9125
		fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9126
		break;
9127
	case PLANE_CTL_TILED_YF:
9128
		fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9129
		break;
9130
	default:
9131
		MISSING_CASE(tiling);
9132
		goto error;
9133
	}
9134
 
9135
	base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9136
	plane_config->base = base;
9137
 
9138
	offset = I915_READ(PLANE_OFFSET(pipe, 0));
9139
 
9140
	val = I915_READ(PLANE_SIZE(pipe, 0));
9141
	fb->height = ((val >> 16) & 0xfff) + 1;
9142
	fb->width = ((val >> 0) & 0x1fff) + 1;
9143
 
9144
	val = I915_READ(PLANE_STRIDE(pipe, 0));
9145
	stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9146
						fb->pixel_format);
6283 serge 9147
	fb->pitches[0] = (val & 0x3ff) * stride_mult;
6084 serge 9148
 
9149
	aligned_height = intel_fb_align_height(dev, fb->height,
9150
					       fb->pixel_format,
9151
					       fb->modifier[0]);
9152
 
6283 serge 9153
	plane_config->size = fb->pitches[0] * aligned_height;
6084 serge 9154
 
9155
	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9156
		      pipe_name(pipe), fb->width, fb->height,
9157
		      fb->bits_per_pixel, base, fb->pitches[0],
9158
		      plane_config->size);
9159
 
9160
	plane_config->fb = intel_fb;
9161
	return;
9162
 
9163
error:
9164
	kfree(fb);
9165
}
9166
 
4104 Serge 9167
static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6084 serge 9168
				     struct intel_crtc_state *pipe_config)
4104 Serge 9169
{
9170
	struct drm_device *dev = crtc->base.dev;
9171
	struct drm_i915_private *dev_priv = dev->dev_private;
9172
	uint32_t tmp;
9173
 
9174
	tmp = I915_READ(PF_CTL(crtc->pipe));
9175
 
9176
	if (tmp & PF_ENABLE) {
9177
		pipe_config->pch_pfit.enabled = true;
9178
		pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9179
		pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9180
 
9181
		/* We currently do not free assignements of panel fitters on
9182
		 * ivb/hsw (since we don't use the higher upscaling modes which
9183
		 * differentiates them) so just WARN about this case for now. */
9184
		if (IS_GEN7(dev)) {
9185
			WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9186
				PF_PIPE_SEL_IVB(crtc->pipe));
9187
		}
9188
	}
9189
}
9190
 
6084 serge 9191
static void
9192
ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9193
				  struct intel_initial_plane_config *plane_config)
5060 serge 9194
{
9195
	struct drm_device *dev = crtc->base.dev;
9196
	struct drm_i915_private *dev_priv = dev->dev_private;
9197
	u32 val, base, offset;
6084 serge 9198
	int pipe = crtc->pipe;
5060 serge 9199
	int fourcc, pixel_format;
6084 serge 9200
	unsigned int aligned_height;
9201
	struct drm_framebuffer *fb;
9202
	struct intel_framebuffer *intel_fb;
5060 serge 9203
 
6084 serge 9204
	val = I915_READ(DSPCNTR(pipe));
9205
	if (!(val & DISPLAY_PLANE_ENABLE))
9206
		return;
9207
 
9208
	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9209
	if (!intel_fb) {
5060 serge 9210
		DRM_DEBUG_KMS("failed to alloc fb\n");
9211
		return;
9212
	}
9213
 
6084 serge 9214
	fb = &intel_fb->base;
5060 serge 9215
 
6084 serge 9216
	if (INTEL_INFO(dev)->gen >= 4) {
9217
		if (val & DISPPLANE_TILED) {
9218
			plane_config->tiling = I915_TILING_X;
9219
			fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9220
		}
9221
	}
5060 serge 9222
 
9223
	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6084 serge 9224
	fourcc = i9xx_format_to_fourcc(pixel_format);
9225
	fb->pixel_format = fourcc;
9226
	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
5060 serge 9227
 
6084 serge 9228
	base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
5060 serge 9229
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6084 serge 9230
		offset = I915_READ(DSPOFFSET(pipe));
5060 serge 9231
	} else {
6084 serge 9232
		if (plane_config->tiling)
9233
			offset = I915_READ(DSPTILEOFF(pipe));
5060 serge 9234
		else
6084 serge 9235
			offset = I915_READ(DSPLINOFF(pipe));
5060 serge 9236
	}
9237
	plane_config->base = base;
9238
 
9239
	val = I915_READ(PIPESRC(pipe));
6084 serge 9240
	fb->width = ((val >> 16) & 0xfff) + 1;
9241
	fb->height = ((val >> 0) & 0xfff) + 1;
5060 serge 9242
 
9243
	val = I915_READ(DSPSTRIDE(pipe));
6283 serge 9244
	fb->pitches[0] = val & 0xffffffc0;
5060 serge 9245
 
6084 serge 9246
	aligned_height = intel_fb_align_height(dev, fb->height,
9247
					       fb->pixel_format,
9248
					       fb->modifier[0]);
5060 serge 9249
 
6283 serge 9250
	plane_config->size = fb->pitches[0] * aligned_height;
5060 serge 9251
 
6084 serge 9252
	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9253
		      pipe_name(pipe), fb->width, fb->height,
9254
		      fb->bits_per_pixel, base, fb->pitches[0],
5060 serge 9255
		      plane_config->size);
6084 serge 9256
 
9257
	plane_config->fb = intel_fb;
5060 serge 9258
}
9259
 
3746 Serge 9260
static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6084 serge 9261
				     struct intel_crtc_state *pipe_config)
3746 Serge 9262
{
9263
	struct drm_device *dev = crtc->base.dev;
9264
	struct drm_i915_private *dev_priv = dev->dev_private;
9265
	uint32_t tmp;
9266
 
5354 serge 9267
	if (!intel_display_power_is_enabled(dev_priv,
6084 serge 9268
					    POWER_DOMAIN_PIPE(crtc->pipe)))
5060 serge 9269
		return false;
9270
 
4104 Serge 9271
	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9272
	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9273
 
3746 Serge 9274
	tmp = I915_READ(PIPECONF(crtc->pipe));
9275
	if (!(tmp & PIPECONF_ENABLE))
9276
		return false;
9277
 
4280 Serge 9278
	switch (tmp & PIPECONF_BPC_MASK) {
9279
	case PIPECONF_6BPC:
9280
		pipe_config->pipe_bpp = 18;
9281
		break;
9282
	case PIPECONF_8BPC:
9283
		pipe_config->pipe_bpp = 24;
9284
		break;
9285
	case PIPECONF_10BPC:
9286
		pipe_config->pipe_bpp = 30;
9287
		break;
9288
	case PIPECONF_12BPC:
9289
		pipe_config->pipe_bpp = 36;
9290
		break;
9291
	default:
9292
		break;
9293
	}
9294
 
5060 serge 9295
	if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9296
		pipe_config->limited_color_range = true;
9297
 
4104 Serge 9298
	if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9299
		struct intel_shared_dpll *pll;
9300
 
3746 Serge 9301
		pipe_config->has_pch_encoder = true;
9302
 
4104 Serge 9303
		tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9304
		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9305
					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
9306
 
9307
		ironlake_get_fdi_m_n_config(crtc, pipe_config);
9308
 
9309
		if (HAS_PCH_IBX(dev_priv->dev)) {
9310
			pipe_config->shared_dpll =
9311
				(enum intel_dpll_id) crtc->pipe;
9312
		} else {
9313
			tmp = I915_READ(PCH_DPLL_SEL);
9314
			if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9315
				pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9316
			else
9317
				pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9318
		}
9319
 
9320
		pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9321
 
9322
		WARN_ON(!pll->get_hw_state(dev_priv, pll,
9323
					   &pipe_config->dpll_hw_state));
9324
 
9325
		tmp = pipe_config->dpll_hw_state.dpll;
9326
		pipe_config->pixel_multiplier =
9327
			((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9328
			 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
4560 Serge 9329
 
9330
		ironlake_pch_clock_get(crtc, pipe_config);
4104 Serge 9331
	} else {
9332
		pipe_config->pixel_multiplier = 1;
9333
	}
9334
 
9335
	intel_get_pipe_timings(crtc, pipe_config);
9336
 
9337
	ironlake_get_pfit_config(crtc, pipe_config);
9338
 
3746 Serge 9339
	return true;
9340
}
9341
 
4104 Serge 9342
static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9343
{
9344
	struct drm_device *dev = dev_priv->dev;
9345
	struct intel_crtc *crtc;
9346
 
5060 serge 9347
	for_each_intel_crtc(dev, crtc)
6084 serge 9348
		I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
4104 Serge 9349
		     pipe_name(crtc->pipe));
9350
 
6084 serge 9351
	I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9352
	I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9353
	I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9354
	I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9355
	I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9356
	I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
4104 Serge 9357
	     "CPU PWM1 enabled\n");
5060 serge 9358
	if (IS_HASWELL(dev))
6084 serge 9359
		I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9360
		     "CPU PWM2 enabled\n");
9361
	I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
4104 Serge 9362
	     "PCH PWM1 enabled\n");
6084 serge 9363
	I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
4104 Serge 9364
	     "Utility pin enabled\n");
6084 serge 9365
	I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
4104 Serge 9366
 
5060 serge 9367
	/*
9368
	 * In theory we can still leave IRQs enabled, as long as only the HPD
9369
	 * interrupts remain enabled. We used to check for that, but since it's
9370
	 * gen-specific and since we only disable LCPLL after we fully disable
9371
	 * the interrupts, the check below should be enough.
9372
	 */
6084 serge 9373
	I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
4104 Serge 9374
}
9375
 
5060 serge 9376
static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9377
{
9378
	struct drm_device *dev = dev_priv->dev;
9379
 
9380
	if (IS_HASWELL(dev))
9381
		return I915_READ(D_COMP_HSW);
9382
	else
9383
		return I915_READ(D_COMP_BDW);
9384
}
9385
 
9386
static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9387
{
9388
	struct drm_device *dev = dev_priv->dev;
9389
 
9390
	if (IS_HASWELL(dev)) {
9391
		mutex_lock(&dev_priv->rps.hw_lock);
9392
		if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9393
					    val))
9394
			DRM_ERROR("Failed to write to D_COMP\n");
9395
		mutex_unlock(&dev_priv->rps.hw_lock);
9396
	} else {
9397
		I915_WRITE(D_COMP_BDW, val);
9398
		POSTING_READ(D_COMP_BDW);
9399
	}
9400
}
9401
 
4104 Serge 9402
/*
9403
 * This function implements pieces of two sequences from BSpec:
9404
 * - Sequence for display software to disable LCPLL
9405
 * - Sequence for display software to allow package C8+
9406
 * The steps implemented here are just the steps that actually touch the LCPLL
9407
 * register. Callers should take care of disabling all the display engine
9408
 * functions, doing the mode unset, fixing interrupts, etc.
9409
 */
4560 Serge 9410
static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6084 serge 9411
			      bool switch_to_fclk, bool allow_power_down)
4104 Serge 9412
{
9413
	uint32_t val;
9414
 
9415
	assert_can_disable_lcpll(dev_priv);
9416
 
9417
	val = I915_READ(LCPLL_CTL);
9418
 
9419
	if (switch_to_fclk) {
9420
		val |= LCPLL_CD_SOURCE_FCLK;
9421
		I915_WRITE(LCPLL_CTL, val);
9422
 
9423
		if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9424
				       LCPLL_CD_SOURCE_FCLK_DONE, 1))
9425
			DRM_ERROR("Switching to FCLK failed\n");
9426
 
9427
		val = I915_READ(LCPLL_CTL);
9428
	}
9429
 
9430
	val |= LCPLL_PLL_DISABLE;
9431
	I915_WRITE(LCPLL_CTL, val);
9432
	POSTING_READ(LCPLL_CTL);
9433
 
9434
	if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9435
		DRM_ERROR("LCPLL still locked\n");
9436
 
5060 serge 9437
	val = hsw_read_dcomp(dev_priv);
4104 Serge 9438
	val |= D_COMP_COMP_DISABLE;
5060 serge 9439
	hsw_write_dcomp(dev_priv, val);
9440
	ndelay(100);
4104 Serge 9441
 
5060 serge 9442
	if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9443
		     1))
4104 Serge 9444
		DRM_ERROR("D_COMP RCOMP still in progress\n");
9445
 
9446
	if (allow_power_down) {
9447
		val = I915_READ(LCPLL_CTL);
9448
		val |= LCPLL_POWER_DOWN_ALLOW;
9449
		I915_WRITE(LCPLL_CTL, val);
9450
		POSTING_READ(LCPLL_CTL);
9451
	}
9452
}
9453
 
9454
/*
9455
 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9456
 * source.
9457
 */
4560 Serge 9458
static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
4104 Serge 9459
{
9460
	uint32_t val;
9461
 
9462
	val = I915_READ(LCPLL_CTL);
9463
 
9464
	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9465
		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9466
		return;
9467
 
5060 serge 9468
	/*
9469
	 * Make sure we're not on PC8 state before disabling PC8, otherwise
9470
	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9471
	 */
6084 serge 9472
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4104 Serge 9473
 
9474
	if (val & LCPLL_POWER_DOWN_ALLOW) {
9475
		val &= ~LCPLL_POWER_DOWN_ALLOW;
9476
		I915_WRITE(LCPLL_CTL, val);
9477
		POSTING_READ(LCPLL_CTL);
9478
	}
9479
 
5060 serge 9480
	val = hsw_read_dcomp(dev_priv);
4104 Serge 9481
	val |= D_COMP_COMP_FORCE;
9482
	val &= ~D_COMP_COMP_DISABLE;
5060 serge 9483
	hsw_write_dcomp(dev_priv, val);
4104 Serge 9484
 
9485
	val = I915_READ(LCPLL_CTL);
9486
	val &= ~LCPLL_PLL_DISABLE;
9487
	I915_WRITE(LCPLL_CTL, val);
9488
 
9489
	if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9490
		DRM_ERROR("LCPLL not locked yet\n");
9491
 
9492
	if (val & LCPLL_CD_SOURCE_FCLK) {
9493
		val = I915_READ(LCPLL_CTL);
9494
		val &= ~LCPLL_CD_SOURCE_FCLK;
9495
		I915_WRITE(LCPLL_CTL, val);
9496
 
9497
		if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9498
					LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9499
			DRM_ERROR("Switching back to LCPLL failed\n");
9500
	}
9501
 
6084 serge 9502
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9503
	intel_update_cdclk(dev_priv->dev);
4104 Serge 9504
}
9505
 
5060 serge 9506
/*
9507
 * Package states C8 and deeper are really deep PC states that can only be
9508
 * reached when all the devices on the system allow it, so even if the graphics
9509
 * device allows PC8+, it doesn't mean the system will actually get to these
9510
 * states. Our driver only allows PC8+ when going into runtime PM.
9511
 *
9512
 * The requirements for PC8+ are that all the outputs are disabled, the power
9513
 * well is disabled and most interrupts are disabled, and these are also
9514
 * requirements for runtime PM. When these conditions are met, we manually do
9515
 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9516
 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9517
 * hang the machine.
9518
 *
9519
 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9520
 * the state of some registers, so when we come back from PC8+ we need to
9521
 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9522
 * need to take care of the registers kept by RC6. Notice that this happens even
9523
 * if we don't put the device in PCI D3 state (which is what currently happens
9524
 * because of the runtime PM support).
9525
 *
9526
 * For more, read "Display Sequences for Package C8" on the hardware
9527
 * documentation.
9528
 */
9529
void hsw_enable_pc8(struct drm_i915_private *dev_priv)
4104 Serge 9530
{
9531
	struct drm_device *dev = dev_priv->dev;
9532
	uint32_t val;
9533
 
9534
	DRM_DEBUG_KMS("Enabling package C8+\n");
9535
 
6084 serge 9536
	if (HAS_PCH_LPT_LP(dev)) {
4104 Serge 9537
		val = I915_READ(SOUTH_DSPCLK_GATE_D);
9538
		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9539
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9540
	}
9541
 
9542
	lpt_disable_clkout_dp(dev);
9543
	hsw_disable_lcpll(dev_priv, true, true);
9544
}
9545
 
5060 serge 9546
void hsw_disable_pc8(struct drm_i915_private *dev_priv)
4104 Serge 9547
{
9548
	struct drm_device *dev = dev_priv->dev;
9549
	uint32_t val;
9550
 
9551
	DRM_DEBUG_KMS("Disabling package C8+\n");
9552
 
9553
	hsw_restore_lcpll(dev_priv);
9554
	lpt_init_pch_refclk(dev);
9555
 
6084 serge 9556
	if (HAS_PCH_LPT_LP(dev)) {
4104 Serge 9557
		val = I915_READ(SOUTH_DSPCLK_GATE_D);
9558
		val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9559
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9560
	}
9561
 
9562
	intel_prepare_ddi(dev);
9563
}
9564
 
6084 serge 9565
static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
4104 Serge 9566
{
6084 serge 9567
	struct drm_device *dev = old_state->dev;
9568
	unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9569
 
9570
	broxton_set_cdclk(dev, req_cdclk);
9571
}
9572
 
9573
/* compute the max rate for new configuration */
9574
static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9575
{
9576
	struct intel_crtc *intel_crtc;
9577
	struct intel_crtc_state *crtc_state;
9578
	int max_pixel_rate = 0;
9579
 
9580
	for_each_intel_crtc(state->dev, intel_crtc) {
9581
		int pixel_rate;
9582
 
9583
		crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9584
		if (IS_ERR(crtc_state))
9585
			return PTR_ERR(crtc_state);
9586
 
9587
		if (!crtc_state->base.enable)
9588
			continue;
9589
 
9590
		pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9591
 
9592
		/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9593
		if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9594
			pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9595
 
9596
		max_pixel_rate = max(max_pixel_rate, pixel_rate);
9597
	}
9598
 
9599
	return max_pixel_rate;
9600
}
9601
 
9602
static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9603
{
9604
	struct drm_i915_private *dev_priv = dev->dev_private;
9605
	uint32_t val, data;
9606
	int ret;
9607
 
9608
	if (WARN((I915_READ(LCPLL_CTL) &
9609
		  (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9610
		   LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9611
		   LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9612
		   LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9613
		 "trying to change cdclk frequency with cdclk not enabled\n"))
9614
		return;
9615
 
9616
	mutex_lock(&dev_priv->rps.hw_lock);
9617
	ret = sandybridge_pcode_write(dev_priv,
9618
				      BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9619
	mutex_unlock(&dev_priv->rps.hw_lock);
9620
	if (ret) {
9621
		DRM_ERROR("failed to inform pcode about cdclk change\n");
9622
		return;
9623
	}
9624
 
9625
	val = I915_READ(LCPLL_CTL);
9626
	val |= LCPLL_CD_SOURCE_FCLK;
9627
	I915_WRITE(LCPLL_CTL, val);
9628
 
9629
	if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9630
			       LCPLL_CD_SOURCE_FCLK_DONE, 1))
9631
		DRM_ERROR("Switching to FCLK failed\n");
9632
 
9633
	val = I915_READ(LCPLL_CTL);
9634
	val &= ~LCPLL_CLK_FREQ_MASK;
9635
 
9636
	switch (cdclk) {
9637
	case 450000:
9638
		val |= LCPLL_CLK_FREQ_450;
9639
		data = 0;
9640
		break;
9641
	case 540000:
9642
		val |= LCPLL_CLK_FREQ_54O_BDW;
9643
		data = 1;
9644
		break;
9645
	case 337500:
9646
		val |= LCPLL_CLK_FREQ_337_5_BDW;
9647
		data = 2;
9648
		break;
9649
	case 675000:
9650
		val |= LCPLL_CLK_FREQ_675_BDW;
9651
		data = 3;
9652
		break;
9653
	default:
9654
		WARN(1, "invalid cdclk frequency\n");
9655
		return;
9656
	}
9657
 
9658
	I915_WRITE(LCPLL_CTL, val);
9659
 
9660
	val = I915_READ(LCPLL_CTL);
9661
	val &= ~LCPLL_CD_SOURCE_FCLK;
9662
	I915_WRITE(LCPLL_CTL, val);
9663
 
9664
	if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9665
				LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9666
		DRM_ERROR("Switching back to LCPLL failed\n");
9667
 
9668
	mutex_lock(&dev_priv->rps.hw_lock);
9669
	sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9670
	mutex_unlock(&dev_priv->rps.hw_lock);
9671
 
9672
	intel_update_cdclk(dev);
9673
 
9674
	WARN(cdclk != dev_priv->cdclk_freq,
9675
	     "cdclk requested %d kHz but got %d kHz\n",
9676
	     cdclk, dev_priv->cdclk_freq);
9677
}
9678
 
9679
static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9680
{
9681
	struct drm_i915_private *dev_priv = to_i915(state->dev);
9682
	int max_pixclk = ilk_max_pixel_rate(state);
9683
	int cdclk;
9684
 
9685
	/*
9686
	 * FIXME should also account for plane ratio
9687
	 * once 64bpp pixel formats are supported.
9688
	 */
9689
	if (max_pixclk > 540000)
9690
		cdclk = 675000;
9691
	else if (max_pixclk > 450000)
9692
		cdclk = 540000;
9693
	else if (max_pixclk > 337500)
9694
		cdclk = 450000;
9695
	else
9696
		cdclk = 337500;
9697
 
9698
	/*
9699
	 * FIXME move the cdclk caclulation to
9700
	 * compute_config() so we can fail gracegully.
9701
	 */
9702
	if (cdclk > dev_priv->max_cdclk_freq) {
9703
		DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9704
			  cdclk, dev_priv->max_cdclk_freq);
9705
		cdclk = dev_priv->max_cdclk_freq;
9706
	}
9707
 
9708
	to_intel_atomic_state(state)->cdclk = cdclk;
9709
 
9710
	return 0;
9711
}
9712
 
9713
static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9714
{
9715
	struct drm_device *dev = old_state->dev;
9716
	unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9717
 
9718
	broadwell_set_cdclk(dev, req_cdclk);
9719
}
9720
 
9721
static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9722
				      struct intel_crtc_state *crtc_state)
9723
{
9724
	if (!intel_ddi_pll_select(crtc, crtc_state))
5354 serge 9725
		return -EINVAL;
9726
 
9727
	crtc->lowfreq_avail = false;
9728
 
9729
	return 0;
4104 Serge 9730
}
9731
 
6084 serge 9732
static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9733
				enum port port,
9734
				struct intel_crtc_state *pipe_config)
9735
{
9736
	switch (port) {
9737
	case PORT_A:
9738
		pipe_config->ddi_pll_sel = SKL_DPLL0;
9739
		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9740
		break;
9741
	case PORT_B:
9742
		pipe_config->ddi_pll_sel = SKL_DPLL1;
9743
		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9744
		break;
9745
	case PORT_C:
9746
		pipe_config->ddi_pll_sel = SKL_DPLL2;
9747
		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9748
		break;
9749
	default:
9750
		DRM_ERROR("Incorrect port type\n");
9751
	}
9752
}
9753
 
5354 serge 9754
static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9755
				enum port port,
6084 serge 9756
				struct intel_crtc_state *pipe_config)
4104 Serge 9757
{
6084 serge 9758
	u32 temp, dpll_ctl1;
5354 serge 9759
 
9760
	temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9761
	pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9762
 
9763
	switch (pipe_config->ddi_pll_sel) {
6084 serge 9764
	case SKL_DPLL0:
9765
		/*
9766
		 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9767
		 * of the shared DPLL framework and thus needs to be read out
9768
		 * separately
9769
		 */
9770
		dpll_ctl1 = I915_READ(DPLL_CTRL1);
9771
		pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9772
		break;
5354 serge 9773
	case SKL_DPLL1:
9774
		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9775
		break;
9776
	case SKL_DPLL2:
9777
		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9778
		break;
9779
	case SKL_DPLL3:
9780
		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9781
		break;
9782
	}
4104 Serge 9783
}
9784
 
5354 serge 9785
static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9786
				enum port port,
6084 serge 9787
				struct intel_crtc_state *pipe_config)
4104 Serge 9788
{
5354 serge 9789
	pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
4104 Serge 9790
 
5354 serge 9791
	switch (pipe_config->ddi_pll_sel) {
9792
	case PORT_CLK_SEL_WRPLL1:
9793
		pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9794
		break;
9795
	case PORT_CLK_SEL_WRPLL2:
9796
		pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9797
		break;
6084 serge 9798
	case PORT_CLK_SEL_SPLL:
9799
		pipe_config->shared_dpll = DPLL_ID_SPLL;
5354 serge 9800
	}
4104 Serge 9801
}
9802
 
5060 serge 9803
static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
6084 serge 9804
				       struct intel_crtc_state *pipe_config)
4104 Serge 9805
{
5060 serge 9806
	struct drm_device *dev = crtc->base.dev;
4104 Serge 9807
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 9808
	struct intel_shared_dpll *pll;
9809
	enum port port;
9810
	uint32_t tmp;
4104 Serge 9811
 
5060 serge 9812
	tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
4560 Serge 9813
 
5060 serge 9814
	port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
4104 Serge 9815
 
5354 serge 9816
	if (IS_SKYLAKE(dev))
9817
		skylake_get_ddi_pll(dev_priv, port, pipe_config);
6084 serge 9818
	else if (IS_BROXTON(dev))
9819
		bxt_get_ddi_pll(dev_priv, port, pipe_config);
5354 serge 9820
	else
9821
		haswell_get_ddi_pll(dev_priv, port, pipe_config);
4104 Serge 9822
 
5060 serge 9823
	if (pipe_config->shared_dpll >= 0) {
9824
		pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
4560 Serge 9825
 
5060 serge 9826
		WARN_ON(!pll->get_hw_state(dev_priv, pll,
9827
					   &pipe_config->dpll_hw_state));
4104 Serge 9828
	}
9829
 
4560 Serge 9830
	/*
5060 serge 9831
	 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9832
	 * DDI E. So just check whether this pipe is wired to DDI E and whether
9833
	 * the PCH transcoder is on.
4560 Serge 9834
	 */
5354 serge 9835
	if (INTEL_INFO(dev)->gen < 9 &&
9836
	    (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
5060 serge 9837
		pipe_config->has_pch_encoder = true;
4560 Serge 9838
 
5060 serge 9839
		tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9840
		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9841
					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
3480 Serge 9842
 
5060 serge 9843
		ironlake_get_fdi_m_n_config(crtc, pipe_config);
3480 Serge 9844
	}
4560 Serge 9845
}
9846
 
3746 Serge 9847
static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6084 serge 9848
				    struct intel_crtc_state *pipe_config)
3746 Serge 9849
{
9850
	struct drm_device *dev = crtc->base.dev;
9851
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 9852
	enum intel_display_power_domain pfit_domain;
3746 Serge 9853
	uint32_t tmp;
9854
 
5354 serge 9855
	if (!intel_display_power_is_enabled(dev_priv,
5060 serge 9856
					 POWER_DOMAIN_PIPE(crtc->pipe)))
9857
		return false;
9858
 
4104 Serge 9859
	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9860
	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9861
 
9862
	tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9863
	if (tmp & TRANS_DDI_FUNC_ENABLE) {
9864
		enum pipe trans_edp_pipe;
9865
		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9866
		default:
9867
			WARN(1, "unknown pipe linked to edp transcoder\n");
9868
		case TRANS_DDI_EDP_INPUT_A_ONOFF:
9869
		case TRANS_DDI_EDP_INPUT_A_ON:
9870
			trans_edp_pipe = PIPE_A;
9871
			break;
9872
		case TRANS_DDI_EDP_INPUT_B_ONOFF:
9873
			trans_edp_pipe = PIPE_B;
9874
			break;
9875
		case TRANS_DDI_EDP_INPUT_C_ONOFF:
9876
			trans_edp_pipe = PIPE_C;
9877
			break;
9878
		}
9879
 
9880
		if (trans_edp_pipe == crtc->pipe)
9881
			pipe_config->cpu_transcoder = TRANSCODER_EDP;
9882
	}
9883
 
5354 serge 9884
	if (!intel_display_power_is_enabled(dev_priv,
4104 Serge 9885
			POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9886
		return false;
9887
 
9888
	tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
3746 Serge 9889
	if (!(tmp & PIPECONF_ENABLE))
9890
		return false;
9891
 
5060 serge 9892
	haswell_get_ddi_port_state(crtc, pipe_config);
3746 Serge 9893
 
4104 Serge 9894
	intel_get_pipe_timings(crtc, pipe_config);
9895
 
6084 serge 9896
	if (INTEL_INFO(dev)->gen >= 9) {
9897
		skl_init_scalers(dev, crtc, pipe_config);
9898
	}
9899
 
4104 Serge 9900
	pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6084 serge 9901
 
9902
	if (INTEL_INFO(dev)->gen >= 9) {
9903
		pipe_config->scaler_state.scaler_id = -1;
9904
		pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9905
	}
9906
 
5354 serge 9907
	if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
6084 serge 9908
		if (INTEL_INFO(dev)->gen >= 9)
5354 serge 9909
			skylake_get_pfit_config(crtc, pipe_config);
9910
		else
6084 serge 9911
			ironlake_get_pfit_config(crtc, pipe_config);
5354 serge 9912
	}
4104 Serge 9913
 
4560 Serge 9914
	if (IS_HASWELL(dev))
6084 serge 9915
		pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9916
			(I915_READ(IPS_CTL) & IPS_ENABLE);
4104 Serge 9917
 
5354 serge 9918
	if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9919
		pipe_config->pixel_multiplier =
9920
			I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9921
	} else {
6084 serge 9922
		pipe_config->pixel_multiplier = 1;
4560 Serge 9923
	}
9924
 
2342 Serge 9925
	return true;
9926
}
9927
 
6084 serge 9928
static void i845_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
2342 Serge 9929
{
5354 serge 9930
	struct drm_device *dev = crtc->dev;
9931
	struct drm_i915_private *dev_priv = dev->dev_private;
9932
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9933
	uint32_t cntl = 0, size = 0;
2342 Serge 9934
 
6084 serge 9935
	if (on) {
9936
		unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9937
		unsigned int height = intel_crtc->base.cursor->state->crtc_h;
5354 serge 9938
		unsigned int stride = roundup_pow_of_two(width) * 4;
2342 Serge 9939
 
5354 serge 9940
		switch (stride) {
9941
		default:
9942
			WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9943
				  width, stride);
9944
			stride = 256;
9945
			/* fallthrough */
9946
		case 256:
9947
		case 512:
9948
		case 1024:
9949
		case 2048:
9950
			break;
6084 serge 9951
		}
3031 serge 9952
 
5354 serge 9953
		cntl |= CURSOR_ENABLE |
9954
			CURSOR_GAMMA_ENABLE |
9955
			CURSOR_FORMAT_ARGB |
9956
			CURSOR_STRIDE(stride);
3031 serge 9957
 
5354 serge 9958
		size = (height << 12) | width;
2342 Serge 9959
	}
9960
 
5354 serge 9961
	if (intel_crtc->cursor_cntl != 0 &&
9962
	    (intel_crtc->cursor_base != base ||
9963
	     intel_crtc->cursor_size != size ||
9964
	     intel_crtc->cursor_cntl != cntl)) {
9965
		/* On these chipsets we can only modify the base/size/stride
9966
		 * whilst the cursor is disabled.
3031 serge 9967
		 */
6084 serge 9968
		I915_WRITE(CURCNTR(PIPE_A), 0);
9969
		POSTING_READ(CURCNTR(PIPE_A));
9970
		intel_crtc->cursor_cntl = 0;
9971
	}
5060 serge 9972
 
5354 serge 9973
	if (intel_crtc->cursor_base != base) {
6084 serge 9974
		I915_WRITE(CURBASE(PIPE_A), base);
5354 serge 9975
		intel_crtc->cursor_base = base;
5060 serge 9976
	}
2327 Serge 9977
 
5354 serge 9978
	if (intel_crtc->cursor_size != size) {
9979
		I915_WRITE(CURSIZE, size);
9980
		intel_crtc->cursor_size = size;
9981
	}
9982
 
5060 serge 9983
	if (intel_crtc->cursor_cntl != cntl) {
6084 serge 9984
		I915_WRITE(CURCNTR(PIPE_A), cntl);
9985
		POSTING_READ(CURCNTR(PIPE_A));
5060 serge 9986
		intel_crtc->cursor_cntl = cntl;
9987
	}
3031 serge 9988
}
2327 Serge 9989
 
6084 serge 9990
static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
3031 serge 9991
{
9992
	struct drm_device *dev = crtc->dev;
9993
	struct drm_i915_private *dev_priv = dev->dev_private;
9994
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9995
	int pipe = intel_crtc->pipe;
6084 serge 9996
	uint32_t cntl = 0;
2327 Serge 9997
 
6084 serge 9998
	if (on) {
5060 serge 9999
		cntl = MCURSOR_GAMMA_ENABLE;
6084 serge 10000
		switch (intel_crtc->base.cursor->state->crtc_w) {
5060 serge 10001
			case 64:
10002
				cntl |= CURSOR_MODE_64_ARGB_AX;
10003
				break;
10004
			case 128:
10005
				cntl |= CURSOR_MODE_128_ARGB_AX;
10006
				break;
10007
			case 256:
10008
				cntl |= CURSOR_MODE_256_ARGB_AX;
10009
				break;
10010
			default:
6084 serge 10011
				MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
5060 serge 10012
				return;
6084 serge 10013
		}
10014
		cntl |= pipe << 28; /* Connect to correct pipe */
2327 Serge 10015
 
6084 serge 10016
		if (HAS_DDI(dev))
3480 Serge 10017
			cntl |= CURSOR_PIPE_CSC_ENABLE;
5354 serge 10018
	}
5060 serge 10019
 
6084 serge 10020
	if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
5354 serge 10021
		cntl |= CURSOR_ROTATE_180;
10022
 
5060 serge 10023
	if (intel_crtc->cursor_cntl != cntl) {
10024
		I915_WRITE(CURCNTR(pipe), cntl);
10025
		POSTING_READ(CURCNTR(pipe));
10026
		intel_crtc->cursor_cntl = cntl;
6084 serge 10027
	}
2327 Serge 10028
 
3031 serge 10029
	/* and commit changes on next vblank */
5060 serge 10030
	I915_WRITE(CURBASE(pipe), base);
10031
	POSTING_READ(CURBASE(pipe));
5354 serge 10032
 
10033
	intel_crtc->cursor_base = base;
3031 serge 10034
}
2327 Serge 10035
 
3031 serge 10036
/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5060 serge 10037
void intel_crtc_update_cursor(struct drm_crtc *crtc,
3031 serge 10038
				     bool on)
10039
{
10040
	struct drm_device *dev = crtc->dev;
10041
	struct drm_i915_private *dev_priv = dev->dev_private;
10042
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10043
	int pipe = intel_crtc->pipe;
6084 serge 10044
	struct drm_plane_state *cursor_state = crtc->cursor->state;
10045
	int x = cursor_state->crtc_x;
10046
	int y = cursor_state->crtc_y;
4560 Serge 10047
	u32 base = 0, pos = 0;
2327 Serge 10048
 
6084 serge 10049
	base = intel_crtc->cursor_addr;
2327 Serge 10050
 
6084 serge 10051
	if (x >= intel_crtc->config->pipe_src_w)
10052
		on = false;
2327 Serge 10053
 
6084 serge 10054
	if (y >= intel_crtc->config->pipe_src_h)
10055
		on = false;
2327 Serge 10056
 
3031 serge 10057
	if (x < 0) {
6084 serge 10058
		if (x + cursor_state->crtc_w <= 0)
10059
			on = false;
2327 Serge 10060
 
3031 serge 10061
		pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10062
		x = -x;
10063
	}
10064
	pos |= x << CURSOR_X_SHIFT;
2327 Serge 10065
 
3031 serge 10066
	if (y < 0) {
6084 serge 10067
		if (y + cursor_state->crtc_h <= 0)
10068
			on = false;
2327 Serge 10069
 
3031 serge 10070
		pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10071
		y = -y;
10072
	}
10073
	pos |= y << CURSOR_Y_SHIFT;
2327 Serge 10074
 
5060 serge 10075
	I915_WRITE(CURPOS(pipe), pos);
10076
 
5354 serge 10077
	/* ILK+ do this automagically */
10078
	if (HAS_GMCH_DISPLAY(dev) &&
6084 serge 10079
	    crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10080
		base += (cursor_state->crtc_h *
10081
			 cursor_state->crtc_w - 1) * 4;
5354 serge 10082
	}
10083
 
10084
	if (IS_845G(dev) || IS_I865G(dev))
6084 serge 10085
		i845_update_cursor(crtc, base, on);
5060 serge 10086
	else
6084 serge 10087
		i9xx_update_cursor(crtc, base, on);
3031 serge 10088
}
2327 Serge 10089
 
5354 serge 10090
static bool cursor_size_ok(struct drm_device *dev,
10091
			   uint32_t width, uint32_t height)
10092
{
10093
	if (width == 0 || height == 0)
10094
		return false;
10095
 
10096
	/*
10097
	 * 845g/865g are special in that they are only limited by
10098
	 * the width of their cursors, the height is arbitrary up to
10099
	 * the precision of the register. Everything else requires
10100
	 * square cursors, limited to a few power-of-two sizes.
6084 serge 10101
	 */
5354 serge 10102
	if (IS_845G(dev) || IS_I865G(dev)) {
10103
		if ((width & 63) != 0)
10104
			return false;
10105
 
10106
		if (width > (IS_845G(dev) ? 64 : 512))
10107
			return false;
10108
 
10109
		if (height > 1023)
10110
			return false;
10111
	} else {
10112
		switch (width | height) {
10113
		case 256:
10114
		case 128:
10115
			if (IS_GEN2(dev))
10116
				return false;
10117
		case 64:
10118
			break;
10119
		default:
10120
			return false;
10121
		}
10122
	}
10123
 
10124
	return true;
10125
}
10126
 
2330 Serge 10127
static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10128
				 u16 *blue, uint32_t start, uint32_t size)
10129
{
10130
	int end = (start + size > 256) ? 256 : start + size, i;
10131
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 Serge 10132
 
2330 Serge 10133
	for (i = start; i < end; i++) {
10134
		intel_crtc->lut_r[i] = red[i] >> 8;
10135
		intel_crtc->lut_g[i] = green[i] >> 8;
10136
		intel_crtc->lut_b[i] = blue[i] >> 8;
10137
	}
2327 Serge 10138
 
2330 Serge 10139
	intel_crtc_load_lut(crtc);
10140
}
2327 Serge 10141
 
2330 Serge 10142
/* VESA 640x480x72Hz mode to set on the pipe */
10143
static struct drm_display_mode load_detect_mode = {
10144
	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10145
		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10146
};
2327 Serge 10147
 
4560 Serge 10148
struct drm_framebuffer *
5060 serge 10149
__intel_framebuffer_create(struct drm_device *dev,
6084 serge 10150
			   struct drm_mode_fb_cmd2 *mode_cmd,
10151
			   struct drm_i915_gem_object *obj)
3031 serge 10152
{
10153
	struct intel_framebuffer *intel_fb;
10154
	int ret;
2327 Serge 10155
 
3031 serge 10156
	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10157
	if (!intel_fb) {
5354 serge 10158
		drm_gem_object_unreference(&obj->base);
3031 serge 10159
		return ERR_PTR(-ENOMEM);
10160
	}
2327 Serge 10161
 
3031 serge 10162
	ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
4560 Serge 10163
	if (ret)
10164
		goto err;
10165
 
10166
	return &intel_fb->base;
10167
err:
5354 serge 10168
	drm_gem_object_unreference(&obj->base);
6084 serge 10169
	kfree(intel_fb);
4560 Serge 10170
 
6084 serge 10171
	return ERR_PTR(ret);
3031 serge 10172
}
2327 Serge 10173
 
5060 serge 10174
static struct drm_framebuffer *
10175
intel_framebuffer_create(struct drm_device *dev,
10176
			 struct drm_mode_fb_cmd2 *mode_cmd,
10177
			 struct drm_i915_gem_object *obj)
10178
{
10179
	struct drm_framebuffer *fb;
10180
	int ret;
10181
 
10182
	ret = i915_mutex_lock_interruptible(dev);
10183
	if (ret)
10184
		return ERR_PTR(ret);
10185
	fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10186
	mutex_unlock(&dev->struct_mutex);
10187
 
10188
	return fb;
10189
}
10190
 
2330 Serge 10191
static u32
10192
intel_framebuffer_pitch_for_width(int width, int bpp)
10193
{
10194
	u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10195
	return ALIGN(pitch, 64);
10196
}
2327 Serge 10197
 
2330 Serge 10198
static u32
10199
intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10200
{
10201
	u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5060 serge 10202
	return PAGE_ALIGN(pitch * mode->vdisplay);
2330 Serge 10203
}
2327 Serge 10204
 
2330 Serge 10205
static struct drm_framebuffer *
10206
intel_framebuffer_create_for_mode(struct drm_device *dev,
10207
				  struct drm_display_mode *mode,
10208
				  int depth, int bpp)
10209
{
10210
	struct drm_i915_gem_object *obj;
3243 Serge 10211
	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2327 Serge 10212
 
5060 serge 10213
	obj = i915_gem_alloc_object(dev,
10214
				    intel_framebuffer_size_for_mode(mode, bpp));
10215
	if (obj == NULL)
10216
		return ERR_PTR(-ENOMEM);
10217
 
10218
	mode_cmd.width = mode->hdisplay;
10219
	mode_cmd.height = mode->vdisplay;
10220
	mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10221
								bpp);
10222
	mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10223
 
10224
	return intel_framebuffer_create(dev, &mode_cmd, obj);
2330 Serge 10225
}
2327 Serge 10226
 
2330 Serge 10227
static struct drm_framebuffer *
10228
mode_fits_in_fbdev(struct drm_device *dev,
10229
		   struct drm_display_mode *mode)
10230
{
6084 serge 10231
#ifdef CONFIG_DRM_FBDEV_EMULATION
2330 Serge 10232
	struct drm_i915_private *dev_priv = dev->dev_private;
10233
	struct drm_i915_gem_object *obj;
10234
	struct drm_framebuffer *fb;
2327 Serge 10235
 
5060 serge 10236
	if (!dev_priv->fbdev)
4280 Serge 10237
		return NULL;
2327 Serge 10238
 
5060 serge 10239
	if (!dev_priv->fbdev->fb)
2330 Serge 10240
		return NULL;
2327 Serge 10241
 
5060 serge 10242
	obj = dev_priv->fbdev->fb->obj;
10243
	BUG_ON(!obj);
10244
 
10245
	fb = &dev_priv->fbdev->fb->base;
3031 serge 10246
	if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10247
							       fb->bits_per_pixel))
4280 Serge 10248
		return NULL;
2327 Serge 10249
 
3031 serge 10250
	if (obj->base.size < mode->vdisplay * fb->pitches[0])
10251
		return NULL;
10252
 
4280 Serge 10253
	return fb;
4560 Serge 10254
#else
10255
	return NULL;
10256
#endif
2330 Serge 10257
}
2327 Serge 10258
 
6084 serge 10259
static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10260
					   struct drm_crtc *crtc,
10261
					   struct drm_display_mode *mode,
10262
					   struct drm_framebuffer *fb,
10263
					   int x, int y)
10264
{
10265
	struct drm_plane_state *plane_state;
10266
	int hdisplay, vdisplay;
10267
	int ret;
10268
 
10269
	plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10270
	if (IS_ERR(plane_state))
10271
		return PTR_ERR(plane_state);
10272
 
10273
	if (mode)
10274
		drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10275
	else
10276
		hdisplay = vdisplay = 0;
10277
 
10278
	ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10279
	if (ret)
10280
		return ret;
10281
	drm_atomic_set_fb_for_plane(plane_state, fb);
10282
	plane_state->crtc_x = 0;
10283
	plane_state->crtc_y = 0;
10284
	plane_state->crtc_w = hdisplay;
10285
	plane_state->crtc_h = vdisplay;
10286
	plane_state->src_x = x << 16;
10287
	plane_state->src_y = y << 16;
10288
	plane_state->src_w = hdisplay << 16;
10289
	plane_state->src_h = vdisplay << 16;
10290
 
10291
	return 0;
10292
}
10293
 
3031 serge 10294
bool intel_get_load_detect_pipe(struct drm_connector *connector,
2330 Serge 10295
				struct drm_display_mode *mode,
5060 serge 10296
				struct intel_load_detect_pipe *old,
10297
				struct drm_modeset_acquire_ctx *ctx)
2330 Serge 10298
{
10299
	struct intel_crtc *intel_crtc;
3031 serge 10300
	struct intel_encoder *intel_encoder =
10301
		intel_attached_encoder(connector);
2330 Serge 10302
	struct drm_crtc *possible_crtc;
10303
	struct drm_encoder *encoder = &intel_encoder->base;
10304
	struct drm_crtc *crtc = NULL;
10305
	struct drm_device *dev = encoder->dev;
3031 serge 10306
	struct drm_framebuffer *fb;
5060 serge 10307
	struct drm_mode_config *config = &dev->mode_config;
6084 serge 10308
	struct drm_atomic_state *state = NULL;
10309
	struct drm_connector_state *connector_state;
10310
	struct intel_crtc_state *crtc_state;
5060 serge 10311
	int ret, i = -1;
2327 Serge 10312
 
2330 Serge 10313
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5060 serge 10314
		      connector->base.id, connector->name,
10315
		      encoder->base.id, encoder->name);
2327 Serge 10316
 
5060 serge 10317
retry:
10318
	ret = drm_modeset_lock(&config->connection_mutex, ctx);
10319
	if (ret)
6084 serge 10320
		goto fail;
5060 serge 10321
 
2330 Serge 10322
	/*
10323
	 * Algorithm gets a little messy:
10324
	 *
10325
	 *   - if the connector already has an assigned crtc, use it (but make
10326
	 *     sure it's on first)
10327
	 *
10328
	 *   - try to find the first unused crtc that can drive this connector,
10329
	 *     and use that if we find one
10330
	 */
2327 Serge 10331
 
2330 Serge 10332
	/* See if we already have a CRTC for this connector */
10333
	if (encoder->crtc) {
10334
		crtc = encoder->crtc;
2327 Serge 10335
 
5060 serge 10336
		ret = drm_modeset_lock(&crtc->mutex, ctx);
10337
		if (ret)
6084 serge 10338
			goto fail;
5354 serge 10339
		ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10340
		if (ret)
6084 serge 10341
			goto fail;
3480 Serge 10342
 
3031 serge 10343
		old->dpms_mode = connector->dpms;
2330 Serge 10344
		old->load_detect_temp = false;
2327 Serge 10345
 
2330 Serge 10346
		/* Make sure the crtc and connector are running */
3031 serge 10347
		if (connector->dpms != DRM_MODE_DPMS_ON)
10348
			connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
2327 Serge 10349
 
2330 Serge 10350
		return true;
10351
	}
2327 Serge 10352
 
2330 Serge 10353
	/* Find an unused one (if possible) */
5060 serge 10354
	for_each_crtc(dev, possible_crtc) {
2330 Serge 10355
		i++;
10356
		if (!(encoder->possible_crtcs & (1 << i)))
10357
			continue;
6084 serge 10358
		if (possible_crtc->state->enable)
5060 serge 10359
			continue;
10360
 
6084 serge 10361
		crtc = possible_crtc;
10362
		break;
10363
	}
2327 Serge 10364
 
2330 Serge 10365
	/*
10366
	 * If we didn't find an unused CRTC, don't use any.
10367
	 */
10368
	if (!crtc) {
10369
		DRM_DEBUG_KMS("no pipe available for load-detect\n");
6084 serge 10370
		goto fail;
2330 Serge 10371
	}
2327 Serge 10372
 
5060 serge 10373
	ret = drm_modeset_lock(&crtc->mutex, ctx);
10374
	if (ret)
6084 serge 10375
		goto fail;
5354 serge 10376
	ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10377
	if (ret)
6084 serge 10378
		goto fail;
2327 Serge 10379
 
2330 Serge 10380
	intel_crtc = to_intel_crtc(crtc);
3031 serge 10381
	old->dpms_mode = connector->dpms;
2330 Serge 10382
	old->load_detect_temp = true;
10383
	old->release_fb = NULL;
2327 Serge 10384
 
6084 serge 10385
	state = drm_atomic_state_alloc(dev);
10386
	if (!state)
10387
		return false;
10388
 
10389
	state->acquire_ctx = ctx;
10390
 
10391
	connector_state = drm_atomic_get_connector_state(state, connector);
10392
	if (IS_ERR(connector_state)) {
10393
		ret = PTR_ERR(connector_state);
10394
		goto fail;
10395
	}
10396
 
10397
	connector_state->crtc = crtc;
10398
	connector_state->best_encoder = &intel_encoder->base;
10399
 
10400
	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10401
	if (IS_ERR(crtc_state)) {
10402
		ret = PTR_ERR(crtc_state);
10403
		goto fail;
10404
	}
10405
 
10406
	crtc_state->base.active = crtc_state->base.enable = true;
10407
 
2330 Serge 10408
	if (!mode)
10409
		mode = &load_detect_mode;
2327 Serge 10410
 
2330 Serge 10411
	/* We need a framebuffer large enough to accommodate all accesses
10412
	 * that the plane may generate whilst we perform load detection.
10413
	 * We can not rely on the fbcon either being present (we get called
10414
	 * during its initialisation to detect all boot displays, or it may
10415
	 * not even exist) or that it is large enough to satisfy the
10416
	 * requested mode.
10417
	 */
3031 serge 10418
	fb = mode_fits_in_fbdev(dev, mode);
10419
	if (fb == NULL) {
2330 Serge 10420
		DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
3031 serge 10421
		fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10422
		old->release_fb = fb;
2330 Serge 10423
	} else
10424
		DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
3031 serge 10425
	if (IS_ERR(fb)) {
2330 Serge 10426
		DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5060 serge 10427
		goto fail;
2330 Serge 10428
	}
2327 Serge 10429
 
6084 serge 10430
	ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10431
	if (ret)
10432
		goto fail;
10433
 
10434
	drm_mode_copy(&crtc_state->base.mode, mode);
10435
 
10436
	if (drm_atomic_commit(state)) {
2330 Serge 10437
		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10438
		if (old->release_fb)
10439
			old->release_fb->funcs->destroy(old->release_fb);
5060 serge 10440
		goto fail;
2330 Serge 10441
	}
6084 serge 10442
	crtc->primary->crtc = crtc;
2327 Serge 10443
 
2330 Serge 10444
	/* let the connector get through one full cycle before testing */
10445
	intel_wait_for_vblank(dev, intel_crtc->pipe);
10446
	return true;
5060 serge 10447
 
6084 serge 10448
fail:
10449
	drm_atomic_state_free(state);
10450
	state = NULL;
10451
 
5060 serge 10452
	if (ret == -EDEADLK) {
10453
		drm_modeset_backoff(ctx);
10454
		goto retry;
10455
	}
10456
 
10457
	return false;
2330 Serge 10458
}
2327 Serge 10459
 
3031 serge 10460
void intel_release_load_detect_pipe(struct drm_connector *connector,
6084 serge 10461
				    struct intel_load_detect_pipe *old,
10462
				    struct drm_modeset_acquire_ctx *ctx)
2330 Serge 10463
{
6084 serge 10464
	struct drm_device *dev = connector->dev;
3031 serge 10465
	struct intel_encoder *intel_encoder =
10466
		intel_attached_encoder(connector);
2330 Serge 10467
	struct drm_encoder *encoder = &intel_encoder->base;
3480 Serge 10468
	struct drm_crtc *crtc = encoder->crtc;
5060 serge 10469
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6084 serge 10470
	struct drm_atomic_state *state;
10471
	struct drm_connector_state *connector_state;
10472
	struct intel_crtc_state *crtc_state;
10473
	int ret;
2327 Serge 10474
 
2330 Serge 10475
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5060 serge 10476
		      connector->base.id, connector->name,
10477
		      encoder->base.id, encoder->name);
2327 Serge 10478
 
2330 Serge 10479
	if (old->load_detect_temp) {
6084 serge 10480
		state = drm_atomic_state_alloc(dev);
10481
		if (!state)
10482
			goto fail;
3031 serge 10483
 
6084 serge 10484
		state->acquire_ctx = ctx;
10485
 
10486
		connector_state = drm_atomic_get_connector_state(state, connector);
10487
		if (IS_ERR(connector_state))
10488
			goto fail;
10489
 
10490
		crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10491
		if (IS_ERR(crtc_state))
10492
			goto fail;
10493
 
10494
		connector_state->best_encoder = NULL;
10495
		connector_state->crtc = NULL;
10496
 
10497
		crtc_state->base.enable = crtc_state->base.active = false;
10498
 
10499
		ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10500
						      0, 0);
10501
		if (ret)
10502
			goto fail;
10503
 
10504
		ret = drm_atomic_commit(state);
10505
		if (ret)
10506
			goto fail;
10507
 
3480 Serge 10508
		if (old->release_fb) {
10509
			drm_framebuffer_unregister_private(old->release_fb);
10510
			drm_framebuffer_unreference(old->release_fb);
10511
		}
2327 Serge 10512
 
2330 Serge 10513
		return;
10514
	}
2327 Serge 10515
 
2330 Serge 10516
	/* Switch crtc and encoder back off if necessary */
3031 serge 10517
	if (old->dpms_mode != DRM_MODE_DPMS_ON)
10518
		connector->funcs->dpms(connector, old->dpms_mode);
6084 serge 10519
 
10520
	return;
10521
fail:
10522
	DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10523
	drm_atomic_state_free(state);
2330 Serge 10524
}
2327 Serge 10525
 
4560 Serge 10526
static int i9xx_pll_refclk(struct drm_device *dev,
6084 serge 10527
			   const struct intel_crtc_state *pipe_config)
4560 Serge 10528
{
10529
	struct drm_i915_private *dev_priv = dev->dev_private;
10530
	u32 dpll = pipe_config->dpll_hw_state.dpll;
10531
 
10532
	if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10533
		return dev_priv->vbt.lvds_ssc_freq;
10534
	else if (HAS_PCH_SPLIT(dev))
10535
		return 120000;
10536
	else if (!IS_GEN2(dev))
10537
		return 96000;
10538
	else
10539
		return 48000;
10540
}
10541
 
2330 Serge 10542
/* Returns the clock of the currently programmed mode of the given pipe. */
4104 Serge 10543
static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
6084 serge 10544
				struct intel_crtc_state *pipe_config)
2330 Serge 10545
{
4104 Serge 10546
	struct drm_device *dev = crtc->base.dev;
2330 Serge 10547
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 10548
	int pipe = pipe_config->cpu_transcoder;
4560 Serge 10549
	u32 dpll = pipe_config->dpll_hw_state.dpll;
2330 Serge 10550
	u32 fp;
10551
	intel_clock_t clock;
6084 serge 10552
	int port_clock;
4560 Serge 10553
	int refclk = i9xx_pll_refclk(dev, pipe_config);
2327 Serge 10554
 
2330 Serge 10555
	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4560 Serge 10556
		fp = pipe_config->dpll_hw_state.fp0;
2330 Serge 10557
	else
4560 Serge 10558
		fp = pipe_config->dpll_hw_state.fp1;
2327 Serge 10559
 
2330 Serge 10560
	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10561
	if (IS_PINEVIEW(dev)) {
10562
		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10563
		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10564
	} else {
10565
		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10566
		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10567
	}
2327 Serge 10568
 
2330 Serge 10569
	if (!IS_GEN2(dev)) {
10570
		if (IS_PINEVIEW(dev))
10571
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10572
				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10573
		else
10574
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10575
			       DPLL_FPA01_P1_POST_DIV_SHIFT);
2327 Serge 10576
 
2330 Serge 10577
		switch (dpll & DPLL_MODE_MASK) {
10578
		case DPLLB_MODE_DAC_SERIAL:
10579
			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10580
				5 : 10;
10581
			break;
10582
		case DPLLB_MODE_LVDS:
10583
			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10584
				7 : 14;
10585
			break;
10586
		default:
10587
			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10588
				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
4104 Serge 10589
			return;
2330 Serge 10590
		}
2327 Serge 10591
 
4104 Serge 10592
		if (IS_PINEVIEW(dev))
6084 serge 10593
			port_clock = pnv_calc_dpll_params(refclk, &clock);
4104 Serge 10594
		else
6084 serge 10595
			port_clock = i9xx_calc_dpll_params(refclk, &clock);
2330 Serge 10596
	} else {
4560 Serge 10597
		u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10598
		bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
2327 Serge 10599
 
2330 Serge 10600
		if (is_lvds) {
10601
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10602
				       DPLL_FPA01_P1_POST_DIV_SHIFT);
4560 Serge 10603
 
10604
			if (lvds & LVDS_CLKB_POWER_UP)
10605
				clock.p2 = 7;
10606
			else
6084 serge 10607
				clock.p2 = 14;
2330 Serge 10608
		} else {
10609
			if (dpll & PLL_P1_DIVIDE_BY_TWO)
10610
				clock.p1 = 2;
10611
			else {
10612
				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10613
					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10614
			}
10615
			if (dpll & PLL_P2_DIVIDE_BY_4)
10616
				clock.p2 = 4;
10617
			else
10618
				clock.p2 = 2;
4560 Serge 10619
		}
2327 Serge 10620
 
6084 serge 10621
		port_clock = i9xx_calc_dpll_params(refclk, &clock);
2330 Serge 10622
	}
2327 Serge 10623
 
4560 Serge 10624
	/*
10625
	 * This value includes pixel_multiplier. We will use
10626
	 * port_clock to compute adjusted_mode.crtc_clock in the
10627
	 * encoder's get_config() function.
10628
	 */
6084 serge 10629
	pipe_config->port_clock = port_clock;
4104 Serge 10630
}
10631
 
4560 Serge 10632
int intel_dotclock_calculate(int link_freq,
10633
			     const struct intel_link_m_n *m_n)
4104 Serge 10634
{
10635
	/*
10636
	 * The calculation for the data clock is:
4560 Serge 10637
	 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
4104 Serge 10638
	 * But we want to avoid losing precison if possible, so:
4560 Serge 10639
	 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
4104 Serge 10640
	 *
10641
	 * and the link clock is simpler:
4560 Serge 10642
	 * link_clock = (m * link_clock) / n
2330 Serge 10643
	 */
2327 Serge 10644
 
4560 Serge 10645
	if (!m_n->link_n)
10646
		return 0;
4104 Serge 10647
 
4560 Serge 10648
	return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10649
}
4104 Serge 10650
 
4560 Serge 10651
static void ironlake_pch_clock_get(struct intel_crtc *crtc,
6084 serge 10652
				   struct intel_crtc_state *pipe_config)
4560 Serge 10653
{
10654
	struct drm_device *dev = crtc->base.dev;
4104 Serge 10655
 
4560 Serge 10656
	/* read out port_clock from the DPLL */
10657
	i9xx_crtc_clock_get(crtc, pipe_config);
4104 Serge 10658
 
4560 Serge 10659
	/*
10660
	 * This value does not include pixel_multiplier.
10661
	 * We will check that port_clock and adjusted_mode.crtc_clock
10662
	 * agree once we know their relationship in the encoder's
10663
	 * get_config() function.
10664
	 */
6084 serge 10665
	pipe_config->base.adjusted_mode.crtc_clock =
4560 Serge 10666
		intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10667
					 &pipe_config->fdi_m_n);
2330 Serge 10668
}
2327 Serge 10669
 
2330 Serge 10670
/** Returns the currently programmed mode of the given pipe. */
10671
struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10672
					     struct drm_crtc *crtc)
10673
{
10674
	struct drm_i915_private *dev_priv = dev->dev_private;
10675
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6084 serge 10676
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
2330 Serge 10677
	struct drm_display_mode *mode;
6084 serge 10678
	struct intel_crtc_state pipe_config;
3243 Serge 10679
	int htot = I915_READ(HTOTAL(cpu_transcoder));
10680
	int hsync = I915_READ(HSYNC(cpu_transcoder));
10681
	int vtot = I915_READ(VTOTAL(cpu_transcoder));
10682
	int vsync = I915_READ(VSYNC(cpu_transcoder));
4560 Serge 10683
	enum pipe pipe = intel_crtc->pipe;
2327 Serge 10684
 
2330 Serge 10685
	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10686
	if (!mode)
10687
		return NULL;
10688
 
4104 Serge 10689
	/*
10690
	 * Construct a pipe_config sufficient for getting the clock info
10691
	 * back out of crtc_clock_get.
10692
	 *
10693
	 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10694
	 * to use a real value here instead.
10695
	 */
4560 Serge 10696
	pipe_config.cpu_transcoder = (enum transcoder) pipe;
4104 Serge 10697
	pipe_config.pixel_multiplier = 1;
4560 Serge 10698
	pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10699
	pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10700
	pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
4104 Serge 10701
	i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10702
 
4560 Serge 10703
	mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
2330 Serge 10704
	mode->hdisplay = (htot & 0xffff) + 1;
10705
	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10706
	mode->hsync_start = (hsync & 0xffff) + 1;
10707
	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10708
	mode->vdisplay = (vtot & 0xffff) + 1;
10709
	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10710
	mode->vsync_start = (vsync & 0xffff) + 1;
10711
	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10712
 
10713
	drm_mode_set_name(mode);
10714
 
10715
	return mode;
10716
}
10717
 
3031 serge 10718
void intel_mark_busy(struct drm_device *dev)
10719
{
4104 Serge 10720
	struct drm_i915_private *dev_priv = dev->dev_private;
10721
 
5060 serge 10722
	if (dev_priv->mm.busy)
10723
		return;
10724
 
10725
	intel_runtime_pm_get(dev_priv);
4104 Serge 10726
	i915_update_gfx_val(dev_priv);
6084 serge 10727
	if (INTEL_INFO(dev)->gen >= 6)
10728
		gen6_rps_busy(dev_priv);
5060 serge 10729
	dev_priv->mm.busy = true;
3031 serge 10730
}
2327 Serge 10731
 
3031 serge 10732
void intel_mark_idle(struct drm_device *dev)
10733
{
4104 Serge 10734
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 10735
 
5060 serge 10736
	if (!dev_priv->mm.busy)
3031 serge 10737
		return;
2327 Serge 10738
 
5060 serge 10739
	dev_priv->mm.busy = false;
10740
 
10741
	if (INTEL_INFO(dev)->gen >= 6)
4560 Serge 10742
		gen6_rps_idle(dev->dev_private);
5060 serge 10743
 
10744
	intel_runtime_pm_put(dev_priv);
3031 serge 10745
}
2327 Serge 10746
 
2330 Serge 10747
static void intel_crtc_destroy(struct drm_crtc *crtc)
10748
{
10749
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10750
	struct drm_device *dev = crtc->dev;
10751
	struct intel_unpin_work *work;
2327 Serge 10752
 
5354 serge 10753
	spin_lock_irq(&dev->event_lock);
2330 Serge 10754
	work = intel_crtc->unpin_work;
10755
	intel_crtc->unpin_work = NULL;
5354 serge 10756
	spin_unlock_irq(&dev->event_lock);
2327 Serge 10757
 
2330 Serge 10758
	if (work) {
4293 Serge 10759
		cancel_work_sync(&work->work);
2330 Serge 10760
		kfree(work);
10761
	}
2327 Serge 10762
 
2330 Serge 10763
	drm_crtc_cleanup(crtc);
2327 Serge 10764
 
2330 Serge 10765
	kfree(intel_crtc);
10766
}
2327 Serge 10767
 
3031 serge 10768
static void intel_unpin_work_fn(struct work_struct *__work)
10769
{
10770
	struct intel_unpin_work *work =
10771
		container_of(__work, struct intel_unpin_work, work);
6084 serge 10772
	struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10773
	struct drm_device *dev = crtc->base.dev;
10774
	struct drm_plane *primary = crtc->base.primary;
2327 Serge 10775
 
3243 Serge 10776
	mutex_lock(&dev->struct_mutex);
6084 serge 10777
	intel_unpin_fb_obj(work->old_fb, primary->state);
3031 serge 10778
	drm_gem_object_unreference(&work->pending_flip_obj->base);
2327 Serge 10779
 
6084 serge 10780
	if (work->flip_queued_req)
10781
		i915_gem_request_assign(&work->flip_queued_req, NULL);
3243 Serge 10782
	mutex_unlock(&dev->struct_mutex);
10783
 
6084 serge 10784
	intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10785
	drm_framebuffer_unreference(work->old_fb);
5354 serge 10786
 
6084 serge 10787
	BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10788
	atomic_dec(&crtc->unpin_work_count);
3243 Serge 10789
 
3031 serge 10790
	kfree(work);
10791
}
2327 Serge 10792
 
3031 serge 10793
static void do_intel_finish_page_flip(struct drm_device *dev,
10794
				      struct drm_crtc *crtc)
10795
{
10796
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10797
	struct intel_unpin_work *work;
10798
	unsigned long flags;
2327 Serge 10799
 
3031 serge 10800
	/* Ignore early vblank irqs */
10801
	if (intel_crtc == NULL)
10802
		return;
2327 Serge 10803
 
5354 serge 10804
	/*
10805
	 * This is called both by irq handlers and the reset code (to complete
10806
	 * lost pageflips) so needs the full irqsave spinlocks.
10807
	 */
3031 serge 10808
	spin_lock_irqsave(&dev->event_lock, flags);
10809
	work = intel_crtc->unpin_work;
3243 Serge 10810
 
10811
	/* Ensure we don't miss a work->pending update ... */
10812
	smp_rmb();
10813
 
10814
	if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
3031 serge 10815
		spin_unlock_irqrestore(&dev->event_lock, flags);
10816
		return;
10817
	}
2327 Serge 10818
 
5354 serge 10819
	page_flip_completed(intel_crtc);
3243 Serge 10820
 
3031 serge 10821
	spin_unlock_irqrestore(&dev->event_lock, flags);
10822
}
2327 Serge 10823
 
3031 serge 10824
void intel_finish_page_flip(struct drm_device *dev, int pipe)
10825
{
5060 serge 10826
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 10827
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2327 Serge 10828
 
3031 serge 10829
	do_intel_finish_page_flip(dev, crtc);
10830
}
2327 Serge 10831
 
3031 serge 10832
void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10833
{
5060 serge 10834
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 10835
	struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
2327 Serge 10836
 
3031 serge 10837
	do_intel_finish_page_flip(dev, crtc);
10838
}
2327 Serge 10839
 
5060 serge 10840
/* Is 'a' after or equal to 'b'? */
10841
static bool g4x_flip_count_after_eq(u32 a, u32 b)
10842
{
10843
	return !((a - b) & 0x80000000);
10844
}
10845
 
10846
static bool page_flip_finished(struct intel_crtc *crtc)
10847
{
10848
	struct drm_device *dev = crtc->base.dev;
10849
	struct drm_i915_private *dev_priv = dev->dev_private;
10850
 
5354 serge 10851
	if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10852
	    crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10853
		return true;
10854
 
5060 serge 10855
	/*
10856
	 * The relevant registers doen't exist on pre-ctg.
10857
	 * As the flip done interrupt doesn't trigger for mmio
10858
	 * flips on gmch platforms, a flip count check isn't
10859
	 * really needed there. But since ctg has the registers,
10860
	 * include it in the check anyway.
10861
	 */
10862
	if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10863
		return true;
10864
 
10865
	/*
10866
	 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10867
	 * used the same base address. In that case the mmio flip might
10868
	 * have completed, but the CS hasn't even executed the flip yet.
10869
	 *
10870
	 * A flip count check isn't enough as the CS might have updated
10871
	 * the base address just after start of vblank, but before we
10872
	 * managed to process the interrupt. This means we'd complete the
10873
	 * CS flip too soon.
10874
	 *
10875
	 * Combining both checks should get us a good enough result. It may
10876
	 * still happen that the CS flip has been executed, but has not
10877
	 * yet actually completed. But in case the base address is the same
10878
	 * anyway, we don't really care.
10879
	 */
10880
	return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10881
		crtc->unpin_work->gtt_offset &&
6084 serge 10882
		g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
5060 serge 10883
				    crtc->unpin_work->flip_count);
10884
}
10885
 
3031 serge 10886
void intel_prepare_page_flip(struct drm_device *dev, int plane)
10887
{
5060 serge 10888
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 10889
	struct intel_crtc *intel_crtc =
10890
		to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10891
	unsigned long flags;
2327 Serge 10892
 
5354 serge 10893
 
10894
	/*
10895
	 * This is called both by irq handlers and the reset code (to complete
10896
	 * lost pageflips) so needs the full irqsave spinlocks.
10897
	 *
10898
	 * NB: An MMIO update of the plane base pointer will also
3243 Serge 10899
	 * generate a page-flip completion irq, i.e. every modeset
10900
	 * is also accompanied by a spurious intel_prepare_page_flip().
10901
	 */
3031 serge 10902
	spin_lock_irqsave(&dev->event_lock, flags);
5060 serge 10903
	if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
3243 Serge 10904
		atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
3031 serge 10905
	spin_unlock_irqrestore(&dev->event_lock, flags);
10906
}
2327 Serge 10907
 
6084 serge 10908
static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
3243 Serge 10909
{
10910
	/* Ensure that the work item is consistent when activating it ... */
10911
	smp_wmb();
6084 serge 10912
	atomic_set(&work->pending, INTEL_FLIP_PENDING);
3243 Serge 10913
	/* and that it is marked active as soon as the irq could fire. */
10914
	smp_wmb();
10915
}
6320 serge 10916
 
3031 serge 10917
static int intel_gen2_queue_flip(struct drm_device *dev,
10918
				 struct drm_crtc *crtc,
10919
				 struct drm_framebuffer *fb,
4104 Serge 10920
				 struct drm_i915_gem_object *obj,
6084 serge 10921
				 struct drm_i915_gem_request *req,
4104 Serge 10922
				 uint32_t flags)
3031 serge 10923
{
6084 serge 10924
	struct intel_engine_cs *ring = req->ring;
3031 serge 10925
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10926
	u32 flip_mask;
10927
	int ret;
2327 Serge 10928
 
6084 serge 10929
	ret = intel_ring_begin(req, 6);
3031 serge 10930
	if (ret)
5060 serge 10931
		return ret;
2327 Serge 10932
 
3031 serge 10933
	/* Can't queue multiple flips, so wait for the previous
10934
	 * one to finish before executing the next.
10935
	 */
10936
	if (intel_crtc->plane)
10937
		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10938
	else
10939
		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10940
	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10941
	intel_ring_emit(ring, MI_NOOP);
10942
	intel_ring_emit(ring, MI_DISPLAY_FLIP |
10943
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10944
	intel_ring_emit(ring, fb->pitches[0]);
5060 serge 10945
	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
3031 serge 10946
	intel_ring_emit(ring, 0); /* aux display base address, unused */
3243 Serge 10947
 
6084 serge 10948
	intel_mark_page_flip_active(intel_crtc->unpin_work);
3031 serge 10949
	return 0;
10950
}
2327 Serge 10951
 
3031 serge 10952
static int intel_gen3_queue_flip(struct drm_device *dev,
10953
				 struct drm_crtc *crtc,
10954
				 struct drm_framebuffer *fb,
4104 Serge 10955
				 struct drm_i915_gem_object *obj,
6084 serge 10956
				 struct drm_i915_gem_request *req,
4104 Serge 10957
				 uint32_t flags)
3031 serge 10958
{
6084 serge 10959
	struct intel_engine_cs *ring = req->ring;
3031 serge 10960
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10961
	u32 flip_mask;
10962
	int ret;
2327 Serge 10963
 
6084 serge 10964
	ret = intel_ring_begin(req, 6);
3031 serge 10965
	if (ret)
5060 serge 10966
		return ret;
2327 Serge 10967
 
3031 serge 10968
	if (intel_crtc->plane)
10969
		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10970
	else
10971
		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10972
	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10973
	intel_ring_emit(ring, MI_NOOP);
10974
	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10975
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10976
	intel_ring_emit(ring, fb->pitches[0]);
5060 serge 10977
	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
3031 serge 10978
	intel_ring_emit(ring, MI_NOOP);
2327 Serge 10979
 
6084 serge 10980
	intel_mark_page_flip_active(intel_crtc->unpin_work);
3031 serge 10981
	return 0;
10982
}
2327 Serge 10983
 
3031 serge 10984
static int intel_gen4_queue_flip(struct drm_device *dev,
10985
				 struct drm_crtc *crtc,
10986
				 struct drm_framebuffer *fb,
4104 Serge 10987
				 struct drm_i915_gem_object *obj,
6084 serge 10988
				 struct drm_i915_gem_request *req,
4104 Serge 10989
				 uint32_t flags)
3031 serge 10990
{
6084 serge 10991
	struct intel_engine_cs *ring = req->ring;
3031 serge 10992
	struct drm_i915_private *dev_priv = dev->dev_private;
10993
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10994
	uint32_t pf, pipesrc;
10995
	int ret;
2327 Serge 10996
 
6084 serge 10997
	ret = intel_ring_begin(req, 4);
3031 serge 10998
	if (ret)
5060 serge 10999
		return ret;
2327 Serge 11000
 
3031 serge 11001
	/* i965+ uses the linear or tiled offsets from the
11002
	 * Display Registers (which do not change across a page-flip)
11003
	 * so we need only reprogram the base address.
11004
	 */
11005
	intel_ring_emit(ring, MI_DISPLAY_FLIP |
11006
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11007
	intel_ring_emit(ring, fb->pitches[0]);
5060 serge 11008
	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
3031 serge 11009
			obj->tiling_mode);
2327 Serge 11010
 
3031 serge 11011
	/* XXX Enabling the panel-fitter across page-flip is so far
11012
	 * untested on non-native modes, so ignore it for now.
11013
	 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11014
	 */
11015
	pf = 0;
11016
	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11017
	intel_ring_emit(ring, pf | pipesrc);
3243 Serge 11018
 
6084 serge 11019
	intel_mark_page_flip_active(intel_crtc->unpin_work);
3031 serge 11020
	return 0;
11021
}
2327 Serge 11022
 
3031 serge 11023
static int intel_gen6_queue_flip(struct drm_device *dev,
11024
				 struct drm_crtc *crtc,
11025
				 struct drm_framebuffer *fb,
4104 Serge 11026
				 struct drm_i915_gem_object *obj,
6084 serge 11027
				 struct drm_i915_gem_request *req,
4104 Serge 11028
				 uint32_t flags)
3031 serge 11029
{
6084 serge 11030
	struct intel_engine_cs *ring = req->ring;
3031 serge 11031
	struct drm_i915_private *dev_priv = dev->dev_private;
11032
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11033
	uint32_t pf, pipesrc;
11034
	int ret;
2327 Serge 11035
 
6084 serge 11036
	ret = intel_ring_begin(req, 4);
3031 serge 11037
	if (ret)
5060 serge 11038
		return ret;
2327 Serge 11039
 
3031 serge 11040
	intel_ring_emit(ring, MI_DISPLAY_FLIP |
11041
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11042
	intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
5060 serge 11043
	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
2327 Serge 11044
 
3031 serge 11045
	/* Contrary to the suggestions in the documentation,
11046
	 * "Enable Panel Fitter" does not seem to be required when page
11047
	 * flipping with a non-native mode, and worse causes a normal
11048
	 * modeset to fail.
11049
	 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11050
	 */
11051
	pf = 0;
11052
	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11053
	intel_ring_emit(ring, pf | pipesrc);
3243 Serge 11054
 
6084 serge 11055
	intel_mark_page_flip_active(intel_crtc->unpin_work);
3031 serge 11056
	return 0;
11057
}
2327 Serge 11058
 
3031 serge 11059
static int intel_gen7_queue_flip(struct drm_device *dev,
11060
				 struct drm_crtc *crtc,
11061
				 struct drm_framebuffer *fb,
4104 Serge 11062
				 struct drm_i915_gem_object *obj,
6084 serge 11063
				 struct drm_i915_gem_request *req,
4104 Serge 11064
				 uint32_t flags)
3031 serge 11065
{
6084 serge 11066
	struct intel_engine_cs *ring = req->ring;
3031 serge 11067
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11068
	uint32_t plane_bit = 0;
4104 Serge 11069
	int len, ret;
2327 Serge 11070
 
5060 serge 11071
	switch (intel_crtc->plane) {
3031 serge 11072
	case PLANE_A:
11073
		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11074
		break;
11075
	case PLANE_B:
11076
		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11077
		break;
11078
	case PLANE_C:
11079
		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11080
		break;
11081
	default:
11082
		WARN_ONCE(1, "unknown plane in flip command\n");
5060 serge 11083
		return -ENODEV;
3031 serge 11084
	}
2327 Serge 11085
 
4104 Serge 11086
	len = 4;
5060 serge 11087
	if (ring->id == RCS) {
4104 Serge 11088
		len += 6;
5060 serge 11089
		/*
11090
		 * On Gen 8, SRM is now taking an extra dword to accommodate
11091
		 * 48bits addresses, and we need a NOOP for the batch size to
11092
		 * stay even.
11093
		 */
11094
		if (IS_GEN8(dev))
11095
			len += 2;
11096
	}
4104 Serge 11097
 
5060 serge 11098
	/*
11099
	 * BSpec MI_DISPLAY_FLIP for IVB:
11100
	 * "The full packet must be contained within the same cache line."
11101
	 *
11102
	 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11103
	 * cacheline, if we ever start emitting more commands before
11104
	 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11105
	 * then do the cacheline alignment, and finally emit the
11106
	 * MI_DISPLAY_FLIP.
11107
	 */
6084 serge 11108
	ret = intel_ring_cacheline_align(req);
5060 serge 11109
	if (ret)
11110
		return ret;
11111
 
6084 serge 11112
	ret = intel_ring_begin(req, len);
3031 serge 11113
	if (ret)
5060 serge 11114
		return ret;
2327 Serge 11115
 
4104 Serge 11116
	/* Unmask the flip-done completion message. Note that the bspec says that
11117
	 * we should do this for both the BCS and RCS, and that we must not unmask
11118
	 * more than one flip event at any time (or ensure that one flip message
11119
	 * can be sent by waiting for flip-done prior to queueing new flips).
11120
	 * Experimentation says that BCS works despite DERRMR masking all
11121
	 * flip-done completion events and that unmasking all planes at once
11122
	 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11123
	 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11124
	 */
11125
	if (ring->id == RCS) {
11126
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11127
		intel_ring_emit(ring, DERRMR);
11128
		intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11129
					DERRMR_PIPEB_PRI_FLIP_DONE |
11130
					DERRMR_PIPEC_PRI_FLIP_DONE));
5060 serge 11131
		if (IS_GEN8(dev))
6084 serge 11132
			intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
5060 serge 11133
					      MI_SRM_LRM_GLOBAL_GTT);
11134
		else
6084 serge 11135
			intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11136
					      MI_SRM_LRM_GLOBAL_GTT);
4104 Serge 11137
		intel_ring_emit(ring, DERRMR);
11138
		intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
5060 serge 11139
		if (IS_GEN8(dev)) {
11140
			intel_ring_emit(ring, 0);
11141
			intel_ring_emit(ring, MI_NOOP);
11142
		}
4104 Serge 11143
	}
11144
 
3031 serge 11145
	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11146
	intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
5060 serge 11147
	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
3031 serge 11148
	intel_ring_emit(ring, (MI_NOOP));
3243 Serge 11149
 
6084 serge 11150
	intel_mark_page_flip_active(intel_crtc->unpin_work);
3031 serge 11151
	return 0;
11152
}
2327 Serge 11153
 
6084 serge 11154
static bool use_mmio_flip(struct intel_engine_cs *ring,
11155
			  struct drm_i915_gem_object *obj)
11156
{
11157
	/*
11158
	 * This is not being used for older platforms, because
11159
	 * non-availability of flip done interrupt forces us to use
11160
	 * CS flips. Older platforms derive flip done using some clever
11161
	 * tricks involving the flip_pending status bits and vblank irqs.
11162
	 * So using MMIO flips there would disrupt this mechanism.
11163
	 */
11164
 
11165
	if (ring == NULL)
11166
		return true;
11167
 
11168
	if (INTEL_INFO(ring->dev)->gen < 5)
11169
		return false;
11170
 
11171
	if (i915.use_mmio_flip < 0)
11172
		return false;
11173
	else if (i915.use_mmio_flip > 0)
11174
		return true;
11175
	else if (i915.enable_execlists)
11176
		return true;
11177
	else
11178
		return ring != i915_gem_request_get_ring(obj->last_write_req);
11179
}
11180
 
11181
static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11182
			     struct intel_unpin_work *work)
11183
{
11184
	struct drm_device *dev = intel_crtc->base.dev;
11185
	struct drm_i915_private *dev_priv = dev->dev_private;
11186
	struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11187
	const enum pipe pipe = intel_crtc->pipe;
11188
	u32 ctl, stride;
11189
 
11190
	ctl = I915_READ(PLANE_CTL(pipe, 0));
11191
	ctl &= ~PLANE_CTL_TILED_MASK;
11192
	switch (fb->modifier[0]) {
11193
	case DRM_FORMAT_MOD_NONE:
11194
		break;
11195
	case I915_FORMAT_MOD_X_TILED:
11196
		ctl |= PLANE_CTL_TILED_X;
11197
		break;
11198
	case I915_FORMAT_MOD_Y_TILED:
11199
		ctl |= PLANE_CTL_TILED_Y;
11200
		break;
11201
	case I915_FORMAT_MOD_Yf_TILED:
11202
		ctl |= PLANE_CTL_TILED_YF;
11203
		break;
11204
	default:
11205
		MISSING_CASE(fb->modifier[0]);
11206
	}
11207
 
11208
	/*
11209
	 * The stride is either expressed as a multiple of 64 bytes chunks for
11210
	 * linear buffers or in number of tiles for tiled buffers.
11211
	 */
11212
	stride = fb->pitches[0] /
11213
		 intel_fb_stride_alignment(dev, fb->modifier[0],
11214
					   fb->pixel_format);
11215
 
11216
	/*
11217
	 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11218
	 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11219
	 */
11220
	I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11221
	I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11222
 
11223
	I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11224
	POSTING_READ(PLANE_SURF(pipe, 0));
11225
}
11226
 
11227
static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11228
			     struct intel_unpin_work *work)
11229
{
11230
	struct drm_device *dev = intel_crtc->base.dev;
11231
	struct drm_i915_private *dev_priv = dev->dev_private;
11232
	struct intel_framebuffer *intel_fb =
11233
		to_intel_framebuffer(intel_crtc->base.primary->fb);
11234
	struct drm_i915_gem_object *obj = intel_fb->obj;
11235
	u32 dspcntr;
11236
	u32 reg;
11237
 
11238
	reg = DSPCNTR(intel_crtc->plane);
11239
	dspcntr = I915_READ(reg);
11240
 
11241
	if (obj->tiling_mode != I915_TILING_NONE)
11242
		dspcntr |= DISPPLANE_TILED;
11243
	else
11244
		dspcntr &= ~DISPPLANE_TILED;
11245
 
11246
	I915_WRITE(reg, dspcntr);
11247
 
11248
	I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11249
	POSTING_READ(DSPSURF(intel_crtc->plane));
11250
}
11251
 
11252
/*
11253
 * XXX: This is the temporary way to update the plane registers until we get
11254
 * around to using the usual plane update functions for MMIO flips
11255
 */
11256
static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11257
{
11258
	struct intel_crtc *crtc = mmio_flip->crtc;
11259
	struct intel_unpin_work *work;
11260
 
11261
	spin_lock_irq(&crtc->base.dev->event_lock);
11262
	work = crtc->unpin_work;
11263
	spin_unlock_irq(&crtc->base.dev->event_lock);
11264
	if (work == NULL)
11265
		return;
11266
 
11267
	intel_mark_page_flip_active(work);
11268
 
11269
	intel_pipe_update_start(crtc);
11270
 
11271
	if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11272
		skl_do_mmio_flip(crtc, work);
11273
	else
11274
		/* use_mmio_flip() retricts MMIO flips to ilk+ */
11275
		ilk_do_mmio_flip(crtc, work);
11276
 
11277
	intel_pipe_update_end(crtc);
11278
}
11279
 
11280
static void intel_mmio_flip_work_func(struct work_struct *work)
11281
{
11282
	struct intel_mmio_flip *mmio_flip =
11283
		container_of(work, struct intel_mmio_flip, work);
11284
 
11285
	if (mmio_flip->req) {
11286
		WARN_ON(__i915_wait_request(mmio_flip->req,
11287
					    mmio_flip->crtc->reset_counter,
11288
					    false, NULL,
11289
					    &mmio_flip->i915->rps.mmioflips));
11290
		i915_gem_request_unreference__unlocked(mmio_flip->req);
11291
	}
11292
 
11293
	intel_do_mmio_flip(mmio_flip);
11294
	kfree(mmio_flip);
11295
}
11296
 
11297
static int intel_queue_mmio_flip(struct drm_device *dev,
11298
				 struct drm_crtc *crtc,
11299
				 struct drm_framebuffer *fb,
11300
				 struct drm_i915_gem_object *obj,
11301
				 struct intel_engine_cs *ring,
11302
				 uint32_t flags)
11303
{
11304
	struct intel_mmio_flip *mmio_flip;
11305
 
11306
	mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11307
	if (mmio_flip == NULL)
11308
		return -ENOMEM;
11309
 
11310
	mmio_flip->i915 = to_i915(dev);
11311
	mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11312
	mmio_flip->crtc = to_intel_crtc(crtc);
11313
 
11314
	INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11315
	schedule_work(&mmio_flip->work);
11316
 
11317
	return 0;
11318
}
11319
 
3031 serge 11320
static int intel_default_queue_flip(struct drm_device *dev,
11321
				    struct drm_crtc *crtc,
11322
				    struct drm_framebuffer *fb,
4104 Serge 11323
				    struct drm_i915_gem_object *obj,
6084 serge 11324
				    struct drm_i915_gem_request *req,
4104 Serge 11325
				    uint32_t flags)
3031 serge 11326
{
11327
	return -ENODEV;
11328
}
2327 Serge 11329
 
6084 serge 11330
static bool __intel_pageflip_stall_check(struct drm_device *dev,
11331
					 struct drm_crtc *crtc)
11332
{
11333
	struct drm_i915_private *dev_priv = dev->dev_private;
11334
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11335
	struct intel_unpin_work *work = intel_crtc->unpin_work;
11336
	u32 addr;
11337
 
11338
	if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11339
		return true;
11340
 
11341
	if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11342
		return false;
11343
 
11344
	if (!work->enable_stall_check)
11345
		return false;
11346
 
11347
	if (work->flip_ready_vblank == 0) {
11348
		if (work->flip_queued_req &&
11349
		    !i915_gem_request_completed(work->flip_queued_req, true))
11350
			return false;
11351
 
11352
		work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11353
	}
11354
 
11355
	if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11356
		return false;
11357
 
11358
	/* Potential stall - if we see that the flip has happened,
11359
	 * assume a missed interrupt. */
11360
	if (INTEL_INFO(dev)->gen >= 4)
11361
		addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11362
	else
11363
		addr = I915_READ(DSPADDR(intel_crtc->plane));
11364
 
11365
	/* There is a potential issue here with a false positive after a flip
11366
	 * to the same address. We could address this by checking for a
11367
	 * non-incrementing frame counter.
11368
	 */
11369
	return addr == work->gtt_offset;
11370
}
11371
 
11372
void intel_check_page_flip(struct drm_device *dev, int pipe)
11373
{
11374
	struct drm_i915_private *dev_priv = dev->dev_private;
11375
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11376
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11377
	struct intel_unpin_work *work;
11378
 
11379
	if (crtc == NULL)
11380
		return;
11381
 
11382
	spin_lock(&dev->event_lock);
11383
	work = intel_crtc->unpin_work;
11384
	if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11385
		WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11386
			 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11387
		page_flip_completed(intel_crtc);
11388
		work = NULL;
11389
	}
11390
	if (work != NULL &&
11391
	    drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11392
		intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11393
	spin_unlock(&dev->event_lock);
11394
}
6320 serge 11395
 
3031 serge 11396
static int intel_crtc_page_flip(struct drm_crtc *crtc,
11397
				struct drm_framebuffer *fb,
4104 Serge 11398
				struct drm_pending_vblank_event *event,
11399
				uint32_t page_flip_flags)
3031 serge 11400
{
11401
	struct drm_device *dev = crtc->dev;
11402
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 11403
	struct drm_framebuffer *old_fb = crtc->primary->fb;
11404
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3031 serge 11405
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6084 serge 11406
	struct drm_plane *primary = crtc->primary;
5060 serge 11407
	enum pipe pipe = intel_crtc->pipe;
3031 serge 11408
	struct intel_unpin_work *work;
5060 serge 11409
	struct intel_engine_cs *ring;
6084 serge 11410
	bool mmio_flip;
11411
	struct drm_i915_gem_request *request = NULL;
3031 serge 11412
	int ret;
2327 Serge 11413
 
5060 serge 11414
	/*
11415
	 * drm_mode_page_flip_ioctl() should already catch this, but double
11416
	 * check to be safe.  In the future we may enable pageflipping from
11417
	 * a disabled primary plane.
11418
	 */
11419
	if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11420
		return -EBUSY;
11421
 
3031 serge 11422
	/* Can't change pixel format via MI display flips. */
5060 serge 11423
	if (fb->pixel_format != crtc->primary->fb->pixel_format)
3031 serge 11424
		return -EINVAL;
2327 Serge 11425
 
3031 serge 11426
	/*
11427
	 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11428
	 * Note that pitch changes could also affect these register.
11429
	 */
11430
	if (INTEL_INFO(dev)->gen > 3 &&
5060 serge 11431
	    (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11432
	     fb->pitches[0] != crtc->primary->fb->pitches[0]))
3031 serge 11433
		return -EINVAL;
2327 Serge 11434
 
5354 serge 11435
	if (i915_terminally_wedged(&dev_priv->gpu_error))
11436
		goto out_hang;
11437
 
4560 Serge 11438
	work = kzalloc(sizeof(*work), GFP_KERNEL);
3031 serge 11439
	if (work == NULL)
11440
		return -ENOMEM;
2327 Serge 11441
 
3031 serge 11442
	work->event = event;
3243 Serge 11443
	work->crtc = crtc;
6084 serge 11444
	work->old_fb = old_fb;
6320 serge 11445
	INIT_WORK(&work->work, intel_unpin_work_fn);
2327 Serge 11446
 
5060 serge 11447
	ret = drm_crtc_vblank_get(crtc);
3031 serge 11448
	if (ret)
11449
		goto free_work;
2327 Serge 11450
 
3031 serge 11451
	/* We borrow the event spin lock for protecting unpin_work */
5354 serge 11452
	spin_lock_irq(&dev->event_lock);
3031 serge 11453
	if (intel_crtc->unpin_work) {
5354 serge 11454
		/* Before declaring the flip queue wedged, check if
11455
		 * the hardware completed the operation behind our backs.
11456
		 */
11457
		if (__intel_pageflip_stall_check(dev, crtc)) {
11458
			DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11459
			page_flip_completed(intel_crtc);
11460
		} else {
11461
			DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11462
			spin_unlock_irq(&dev->event_lock);
11463
 
11464
			drm_crtc_vblank_put(crtc);
6084 serge 11465
			kfree(work);
11466
			return -EBUSY;
11467
		}
3031 serge 11468
	}
11469
	intel_crtc->unpin_work = work;
5354 serge 11470
	spin_unlock_irq(&dev->event_lock);
2327 Serge 11471
 
6320 serge 11472
//   if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11473
//       flush_workqueue(dev_priv->wq);
3243 Serge 11474
 
3031 serge 11475
	/* Reference the objects for the scheduled work. */
6084 serge 11476
	drm_framebuffer_reference(work->old_fb);
3031 serge 11477
	drm_gem_object_reference(&obj->base);
2327 Serge 11478
 
5060 serge 11479
	crtc->primary->fb = fb;
6084 serge 11480
	update_state_fb(crtc->primary);
2327 Serge 11481
 
3031 serge 11482
	work->pending_flip_obj = obj;
2327 Serge 11483
 
6084 serge 11484
	ret = i915_mutex_lock_interruptible(dev);
11485
	if (ret)
11486
		goto cleanup;
11487
 
3243 Serge 11488
	atomic_inc(&intel_crtc->unpin_work_count);
3480 Serge 11489
	intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3031 serge 11490
 
5060 serge 11491
	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
6084 serge 11492
		work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
5060 serge 11493
 
11494
	if (IS_VALLEYVIEW(dev)) {
11495
		ring = &dev_priv->ring[BCS];
6084 serge 11496
		if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
5060 serge 11497
			/* vlv: DISPLAY_FLIP fails to change tiling */
11498
			ring = NULL;
6084 serge 11499
	} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5060 serge 11500
		ring = &dev_priv->ring[BCS];
11501
	} else if (INTEL_INFO(dev)->gen >= 7) {
6084 serge 11502
		ring = i915_gem_request_get_ring(obj->last_write_req);
5060 serge 11503
		if (ring == NULL || ring->id != RCS)
11504
			ring = &dev_priv->ring[BCS];
11505
	} else {
11506
		ring = &dev_priv->ring[RCS];
11507
	}
11508
 
6084 serge 11509
	mmio_flip = use_mmio_flip(ring, obj);
11510
 
11511
	/* When using CS flips, we want to emit semaphores between rings.
11512
	 * However, when using mmio flips we will create a task to do the
11513
	 * synchronisation, so all we want here is to pin the framebuffer
11514
	 * into the display plane and skip any waits.
11515
	 */
11516
	ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11517
					 crtc->primary->state,
11518
					 mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
3031 serge 11519
	if (ret)
11520
		goto cleanup_pending;
11521
 
6084 serge 11522
	work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11523
						  obj, 0);
11524
	work->gtt_offset += intel_crtc->dspaddr_offset;
5060 serge 11525
 
6084 serge 11526
	if (mmio_flip) {
5060 serge 11527
		ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11528
					    page_flip_flags);
5354 serge 11529
		if (ret)
11530
			goto cleanup_unpin;
11531
 
6084 serge 11532
		i915_gem_request_assign(&work->flip_queued_req,
11533
					obj->last_write_req);
5354 serge 11534
	} else {
6084 serge 11535
		if (!request) {
11536
			ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11537
			if (ret)
11538
				goto cleanup_unpin;
11539
		}
5060 serge 11540
 
6084 serge 11541
		ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11542
						   page_flip_flags);
11543
		if (ret)
11544
			goto cleanup_unpin;
11545
 
11546
		i915_gem_request_assign(&work->flip_queued_req, request);
5354 serge 11547
	}
11548
 
6084 serge 11549
	if (request)
11550
		i915_add_request_no_flush(request);
11551
 
11552
	work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
5354 serge 11553
	work->enable_stall_check = true;
11554
 
6084 serge 11555
	i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11556
			  to_intel_plane(primary)->frontbuffer_bit);
3031 serge 11557
	mutex_unlock(&dev->struct_mutex);
11558
 
6084 serge 11559
	intel_fbc_disable_crtc(intel_crtc);
11560
	intel_frontbuffer_flip_prepare(dev,
11561
				       to_intel_plane(primary)->frontbuffer_bit);
11562
 
3031 serge 11563
	trace_i915_flip_request(intel_crtc->plane, obj);
11564
 
11565
	return 0;
11566
 
5060 serge 11567
cleanup_unpin:
6084 serge 11568
	intel_unpin_fb_obj(fb, crtc->primary->state);
3031 serge 11569
cleanup_pending:
6084 serge 11570
	if (request)
11571
		i915_gem_request_cancel(request);
3243 Serge 11572
	atomic_dec(&intel_crtc->unpin_work_count);
6084 serge 11573
	mutex_unlock(&dev->struct_mutex);
11574
cleanup:
5060 serge 11575
	crtc->primary->fb = old_fb;
6084 serge 11576
	update_state_fb(crtc->primary);
3031 serge 11577
 
6084 serge 11578
	drm_gem_object_unreference_unlocked(&obj->base);
11579
	drm_framebuffer_unreference(work->old_fb);
11580
 
5354 serge 11581
	spin_lock_irq(&dev->event_lock);
3031 serge 11582
	intel_crtc->unpin_work = NULL;
5354 serge 11583
	spin_unlock_irq(&dev->event_lock);
3031 serge 11584
 
5060 serge 11585
	drm_crtc_vblank_put(crtc);
3031 serge 11586
free_work:
11587
	kfree(work);
11588
 
5060 serge 11589
	if (ret == -EIO) {
6084 serge 11590
		struct drm_atomic_state *state;
11591
		struct drm_plane_state *plane_state;
11592
 
5060 serge 11593
out_hang:
6084 serge 11594
		state = drm_atomic_state_alloc(dev);
11595
		if (!state)
11596
			return -ENOMEM;
11597
		state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11598
 
11599
retry:
11600
		plane_state = drm_atomic_get_plane_state(state, primary);
11601
		ret = PTR_ERR_OR_ZERO(plane_state);
11602
		if (!ret) {
11603
			drm_atomic_set_fb_for_plane(plane_state, fb);
11604
 
11605
			ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11606
			if (!ret)
11607
				ret = drm_atomic_commit(state);
11608
		}
11609
 
11610
		if (ret == -EDEADLK) {
11611
			drm_modeset_backoff(state->acquire_ctx);
11612
			drm_atomic_state_clear(state);
11613
			goto retry;
11614
		}
11615
 
11616
		if (ret)
11617
			drm_atomic_state_free(state);
11618
 
5354 serge 11619
		if (ret == 0 && event) {
11620
			spin_lock_irq(&dev->event_lock);
5060 serge 11621
			drm_send_vblank_event(dev, pipe, event);
5354 serge 11622
			spin_unlock_irq(&dev->event_lock);
11623
		}
5060 serge 11624
	}
3031 serge 11625
	return ret;
11626
}
11627
 
11628
 
11629
/**
6084 serge 11630
 * intel_wm_need_update - Check whether watermarks need updating
11631
 * @plane: drm plane
11632
 * @state: new plane state
3031 serge 11633
 *
6084 serge 11634
 * Check current plane state versus the new one to determine whether
11635
 * watermarks need to be recalculated.
11636
 *
11637
 * Returns true or false.
3031 serge 11638
 */
6084 serge 11639
static bool intel_wm_need_update(struct drm_plane *plane,
11640
				 struct drm_plane_state *state)
3031 serge 11641
{
6084 serge 11642
	/* Update watermarks on tiling changes. */
11643
	if (!plane->state->fb || !state->fb ||
11644
	    plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11645
	    plane->state->rotation != state->rotation)
11646
		return true;
3031 serge 11647
 
6084 serge 11648
	if (plane->state->crtc_w != state->crtc_w)
11649
		return true;
11650
 
11651
	return false;
11652
}
11653
 
11654
int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11655
				    struct drm_plane_state *plane_state)
11656
{
11657
	struct drm_crtc *crtc = crtc_state->crtc;
11658
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11659
	struct drm_plane *plane = plane_state->plane;
11660
	struct drm_device *dev = crtc->dev;
11661
	struct drm_i915_private *dev_priv = dev->dev_private;
11662
	struct intel_plane_state *old_plane_state =
11663
		to_intel_plane_state(plane->state);
11664
	int idx = intel_crtc->base.base.id, ret;
11665
	int i = drm_plane_index(plane);
11666
	bool mode_changed = needs_modeset(crtc_state);
11667
	bool was_crtc_enabled = crtc->state->active;
11668
	bool is_crtc_enabled = crtc_state->active;
11669
 
11670
	bool turn_off, turn_on, visible, was_visible;
11671
	struct drm_framebuffer *fb = plane_state->fb;
11672
 
11673
	if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11674
	    plane->type != DRM_PLANE_TYPE_CURSOR) {
11675
		ret = skl_update_scaler_plane(
11676
			to_intel_crtc_state(crtc_state),
11677
			to_intel_plane_state(plane_state));
11678
		if (ret)
11679
			return ret;
3031 serge 11680
	}
11681
 
6084 serge 11682
	/*
11683
	 * Disabling a plane is always okay; we just need to update
11684
	 * fb tracking in a special way since cleanup_fb() won't
11685
	 * get called by the plane helpers.
11686
	 */
11687
	if (old_plane_state->base.fb && !fb)
11688
		intel_crtc->atomic.disabled_planes |= 1 << i;
11689
 
11690
	was_visible = old_plane_state->visible;
11691
	visible = to_intel_plane_state(plane_state)->visible;
11692
 
11693
	if (!was_crtc_enabled && WARN_ON(was_visible))
11694
		was_visible = false;
11695
 
11696
	if (!is_crtc_enabled && WARN_ON(visible))
11697
		visible = false;
11698
 
11699
	if (!was_visible && !visible)
11700
		return 0;
11701
 
11702
	turn_off = was_visible && (!visible || mode_changed);
11703
	turn_on = visible && (!was_visible || mode_changed);
11704
 
11705
	DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11706
			 plane->base.id, fb ? fb->base.id : -1);
11707
 
11708
	DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11709
			 plane->base.id, was_visible, visible,
11710
			 turn_off, turn_on, mode_changed);
11711
 
11712
	if (turn_on) {
11713
		intel_crtc->atomic.update_wm_pre = true;
11714
		/* must disable cxsr around plane enable/disable */
11715
		if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11716
			intel_crtc->atomic.disable_cxsr = true;
11717
			/* to potentially re-enable cxsr */
11718
			intel_crtc->atomic.wait_vblank = true;
11719
			intel_crtc->atomic.update_wm_post = true;
11720
		}
11721
	} else if (turn_off) {
11722
		intel_crtc->atomic.update_wm_post = true;
11723
		/* must disable cxsr around plane enable/disable */
11724
		if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11725
			if (is_crtc_enabled)
11726
				intel_crtc->atomic.wait_vblank = true;
11727
			intel_crtc->atomic.disable_cxsr = true;
11728
		}
11729
	} else if (intel_wm_need_update(plane, plane_state)) {
11730
		intel_crtc->atomic.update_wm_pre = true;
3031 serge 11731
	}
5060 serge 11732
 
6084 serge 11733
	if (visible || was_visible)
11734
		intel_crtc->atomic.fb_bits |=
11735
			to_intel_plane(plane)->frontbuffer_bit;
5060 serge 11736
 
6084 serge 11737
	switch (plane->type) {
11738
	case DRM_PLANE_TYPE_PRIMARY:
11739
		intel_crtc->atomic.wait_for_flips = true;
11740
		intel_crtc->atomic.pre_disable_primary = turn_off;
11741
		intel_crtc->atomic.post_enable_primary = turn_on;
11742
 
11743
		if (turn_off) {
11744
			/*
11745
			 * FIXME: Actually if we will still have any other
11746
			 * plane enabled on the pipe we could let IPS enabled
11747
			 * still, but for now lets consider that when we make
11748
			 * primary invisible by setting DSPCNTR to 0 on
11749
			 * update_primary_plane function IPS needs to be
11750
			 * disable.
11751
			 */
11752
			intel_crtc->atomic.disable_ips = true;
11753
 
11754
			intel_crtc->atomic.disable_fbc = true;
11755
		}
11756
 
11757
		/*
11758
		 * FBC does not work on some platforms for rotated
11759
		 * planes, so disable it when rotation is not 0 and
11760
		 * update it when rotation is set back to 0.
11761
		 *
11762
		 * FIXME: This is redundant with the fbc update done in
11763
		 * the primary plane enable function except that that
11764
		 * one is done too late. We eventually need to unify
11765
		 * this.
11766
		 */
11767
 
11768
		if (visible &&
11769
		    INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11770
		    dev_priv->fbc.crtc == intel_crtc &&
11771
		    plane_state->rotation != BIT(DRM_ROTATE_0))
11772
			intel_crtc->atomic.disable_fbc = true;
11773
 
11774
		/*
11775
		 * BDW signals flip done immediately if the plane
11776
		 * is disabled, even if the plane enable is already
11777
		 * armed to occur at the next vblank :(
11778
		 */
11779
		if (turn_on && IS_BROADWELL(dev))
11780
			intel_crtc->atomic.wait_vblank = true;
11781
 
11782
		intel_crtc->atomic.update_fbc |= visible || mode_changed;
11783
		break;
11784
	case DRM_PLANE_TYPE_CURSOR:
11785
		break;
11786
	case DRM_PLANE_TYPE_OVERLAY:
11787
		if (turn_off && !mode_changed) {
11788
			intel_crtc->atomic.wait_vblank = true;
11789
			intel_crtc->atomic.update_sprite_watermarks |=
11790
				1 << i;
11791
		}
5060 serge 11792
	}
6084 serge 11793
	return 0;
3031 serge 11794
}
11795
 
6084 serge 11796
static bool encoders_cloneable(const struct intel_encoder *a,
11797
			       const struct intel_encoder *b)
3031 serge 11798
{
6084 serge 11799
	/* masks could be asymmetric, so check both ways */
11800
	return a == b || (a->cloneable & (1 << b->type) &&
11801
			  b->cloneable & (1 << a->type));
11802
}
11803
 
11804
static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11805
					 struct intel_crtc *crtc,
11806
					 struct intel_encoder *encoder)
11807
{
11808
	struct intel_encoder *source_encoder;
11809
	struct drm_connector *connector;
11810
	struct drm_connector_state *connector_state;
11811
	int i;
11812
 
11813
	for_each_connector_in_state(state, connector, connector_state, i) {
11814
		if (connector_state->crtc != &crtc->base)
11815
			continue;
11816
 
11817
		source_encoder =
11818
			to_intel_encoder(connector_state->best_encoder);
11819
		if (!encoders_cloneable(encoder, source_encoder))
11820
			return false;
11821
	}
11822
 
11823
	return true;
11824
}
11825
 
11826
static bool check_encoder_cloning(struct drm_atomic_state *state,
11827
				  struct intel_crtc *crtc)
11828
{
3031 serge 11829
	struct intel_encoder *encoder;
6084 serge 11830
	struct drm_connector *connector;
11831
	struct drm_connector_state *connector_state;
11832
	int i;
3031 serge 11833
 
6084 serge 11834
	for_each_connector_in_state(state, connector, connector_state, i) {
11835
		if (connector_state->crtc != &crtc->base)
11836
			continue;
11837
 
11838
		encoder = to_intel_encoder(connector_state->best_encoder);
11839
		if (!check_single_encoder_cloning(state, crtc, encoder))
11840
			return false;
3031 serge 11841
	}
11842
 
6084 serge 11843
	return true;
11844
}
11845
 
11846
static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11847
				   struct drm_crtc_state *crtc_state)
11848
{
11849
	struct drm_device *dev = crtc->dev;
11850
	struct drm_i915_private *dev_priv = dev->dev_private;
11851
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11852
	struct intel_crtc_state *pipe_config =
11853
		to_intel_crtc_state(crtc_state);
11854
	struct drm_atomic_state *state = crtc_state->state;
11855
	int ret;
11856
	bool mode_changed = needs_modeset(crtc_state);
11857
 
11858
	if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11859
		DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11860
		return -EINVAL;
3031 serge 11861
	}
5060 serge 11862
 
6084 serge 11863
	if (mode_changed && !crtc_state->active)
11864
		intel_crtc->atomic.update_wm_post = true;
11865
 
11866
	if (mode_changed && crtc_state->enable &&
11867
	    dev_priv->display.crtc_compute_clock &&
11868
	    !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11869
		ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11870
							   pipe_config);
11871
		if (ret)
11872
			return ret;
5060 serge 11873
	}
6084 serge 11874
 
11875
	ret = 0;
11876
	if (INTEL_INFO(dev)->gen >= 9) {
11877
		if (mode_changed)
11878
			ret = skl_update_scaler_crtc(pipe_config);
11879
 
11880
		if (!ret)
11881
			ret = intel_atomic_setup_scalers(dev, intel_crtc,
11882
							 pipe_config);
11883
	}
11884
 
11885
	return ret;
3031 serge 11886
}
11887
 
6084 serge 11888
static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11889
	.mode_set_base_atomic = intel_pipe_set_base_atomic,
11890
	.load_lut = intel_crtc_load_lut,
11891
	.atomic_begin = intel_begin_crtc_commit,
11892
	.atomic_flush = intel_finish_crtc_commit,
11893
	.atomic_check = intel_crtc_atomic_check,
11894
};
11895
 
11896
static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11897
{
11898
	struct intel_connector *connector;
11899
 
11900
	for_each_intel_connector(dev, connector) {
11901
		if (connector->base.encoder) {
11902
			connector->base.state->best_encoder =
11903
				connector->base.encoder;
11904
			connector->base.state->crtc =
11905
				connector->base.encoder->crtc;
11906
		} else {
11907
			connector->base.state->best_encoder = NULL;
11908
			connector->base.state->crtc = NULL;
11909
		}
11910
	}
11911
}
11912
 
4104 Serge 11913
static void
5060 serge 11914
connected_sink_compute_bpp(struct intel_connector *connector,
6084 serge 11915
			   struct intel_crtc_state *pipe_config)
4104 Serge 11916
{
11917
	int bpp = pipe_config->pipe_bpp;
11918
 
11919
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11920
		connector->base.base.id,
5060 serge 11921
		connector->base.name);
4104 Serge 11922
 
11923
	/* Don't use an invalid EDID bpc value */
11924
	if (connector->base.display_info.bpc &&
11925
	    connector->base.display_info.bpc * 3 < bpp) {
11926
		DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11927
			      bpp, connector->base.display_info.bpc*3);
11928
		pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11929
	}
11930
 
6320 serge 11931
	/* Clamp bpp to default limit on screens without EDID 1.4 */
11932
	if (connector->base.display_info.bpc == 0) {
11933
		int type = connector->base.connector_type;
11934
		int clamp_bpp = 24;
11935
 
11936
		/* Fall back to 18 bpp when DP sink capability is unknown. */
11937
		if (type == DRM_MODE_CONNECTOR_DisplayPort ||
11938
		    type == DRM_MODE_CONNECTOR_eDP)
11939
			clamp_bpp = 18;
11940
 
11941
		if (bpp > clamp_bpp) {
11942
			DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
11943
				      bpp, clamp_bpp);
11944
			pipe_config->pipe_bpp = clamp_bpp;
11945
		}
4104 Serge 11946
	}
11947
}
11948
 
3746 Serge 11949
static int
4104 Serge 11950
compute_baseline_pipe_bpp(struct intel_crtc *crtc,
6084 serge 11951
			  struct intel_crtc_state *pipe_config)
3746 Serge 11952
{
4104 Serge 11953
	struct drm_device *dev = crtc->base.dev;
6084 serge 11954
	struct drm_atomic_state *state;
11955
	struct drm_connector *connector;
11956
	struct drm_connector_state *connector_state;
11957
	int bpp, i;
3746 Serge 11958
 
6084 serge 11959
	if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11960
		bpp = 10*3;
11961
	else if (INTEL_INFO(dev)->gen >= 5)
11962
		bpp = 12*3;
11963
	else
3746 Serge 11964
		bpp = 8*3;
11965
 
6084 serge 11966
 
3746 Serge 11967
	pipe_config->pipe_bpp = bpp;
11968
 
6084 serge 11969
	state = pipe_config->base.state;
11970
 
3746 Serge 11971
	/* Clamp display bpp to EDID value */
6084 serge 11972
	for_each_connector_in_state(state, connector, connector_state, i) {
11973
		if (connector_state->crtc != &crtc->base)
3746 Serge 11974
			continue;
11975
 
6084 serge 11976
		connected_sink_compute_bpp(to_intel_connector(connector),
11977
					   pipe_config);
3746 Serge 11978
	}
11979
 
11980
	return bpp;
11981
}
11982
 
4560 Serge 11983
static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11984
{
11985
	DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11986
			"type: 0x%x flags: 0x%x\n",
11987
		mode->crtc_clock,
11988
		mode->crtc_hdisplay, mode->crtc_hsync_start,
11989
		mode->crtc_hsync_end, mode->crtc_htotal,
11990
		mode->crtc_vdisplay, mode->crtc_vsync_start,
11991
		mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11992
}
11993
 
4104 Serge 11994
static void intel_dump_pipe_config(struct intel_crtc *crtc,
6084 serge 11995
				   struct intel_crtc_state *pipe_config,
4104 Serge 11996
				   const char *context)
11997
{
6084 serge 11998
	struct drm_device *dev = crtc->base.dev;
11999
	struct drm_plane *plane;
12000
	struct intel_plane *intel_plane;
12001
	struct intel_plane_state *state;
12002
	struct drm_framebuffer *fb;
4104 Serge 12003
 
6084 serge 12004
	DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12005
		      context, pipe_config, pipe_name(crtc->pipe));
12006
 
4104 Serge 12007
	DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
12008
	DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12009
		      pipe_config->pipe_bpp, pipe_config->dither);
12010
	DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12011
		      pipe_config->has_pch_encoder,
12012
		      pipe_config->fdi_lanes,
12013
		      pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12014
		      pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12015
		      pipe_config->fdi_m_n.tu);
6084 serge 12016
	DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
4560 Serge 12017
		      pipe_config->has_dp_encoder,
6084 serge 12018
		      pipe_config->lane_count,
4560 Serge 12019
		      pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12020
		      pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12021
		      pipe_config->dp_m_n.tu);
5354 serge 12022
 
6084 serge 12023
	DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
5354 serge 12024
		      pipe_config->has_dp_encoder,
6084 serge 12025
		      pipe_config->lane_count,
5354 serge 12026
		      pipe_config->dp_m2_n2.gmch_m,
12027
		      pipe_config->dp_m2_n2.gmch_n,
12028
		      pipe_config->dp_m2_n2.link_m,
12029
		      pipe_config->dp_m2_n2.link_n,
12030
		      pipe_config->dp_m2_n2.tu);
12031
 
12032
	DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12033
		      pipe_config->has_audio,
12034
		      pipe_config->has_infoframe);
12035
 
4104 Serge 12036
	DRM_DEBUG_KMS("requested mode:\n");
6084 serge 12037
	drm_mode_debug_printmodeline(&pipe_config->base.mode);
4104 Serge 12038
	DRM_DEBUG_KMS("adjusted mode:\n");
6084 serge 12039
	drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12040
	intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
4560 Serge 12041
	DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12042
	DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12043
		      pipe_config->pipe_src_w, pipe_config->pipe_src_h);
6084 serge 12044
	DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12045
		      crtc->num_scalers,
12046
		      pipe_config->scaler_state.scaler_users,
12047
		      pipe_config->scaler_state.scaler_id);
4104 Serge 12048
	DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12049
		      pipe_config->gmch_pfit.control,
12050
		      pipe_config->gmch_pfit.pgm_ratios,
12051
		      pipe_config->gmch_pfit.lvds_border_bits);
12052
	DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12053
		      pipe_config->pch_pfit.pos,
12054
		      pipe_config->pch_pfit.size,
12055
		      pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12056
	DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
4560 Serge 12057
	DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
4104 Serge 12058
 
6084 serge 12059
	if (IS_BROXTON(dev)) {
12060
		DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12061
			      "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12062
			      "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12063
			      pipe_config->ddi_pll_sel,
12064
			      pipe_config->dpll_hw_state.ebb0,
12065
			      pipe_config->dpll_hw_state.ebb4,
12066
			      pipe_config->dpll_hw_state.pll0,
12067
			      pipe_config->dpll_hw_state.pll1,
12068
			      pipe_config->dpll_hw_state.pll2,
12069
			      pipe_config->dpll_hw_state.pll3,
12070
			      pipe_config->dpll_hw_state.pll6,
12071
			      pipe_config->dpll_hw_state.pll8,
12072
			      pipe_config->dpll_hw_state.pll9,
12073
			      pipe_config->dpll_hw_state.pll10,
12074
			      pipe_config->dpll_hw_state.pcsdw12);
12075
	} else if (IS_SKYLAKE(dev)) {
12076
		DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12077
			      "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12078
			      pipe_config->ddi_pll_sel,
12079
			      pipe_config->dpll_hw_state.ctrl1,
12080
			      pipe_config->dpll_hw_state.cfgcr1,
12081
			      pipe_config->dpll_hw_state.cfgcr2);
12082
	} else if (HAS_DDI(dev)) {
12083
		DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12084
			      pipe_config->ddi_pll_sel,
12085
			      pipe_config->dpll_hw_state.wrpll,
12086
			      pipe_config->dpll_hw_state.spll);
12087
	} else {
12088
		DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12089
			      "fp0: 0x%x, fp1: 0x%x\n",
12090
			      pipe_config->dpll_hw_state.dpll,
12091
			      pipe_config->dpll_hw_state.dpll_md,
12092
			      pipe_config->dpll_hw_state.fp0,
12093
			      pipe_config->dpll_hw_state.fp1);
12094
	}
5060 serge 12095
 
6084 serge 12096
	DRM_DEBUG_KMS("planes on this crtc\n");
12097
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12098
		intel_plane = to_intel_plane(plane);
12099
		if (intel_plane->pipe != crtc->pipe)
5060 serge 12100
			continue;
12101
 
6084 serge 12102
		state = to_intel_plane_state(plane->state);
12103
		fb = state->base.fb;
12104
		if (!fb) {
12105
			DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12106
				"disabled, scaler_id = %d\n",
12107
				plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12108
				plane->base.id, intel_plane->pipe,
12109
				(crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12110
				drm_plane_index(plane), state->scaler_id);
4104 Serge 12111
			continue;
6084 serge 12112
		}
4104 Serge 12113
 
6084 serge 12114
		DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12115
			plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12116
			plane->base.id, intel_plane->pipe,
12117
			crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12118
			drm_plane_index(plane));
12119
		DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12120
			fb->base.id, fb->width, fb->height, fb->pixel_format);
12121
		DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12122
			state->scaler_id,
12123
			state->src.x1 >> 16, state->src.y1 >> 16,
12124
			drm_rect_width(&state->src) >> 16,
12125
			drm_rect_height(&state->src) >> 16,
12126
			state->dst.x1, state->dst.y1,
12127
			drm_rect_width(&state->dst), drm_rect_height(&state->dst));
4104 Serge 12128
	}
12129
}
12130
 
6084 serge 12131
static bool check_digital_port_conflicts(struct drm_atomic_state *state)
5354 serge 12132
{
6084 serge 12133
	struct drm_device *dev = state->dev;
12134
	struct drm_connector *connector;
5354 serge 12135
	unsigned int used_ports = 0;
12136
 
12137
	/*
12138
	 * Walk the connector list instead of the encoder
12139
	 * list to detect the problem on ddi platforms
12140
	 * where there's just one encoder per digital port.
12141
	 */
6084 serge 12142
	drm_for_each_connector(connector, dev) {
12143
		struct drm_connector_state *connector_state;
12144
		struct intel_encoder *encoder;
5354 serge 12145
 
6084 serge 12146
		connector_state = drm_atomic_get_existing_connector_state(state, connector);
12147
		if (!connector_state)
12148
			connector_state = connector->state;
12149
 
12150
		if (!connector_state->best_encoder)
5354 serge 12151
			continue;
12152
 
6084 serge 12153
		encoder = to_intel_encoder(connector_state->best_encoder);
5354 serge 12154
 
6084 serge 12155
		WARN_ON(!connector_state->crtc);
12156
 
5354 serge 12157
		switch (encoder->type) {
12158
			unsigned int port_mask;
12159
		case INTEL_OUTPUT_UNKNOWN:
12160
			if (WARN_ON(!HAS_DDI(dev)))
12161
				break;
12162
		case INTEL_OUTPUT_DISPLAYPORT:
12163
		case INTEL_OUTPUT_HDMI:
12164
		case INTEL_OUTPUT_EDP:
12165
			port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12166
 
12167
			/* the same port mustn't appear more than once */
12168
			if (used_ports & port_mask)
12169
				return false;
12170
 
12171
			used_ports |= port_mask;
12172
		default:
12173
			break;
12174
		}
12175
	}
12176
 
12177
	return true;
12178
}
12179
 
6084 serge 12180
static void
12181
clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12182
{
12183
	struct drm_crtc_state tmp_state;
12184
	struct intel_crtc_scaler_state scaler_state;
12185
	struct intel_dpll_hw_state dpll_hw_state;
12186
	enum intel_dpll_id shared_dpll;
12187
	uint32_t ddi_pll_sel;
12188
	bool force_thru;
12189
 
12190
	/* FIXME: before the switch to atomic started, a new pipe_config was
12191
	 * kzalloc'd. Code that depends on any field being zero should be
12192
	 * fixed, so that the crtc_state can be safely duplicated. For now,
12193
	 * only fields that are know to not cause problems are preserved. */
12194
 
12195
	tmp_state = crtc_state->base;
12196
	scaler_state = crtc_state->scaler_state;
12197
	shared_dpll = crtc_state->shared_dpll;
12198
	dpll_hw_state = crtc_state->dpll_hw_state;
12199
	ddi_pll_sel = crtc_state->ddi_pll_sel;
12200
	force_thru = crtc_state->pch_pfit.force_thru;
12201
 
12202
	memset(crtc_state, 0, sizeof *crtc_state);
12203
 
12204
	crtc_state->base = tmp_state;
12205
	crtc_state->scaler_state = scaler_state;
12206
	crtc_state->shared_dpll = shared_dpll;
12207
	crtc_state->dpll_hw_state = dpll_hw_state;
12208
	crtc_state->ddi_pll_sel = ddi_pll_sel;
12209
	crtc_state->pch_pfit.force_thru = force_thru;
12210
}
12211
 
12212
static int
3746 Serge 12213
intel_modeset_pipe_config(struct drm_crtc *crtc,
6084 serge 12214
			  struct intel_crtc_state *pipe_config)
3031 serge 12215
{
6084 serge 12216
	struct drm_atomic_state *state = pipe_config->base.state;
3031 serge 12217
	struct intel_encoder *encoder;
6084 serge 12218
	struct drm_connector *connector;
12219
	struct drm_connector_state *connector_state;
12220
	int base_bpp, ret = -EINVAL;
12221
	int i;
4104 Serge 12222
	bool retry = true;
3031 serge 12223
 
6084 serge 12224
	clear_intel_crtc_state(pipe_config);
4104 Serge 12225
 
12226
	pipe_config->cpu_transcoder =
12227
		(enum transcoder) to_intel_crtc(crtc)->pipe;
3746 Serge 12228
 
4104 Serge 12229
	/*
12230
	 * Sanitize sync polarity flags based on requested ones. If neither
12231
	 * positive or negative polarity is requested, treat this as meaning
12232
	 * negative polarity.
12233
	 */
6084 serge 12234
	if (!(pipe_config->base.adjusted_mode.flags &
4104 Serge 12235
	      (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
6084 serge 12236
		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
4104 Serge 12237
 
6084 serge 12238
	if (!(pipe_config->base.adjusted_mode.flags &
4104 Serge 12239
	      (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
6084 serge 12240
		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
4104 Serge 12241
 
6084 serge 12242
	base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12243
					     pipe_config);
12244
	if (base_bpp < 0)
3746 Serge 12245
		goto fail;
12246
 
4560 Serge 12247
	/*
12248
	 * Determine the real pipe dimensions. Note that stereo modes can
12249
	 * increase the actual pipe size due to the frame doubling and
12250
	 * insertion of additional space for blanks between the frame. This
12251
	 * is stored in the crtc timings. We use the requested mode to do this
12252
	 * computation to clearly distinguish it from the adjusted mode, which
12253
	 * can be changed by the connectors in the below retry loop.
12254
	 */
6084 serge 12255
	drm_crtc_get_hv_timing(&pipe_config->base.mode,
12256
			       &pipe_config->pipe_src_w,
12257
			       &pipe_config->pipe_src_h);
4560 Serge 12258
 
4104 Serge 12259
encoder_retry:
12260
	/* Ensure the port clock defaults are reset when retrying. */
12261
	pipe_config->port_clock = 0;
12262
	pipe_config->pixel_multiplier = 1;
12263
 
12264
	/* Fill in default crtc timings, allow encoders to overwrite them. */
6084 serge 12265
	drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12266
			      CRTC_STEREO_DOUBLE);
4104 Serge 12267
 
3031 serge 12268
	/* Pass our mode to the connectors and the CRTC to give them a chance to
12269
	 * adjust it according to limitations or connector properties, and also
12270
	 * a chance to reject the mode entirely.
2330 Serge 12271
	 */
6084 serge 12272
	for_each_connector_in_state(state, connector, connector_state, i) {
12273
		if (connector_state->crtc != crtc)
3031 serge 12274
			continue;
3746 Serge 12275
 
6084 serge 12276
		encoder = to_intel_encoder(connector_state->best_encoder);
12277
 
12278
		if (!(encoder->compute_config(encoder, pipe_config))) {
12279
			DRM_DEBUG_KMS("Encoder config failure\n");
12280
			goto fail;
3746 Serge 12281
		}
6084 serge 12282
	}
3746 Serge 12283
 
4104 Serge 12284
	/* Set default port clock if not overwritten by the encoder. Needs to be
12285
	 * done afterwards in case the encoder adjusts the mode. */
12286
	if (!pipe_config->port_clock)
6084 serge 12287
		pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
4560 Serge 12288
			* pipe_config->pixel_multiplier;
2327 Serge 12289
 
4104 Serge 12290
	ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12291
	if (ret < 0) {
3031 serge 12292
		DRM_DEBUG_KMS("CRTC fixup failed\n");
12293
		goto fail;
12294
	}
2327 Serge 12295
 
4104 Serge 12296
	if (ret == RETRY) {
12297
		if (WARN(!retry, "loop in pipe configuration computation\n")) {
12298
			ret = -EINVAL;
12299
			goto fail;
12300
		}
12301
 
12302
		DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12303
		retry = false;
12304
		goto encoder_retry;
12305
	}
12306
 
6084 serge 12307
	/* Dithering seems to not pass-through bits correctly when it should, so
12308
	 * only enable it on 6bpc panels. */
12309
	pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12310
	DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12311
		      base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
3746 Serge 12312
 
3031 serge 12313
fail:
6084 serge 12314
	return ret;
3031 serge 12315
}
2327 Serge 12316
 
3031 serge 12317
static void
6084 serge 12318
intel_modeset_update_crtc_state(struct drm_atomic_state *state)
3031 serge 12319
{
6084 serge 12320
	struct drm_crtc *crtc;
12321
	struct drm_crtc_state *crtc_state;
12322
	int i;
3031 serge 12323
 
6084 serge 12324
	/* Double check state. */
12325
	for_each_crtc_in_state(state, crtc, crtc_state, i) {
12326
		to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
3031 serge 12327
 
6084 serge 12328
		/* Update hwmode for vblank functions */
12329
		if (crtc->state->active)
12330
			crtc->hwmode = crtc->state->adjusted_mode;
5060 serge 12331
		else
6084 serge 12332
			crtc->hwmode.crtc_clock = 0;
3031 serge 12333
	}
2330 Serge 12334
}
2327 Serge 12335
 
4560 Serge 12336
static bool intel_fuzzy_clock_check(int clock1, int clock2)
4104 Serge 12337
{
4560 Serge 12338
	int diff;
4104 Serge 12339
 
12340
	if (clock1 == clock2)
12341
		return true;
12342
 
12343
	if (!clock1 || !clock2)
12344
		return false;
12345
 
12346
	diff = abs(clock1 - clock2);
12347
 
12348
	if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12349
		return true;
12350
 
12351
	return false;
12352
}
12353
 
3031 serge 12354
#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12355
	list_for_each_entry((intel_crtc), \
12356
			    &(dev)->mode_config.crtc_list, \
12357
			    base.head) \
4104 Serge 12358
		if (mask & (1 <<(intel_crtc)->pipe))
3031 serge 12359
 
3746 Serge 12360
static bool
6084 serge 12361
intel_compare_m_n(unsigned int m, unsigned int n,
12362
		  unsigned int m2, unsigned int n2,
12363
		  bool exact)
12364
{
12365
	if (m == m2 && n == n2)
12366
		return true;
12367
 
12368
	if (exact || !m || !n || !m2 || !n2)
12369
		return false;
12370
 
12371
	BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12372
 
12373
	if (m > m2) {
12374
		while (m > m2) {
12375
			m2 <<= 1;
12376
			n2 <<= 1;
12377
		}
12378
	} else if (m < m2) {
12379
		while (m < m2) {
12380
			m <<= 1;
12381
			n <<= 1;
12382
		}
12383
	}
12384
 
12385
	return m == m2 && n == n2;
12386
}
12387
 
12388
static bool
12389
intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12390
		       struct intel_link_m_n *m2_n2,
12391
		       bool adjust)
12392
{
12393
	if (m_n->tu == m2_n2->tu &&
12394
	    intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12395
			      m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12396
	    intel_compare_m_n(m_n->link_m, m_n->link_n,
12397
			      m2_n2->link_m, m2_n2->link_n, !adjust)) {
12398
		if (adjust)
12399
			*m2_n2 = *m_n;
12400
 
12401
		return true;
12402
	}
12403
 
12404
	return false;
12405
}
12406
 
12407
static bool
4104 Serge 12408
intel_pipe_config_compare(struct drm_device *dev,
6084 serge 12409
			  struct intel_crtc_state *current_config,
12410
			  struct intel_crtc_state *pipe_config,
12411
			  bool adjust)
3746 Serge 12412
{
6084 serge 12413
	bool ret = true;
12414
 
12415
#define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12416
	do { \
12417
		if (!adjust) \
12418
			DRM_ERROR(fmt, ##__VA_ARGS__); \
12419
		else \
12420
			DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12421
	} while (0)
12422
 
4104 Serge 12423
#define PIPE_CONF_CHECK_X(name)	\
12424
	if (current_config->name != pipe_config->name) { \
6084 serge 12425
		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
4104 Serge 12426
			  "(expected 0x%08x, found 0x%08x)\n", \
12427
			  current_config->name, \
12428
			  pipe_config->name); \
6084 serge 12429
		ret = false; \
3746 Serge 12430
	}
12431
 
4104 Serge 12432
#define PIPE_CONF_CHECK_I(name)	\
12433
	if (current_config->name != pipe_config->name) { \
6084 serge 12434
		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
4104 Serge 12435
			  "(expected %i, found %i)\n", \
12436
			  current_config->name, \
12437
			  pipe_config->name); \
6084 serge 12438
		ret = false; \
4104 Serge 12439
	}
12440
 
6084 serge 12441
#define PIPE_CONF_CHECK_M_N(name) \
12442
	if (!intel_compare_link_m_n(¤t_config->name, \
12443
				    &pipe_config->name,\
12444
				    adjust)) { \
12445
		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12446
			  "(expected tu %i gmch %i/%i link %i/%i, " \
12447
			  "found tu %i, gmch %i/%i link %i/%i)\n", \
12448
			  current_config->name.tu, \
12449
			  current_config->name.gmch_m, \
12450
			  current_config->name.gmch_n, \
12451
			  current_config->name.link_m, \
12452
			  current_config->name.link_n, \
12453
			  pipe_config->name.tu, \
12454
			  pipe_config->name.gmch_m, \
12455
			  pipe_config->name.gmch_n, \
12456
			  pipe_config->name.link_m, \
12457
			  pipe_config->name.link_n); \
12458
		ret = false; \
12459
	}
12460
 
12461
#define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12462
	if (!intel_compare_link_m_n(¤t_config->name, \
12463
				    &pipe_config->name, adjust) && \
12464
	    !intel_compare_link_m_n(¤t_config->alt_name, \
12465
				    &pipe_config->name, adjust)) { \
12466
		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12467
			  "(expected tu %i gmch %i/%i link %i/%i, " \
12468
			  "or tu %i gmch %i/%i link %i/%i, " \
12469
			  "found tu %i, gmch %i/%i link %i/%i)\n", \
12470
			  current_config->name.tu, \
12471
			  current_config->name.gmch_m, \
12472
			  current_config->name.gmch_n, \
12473
			  current_config->name.link_m, \
12474
			  current_config->name.link_n, \
12475
			  current_config->alt_name.tu, \
12476
			  current_config->alt_name.gmch_m, \
12477
			  current_config->alt_name.gmch_n, \
12478
			  current_config->alt_name.link_m, \
12479
			  current_config->alt_name.link_n, \
12480
			  pipe_config->name.tu, \
12481
			  pipe_config->name.gmch_m, \
12482
			  pipe_config->name.gmch_n, \
12483
			  pipe_config->name.link_m, \
12484
			  pipe_config->name.link_n); \
12485
		ret = false; \
12486
	}
12487
 
5354 serge 12488
/* This is required for BDW+ where there is only one set of registers for
12489
 * switching between high and low RR.
12490
 * This macro can be used whenever a comparison has to be made between one
12491
 * hw state and multiple sw state variables.
12492
 */
12493
#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12494
	if ((current_config->name != pipe_config->name) && \
12495
		(current_config->alt_name != pipe_config->name)) { \
6084 serge 12496
			INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
5354 serge 12497
				  "(expected %i or %i, found %i)\n", \
12498
				  current_config->name, \
12499
				  current_config->alt_name, \
12500
				  pipe_config->name); \
6084 serge 12501
			ret = false; \
5354 serge 12502
	}
12503
 
4104 Serge 12504
#define PIPE_CONF_CHECK_FLAGS(name, mask)	\
12505
	if ((current_config->name ^ pipe_config->name) & (mask)) { \
6084 serge 12506
		INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
4104 Serge 12507
			  "(expected %i, found %i)\n", \
12508
			  current_config->name & (mask), \
12509
			  pipe_config->name & (mask)); \
6084 serge 12510
		ret = false; \
4104 Serge 12511
	}
12512
 
4560 Serge 12513
#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12514
	if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
6084 serge 12515
		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
4560 Serge 12516
			  "(expected %i, found %i)\n", \
12517
			  current_config->name, \
12518
			  pipe_config->name); \
6084 serge 12519
		ret = false; \
4560 Serge 12520
	}
12521
 
4104 Serge 12522
#define PIPE_CONF_QUIRK(quirk)	\
12523
	((current_config->quirks | pipe_config->quirks) & (quirk))
12524
 
12525
	PIPE_CONF_CHECK_I(cpu_transcoder);
12526
 
12527
	PIPE_CONF_CHECK_I(has_pch_encoder);
12528
	PIPE_CONF_CHECK_I(fdi_lanes);
6084 serge 12529
	PIPE_CONF_CHECK_M_N(fdi_m_n);
4104 Serge 12530
 
4560 Serge 12531
	PIPE_CONF_CHECK_I(has_dp_encoder);
6084 serge 12532
	PIPE_CONF_CHECK_I(lane_count);
5354 serge 12533
 
12534
	if (INTEL_INFO(dev)->gen < 8) {
6084 serge 12535
		PIPE_CONF_CHECK_M_N(dp_m_n);
4560 Serge 12536
 
6084 serge 12537
		if (current_config->has_drrs)
12538
			PIPE_CONF_CHECK_M_N(dp_m2_n2);
12539
	} else
12540
		PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
5354 serge 12541
 
6084 serge 12542
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12543
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12544
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12545
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12546
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12547
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
4104 Serge 12548
 
6084 serge 12549
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12550
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12551
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12552
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12553
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12554
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
4104 Serge 12555
 
6084 serge 12556
	PIPE_CONF_CHECK_I(pixel_multiplier);
5060 serge 12557
	PIPE_CONF_CHECK_I(has_hdmi_sink);
12558
	if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12559
	    IS_VALLEYVIEW(dev))
12560
		PIPE_CONF_CHECK_I(limited_color_range);
5354 serge 12561
	PIPE_CONF_CHECK_I(has_infoframe);
4104 Serge 12562
 
5060 serge 12563
	PIPE_CONF_CHECK_I(has_audio);
12564
 
6084 serge 12565
	PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
4104 Serge 12566
			      DRM_MODE_FLAG_INTERLACE);
12567
 
12568
	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
6084 serge 12569
		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
4104 Serge 12570
				      DRM_MODE_FLAG_PHSYNC);
6084 serge 12571
		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
4104 Serge 12572
				      DRM_MODE_FLAG_NHSYNC);
6084 serge 12573
		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
4104 Serge 12574
				      DRM_MODE_FLAG_PVSYNC);
6084 serge 12575
		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
4104 Serge 12576
				      DRM_MODE_FLAG_NVSYNC);
12577
	}
12578
 
6084 serge 12579
	PIPE_CONF_CHECK_X(gmch_pfit.control);
4104 Serge 12580
	/* pfit ratios are autocomputed by the hw on gen4+ */
12581
	if (INTEL_INFO(dev)->gen < 4)
12582
		PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
6084 serge 12583
	PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
5060 serge 12584
 
6084 serge 12585
	if (!adjust) {
12586
		PIPE_CONF_CHECK_I(pipe_src_w);
12587
		PIPE_CONF_CHECK_I(pipe_src_h);
12588
 
12589
		PIPE_CONF_CHECK_I(pch_pfit.enabled);
12590
		if (current_config->pch_pfit.enabled) {
12591
			PIPE_CONF_CHECK_X(pch_pfit.pos);
12592
			PIPE_CONF_CHECK_X(pch_pfit.size);
12593
		}
12594
 
12595
		PIPE_CONF_CHECK_I(scaler_state.scaler_id);
4104 Serge 12596
	}
12597
 
4560 Serge 12598
	/* BDW+ don't expose a synchronous way to read the state */
12599
	if (IS_HASWELL(dev))
6084 serge 12600
		PIPE_CONF_CHECK_I(ips_enabled);
4104 Serge 12601
 
4560 Serge 12602
	PIPE_CONF_CHECK_I(double_wide);
12603
 
5060 serge 12604
	PIPE_CONF_CHECK_X(ddi_pll_sel);
12605
 
4104 Serge 12606
	PIPE_CONF_CHECK_I(shared_dpll);
12607
	PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12608
	PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12609
	PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12610
	PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
5060 serge 12611
	PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
6084 serge 12612
	PIPE_CONF_CHECK_X(dpll_hw_state.spll);
5354 serge 12613
	PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12614
	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12615
	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
4104 Serge 12616
 
4280 Serge 12617
	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12618
		PIPE_CONF_CHECK_I(pipe_bpp);
12619
 
6084 serge 12620
	PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12621
	PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
4560 Serge 12622
 
4104 Serge 12623
#undef PIPE_CONF_CHECK_X
12624
#undef PIPE_CONF_CHECK_I
5354 serge 12625
#undef PIPE_CONF_CHECK_I_ALT
4104 Serge 12626
#undef PIPE_CONF_CHECK_FLAGS
4560 Serge 12627
#undef PIPE_CONF_CHECK_CLOCK_FUZZY
4104 Serge 12628
#undef PIPE_CONF_QUIRK
6084 serge 12629
#undef INTEL_ERR_OR_DBG_KMS
4104 Serge 12630
 
6084 serge 12631
	return ret;
3746 Serge 12632
}
12633
 
5354 serge 12634
static void check_wm_state(struct drm_device *dev)
12635
{
12636
	struct drm_i915_private *dev_priv = dev->dev_private;
12637
	struct skl_ddb_allocation hw_ddb, *sw_ddb;
12638
	struct intel_crtc *intel_crtc;
12639
	int plane;
12640
 
12641
	if (INTEL_INFO(dev)->gen < 9)
12642
		return;
12643
 
12644
	skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12645
	sw_ddb = &dev_priv->wm.skl_hw.ddb;
12646
 
12647
	for_each_intel_crtc(dev, intel_crtc) {
12648
		struct skl_ddb_entry *hw_entry, *sw_entry;
12649
		const enum pipe pipe = intel_crtc->pipe;
12650
 
12651
		if (!intel_crtc->active)
12652
			continue;
12653
 
12654
		/* planes */
6084 serge 12655
		for_each_plane(dev_priv, pipe, plane) {
5354 serge 12656
			hw_entry = &hw_ddb.plane[pipe][plane];
12657
			sw_entry = &sw_ddb->plane[pipe][plane];
12658
 
12659
			if (skl_ddb_entry_equal(hw_entry, sw_entry))
12660
				continue;
12661
 
12662
			DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12663
				  "(expected (%u,%u), found (%u,%u))\n",
12664
				  pipe_name(pipe), plane + 1,
12665
				  sw_entry->start, sw_entry->end,
12666
				  hw_entry->start, hw_entry->end);
12667
		}
12668
 
12669
		/* cursor */
6084 serge 12670
		hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12671
		sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
5354 serge 12672
 
12673
		if (skl_ddb_entry_equal(hw_entry, sw_entry))
12674
			continue;
12675
 
12676
		DRM_ERROR("mismatch in DDB state pipe %c cursor "
12677
			  "(expected (%u,%u), found (%u,%u))\n",
12678
			  pipe_name(pipe),
12679
			  sw_entry->start, sw_entry->end,
12680
			  hw_entry->start, hw_entry->end);
12681
	}
12682
}
12683
 
4104 Serge 12684
static void
6084 serge 12685
check_connector_state(struct drm_device *dev,
12686
		      struct drm_atomic_state *old_state)
3031 serge 12687
{
6084 serge 12688
	struct drm_connector_state *old_conn_state;
12689
	struct drm_connector *connector;
12690
	int i;
3031 serge 12691
 
6084 serge 12692
	for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12693
		struct drm_encoder *encoder = connector->encoder;
12694
		struct drm_connector_state *state = connector->state;
12695
 
3031 serge 12696
		/* This also checks the encoder/connector hw state with the
12697
		 * ->get_hw_state callbacks. */
6084 serge 12698
		intel_connector_check_state(to_intel_connector(connector));
3031 serge 12699
 
6084 serge 12700
		I915_STATE_WARN(state->best_encoder != encoder,
12701
		     "connector's atomic encoder doesn't match legacy encoder\n");
3031 serge 12702
	}
4104 Serge 12703
}
3031 serge 12704
 
4104 Serge 12705
static void
12706
check_encoder_state(struct drm_device *dev)
12707
{
12708
	struct intel_encoder *encoder;
12709
	struct intel_connector *connector;
12710
 
5354 serge 12711
	for_each_intel_encoder(dev, encoder) {
3031 serge 12712
		bool enabled = false;
6084 serge 12713
		enum pipe pipe;
3031 serge 12714
 
12715
		DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12716
			      encoder->base.base.id,
5060 serge 12717
			      encoder->base.name);
3031 serge 12718
 
6084 serge 12719
		for_each_intel_connector(dev, connector) {
12720
			if (connector->base.state->best_encoder != &encoder->base)
3031 serge 12721
				continue;
12722
			enabled = true;
6084 serge 12723
 
12724
			I915_STATE_WARN(connector->base.state->crtc !=
12725
					encoder->base.crtc,
12726
			     "connector's crtc doesn't match encoder crtc\n");
3031 serge 12727
		}
5060 serge 12728
 
6084 serge 12729
		I915_STATE_WARN(!!encoder->base.crtc != enabled,
3031 serge 12730
		     "encoder's enabled state mismatch "
12731
		     "(expected %i, found %i)\n",
12732
		     !!encoder->base.crtc, enabled);
12733
 
6084 serge 12734
		if (!encoder->base.crtc) {
12735
			bool active;
3031 serge 12736
 
6084 serge 12737
			active = encoder->get_hw_state(encoder, &pipe);
12738
			I915_STATE_WARN(active,
12739
			     "encoder detached but still enabled on pipe %c.\n",
12740
			     pipe_name(pipe));
12741
		}
3031 serge 12742
	}
4104 Serge 12743
}
3031 serge 12744
 
4104 Serge 12745
static void
6084 serge 12746
check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
4104 Serge 12747
{
5060 serge 12748
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 12749
	struct intel_encoder *encoder;
6084 serge 12750
	struct drm_crtc_state *old_crtc_state;
12751
	struct drm_crtc *crtc;
12752
	int i;
4104 Serge 12753
 
6084 serge 12754
	for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12755
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12756
		struct intel_crtc_state *pipe_config, *sw_config;
12757
		bool active;
3031 serge 12758
 
6084 serge 12759
		if (!needs_modeset(crtc->state) &&
12760
		    !to_intel_crtc_state(crtc->state)->update_pipe)
12761
			continue;
4104 Serge 12762
 
6084 serge 12763
		__drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12764
		pipe_config = to_intel_crtc_state(old_crtc_state);
12765
		memset(pipe_config, 0, sizeof(*pipe_config));
12766
		pipe_config->base.crtc = crtc;
12767
		pipe_config->base.state = old_state;
12768
 
3031 serge 12769
		DRM_DEBUG_KMS("[CRTC:%d]\n",
6084 serge 12770
			      crtc->base.id);
3031 serge 12771
 
6084 serge 12772
		active = dev_priv->display.get_pipe_config(intel_crtc,
12773
							   pipe_config);
3031 serge 12774
 
6084 serge 12775
		/* hw state is inconsistent with the pipe quirk */
12776
		if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12777
		    (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12778
			active = crtc->state->active;
4104 Serge 12779
 
6084 serge 12780
		I915_STATE_WARN(crtc->state->active != active,
12781
		     "crtc active state doesn't match with hw state "
12782
		     "(expected %i, found %i)\n", crtc->state->active, active);
3031 serge 12783
 
6084 serge 12784
		I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12785
		     "transitional active state does not match atomic hw state "
12786
		     "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
3746 Serge 12787
 
6084 serge 12788
		for_each_encoder_on_crtc(dev, crtc, encoder) {
12789
			enum pipe pipe;
3746 Serge 12790
 
6084 serge 12791
			active = encoder->get_hw_state(encoder, &pipe);
12792
			I915_STATE_WARN(active != crtc->state->active,
12793
				"[ENCODER:%i] active %i with crtc active %i\n",
12794
				encoder->base.base.id, active, crtc->state->active);
12795
 
12796
			I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12797
					"Encoder connected to wrong pipe %c\n",
12798
					pipe_name(pipe));
12799
 
12800
			if (active)
12801
				encoder->get_config(encoder, pipe_config);
4104 Serge 12802
		}
12803
 
6084 serge 12804
		if (!crtc->state->active)
12805
			continue;
3746 Serge 12806
 
6084 serge 12807
		sw_config = to_intel_crtc_state(crtc->state);
12808
		if (!intel_pipe_config_compare(dev, sw_config,
12809
					       pipe_config, false)) {
12810
			I915_STATE_WARN(1, "pipe state doesn't match!\n");
12811
			intel_dump_pipe_config(intel_crtc, pipe_config,
4104 Serge 12812
					       "[hw state]");
6084 serge 12813
			intel_dump_pipe_config(intel_crtc, sw_config,
4104 Serge 12814
					       "[sw state]");
12815
		}
3031 serge 12816
	}
12817
}
12818
 
4104 Serge 12819
static void
12820
check_shared_dpll_state(struct drm_device *dev)
12821
{
5060 serge 12822
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 12823
	struct intel_crtc *crtc;
12824
	struct intel_dpll_hw_state dpll_hw_state;
12825
	int i;
12826
 
12827
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12828
		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12829
		int enabled_crtcs = 0, active_crtcs = 0;
12830
		bool active;
12831
 
12832
		memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12833
 
12834
		DRM_DEBUG_KMS("%s\n", pll->name);
12835
 
12836
		active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12837
 
6084 serge 12838
		I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
4104 Serge 12839
		     "more active pll users than references: %i vs %i\n",
5354 serge 12840
		     pll->active, hweight32(pll->config.crtc_mask));
6084 serge 12841
		I915_STATE_WARN(pll->active && !pll->on,
4104 Serge 12842
		     "pll in active use but not on in sw tracking\n");
6084 serge 12843
		I915_STATE_WARN(pll->on && !pll->active,
4104 Serge 12844
		     "pll in on but not on in use in sw tracking\n");
6084 serge 12845
		I915_STATE_WARN(pll->on != active,
4104 Serge 12846
		     "pll on state mismatch (expected %i, found %i)\n",
12847
		     pll->on, active);
12848
 
5060 serge 12849
		for_each_intel_crtc(dev, crtc) {
6084 serge 12850
			if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
4104 Serge 12851
				enabled_crtcs++;
12852
			if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12853
				active_crtcs++;
12854
		}
6084 serge 12855
		I915_STATE_WARN(pll->active != active_crtcs,
4104 Serge 12856
		     "pll active crtcs mismatch (expected %i, found %i)\n",
12857
		     pll->active, active_crtcs);
6084 serge 12858
		I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
4104 Serge 12859
		     "pll enabled crtcs mismatch (expected %i, found %i)\n",
5354 serge 12860
		     hweight32(pll->config.crtc_mask), enabled_crtcs);
4104 Serge 12861
 
6084 serge 12862
		I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
4104 Serge 12863
				       sizeof(dpll_hw_state)),
12864
		     "pll hw state mismatch\n");
12865
	}
12866
}
12867
 
6084 serge 12868
static void
12869
intel_modeset_check_state(struct drm_device *dev,
12870
			  struct drm_atomic_state *old_state)
4104 Serge 12871
{
5354 serge 12872
	check_wm_state(dev);
6084 serge 12873
	check_connector_state(dev, old_state);
4104 Serge 12874
	check_encoder_state(dev);
6084 serge 12875
	check_crtc_state(dev, old_state);
4104 Serge 12876
	check_shared_dpll_state(dev);
12877
}
12878
 
6084 serge 12879
void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
4560 Serge 12880
				     int dotclock)
12881
{
12882
	/*
12883
	 * FDI already provided one idea for the dotclock.
12884
	 * Yell if the encoder disagrees.
12885
	 */
6084 serge 12886
	WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
4560 Serge 12887
	     "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
6084 serge 12888
	     pipe_config->base.adjusted_mode.crtc_clock, dotclock);
4560 Serge 12889
}
12890
 
5060 serge 12891
static void update_scanline_offset(struct intel_crtc *crtc)
12892
{
12893
	struct drm_device *dev = crtc->base.dev;
12894
 
12895
	/*
12896
	 * The scanline counter increments at the leading edge of hsync.
12897
	 *
12898
	 * On most platforms it starts counting from vtotal-1 on the
12899
	 * first active line. That means the scanline counter value is
12900
	 * always one less than what we would expect. Ie. just after
12901
	 * start of vblank, which also occurs at start of hsync (on the
12902
	 * last active line), the scanline counter will read vblank_start-1.
12903
	 *
12904
	 * On gen2 the scanline counter starts counting from 1 instead
12905
	 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12906
	 * to keep the value positive), instead of adding one.
12907
	 *
12908
	 * On HSW+ the behaviour of the scanline counter depends on the output
12909
	 * type. For DP ports it behaves like most other platforms, but on HDMI
12910
	 * there's an extra 1 line difference. So we need to add two instead of
12911
	 * one to the value.
12912
	 */
12913
	if (IS_GEN2(dev)) {
6084 serge 12914
		const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
5060 serge 12915
		int vtotal;
12916
 
6084 serge 12917
		vtotal = adjusted_mode->crtc_vtotal;
12918
		if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5060 serge 12919
			vtotal /= 2;
12920
 
12921
		crtc->scanline_offset = vtotal - 1;
12922
	} else if (HAS_DDI(dev) &&
5354 serge 12923
		   intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
5060 serge 12924
		crtc->scanline_offset = 2;
12925
	} else
12926
		crtc->scanline_offset = 1;
12927
}
12928
 
6084 serge 12929
static void intel_modeset_clear_plls(struct drm_atomic_state *state)
5354 serge 12930
{
6084 serge 12931
	struct drm_device *dev = state->dev;
12932
	struct drm_i915_private *dev_priv = to_i915(dev);
12933
	struct intel_shared_dpll_config *shared_dpll = NULL;
12934
	struct intel_crtc *intel_crtc;
12935
	struct intel_crtc_state *intel_crtc_state;
12936
	struct drm_crtc *crtc;
12937
	struct drm_crtc_state *crtc_state;
12938
	int i;
5354 serge 12939
 
6084 serge 12940
	if (!dev_priv->display.crtc_compute_clock)
12941
		return;
5354 serge 12942
 
6084 serge 12943
	for_each_crtc_in_state(state, crtc, crtc_state, i) {
12944
		int dpll;
5354 serge 12945
 
6084 serge 12946
		intel_crtc = to_intel_crtc(crtc);
12947
		intel_crtc_state = to_intel_crtc_state(crtc_state);
12948
		dpll = intel_crtc_state->shared_dpll;
12949
 
12950
		if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12951
			continue;
12952
 
12953
		intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12954
 
12955
		if (!shared_dpll)
12956
			shared_dpll = intel_atomic_get_shared_dpll_state(state);
12957
 
12958
		shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
5354 serge 12959
	}
12960
}
12961
 
6084 serge 12962
/*
12963
 * This implements the workaround described in the "notes" section of the mode
12964
 * set sequence documentation. When going from no pipes or single pipe to
12965
 * multiple pipes, and planes are enabled after the pipe, we need to wait at
12966
 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12967
 */
12968
static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
3031 serge 12969
{
6084 serge 12970
	struct drm_crtc_state *crtc_state;
3031 serge 12971
	struct intel_crtc *intel_crtc;
6084 serge 12972
	struct drm_crtc *crtc;
12973
	struct intel_crtc_state *first_crtc_state = NULL;
12974
	struct intel_crtc_state *other_crtc_state = NULL;
12975
	enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12976
	int i;
3031 serge 12977
 
6084 serge 12978
	/* look at all crtc's that are going to be enabled in during modeset */
12979
	for_each_crtc_in_state(state, crtc, crtc_state, i) {
12980
		intel_crtc = to_intel_crtc(crtc);
3480 Serge 12981
 
6084 serge 12982
		if (!crtc_state->active || !needs_modeset(crtc_state))
12983
			continue;
3031 serge 12984
 
6084 serge 12985
		if (first_crtc_state) {
12986
			other_crtc_state = to_intel_crtc_state(crtc_state);
12987
			break;
12988
		} else {
12989
			first_crtc_state = to_intel_crtc_state(crtc_state);
12990
			first_pipe = intel_crtc->pipe;
12991
		}
12992
	}
3031 serge 12993
 
6084 serge 12994
	/* No workaround needed? */
12995
	if (!first_crtc_state)
12996
		return 0;
4560 Serge 12997
 
6084 serge 12998
	/* w/a possibly needed, check how many crtc's are already enabled. */
12999
	for_each_intel_crtc(state->dev, intel_crtc) {
13000
		struct intel_crtc_state *pipe_config;
4560 Serge 13001
 
6084 serge 13002
		pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13003
		if (IS_ERR(pipe_config))
13004
			return PTR_ERR(pipe_config);
5354 serge 13005
 
6084 serge 13006
		pipe_config->hsw_workaround_pipe = INVALID_PIPE;
5354 serge 13007
 
6084 serge 13008
		if (!pipe_config->base.active ||
13009
		    needs_modeset(&pipe_config->base))
13010
			continue;
5354 serge 13011
 
6084 serge 13012
		/* 2 or more enabled crtcs means no need for w/a */
13013
		if (enabled_pipe != INVALID_PIPE)
13014
			return 0;
3746 Serge 13015
 
6084 serge 13016
		enabled_pipe = intel_crtc->pipe;
3031 serge 13017
	}
13018
 
6084 serge 13019
	if (enabled_pipe != INVALID_PIPE)
13020
		first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13021
	else if (other_crtc_state)
13022
		other_crtc_state->hsw_workaround_pipe = first_pipe;
4560 Serge 13023
 
6084 serge 13024
	return 0;
13025
}
2327 Serge 13026
 
6084 serge 13027
static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13028
{
13029
	struct drm_crtc *crtc;
13030
	struct drm_crtc_state *crtc_state;
13031
	int ret = 0;
3031 serge 13032
 
6084 serge 13033
	/* add all active pipes to the state */
13034
	for_each_crtc(state->dev, crtc) {
13035
		crtc_state = drm_atomic_get_crtc_state(state, crtc);
13036
		if (IS_ERR(crtc_state))
13037
			return PTR_ERR(crtc_state);
3243 Serge 13038
 
6084 serge 13039
		if (!crtc_state->active || needs_modeset(crtc_state))
13040
			continue;
5060 serge 13041
 
6084 serge 13042
		crtc_state->mode_changed = true;
5060 serge 13043
 
6084 serge 13044
		ret = drm_atomic_add_affected_connectors(state, crtc);
13045
		if (ret)
13046
			break;
3031 serge 13047
 
6084 serge 13048
		ret = drm_atomic_add_affected_planes(state, crtc);
13049
		if (ret)
13050
			break;
5060 serge 13051
	}
3031 serge 13052
 
13053
	return ret;
2330 Serge 13054
}
2327 Serge 13055
 
6084 serge 13056
static int intel_modeset_checks(struct drm_atomic_state *state)
3746 Serge 13057
{
6084 serge 13058
	struct drm_device *dev = state->dev;
13059
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 13060
	int ret;
13061
 
6084 serge 13062
	if (!check_digital_port_conflicts(state)) {
13063
		DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13064
		return -EINVAL;
13065
	}
3746 Serge 13066
 
6084 serge 13067
	/*
13068
	 * See if the config requires any additional preparation, e.g.
13069
	 * to adjust global state with pipes off.  We need to do this
13070
	 * here so we can get the modeset_pipe updated config for the new
13071
	 * mode set on this crtc.  For other crtcs we need to use the
13072
	 * adjusted_mode bits in the crtc directly.
13073
	 */
13074
	if (dev_priv->display.modeset_calc_cdclk) {
13075
		unsigned int cdclk;
3746 Serge 13076
 
6084 serge 13077
		ret = dev_priv->display.modeset_calc_cdclk(state);
3746 Serge 13078
 
6084 serge 13079
		cdclk = to_intel_atomic_state(state)->cdclk;
13080
		if (!ret && cdclk != dev_priv->cdclk_freq)
13081
			ret = intel_modeset_all_pipes(state);
5354 serge 13082
 
6084 serge 13083
		if (ret < 0)
13084
			return ret;
13085
	} else
13086
		to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
5354 serge 13087
 
6084 serge 13088
	intel_modeset_clear_plls(state);
5354 serge 13089
 
6084 serge 13090
	if (IS_HASWELL(dev))
13091
		return haswell_mode_set_planes_workaround(state);
5354 serge 13092
 
6084 serge 13093
	return 0;
3480 Serge 13094
}
13095
 
6084 serge 13096
/**
13097
 * intel_atomic_check - validate state object
13098
 * @dev: drm device
13099
 * @state: state to validate
13100
 */
13101
static int intel_atomic_check(struct drm_device *dev,
13102
			      struct drm_atomic_state *state)
3031 serge 13103
{
6084 serge 13104
	struct drm_crtc *crtc;
13105
	struct drm_crtc_state *crtc_state;
13106
	int ret, i;
13107
	bool any_ms = false;
3031 serge 13108
 
6084 serge 13109
	ret = drm_atomic_helper_check_modeset(dev, state);
13110
	if (ret)
13111
		return ret;
3031 serge 13112
 
6084 serge 13113
	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13114
		struct intel_crtc_state *pipe_config =
13115
			to_intel_crtc_state(crtc_state);
3031 serge 13116
 
6084 serge 13117
		memset(&to_intel_crtc(crtc)->atomic, 0,
13118
		       sizeof(struct intel_crtc_atomic_commit));
5060 serge 13119
 
6084 serge 13120
		/* Catch I915_MODE_FLAG_INHERITED */
13121
		if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13122
			crtc_state->mode_changed = true;
3031 serge 13123
 
6084 serge 13124
		if (!crtc_state->enable) {
13125
			if (needs_modeset(crtc_state))
13126
				any_ms = true;
13127
			continue;
13128
		}
3031 serge 13129
 
6084 serge 13130
		if (!needs_modeset(crtc_state))
13131
			continue;
5060 serge 13132
 
6084 serge 13133
		/* FIXME: For only active_changed we shouldn't need to do any
13134
		 * state recomputation at all. */
3031 serge 13135
 
6084 serge 13136
		ret = drm_atomic_add_affected_connectors(state, crtc);
13137
		if (ret)
13138
			return ret;
3031 serge 13139
 
6084 serge 13140
		ret = intel_modeset_pipe_config(crtc, pipe_config);
13141
		if (ret)
13142
			return ret;
3031 serge 13143
 
6084 serge 13144
		if (i915.fastboot &&
13145
		    intel_pipe_config_compare(state->dev,
13146
					to_intel_crtc_state(crtc->state),
13147
					pipe_config, true)) {
13148
			crtc_state->mode_changed = false;
13149
			to_intel_crtc_state(crtc_state)->update_pipe = true;
13150
		}
3031 serge 13151
 
6084 serge 13152
		if (needs_modeset(crtc_state)) {
13153
			any_ms = true;
5060 serge 13154
 
6084 serge 13155
			ret = drm_atomic_add_affected_planes(state, crtc);
13156
			if (ret)
13157
				return ret;
13158
		}
5060 serge 13159
 
6084 serge 13160
		intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13161
				       needs_modeset(crtc_state) ?
13162
				       "[modeset]" : "[fastset]");
3031 serge 13163
	}
13164
 
6084 serge 13165
	if (any_ms) {
13166
		ret = intel_modeset_checks(state);
3031 serge 13167
 
6084 serge 13168
		if (ret)
13169
			return ret;
13170
	} else
13171
		to_intel_atomic_state(state)->cdclk =
13172
			to_i915(state->dev)->cdclk_freq;
3746 Serge 13173
 
6084 serge 13174
	return drm_atomic_helper_check_planes(state->dev, state);
3746 Serge 13175
}
13176
 
6084 serge 13177
/**
13178
 * intel_atomic_commit - commit validated state object
13179
 * @dev: DRM device
13180
 * @state: the top-level driver state object
13181
 * @async: asynchronous commit
13182
 *
13183
 * This function commits a top-level state object that has been validated
13184
 * with drm_atomic_helper_check().
13185
 *
13186
 * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13187
 * we can only handle plane-related operations and do not yet support
13188
 * asynchronous commit.
13189
 *
13190
 * RETURNS
13191
 * Zero for success or -errno.
13192
 */
13193
static int intel_atomic_commit(struct drm_device *dev,
13194
			       struct drm_atomic_state *state,
13195
			       bool async)
3031 serge 13196
{
6084 serge 13197
	struct drm_i915_private *dev_priv = dev->dev_private;
13198
	struct drm_crtc *crtc;
13199
	struct drm_crtc_state *crtc_state;
13200
	int ret = 0;
13201
	int i;
13202
	bool any_ms = false;
3031 serge 13203
 
6084 serge 13204
	if (async) {
13205
		DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13206
		return -EINVAL;
3031 serge 13207
	}
13208
 
6084 serge 13209
	ret = drm_atomic_helper_prepare_planes(dev, state);
13210
	if (ret)
13211
		return ret;
3031 serge 13212
 
6084 serge 13213
	drm_atomic_helper_swap_state(dev, state);
4104 Serge 13214
 
6084 serge 13215
	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13216
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 13217
 
6084 serge 13218
		if (!needs_modeset(crtc->state))
13219
			continue;
3031 serge 13220
 
6084 serge 13221
		any_ms = true;
13222
		intel_pre_plane_update(intel_crtc);
3031 serge 13223
 
6084 serge 13224
		if (crtc_state->active) {
13225
			intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13226
			dev_priv->display.crtc_disable(crtc);
13227
			intel_crtc->active = false;
13228
			intel_disable_shared_dpll(intel_crtc);
3031 serge 13229
		}
6084 serge 13230
	}
3031 serge 13231
 
6084 serge 13232
	/* Only after disabling all output pipelines that will be changed can we
13233
	 * update the the output configuration. */
13234
	intel_modeset_update_crtc_state(state);
3031 serge 13235
 
6084 serge 13236
	if (any_ms) {
13237
		intel_shared_dpll_commit(state);
3031 serge 13238
 
6084 serge 13239
		drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13240
		modeset_update_crtc_power_domains(state);
3031 serge 13241
	}
13242
 
6084 serge 13243
	/* Now enable the clocks, plane, pipe, and connectors that we set up. */
13244
	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13245
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13246
		bool modeset = needs_modeset(crtc->state);
13247
		bool update_pipe = !modeset &&
13248
			to_intel_crtc_state(crtc->state)->update_pipe;
13249
		unsigned long put_domains = 0;
5060 serge 13250
 
6084 serge 13251
		if (modeset && crtc->state->active) {
13252
			update_scanline_offset(to_intel_crtc(crtc));
13253
			dev_priv->display.crtc_enable(crtc);
3031 serge 13254
		}
13255
 
6084 serge 13256
		if (update_pipe) {
13257
			put_domains = modeset_get_crtc_power_domains(crtc);
3031 serge 13258
 
6084 serge 13259
			/* make sure intel_modeset_check_state runs */
13260
			any_ms = true;
3031 serge 13261
		}
4560 Serge 13262
 
6084 serge 13263
		if (!modeset)
13264
			intel_pre_plane_update(intel_crtc);
4560 Serge 13265
 
6084 serge 13266
		drm_atomic_helper_commit_planes_on_crtc(crtc_state);
3031 serge 13267
 
6084 serge 13268
		if (put_domains)
13269
			modeset_put_power_domains(dev_priv, put_domains);
5060 serge 13270
 
6084 serge 13271
		intel_post_plane_update(intel_crtc);
5060 serge 13272
	}
13273
 
6084 serge 13274
	/* FIXME: add subpixel order */
3031 serge 13275
 
6088 serge 13276
	drm_atomic_helper_wait_for_vblanks(dev, state);
6084 serge 13277
	drm_atomic_helper_cleanup_planes(dev, state);
5060 serge 13278
 
6084 serge 13279
	if (any_ms)
13280
		intel_modeset_check_state(dev, state);
5060 serge 13281
 
6084 serge 13282
	drm_atomic_state_free(state);
5060 serge 13283
 
6084 serge 13284
	return 0;
5060 serge 13285
}
13286
 
6084 serge 13287
void intel_crtc_restore_mode(struct drm_crtc *crtc)
3031 serge 13288
{
6084 serge 13289
	struct drm_device *dev = crtc->dev;
13290
	struct drm_atomic_state *state;
13291
	struct drm_crtc_state *crtc_state;
3031 serge 13292
	int ret;
13293
 
6084 serge 13294
	state = drm_atomic_state_alloc(dev);
13295
	if (!state) {
13296
		DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13297
			      crtc->base.id);
13298
		return;
3031 serge 13299
	}
13300
 
6084 serge 13301
	state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
3031 serge 13302
 
6084 serge 13303
retry:
13304
	crtc_state = drm_atomic_get_crtc_state(state, crtc);
13305
	ret = PTR_ERR_OR_ZERO(crtc_state);
13306
	if (!ret) {
13307
		if (!crtc_state->active)
13308
			goto out;
3031 serge 13309
 
6084 serge 13310
		crtc_state->mode_changed = true;
13311
		ret = drm_atomic_commit(state);
5354 serge 13312
	}
13313
 
6084 serge 13314
	if (ret == -EDEADLK) {
13315
		drm_atomic_state_clear(state);
13316
		drm_modeset_backoff(state->acquire_ctx);
13317
		goto retry;
3031 serge 13318
	}
13319
 
6084 serge 13320
	if (ret)
13321
out:
13322
		drm_atomic_state_free(state);
13323
}
3031 serge 13324
 
6084 serge 13325
#undef for_each_intel_crtc_masked
5060 serge 13326
 
2330 Serge 13327
static const struct drm_crtc_funcs intel_crtc_funcs = {
13328
	.gamma_set = intel_crtc_gamma_set,
6084 serge 13329
	.set_config = drm_atomic_helper_set_config,
2330 Serge 13330
	.destroy = intel_crtc_destroy,
6320 serge 13331
	.page_flip = intel_crtc_page_flip,
6084 serge 13332
	.atomic_duplicate_state = intel_crtc_duplicate_state,
13333
	.atomic_destroy_state = intel_crtc_destroy_state,
2330 Serge 13334
};
2327 Serge 13335
 
4104 Serge 13336
static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13337
				      struct intel_shared_dpll *pll,
13338
				      struct intel_dpll_hw_state *hw_state)
3031 serge 13339
{
4104 Serge 13340
	uint32_t val;
3031 serge 13341
 
5354 serge 13342
	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
5060 serge 13343
		return false;
13344
 
4104 Serge 13345
	val = I915_READ(PCH_DPLL(pll->id));
13346
	hw_state->dpll = val;
13347
	hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13348
	hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13349
 
13350
	return val & DPLL_VCO_ENABLE;
13351
}
13352
 
13353
static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13354
				  struct intel_shared_dpll *pll)
13355
{
5354 serge 13356
	I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13357
	I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
4104 Serge 13358
}
13359
 
13360
static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13361
				struct intel_shared_dpll *pll)
13362
{
13363
	/* PCH refclock must be enabled first */
4560 Serge 13364
	ibx_assert_pch_refclk_enabled(dev_priv);
4104 Serge 13365
 
5354 serge 13366
	I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
4104 Serge 13367
 
13368
	/* Wait for the clocks to stabilize. */
13369
	POSTING_READ(PCH_DPLL(pll->id));
13370
	udelay(150);
13371
 
13372
	/* The pixel multiplier can only be updated once the
13373
	 * DPLL is enabled and the clocks are stable.
13374
	 *
13375
	 * So write it again.
13376
	 */
5354 serge 13377
	I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
4104 Serge 13378
	POSTING_READ(PCH_DPLL(pll->id));
13379
	udelay(200);
13380
}
13381
 
13382
static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13383
				 struct intel_shared_dpll *pll)
13384
{
13385
	struct drm_device *dev = dev_priv->dev;
13386
	struct intel_crtc *crtc;
13387
 
13388
	/* Make sure no transcoder isn't still depending on us. */
5060 serge 13389
	for_each_intel_crtc(dev, crtc) {
4104 Serge 13390
		if (intel_crtc_to_shared_dpll(crtc) == pll)
13391
			assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
3031 serge 13392
	}
13393
 
4104 Serge 13394
	I915_WRITE(PCH_DPLL(pll->id), 0);
13395
	POSTING_READ(PCH_DPLL(pll->id));
13396
	udelay(200);
13397
}
13398
 
13399
static char *ibx_pch_dpll_names[] = {
13400
	"PCH DPLL A",
13401
	"PCH DPLL B",
13402
};
13403
 
13404
static void ibx_pch_dpll_init(struct drm_device *dev)
13405
{
13406
	struct drm_i915_private *dev_priv = dev->dev_private;
13407
	int i;
13408
 
13409
	dev_priv->num_shared_dpll = 2;
13410
 
13411
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13412
		dev_priv->shared_dplls[i].id = i;
13413
		dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13414
		dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13415
		dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13416
		dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13417
		dev_priv->shared_dplls[i].get_hw_state =
13418
			ibx_pch_dpll_get_hw_state;
3031 serge 13419
	}
13420
}
13421
 
4104 Serge 13422
static void intel_shared_dpll_init(struct drm_device *dev)
13423
{
13424
	struct drm_i915_private *dev_priv = dev->dev_private;
13425
 
5060 serge 13426
	if (HAS_DDI(dev))
13427
		intel_ddi_pll_init(dev);
13428
	else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4104 Serge 13429
		ibx_pch_dpll_init(dev);
13430
	else
13431
		dev_priv->num_shared_dpll = 0;
13432
 
13433
	BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13434
}
13435
 
6084 serge 13436
/**
13437
 * intel_prepare_plane_fb - Prepare fb for usage on plane
13438
 * @plane: drm plane to prepare for
13439
 * @fb: framebuffer to prepare for presentation
13440
 *
13441
 * Prepares a framebuffer for usage on a display plane.  Generally this
13442
 * involves pinning the underlying object and updating the frontbuffer tracking
13443
 * bits.  Some older platforms need special physical address handling for
13444
 * cursor planes.
13445
 *
13446
 * Returns 0 on success, negative error code on failure.
13447
 */
13448
int
13449
intel_prepare_plane_fb(struct drm_plane *plane,
13450
		       const struct drm_plane_state *new_state)
5060 serge 13451
{
13452
	struct drm_device *dev = plane->dev;
6084 serge 13453
	struct drm_framebuffer *fb = new_state->fb;
13454
	struct intel_plane *intel_plane = to_intel_plane(plane);
13455
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13456
	struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13457
	int ret = 0;
5060 serge 13458
 
6084 serge 13459
	if (!obj)
5060 serge 13460
		return 0;
13461
 
6084 serge 13462
	mutex_lock(&dev->struct_mutex);
5060 serge 13463
 
6084 serge 13464
	if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13465
	    INTEL_INFO(dev)->cursor_needs_physical) {
13466
		int align = IS_I830(dev) ? 16 * 1024 : 256;
13467
        ret = 1;
13468
		if (ret)
13469
			DRM_DEBUG_KMS("failed to attach phys object\n");
13470
	} else {
13471
		ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13472
	}
5060 serge 13473
 
6084 serge 13474
	if (ret == 0)
13475
		i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
5060 serge 13476
 
13477
	mutex_unlock(&dev->struct_mutex);
13478
 
6084 serge 13479
	return ret;
5060 serge 13480
}
13481
 
6084 serge 13482
/**
13483
 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13484
 * @plane: drm plane to clean up for
13485
 * @fb: old framebuffer that was on plane
13486
 *
13487
 * Cleans up a framebuffer that has just been removed from a plane.
13488
 */
13489
void
13490
intel_cleanup_plane_fb(struct drm_plane *plane,
13491
		       const struct drm_plane_state *old_state)
5060 serge 13492
{
6084 serge 13493
	struct drm_device *dev = plane->dev;
13494
	struct drm_i915_gem_object *obj = intel_fb_obj(old_state->fb);
5354 serge 13495
 
6084 serge 13496
	if (!obj)
13497
		return;
13498
 
13499
	if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13500
	    !INTEL_INFO(dev)->cursor_needs_physical) {
13501
		mutex_lock(&dev->struct_mutex);
13502
		intel_unpin_fb_obj(old_state->fb, old_state);
13503
		mutex_unlock(&dev->struct_mutex);
13504
	}
5354 serge 13505
}
13506
 
6084 serge 13507
int
13508
skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
5354 serge 13509
{
6084 serge 13510
	int max_scale;
13511
	struct drm_device *dev;
13512
	struct drm_i915_private *dev_priv;
13513
	int crtc_clock, cdclk;
5060 serge 13514
 
6084 serge 13515
	if (!intel_crtc || !crtc_state)
13516
		return DRM_PLANE_HELPER_NO_SCALING;
5060 serge 13517
 
6084 serge 13518
	dev = intel_crtc->base.dev;
13519
	dev_priv = dev->dev_private;
13520
	crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13521
	cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
5060 serge 13522
 
6084 serge 13523
	if (!crtc_clock || !cdclk)
13524
		return DRM_PLANE_HELPER_NO_SCALING;
13525
 
13526
	/*
13527
	 * skl max scale is lower of:
13528
	 *    close to 3 but not 3, -1 is for that purpose
13529
	 *            or
13530
	 *    cdclk/crtc_clock
13531
	 */
13532
	max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13533
 
13534
	return max_scale;
13535
}
13536
 
13537
static int
13538
intel_check_primary_plane(struct drm_plane *plane,
13539
			  struct intel_crtc_state *crtc_state,
13540
			  struct intel_plane_state *state)
13541
{
13542
	struct drm_crtc *crtc = state->base.crtc;
13543
	struct drm_framebuffer *fb = state->base.fb;
13544
	int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13545
	int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13546
	bool can_position = false;
13547
 
6320 serge 13548
	if (INTEL_INFO(plane->dev)->gen >= 9) {
6084 serge 13549
	/* use scaler when colorkey is not required */
6320 serge 13550
		if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
6084 serge 13551
		min_scale = 1;
13552
		max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
6320 serge 13553
		}
6084 serge 13554
		can_position = true;
5354 serge 13555
	}
5060 serge 13556
 
6084 serge 13557
	return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13558
					     &state->dst, &state->clip,
13559
					     min_scale, max_scale,
13560
					     can_position, true,
13561
					     &state->visible);
5354 serge 13562
}
13563
 
13564
static void
13565
intel_commit_primary_plane(struct drm_plane *plane,
13566
			   struct intel_plane_state *state)
13567
{
6084 serge 13568
	struct drm_crtc *crtc = state->base.crtc;
13569
	struct drm_framebuffer *fb = state->base.fb;
13570
	struct drm_device *dev = plane->dev;
5354 serge 13571
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 13572
	struct intel_crtc *intel_crtc;
5354 serge 13573
	struct drm_rect *src = &state->src;
13574
 
6084 serge 13575
	crtc = crtc ? crtc : plane->crtc;
13576
	intel_crtc = to_intel_crtc(crtc);
13577
 
13578
	plane->fb = fb;
5354 serge 13579
	crtc->x = src->x1 >> 16;
13580
	crtc->y = src->y1 >> 16;
13581
 
6084 serge 13582
	if (!crtc->state->active)
13583
		return;
5354 serge 13584
 
6084 serge 13585
	dev_priv->display.update_primary_plane(crtc, fb,
13586
					       state->src.x1 >> 16,
13587
					       state->src.y1 >> 16);
13588
}
5060 serge 13589
 
6084 serge 13590
static void
13591
intel_disable_primary_plane(struct drm_plane *plane,
13592
			    struct drm_crtc *crtc)
13593
{
13594
	struct drm_device *dev = plane->dev;
13595
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 13596
 
6084 serge 13597
	dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13598
}
5060 serge 13599
 
6084 serge 13600
static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13601
				    struct drm_crtc_state *old_crtc_state)
13602
{
13603
	struct drm_device *dev = crtc->dev;
13604
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13605
	struct intel_crtc_state *old_intel_state =
13606
		to_intel_crtc_state(old_crtc_state);
13607
	bool modeset = needs_modeset(crtc->state);
5060 serge 13608
 
6084 serge 13609
	if (intel_crtc->atomic.update_wm_pre)
13610
		intel_update_watermarks(crtc);
5060 serge 13611
 
6084 serge 13612
	/* Perform vblank evasion around commit operation */
13613
	if (crtc->state->active)
13614
		intel_pipe_update_start(intel_crtc);
5354 serge 13615
 
6084 serge 13616
	if (modeset)
13617
		return;
5354 serge 13618
 
6084 serge 13619
	if (to_intel_crtc_state(crtc->state)->update_pipe)
13620
		intel_update_pipe_config(intel_crtc, old_intel_state);
13621
	else if (INTEL_INFO(dev)->gen >= 9)
13622
		skl_detach_scalers(intel_crtc);
5354 serge 13623
}
5060 serge 13624
 
6084 serge 13625
static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13626
				     struct drm_crtc_state *old_crtc_state)
5354 serge 13627
{
13628
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5060 serge 13629
 
6084 serge 13630
	if (crtc->state->active)
13631
		intel_pipe_update_end(intel_crtc);
5060 serge 13632
}
13633
 
6084 serge 13634
/**
13635
 * intel_plane_destroy - destroy a plane
13636
 * @plane: plane to destroy
13637
 *
13638
 * Common destruction function for all types of planes (primary, cursor,
13639
 * sprite).
13640
 */
13641
void intel_plane_destroy(struct drm_plane *plane)
5060 serge 13642
{
13643
	struct intel_plane *intel_plane = to_intel_plane(plane);
13644
	drm_plane_cleanup(plane);
13645
	kfree(intel_plane);
13646
}
13647
 
6084 serge 13648
const struct drm_plane_funcs intel_plane_funcs = {
13649
	.update_plane = drm_atomic_helper_update_plane,
13650
	.disable_plane = drm_atomic_helper_disable_plane,
5060 serge 13651
	.destroy = intel_plane_destroy,
6084 serge 13652
	.set_property = drm_atomic_helper_plane_set_property,
13653
	.atomic_get_property = intel_plane_atomic_get_property,
13654
	.atomic_set_property = intel_plane_atomic_set_property,
13655
	.atomic_duplicate_state = intel_plane_duplicate_state,
13656
	.atomic_destroy_state = intel_plane_destroy_state,
13657
 
5060 serge 13658
};
13659
 
13660
static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13661
						    int pipe)
13662
{
13663
	struct intel_plane *primary;
6084 serge 13664
	struct intel_plane_state *state;
5060 serge 13665
	const uint32_t *intel_primary_formats;
6084 serge 13666
	unsigned int num_formats;
5060 serge 13667
 
13668
	primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13669
	if (primary == NULL)
13670
		return NULL;
13671
 
6084 serge 13672
	state = intel_create_plane_state(&primary->base);
13673
	if (!state) {
13674
		kfree(primary);
13675
		return NULL;
13676
	}
13677
	primary->base.state = &state->base;
13678
 
5060 serge 13679
	primary->can_scale = false;
13680
	primary->max_downscale = 1;
6084 serge 13681
	if (INTEL_INFO(dev)->gen >= 9) {
13682
		primary->can_scale = true;
13683
		state->scaler_id = -1;
13684
	}
5060 serge 13685
	primary->pipe = pipe;
13686
	primary->plane = pipe;
6084 serge 13687
	primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13688
	primary->check_plane = intel_check_primary_plane;
13689
	primary->commit_plane = intel_commit_primary_plane;
13690
	primary->disable_plane = intel_disable_primary_plane;
5060 serge 13691
	if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13692
		primary->plane = !pipe;
13693
 
6084 serge 13694
	if (INTEL_INFO(dev)->gen >= 9) {
13695
		intel_primary_formats = skl_primary_formats;
13696
		num_formats = ARRAY_SIZE(skl_primary_formats);
13697
	} else if (INTEL_INFO(dev)->gen >= 4) {
13698
		intel_primary_formats = i965_primary_formats;
13699
		num_formats = ARRAY_SIZE(i965_primary_formats);
5060 serge 13700
	} else {
6084 serge 13701
		intel_primary_formats = i8xx_primary_formats;
13702
		num_formats = ARRAY_SIZE(i8xx_primary_formats);
5060 serge 13703
	}
13704
 
13705
	drm_universal_plane_init(dev, &primary->base, 0,
6084 serge 13706
				 &intel_plane_funcs,
5060 serge 13707
				 intel_primary_formats, num_formats,
13708
				 DRM_PLANE_TYPE_PRIMARY);
5354 serge 13709
 
6084 serge 13710
	if (INTEL_INFO(dev)->gen >= 4)
13711
		intel_create_rotation_property(dev, primary);
5354 serge 13712
 
6084 serge 13713
	drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13714
 
5060 serge 13715
	return &primary->base;
13716
}
13717
 
6084 serge 13718
void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
5060 serge 13719
{
6084 serge 13720
	if (!dev->mode_config.rotation_property) {
13721
		unsigned long flags = BIT(DRM_ROTATE_0) |
13722
			BIT(DRM_ROTATE_180);
5060 serge 13723
 
6084 serge 13724
		if (INTEL_INFO(dev)->gen >= 9)
13725
			flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
5060 serge 13726
 
6084 serge 13727
		dev->mode_config.rotation_property =
13728
			drm_mode_create_rotation_property(dev, flags);
13729
	}
13730
	if (dev->mode_config.rotation_property)
13731
		drm_object_attach_property(&plane->base.base,
13732
				dev->mode_config.rotation_property,
13733
				plane->base.state->rotation);
5060 serge 13734
}
13735
 
13736
static int
5354 serge 13737
intel_check_cursor_plane(struct drm_plane *plane,
6084 serge 13738
			 struct intel_crtc_state *crtc_state,
5354 serge 13739
			 struct intel_plane_state *state)
5060 serge 13740
{
6084 serge 13741
	struct drm_crtc *crtc = crtc_state->base.crtc;
13742
	struct drm_framebuffer *fb = state->base.fb;
5354 serge 13743
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6084 serge 13744
	enum pipe pipe = to_intel_plane(plane)->pipe;
5354 serge 13745
	unsigned stride;
5060 serge 13746
	int ret;
13747
 
6084 serge 13748
	ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13749
					    &state->dst, &state->clip,
5060 serge 13750
					    DRM_PLANE_HELPER_NO_SCALING,
13751
					    DRM_PLANE_HELPER_NO_SCALING,
5354 serge 13752
					    true, true, &state->visible);
5060 serge 13753
	if (ret)
13754
		return ret;
13755
 
5354 serge 13756
	/* if we want to turn off the cursor ignore width and height */
13757
	if (!obj)
13758
		return 0;
13759
 
13760
	/* Check for which cursor types we support */
6084 serge 13761
	if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13762
		DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13763
			  state->base.crtc_w, state->base.crtc_h);
5354 serge 13764
		return -EINVAL;
13765
	}
13766
 
6084 serge 13767
	stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13768
	if (obj->base.size < stride * state->base.crtc_h) {
5354 serge 13769
		DRM_DEBUG_KMS("buffer is too small\n");
13770
		return -ENOMEM;
13771
	}
13772
 
6084 serge 13773
	if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
5354 serge 13774
		DRM_DEBUG_KMS("cursor cannot be tiled\n");
6084 serge 13775
		return -EINVAL;
5354 serge 13776
	}
13777
 
6084 serge 13778
	/*
13779
	 * There's something wrong with the cursor on CHV pipe C.
13780
	 * If it straddles the left edge of the screen then
13781
	 * moving it away from the edge or disabling it often
13782
	 * results in a pipe underrun, and often that can lead to
13783
	 * dead pipe (constant underrun reported, and it scans
13784
	 * out just a solid color). To recover from that, the
13785
	 * display power well must be turned off and on again.
13786
	 * Refuse the put the cursor into that compromised position.
13787
	 */
13788
	if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
13789
	    state->visible && state->base.crtc_x < 0) {
13790
		DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
13791
		return -EINVAL;
13792
	}
13793
 
13794
	return 0;
5354 serge 13795
}
13796
 
6084 serge 13797
static void
13798
intel_disable_cursor_plane(struct drm_plane *plane,
13799
			   struct drm_crtc *crtc)
5354 serge 13800
{
6084 serge 13801
	intel_crtc_update_cursor(crtc, false);
5060 serge 13802
}
5354 serge 13803
 
6084 serge 13804
static void
13805
intel_commit_cursor_plane(struct drm_plane *plane,
13806
			  struct intel_plane_state *state)
5354 serge 13807
{
6084 serge 13808
	struct drm_crtc *crtc = state->base.crtc;
13809
	struct drm_device *dev = plane->dev;
13810
	struct intel_crtc *intel_crtc;
13811
	struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13812
	uint32_t addr;
5354 serge 13813
 
6084 serge 13814
	crtc = crtc ? crtc : plane->crtc;
13815
	intel_crtc = to_intel_crtc(crtc);
5354 serge 13816
 
6084 serge 13817
	if (!obj)
13818
		addr = 0;
13819
	else if (!INTEL_INFO(dev)->cursor_needs_physical)
13820
		addr = i915_gem_obj_ggtt_offset(obj);
13821
	else
13822
		addr = obj->phys_handle->busaddr;
5354 serge 13823
 
6084 serge 13824
	intel_crtc->cursor_addr = addr;
5354 serge 13825
 
6084 serge 13826
	if (crtc->state->active)
13827
		intel_crtc_update_cursor(crtc, state->visible);
5354 serge 13828
}
13829
 
5060 serge 13830
static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13831
						   int pipe)
13832
{
13833
	struct intel_plane *cursor;
6084 serge 13834
	struct intel_plane_state *state;
5060 serge 13835
 
13836
	cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13837
	if (cursor == NULL)
13838
		return NULL;
13839
 
6084 serge 13840
	state = intel_create_plane_state(&cursor->base);
13841
	if (!state) {
13842
		kfree(cursor);
13843
		return NULL;
13844
	}
13845
	cursor->base.state = &state->base;
13846
 
5060 serge 13847
	cursor->can_scale = false;
13848
	cursor->max_downscale = 1;
13849
	cursor->pipe = pipe;
13850
	cursor->plane = pipe;
6084 serge 13851
	cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13852
	cursor->check_plane = intel_check_cursor_plane;
13853
	cursor->commit_plane = intel_commit_cursor_plane;
13854
	cursor->disable_plane = intel_disable_cursor_plane;
5060 serge 13855
 
13856
	drm_universal_plane_init(dev, &cursor->base, 0,
6084 serge 13857
				 &intel_plane_funcs,
5060 serge 13858
				 intel_cursor_formats,
13859
				 ARRAY_SIZE(intel_cursor_formats),
13860
				 DRM_PLANE_TYPE_CURSOR);
5354 serge 13861
 
13862
	if (INTEL_INFO(dev)->gen >= 4) {
13863
		if (!dev->mode_config.rotation_property)
13864
			dev->mode_config.rotation_property =
13865
				drm_mode_create_rotation_property(dev,
13866
							BIT(DRM_ROTATE_0) |
13867
							BIT(DRM_ROTATE_180));
13868
		if (dev->mode_config.rotation_property)
13869
			drm_object_attach_property(&cursor->base.base,
13870
				dev->mode_config.rotation_property,
6084 serge 13871
				state->base.rotation);
5354 serge 13872
	}
13873
 
6084 serge 13874
	if (INTEL_INFO(dev)->gen >=9)
13875
		state->scaler_id = -1;
13876
 
13877
	drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13878
 
5060 serge 13879
	return &cursor->base;
13880
}
13881
 
6084 serge 13882
static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13883
	struct intel_crtc_state *crtc_state)
13884
{
13885
	int i;
13886
	struct intel_scaler *intel_scaler;
13887
	struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13888
 
13889
	for (i = 0; i < intel_crtc->num_scalers; i++) {
13890
		intel_scaler = &scaler_state->scalers[i];
13891
		intel_scaler->in_use = 0;
13892
		intel_scaler->mode = PS_SCALER_MODE_DYN;
13893
	}
13894
 
13895
	scaler_state->scaler_id = -1;
13896
}
13897
 
2330 Serge 13898
static void intel_crtc_init(struct drm_device *dev, int pipe)
13899
{
5060 serge 13900
	struct drm_i915_private *dev_priv = dev->dev_private;
2330 Serge 13901
	struct intel_crtc *intel_crtc;
6084 serge 13902
	struct intel_crtc_state *crtc_state = NULL;
5060 serge 13903
	struct drm_plane *primary = NULL;
13904
	struct drm_plane *cursor = NULL;
13905
	int i, ret;
2327 Serge 13906
 
4560 Serge 13907
	intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
2330 Serge 13908
	if (intel_crtc == NULL)
13909
		return;
2327 Serge 13910
 
6084 serge 13911
	crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13912
	if (!crtc_state)
13913
		goto fail;
13914
	intel_crtc->config = crtc_state;
13915
	intel_crtc->base.state = &crtc_state->base;
13916
	crtc_state->base.crtc = &intel_crtc->base;
13917
 
13918
	/* initialize shared scalers */
13919
	if (INTEL_INFO(dev)->gen >= 9) {
13920
		if (pipe == PIPE_C)
13921
			intel_crtc->num_scalers = 1;
13922
		else
13923
			intel_crtc->num_scalers = SKL_NUM_SCALERS;
13924
 
13925
		skl_init_scalers(dev, intel_crtc, crtc_state);
13926
	}
13927
 
5060 serge 13928
	primary = intel_primary_plane_create(dev, pipe);
13929
	if (!primary)
13930
		goto fail;
2327 Serge 13931
 
5060 serge 13932
	cursor = intel_cursor_plane_create(dev, pipe);
13933
	if (!cursor)
13934
		goto fail;
13935
 
13936
	ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13937
					cursor, &intel_crtc_funcs);
13938
	if (ret)
13939
		goto fail;
13940
 
2330 Serge 13941
	drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13942
	for (i = 0; i < 256; i++) {
13943
		intel_crtc->lut_r[i] = i;
13944
		intel_crtc->lut_g[i] = i;
13945
		intel_crtc->lut_b[i] = i;
13946
	}
2327 Serge 13947
 
4560 Serge 13948
	/*
13949
	 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
5060 serge 13950
	 * is hooked to pipe B. Hence we want plane A feeding pipe B.
4560 Serge 13951
	 */
2330 Serge 13952
	intel_crtc->pipe = pipe;
13953
	intel_crtc->plane = pipe;
4560 Serge 13954
	if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
2330 Serge 13955
		DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13956
		intel_crtc->plane = !pipe;
13957
	}
2327 Serge 13958
 
5060 serge 13959
	intel_crtc->cursor_base = ~0;
13960
	intel_crtc->cursor_cntl = ~0;
5354 serge 13961
	intel_crtc->cursor_size = ~0;
5060 serge 13962
 
6084 serge 13963
	intel_crtc->wm.cxsr_allowed = true;
13964
 
2330 Serge 13965
	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13966
	       dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13967
	dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13968
	dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
2327 Serge 13969
 
2330 Serge 13970
	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5060 serge 13971
 
13972
	WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13973
	return;
13974
 
13975
fail:
13976
	if (primary)
13977
		drm_plane_cleanup(primary);
13978
	if (cursor)
13979
		drm_plane_cleanup(cursor);
6084 serge 13980
	kfree(crtc_state);
5060 serge 13981
	kfree(intel_crtc);
2330 Serge 13982
}
2327 Serge 13983
 
4560 Serge 13984
enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13985
{
13986
	struct drm_encoder *encoder = connector->base.encoder;
5060 serge 13987
	struct drm_device *dev = connector->base.dev;
4560 Serge 13988
 
5060 serge 13989
	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4560 Serge 13990
 
5354 serge 13991
	if (!encoder || WARN_ON(!encoder->crtc))
4560 Serge 13992
		return INVALID_PIPE;
13993
 
13994
	return to_intel_crtc(encoder->crtc)->pipe;
13995
}
13996
 
3031 serge 13997
int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13998
				struct drm_file *file)
13999
{
14000
	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5060 serge 14001
	struct drm_crtc *drmmode_crtc;
3031 serge 14002
	struct intel_crtc *crtc;
2327 Serge 14003
 
5060 serge 14004
	drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
2327 Serge 14005
 
5060 serge 14006
	if (!drmmode_crtc) {
3031 serge 14007
		DRM_ERROR("no such CRTC id\n");
4560 Serge 14008
		return -ENOENT;
3031 serge 14009
	}
2327 Serge 14010
 
5060 serge 14011
	crtc = to_intel_crtc(drmmode_crtc);
3031 serge 14012
	pipe_from_crtc_id->pipe = crtc->pipe;
2327 Serge 14013
 
3031 serge 14014
	return 0;
14015
}
2327 Serge 14016
 
3031 serge 14017
static int intel_encoder_clones(struct intel_encoder *encoder)
2330 Serge 14018
{
3031 serge 14019
	struct drm_device *dev = encoder->base.dev;
14020
	struct intel_encoder *source_encoder;
2330 Serge 14021
	int index_mask = 0;
14022
	int entry = 0;
2327 Serge 14023
 
5354 serge 14024
	for_each_intel_encoder(dev, source_encoder) {
5060 serge 14025
		if (encoders_cloneable(encoder, source_encoder))
2330 Serge 14026
			index_mask |= (1 << entry);
3031 serge 14027
 
2330 Serge 14028
		entry++;
14029
	}
2327 Serge 14030
 
2330 Serge 14031
	return index_mask;
14032
}
2327 Serge 14033
 
2330 Serge 14034
static bool has_edp_a(struct drm_device *dev)
14035
{
14036
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 14037
 
2330 Serge 14038
	if (!IS_MOBILE(dev))
14039
		return false;
2327 Serge 14040
 
2330 Serge 14041
	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14042
		return false;
2327 Serge 14043
 
5060 serge 14044
	if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
2330 Serge 14045
		return false;
2327 Serge 14046
 
2330 Serge 14047
	return true;
14048
}
2327 Serge 14049
 
5060 serge 14050
static bool intel_crt_present(struct drm_device *dev)
14051
{
14052
	struct drm_i915_private *dev_priv = dev->dev_private;
14053
 
5354 serge 14054
	if (INTEL_INFO(dev)->gen >= 9)
5060 serge 14055
		return false;
14056
 
5354 serge 14057
	if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14058
		return false;
14059
 
5060 serge 14060
	if (IS_CHERRYVIEW(dev))
14061
		return false;
14062
 
14063
	if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
14064
		return false;
14065
 
14066
	return true;
14067
}
14068
 
2330 Serge 14069
static void intel_setup_outputs(struct drm_device *dev)
14070
{
14071
	struct drm_i915_private *dev_priv = dev->dev_private;
14072
	struct intel_encoder *encoder;
14073
	bool dpd_is_edp = false;
2327 Serge 14074
 
4104 Serge 14075
	intel_lvds_init(dev);
2327 Serge 14076
 
5060 serge 14077
	if (intel_crt_present(dev))
6084 serge 14078
		intel_crt_init(dev);
2327 Serge 14079
 
6084 serge 14080
	if (IS_BROXTON(dev)) {
14081
		/*
14082
		 * FIXME: Broxton doesn't support port detection via the
14083
		 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14084
		 * detect the ports.
14085
		 */
14086
		intel_ddi_init(dev, PORT_A);
14087
		intel_ddi_init(dev, PORT_B);
14088
		intel_ddi_init(dev, PORT_C);
14089
	} else if (HAS_DDI(dev)) {
2330 Serge 14090
		int found;
2327 Serge 14091
 
6084 serge 14092
		/*
14093
		 * Haswell uses DDI functions to detect digital outputs.
14094
		 * On SKL pre-D0 the strap isn't connected, so we assume
14095
		 * it's there.
14096
		 */
14097
		found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14098
		/* WaIgnoreDDIAStrap: skl */
14099
		if (found || IS_SKYLAKE(dev))
3031 serge 14100
			intel_ddi_init(dev, PORT_A);
14101
 
14102
		/* DDI B, C and D detection is indicated by the SFUSE_STRAP
14103
		 * register */
14104
		found = I915_READ(SFUSE_STRAP);
14105
 
14106
		if (found & SFUSE_STRAP_DDIB_DETECTED)
14107
			intel_ddi_init(dev, PORT_B);
14108
		if (found & SFUSE_STRAP_DDIC_DETECTED)
14109
			intel_ddi_init(dev, PORT_C);
14110
		if (found & SFUSE_STRAP_DDID_DETECTED)
14111
			intel_ddi_init(dev, PORT_D);
6084 serge 14112
		/*
14113
		 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14114
		 */
14115
		if (IS_SKYLAKE(dev) &&
14116
		    (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14117
		     dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14118
		     dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14119
			intel_ddi_init(dev, PORT_E);
14120
 
3031 serge 14121
	} else if (HAS_PCH_SPLIT(dev)) {
14122
		int found;
4560 Serge 14123
		dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
3031 serge 14124
 
3243 Serge 14125
		if (has_edp_a(dev))
14126
			intel_dp_init(dev, DP_A, PORT_A);
14127
 
3746 Serge 14128
		if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
2330 Serge 14129
			/* PCH SDVOB multiplex with HDMIB */
3031 serge 14130
			found = intel_sdvo_init(dev, PCH_SDVOB, true);
2330 Serge 14131
			if (!found)
3746 Serge 14132
				intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
2330 Serge 14133
			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
3031 serge 14134
				intel_dp_init(dev, PCH_DP_B, PORT_B);
2330 Serge 14135
		}
2327 Serge 14136
 
3746 Serge 14137
		if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14138
			intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
2327 Serge 14139
 
3746 Serge 14140
		if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14141
			intel_hdmi_init(dev, PCH_HDMID, PORT_D);
2327 Serge 14142
 
2330 Serge 14143
		if (I915_READ(PCH_DP_C) & DP_DETECTED)
3031 serge 14144
			intel_dp_init(dev, PCH_DP_C, PORT_C);
2327 Serge 14145
 
3243 Serge 14146
		if (I915_READ(PCH_DP_D) & DP_DETECTED)
3031 serge 14147
			intel_dp_init(dev, PCH_DP_D, PORT_D);
14148
	} else if (IS_VALLEYVIEW(dev)) {
5354 serge 14149
		/*
14150
		 * The DP_DETECTED bit is the latched state of the DDC
14151
		 * SDA pin at boot. However since eDP doesn't require DDC
14152
		 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14153
		 * eDP ports may have been muxed to an alternate function.
14154
		 * Thus we can't rely on the DP_DETECTED bit alone to detect
14155
		 * eDP ports. Consult the VBT as well as DP_DETECTED to
14156
		 * detect eDP ports.
14157
		 */
6084 serge 14158
		if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14159
		    !intel_dp_is_edp(dev, PORT_B))
14160
			intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14161
		if (I915_READ(VLV_DP_B) & DP_DETECTED ||
5354 serge 14162
		    intel_dp_is_edp(dev, PORT_B))
6084 serge 14163
			intel_dp_init(dev, VLV_DP_B, PORT_B);
4560 Serge 14164
 
6084 serge 14165
		if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14166
		    !intel_dp_is_edp(dev, PORT_C))
14167
			intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14168
		if (I915_READ(VLV_DP_C) & DP_DETECTED ||
5354 serge 14169
		    intel_dp_is_edp(dev, PORT_C))
6084 serge 14170
			intel_dp_init(dev, VLV_DP_C, PORT_C);
3243 Serge 14171
 
5060 serge 14172
		if (IS_CHERRYVIEW(dev)) {
5354 serge 14173
			/* eDP not supported on port D, so don't check VBT */
6084 serge 14174
			if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14175
				intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14176
			if (I915_READ(CHV_DP_D) & DP_DETECTED)
14177
				intel_dp_init(dev, CHV_DP_D, PORT_D);
14178
		}
5060 serge 14179
 
4560 Serge 14180
		intel_dsi_init(dev);
6084 serge 14181
	} else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
2330 Serge 14182
		bool found = false;
2327 Serge 14183
 
3746 Serge 14184
		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
2330 Serge 14185
			DRM_DEBUG_KMS("probing SDVOB\n");
3746 Serge 14186
			found = intel_sdvo_init(dev, GEN3_SDVOB, true);
6084 serge 14187
			if (!found && IS_G4X(dev)) {
2330 Serge 14188
				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
3746 Serge 14189
				intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
2330 Serge 14190
			}
2327 Serge 14191
 
6084 serge 14192
			if (!found && IS_G4X(dev))
3031 serge 14193
				intel_dp_init(dev, DP_B, PORT_B);
6084 serge 14194
		}
2327 Serge 14195
 
2330 Serge 14196
		/* Before G4X SDVOC doesn't have its own detect register */
2327 Serge 14197
 
3746 Serge 14198
		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
2330 Serge 14199
			DRM_DEBUG_KMS("probing SDVOC\n");
3746 Serge 14200
			found = intel_sdvo_init(dev, GEN3_SDVOC, false);
2330 Serge 14201
		}
2327 Serge 14202
 
3746 Serge 14203
		if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
2327 Serge 14204
 
6084 serge 14205
			if (IS_G4X(dev)) {
2330 Serge 14206
				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
3746 Serge 14207
				intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
2330 Serge 14208
			}
6084 serge 14209
			if (IS_G4X(dev))
3031 serge 14210
				intel_dp_init(dev, DP_C, PORT_C);
6084 serge 14211
		}
2327 Serge 14212
 
6084 serge 14213
		if (IS_G4X(dev) &&
4104 Serge 14214
		    (I915_READ(DP_D) & DP_DETECTED))
3031 serge 14215
			intel_dp_init(dev, DP_D, PORT_D);
2330 Serge 14216
	} else if (IS_GEN2(dev))
14217
		intel_dvo_init(dev);
2327 Serge 14218
 
5354 serge 14219
	intel_psr_init(dev);
5060 serge 14220
 
5354 serge 14221
	for_each_intel_encoder(dev, encoder) {
2330 Serge 14222
		encoder->base.possible_crtcs = encoder->crtc_mask;
14223
		encoder->base.possible_clones =
3031 serge 14224
			intel_encoder_clones(encoder);
2330 Serge 14225
	}
2327 Serge 14226
 
3243 Serge 14227
	intel_init_pch_refclk(dev);
14228
 
14229
	drm_helper_move_panel_connectors_to_head(dev);
2330 Serge 14230
}
14231
 
6084 serge 14232
static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14233
{
14234
	struct drm_device *dev = fb->dev;
14235
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2330 Serge 14236
 
6084 serge 14237
	drm_framebuffer_cleanup(fb);
14238
	mutex_lock(&dev->struct_mutex);
14239
	WARN_ON(!intel_fb->obj->framebuffer_references--);
14240
	drm_gem_object_unreference(&intel_fb->obj->base);
14241
	mutex_unlock(&dev->struct_mutex);
14242
	kfree(intel_fb);
14243
}
2330 Serge 14244
 
6084 serge 14245
static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14246
						struct drm_file *file,
14247
						unsigned int *handle)
14248
{
14249
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14250
	struct drm_i915_gem_object *obj = intel_fb->obj;
14251
 
14252
	if (obj->userptr.mm) {
14253
		DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14254
		return -EINVAL;
14255
	}
14256
 
14257
	return drm_gem_handle_create(file, &obj->base, handle);
14258
}
14259
 
14260
static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14261
					struct drm_file *file,
14262
					unsigned flags, unsigned color,
14263
					struct drm_clip_rect *clips,
14264
					unsigned num_clips)
14265
{
14266
	struct drm_device *dev = fb->dev;
14267
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14268
	struct drm_i915_gem_object *obj = intel_fb->obj;
14269
 
14270
	mutex_lock(&dev->struct_mutex);
14271
	intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14272
	mutex_unlock(&dev->struct_mutex);
14273
 
14274
	return 0;
14275
}
14276
 
2335 Serge 14277
static const struct drm_framebuffer_funcs intel_fb_funcs = {
6084 serge 14278
	.destroy = intel_user_framebuffer_destroy,
14279
	.create_handle = intel_user_framebuffer_create_handle,
14280
	.dirty = intel_user_framebuffer_dirty,
2335 Serge 14281
};
2327 Serge 14282
 
6084 serge 14283
static
14284
u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14285
			 uint32_t pixel_format)
14286
{
14287
	u32 gen = INTEL_INFO(dev)->gen;
14288
 
14289
	if (gen >= 9) {
14290
		/* "The stride in bytes must not exceed the of the size of 8K
14291
		 *  pixels and 32K bytes."
14292
		 */
14293
		 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14294
	} else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14295
		return 32*1024;
14296
	} else if (gen >= 4) {
14297
		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14298
			return 16*1024;
14299
		else
14300
			return 32*1024;
14301
	} else if (gen >= 3) {
14302
		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14303
			return 8*1024;
14304
		else
14305
			return 16*1024;
14306
	} else {
14307
		/* XXX DSPC is limited to 4k tiled */
14308
		return 8*1024;
14309
	}
14310
}
14311
 
5060 serge 14312
static int intel_framebuffer_init(struct drm_device *dev,
6084 serge 14313
				  struct intel_framebuffer *intel_fb,
14314
				  struct drm_mode_fb_cmd2 *mode_cmd,
14315
				  struct drm_i915_gem_object *obj)
2335 Serge 14316
{
6084 serge 14317
	unsigned int aligned_height;
2335 Serge 14318
	int ret;
6084 serge 14319
	u32 pitch_limit, stride_alignment;
2327 Serge 14320
 
4560 Serge 14321
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14322
 
6084 serge 14323
	if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14324
		/* Enforce that fb modifier and tiling mode match, but only for
14325
		 * X-tiled. This is needed for FBC. */
14326
		if (!!(obj->tiling_mode == I915_TILING_X) !=
14327
		    !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14328
			DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14329
			return -EINVAL;
14330
		}
14331
	} else {
14332
		if (obj->tiling_mode == I915_TILING_X)
14333
			mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14334
		else if (obj->tiling_mode == I915_TILING_Y) {
14335
			DRM_DEBUG("No Y tiling for legacy addfb\n");
14336
			return -EINVAL;
14337
		}
14338
	}
14339
 
14340
	/* Passed in modifier sanity checking. */
14341
	switch (mode_cmd->modifier[0]) {
14342
	case I915_FORMAT_MOD_Y_TILED:
14343
	case I915_FORMAT_MOD_Yf_TILED:
14344
		if (INTEL_INFO(dev)->gen < 9) {
14345
			DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14346
				  mode_cmd->modifier[0]);
14347
			return -EINVAL;
14348
		}
14349
	case DRM_FORMAT_MOD_NONE:
14350
	case I915_FORMAT_MOD_X_TILED:
14351
		break;
14352
	default:
14353
		DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14354
			  mode_cmd->modifier[0]);
2335 Serge 14355
		return -EINVAL;
3243 Serge 14356
	}
2327 Serge 14357
 
6084 serge 14358
	stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14359
						     mode_cmd->pixel_format);
14360
	if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14361
		DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14362
			  mode_cmd->pitches[0], stride_alignment);
3243 Serge 14363
		return -EINVAL;
14364
	}
14365
 
6084 serge 14366
	pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14367
					   mode_cmd->pixel_format);
4104 Serge 14368
	if (mode_cmd->pitches[0] > pitch_limit) {
6084 serge 14369
		DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14370
			  mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14371
			  "tiled" : "linear",
4104 Serge 14372
			  mode_cmd->pitches[0], pitch_limit);
3243 Serge 14373
		return -EINVAL;
14374
	}
14375
 
6084 serge 14376
	if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
3243 Serge 14377
	    mode_cmd->pitches[0] != obj->stride) {
14378
		DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14379
			  mode_cmd->pitches[0], obj->stride);
6084 serge 14380
		return -EINVAL;
3243 Serge 14381
	}
2327 Serge 14382
 
3243 Serge 14383
	/* Reject formats not supported by any plane early. */
2342 Serge 14384
	switch (mode_cmd->pixel_format) {
3243 Serge 14385
	case DRM_FORMAT_C8:
2342 Serge 14386
	case DRM_FORMAT_RGB565:
14387
	case DRM_FORMAT_XRGB8888:
3243 Serge 14388
	case DRM_FORMAT_ARGB8888:
14389
		break;
14390
	case DRM_FORMAT_XRGB1555:
14391
		if (INTEL_INFO(dev)->gen > 3) {
4104 Serge 14392
			DRM_DEBUG("unsupported pixel format: %s\n",
14393
				  drm_get_format_name(mode_cmd->pixel_format));
3243 Serge 14394
			return -EINVAL;
14395
		}
14396
		break;
6084 serge 14397
	case DRM_FORMAT_ABGR8888:
14398
		if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14399
			DRM_DEBUG("unsupported pixel format: %s\n",
14400
				  drm_get_format_name(mode_cmd->pixel_format));
14401
			return -EINVAL;
14402
		}
14403
		break;
3031 serge 14404
	case DRM_FORMAT_XBGR8888:
2342 Serge 14405
	case DRM_FORMAT_XRGB2101010:
3243 Serge 14406
	case DRM_FORMAT_XBGR2101010:
14407
		if (INTEL_INFO(dev)->gen < 4) {
4104 Serge 14408
			DRM_DEBUG("unsupported pixel format: %s\n",
14409
				  drm_get_format_name(mode_cmd->pixel_format));
3243 Serge 14410
			return -EINVAL;
14411
		}
2335 Serge 14412
		break;
6084 serge 14413
	case DRM_FORMAT_ABGR2101010:
14414
		if (!IS_VALLEYVIEW(dev)) {
14415
			DRM_DEBUG("unsupported pixel format: %s\n",
14416
				  drm_get_format_name(mode_cmd->pixel_format));
14417
			return -EINVAL;
14418
		}
14419
		break;
2342 Serge 14420
	case DRM_FORMAT_YUYV:
14421
	case DRM_FORMAT_UYVY:
14422
	case DRM_FORMAT_YVYU:
14423
	case DRM_FORMAT_VYUY:
3243 Serge 14424
		if (INTEL_INFO(dev)->gen < 5) {
4104 Serge 14425
			DRM_DEBUG("unsupported pixel format: %s\n",
14426
				  drm_get_format_name(mode_cmd->pixel_format));
3243 Serge 14427
			return -EINVAL;
14428
		}
2342 Serge 14429
		break;
2335 Serge 14430
	default:
4104 Serge 14431
		DRM_DEBUG("unsupported pixel format: %s\n",
14432
			  drm_get_format_name(mode_cmd->pixel_format));
2335 Serge 14433
		return -EINVAL;
14434
	}
2327 Serge 14435
 
3243 Serge 14436
	/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14437
	if (mode_cmd->offsets[0] != 0)
14438
		return -EINVAL;
14439
 
6084 serge 14440
	aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14441
					       mode_cmd->pixel_format,
14442
					       mode_cmd->modifier[0]);
4560 Serge 14443
	/* FIXME drm helper for size checks (especially planar formats)? */
14444
	if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14445
		return -EINVAL;
14446
 
3480 Serge 14447
	drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14448
	intel_fb->obj = obj;
4560 Serge 14449
	intel_fb->obj->framebuffer_references++;
3480 Serge 14450
 
2335 Serge 14451
	ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14452
	if (ret) {
14453
		DRM_ERROR("framebuffer init failed %d\n", ret);
14454
		return ret;
14455
	}
6283 serge 14456
	kolibri_framebuffer_init(intel_fb);
2335 Serge 14457
	return 0;
14458
}
2327 Serge 14459
 
6084 serge 14460
static struct drm_framebuffer *
14461
intel_user_framebuffer_create(struct drm_device *dev,
14462
			      struct drm_file *filp,
14463
			      struct drm_mode_fb_cmd2 *user_mode_cmd)
14464
{
14465
	struct drm_i915_gem_object *obj;
14466
	struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14467
 
14468
	obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14469
						mode_cmd.handles[0]));
14470
	if (&obj->base == NULL)
14471
		return ERR_PTR(-ENOENT);
14472
 
14473
	return intel_framebuffer_create(dev, &mode_cmd, obj);
14474
}
14475
 
14476
#ifndef CONFIG_DRM_FBDEV_EMULATION
4560 Serge 14477
static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14478
{
14479
}
14480
#endif
2327 Serge 14481
 
2360 Serge 14482
static const struct drm_mode_config_funcs intel_mode_funcs = {
6084 serge 14483
	.fb_create = intel_user_framebuffer_create,
4560 Serge 14484
	.output_poll_changed = intel_fbdev_output_poll_changed,
6084 serge 14485
	.atomic_check = intel_atomic_check,
14486
	.atomic_commit = intel_atomic_commit,
14487
	.atomic_state_alloc = intel_atomic_state_alloc,
14488
	.atomic_state_clear = intel_atomic_state_clear,
2360 Serge 14489
};
2327 Serge 14490
 
3031 serge 14491
/* Set up chip specific display functions */
14492
static void intel_init_display(struct drm_device *dev)
14493
{
14494
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 14495
 
4104 Serge 14496
	if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14497
		dev_priv->display.find_dpll = g4x_find_best_dpll;
5060 serge 14498
	else if (IS_CHERRYVIEW(dev))
14499
		dev_priv->display.find_dpll = chv_find_best_dpll;
4104 Serge 14500
	else if (IS_VALLEYVIEW(dev))
14501
		dev_priv->display.find_dpll = vlv_find_best_dpll;
14502
	else if (IS_PINEVIEW(dev))
14503
		dev_priv->display.find_dpll = pnv_find_best_dpll;
14504
	else
14505
		dev_priv->display.find_dpll = i9xx_find_best_dpll;
14506
 
6084 serge 14507
	if (INTEL_INFO(dev)->gen >= 9) {
3746 Serge 14508
		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
6084 serge 14509
		dev_priv->display.get_initial_plane_config =
14510
			skylake_get_initial_plane_config;
5354 serge 14511
		dev_priv->display.crtc_compute_clock =
14512
			haswell_crtc_compute_clock;
3243 Serge 14513
		dev_priv->display.crtc_enable = haswell_crtc_enable;
14514
		dev_priv->display.crtc_disable = haswell_crtc_disable;
5060 serge 14515
		dev_priv->display.update_primary_plane =
6084 serge 14516
			skylake_update_primary_plane;
14517
	} else if (HAS_DDI(dev)) {
14518
		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14519
		dev_priv->display.get_initial_plane_config =
14520
			ironlake_get_initial_plane_config;
14521
		dev_priv->display.crtc_compute_clock =
14522
			haswell_crtc_compute_clock;
14523
		dev_priv->display.crtc_enable = haswell_crtc_enable;
14524
		dev_priv->display.crtc_disable = haswell_crtc_disable;
14525
		dev_priv->display.update_primary_plane =
5060 serge 14526
			ironlake_update_primary_plane;
3243 Serge 14527
	} else if (HAS_PCH_SPLIT(dev)) {
3746 Serge 14528
		dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
6084 serge 14529
		dev_priv->display.get_initial_plane_config =
14530
			ironlake_get_initial_plane_config;
5354 serge 14531
		dev_priv->display.crtc_compute_clock =
14532
			ironlake_crtc_compute_clock;
3031 serge 14533
		dev_priv->display.crtc_enable = ironlake_crtc_enable;
14534
		dev_priv->display.crtc_disable = ironlake_crtc_disable;
5060 serge 14535
		dev_priv->display.update_primary_plane =
14536
			ironlake_update_primary_plane;
4104 Serge 14537
	} else if (IS_VALLEYVIEW(dev)) {
14538
		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
6084 serge 14539
		dev_priv->display.get_initial_plane_config =
14540
			i9xx_get_initial_plane_config;
5354 serge 14541
		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
4104 Serge 14542
		dev_priv->display.crtc_enable = valleyview_crtc_enable;
14543
		dev_priv->display.crtc_disable = i9xx_crtc_disable;
5060 serge 14544
		dev_priv->display.update_primary_plane =
14545
			i9xx_update_primary_plane;
3031 serge 14546
	} else {
3746 Serge 14547
		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
6084 serge 14548
		dev_priv->display.get_initial_plane_config =
14549
			i9xx_get_initial_plane_config;
5354 serge 14550
		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
3031 serge 14551
		dev_priv->display.crtc_enable = i9xx_crtc_enable;
14552
		dev_priv->display.crtc_disable = i9xx_crtc_disable;
5060 serge 14553
		dev_priv->display.update_primary_plane =
14554
			i9xx_update_primary_plane;
3031 serge 14555
	}
2327 Serge 14556
 
3031 serge 14557
	/* Returns the core display clock speed */
6084 serge 14558
	if (IS_SKYLAKE(dev))
3031 serge 14559
		dev_priv->display.get_display_clock_speed =
6084 serge 14560
			skylake_get_display_clock_speed;
14561
	else if (IS_BROXTON(dev))
14562
		dev_priv->display.get_display_clock_speed =
14563
			broxton_get_display_clock_speed;
14564
	else if (IS_BROADWELL(dev))
14565
		dev_priv->display.get_display_clock_speed =
14566
			broadwell_get_display_clock_speed;
14567
	else if (IS_HASWELL(dev))
14568
		dev_priv->display.get_display_clock_speed =
14569
			haswell_get_display_clock_speed;
14570
	else if (IS_VALLEYVIEW(dev))
14571
		dev_priv->display.get_display_clock_speed =
3031 serge 14572
			valleyview_get_display_clock_speed;
6084 serge 14573
	else if (IS_GEN5(dev))
3031 serge 14574
		dev_priv->display.get_display_clock_speed =
6084 serge 14575
			ilk_get_display_clock_speed;
14576
	else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14577
		 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14578
		dev_priv->display.get_display_clock_speed =
3031 serge 14579
			i945_get_display_clock_speed;
6084 serge 14580
	else if (IS_GM45(dev))
14581
		dev_priv->display.get_display_clock_speed =
14582
			gm45_get_display_clock_speed;
14583
	else if (IS_CRESTLINE(dev))
14584
		dev_priv->display.get_display_clock_speed =
14585
			i965gm_get_display_clock_speed;
14586
	else if (IS_PINEVIEW(dev))
14587
		dev_priv->display.get_display_clock_speed =
14588
			pnv_get_display_clock_speed;
14589
	else if (IS_G33(dev) || IS_G4X(dev))
14590
		dev_priv->display.get_display_clock_speed =
14591
			g33_get_display_clock_speed;
3031 serge 14592
	else if (IS_I915G(dev))
14593
		dev_priv->display.get_display_clock_speed =
14594
			i915_get_display_clock_speed;
4104 Serge 14595
	else if (IS_I945GM(dev) || IS_845G(dev))
3031 serge 14596
		dev_priv->display.get_display_clock_speed =
14597
			i9xx_misc_get_display_clock_speed;
4104 Serge 14598
	else if (IS_PINEVIEW(dev))
14599
		dev_priv->display.get_display_clock_speed =
14600
			pnv_get_display_clock_speed;
3031 serge 14601
	else if (IS_I915GM(dev))
14602
		dev_priv->display.get_display_clock_speed =
14603
			i915gm_get_display_clock_speed;
14604
	else if (IS_I865G(dev))
14605
		dev_priv->display.get_display_clock_speed =
14606
			i865_get_display_clock_speed;
14607
	else if (IS_I85X(dev))
14608
		dev_priv->display.get_display_clock_speed =
6084 serge 14609
			i85x_get_display_clock_speed;
14610
	else { /* 830 */
14611
		WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
3031 serge 14612
		dev_priv->display.get_display_clock_speed =
14613
			i830_get_display_clock_speed;
6084 serge 14614
	}
2327 Serge 14615
 
6084 serge 14616
	if (IS_GEN5(dev)) {
14617
		dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14618
	} else if (IS_GEN6(dev)) {
14619
		dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14620
	} else if (IS_IVYBRIDGE(dev)) {
14621
		/* FIXME: detect B0+ stepping and use auto training */
14622
		dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
5354 serge 14623
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6084 serge 14624
		dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14625
		if (IS_BROADWELL(dev)) {
14626
			dev_priv->display.modeset_commit_cdclk =
14627
				broadwell_modeset_commit_cdclk;
14628
			dev_priv->display.modeset_calc_cdclk =
14629
				broadwell_modeset_calc_cdclk;
14630
		}
4560 Serge 14631
	} else if (IS_VALLEYVIEW(dev)) {
6084 serge 14632
		dev_priv->display.modeset_commit_cdclk =
14633
			valleyview_modeset_commit_cdclk;
14634
		dev_priv->display.modeset_calc_cdclk =
14635
			valleyview_modeset_calc_cdclk;
14636
	} else if (IS_BROXTON(dev)) {
14637
		dev_priv->display.modeset_commit_cdclk =
14638
			broxton_modeset_commit_cdclk;
14639
		dev_priv->display.modeset_calc_cdclk =
14640
			broxton_modeset_calc_cdclk;
3031 serge 14641
	}
2327 Serge 14642
 
6320 serge 14643
	switch (INTEL_INFO(dev)->gen) {
14644
	case 2:
14645
		dev_priv->display.queue_flip = intel_gen2_queue_flip;
14646
		break;
2327 Serge 14647
 
6320 serge 14648
	case 3:
14649
		dev_priv->display.queue_flip = intel_gen3_queue_flip;
14650
		break;
2327 Serge 14651
 
6320 serge 14652
	case 4:
14653
	case 5:
14654
		dev_priv->display.queue_flip = intel_gen4_queue_flip;
14655
		break;
2327 Serge 14656
 
6320 serge 14657
	case 6:
14658
		dev_priv->display.queue_flip = intel_gen6_queue_flip;
14659
		break;
14660
	case 7:
14661
	case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14662
		dev_priv->display.queue_flip = intel_gen7_queue_flip;
14663
		break;
14664
	case 9:
14665
		/* Drop through - unsupported since execlist only. */
14666
	default:
14667
		/* Default just returns -ENODEV to indicate unsupported */
14668
		dev_priv->display.queue_flip = intel_default_queue_flip;
14669
	}
2327 Serge 14670
 
5354 serge 14671
	mutex_init(&dev_priv->pps_mutex);
3031 serge 14672
}
14673
 
14674
/*
14675
 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14676
 * resume, or other times.  This quirk makes sure that's the case for
14677
 * affected systems.
14678
 */
14679
static void quirk_pipea_force(struct drm_device *dev)
2330 Serge 14680
{
14681
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 14682
 
3031 serge 14683
	dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14684
	DRM_INFO("applying pipe a force quirk\n");
14685
}
2327 Serge 14686
 
5354 serge 14687
static void quirk_pipeb_force(struct drm_device *dev)
14688
{
14689
	struct drm_i915_private *dev_priv = dev->dev_private;
14690
 
14691
	dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14692
	DRM_INFO("applying pipe b force quirk\n");
14693
}
14694
 
3031 serge 14695
/*
14696
 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14697
 */
14698
static void quirk_ssc_force_disable(struct drm_device *dev)
14699
{
14700
	struct drm_i915_private *dev_priv = dev->dev_private;
14701
	dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14702
	DRM_INFO("applying lvds SSC disable quirk\n");
2330 Serge 14703
}
2327 Serge 14704
 
3031 serge 14705
/*
14706
 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14707
 * brightness value
14708
 */
14709
static void quirk_invert_brightness(struct drm_device *dev)
2330 Serge 14710
{
14711
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 14712
	dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14713
	DRM_INFO("applying inverted panel brightness quirk\n");
14714
}
2327 Serge 14715
 
5060 serge 14716
/* Some VBT's incorrectly indicate no backlight is present */
14717
static void quirk_backlight_present(struct drm_device *dev)
14718
{
14719
	struct drm_i915_private *dev_priv = dev->dev_private;
14720
	dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14721
	DRM_INFO("applying backlight present quirk\n");
14722
}
14723
 
3031 serge 14724
struct intel_quirk {
14725
	int device;
14726
	int subsystem_vendor;
14727
	int subsystem_device;
14728
	void (*hook)(struct drm_device *dev);
14729
};
2327 Serge 14730
 
3031 serge 14731
/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14732
struct intel_dmi_quirk {
14733
	void (*hook)(struct drm_device *dev);
14734
	const struct dmi_system_id (*dmi_id_list)[];
14735
};
2327 Serge 14736
 
3031 serge 14737
static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14738
{
14739
	DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14740
	return 1;
2330 Serge 14741
}
2327 Serge 14742
 
3031 serge 14743
static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14744
	{
14745
		.dmi_id_list = &(const struct dmi_system_id[]) {
14746
			{
14747
				.callback = intel_dmi_reverse_brightness,
14748
				.ident = "NCR Corporation",
14749
				.matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14750
					    DMI_MATCH(DMI_PRODUCT_NAME, ""),
14751
				},
14752
			},
14753
			{ }  /* terminating entry */
14754
		},
14755
		.hook = quirk_invert_brightness,
14756
	},
14757
};
2327 Serge 14758
 
3031 serge 14759
static struct intel_quirk intel_quirks[] = {
14760
	/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14761
	{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
2327 Serge 14762
 
3031 serge 14763
	/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14764
	{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
2327 Serge 14765
 
5367 serge 14766
	/* 830 needs to leave pipe A & dpll A up */
14767
	{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14768
 
14769
	/* 830 needs to leave pipe B & dpll B up */
14770
	{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14771
 
3031 serge 14772
	/* Lenovo U160 cannot use SSC on LVDS */
14773
	{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
2327 Serge 14774
 
3031 serge 14775
	/* Sony Vaio Y cannot use SSC on LVDS */
14776
	{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
2327 Serge 14777
 
3031 serge 14778
	/* Acer Aspire 5734Z must invert backlight brightness */
14779
	{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
3480 Serge 14780
 
14781
	/* Acer/eMachines G725 */
14782
	{ 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14783
 
14784
	/* Acer/eMachines e725 */
14785
	{ 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14786
 
14787
	/* Acer/Packard Bell NCL20 */
14788
	{ 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14789
 
14790
	/* Acer Aspire 4736Z */
14791
	{ 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
5060 serge 14792
 
14793
	/* Acer Aspire 5336 */
14794
	{ 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14795
 
14796
	/* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14797
	{ 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14798
 
5097 serge 14799
	/* Acer C720 Chromebook (Core i3 4005U) */
14800
	{ 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14801
 
5354 serge 14802
	/* Apple Macbook 2,1 (Core 2 T7400) */
14803
	{ 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14804
 
6084 serge 14805
	/* Apple Macbook 4,1 */
14806
	{ 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14807
 
5060 serge 14808
	/* Toshiba CB35 Chromebook (Celeron 2955U) */
14809
	{ 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14810
 
14811
	/* HP Chromebook 14 (Celeron 2955U) */
14812
	{ 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
6084 serge 14813
 
14814
	/* Dell Chromebook 11 */
14815
	{ 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14816
 
14817
	/* Dell Chromebook 11 (2015 version) */
14818
	{ 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
3031 serge 14819
};
2327 Serge 14820
 
3031 serge 14821
static void intel_init_quirks(struct drm_device *dev)
2330 Serge 14822
{
3031 serge 14823
	struct pci_dev *d = dev->pdev;
14824
	int i;
2327 Serge 14825
 
3031 serge 14826
	for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14827
		struct intel_quirk *q = &intel_quirks[i];
2327 Serge 14828
 
3031 serge 14829
		if (d->device == q->device &&
14830
		    (d->subsystem_vendor == q->subsystem_vendor ||
14831
		     q->subsystem_vendor == PCI_ANY_ID) &&
14832
		    (d->subsystem_device == q->subsystem_device ||
14833
		     q->subsystem_device == PCI_ANY_ID))
14834
			q->hook(dev);
14835
	}
5097 serge 14836
	for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14837
		if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14838
			intel_dmi_quirks[i].hook(dev);
14839
	}
2330 Serge 14840
}
2327 Serge 14841
 
3031 serge 14842
/* Disable the VGA plane that we never use */
14843
static void i915_disable_vga(struct drm_device *dev)
2330 Serge 14844
{
14845
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 14846
	u8 sr1;
3480 Serge 14847
	u32 vga_reg = i915_vgacntrl_reg(dev);
2327 Serge 14848
 
6084 serge 14849
	/* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
4560 Serge 14850
//	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14851
	outb(SR01, VGA_SR_INDEX);
14852
	sr1 = inb(VGA_SR_DATA);
14853
	outb(sr1 | 1<<5, VGA_SR_DATA);
14854
//	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
3031 serge 14855
	udelay(300);
2327 Serge 14856
 
6084 serge 14857
	I915_WRITE(vga_reg, VGA_DISP_DISABLE);
3031 serge 14858
	POSTING_READ(vga_reg);
2330 Serge 14859
}
14860
 
3031 serge 14861
void intel_modeset_init_hw(struct drm_device *dev)
2342 Serge 14862
{
6084 serge 14863
	intel_update_cdclk(dev);
3031 serge 14864
	intel_prepare_ddi(dev);
14865
	intel_init_clock_gating(dev);
6084 serge 14866
	intel_enable_gt_powersave(dev);
2342 Serge 14867
}
14868
 
3031 serge 14869
void intel_modeset_init(struct drm_device *dev)
2330 Serge 14870
{
3031 serge 14871
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 14872
	int sprite, ret;
14873
	enum pipe pipe;
14874
	struct intel_crtc *crtc;
6088 serge 14875
 
3031 serge 14876
	drm_mode_config_init(dev);
2330 Serge 14877
 
3031 serge 14878
	dev->mode_config.min_width = 0;
14879
	dev->mode_config.min_height = 0;
2330 Serge 14880
 
3031 serge 14881
	dev->mode_config.preferred_depth = 24;
14882
	dev->mode_config.prefer_shadow = 1;
2330 Serge 14883
 
6084 serge 14884
	dev->mode_config.allow_fb_modifiers = true;
14885
 
3031 serge 14886
	dev->mode_config.funcs = &intel_mode_funcs;
2330 Serge 14887
 
3031 serge 14888
	intel_init_quirks(dev);
2330 Serge 14889
 
3031 serge 14890
	intel_init_pm(dev);
2330 Serge 14891
 
3746 Serge 14892
	if (INTEL_INFO(dev)->num_pipes == 0)
14893
		return;
14894
 
6084 serge 14895
	/*
14896
	 * There may be no VBT; and if the BIOS enabled SSC we can
14897
	 * just keep using it to avoid unnecessary flicker.  Whereas if the
14898
	 * BIOS isn't using it, don't assume it will work even if the VBT
14899
	 * indicates as much.
14900
	 */
14901
	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
14902
		bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14903
					    DREF_SSC1_ENABLE);
14904
 
14905
		if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14906
			DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14907
				     bios_lvds_use_ssc ? "en" : "dis",
14908
				     dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14909
			dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14910
		}
14911
	}
14912
 
3031 serge 14913
	intel_init_display(dev);
2330 Serge 14914
 
3031 serge 14915
	if (IS_GEN2(dev)) {
14916
		dev->mode_config.max_width = 2048;
14917
		dev->mode_config.max_height = 2048;
14918
	} else if (IS_GEN3(dev)) {
14919
		dev->mode_config.max_width = 4096;
14920
		dev->mode_config.max_height = 4096;
14921
	} else {
14922
		dev->mode_config.max_width = 8192;
14923
		dev->mode_config.max_height = 8192;
14924
	}
5060 serge 14925
 
14926
	if (IS_GEN2(dev)) {
14927
		dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14928
		dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14929
	} else {
14930
		dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14931
		dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14932
	}
14933
 
3480 Serge 14934
	dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
2330 Serge 14935
 
3031 serge 14936
	DRM_DEBUG_KMS("%d display pipe%s available.\n",
3746 Serge 14937
		      INTEL_INFO(dev)->num_pipes,
14938
		      INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
2330 Serge 14939
 
5354 serge 14940
	for_each_pipe(dev_priv, pipe) {
5060 serge 14941
		intel_crtc_init(dev, pipe);
6084 serge 14942
		for_each_sprite(dev_priv, pipe, sprite) {
5060 serge 14943
			ret = intel_plane_init(dev, pipe, sprite);
6084 serge 14944
			if (ret)
4104 Serge 14945
				DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
5060 serge 14946
					      pipe_name(pipe), sprite_name(pipe, sprite), ret);
3746 Serge 14947
		}
2330 Serge 14948
	}
14949
 
6084 serge 14950
	intel_update_czclk(dev_priv);
14951
	intel_update_cdclk(dev);
4560 Serge 14952
 
4104 Serge 14953
	intel_shared_dpll_init(dev);
2330 Serge 14954
 
3031 serge 14955
	/* Just disable it once at startup */
14956
	i915_disable_vga(dev);
14957
	intel_setup_outputs(dev);
3480 Serge 14958
 
14959
	/* Just in case the BIOS is doing something questionable. */
6084 serge 14960
	intel_fbc_disable(dev_priv);
2330 Serge 14961
 
5060 serge 14962
	drm_modeset_lock_all(dev);
6084 serge 14963
	intel_modeset_setup_hw_state(dev);
5060 serge 14964
	drm_modeset_unlock_all(dev);
14965
 
14966
	for_each_intel_crtc(dev, crtc) {
6084 serge 14967
		struct intel_initial_plane_config plane_config = {};
14968
 
5060 serge 14969
		if (!crtc->active)
14970
			continue;
14971
 
14972
		/*
14973
		 * Note that reserving the BIOS fb up front prevents us
14974
		 * from stuffing other stolen allocations like the ring
14975
		 * on top.  This prevents some ugliness at boot time, and
14976
		 * can even allow for smooth boot transitions if the BIOS
14977
		 * fb is large enough for the active pipe configuration.
14978
		 */
6084 serge 14979
		dev_priv->display.get_initial_plane_config(crtc,
14980
							   &plane_config);
14981
 
14982
		/*
14983
		 * If the fb is shared between multiple heads, we'll
14984
		 * just get the first one.
14985
		 */
14986
		intel_find_initial_plane_obj(crtc, &plane_config);
5060 serge 14987
	}
2330 Serge 14988
}
14989
 
3031 serge 14990
static void intel_enable_pipe_a(struct drm_device *dev)
2330 Serge 14991
{
3031 serge 14992
	struct intel_connector *connector;
14993
	struct drm_connector *crt = NULL;
14994
	struct intel_load_detect_pipe load_detect_temp;
5060 serge 14995
	struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
2330 Serge 14996
 
3031 serge 14997
	/* We can't just switch on the pipe A, we need to set things up with a
14998
	 * proper mode and output configuration. As a gross hack, enable pipe A
14999
	 * by enabling the load detect pipe once. */
6084 serge 15000
	for_each_intel_connector(dev, connector) {
3031 serge 15001
		if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15002
			crt = &connector->base;
15003
			break;
2330 Serge 15004
		}
15005
	}
15006
 
3031 serge 15007
	if (!crt)
15008
		return;
2330 Serge 15009
 
5060 serge 15010
	if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
6084 serge 15011
		intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
2327 Serge 15012
}
15013
 
3031 serge 15014
static bool
15015
intel_check_plane_mapping(struct intel_crtc *crtc)
2327 Serge 15016
{
3746 Serge 15017
	struct drm_device *dev = crtc->base.dev;
15018
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 15019
	u32 val;
2327 Serge 15020
 
3746 Serge 15021
	if (INTEL_INFO(dev)->num_pipes == 1)
3031 serge 15022
		return true;
2327 Serge 15023
 
6084 serge 15024
	val = I915_READ(DSPCNTR(!crtc->plane));
2327 Serge 15025
 
3031 serge 15026
	if ((val & DISPLAY_PLANE_ENABLE) &&
15027
	    (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15028
		return false;
2327 Serge 15029
 
3031 serge 15030
	return true;
2327 Serge 15031
}
15032
 
6084 serge 15033
static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15034
{
15035
	struct drm_device *dev = crtc->base.dev;
15036
	struct intel_encoder *encoder;
15037
 
15038
	for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15039
		return true;
15040
 
15041
	return false;
15042
}
15043
 
3031 serge 15044
static void intel_sanitize_crtc(struct intel_crtc *crtc)
2327 Serge 15045
{
3031 serge 15046
	struct drm_device *dev = crtc->base.dev;
2327 Serge 15047
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 15048
	u32 reg;
2327 Serge 15049
 
3031 serge 15050
	/* Clear any frame start delays used for debugging left by the BIOS */
6084 serge 15051
	reg = PIPECONF(crtc->config->cpu_transcoder);
3031 serge 15052
	I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
2327 Serge 15053
 
5060 serge 15054
	/* restore vblank interrupts to correct state */
6084 serge 15055
	drm_crtc_vblank_reset(&crtc->base);
5354 serge 15056
	if (crtc->active) {
6084 serge 15057
		struct intel_plane *plane;
5060 serge 15058
 
6084 serge 15059
		drm_crtc_vblank_on(&crtc->base);
15060
 
15061
		/* Disable everything but the primary plane */
15062
		for_each_intel_plane_on_crtc(dev, crtc, plane) {
15063
			if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15064
				continue;
15065
 
15066
			plane->disable_plane(&plane->base, &crtc->base);
15067
		}
15068
	}
15069
 
3031 serge 15070
	/* We need to sanitize the plane -> pipe mapping first because this will
15071
	 * disable the crtc (and hence change the state) if it is wrong. Note
15072
	 * that gen4+ has a fixed plane -> pipe mapping.  */
15073
	if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15074
		bool plane;
2327 Serge 15075
 
3031 serge 15076
		DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15077
			      crtc->base.base.id);
2327 Serge 15078
 
3031 serge 15079
		/* Pipe has the wrong plane attached and the plane is active.
15080
		 * Temporarily change the plane mapping and disable everything
15081
		 * ...  */
15082
		plane = crtc->plane;
6084 serge 15083
		to_intel_plane_state(crtc->base.primary->state)->visible = true;
3031 serge 15084
		crtc->plane = !plane;
6084 serge 15085
		intel_crtc_disable_noatomic(&crtc->base);
3031 serge 15086
		crtc->plane = plane;
15087
	}
2327 Serge 15088
 
3031 serge 15089
	if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15090
	    crtc->pipe == PIPE_A && !crtc->active) {
15091
		/* BIOS forgot to enable pipe A, this mostly happens after
15092
		 * resume. Force-enable the pipe to fix this, the update_dpms
15093
		 * call below we restore the pipe to the right state, but leave
15094
		 * the required bits on. */
15095
		intel_enable_pipe_a(dev);
15096
	}
2327 Serge 15097
 
3031 serge 15098
	/* Adjust the state of the output pipe according to whether we
15099
	 * have active connectors/encoders. */
6084 serge 15100
	if (!intel_crtc_has_encoders(crtc))
15101
		intel_crtc_disable_noatomic(&crtc->base);
2327 Serge 15102
 
6084 serge 15103
	if (crtc->active != crtc->base.state->active) {
3031 serge 15104
		struct intel_encoder *encoder;
2327 Serge 15105
 
3031 serge 15106
		/* This can happen either due to bugs in the get_hw_state
6084 serge 15107
		 * functions or because of calls to intel_crtc_disable_noatomic,
15108
		 * or because the pipe is force-enabled due to the
3031 serge 15109
		 * pipe A quirk. */
15110
		DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15111
			      crtc->base.base.id,
6084 serge 15112
			      crtc->base.state->enable ? "enabled" : "disabled",
3031 serge 15113
			      crtc->active ? "enabled" : "disabled");
2327 Serge 15114
 
6084 serge 15115
		WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15116
		crtc->base.state->active = crtc->active;
3031 serge 15117
		crtc->base.enabled = crtc->active;
2327 Serge 15118
 
3031 serge 15119
		/* Because we only establish the connector -> encoder ->
15120
		 * crtc links if something is active, this means the
15121
		 * crtc is now deactivated. Break the links. connector
15122
		 * -> encoder links are only establish when things are
15123
		 *  actually up, hence no need to break them. */
15124
		WARN_ON(crtc->active);
2327 Serge 15125
 
6084 serge 15126
		for_each_encoder_on_crtc(dev, &crtc->base, encoder)
3031 serge 15127
			encoder->base.crtc = NULL;
15128
	}
5060 serge 15129
 
5354 serge 15130
	if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
5060 serge 15131
		/*
15132
		 * We start out with underrun reporting disabled to avoid races.
15133
		 * For correct bookkeeping mark this on active crtcs.
15134
		 *
15135
		 * Also on gmch platforms we dont have any hardware bits to
15136
		 * disable the underrun reporting. Which means we need to start
15137
		 * out with underrun reporting disabled also on inactive pipes,
15138
		 * since otherwise we'll complain about the garbage we read when
15139
		 * e.g. coming up after runtime pm.
15140
		 *
15141
		 * No protection against concurrent access is required - at
15142
		 * worst a fifo underrun happens which also sets this to false.
15143
		 */
15144
		crtc->cpu_fifo_underrun_disabled = true;
15145
		crtc->pch_fifo_underrun_disabled = true;
15146
	}
2327 Serge 15147
}
15148
 
3031 serge 15149
static void intel_sanitize_encoder(struct intel_encoder *encoder)
2327 Serge 15150
{
3031 serge 15151
	struct intel_connector *connector;
15152
	struct drm_device *dev = encoder->base.dev;
6084 serge 15153
	bool active = false;
2327 Serge 15154
 
3031 serge 15155
	/* We need to check both for a crtc link (meaning that the
15156
	 * encoder is active and trying to read from a pipe) and the
15157
	 * pipe itself being active. */
15158
	bool has_active_crtc = encoder->base.crtc &&
15159
		to_intel_crtc(encoder->base.crtc)->active;
2327 Serge 15160
 
6084 serge 15161
	for_each_intel_connector(dev, connector) {
15162
		if (connector->base.encoder != &encoder->base)
15163
			continue;
15164
 
15165
		active = true;
15166
		break;
15167
	}
15168
 
15169
	if (active && !has_active_crtc) {
3031 serge 15170
		DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15171
			      encoder->base.base.id,
5060 serge 15172
			      encoder->base.name);
2327 Serge 15173
 
3031 serge 15174
		/* Connector is active, but has no active pipe. This is
15175
		 * fallout from our resume register restoring. Disable
15176
		 * the encoder manually again. */
15177
		if (encoder->base.crtc) {
15178
			DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15179
				      encoder->base.base.id,
5060 serge 15180
				      encoder->base.name);
3031 serge 15181
			encoder->disable(encoder);
5060 serge 15182
			if (encoder->post_disable)
15183
				encoder->post_disable(encoder);
3031 serge 15184
		}
5060 serge 15185
		encoder->base.crtc = NULL;
2327 Serge 15186
 
3031 serge 15187
		/* Inconsistent output/port/pipe state happens presumably due to
15188
		 * a bug in one of the get_hw_state functions. Or someplace else
15189
		 * in our code, like the register restore mess on resume. Clamp
15190
		 * things to off as a safer default. */
6084 serge 15191
		for_each_intel_connector(dev, connector) {
3031 serge 15192
			if (connector->encoder != encoder)
15193
				continue;
5060 serge 15194
			connector->base.dpms = DRM_MODE_DPMS_OFF;
15195
			connector->base.encoder = NULL;
3031 serge 15196
		}
15197
	}
15198
	/* Enabled encoders without active connectors will be fixed in
15199
	 * the crtc fixup. */
2327 Serge 15200
}
15201
 
5060 serge 15202
void i915_redisable_vga_power_on(struct drm_device *dev)
3746 Serge 15203
{
15204
	struct drm_i915_private *dev_priv = dev->dev_private;
15205
	u32 vga_reg = i915_vgacntrl_reg(dev);
15206
 
5060 serge 15207
	if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15208
		DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15209
		i915_disable_vga(dev);
15210
	}
15211
}
15212
 
15213
void i915_redisable_vga(struct drm_device *dev)
15214
{
15215
	struct drm_i915_private *dev_priv = dev->dev_private;
15216
 
4104 Serge 15217
	/* This function can be called both from intel_modeset_setup_hw_state or
15218
	 * at a very early point in our resume sequence, where the power well
15219
	 * structures are not yet restored. Since this function is at a very
15220
	 * paranoid "someone might have enabled VGA while we were not looking"
15221
	 * level, just check if the power well is enabled instead of trying to
15222
	 * follow the "don't touch the power well if we don't need it" policy
15223
	 * the rest of the driver uses. */
5354 serge 15224
	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
4104 Serge 15225
		return;
15226
 
5060 serge 15227
	i915_redisable_vga_power_on(dev);
3746 Serge 15228
}
15229
 
6084 serge 15230
static bool primary_get_hw_state(struct intel_plane *plane)
5060 serge 15231
{
6084 serge 15232
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5060 serge 15233
 
6084 serge 15234
	return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15235
}
5060 serge 15236
 
6084 serge 15237
/* FIXME read out full plane state for all planes */
15238
static void readout_plane_state(struct intel_crtc *crtc)
15239
{
15240
	struct drm_plane *primary = crtc->base.primary;
15241
	struct intel_plane_state *plane_state =
15242
		to_intel_plane_state(primary->state);
15243
 
15244
	plane_state->visible =
15245
		primary_get_hw_state(to_intel_plane(primary));
15246
 
15247
	if (plane_state->visible)
15248
		crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
5060 serge 15249
}
15250
 
4104 Serge 15251
static void intel_modeset_readout_hw_state(struct drm_device *dev)
2332 Serge 15252
{
15253
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 15254
	enum pipe pipe;
15255
	struct intel_crtc *crtc;
15256
	struct intel_encoder *encoder;
15257
	struct intel_connector *connector;
4104 Serge 15258
	int i;
2327 Serge 15259
 
5060 serge 15260
	for_each_intel_crtc(dev, crtc) {
6084 serge 15261
		__drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15262
		memset(crtc->config, 0, sizeof(*crtc->config));
15263
		crtc->config->base.crtc = &crtc->base;
2327 Serge 15264
 
3746 Serge 15265
		crtc->active = dev_priv->display.get_pipe_config(crtc,
6084 serge 15266
								 crtc->config);
2327 Serge 15267
 
6084 serge 15268
		crtc->base.state->active = crtc->active;
3031 serge 15269
		crtc->base.enabled = crtc->active;
2330 Serge 15270
 
6084 serge 15271
		readout_plane_state(crtc);
15272
 
3031 serge 15273
		DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15274
			      crtc->base.base.id,
15275
			      crtc->active ? "enabled" : "disabled");
2339 Serge 15276
	}
2332 Serge 15277
 
4104 Serge 15278
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15279
		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15280
 
5354 serge 15281
		pll->on = pll->get_hw_state(dev_priv, pll,
15282
					    &pll->config.hw_state);
4104 Serge 15283
		pll->active = 0;
5354 serge 15284
		pll->config.crtc_mask = 0;
5060 serge 15285
		for_each_intel_crtc(dev, crtc) {
5354 serge 15286
			if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
4104 Serge 15287
				pll->active++;
5354 serge 15288
				pll->config.crtc_mask |= 1 << crtc->pipe;
15289
			}
4104 Serge 15290
		}
15291
 
5354 serge 15292
		DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15293
			      pll->name, pll->config.crtc_mask, pll->on);
5060 serge 15294
 
5354 serge 15295
		if (pll->config.crtc_mask)
5060 serge 15296
			intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
4104 Serge 15297
	}
15298
 
5354 serge 15299
	for_each_intel_encoder(dev, encoder) {
3031 serge 15300
		pipe = 0;
2332 Serge 15301
 
3031 serge 15302
		if (encoder->get_hw_state(encoder, &pipe)) {
4104 Serge 15303
			crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15304
			encoder->base.crtc = &crtc->base;
6084 serge 15305
			encoder->get_config(encoder, crtc->config);
3031 serge 15306
		} else {
15307
			encoder->base.crtc = NULL;
15308
		}
2332 Serge 15309
 
4560 Serge 15310
		DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
3031 serge 15311
			      encoder->base.base.id,
5060 serge 15312
			      encoder->base.name,
3031 serge 15313
			      encoder->base.crtc ? "enabled" : "disabled",
4560 Serge 15314
			      pipe_name(pipe));
3031 serge 15315
	}
2332 Serge 15316
 
6084 serge 15317
	for_each_intel_connector(dev, connector) {
3031 serge 15318
		if (connector->get_hw_state(connector)) {
15319
			connector->base.dpms = DRM_MODE_DPMS_ON;
15320
			connector->base.encoder = &connector->encoder->base;
15321
		} else {
15322
			connector->base.dpms = DRM_MODE_DPMS_OFF;
15323
			connector->base.encoder = NULL;
15324
		}
15325
		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15326
			      connector->base.base.id,
5060 serge 15327
			      connector->base.name,
3031 serge 15328
			      connector->base.encoder ? "enabled" : "disabled");
2332 Serge 15329
	}
6084 serge 15330
 
15331
	for_each_intel_crtc(dev, crtc) {
15332
		crtc->base.hwmode = crtc->config->base.adjusted_mode;
15333
 
15334
		memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15335
		if (crtc->base.state->active) {
15336
			intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15337
			intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15338
			WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15339
 
15340
			/*
15341
			 * The initial mode needs to be set in order to keep
15342
			 * the atomic core happy. It wants a valid mode if the
15343
			 * crtc's enabled, so we do the above call.
15344
			 *
15345
			 * At this point some state updated by the connectors
15346
			 * in their ->detect() callback has not run yet, so
15347
			 * no recalculation can be done yet.
15348
			 *
15349
			 * Even if we could do a recalculation and modeset
15350
			 * right now it would cause a double modeset if
15351
			 * fbdev or userspace chooses a different initial mode.
15352
			 *
15353
			 * If that happens, someone indicated they wanted a
15354
			 * mode change, which means it's safe to do a full
15355
			 * recalculation.
15356
			 */
15357
			crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15358
 
15359
			drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15360
			update_scanline_offset(crtc);
15361
		}
15362
	}
4104 Serge 15363
}
2332 Serge 15364
 
6084 serge 15365
/* Scan out the current hw modeset state,
15366
 * and sanitizes it to the current state
15367
 */
15368
static void
15369
intel_modeset_setup_hw_state(struct drm_device *dev)
4104 Serge 15370
{
15371
	struct drm_i915_private *dev_priv = dev->dev_private;
15372
	enum pipe pipe;
15373
	struct intel_crtc *crtc;
15374
	struct intel_encoder *encoder;
15375
	int i;
15376
 
15377
	intel_modeset_readout_hw_state(dev);
15378
 
3031 serge 15379
	/* HW state is read out, now we need to sanitize this mess. */
5354 serge 15380
	for_each_intel_encoder(dev, encoder) {
3031 serge 15381
		intel_sanitize_encoder(encoder);
2332 Serge 15382
	}
15383
 
5354 serge 15384
	for_each_pipe(dev_priv, pipe) {
3031 serge 15385
		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15386
		intel_sanitize_crtc(crtc);
6084 serge 15387
		intel_dump_pipe_config(crtc, crtc->config,
15388
				       "[setup_hw_state]");
2332 Serge 15389
	}
15390
 
6084 serge 15391
	intel_modeset_update_connector_atomic_state(dev);
15392
 
4104 Serge 15393
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15394
		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15395
 
15396
		if (!pll->on || pll->active)
15397
			continue;
15398
 
15399
		DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15400
 
15401
		pll->disable(dev_priv, pll);
15402
		pll->on = false;
15403
	}
15404
 
6084 serge 15405
	if (IS_VALLEYVIEW(dev))
15406
		vlv_wm_get_hw_state(dev);
15407
	else if (IS_GEN9(dev))
5354 serge 15408
		skl_wm_get_hw_state(dev);
15409
	else if (HAS_PCH_SPLIT(dev))
4560 Serge 15410
		ilk_wm_get_hw_state(dev);
15411
 
6084 serge 15412
	for_each_intel_crtc(dev, crtc) {
15413
		unsigned long put_domains;
4560 Serge 15414
 
6084 serge 15415
		put_domains = modeset_get_crtc_power_domains(&crtc->base);
15416
		if (WARN_ON(put_domains))
15417
			modeset_put_power_domains(dev_priv, put_domains);
15418
	}
15419
	intel_display_set_init_power(dev_priv, false);
15420
}
3746 Serge 15421
 
6084 serge 15422
void intel_display_resume(struct drm_device *dev)
15423
{
15424
	struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15425
	struct intel_connector *conn;
15426
	struct intel_plane *plane;
15427
	struct drm_crtc *crtc;
15428
	int ret;
15429
 
15430
	if (!state)
15431
		return;
15432
 
15433
	state->acquire_ctx = dev->mode_config.acquire_ctx;
15434
 
15435
	/* preserve complete old state, including dpll */
15436
	intel_atomic_get_shared_dpll_state(state);
15437
 
15438
	for_each_crtc(dev, crtc) {
15439
		struct drm_crtc_state *crtc_state =
15440
			drm_atomic_get_crtc_state(state, crtc);
15441
 
15442
		ret = PTR_ERR_OR_ZERO(crtc_state);
15443
		if (ret)
15444
			goto err;
15445
 
15446
		/* force a restore */
15447
		crtc_state->mode_changed = true;
3243 Serge 15448
	}
2332 Serge 15449
 
6084 serge 15450
	for_each_intel_plane(dev, plane) {
15451
		ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15452
		if (ret)
15453
			goto err;
15454
	}
15455
 
15456
	for_each_intel_connector(dev, conn) {
15457
		ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15458
		if (ret)
15459
			goto err;
15460
	}
15461
 
15462
	intel_modeset_setup_hw_state(dev);
15463
 
15464
	i915_redisable_vga(dev);
15465
	ret = drm_atomic_commit(state);
15466
	if (!ret)
15467
		return;
15468
 
15469
err:
15470
	DRM_ERROR("Restoring old state failed with %i\n", ret);
15471
	drm_atomic_state_free(state);
2332 Serge 15472
}
15473
 
3031 serge 15474
void intel_modeset_gem_init(struct drm_device *dev)
2330 Serge 15475
{
5060 serge 15476
	struct drm_crtc *c;
15477
	struct drm_i915_gem_object *obj;
6084 serge 15478
	int ret;
5060 serge 15479
 
15480
	mutex_lock(&dev->struct_mutex);
15481
	intel_init_gt_powersave(dev);
15482
	mutex_unlock(&dev->struct_mutex);
15483
 
3031 serge 15484
	intel_modeset_init_hw(dev);
2330 Serge 15485
 
3031 serge 15486
//   intel_setup_overlay(dev);
2330 Serge 15487
 
5060 serge 15488
	/*
15489
	 * Make sure any fbs we allocated at startup are properly
15490
	 * pinned & fenced.  When we do the allocation it's too early
15491
	 * for this.
15492
	 */
15493
	for_each_crtc(dev, c) {
15494
		obj = intel_fb_obj(c->primary->fb);
15495
		if (obj == NULL)
15496
			continue;
15497
 
6084 serge 15498
		mutex_lock(&dev->struct_mutex);
15499
		ret = intel_pin_and_fence_fb_obj(c->primary,
15500
						 c->primary->fb,
15501
						 c->primary->state,
15502
						 NULL, NULL);
15503
		mutex_unlock(&dev->struct_mutex);
15504
		if (ret) {
5060 serge 15505
			DRM_ERROR("failed to pin boot fb on pipe %d\n",
15506
				  to_intel_crtc(c)->pipe);
15507
			drm_framebuffer_unreference(c->primary->fb);
15508
			c->primary->fb = NULL;
6084 serge 15509
			c->primary->crtc = c->primary->state->crtc = NULL;
15510
			update_state_fb(c->primary);
15511
			c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
5060 serge 15512
		}
15513
	}
6084 serge 15514
 
15515
	intel_backlight_register(dev);
2330 Serge 15516
}
15517
 
5060 serge 15518
void intel_connector_unregister(struct intel_connector *intel_connector)
15519
{
15520
	struct drm_connector *connector = &intel_connector->base;
15521
 
15522
	intel_panel_destroy_backlight(connector);
15523
	drm_connector_unregister(connector);
15524
}
15525
 
3031 serge 15526
void intel_modeset_cleanup(struct drm_device *dev)
2327 Serge 15527
{
3031 serge 15528
#if 0
15529
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 15530
	struct drm_connector *connector;
2327 Serge 15531
 
5354 serge 15532
	intel_disable_gt_powersave(dev);
15533
 
15534
	intel_backlight_unregister(dev);
15535
 
4104 Serge 15536
	/*
15537
	 * Interrupts and polling as the first thing to avoid creating havoc.
5354 serge 15538
	 * Too much stuff here (turning of connectors, ...) would
4104 Serge 15539
	 * experience fancy races otherwise.
15540
	 */
5354 serge 15541
	intel_irq_uninstall(dev_priv);
5060 serge 15542
 
4104 Serge 15543
	/*
15544
	 * Due to the hpd irq storm handling the hotplug work can re-arm the
15545
	 * poll handlers. Hence disable polling after hpd handling is shut down.
15546
	 */
4560 Serge 15547
	drm_kms_helper_poll_fini(dev);
4104 Serge 15548
 
4560 Serge 15549
	intel_unregister_dsm_handler();
2327 Serge 15550
 
6084 serge 15551
	intel_fbc_disable(dev_priv);
2342 Serge 15552
 
4104 Serge 15553
	/* flush any delayed tasks or pending work */
15554
	flush_scheduled_work();
2327 Serge 15555
 
4560 Serge 15556
	/* destroy the backlight and sysfs files before encoders/connectors */
15557
	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5060 serge 15558
		struct intel_connector *intel_connector;
15559
 
15560
		intel_connector = to_intel_connector(connector);
15561
		intel_connector->unregister(intel_connector);
4560 Serge 15562
	}
2327 Serge 15563
 
3031 serge 15564
	drm_mode_config_cleanup(dev);
5060 serge 15565
 
15566
	intel_cleanup_overlay(dev);
15567
 
15568
	mutex_lock(&dev->struct_mutex);
15569
	intel_cleanup_gt_powersave(dev);
15570
	mutex_unlock(&dev->struct_mutex);
2327 Serge 15571
#endif
15572
}
15573
 
15574
/*
3031 serge 15575
 * Return which encoder is currently attached for connector.
2327 Serge 15576
 */
3031 serge 15577
struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
2327 Serge 15578
{
3031 serge 15579
	return &intel_attached_encoder(connector)->base;
15580
}
2327 Serge 15581
 
3031 serge 15582
void intel_connector_attach_encoder(struct intel_connector *connector,
15583
				    struct intel_encoder *encoder)
15584
{
15585
	connector->encoder = encoder;
15586
	drm_mode_connector_attach_encoder(&connector->base,
15587
					  &encoder->base);
2327 Serge 15588
}
15589
 
15590
/*
3031 serge 15591
 * set vga decode state - true == enable VGA decode
2327 Serge 15592
 */
3031 serge 15593
int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
2327 Serge 15594
{
2330 Serge 15595
	struct drm_i915_private *dev_priv = dev->dev_private;
4539 Serge 15596
	unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
3031 serge 15597
	u16 gmch_ctrl;
2327 Serge 15598
 
5060 serge 15599
	if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15600
		DRM_ERROR("failed to read control word\n");
15601
		return -EIO;
15602
	}
15603
 
15604
	if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15605
		return 0;
15606
 
3031 serge 15607
	if (state)
15608
		gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
2330 Serge 15609
	else
3031 serge 15610
		gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
5060 serge 15611
 
15612
	if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15613
		DRM_ERROR("failed to write control word\n");
15614
		return -EIO;
15615
	}
15616
 
3031 serge 15617
	return 0;
2330 Serge 15618
}
15619
 
3031 serge 15620
#ifdef CONFIG_DEBUG_FS
2327 Serge 15621
 
3031 serge 15622
struct intel_display_error_state {
4104 Serge 15623
 
15624
	u32 power_well_driver;
15625
 
15626
	int num_transcoders;
15627
 
3031 serge 15628
	struct intel_cursor_error_state {
15629
		u32 control;
15630
		u32 position;
15631
		u32 base;
15632
		u32 size;
15633
	} cursor[I915_MAX_PIPES];
2327 Serge 15634
 
3031 serge 15635
	struct intel_pipe_error_state {
4560 Serge 15636
		bool power_domain_on;
3031 serge 15637
		u32 source;
5060 serge 15638
		u32 stat;
3031 serge 15639
	} pipe[I915_MAX_PIPES];
2327 Serge 15640
 
3031 serge 15641
	struct intel_plane_error_state {
15642
		u32 control;
15643
		u32 stride;
15644
		u32 size;
15645
		u32 pos;
15646
		u32 addr;
15647
		u32 surface;
15648
		u32 tile_offset;
15649
	} plane[I915_MAX_PIPES];
4104 Serge 15650
 
15651
	struct intel_transcoder_error_state {
4560 Serge 15652
		bool power_domain_on;
4104 Serge 15653
		enum transcoder cpu_transcoder;
15654
 
15655
		u32 conf;
15656
 
15657
		u32 htotal;
15658
		u32 hblank;
15659
		u32 hsync;
15660
		u32 vtotal;
15661
		u32 vblank;
15662
		u32 vsync;
15663
	} transcoder[4];
3031 serge 15664
};
2327 Serge 15665
 
3031 serge 15666
struct intel_display_error_state *
15667
intel_display_capture_error_state(struct drm_device *dev)
15668
{
5060 serge 15669
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 15670
	struct intel_display_error_state *error;
4104 Serge 15671
	int transcoders[] = {
15672
		TRANSCODER_A,
15673
		TRANSCODER_B,
15674
		TRANSCODER_C,
15675
		TRANSCODER_EDP,
15676
	};
3031 serge 15677
	int i;
2327 Serge 15678
 
4104 Serge 15679
	if (INTEL_INFO(dev)->num_pipes == 0)
15680
		return NULL;
15681
 
4560 Serge 15682
	error = kzalloc(sizeof(*error), GFP_ATOMIC);
3031 serge 15683
	if (error == NULL)
15684
		return NULL;
2327 Serge 15685
 
4560 Serge 15686
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4104 Serge 15687
		error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15688
 
5354 serge 15689
	for_each_pipe(dev_priv, i) {
4560 Serge 15690
		error->pipe[i].power_domain_on =
5354 serge 15691
			__intel_display_power_is_enabled(dev_priv,
6084 serge 15692
							 POWER_DOMAIN_PIPE(i));
4560 Serge 15693
		if (!error->pipe[i].power_domain_on)
15694
			continue;
15695
 
3031 serge 15696
		error->cursor[i].control = I915_READ(CURCNTR(i));
15697
		error->cursor[i].position = I915_READ(CURPOS(i));
15698
		error->cursor[i].base = I915_READ(CURBASE(i));
2327 Serge 15699
 
3031 serge 15700
		error->plane[i].control = I915_READ(DSPCNTR(i));
15701
		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
3746 Serge 15702
		if (INTEL_INFO(dev)->gen <= 3) {
6084 serge 15703
			error->plane[i].size = I915_READ(DSPSIZE(i));
15704
			error->plane[i].pos = I915_READ(DSPPOS(i));
3746 Serge 15705
		}
15706
		if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
6084 serge 15707
			error->plane[i].addr = I915_READ(DSPADDR(i));
3031 serge 15708
		if (INTEL_INFO(dev)->gen >= 4) {
15709
			error->plane[i].surface = I915_READ(DSPSURF(i));
15710
			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15711
		}
2327 Serge 15712
 
3031 serge 15713
		error->pipe[i].source = I915_READ(PIPESRC(i));
5060 serge 15714
 
15715
		if (HAS_GMCH_DISPLAY(dev))
15716
			error->pipe[i].stat = I915_READ(PIPESTAT(i));
3031 serge 15717
	}
2327 Serge 15718
 
4104 Serge 15719
	error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15720
	if (HAS_DDI(dev_priv->dev))
15721
		error->num_transcoders++; /* Account for eDP. */
15722
 
15723
	for (i = 0; i < error->num_transcoders; i++) {
15724
		enum transcoder cpu_transcoder = transcoders[i];
15725
 
4560 Serge 15726
		error->transcoder[i].power_domain_on =
5354 serge 15727
			__intel_display_power_is_enabled(dev_priv,
4560 Serge 15728
				POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15729
		if (!error->transcoder[i].power_domain_on)
15730
			continue;
15731
 
4104 Serge 15732
		error->transcoder[i].cpu_transcoder = cpu_transcoder;
15733
 
15734
		error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15735
		error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15736
		error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15737
		error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15738
		error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15739
		error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15740
		error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15741
	}
15742
 
3031 serge 15743
	return error;
2330 Serge 15744
}
2327 Serge 15745
 
4104 Serge 15746
#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15747
 
3031 serge 15748
void
4104 Serge 15749
intel_display_print_error_state(struct drm_i915_error_state_buf *m,
3031 serge 15750
				struct drm_device *dev,
15751
				struct intel_display_error_state *error)
2332 Serge 15752
{
5354 serge 15753
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 15754
	int i;
2330 Serge 15755
 
4104 Serge 15756
	if (!error)
15757
		return;
15758
 
15759
	err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
4560 Serge 15760
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4104 Serge 15761
		err_printf(m, "PWR_WELL_CTL2: %08x\n",
15762
			   error->power_well_driver);
5354 serge 15763
	for_each_pipe(dev_priv, i) {
4104 Serge 15764
		err_printf(m, "Pipe [%d]:\n", i);
4560 Serge 15765
		err_printf(m, "  Power: %s\n",
15766
			   error->pipe[i].power_domain_on ? "on" : "off");
4104 Serge 15767
		err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
5060 serge 15768
		err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
2332 Serge 15769
 
4104 Serge 15770
		err_printf(m, "Plane [%d]:\n", i);
15771
		err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15772
		err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
3746 Serge 15773
		if (INTEL_INFO(dev)->gen <= 3) {
4104 Serge 15774
			err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15775
			err_printf(m, "  POS: %08x\n", error->plane[i].pos);
3746 Serge 15776
		}
15777
		if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
4104 Serge 15778
			err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
3031 serge 15779
		if (INTEL_INFO(dev)->gen >= 4) {
4104 Serge 15780
			err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15781
			err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
3031 serge 15782
		}
2332 Serge 15783
 
4104 Serge 15784
		err_printf(m, "Cursor [%d]:\n", i);
15785
		err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15786
		err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15787
		err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
3031 serge 15788
	}
4104 Serge 15789
 
15790
	for (i = 0; i < error->num_transcoders; i++) {
4560 Serge 15791
		err_printf(m, "CPU transcoder: %c\n",
4104 Serge 15792
			   transcoder_name(error->transcoder[i].cpu_transcoder));
4560 Serge 15793
		err_printf(m, "  Power: %s\n",
15794
			   error->transcoder[i].power_domain_on ? "on" : "off");
4104 Serge 15795
		err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15796
		err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15797
		err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15798
		err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15799
		err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15800
		err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15801
		err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15802
	}
2327 Serge 15803
}
3031 serge 15804
#endif
5354 serge 15805
 
15806
void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15807
{
15808
	struct intel_crtc *crtc;
15809
 
15810
	for_each_intel_crtc(dev, crtc) {
15811
		struct intel_unpin_work *work;
15812
 
15813
		spin_lock_irq(&dev->event_lock);
15814
 
15815
		work = crtc->unpin_work;
15816
 
15817
		if (work && work->event &&
15818
		    work->event->base.file_priv == file) {
15819
			kfree(work->event);
15820
			work->event = NULL;
15821
		}
15822
 
15823
		spin_unlock_irq(&dev->event_lock);
15824
	}
15825
}