Subversion Repositories Kolibri OS

Rev

Rev 5367 | Rev 6088 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2327 Serge 1
/*
2
 * Copyright © 2006-2007 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21
 * DEALINGS IN THE SOFTWARE.
22
 *
23
 * Authors:
6084 serge 24
 *	Eric Anholt 
2327 Serge 25
 */
26
 
5097 serge 27
#include 
2327 Serge 28
#include 
29
//#include 
30
#include 
31
#include 
2330 Serge 32
#include 
5354 serge 33
#include 
2342 Serge 34
#include 
3031 serge 35
#include 
2327 Serge 36
#include "intel_drv.h"
3031 serge 37
#include 
2327 Serge 38
#include "i915_drv.h"
2351 Serge 39
#include "i915_trace.h"
6084 serge 40
#include 
41
#include 
3031 serge 42
#include 
43
#include 
5060 serge 44
#include 
45
#include 
46
#include 
2327 Serge 47
 
5060 serge 48
/* Primary plane formats for gen <= 3 */
6084 serge 49
static const uint32_t i8xx_primary_formats[] = {
50
	DRM_FORMAT_C8,
51
	DRM_FORMAT_RGB565,
5060 serge 52
	DRM_FORMAT_XRGB1555,
6084 serge 53
	DRM_FORMAT_XRGB8888,
5060 serge 54
};
55
 
56
/* Primary plane formats for gen >= 4 */
6084 serge 57
static const uint32_t i965_primary_formats[] = {
58
	DRM_FORMAT_C8,
59
	DRM_FORMAT_RGB565,
60
	DRM_FORMAT_XRGB8888,
5060 serge 61
	DRM_FORMAT_XBGR8888,
6084 serge 62
	DRM_FORMAT_XRGB2101010,
63
	DRM_FORMAT_XBGR2101010,
64
};
65
 
66
static const uint32_t skl_primary_formats[] = {
67
	DRM_FORMAT_C8,
68
	DRM_FORMAT_RGB565,
69
	DRM_FORMAT_XRGB8888,
70
	DRM_FORMAT_XBGR8888,
71
	DRM_FORMAT_ARGB8888,
5060 serge 72
	DRM_FORMAT_ABGR8888,
73
	DRM_FORMAT_XRGB2101010,
74
	DRM_FORMAT_XBGR2101010,
6084 serge 75
	DRM_FORMAT_YUYV,
76
	DRM_FORMAT_YVYU,
77
	DRM_FORMAT_UYVY,
78
	DRM_FORMAT_VYUY,
5060 serge 79
};
80
 
81
/* Cursor formats */
82
static const uint32_t intel_cursor_formats[] = {
83
	DRM_FORMAT_ARGB8888,
84
};
85
 
86
void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
2327 Serge 87
 
4104 Serge 88
static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
6084 serge 89
				struct intel_crtc_state *pipe_config);
4560 Serge 90
static void ironlake_pch_clock_get(struct intel_crtc *crtc,
6084 serge 91
				   struct intel_crtc_state *pipe_config);
2327 Serge 92
 
5060 serge 93
static int intel_framebuffer_init(struct drm_device *dev,
94
				  struct intel_framebuffer *ifb,
95
				  struct drm_mode_fb_cmd2 *mode_cmd,
96
				  struct drm_i915_gem_object *obj);
97
static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98
static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99
static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5354 serge 100
					 struct intel_link_m_n *m_n,
101
					 struct intel_link_m_n *m2_n2);
5060 serge 102
static void ironlake_set_pipeconf(struct drm_crtc *crtc);
103
static void haswell_set_pipeconf(struct drm_crtc *crtc);
104
static void intel_set_pipe_csc(struct drm_crtc *crtc);
5354 serge 105
static void vlv_prepare_pll(struct intel_crtc *crtc,
6084 serge 106
			    const struct intel_crtc_state *pipe_config);
5354 serge 107
static void chv_prepare_pll(struct intel_crtc *crtc,
6084 serge 108
			    const struct intel_crtc_state *pipe_config);
109
static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110
static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111
static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112
	struct intel_crtc_state *crtc_state);
113
static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114
			   int num_connectors);
115
static void skylake_pfit_enable(struct intel_crtc *crtc);
116
static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117
static void ironlake_pfit_enable(struct intel_crtc *crtc);
118
static void intel_modeset_setup_hw_state(struct drm_device *dev);
119
static void intel_pre_disable_primary(struct drm_crtc *crtc);
4104 Serge 120
 
2327 Serge 121
typedef struct {
6084 serge 122
	int	min, max;
2327 Serge 123
} intel_range_t;
124
 
125
typedef struct {
6084 serge 126
	int	dot_limit;
127
	int	p2_slow, p2_fast;
2327 Serge 128
} intel_p2_t;
129
 
130
typedef struct intel_limit intel_limit_t;
131
struct intel_limit {
6084 serge 132
	intel_range_t   dot, vco, n, m, m1, m2, p, p1;
133
	intel_p2_t	    p2;
2327 Serge 134
};
135
 
6084 serge 136
/* returns HPLL frequency in kHz */
137
static int valleyview_get_vco(struct drm_i915_private *dev_priv)
138
{
139
	int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
140
 
141
	/* Obtain SKU information */
142
	mutex_lock(&dev_priv->sb_lock);
143
	hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
144
		CCK_FUSE_HPLL_FREQ_MASK;
145
	mutex_unlock(&dev_priv->sb_lock);
146
 
147
	return vco_freq[hpll_freq] * 1000;
148
}
149
 
150
static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
151
				  const char *name, u32 reg)
152
{
153
	u32 val;
154
	int divider;
155
 
156
	if (dev_priv->hpll_freq == 0)
157
		dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
158
 
159
	mutex_lock(&dev_priv->sb_lock);
160
	val = vlv_cck_read(dev_priv, reg);
161
	mutex_unlock(&dev_priv->sb_lock);
162
 
163
	divider = val & CCK_FREQUENCY_VALUES;
164
 
165
	WARN((val & CCK_FREQUENCY_STATUS) !=
166
	     (divider << CCK_FREQUENCY_STATUS_SHIFT),
167
	     "%s change in progress\n", name);
168
 
169
	return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
170
}
171
 
3243 Serge 172
int
173
intel_pch_rawclk(struct drm_device *dev)
174
{
175
	struct drm_i915_private *dev_priv = dev->dev_private;
176
 
177
	WARN_ON(!HAS_PCH_SPLIT(dev));
178
 
179
	return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
180
}
181
 
6084 serge 182
/* hrawclock is 1/4 the FSB frequency */
183
int intel_hrawclk(struct drm_device *dev)
184
{
185
	struct drm_i915_private *dev_priv = dev->dev_private;
186
	uint32_t clkcfg;
187
 
188
	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
189
	if (IS_VALLEYVIEW(dev))
190
		return 200;
191
 
192
	clkcfg = I915_READ(CLKCFG);
193
	switch (clkcfg & CLKCFG_FSB_MASK) {
194
	case CLKCFG_FSB_400:
195
		return 100;
196
	case CLKCFG_FSB_533:
197
		return 133;
198
	case CLKCFG_FSB_667:
199
		return 166;
200
	case CLKCFG_FSB_800:
201
		return 200;
202
	case CLKCFG_FSB_1067:
203
		return 266;
204
	case CLKCFG_FSB_1333:
205
		return 333;
206
	/* these two are just a guess; one of them might be right */
207
	case CLKCFG_FSB_1600:
208
	case CLKCFG_FSB_1600_ALT:
209
		return 400;
210
	default:
211
		return 133;
212
	}
213
}
214
 
215
static void intel_update_czclk(struct drm_i915_private *dev_priv)
216
{
217
	if (!IS_VALLEYVIEW(dev_priv))
218
		return;
219
 
220
	dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
221
						      CCK_CZ_CLOCK_CONTROL);
222
 
223
	DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
224
}
225
 
2327 Serge 226
static inline u32 /* units of 100MHz */
227
intel_fdi_link_freq(struct drm_device *dev)
228
{
229
	if (IS_GEN5(dev)) {
230
		struct drm_i915_private *dev_priv = dev->dev_private;
231
		return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
232
	} else
233
		return 27;
234
}
235
 
4104 Serge 236
static const intel_limit_t intel_limits_i8xx_dac = {
237
	.dot = { .min = 25000, .max = 350000 },
4560 Serge 238
	.vco = { .min = 908000, .max = 1512000 },
239
	.n = { .min = 2, .max = 16 },
4104 Serge 240
	.m = { .min = 96, .max = 140 },
241
	.m1 = { .min = 18, .max = 26 },
242
	.m2 = { .min = 6, .max = 16 },
243
	.p = { .min = 4, .max = 128 },
244
	.p1 = { .min = 2, .max = 33 },
245
	.p2 = { .dot_limit = 165000,
246
		.p2_slow = 4, .p2_fast = 2 },
247
};
248
 
2327 Serge 249
static const intel_limit_t intel_limits_i8xx_dvo = {
6084 serge 250
	.dot = { .min = 25000, .max = 350000 },
4560 Serge 251
	.vco = { .min = 908000, .max = 1512000 },
252
	.n = { .min = 2, .max = 16 },
6084 serge 253
	.m = { .min = 96, .max = 140 },
254
	.m1 = { .min = 18, .max = 26 },
255
	.m2 = { .min = 6, .max = 16 },
256
	.p = { .min = 4, .max = 128 },
257
	.p1 = { .min = 2, .max = 33 },
2327 Serge 258
	.p2 = { .dot_limit = 165000,
4104 Serge 259
		.p2_slow = 4, .p2_fast = 4 },
2327 Serge 260
};
261
 
262
static const intel_limit_t intel_limits_i8xx_lvds = {
6084 serge 263
	.dot = { .min = 25000, .max = 350000 },
4560 Serge 264
	.vco = { .min = 908000, .max = 1512000 },
265
	.n = { .min = 2, .max = 16 },
6084 serge 266
	.m = { .min = 96, .max = 140 },
267
	.m1 = { .min = 18, .max = 26 },
268
	.m2 = { .min = 6, .max = 16 },
269
	.p = { .min = 4, .max = 128 },
270
	.p1 = { .min = 1, .max = 6 },
2327 Serge 271
	.p2 = { .dot_limit = 165000,
272
		.p2_slow = 14, .p2_fast = 7 },
273
};
274
 
275
static const intel_limit_t intel_limits_i9xx_sdvo = {
6084 serge 276
	.dot = { .min = 20000, .max = 400000 },
277
	.vco = { .min = 1400000, .max = 2800000 },
278
	.n = { .min = 1, .max = 6 },
279
	.m = { .min = 70, .max = 120 },
3480 Serge 280
	.m1 = { .min = 8, .max = 18 },
281
	.m2 = { .min = 3, .max = 7 },
6084 serge 282
	.p = { .min = 5, .max = 80 },
283
	.p1 = { .min = 1, .max = 8 },
2327 Serge 284
	.p2 = { .dot_limit = 200000,
285
		.p2_slow = 10, .p2_fast = 5 },
286
};
287
 
288
static const intel_limit_t intel_limits_i9xx_lvds = {
6084 serge 289
	.dot = { .min = 20000, .max = 400000 },
290
	.vco = { .min = 1400000, .max = 2800000 },
291
	.n = { .min = 1, .max = 6 },
292
	.m = { .min = 70, .max = 120 },
3480 Serge 293
	.m1 = { .min = 8, .max = 18 },
294
	.m2 = { .min = 3, .max = 7 },
6084 serge 295
	.p = { .min = 7, .max = 98 },
296
	.p1 = { .min = 1, .max = 8 },
2327 Serge 297
	.p2 = { .dot_limit = 112000,
298
		.p2_slow = 14, .p2_fast = 7 },
299
};
300
 
301
 
302
static const intel_limit_t intel_limits_g4x_sdvo = {
303
	.dot = { .min = 25000, .max = 270000 },
304
	.vco = { .min = 1750000, .max = 3500000},
305
	.n = { .min = 1, .max = 4 },
306
	.m = { .min = 104, .max = 138 },
307
	.m1 = { .min = 17, .max = 23 },
308
	.m2 = { .min = 5, .max = 11 },
309
	.p = { .min = 10, .max = 30 },
310
	.p1 = { .min = 1, .max = 3},
311
	.p2 = { .dot_limit = 270000,
312
		.p2_slow = 10,
313
		.p2_fast = 10
314
	},
315
};
316
 
317
static const intel_limit_t intel_limits_g4x_hdmi = {
318
	.dot = { .min = 22000, .max = 400000 },
319
	.vco = { .min = 1750000, .max = 3500000},
320
	.n = { .min = 1, .max = 4 },
321
	.m = { .min = 104, .max = 138 },
322
	.m1 = { .min = 16, .max = 23 },
323
	.m2 = { .min = 5, .max = 11 },
324
	.p = { .min = 5, .max = 80 },
325
	.p1 = { .min = 1, .max = 8},
326
	.p2 = { .dot_limit = 165000,
327
		.p2_slow = 10, .p2_fast = 5 },
328
};
329
 
330
static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
331
	.dot = { .min = 20000, .max = 115000 },
332
	.vco = { .min = 1750000, .max = 3500000 },
333
	.n = { .min = 1, .max = 3 },
334
	.m = { .min = 104, .max = 138 },
335
	.m1 = { .min = 17, .max = 23 },
336
	.m2 = { .min = 5, .max = 11 },
337
	.p = { .min = 28, .max = 112 },
338
	.p1 = { .min = 2, .max = 8 },
339
	.p2 = { .dot_limit = 0,
340
		.p2_slow = 14, .p2_fast = 14
341
	},
342
};
343
 
344
static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
345
	.dot = { .min = 80000, .max = 224000 },
346
	.vco = { .min = 1750000, .max = 3500000 },
347
	.n = { .min = 1, .max = 3 },
348
	.m = { .min = 104, .max = 138 },
349
	.m1 = { .min = 17, .max = 23 },
350
	.m2 = { .min = 5, .max = 11 },
351
	.p = { .min = 14, .max = 42 },
352
	.p1 = { .min = 2, .max = 6 },
353
	.p2 = { .dot_limit = 0,
354
		.p2_slow = 7, .p2_fast = 7
355
	},
356
};
357
 
358
static const intel_limit_t intel_limits_pineview_sdvo = {
6084 serge 359
	.dot = { .min = 20000, .max = 400000},
360
	.vco = { .min = 1700000, .max = 3500000 },
2327 Serge 361
	/* Pineview's Ncounter is a ring counter */
6084 serge 362
	.n = { .min = 3, .max = 6 },
363
	.m = { .min = 2, .max = 256 },
2327 Serge 364
	/* Pineview only has one combined m divider, which we treat as m2. */
6084 serge 365
	.m1 = { .min = 0, .max = 0 },
366
	.m2 = { .min = 0, .max = 254 },
367
	.p = { .min = 5, .max = 80 },
368
	.p1 = { .min = 1, .max = 8 },
2327 Serge 369
	.p2 = { .dot_limit = 200000,
370
		.p2_slow = 10, .p2_fast = 5 },
371
};
372
 
373
static const intel_limit_t intel_limits_pineview_lvds = {
6084 serge 374
	.dot = { .min = 20000, .max = 400000 },
375
	.vco = { .min = 1700000, .max = 3500000 },
376
	.n = { .min = 3, .max = 6 },
377
	.m = { .min = 2, .max = 256 },
378
	.m1 = { .min = 0, .max = 0 },
379
	.m2 = { .min = 0, .max = 254 },
380
	.p = { .min = 7, .max = 112 },
381
	.p1 = { .min = 1, .max = 8 },
2327 Serge 382
	.p2 = { .dot_limit = 112000,
383
		.p2_slow = 14, .p2_fast = 14 },
384
};
385
 
386
/* Ironlake / Sandybridge
387
 *
388
 * We calculate clock using (register_value + 2) for N/M1/M2, so here
389
 * the range value for them is (actual_value - 2).
390
 */
391
static const intel_limit_t intel_limits_ironlake_dac = {
392
	.dot = { .min = 25000, .max = 350000 },
393
	.vco = { .min = 1760000, .max = 3510000 },
394
	.n = { .min = 1, .max = 5 },
395
	.m = { .min = 79, .max = 127 },
396
	.m1 = { .min = 12, .max = 22 },
397
	.m2 = { .min = 5, .max = 9 },
398
	.p = { .min = 5, .max = 80 },
399
	.p1 = { .min = 1, .max = 8 },
400
	.p2 = { .dot_limit = 225000,
401
		.p2_slow = 10, .p2_fast = 5 },
402
};
403
 
404
static const intel_limit_t intel_limits_ironlake_single_lvds = {
405
	.dot = { .min = 25000, .max = 350000 },
406
	.vco = { .min = 1760000, .max = 3510000 },
407
	.n = { .min = 1, .max = 3 },
408
	.m = { .min = 79, .max = 118 },
409
	.m1 = { .min = 12, .max = 22 },
410
	.m2 = { .min = 5, .max = 9 },
411
	.p = { .min = 28, .max = 112 },
412
	.p1 = { .min = 2, .max = 8 },
413
	.p2 = { .dot_limit = 225000,
414
		.p2_slow = 14, .p2_fast = 14 },
415
};
416
 
417
static const intel_limit_t intel_limits_ironlake_dual_lvds = {
418
	.dot = { .min = 25000, .max = 350000 },
419
	.vco = { .min = 1760000, .max = 3510000 },
420
	.n = { .min = 1, .max = 3 },
421
	.m = { .min = 79, .max = 127 },
422
	.m1 = { .min = 12, .max = 22 },
423
	.m2 = { .min = 5, .max = 9 },
424
	.p = { .min = 14, .max = 56 },
425
	.p1 = { .min = 2, .max = 8 },
426
	.p2 = { .dot_limit = 225000,
427
		.p2_slow = 7, .p2_fast = 7 },
428
};
429
 
430
/* LVDS 100mhz refclk limits. */
431
static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
432
	.dot = { .min = 25000, .max = 350000 },
433
	.vco = { .min = 1760000, .max = 3510000 },
434
	.n = { .min = 1, .max = 2 },
435
	.m = { .min = 79, .max = 126 },
436
	.m1 = { .min = 12, .max = 22 },
437
	.m2 = { .min = 5, .max = 9 },
438
	.p = { .min = 28, .max = 112 },
2342 Serge 439
	.p1 = { .min = 2, .max = 8 },
2327 Serge 440
	.p2 = { .dot_limit = 225000,
441
		.p2_slow = 14, .p2_fast = 14 },
442
};
443
 
444
static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
445
	.dot = { .min = 25000, .max = 350000 },
446
	.vco = { .min = 1760000, .max = 3510000 },
447
	.n = { .min = 1, .max = 3 },
448
	.m = { .min = 79, .max = 126 },
449
	.m1 = { .min = 12, .max = 22 },
450
	.m2 = { .min = 5, .max = 9 },
451
	.p = { .min = 14, .max = 42 },
2342 Serge 452
	.p1 = { .min = 2, .max = 6 },
2327 Serge 453
	.p2 = { .dot_limit = 225000,
454
		.p2_slow = 7, .p2_fast = 7 },
455
};
456
 
4560 Serge 457
static const intel_limit_t intel_limits_vlv = {
458
	 /*
459
	  * These are the data rate limits (measured in fast clocks)
460
	  * since those are the strictest limits we have. The fast
461
	  * clock and actual rate limits are more relaxed, so checking
462
	  * them would make no difference.
463
	  */
464
	.dot = { .min = 25000 * 5, .max = 270000 * 5 },
3031 serge 465
	.vco = { .min = 4000000, .max = 6000000 },
466
	.n = { .min = 1, .max = 7 },
467
	.m1 = { .min = 2, .max = 3 },
468
	.m2 = { .min = 11, .max = 156 },
469
	.p1 = { .min = 2, .max = 3 },
4560 Serge 470
	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
3031 serge 471
};
472
 
5060 serge 473
static const intel_limit_t intel_limits_chv = {
474
	/*
475
	 * These are the data rate limits (measured in fast clocks)
476
	 * since those are the strictest limits we have.  The fast
477
	 * clock and actual rate limits are more relaxed, so checking
478
	 * them would make no difference.
479
	 */
480
	.dot = { .min = 25000 * 5, .max = 540000 * 5},
6084 serge 481
	.vco = { .min = 4800000, .max = 6480000 },
5060 serge 482
	.n = { .min = 1, .max = 1 },
483
	.m1 = { .min = 2, .max = 2 },
484
	.m2 = { .min = 24 << 22, .max = 175 << 22 },
485
	.p1 = { .min = 2, .max = 4 },
486
	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
487
};
488
 
6084 serge 489
static const intel_limit_t intel_limits_bxt = {
490
	/* FIXME: find real dot limits */
491
	.dot = { .min = 0, .max = INT_MAX },
492
	.vco = { .min = 4800000, .max = 6700000 },
493
	.n = { .min = 1, .max = 1 },
494
	.m1 = { .min = 2, .max = 2 },
495
	/* FIXME: find real m2 limits */
496
	.m2 = { .min = 2 << 22, .max = 255 << 22 },
497
	.p1 = { .min = 2, .max = 4 },
498
	.p2 = { .p2_slow = 1, .p2_fast = 20 },
499
};
500
 
501
static bool
502
needs_modeset(struct drm_crtc_state *state)
4560 Serge 503
{
6084 serge 504
	return drm_atomic_crtc_needs_modeset(state);
4560 Serge 505
}
3031 serge 506
 
4560 Serge 507
/**
508
 * Returns whether any output on the specified pipe is of the specified type
509
 */
5354 serge 510
bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
4560 Serge 511
{
5354 serge 512
	struct drm_device *dev = crtc->base.dev;
4560 Serge 513
	struct intel_encoder *encoder;
514
 
5354 serge 515
	for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4560 Serge 516
		if (encoder->type == type)
517
			return true;
518
 
519
	return false;
520
}
521
 
5354 serge 522
/**
523
 * Returns whether any output on the specified pipe will have the specified
524
 * type after a staged modeset is complete, i.e., the same as
525
 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
526
 * encoder->crtc.
527
 */
6084 serge 528
static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
529
				      int type)
5354 serge 530
{
6084 serge 531
	struct drm_atomic_state *state = crtc_state->base.state;
532
	struct drm_connector *connector;
533
	struct drm_connector_state *connector_state;
5354 serge 534
	struct intel_encoder *encoder;
6084 serge 535
	int i, num_connectors = 0;
5354 serge 536
 
6084 serge 537
	for_each_connector_in_state(state, connector, connector_state, i) {
538
		if (connector_state->crtc != crtc_state->base.crtc)
539
			continue;
540
 
541
		num_connectors++;
542
 
543
		encoder = to_intel_encoder(connector_state->best_encoder);
544
		if (encoder->type == type)
5354 serge 545
			return true;
6084 serge 546
	}
5354 serge 547
 
6084 serge 548
	WARN_ON(num_connectors == 0);
549
 
5354 serge 550
	return false;
551
}
552
 
6084 serge 553
static const intel_limit_t *
554
intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
2327 Serge 555
{
6084 serge 556
	struct drm_device *dev = crtc_state->base.crtc->dev;
2327 Serge 557
	const intel_limit_t *limit;
558
 
6084 serge 559
	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
3480 Serge 560
		if (intel_is_dual_link_lvds(dev)) {
2327 Serge 561
			if (refclk == 100000)
562
				limit = &intel_limits_ironlake_dual_lvds_100m;
563
			else
564
				limit = &intel_limits_ironlake_dual_lvds;
565
		} else {
566
			if (refclk == 100000)
567
				limit = &intel_limits_ironlake_single_lvds_100m;
568
			else
569
				limit = &intel_limits_ironlake_single_lvds;
570
		}
4104 Serge 571
	} else
2327 Serge 572
		limit = &intel_limits_ironlake_dac;
573
 
574
	return limit;
575
}
576
 
6084 serge 577
static const intel_limit_t *
578
intel_g4x_limit(struct intel_crtc_state *crtc_state)
2327 Serge 579
{
6084 serge 580
	struct drm_device *dev = crtc_state->base.crtc->dev;
2327 Serge 581
	const intel_limit_t *limit;
582
 
6084 serge 583
	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
3480 Serge 584
		if (intel_is_dual_link_lvds(dev))
2327 Serge 585
			limit = &intel_limits_g4x_dual_channel_lvds;
586
		else
587
			limit = &intel_limits_g4x_single_channel_lvds;
6084 serge 588
	} else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
589
		   intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
2327 Serge 590
		limit = &intel_limits_g4x_hdmi;
6084 serge 591
	} else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
2327 Serge 592
		limit = &intel_limits_g4x_sdvo;
593
	} else /* The option is for other outputs */
594
		limit = &intel_limits_i9xx_sdvo;
595
 
596
	return limit;
597
}
598
 
6084 serge 599
static const intel_limit_t *
600
intel_limit(struct intel_crtc_state *crtc_state, int refclk)
2327 Serge 601
{
6084 serge 602
	struct drm_device *dev = crtc_state->base.crtc->dev;
2327 Serge 603
	const intel_limit_t *limit;
604
 
6084 serge 605
	if (IS_BROXTON(dev))
606
		limit = &intel_limits_bxt;
607
	else if (HAS_PCH_SPLIT(dev))
608
		limit = intel_ironlake_limit(crtc_state, refclk);
2327 Serge 609
	else if (IS_G4X(dev)) {
6084 serge 610
		limit = intel_g4x_limit(crtc_state);
2327 Serge 611
	} else if (IS_PINEVIEW(dev)) {
6084 serge 612
		if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
2327 Serge 613
			limit = &intel_limits_pineview_lvds;
614
		else
615
			limit = &intel_limits_pineview_sdvo;
5060 serge 616
	} else if (IS_CHERRYVIEW(dev)) {
617
		limit = &intel_limits_chv;
3031 serge 618
	} else if (IS_VALLEYVIEW(dev)) {
4560 Serge 619
		limit = &intel_limits_vlv;
2327 Serge 620
	} else if (!IS_GEN2(dev)) {
6084 serge 621
		if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
2327 Serge 622
			limit = &intel_limits_i9xx_lvds;
623
		else
624
			limit = &intel_limits_i9xx_sdvo;
625
	} else {
6084 serge 626
		if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
2327 Serge 627
			limit = &intel_limits_i8xx_lvds;
6084 serge 628
		else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
4104 Serge 629
			limit = &intel_limits_i8xx_dvo;
2327 Serge 630
		else
4104 Serge 631
			limit = &intel_limits_i8xx_dac;
2327 Serge 632
	}
633
	return limit;
634
}
635
 
6084 serge 636
/*
637
 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
638
 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
639
 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
640
 * The helpers' return value is the rate of the clock that is fed to the
641
 * display engine's pipe which can be the above fast dot clock rate or a
642
 * divided-down version of it.
643
 */
2327 Serge 644
/* m1 is reserved as 0 in Pineview, n is a ring counter */
6084 serge 645
static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
2327 Serge 646
{
647
	clock->m = clock->m2 + 2;
648
	clock->p = clock->p1 * clock->p2;
4560 Serge 649
	if (WARN_ON(clock->n == 0 || clock->p == 0))
6084 serge 650
		return 0;
4560 Serge 651
	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
652
	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6084 serge 653
 
654
	return clock->dot;
2327 Serge 655
}
656
 
4104 Serge 657
static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
2327 Serge 658
{
4104 Serge 659
	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
660
}
661
 
6084 serge 662
static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
4104 Serge 663
{
664
	clock->m = i9xx_dpll_compute_m(clock);
2327 Serge 665
	clock->p = clock->p1 * clock->p2;
4560 Serge 666
	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
6084 serge 667
		return 0;
4560 Serge 668
	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
669
	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6084 serge 670
 
671
	return clock->dot;
2327 Serge 672
}
673
 
6084 serge 674
static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
5060 serge 675
{
676
	clock->m = clock->m1 * clock->m2;
677
	clock->p = clock->p1 * clock->p2;
678
	if (WARN_ON(clock->n == 0 || clock->p == 0))
6084 serge 679
		return 0;
680
	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
681
	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
682
 
683
	return clock->dot / 5;
684
}
685
 
686
int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
687
{
688
	clock->m = clock->m1 * clock->m2;
689
	clock->p = clock->p1 * clock->p2;
690
	if (WARN_ON(clock->n == 0 || clock->p == 0))
691
		return 0;
5060 serge 692
	clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
693
			clock->n << 22);
694
	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6084 serge 695
 
696
	return clock->dot / 5;
5060 serge 697
}
698
 
2327 Serge 699
#define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
700
/**
701
 * Returns whether the given set of divisors are valid for a given refclk with
702
 * the given connectors.
703
 */
704
 
705
static bool intel_PLL_is_valid(struct drm_device *dev,
706
			       const intel_limit_t *limit,
707
			       const intel_clock_t *clock)
708
{
4560 Serge 709
	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
710
		INTELPllInvalid("n out of range\n");
2327 Serge 711
	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
2342 Serge 712
		INTELPllInvalid("p1 out of range\n");
2327 Serge 713
	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
2342 Serge 714
		INTELPllInvalid("m2 out of range\n");
2327 Serge 715
	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
2342 Serge 716
		INTELPllInvalid("m1 out of range\n");
4560 Serge 717
 
6084 serge 718
	if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
4560 Serge 719
		if (clock->m1 <= clock->m2)
6084 serge 720
			INTELPllInvalid("m1 <= m2\n");
4560 Serge 721
 
6084 serge 722
	if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
4560 Serge 723
		if (clock->p < limit->p.min || limit->p.max < clock->p)
724
			INTELPllInvalid("p out of range\n");
6084 serge 725
		if (clock->m < limit->m.min || limit->m.max < clock->m)
726
			INTELPllInvalid("m out of range\n");
4560 Serge 727
	}
728
 
2327 Serge 729
	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
2342 Serge 730
		INTELPllInvalid("vco out of range\n");
2327 Serge 731
	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
732
	 * connector, etc., rather than just a single range.
733
	 */
734
	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
2342 Serge 735
		INTELPllInvalid("dot out of range\n");
2327 Serge 736
 
737
	return true;
738
}
739
 
6084 serge 740
static int
741
i9xx_select_p2_div(const intel_limit_t *limit,
742
		   const struct intel_crtc_state *crtc_state,
743
		   int target)
2327 Serge 744
{
6084 serge 745
	struct drm_device *dev = crtc_state->base.crtc->dev;
2327 Serge 746
 
6084 serge 747
	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
2327 Serge 748
		/*
3480 Serge 749
		 * For LVDS just rely on its current settings for dual-channel.
750
		 * We haven't figured out how to reliably set up different
751
		 * single/dual channel state, if we even can.
2327 Serge 752
		 */
3480 Serge 753
		if (intel_is_dual_link_lvds(dev))
6084 serge 754
			return limit->p2.p2_fast;
2327 Serge 755
		else
6084 serge 756
			return limit->p2.p2_slow;
2327 Serge 757
	} else {
758
		if (target < limit->p2.dot_limit)
6084 serge 759
			return limit->p2.p2_slow;
2327 Serge 760
		else
6084 serge 761
			return limit->p2.p2_fast;
2327 Serge 762
	}
6084 serge 763
}
2327 Serge 764
 
6084 serge 765
static bool
766
i9xx_find_best_dpll(const intel_limit_t *limit,
767
		    struct intel_crtc_state *crtc_state,
768
		    int target, int refclk, intel_clock_t *match_clock,
769
		    intel_clock_t *best_clock)
770
{
771
	struct drm_device *dev = crtc_state->base.crtc->dev;
772
	intel_clock_t clock;
773
	int err = target;
774
 
2342 Serge 775
	memset(best_clock, 0, sizeof(*best_clock));
2327 Serge 776
 
6084 serge 777
	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
778
 
2327 Serge 779
	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
780
	     clock.m1++) {
781
		for (clock.m2 = limit->m2.min;
782
		     clock.m2 <= limit->m2.max; clock.m2++) {
4104 Serge 783
			if (clock.m2 >= clock.m1)
2327 Serge 784
				break;
785
			for (clock.n = limit->n.min;
786
			     clock.n <= limit->n.max; clock.n++) {
787
				for (clock.p1 = limit->p1.min;
788
					clock.p1 <= limit->p1.max; clock.p1++) {
789
					int this_err;
790
 
6084 serge 791
					i9xx_calc_dpll_params(refclk, &clock);
2327 Serge 792
					if (!intel_PLL_is_valid(dev, limit,
793
								&clock))
794
						continue;
3031 serge 795
					if (match_clock &&
796
					    clock.p != match_clock->p)
797
						continue;
2327 Serge 798
 
799
					this_err = abs(clock.dot - target);
800
					if (this_err < err) {
801
						*best_clock = clock;
802
						err = this_err;
803
					}
804
				}
805
			}
806
		}
807
	}
808
 
809
	return (err != target);
810
}
811
 
812
static bool
6084 serge 813
pnv_find_best_dpll(const intel_limit_t *limit,
814
		   struct intel_crtc_state *crtc_state,
4104 Serge 815
		   int target, int refclk, intel_clock_t *match_clock,
816
		   intel_clock_t *best_clock)
817
{
6084 serge 818
	struct drm_device *dev = crtc_state->base.crtc->dev;
4104 Serge 819
	intel_clock_t clock;
820
	int err = target;
821
 
822
	memset(best_clock, 0, sizeof(*best_clock));
823
 
6084 serge 824
	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
825
 
4104 Serge 826
	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
827
	     clock.m1++) {
828
		for (clock.m2 = limit->m2.min;
829
		     clock.m2 <= limit->m2.max; clock.m2++) {
830
			for (clock.n = limit->n.min;
831
			     clock.n <= limit->n.max; clock.n++) {
832
				for (clock.p1 = limit->p1.min;
833
					clock.p1 <= limit->p1.max; clock.p1++) {
834
					int this_err;
835
 
6084 serge 836
					pnv_calc_dpll_params(refclk, &clock);
4104 Serge 837
					if (!intel_PLL_is_valid(dev, limit,
838
								&clock))
839
						continue;
840
					if (match_clock &&
841
					    clock.p != match_clock->p)
842
						continue;
843
 
844
					this_err = abs(clock.dot - target);
845
					if (this_err < err) {
846
						*best_clock = clock;
847
						err = this_err;
848
					}
849
				}
850
			}
851
		}
852
	}
853
 
854
	return (err != target);
855
}
856
 
857
static bool
6084 serge 858
g4x_find_best_dpll(const intel_limit_t *limit,
859
		   struct intel_crtc_state *crtc_state,
860
		   int target, int refclk, intel_clock_t *match_clock,
861
		   intel_clock_t *best_clock)
2327 Serge 862
{
6084 serge 863
	struct drm_device *dev = crtc_state->base.crtc->dev;
2327 Serge 864
	intel_clock_t clock;
865
	int max_n;
6084 serge 866
	bool found = false;
2327 Serge 867
	/* approximately equals target * 0.00585 */
868
	int err_most = (target >> 8) + (target >> 9);
869
 
6084 serge 870
	memset(best_clock, 0, sizeof(*best_clock));
2327 Serge 871
 
6084 serge 872
	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
873
 
2327 Serge 874
	max_n = limit->n.max;
875
	/* based on hardware requirement, prefer smaller n to precision */
876
	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
877
		/* based on hardware requirement, prefere larger m1,m2 */
878
		for (clock.m1 = limit->m1.max;
879
		     clock.m1 >= limit->m1.min; clock.m1--) {
880
			for (clock.m2 = limit->m2.max;
881
			     clock.m2 >= limit->m2.min; clock.m2--) {
882
				for (clock.p1 = limit->p1.max;
883
				     clock.p1 >= limit->p1.min; clock.p1--) {
884
					int this_err;
885
 
6084 serge 886
					i9xx_calc_dpll_params(refclk, &clock);
2327 Serge 887
					if (!intel_PLL_is_valid(dev, limit,
888
								&clock))
889
						continue;
890
 
891
					this_err = abs(clock.dot - target);
892
					if (this_err < err_most) {
893
						*best_clock = clock;
894
						err_most = this_err;
895
						max_n = clock.n;
896
						found = true;
897
					}
898
				}
899
			}
900
		}
901
	}
902
	return found;
903
}
904
 
6084 serge 905
/*
906
 * Check if the calculated PLL configuration is more optimal compared to the
907
 * best configuration and error found so far. Return the calculated error.
908
 */
909
static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
910
			       const intel_clock_t *calculated_clock,
911
			       const intel_clock_t *best_clock,
912
			       unsigned int best_error_ppm,
913
			       unsigned int *error_ppm)
914
{
915
	/*
916
	 * For CHV ignore the error and consider only the P value.
917
	 * Prefer a bigger P value based on HW requirements.
918
	 */
919
	if (IS_CHERRYVIEW(dev)) {
920
		*error_ppm = 0;
921
 
922
		return calculated_clock->p > best_clock->p;
923
	}
924
 
925
	if (WARN_ON_ONCE(!target_freq))
926
		return false;
927
 
928
	*error_ppm = div_u64(1000000ULL *
929
				abs(target_freq - calculated_clock->dot),
930
			     target_freq);
931
	/*
932
	 * Prefer a better P value over a better (smaller) error if the error
933
	 * is small. Ensure this preference for future configurations too by
934
	 * setting the error to 0.
935
	 */
936
	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
937
		*error_ppm = 0;
938
 
939
		return true;
940
	}
941
 
942
	return *error_ppm + 10 < best_error_ppm;
943
}
944
 
2327 Serge 945
static bool
6084 serge 946
vlv_find_best_dpll(const intel_limit_t *limit,
947
		   struct intel_crtc_state *crtc_state,
948
		   int target, int refclk, intel_clock_t *match_clock,
949
		   intel_clock_t *best_clock)
3031 serge 950
{
6084 serge 951
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5354 serge 952
	struct drm_device *dev = crtc->base.dev;
4560 Serge 953
	intel_clock_t clock;
954
	unsigned int bestppm = 1000000;
955
	/* min update 19.2 MHz */
956
	int max_n = min(limit->n.max, refclk / 19200);
957
	bool found = false;
2327 Serge 958
 
4560 Serge 959
	target *= 5; /* fast clock */
3031 serge 960
 
4560 Serge 961
	memset(best_clock, 0, sizeof(*best_clock));
962
 
3031 serge 963
	/* based on hardware requirement, prefer smaller n to precision */
4560 Serge 964
	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
965
		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
966
			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
967
			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
968
				clock.p = clock.p1 * clock.p2;
3031 serge 969
				/* based on hardware requirement, prefer bigger m1,m2 values */
4560 Serge 970
				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
6084 serge 971
					unsigned int ppm;
4560 Serge 972
 
973
					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
974
								     refclk * clock.m1);
975
 
6084 serge 976
					vlv_calc_dpll_params(refclk, &clock);
4560 Serge 977
 
978
					if (!intel_PLL_is_valid(dev, limit,
979
								&clock))
980
						continue;
981
 
6084 serge 982
					if (!vlv_PLL_is_optimal(dev, target,
983
								&clock,
984
								best_clock,
985
								bestppm, &ppm))
986
						continue;
4560 Serge 987
 
6084 serge 988
					*best_clock = clock;
989
					bestppm = ppm;
990
					found = true;
3031 serge 991
				}
992
			}
6084 serge 993
		}
994
	}
3031 serge 995
 
4560 Serge 996
	return found;
3031 serge 997
}
998
 
5060 serge 999
static bool
6084 serge 1000
chv_find_best_dpll(const intel_limit_t *limit,
1001
		   struct intel_crtc_state *crtc_state,
5060 serge 1002
		   int target, int refclk, intel_clock_t *match_clock,
1003
		   intel_clock_t *best_clock)
1004
{
6084 serge 1005
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5354 serge 1006
	struct drm_device *dev = crtc->base.dev;
6084 serge 1007
	unsigned int best_error_ppm;
5060 serge 1008
	intel_clock_t clock;
1009
	uint64_t m2;
1010
	int found = false;
1011
 
1012
	memset(best_clock, 0, sizeof(*best_clock));
6084 serge 1013
	best_error_ppm = 1000000;
5060 serge 1014
 
1015
	/*
1016
	 * Based on hardware doc, the n always set to 1, and m1 always
1017
	 * set to 2.  If requires to support 200Mhz refclk, we need to
1018
	 * revisit this because n may not 1 anymore.
1019
	 */
1020
	clock.n = 1, clock.m1 = 2;
1021
	target *= 5;	/* fast clock */
1022
 
1023
	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1024
		for (clock.p2 = limit->p2.p2_fast;
1025
				clock.p2 >= limit->p2.p2_slow;
1026
				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6084 serge 1027
			unsigned int error_ppm;
5060 serge 1028
 
1029
			clock.p = clock.p1 * clock.p2;
1030
 
1031
			m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1032
					clock.n) << 22, refclk * clock.m1);
1033
 
1034
			if (m2 > INT_MAX/clock.m1)
1035
				continue;
1036
 
1037
			clock.m2 = m2;
1038
 
6084 serge 1039
			chv_calc_dpll_params(refclk, &clock);
5060 serge 1040
 
1041
			if (!intel_PLL_is_valid(dev, limit, &clock))
1042
				continue;
1043
 
6084 serge 1044
			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1045
						best_error_ppm, &error_ppm))
1046
				continue;
1047
 
1048
			*best_clock = clock;
1049
			best_error_ppm = error_ppm;
1050
			found = true;
5060 serge 1051
		}
1052
	}
1053
 
1054
	return found;
1055
}
1056
 
6084 serge 1057
bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1058
			intel_clock_t *best_clock)
1059
{
1060
	int refclk = i9xx_get_refclk(crtc_state, 0);
1061
 
1062
	return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1063
				  target_clock, refclk, NULL, best_clock);
1064
}
1065
 
4560 Serge 1066
bool intel_crtc_active(struct drm_crtc *crtc)
1067
{
1068
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1069
 
1070
	/* Be paranoid as we can arrive here with only partial
1071
	 * state retrieved from the hardware during setup.
1072
	 *
1073
	 * We can ditch the adjusted_mode.crtc_clock check as soon
1074
	 * as Haswell has gained clock readout/fastboot support.
1075
	 *
5060 serge 1076
	 * We can ditch the crtc->primary->fb check as soon as we can
4560 Serge 1077
	 * properly reconstruct framebuffers.
6084 serge 1078
	 *
1079
	 * FIXME: The intel_crtc->active here should be switched to
1080
	 * crtc->state->active once we have proper CRTC states wired up
1081
	 * for atomic.
4560 Serge 1082
	 */
6084 serge 1083
	return intel_crtc->active && crtc->primary->state->fb &&
1084
		intel_crtc->config->base.adjusted_mode.crtc_clock;
4560 Serge 1085
}
1086
 
3243 Serge 1087
enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1088
					     enum pipe pipe)
1089
{
1090
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1091
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1092
 
6084 serge 1093
	return intel_crtc->config->cpu_transcoder;
3243 Serge 1094
}
1095
 
4560 Serge 1096
static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1097
{
1098
	struct drm_i915_private *dev_priv = dev->dev_private;
1099
	u32 reg = PIPEDSL(pipe);
1100
	u32 line1, line2;
1101
	u32 line_mask;
1102
 
1103
	if (IS_GEN2(dev))
1104
		line_mask = DSL_LINEMASK_GEN2;
1105
	else
1106
		line_mask = DSL_LINEMASK_GEN3;
1107
 
1108
	line1 = I915_READ(reg) & line_mask;
6084 serge 1109
	msleep(5);
4560 Serge 1110
	line2 = I915_READ(reg) & line_mask;
1111
 
1112
	return line1 == line2;
1113
}
1114
 
2327 Serge 1115
/*
1116
 * intel_wait_for_pipe_off - wait for pipe to turn off
5354 serge 1117
 * @crtc: crtc whose pipe to wait for
2327 Serge 1118
 *
1119
 * After disabling a pipe, we can't wait for vblank in the usual way,
1120
 * spinning on the vblank interrupt status bit, since we won't actually
1121
 * see an interrupt when the pipe is disabled.
1122
 *
1123
 * On Gen4 and above:
1124
 *   wait for the pipe register state bit to turn off
1125
 *
1126
 * Otherwise:
1127
 *   wait for the display line value to settle (it usually
1128
 *   ends up stopping at the start of the next frame).
1129
 *
1130
 */
5354 serge 1131
static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
2327 Serge 1132
{
5354 serge 1133
	struct drm_device *dev = crtc->base.dev;
2327 Serge 1134
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 1135
	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
5354 serge 1136
	enum pipe pipe = crtc->pipe;
2327 Serge 1137
 
1138
	if (INTEL_INFO(dev)->gen >= 4) {
3243 Serge 1139
		int reg = PIPECONF(cpu_transcoder);
2327 Serge 1140
 
1141
		/* Wait for the Pipe State to go off */
1142
		if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1143
			     100))
3031 serge 1144
			WARN(1, "pipe_off wait timed out\n");
2327 Serge 1145
	} else {
1146
		/* Wait for the display line to settle */
4560 Serge 1147
		if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
3031 serge 1148
			WARN(1, "pipe_off wait timed out\n");
2327 Serge 1149
	}
1150
}
1151
 
1152
static const char *state_string(bool enabled)
1153
{
1154
	return enabled ? "on" : "off";
1155
}
1156
 
1157
/* Only for pre-ILK configs */
4104 Serge 1158
void assert_pll(struct drm_i915_private *dev_priv,
6084 serge 1159
		enum pipe pipe, bool state)
2327 Serge 1160
{
1161
	u32 val;
1162
	bool cur_state;
1163
 
6084 serge 1164
	val = I915_READ(DPLL(pipe));
2327 Serge 1165
	cur_state = !!(val & DPLL_VCO_ENABLE);
6084 serge 1166
	I915_STATE_WARN(cur_state != state,
2327 Serge 1167
	     "PLL state assertion failure (expected %s, current %s)\n",
1168
	     state_string(state), state_string(cur_state));
1169
}
1170
 
4560 Serge 1171
/* XXX: the dsi pll is shared between MIPI DSI ports */
1172
static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1173
{
1174
	u32 val;
1175
	bool cur_state;
1176
 
6084 serge 1177
	mutex_lock(&dev_priv->sb_lock);
4560 Serge 1178
	val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
6084 serge 1179
	mutex_unlock(&dev_priv->sb_lock);
4560 Serge 1180
 
1181
	cur_state = val & DSI_PLL_VCO_EN;
6084 serge 1182
	I915_STATE_WARN(cur_state != state,
4560 Serge 1183
	     "DSI PLL state assertion failure (expected %s, current %s)\n",
1184
	     state_string(state), state_string(cur_state));
1185
}
1186
#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1187
#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1188
 
4104 Serge 1189
struct intel_shared_dpll *
1190
intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1191
{
1192
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1193
 
6084 serge 1194
	if (crtc->config->shared_dpll < 0)
4104 Serge 1195
		return NULL;
1196
 
6084 serge 1197
	return &dev_priv->shared_dplls[crtc->config->shared_dpll];
4104 Serge 1198
}
1199
 
2327 Serge 1200
/* For ILK+ */
4104 Serge 1201
void assert_shared_dpll(struct drm_i915_private *dev_priv,
6084 serge 1202
			struct intel_shared_dpll *pll,
1203
			bool state)
2327 Serge 1204
{
1205
	bool cur_state;
4104 Serge 1206
	struct intel_dpll_hw_state hw_state;
2327 Serge 1207
 
3031 serge 1208
	if (WARN (!pll,
4104 Serge 1209
		  "asserting DPLL %s with no DPLL\n", state_string(state)))
3031 serge 1210
		return;
2342 Serge 1211
 
4104 Serge 1212
	cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
6084 serge 1213
	I915_STATE_WARN(cur_state != state,
4104 Serge 1214
	     "%s assertion failure (expected %s, current %s)\n",
1215
	     pll->name, state_string(state), state_string(cur_state));
2327 Serge 1216
}
1217
 
1218
static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1219
			  enum pipe pipe, bool state)
1220
{
1221
	bool cur_state;
3243 Serge 1222
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223
								      pipe);
2327 Serge 1224
 
3480 Serge 1225
	if (HAS_DDI(dev_priv->dev)) {
1226
		/* DDI does not have a specific FDI_TX register */
6084 serge 1227
		u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
3243 Serge 1228
		cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
3031 serge 1229
	} else {
6084 serge 1230
		u32 val = I915_READ(FDI_TX_CTL(pipe));
1231
		cur_state = !!(val & FDI_TX_ENABLE);
3031 serge 1232
	}
6084 serge 1233
	I915_STATE_WARN(cur_state != state,
2327 Serge 1234
	     "FDI TX state assertion failure (expected %s, current %s)\n",
1235
	     state_string(state), state_string(cur_state));
1236
}
1237
#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1238
#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1239
 
1240
static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1241
			  enum pipe pipe, bool state)
1242
{
1243
	u32 val;
1244
	bool cur_state;
1245
 
6084 serge 1246
	val = I915_READ(FDI_RX_CTL(pipe));
2327 Serge 1247
	cur_state = !!(val & FDI_RX_ENABLE);
6084 serge 1248
	I915_STATE_WARN(cur_state != state,
2327 Serge 1249
	     "FDI RX state assertion failure (expected %s, current %s)\n",
1250
	     state_string(state), state_string(cur_state));
1251
}
1252
#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1253
#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1254
 
1255
static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1256
				      enum pipe pipe)
1257
{
1258
	u32 val;
1259
 
1260
	/* ILK FDI PLL is always enabled */
5060 serge 1261
	if (INTEL_INFO(dev_priv->dev)->gen == 5)
2327 Serge 1262
		return;
1263
 
3031 serge 1264
	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
3480 Serge 1265
	if (HAS_DDI(dev_priv->dev))
3031 serge 1266
		return;
1267
 
6084 serge 1268
	val = I915_READ(FDI_TX_CTL(pipe));
1269
	I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
2327 Serge 1270
}
1271
 
4104 Serge 1272
void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1273
		       enum pipe pipe, bool state)
2327 Serge 1274
{
1275
	u32 val;
4104 Serge 1276
	bool cur_state;
2327 Serge 1277
 
6084 serge 1278
	val = I915_READ(FDI_RX_CTL(pipe));
4104 Serge 1279
	cur_state = !!(val & FDI_RX_PLL_ENABLE);
6084 serge 1280
	I915_STATE_WARN(cur_state != state,
4104 Serge 1281
	     "FDI RX PLL assertion failure (expected %s, current %s)\n",
1282
	     state_string(state), state_string(cur_state));
2327 Serge 1283
}
1284
 
5354 serge 1285
void assert_panel_unlocked(struct drm_i915_private *dev_priv,
6084 serge 1286
			   enum pipe pipe)
2327 Serge 1287
{
5354 serge 1288
	struct drm_device *dev = dev_priv->dev;
1289
	int pp_reg;
2327 Serge 1290
	u32 val;
1291
	enum pipe panel_pipe = PIPE_A;
1292
	bool locked = true;
1293
 
5354 serge 1294
	if (WARN_ON(HAS_DDI(dev)))
1295
		return;
1296
 
1297
	if (HAS_PCH_SPLIT(dev)) {
1298
		u32 port_sel;
1299
 
2327 Serge 1300
		pp_reg = PCH_PP_CONTROL;
5354 serge 1301
		port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1302
 
1303
		if (port_sel == PANEL_PORT_SELECT_LVDS &&
1304
		    I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1305
			panel_pipe = PIPE_B;
1306
		/* XXX: else fix for eDP */
1307
	} else if (IS_VALLEYVIEW(dev)) {
1308
		/* presumably write lock depends on pipe, not port select */
1309
		pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1310
		panel_pipe = pipe;
2327 Serge 1311
	} else {
1312
		pp_reg = PP_CONTROL;
5354 serge 1313
		if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1314
			panel_pipe = PIPE_B;
2327 Serge 1315
	}
1316
 
1317
	val = I915_READ(pp_reg);
1318
	if (!(val & PANEL_POWER_ON) ||
5354 serge 1319
	    ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
2327 Serge 1320
		locked = false;
1321
 
6084 serge 1322
	I915_STATE_WARN(panel_pipe == pipe && locked,
2327 Serge 1323
	     "panel assertion failure, pipe %c regs locked\n",
1324
	     pipe_name(pipe));
1325
}
1326
 
4560 Serge 1327
static void assert_cursor(struct drm_i915_private *dev_priv,
1328
			  enum pipe pipe, bool state)
1329
{
1330
	struct drm_device *dev = dev_priv->dev;
1331
	bool cur_state;
1332
 
5060 serge 1333
	if (IS_845G(dev) || IS_I865G(dev))
6084 serge 1334
		cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
4560 Serge 1335
	else
1336
		cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1337
 
6084 serge 1338
	I915_STATE_WARN(cur_state != state,
4560 Serge 1339
	     "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1340
	     pipe_name(pipe), state_string(state), state_string(cur_state));
1341
}
1342
#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1343
#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1344
 
2342 Serge 1345
void assert_pipe(struct drm_i915_private *dev_priv,
6084 serge 1346
		 enum pipe pipe, bool state)
2327 Serge 1347
{
1348
	bool cur_state;
3243 Serge 1349
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1350
								      pipe);
2327 Serge 1351
 
5354 serge 1352
	/* if we need the pipe quirk it must be always on */
1353
	if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1354
	    (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
3031 serge 1355
		state = true;
1356
 
5354 serge 1357
	if (!intel_display_power_is_enabled(dev_priv,
4104 Serge 1358
				POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
3480 Serge 1359
		cur_state = false;
1360
	} else {
6084 serge 1361
		u32 val = I915_READ(PIPECONF(cpu_transcoder));
1362
		cur_state = !!(val & PIPECONF_ENABLE);
3480 Serge 1363
	}
1364
 
6084 serge 1365
	I915_STATE_WARN(cur_state != state,
2327 Serge 1366
	     "pipe %c assertion failure (expected %s, current %s)\n",
1367
	     pipe_name(pipe), state_string(state), state_string(cur_state));
1368
}
1369
 
3031 serge 1370
static void assert_plane(struct drm_i915_private *dev_priv,
1371
			 enum plane plane, bool state)
2327 Serge 1372
{
1373
	u32 val;
3031 serge 1374
	bool cur_state;
2327 Serge 1375
 
6084 serge 1376
	val = I915_READ(DSPCNTR(plane));
3031 serge 1377
	cur_state = !!(val & DISPLAY_PLANE_ENABLE);
6084 serge 1378
	I915_STATE_WARN(cur_state != state,
3031 serge 1379
	     "plane %c assertion failure (expected %s, current %s)\n",
1380
	     plane_name(plane), state_string(state), state_string(cur_state));
2327 Serge 1381
}
1382
 
3031 serge 1383
#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1384
#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1385
 
2327 Serge 1386
static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1387
				   enum pipe pipe)
1388
{
4104 Serge 1389
	struct drm_device *dev = dev_priv->dev;
6084 serge 1390
	int i;
2327 Serge 1391
 
4104 Serge 1392
	/* Primary planes are fixed to pipes on gen4+ */
1393
	if (INTEL_INFO(dev)->gen >= 4) {
6084 serge 1394
		u32 val = I915_READ(DSPCNTR(pipe));
1395
		I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
3031 serge 1396
		     "plane %c assertion failure, should be disabled but not\n",
1397
		     plane_name(pipe));
2327 Serge 1398
		return;
3031 serge 1399
	}
2327 Serge 1400
 
1401
	/* Need to check both planes against the pipe */
5354 serge 1402
	for_each_pipe(dev_priv, i) {
6084 serge 1403
		u32 val = I915_READ(DSPCNTR(i));
1404
		enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
2327 Serge 1405
			DISPPLANE_SEL_PIPE_SHIFT;
6084 serge 1406
		I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
2327 Serge 1407
		     "plane %c assertion failure, should be off on pipe %c but is still active\n",
1408
		     plane_name(i), pipe_name(pipe));
1409
	}
1410
}
1411
 
3746 Serge 1412
static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1413
				    enum pipe pipe)
1414
{
4104 Serge 1415
	struct drm_device *dev = dev_priv->dev;
6084 serge 1416
	int sprite;
3746 Serge 1417
 
5354 serge 1418
	if (INTEL_INFO(dev)->gen >= 9) {
6084 serge 1419
		for_each_sprite(dev_priv, pipe, sprite) {
1420
			u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1421
			I915_STATE_WARN(val & PLANE_CTL_ENABLE,
5354 serge 1422
			     "plane %d assertion failure, should be off on pipe %c but is still active\n",
1423
			     sprite, pipe_name(pipe));
1424
		}
1425
	} else if (IS_VALLEYVIEW(dev)) {
6084 serge 1426
		for_each_sprite(dev_priv, pipe, sprite) {
1427
			u32 val = I915_READ(SPCNTR(pipe, sprite));
1428
			I915_STATE_WARN(val & SP_ENABLE,
4104 Serge 1429
			     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
5060 serge 1430
			     sprite_name(pipe, sprite), pipe_name(pipe));
4104 Serge 1431
		}
1432
	} else if (INTEL_INFO(dev)->gen >= 7) {
6084 serge 1433
		u32 val = I915_READ(SPRCTL(pipe));
1434
		I915_STATE_WARN(val & SPRITE_ENABLE,
4104 Serge 1435
		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1436
		     plane_name(pipe), pipe_name(pipe));
1437
	} else if (INTEL_INFO(dev)->gen >= 5) {
6084 serge 1438
		u32 val = I915_READ(DVSCNTR(pipe));
1439
		I915_STATE_WARN(val & DVS_ENABLE,
4104 Serge 1440
		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1441
		     plane_name(pipe), pipe_name(pipe));
3746 Serge 1442
	}
1443
}
1444
 
5354 serge 1445
static void assert_vblank_disabled(struct drm_crtc *crtc)
1446
{
6084 serge 1447
	if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
5354 serge 1448
		drm_crtc_vblank_put(crtc);
1449
}
1450
 
4560 Serge 1451
static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
2327 Serge 1452
{
1453
	u32 val;
1454
	bool enabled;
1455
 
6084 serge 1456
	I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
3031 serge 1457
 
2327 Serge 1458
	val = I915_READ(PCH_DREF_CONTROL);
1459
	enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1460
			    DREF_SUPERSPREAD_SOURCE_MASK));
6084 serge 1461
	I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
2327 Serge 1462
}
1463
 
4104 Serge 1464
static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
6084 serge 1465
					   enum pipe pipe)
2327 Serge 1466
{
1467
	u32 val;
1468
	bool enabled;
1469
 
6084 serge 1470
	val = I915_READ(PCH_TRANSCONF(pipe));
2327 Serge 1471
	enabled = !!(val & TRANS_ENABLE);
6084 serge 1472
	I915_STATE_WARN(enabled,
2327 Serge 1473
	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
1474
	     pipe_name(pipe));
1475
}
1476
 
1477
static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1478
			    enum pipe pipe, u32 port_sel, u32 val)
1479
{
1480
	if ((val & DP_PORT_EN) == 0)
1481
		return false;
1482
 
1483
	if (HAS_PCH_CPT(dev_priv->dev)) {
1484
		u32	trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1485
		u32	trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1486
		if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1487
			return false;
5060 serge 1488
	} else if (IS_CHERRYVIEW(dev_priv->dev)) {
1489
		if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1490
			return false;
2327 Serge 1491
	} else {
1492
		if ((val & DP_PIPE_MASK) != (pipe << 30))
1493
			return false;
1494
	}
1495
	return true;
1496
}
1497
 
1498
static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1499
			      enum pipe pipe, u32 val)
1500
{
3746 Serge 1501
	if ((val & SDVO_ENABLE) == 0)
2327 Serge 1502
		return false;
1503
 
1504
	if (HAS_PCH_CPT(dev_priv->dev)) {
3746 Serge 1505
		if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
2327 Serge 1506
			return false;
5060 serge 1507
	} else if (IS_CHERRYVIEW(dev_priv->dev)) {
1508
		if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1509
			return false;
2327 Serge 1510
	} else {
3746 Serge 1511
		if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
2327 Serge 1512
			return false;
1513
	}
1514
	return true;
1515
}
1516
 
1517
static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1518
			      enum pipe pipe, u32 val)
1519
{
1520
	if ((val & LVDS_PORT_EN) == 0)
1521
		return false;
1522
 
1523
	if (HAS_PCH_CPT(dev_priv->dev)) {
1524
		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1525
			return false;
1526
	} else {
1527
		if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1528
			return false;
1529
	}
1530
	return true;
1531
}
1532
 
1533
static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1534
			      enum pipe pipe, u32 val)
1535
{
1536
	if ((val & ADPA_DAC_ENABLE) == 0)
1537
		return false;
1538
	if (HAS_PCH_CPT(dev_priv->dev)) {
1539
		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1540
			return false;
1541
	} else {
1542
		if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1543
			return false;
1544
	}
1545
	return true;
1546
}
1547
 
1548
static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1549
				   enum pipe pipe, int reg, u32 port_sel)
1550
{
1551
	u32 val = I915_READ(reg);
6084 serge 1552
	I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
2327 Serge 1553
	     "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1554
	     reg, pipe_name(pipe));
3031 serge 1555
 
6084 serge 1556
	I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
3031 serge 1557
	     && (val & DP_PIPEB_SELECT),
1558
	     "IBX PCH dp port still using transcoder B\n");
2327 Serge 1559
}
1560
 
1561
static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1562
				     enum pipe pipe, int reg)
1563
{
1564
	u32 val = I915_READ(reg);
6084 serge 1565
	I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
3031 serge 1566
	     "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
2327 Serge 1567
	     reg, pipe_name(pipe));
3031 serge 1568
 
6084 serge 1569
	I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
3031 serge 1570
	     && (val & SDVO_PIPE_B_SELECT),
1571
	     "IBX PCH hdmi port still using transcoder B\n");
2327 Serge 1572
}
1573
 
1574
static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1575
				      enum pipe pipe)
1576
{
1577
	u32 val;
1578
 
1579
	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1580
	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1581
	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1582
 
6084 serge 1583
	val = I915_READ(PCH_ADPA);
1584
	I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
2327 Serge 1585
	     "PCH VGA enabled on transcoder %c, should be disabled\n",
1586
	     pipe_name(pipe));
1587
 
6084 serge 1588
	val = I915_READ(PCH_LVDS);
1589
	I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
2327 Serge 1590
	     "PCH LVDS enabled on transcoder %c, should be disabled\n",
1591
	     pipe_name(pipe));
1592
 
3746 Serge 1593
	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1594
	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1595
	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
2327 Serge 1596
}
1597
 
5354 serge 1598
static void vlv_enable_pll(struct intel_crtc *crtc,
6084 serge 1599
			   const struct intel_crtc_state *pipe_config)
4560 Serge 1600
{
4104 Serge 1601
	struct drm_device *dev = crtc->base.dev;
1602
	struct drm_i915_private *dev_priv = dev->dev_private;
1603
	int reg = DPLL(crtc->pipe);
5354 serge 1604
	u32 dpll = pipe_config->dpll_hw_state.dpll;
2327 Serge 1605
 
4104 Serge 1606
	assert_pipe_disabled(dev_priv, crtc->pipe);
1607
 
6084 serge 1608
	/* No really, not for ILK+ */
4104 Serge 1609
	BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
2327 Serge 1610
 
6084 serge 1611
	/* PLL is protected by panel, make sure we can write it */
5354 serge 1612
	if (IS_MOBILE(dev_priv->dev))
4104 Serge 1613
		assert_panel_unlocked(dev_priv, crtc->pipe);
2327 Serge 1614
 
4104 Serge 1615
	I915_WRITE(reg, dpll);
1616
	POSTING_READ(reg);
1617
	udelay(150);
2327 Serge 1618
 
4104 Serge 1619
	if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1620
		DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1621
 
5354 serge 1622
	I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
4104 Serge 1623
	POSTING_READ(DPLL_MD(crtc->pipe));
1624
 
1625
	/* We do this three times for luck */
1626
	I915_WRITE(reg, dpll);
1627
	POSTING_READ(reg);
1628
	udelay(150); /* wait for warmup */
1629
	I915_WRITE(reg, dpll);
1630
	POSTING_READ(reg);
1631
	udelay(150); /* wait for warmup */
1632
	I915_WRITE(reg, dpll);
1633
	POSTING_READ(reg);
1634
	udelay(150); /* wait for warmup */
1635
}
1636
 
5354 serge 1637
static void chv_enable_pll(struct intel_crtc *crtc,
6084 serge 1638
			   const struct intel_crtc_state *pipe_config)
5060 serge 1639
{
1640
	struct drm_device *dev = crtc->base.dev;
1641
	struct drm_i915_private *dev_priv = dev->dev_private;
1642
	int pipe = crtc->pipe;
1643
	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1644
	u32 tmp;
1645
 
1646
	assert_pipe_disabled(dev_priv, crtc->pipe);
1647
 
1648
	BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1649
 
6084 serge 1650
	mutex_lock(&dev_priv->sb_lock);
5060 serge 1651
 
1652
	/* Enable back the 10bit clock to display controller */
1653
	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1654
	tmp |= DPIO_DCLKP_EN;
1655
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1656
 
6084 serge 1657
	mutex_unlock(&dev_priv->sb_lock);
1658
 
5060 serge 1659
	/*
1660
	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1661
	 */
1662
	udelay(1);
1663
 
1664
	/* Enable PLL */
5354 serge 1665
	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
5060 serge 1666
 
1667
	/* Check PLL is locked */
1668
	if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1669
		DRM_ERROR("PLL %d failed to lock\n", pipe);
1670
 
1671
	/* not sure when this should be written */
5354 serge 1672
	I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
5060 serge 1673
	POSTING_READ(DPLL_MD(pipe));
1674
}
1675
 
5354 serge 1676
static int intel_num_dvo_pipes(struct drm_device *dev)
1677
{
1678
	struct intel_crtc *crtc;
1679
	int count = 0;
1680
 
1681
	for_each_intel_crtc(dev, crtc)
6084 serge 1682
		count += crtc->base.state->active &&
5354 serge 1683
			intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1684
 
1685
	return count;
1686
}
1687
 
4104 Serge 1688
static void i9xx_enable_pll(struct intel_crtc *crtc)
1689
{
1690
	struct drm_device *dev = crtc->base.dev;
1691
	struct drm_i915_private *dev_priv = dev->dev_private;
1692
	int reg = DPLL(crtc->pipe);
6084 serge 1693
	u32 dpll = crtc->config->dpll_hw_state.dpll;
4104 Serge 1694
 
1695
	assert_pipe_disabled(dev_priv, crtc->pipe);
1696
 
1697
	/* No really, not for ILK+ */
5060 serge 1698
	BUG_ON(INTEL_INFO(dev)->gen >= 5);
4104 Serge 1699
 
1700
	/* PLL is protected by panel, make sure we can write it */
1701
	if (IS_MOBILE(dev) && !IS_I830(dev))
1702
		assert_panel_unlocked(dev_priv, crtc->pipe);
1703
 
5354 serge 1704
	/* Enable DVO 2x clock on both PLLs if necessary */
1705
	if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1706
		/*
1707
		 * It appears to be important that we don't enable this
1708
		 * for the current pipe before otherwise configuring the
1709
		 * PLL. No idea how this should be handled if multiple
1710
		 * DVO outputs are enabled simultaneosly.
1711
		 */
1712
		dpll |= DPLL_DVO_2X_MODE;
1713
		I915_WRITE(DPLL(!crtc->pipe),
1714
			   I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1715
	}
4104 Serge 1716
 
6084 serge 1717
	/*
1718
	 * Apparently we need to have VGA mode enabled prior to changing
1719
	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1720
	 * dividers, even though the register value does change.
1721
	 */
1722
	I915_WRITE(reg, 0);
1723
 
1724
	I915_WRITE(reg, dpll);
1725
 
4104 Serge 1726
	/* Wait for the clocks to stabilize. */
1727
	POSTING_READ(reg);
1728
	udelay(150);
1729
 
1730
	if (INTEL_INFO(dev)->gen >= 4) {
1731
		I915_WRITE(DPLL_MD(crtc->pipe),
6084 serge 1732
			   crtc->config->dpll_hw_state.dpll_md);
4104 Serge 1733
	} else {
1734
		/* The pixel multiplier can only be updated once the
1735
		 * DPLL is enabled and the clocks are stable.
1736
		 *
1737
		 * So write it again.
1738
		 */
1739
		I915_WRITE(reg, dpll);
1740
	}
1741
 
6084 serge 1742
	/* We do this three times for luck */
4104 Serge 1743
	I915_WRITE(reg, dpll);
6084 serge 1744
	POSTING_READ(reg);
1745
	udelay(150); /* wait for warmup */
4104 Serge 1746
	I915_WRITE(reg, dpll);
6084 serge 1747
	POSTING_READ(reg);
1748
	udelay(150); /* wait for warmup */
4104 Serge 1749
	I915_WRITE(reg, dpll);
6084 serge 1750
	POSTING_READ(reg);
1751
	udelay(150); /* wait for warmup */
2327 Serge 1752
}
1753
 
1754
/**
4104 Serge 1755
 * i9xx_disable_pll - disable a PLL
2327 Serge 1756
 * @dev_priv: i915 private structure
1757
 * @pipe: pipe PLL to disable
1758
 *
1759
 * Disable the PLL for @pipe, making sure the pipe is off first.
1760
 *
1761
 * Note!  This is for pre-ILK only.
1762
 */
5354 serge 1763
static void i9xx_disable_pll(struct intel_crtc *crtc)
2327 Serge 1764
{
5354 serge 1765
	struct drm_device *dev = crtc->base.dev;
1766
	struct drm_i915_private *dev_priv = dev->dev_private;
1767
	enum pipe pipe = crtc->pipe;
1768
 
1769
	/* Disable DVO 2x clock on both PLLs if necessary */
1770
	if (IS_I830(dev) &&
1771
	    intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
6084 serge 1772
	    !intel_num_dvo_pipes(dev)) {
5354 serge 1773
		I915_WRITE(DPLL(PIPE_B),
1774
			   I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1775
		I915_WRITE(DPLL(PIPE_A),
1776
			   I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1777
	}
1778
 
1779
	/* Don't disable pipe or pipe PLLs if needed */
1780
	if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1781
	    (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2327 Serge 1782
		return;
1783
 
1784
	/* Make sure the pipe isn't still relying on us */
1785
	assert_pipe_disabled(dev_priv, pipe);
1786
 
6084 serge 1787
	I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
4104 Serge 1788
	POSTING_READ(DPLL(pipe));
2327 Serge 1789
}
1790
 
4539 Serge 1791
static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1792
{
6084 serge 1793
	u32 val;
4539 Serge 1794
 
1795
	/* Make sure the pipe isn't still relying on us */
1796
	assert_pipe_disabled(dev_priv, pipe);
1797
 
4560 Serge 1798
	/*
1799
	 * Leave integrated clock source and reference clock enabled for pipe B.
1800
	 * The latter is needed for VGA hotplug / manual detection.
1801
	 */
6084 serge 1802
	val = DPLL_VGA_MODE_DIS;
4539 Serge 1803
	if (pipe == PIPE_B)
6084 serge 1804
		val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
4539 Serge 1805
	I915_WRITE(DPLL(pipe), val);
1806
	POSTING_READ(DPLL(pipe));
5060 serge 1807
 
4539 Serge 1808
}
1809
 
5060 serge 1810
static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1811
{
1812
	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1813
	u32 val;
1814
 
1815
	/* Make sure the pipe isn't still relying on us */
1816
	assert_pipe_disabled(dev_priv, pipe);
1817
 
1818
	/* Set PLL en = 0 */
6084 serge 1819
	val = DPLL_SSC_REF_CLK_CHV |
1820
		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
5060 serge 1821
	if (pipe != PIPE_A)
1822
		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1823
	I915_WRITE(DPLL(pipe), val);
1824
	POSTING_READ(DPLL(pipe));
1825
 
6084 serge 1826
	mutex_lock(&dev_priv->sb_lock);
5060 serge 1827
 
1828
	/* Disable 10bit clock to display controller */
1829
	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1830
	val &= ~DPIO_DCLKP_EN;
1831
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1832
 
6084 serge 1833
	mutex_unlock(&dev_priv->sb_lock);
5060 serge 1834
}
1835
 
4560 Serge 1836
void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
6084 serge 1837
			 struct intel_digital_port *dport,
1838
			 unsigned int expected_mask)
3031 serge 1839
{
4104 Serge 1840
	u32 port_mask;
5060 serge 1841
	int dpll_reg;
3031 serge 1842
 
4560 Serge 1843
	switch (dport->port) {
1844
	case PORT_B:
4104 Serge 1845
		port_mask = DPLL_PORTB_READY_MASK;
5060 serge 1846
		dpll_reg = DPLL(0);
4560 Serge 1847
		break;
1848
	case PORT_C:
4104 Serge 1849
		port_mask = DPLL_PORTC_READY_MASK;
5060 serge 1850
		dpll_reg = DPLL(0);
6084 serge 1851
		expected_mask <<= 4;
4560 Serge 1852
		break;
5060 serge 1853
	case PORT_D:
1854
		port_mask = DPLL_PORTD_READY_MASK;
1855
		dpll_reg = DPIO_PHY_STATUS;
1856
		break;
4560 Serge 1857
	default:
1858
		BUG();
1859
	}
3243 Serge 1860
 
6084 serge 1861
	if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1862
		WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1863
		     port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
3031 serge 1864
}
1865
 
5060 serge 1866
static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1867
{
1868
	struct drm_device *dev = crtc->base.dev;
1869
	struct drm_i915_private *dev_priv = dev->dev_private;
1870
	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1871
 
1872
	if (WARN_ON(pll == NULL))
1873
		return;
1874
 
5354 serge 1875
	WARN_ON(!pll->config.crtc_mask);
5060 serge 1876
	if (pll->active == 0) {
1877
		DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1878
		WARN_ON(pll->on);
1879
		assert_shared_dpll_disabled(dev_priv, pll);
1880
 
1881
		pll->mode_set(dev_priv, pll);
1882
	}
1883
}
1884
 
2327 Serge 1885
/**
5060 serge 1886
 * intel_enable_shared_dpll - enable PCH PLL
2327 Serge 1887
 * @dev_priv: i915 private structure
1888
 * @pipe: pipe PLL to enable
1889
 *
1890
 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1891
 * drives the transcoder clock.
1892
 */
5060 serge 1893
static void intel_enable_shared_dpll(struct intel_crtc *crtc)
2327 Serge 1894
{
5060 serge 1895
	struct drm_device *dev = crtc->base.dev;
1896
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 1897
	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
2327 Serge 1898
 
4104 Serge 1899
	if (WARN_ON(pll == NULL))
2342 Serge 1900
		return;
1901
 
5354 serge 1902
	if (WARN_ON(pll->config.crtc_mask == 0))
3031 serge 1903
		return;
2327 Serge 1904
 
5354 serge 1905
	DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
4104 Serge 1906
		      pll->name, pll->active, pll->on,
1907
		      crtc->base.base.id);
3031 serge 1908
 
4104 Serge 1909
	if (pll->active++) {
1910
		WARN_ON(!pll->on);
1911
		assert_shared_dpll_enabled(dev_priv, pll);
3031 serge 1912
		return;
1913
	}
4104 Serge 1914
	WARN_ON(pll->on);
3031 serge 1915
 
5060 serge 1916
	intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1917
 
4104 Serge 1918
	DRM_DEBUG_KMS("enabling %s\n", pll->name);
1919
	pll->enable(dev_priv, pll);
3031 serge 1920
	pll->on = true;
2327 Serge 1921
}
1922
 
5354 serge 1923
static void intel_disable_shared_dpll(struct intel_crtc *crtc)
2327 Serge 1924
{
5060 serge 1925
	struct drm_device *dev = crtc->base.dev;
1926
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 1927
	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
2327 Serge 1928
 
1929
	/* PCH only available on ILK+ */
6084 serge 1930
	if (INTEL_INFO(dev)->gen < 5)
1931
		return;
2327 Serge 1932
 
6084 serge 1933
	if (pll == NULL)
3031 serge 1934
		return;
2327 Serge 1935
 
6084 serge 1936
	if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1937
		return;
1938
 
4104 Serge 1939
	DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1940
		      pll->name, pll->active, pll->on,
1941
		      crtc->base.base.id);
2342 Serge 1942
 
3031 serge 1943
	if (WARN_ON(pll->active == 0)) {
4104 Serge 1944
		assert_shared_dpll_disabled(dev_priv, pll);
3031 serge 1945
		return;
1946
	}
2342 Serge 1947
 
4104 Serge 1948
	assert_shared_dpll_enabled(dev_priv, pll);
1949
	WARN_ON(!pll->on);
1950
	if (--pll->active)
2342 Serge 1951
		return;
1952
 
4104 Serge 1953
	DRM_DEBUG_KMS("disabling %s\n", pll->name);
1954
	pll->disable(dev_priv, pll);
3031 serge 1955
	pll->on = false;
5060 serge 1956
 
1957
	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
2327 Serge 1958
}
1959
 
3243 Serge 1960
static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
6084 serge 1961
					   enum pipe pipe)
2327 Serge 1962
{
3243 Serge 1963
	struct drm_device *dev = dev_priv->dev;
3031 serge 1964
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4104 Serge 1965
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3243 Serge 1966
	uint32_t reg, val, pipeconf_val;
2327 Serge 1967
 
1968
	/* PCH only available on ILK+ */
5354 serge 1969
	BUG_ON(!HAS_PCH_SPLIT(dev));
2327 Serge 1970
 
1971
	/* Make sure PCH DPLL is enabled */
4104 Serge 1972
	assert_shared_dpll_enabled(dev_priv,
1973
				   intel_crtc_to_shared_dpll(intel_crtc));
2327 Serge 1974
 
1975
	/* FDI must be feeding us bits for PCH ports */
1976
	assert_fdi_tx_enabled(dev_priv, pipe);
1977
	assert_fdi_rx_enabled(dev_priv, pipe);
1978
 
3243 Serge 1979
	if (HAS_PCH_CPT(dev)) {
1980
		/* Workaround: Set the timing override bit before enabling the
1981
		 * pch transcoder. */
1982
		reg = TRANS_CHICKEN2(pipe);
1983
		val = I915_READ(reg);
1984
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1985
		I915_WRITE(reg, val);
3031 serge 1986
	}
3243 Serge 1987
 
4104 Serge 1988
	reg = PCH_TRANSCONF(pipe);
2327 Serge 1989
	val = I915_READ(reg);
3031 serge 1990
	pipeconf_val = I915_READ(PIPECONF(pipe));
2327 Serge 1991
 
1992
	if (HAS_PCH_IBX(dev_priv->dev)) {
1993
		/*
6084 serge 1994
		 * Make the BPC in transcoder be consistent with
1995
		 * that in pipeconf reg. For HDMI we must use 8bpc
1996
		 * here for both 8bpc and 12bpc.
2327 Serge 1997
		 */
3480 Serge 1998
		val &= ~PIPECONF_BPC_MASK;
6084 serge 1999
		if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2000
			val |= PIPECONF_8BPC;
2001
		else
2002
			val |= pipeconf_val & PIPECONF_BPC_MASK;
2327 Serge 2003
	}
3031 serge 2004
 
2005
	val &= ~TRANS_INTERLACE_MASK;
2006
	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2007
		if (HAS_PCH_IBX(dev_priv->dev) &&
5354 serge 2008
		    intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
3031 serge 2009
			val |= TRANS_LEGACY_INTERLACED_ILK;
2010
		else
2011
			val |= TRANS_INTERLACED;
2012
	else
2013
		val |= TRANS_PROGRESSIVE;
2014
 
2327 Serge 2015
	I915_WRITE(reg, val | TRANS_ENABLE);
2016
	if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4104 Serge 2017
		DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2327 Serge 2018
}
2019
 
3243 Serge 2020
static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2021
				      enum transcoder cpu_transcoder)
2022
{
2023
	u32 val, pipeconf_val;
2024
 
2025
	/* PCH only available on ILK+ */
5354 serge 2026
	BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
3243 Serge 2027
 
2028
	/* FDI must be feeding us bits for PCH ports */
3480 Serge 2029
	assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
3243 Serge 2030
	assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2031
 
2032
	/* Workaround: set timing override bit. */
6084 serge 2033
	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
3243 Serge 2034
	val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6084 serge 2035
	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
3243 Serge 2036
 
2037
	val = TRANS_ENABLE;
2038
	pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2039
 
2040
	if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2041
	    PIPECONF_INTERLACED_ILK)
2042
		val |= TRANS_INTERLACED;
2043
	else
2044
		val |= TRANS_PROGRESSIVE;
2045
 
4104 Serge 2046
	I915_WRITE(LPT_TRANSCONF, val);
2047
	if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
3243 Serge 2048
		DRM_ERROR("Failed to enable PCH transcoder\n");
2049
}
2050
 
2051
static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
6084 serge 2052
					    enum pipe pipe)
2327 Serge 2053
{
3243 Serge 2054
	struct drm_device *dev = dev_priv->dev;
2055
	uint32_t reg, val;
2327 Serge 2056
 
2057
	/* FDI relies on the transcoder */
2058
	assert_fdi_tx_disabled(dev_priv, pipe);
2059
	assert_fdi_rx_disabled(dev_priv, pipe);
2060
 
2061
	/* Ports must be off as well */
2062
	assert_pch_ports_disabled(dev_priv, pipe);
2063
 
4104 Serge 2064
	reg = PCH_TRANSCONF(pipe);
2327 Serge 2065
	val = I915_READ(reg);
2066
	val &= ~TRANS_ENABLE;
2067
	I915_WRITE(reg, val);
2068
	/* wait for PCH transcoder off, transcoder state */
2069
	if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4104 Serge 2070
		DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
3243 Serge 2071
 
2072
	if (!HAS_PCH_IBX(dev)) {
2073
		/* Workaround: Clear the timing override chicken bit again. */
2074
		reg = TRANS_CHICKEN2(pipe);
2075
		val = I915_READ(reg);
2076
		val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2077
		I915_WRITE(reg, val);
2078
	}
2327 Serge 2079
}
2080
 
3243 Serge 2081
static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2082
{
2083
	u32 val;
2084
 
4104 Serge 2085
	val = I915_READ(LPT_TRANSCONF);
3243 Serge 2086
	val &= ~TRANS_ENABLE;
4104 Serge 2087
	I915_WRITE(LPT_TRANSCONF, val);
3243 Serge 2088
	/* wait for PCH transcoder off, transcoder state */
4104 Serge 2089
	if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
3243 Serge 2090
		DRM_ERROR("Failed to disable PCH transcoder\n");
2091
 
2092
	/* Workaround: clear timing override bit. */
6084 serge 2093
	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
3243 Serge 2094
	val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
6084 serge 2095
	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
3243 Serge 2096
}
2097
 
2327 Serge 2098
/**
2099
 * intel_enable_pipe - enable a pipe, asserting requirements
5060 serge 2100
 * @crtc: crtc responsible for the pipe
2327 Serge 2101
 *
5060 serge 2102
 * Enable @crtc's pipe, making sure that various hardware specific requirements
2327 Serge 2103
 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2104
 */
5060 serge 2105
static void intel_enable_pipe(struct intel_crtc *crtc)
2327 Serge 2106
{
5060 serge 2107
	struct drm_device *dev = crtc->base.dev;
2108
	struct drm_i915_private *dev_priv = dev->dev_private;
2109
	enum pipe pipe = crtc->pipe;
3243 Serge 2110
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2111
								      pipe);
3480 Serge 2112
	enum pipe pch_transcoder;
2327 Serge 2113
	int reg;
2114
	u32 val;
2115
 
6084 serge 2116
	DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2117
 
4104 Serge 2118
	assert_planes_disabled(dev_priv, pipe);
4560 Serge 2119
	assert_cursor_disabled(dev_priv, pipe);
4104 Serge 2120
	assert_sprites_disabled(dev_priv, pipe);
2121
 
3480 Serge 2122
	if (HAS_PCH_LPT(dev_priv->dev))
3243 Serge 2123
		pch_transcoder = TRANSCODER_A;
2124
	else
2125
		pch_transcoder = pipe;
2126
 
2327 Serge 2127
	/*
2128
	 * A pipe without a PLL won't actually be able to drive bits from
2129
	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2130
	 * need the check.
2131
	 */
6084 serge 2132
	if (HAS_GMCH_DISPLAY(dev_priv->dev))
5354 serge 2133
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4560 Serge 2134
			assert_dsi_pll_enabled(dev_priv);
2135
		else
6084 serge 2136
			assert_pll_enabled(dev_priv, pipe);
2327 Serge 2137
	else {
6084 serge 2138
		if (crtc->config->has_pch_encoder) {
2327 Serge 2139
			/* if driving the PCH, we need FDI enabled */
3243 Serge 2140
			assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
3480 Serge 2141
			assert_fdi_tx_pll_enabled(dev_priv,
2142
						  (enum pipe) cpu_transcoder);
2327 Serge 2143
		}
2144
		/* FIXME: assert CPU port conditions for SNB+ */
2145
	}
2146
 
3243 Serge 2147
	reg = PIPECONF(cpu_transcoder);
2327 Serge 2148
	val = I915_READ(reg);
5060 serge 2149
	if (val & PIPECONF_ENABLE) {
5354 serge 2150
		WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2151
			  (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2327 Serge 2152
		return;
5060 serge 2153
	}
2327 Serge 2154
 
2155
	I915_WRITE(reg, val | PIPECONF_ENABLE);
5060 serge 2156
	POSTING_READ(reg);
2327 Serge 2157
}
2158
 
2159
/**
2160
 * intel_disable_pipe - disable a pipe, asserting requirements
5354 serge 2161
 * @crtc: crtc whose pipes is to be disabled
2327 Serge 2162
 *
5354 serge 2163
 * Disable the pipe of @crtc, making sure that various hardware
2164
 * specific requirements are met, if applicable, e.g. plane
2165
 * disabled, panel fitter off, etc.
2327 Serge 2166
 *
2167
 * Will wait until the pipe has shut down before returning.
2168
 */
5354 serge 2169
static void intel_disable_pipe(struct intel_crtc *crtc)
2327 Serge 2170
{
5354 serge 2171
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6084 serge 2172
	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
5354 serge 2173
	enum pipe pipe = crtc->pipe;
2327 Serge 2174
	int reg;
2175
	u32 val;
2176
 
6084 serge 2177
	DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2178
 
2179
	/*
2327 Serge 2180
	 * Make sure planes won't keep trying to pump pixels to us,
2181
	 * or we might hang the display.
2182
	 */
2183
	assert_planes_disabled(dev_priv, pipe);
4560 Serge 2184
	assert_cursor_disabled(dev_priv, pipe);
3746 Serge 2185
	assert_sprites_disabled(dev_priv, pipe);
2327 Serge 2186
 
3243 Serge 2187
	reg = PIPECONF(cpu_transcoder);
2327 Serge 2188
	val = I915_READ(reg);
2189
	if ((val & PIPECONF_ENABLE) == 0)
2190
		return;
2191
 
5354 serge 2192
	/*
2193
	 * Double wide has implications for planes
2194
	 * so best keep it disabled when not needed.
2195
	 */
6084 serge 2196
	if (crtc->config->double_wide)
5354 serge 2197
		val &= ~PIPECONF_DOUBLE_WIDE;
2198
 
2199
	/* Don't disable pipe or pipe PLLs if needed */
2200
	if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2201
	    !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2202
		val &= ~PIPECONF_ENABLE;
2203
 
2204
	I915_WRITE(reg, val);
2205
	if ((val & PIPECONF_ENABLE) == 0)
2206
		intel_wait_for_pipe_off(crtc);
2327 Serge 2207
}
2208
 
6084 serge 2209
static bool need_vtd_wa(struct drm_device *dev)
2327 Serge 2210
{
6084 serge 2211
#ifdef CONFIG_INTEL_IOMMU
2212
	if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2213
		return true;
2214
#endif
2215
	return false;
2327 Serge 2216
}
2217
 
6084 serge 2218
unsigned int
2219
intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2220
		  uint64_t fb_format_modifier, unsigned int plane)
2327 Serge 2221
{
6084 serge 2222
	unsigned int tile_height;
2223
	uint32_t pixel_bytes;
2327 Serge 2224
 
6084 serge 2225
	switch (fb_format_modifier) {
2226
	case DRM_FORMAT_MOD_NONE:
2227
		tile_height = 1;
2228
		break;
2229
	case I915_FORMAT_MOD_X_TILED:
2230
		tile_height = IS_GEN2(dev) ? 16 : 8;
2231
		break;
2232
	case I915_FORMAT_MOD_Y_TILED:
2233
		tile_height = 32;
2234
		break;
2235
	case I915_FORMAT_MOD_Yf_TILED:
2236
		pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
2237
		switch (pixel_bytes) {
2238
		default:
2239
		case 1:
2240
			tile_height = 64;
2241
			break;
2242
		case 2:
2243
		case 4:
2244
			tile_height = 32;
2245
			break;
2246
		case 8:
2247
			tile_height = 16;
2248
			break;
2249
		case 16:
2250
			WARN_ONCE(1,
2251
				  "128-bit pixels are not supported for display!");
2252
			tile_height = 16;
2253
			break;
2254
		}
2255
		break;
2256
	default:
2257
		MISSING_CASE(fb_format_modifier);
2258
		tile_height = 1;
2259
		break;
2260
	}
2327 Serge 2261
 
6084 serge 2262
	return tile_height;
2263
}
4560 Serge 2264
 
6084 serge 2265
unsigned int
2266
intel_fb_align_height(struct drm_device *dev, unsigned int height,
2267
		      uint32_t pixel_format, uint64_t fb_format_modifier)
2268
{
2269
	return ALIGN(height, intel_tile_height(dev, pixel_format,
2270
					       fb_format_modifier, 0));
2327 Serge 2271
}
2272
 
6084 serge 2273
static int
2274
intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2275
			const struct drm_plane_state *plane_state)
2327 Serge 2276
{
6084 serge 2277
	struct intel_rotation_info *info = &view->rotation_info;
2278
	unsigned int tile_height, tile_pitch;
2327 Serge 2279
 
6084 serge 2280
	*view = i915_ggtt_view_normal;
5354 serge 2281
 
6084 serge 2282
	if (!plane_state)
2283
		return 0;
4560 Serge 2284
 
6084 serge 2285
	if (!intel_rotation_90_or_270(plane_state->rotation))
2286
		return 0;
4560 Serge 2287
 
6084 serge 2288
	*view = i915_ggtt_view_rotated;
2327 Serge 2289
 
6084 serge 2290
	info->height = fb->height;
2291
	info->pixel_format = fb->pixel_format;
2292
	info->pitch = fb->pitches[0];
2293
	info->uv_offset = fb->offsets[1];
2294
	info->fb_modifier = fb->modifier[0];
2295
 
2296
	tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2297
					fb->modifier[0], 0);
2298
	tile_pitch = PAGE_SIZE / tile_height;
2299
	info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2300
	info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2301
	info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2302
 
2303
	if (info->pixel_format == DRM_FORMAT_NV12) {
2304
		tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2305
						fb->modifier[0], 1);
2306
		tile_pitch = PAGE_SIZE / tile_height;
2307
		info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2308
		info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
2309
						     tile_height);
2310
		info->size_uv = info->width_pages_uv * info->height_pages_uv *
2311
				PAGE_SIZE;
2312
	}
2313
 
2314
	return 0;
3746 Serge 2315
}
2316
 
6084 serge 2317
static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
5060 serge 2318
{
6084 serge 2319
	if (INTEL_INFO(dev_priv)->gen >= 9)
2320
		return 256 * 1024;
2321
	else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2322
		 IS_VALLEYVIEW(dev_priv))
2323
		return 128 * 1024;
2324
	else if (INTEL_INFO(dev_priv)->gen >= 4)
2325
		return 4 * 1024;
2326
	else
2327
		return 0;
5060 serge 2328
}
2329
 
2335 Serge 2330
int
5354 serge 2331
intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2332
			   struct drm_framebuffer *fb,
6084 serge 2333
			   const struct drm_plane_state *plane_state,
2334
			   struct intel_engine_cs *pipelined,
2335
			   struct drm_i915_gem_request **pipelined_request)
2335 Serge 2336
{
5354 serge 2337
	struct drm_device *dev = fb->dev;
2335 Serge 2338
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 2339
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6084 serge 2340
	struct i915_ggtt_view view;
2335 Serge 2341
	u32 alignment;
2342
	int ret;
2327 Serge 2343
 
5060 serge 2344
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2345
 
6084 serge 2346
	switch (fb->modifier[0]) {
2347
	case DRM_FORMAT_MOD_NONE:
2348
		alignment = intel_linear_alignment(dev_priv);
2335 Serge 2349
		break;
6084 serge 2350
	case I915_FORMAT_MOD_X_TILED:
5354 serge 2351
		if (INTEL_INFO(dev)->gen >= 9)
2352
			alignment = 256 * 1024;
2353
		else {
6084 serge 2354
			/* pin() will align the object as required by fence */
2355
			alignment = 0;
5354 serge 2356
		}
2335 Serge 2357
		break;
6084 serge 2358
	case I915_FORMAT_MOD_Y_TILED:
2359
	case I915_FORMAT_MOD_Yf_TILED:
2360
		if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2361
			  "Y tiling bo slipped through, driver bug!\n"))
2362
			return -EINVAL;
2363
		alignment = 1 * 1024 * 1024;
2364
		break;
2365
	default:
2366
		MISSING_CASE(fb->modifier[0]);
2335 Serge 2367
		return -EINVAL;
2368
	}
2327 Serge 2369
 
6084 serge 2370
	ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2371
	if (ret)
2372
		return ret;
2373
 
3746 Serge 2374
	/* Note that the w/a also requires 64 PTE of padding following the
2375
	 * bo. We currently fill all unused PTE with the shadow page and so
2376
	 * we should always have valid PTE following the scanout preventing
2377
	 * the VT-d warning.
2378
	 */
2379
	if (need_vtd_wa(dev) && alignment < 256 * 1024)
2380
		alignment = 256 * 1024;
2381
 
5097 serge 2382
	/*
2383
	 * Global gtt pte registers are special registers which actually forward
2384
	 * writes to a chunk of system memory. Which means that there is no risk
2385
	 * that the register values disappear as soon as we call
2386
	 * intel_runtime_pm_put(), so it is correct to wrap only the
2387
	 * pin/unpin/fence and not more.
2388
	 */
2389
	intel_runtime_pm_get(dev_priv);
2390
 
2335 Serge 2391
	dev_priv->mm.interruptible = false;
6084 serge 2392
	ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2393
						   pipelined_request, &view);
2335 Serge 2394
	if (ret)
2395
		goto err_interruptible;
2327 Serge 2396
 
2335 Serge 2397
	/* Install a fence for tiled scan-out. Pre-i965 always needs a
2398
	 * fence, whereas 965+ only requires a fence if using
2399
	 * framebuffer compression.  For simplicity, we always install
2400
	 * a fence as the cost is not that onerous.
2401
	 */
6084 serge 2402
	if (view.type == I915_GGTT_VIEW_NORMAL) {
2403
		ret = i915_gem_object_get_fence(obj);
2404
		if (ret == -EDEADLK) {
2405
			/*
2406
			 * -EDEADLK means there are no free fences
2407
			 * no pending flips.
2408
			 *
2409
			 * This is propagated to atomic, but it uses
2410
			 * -EDEADLK to force a locking recovery, so
2411
			 * change the returned error to -EBUSY.
2412
			 */
2413
			ret = -EBUSY;
2414
			goto err_unpin;
2415
		} else if (ret)
2416
			goto err_unpin;
2327 Serge 2417
 
6084 serge 2418
		i915_gem_object_pin_fence(obj);
2419
	}
3480 Serge 2420
 
2335 Serge 2421
	dev_priv->mm.interruptible = true;
5097 serge 2422
	intel_runtime_pm_put(dev_priv);
2335 Serge 2423
	return 0;
2327 Serge 2424
 
2335 Serge 2425
err_unpin:
6084 serge 2426
	i915_gem_object_unpin_from_display_plane(obj, &view);
2335 Serge 2427
err_interruptible:
2428
	dev_priv->mm.interruptible = true;
5097 serge 2429
	intel_runtime_pm_put(dev_priv);
2335 Serge 2430
	return ret;
2431
}
2327 Serge 2432
 
6084 serge 2433
static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2434
			       const struct drm_plane_state *plane_state)
3031 serge 2435
{
6084 serge 2436
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2437
	struct i915_ggtt_view view;
2438
	int ret;
2439
 
5060 serge 2440
	WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2441
 
6084 serge 2442
	ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2443
	WARN_ONCE(ret, "Couldn't get view from plane state!");
2444
 
2445
	if (view.type == I915_GGTT_VIEW_NORMAL)
2446
		i915_gem_object_unpin_fence(obj);
2447
 
2448
	i915_gem_object_unpin_from_display_plane(obj, &view);
3031 serge 2449
}
2450
 
2451
/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2452
 * is assumed to be a power-of-two. */
6084 serge 2453
unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2454
					     int *x, int *y,
3480 Serge 2455
					     unsigned int tiling_mode,
2456
					     unsigned int cpp,
6084 serge 2457
					     unsigned int pitch)
3031 serge 2458
{
3480 Serge 2459
	if (tiling_mode != I915_TILING_NONE) {
2460
		unsigned int tile_rows, tiles;
3031 serge 2461
 
6084 serge 2462
		tile_rows = *y / 8;
2463
		*y %= 8;
3031 serge 2464
 
3480 Serge 2465
		tiles = *x / (512/cpp);
2466
		*x %= 512/cpp;
2467
 
6084 serge 2468
		return tile_rows * pitch * 8 + tiles * 4096;
3480 Serge 2469
	} else {
6084 serge 2470
		unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
3480 Serge 2471
		unsigned int offset;
2472
 
2473
		offset = *y * pitch + *x * cpp;
6084 serge 2474
		*y = (offset & alignment) / pitch;
2475
		*x = ((offset & alignment) - *y * pitch) / cpp;
2476
		return offset & ~alignment;
3480 Serge 2477
	}
3031 serge 2478
}
2479
 
6084 serge 2480
static int i9xx_format_to_fourcc(int format)
2327 Serge 2481
{
5060 serge 2482
	switch (format) {
2483
	case DISPPLANE_8BPP:
2484
		return DRM_FORMAT_C8;
2485
	case DISPPLANE_BGRX555:
2486
		return DRM_FORMAT_XRGB1555;
2487
	case DISPPLANE_BGRX565:
2488
		return DRM_FORMAT_RGB565;
2489
	default:
2490
	case DISPPLANE_BGRX888:
2491
		return DRM_FORMAT_XRGB8888;
2492
	case DISPPLANE_RGBX888:
2493
		return DRM_FORMAT_XBGR8888;
2494
	case DISPPLANE_BGRX101010:
2495
		return DRM_FORMAT_XRGB2101010;
2496
	case DISPPLANE_RGBX101010:
2497
		return DRM_FORMAT_XBGR2101010;
2498
	}
2499
}
2500
 
6084 serge 2501
static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
5060 serge 2502
{
6084 serge 2503
	switch (format) {
2504
	case PLANE_CTL_FORMAT_RGB_565:
2505
		return DRM_FORMAT_RGB565;
2506
	default:
2507
	case PLANE_CTL_FORMAT_XRGB_8888:
2508
		if (rgb_order) {
2509
			if (alpha)
2510
				return DRM_FORMAT_ABGR8888;
2511
			else
2512
				return DRM_FORMAT_XBGR8888;
2513
		} else {
2514
			if (alpha)
2515
				return DRM_FORMAT_ARGB8888;
2516
			else
2517
				return DRM_FORMAT_XRGB8888;
2518
		}
2519
	case PLANE_CTL_FORMAT_XRGB_2101010:
2520
		if (rgb_order)
2521
			return DRM_FORMAT_XBGR2101010;
2522
		else
2523
			return DRM_FORMAT_XRGB2101010;
2524
	}
2525
}
2526
 
2527
static bool
2528
intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2529
			      struct intel_initial_plane_config *plane_config)
2530
{
5060 serge 2531
	struct drm_device *dev = crtc->base.dev;
6084 serge 2532
	struct drm_i915_private *dev_priv = to_i915(dev);
5060 serge 2533
	struct drm_i915_gem_object *obj = NULL;
2534
	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6084 serge 2535
	struct drm_framebuffer *fb = &plane_config->fb->base;
2536
	u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2537
	u32 size_aligned = round_up(plane_config->base + plane_config->size,
2538
				    PAGE_SIZE);
5060 serge 2539
 
6084 serge 2540
	size_aligned -= base_aligned;
2541
 
5060 serge 2542
	if (plane_config->size == 0)
2543
		return false;
2544
 
6084 serge 2545
	/* If the FB is too big, just don't use it since fbdev is not very
2546
	 * important and we should probably use that space with FBC or other
2547
	 * features. */
2548
	if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2549
		return false;
2550
 
2551
	obj = i915_gem_object_create_stolen_for_preallocated(dev,
2552
							     base_aligned,
2553
							     base_aligned,
2554
							     size_aligned);
5060 serge 2555
	if (!obj)
2556
		return false;
2557
 
6084 serge 2558
	obj->tiling_mode = plane_config->tiling;
2559
	if (obj->tiling_mode == I915_TILING_X)
2560
		obj->stride = fb->pitches[0];
5060 serge 2561
 
6084 serge 2562
	mode_cmd.pixel_format = fb->pixel_format;
2563
	mode_cmd.width = fb->width;
2564
	mode_cmd.height = fb->height;
2565
	mode_cmd.pitches[0] = fb->pitches[0];
2566
	mode_cmd.modifier[0] = fb->modifier[0];
2567
	mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
5060 serge 2568
 
2569
	mutex_lock(&dev->struct_mutex);
6084 serge 2570
	if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
5060 serge 2571
				   &mode_cmd, obj)) {
2572
		DRM_DEBUG_KMS("intel fb init failed\n");
2573
		goto out_unref_obj;
2574
	}
2575
	mutex_unlock(&dev->struct_mutex);
2576
 
6084 serge 2577
	DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
5060 serge 2578
	return true;
2579
 
2580
out_unref_obj:
2581
	drm_gem_object_unreference(&obj->base);
2582
	mutex_unlock(&dev->struct_mutex);
2583
	return false;
2584
}
2585
 
6084 serge 2586
/* Update plane->state->fb to match plane->fb after driver-internal updates */
2587
static void
2588
update_state_fb(struct drm_plane *plane)
5060 serge 2589
{
6084 serge 2590
	if (plane->fb == plane->state->fb)
2591
		return;
2592
 
2593
	if (plane->state->fb)
2594
		drm_framebuffer_unreference(plane->state->fb);
2595
	plane->state->fb = plane->fb;
2596
	if (plane->state->fb)
2597
		drm_framebuffer_reference(plane->state->fb);
2598
}
2599
 
2600
static void
2601
intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2602
			     struct intel_initial_plane_config *plane_config)
2603
{
5060 serge 2604
	struct drm_device *dev = intel_crtc->base.dev;
5354 serge 2605
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 2606
	struct drm_crtc *c;
2607
	struct intel_crtc *i;
2608
	struct drm_i915_gem_object *obj;
6084 serge 2609
	struct drm_plane *primary = intel_crtc->base.primary;
2610
	struct drm_plane_state *plane_state = primary->state;
2611
	struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2612
	struct intel_plane *intel_plane = to_intel_plane(primary);
2613
	struct drm_framebuffer *fb;
5060 serge 2614
 
6084 serge 2615
	if (!plane_config->fb)
5060 serge 2616
		return;
2617
 
6084 serge 2618
	if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2619
		fb = &plane_config->fb->base;
2620
		goto valid_fb;
2621
	}
5060 serge 2622
 
6084 serge 2623
	kfree(plane_config->fb);
5060 serge 2624
 
2625
	/*
2626
	 * Failed to alloc the obj, check to see if we should share
2627
	 * an fb with another CRTC instead
2628
	 */
2629
	for_each_crtc(dev, c) {
2630
		i = to_intel_crtc(c);
2631
 
2632
		if (c == &intel_crtc->base)
2633
			continue;
2634
 
2635
		if (!i->active)
2636
			continue;
2637
 
6084 serge 2638
		fb = c->primary->fb;
2639
		if (!fb)
5060 serge 2640
			continue;
2641
 
6084 serge 2642
		obj = intel_fb_obj(fb);
5060 serge 2643
		if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
6084 serge 2644
			drm_framebuffer_reference(fb);
2645
			goto valid_fb;
5060 serge 2646
		}
2647
	}
6084 serge 2648
 
2649
	/*
2650
	 * We've failed to reconstruct the BIOS FB.  Current display state
2651
	 * indicates that the primary plane is visible, but has a NULL FB,
2652
	 * which will lead to problems later if we don't fix it up.  The
2653
	 * simplest solution is to just disable the primary plane now and
2654
	 * pretend the BIOS never had it enabled.
2655
	 */
2656
	to_intel_plane_state(plane_state)->visible = false;
2657
	crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2658
	intel_pre_disable_primary(&intel_crtc->base);
2659
	intel_plane->disable_plane(primary, &intel_crtc->base);
2660
 
2661
	return;
2662
 
2663
valid_fb:
2664
	plane_state->src_x = 0;
2665
	plane_state->src_y = 0;
2666
	plane_state->src_w = fb->width << 16;
2667
	plane_state->src_h = fb->height << 16;
2668
 
2669
	plane_state->crtc_x = 0;
2670
	plane_state->crtc_y = 0;
2671
	plane_state->crtc_w = fb->width;
2672
	plane_state->crtc_h = fb->height;
2673
 
2674
	obj = intel_fb_obj(fb);
2675
	if (obj->tiling_mode != I915_TILING_NONE)
2676
		dev_priv->preserve_bios_swizzle = true;
2677
 
2678
	drm_framebuffer_reference(fb);
2679
	primary->fb = primary->state->fb = fb;
2680
	primary->crtc = primary->state->crtc = &intel_crtc->base;
2681
	intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2682
	obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
5060 serge 2683
}
2684
 
2685
static void i9xx_update_primary_plane(struct drm_crtc *crtc,
6084 serge 2686
				      struct drm_framebuffer *fb,
2687
				      int x, int y)
5060 serge 2688
{
6084 serge 2689
	struct drm_device *dev = crtc->dev;
2690
	struct drm_i915_private *dev_priv = dev->dev_private;
2691
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2692
	struct drm_plane *primary = crtc->primary;
2693
	bool visible = to_intel_plane_state(primary->state)->visible;
5354 serge 2694
	struct drm_i915_gem_object *obj;
6084 serge 2695
	int plane = intel_crtc->plane;
3031 serge 2696
	unsigned long linear_offset;
6084 serge 2697
	u32 dspcntr;
5354 serge 2698
	u32 reg = DSPCNTR(plane);
2699
	int pixel_size;
2327 Serge 2700
 
6084 serge 2701
	if (!visible || !fb) {
5354 serge 2702
		I915_WRITE(reg, 0);
2703
		if (INTEL_INFO(dev)->gen >= 4)
2704
			I915_WRITE(DSPSURF(plane), 0);
2705
		else
2706
			I915_WRITE(DSPADDR(plane), 0);
2707
		POSTING_READ(reg);
2708
		return;
2709
	}
2710
 
2711
	obj = intel_fb_obj(fb);
2712
	if (WARN_ON(obj == NULL))
2713
		return;
2714
 
2715
	pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2716
 
2717
	dspcntr = DISPPLANE_GAMMA_ENABLE;
2718
 
2719
	dspcntr |= DISPLAY_PLANE_ENABLE;
2720
 
2721
	if (INTEL_INFO(dev)->gen < 4) {
2722
		if (intel_crtc->pipe == PIPE_B)
2723
			dspcntr |= DISPPLANE_SEL_PIPE_B;
2724
 
2725
		/* pipesrc and dspsize control the size that is scaled from,
2726
		 * which should always be the user's requested size.
2727
		 */
2728
		I915_WRITE(DSPSIZE(plane),
6084 serge 2729
			   ((intel_crtc->config->pipe_src_h - 1) << 16) |
2730
			   (intel_crtc->config->pipe_src_w - 1));
5354 serge 2731
		I915_WRITE(DSPPOS(plane), 0);
2732
	} else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2733
		I915_WRITE(PRIMSIZE(plane),
6084 serge 2734
			   ((intel_crtc->config->pipe_src_h - 1) << 16) |
2735
			   (intel_crtc->config->pipe_src_w - 1));
5354 serge 2736
		I915_WRITE(PRIMPOS(plane), 0);
2737
		I915_WRITE(PRIMCNSTALPHA(plane), 0);
2738
	}
2739
 
3243 Serge 2740
	switch (fb->pixel_format) {
2741
	case DRM_FORMAT_C8:
6084 serge 2742
		dspcntr |= DISPPLANE_8BPP;
2743
		break;
3243 Serge 2744
	case DRM_FORMAT_XRGB1555:
2745
		dspcntr |= DISPPLANE_BGRX555;
2746
		break;
2747
	case DRM_FORMAT_RGB565:
2748
		dspcntr |= DISPPLANE_BGRX565;
2749
		break;
2750
	case DRM_FORMAT_XRGB8888:
2751
		dspcntr |= DISPPLANE_BGRX888;
2752
		break;
2753
	case DRM_FORMAT_XBGR8888:
2754
		dspcntr |= DISPPLANE_RGBX888;
2755
		break;
2756
	case DRM_FORMAT_XRGB2101010:
2757
		dspcntr |= DISPPLANE_BGRX101010;
6084 serge 2758
		break;
3243 Serge 2759
	case DRM_FORMAT_XBGR2101010:
2760
		dspcntr |= DISPPLANE_RGBX101010;
6084 serge 2761
		break;
2762
	default:
3746 Serge 2763
		BUG();
6084 serge 2764
	}
3243 Serge 2765
 
5354 serge 2766
	if (INTEL_INFO(dev)->gen >= 4 &&
2767
	    obj->tiling_mode != I915_TILING_NONE)
6084 serge 2768
		dspcntr |= DISPPLANE_TILED;
2327 Serge 2769
 
4104 Serge 2770
	if (IS_G4X(dev))
2771
		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2772
 
5354 serge 2773
	linear_offset = y * fb->pitches[0] + x * pixel_size;
2327 Serge 2774
 
3031 serge 2775
	if (INTEL_INFO(dev)->gen >= 4) {
2776
		intel_crtc->dspaddr_offset =
6084 serge 2777
			intel_gen4_compute_page_offset(dev_priv,
2778
						       &x, &y, obj->tiling_mode,
5354 serge 2779
						       pixel_size,
6084 serge 2780
						       fb->pitches[0]);
3031 serge 2781
		linear_offset -= intel_crtc->dspaddr_offset;
2782
	} else {
2783
		intel_crtc->dspaddr_offset = linear_offset;
2784
	}
2785
 
6084 serge 2786
	if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
5354 serge 2787
		dspcntr |= DISPPLANE_ROTATE_180;
2788
 
6084 serge 2789
		x += (intel_crtc->config->pipe_src_w - 1);
2790
		y += (intel_crtc->config->pipe_src_h - 1);
5354 serge 2791
 
2792
		/* Finding the last pixel of the last line of the display
2793
		data and adding to linear_offset*/
2794
		linear_offset +=
6084 serge 2795
			(intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2796
			(intel_crtc->config->pipe_src_w - 1) * pixel_size;
5354 serge 2797
	}
2798
 
6084 serge 2799
	intel_crtc->adjusted_x = x;
2800
	intel_crtc->adjusted_y = y;
2801
 
5354 serge 2802
	I915_WRITE(reg, dspcntr);
2803
 
2342 Serge 2804
	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
6084 serge 2805
	if (INTEL_INFO(dev)->gen >= 4) {
4560 Serge 2806
		I915_WRITE(DSPSURF(plane),
6084 serge 2807
			   i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2808
		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3031 serge 2809
		I915_WRITE(DSPLINOFF(plane), linear_offset);
6084 serge 2810
	} else
4104 Serge 2811
		I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
6084 serge 2812
	POSTING_READ(reg);
2327 Serge 2813
}
2814
 
5060 serge 2815
static void ironlake_update_primary_plane(struct drm_crtc *crtc,
6084 serge 2816
					  struct drm_framebuffer *fb,
2817
					  int x, int y)
2327 Serge 2818
{
6084 serge 2819
	struct drm_device *dev = crtc->dev;
2820
	struct drm_i915_private *dev_priv = dev->dev_private;
2821
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2822
	struct drm_plane *primary = crtc->primary;
2823
	bool visible = to_intel_plane_state(primary->state)->visible;
5354 serge 2824
	struct drm_i915_gem_object *obj;
6084 serge 2825
	int plane = intel_crtc->plane;
3031 serge 2826
	unsigned long linear_offset;
6084 serge 2827
	u32 dspcntr;
5354 serge 2828
	u32 reg = DSPCNTR(plane);
2829
	int pixel_size;
2327 Serge 2830
 
6084 serge 2831
	if (!visible || !fb) {
5354 serge 2832
		I915_WRITE(reg, 0);
2833
		I915_WRITE(DSPSURF(plane), 0);
2834
		POSTING_READ(reg);
2835
		return;
2836
	}
2837
 
2838
	obj = intel_fb_obj(fb);
2839
	if (WARN_ON(obj == NULL))
2840
		return;
2841
 
2842
	pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2843
 
2844
	dspcntr = DISPPLANE_GAMMA_ENABLE;
2845
 
2846
	dspcntr |= DISPLAY_PLANE_ENABLE;
2847
 
2848
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2849
		dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2850
 
3243 Serge 2851
	switch (fb->pixel_format) {
2852
	case DRM_FORMAT_C8:
6084 serge 2853
		dspcntr |= DISPPLANE_8BPP;
2854
		break;
3243 Serge 2855
	case DRM_FORMAT_RGB565:
2856
		dspcntr |= DISPPLANE_BGRX565;
6084 serge 2857
		break;
3243 Serge 2858
	case DRM_FORMAT_XRGB8888:
2859
		dspcntr |= DISPPLANE_BGRX888;
2860
		break;
2861
	case DRM_FORMAT_XBGR8888:
2862
		dspcntr |= DISPPLANE_RGBX888;
2863
		break;
2864
	case DRM_FORMAT_XRGB2101010:
2865
		dspcntr |= DISPPLANE_BGRX101010;
2866
		break;
2867
	case DRM_FORMAT_XBGR2101010:
2868
		dspcntr |= DISPPLANE_RGBX101010;
6084 serge 2869
		break;
2870
	default:
3746 Serge 2871
		BUG();
6084 serge 2872
	}
2327 Serge 2873
 
3480 Serge 2874
	if (obj->tiling_mode != I915_TILING_NONE)
2875
		dspcntr |= DISPPLANE_TILED;
2327 Serge 2876
 
5354 serge 2877
	if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
6084 serge 2878
		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2327 Serge 2879
 
5354 serge 2880
	linear_offset = y * fb->pitches[0] + x * pixel_size;
3031 serge 2881
	intel_crtc->dspaddr_offset =
6084 serge 2882
		intel_gen4_compute_page_offset(dev_priv,
2883
					       &x, &y, obj->tiling_mode,
5354 serge 2884
					       pixel_size,
6084 serge 2885
					       fb->pitches[0]);
3031 serge 2886
	linear_offset -= intel_crtc->dspaddr_offset;
6084 serge 2887
	if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
5354 serge 2888
		dspcntr |= DISPPLANE_ROTATE_180;
2327 Serge 2889
 
5354 serge 2890
		if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
6084 serge 2891
			x += (intel_crtc->config->pipe_src_w - 1);
2892
			y += (intel_crtc->config->pipe_src_h - 1);
5354 serge 2893
 
2894
			/* Finding the last pixel of the last line of the display
2895
			data and adding to linear_offset*/
2896
			linear_offset +=
6084 serge 2897
				(intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2898
				(intel_crtc->config->pipe_src_w - 1) * pixel_size;
5354 serge 2899
		}
2900
	}
2901
 
6084 serge 2902
	intel_crtc->adjusted_x = x;
2903
	intel_crtc->adjusted_y = y;
2904
 
5354 serge 2905
	I915_WRITE(reg, dspcntr);
2906
 
2342 Serge 2907
	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
4560 Serge 2908
	I915_WRITE(DSPSURF(plane),
6084 serge 2909
		   i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
4560 Serge 2910
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3243 Serge 2911
		I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2912
	} else {
6084 serge 2913
		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2914
		I915_WRITE(DSPLINOFF(plane), linear_offset);
3243 Serge 2915
	}
2330 Serge 2916
	POSTING_READ(reg);
2327 Serge 2917
}
2918
 
6084 serge 2919
u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2920
			      uint32_t pixel_format)
2921
{
2922
	u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2923
 
2924
	/*
2925
	 * The stride is either expressed as a multiple of 64 bytes
2926
	 * chunks for linear buffers or in number of tiles for tiled
2927
	 * buffers.
2928
	 */
2929
	switch (fb_modifier) {
2930
	case DRM_FORMAT_MOD_NONE:
2931
		return 64;
2932
	case I915_FORMAT_MOD_X_TILED:
2933
		if (INTEL_INFO(dev)->gen == 2)
2934
			return 128;
2935
		return 512;
2936
	case I915_FORMAT_MOD_Y_TILED:
2937
		/* No need to check for old gens and Y tiling since this is
2938
		 * about the display engine and those will be blocked before
2939
		 * we get here.
2940
		 */
2941
		return 128;
2942
	case I915_FORMAT_MOD_Yf_TILED:
2943
		if (bits_per_pixel == 8)
2944
			return 64;
2945
		else
2946
			return 128;
2947
	default:
2948
		MISSING_CASE(fb_modifier);
2949
		return 64;
2950
	}
2951
}
2952
 
2953
unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2954
				     struct drm_i915_gem_object *obj,
2955
				     unsigned int plane)
2956
{
2957
	const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2958
	struct i915_vma *vma;
2959
	unsigned char *offset;
2960
 
2961
	if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2962
		view = &i915_ggtt_view_rotated;
2963
 
2964
	vma = i915_gem_obj_to_ggtt_view(obj, view);
2965
	if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2966
		view->type))
2967
		return -1;
2968
 
2969
	offset = (unsigned char *)vma->node.start;
2970
 
2971
	if (plane == 1) {
2972
		offset += vma->ggtt_view.rotation_info.uv_start_page *
2973
			  PAGE_SIZE;
2974
	}
2975
 
2976
	return (unsigned long)offset;
2977
}
2978
 
2979
static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2980
{
2981
	struct drm_device *dev = intel_crtc->base.dev;
2982
	struct drm_i915_private *dev_priv = dev->dev_private;
2983
 
2984
	I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2985
	I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2986
	I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2987
}
2988
 
2989
/*
2990
 * This function detaches (aka. unbinds) unused scalers in hardware
2991
 */
2992
static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2993
{
2994
	struct intel_crtc_scaler_state *scaler_state;
2995
	int i;
2996
 
2997
	scaler_state = &intel_crtc->config->scaler_state;
2998
 
2999
	/* loop through and disable scalers that aren't in use */
3000
	for (i = 0; i < intel_crtc->num_scalers; i++) {
3001
		if (!scaler_state->scalers[i].in_use)
3002
			skl_detach_scaler(intel_crtc, i);
3003
	}
3004
}
3005
 
3006
u32 skl_plane_ctl_format(uint32_t pixel_format)
3007
{
3008
	switch (pixel_format) {
3009
	case DRM_FORMAT_C8:
3010
		return PLANE_CTL_FORMAT_INDEXED;
3011
	case DRM_FORMAT_RGB565:
3012
		return PLANE_CTL_FORMAT_RGB_565;
3013
	case DRM_FORMAT_XBGR8888:
3014
		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3015
	case DRM_FORMAT_XRGB8888:
3016
		return PLANE_CTL_FORMAT_XRGB_8888;
3017
	/*
3018
	 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3019
	 * to be already pre-multiplied. We need to add a knob (or a different
3020
	 * DRM_FORMAT) for user-space to configure that.
3021
	 */
3022
	case DRM_FORMAT_ABGR8888:
3023
		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3024
			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3025
	case DRM_FORMAT_ARGB8888:
3026
		return PLANE_CTL_FORMAT_XRGB_8888 |
3027
			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3028
	case DRM_FORMAT_XRGB2101010:
3029
		return PLANE_CTL_FORMAT_XRGB_2101010;
3030
	case DRM_FORMAT_XBGR2101010:
3031
		return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3032
	case DRM_FORMAT_YUYV:
3033
		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3034
	case DRM_FORMAT_YVYU:
3035
		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3036
	case DRM_FORMAT_UYVY:
3037
		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3038
	case DRM_FORMAT_VYUY:
3039
		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3040
	default:
3041
		MISSING_CASE(pixel_format);
3042
	}
3043
 
3044
	return 0;
3045
}
3046
 
3047
u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3048
{
3049
	switch (fb_modifier) {
3050
	case DRM_FORMAT_MOD_NONE:
3051
		break;
3052
	case I915_FORMAT_MOD_X_TILED:
3053
		return PLANE_CTL_TILED_X;
3054
	case I915_FORMAT_MOD_Y_TILED:
3055
		return PLANE_CTL_TILED_Y;
3056
	case I915_FORMAT_MOD_Yf_TILED:
3057
		return PLANE_CTL_TILED_YF;
3058
	default:
3059
		MISSING_CASE(fb_modifier);
3060
	}
3061
 
3062
	return 0;
3063
}
3064
 
3065
u32 skl_plane_ctl_rotation(unsigned int rotation)
3066
{
3067
	switch (rotation) {
3068
	case BIT(DRM_ROTATE_0):
3069
		break;
3070
	/*
3071
	 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3072
	 * while i915 HW rotation is clockwise, thats why this swapping.
3073
	 */
3074
	case BIT(DRM_ROTATE_90):
3075
		return PLANE_CTL_ROTATE_270;
3076
	case BIT(DRM_ROTATE_180):
3077
		return PLANE_CTL_ROTATE_180;
3078
	case BIT(DRM_ROTATE_270):
3079
		return PLANE_CTL_ROTATE_90;
3080
	default:
3081
		MISSING_CASE(rotation);
3082
	}
3083
 
3084
	return 0;
3085
}
3086
 
5354 serge 3087
static void skylake_update_primary_plane(struct drm_crtc *crtc,
3088
					 struct drm_framebuffer *fb,
3089
					 int x, int y)
3090
{
3091
	struct drm_device *dev = crtc->dev;
3092
	struct drm_i915_private *dev_priv = dev->dev_private;
3093
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6084 serge 3094
	struct drm_plane *plane = crtc->primary;
3095
	bool visible = to_intel_plane_state(plane->state)->visible;
5354 serge 3096
	struct drm_i915_gem_object *obj;
3097
	int pipe = intel_crtc->pipe;
6084 serge 3098
	u32 plane_ctl, stride_div, stride;
3099
	u32 tile_height, plane_offset, plane_size;
3100
	unsigned int rotation;
3101
	int x_offset, y_offset;
3102
	unsigned long surf_addr;
3103
	struct intel_crtc_state *crtc_state = intel_crtc->config;
3104
	struct intel_plane_state *plane_state;
3105
	int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3106
	int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3107
	int scaler_id = -1;
5354 serge 3108
 
6084 serge 3109
	plane_state = to_intel_plane_state(plane->state);
3110
 
3111
	if (!visible || !fb) {
5354 serge 3112
		I915_WRITE(PLANE_CTL(pipe, 0), 0);
3113
		I915_WRITE(PLANE_SURF(pipe, 0), 0);
3114
		POSTING_READ(PLANE_CTL(pipe, 0));
3115
		return;
3116
	}
3117
 
3118
	plane_ctl = PLANE_CTL_ENABLE |
3119
		    PLANE_CTL_PIPE_GAMMA_ENABLE |
3120
		    PLANE_CTL_PIPE_CSC_ENABLE;
3121
 
6084 serge 3122
	plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3123
	plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3124
	plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
5354 serge 3125
 
6084 serge 3126
	rotation = plane->state->rotation;
3127
	plane_ctl |= skl_plane_ctl_rotation(rotation);
5354 serge 3128
 
6084 serge 3129
	obj = intel_fb_obj(fb);
3130
	stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3131
					       fb->pixel_format);
3132
	surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3133
 
3134
	WARN_ON(drm_rect_width(&plane_state->src) == 0);
3135
 
3136
	scaler_id = plane_state->scaler_id;
3137
	src_x = plane_state->src.x1 >> 16;
3138
	src_y = plane_state->src.y1 >> 16;
3139
	src_w = drm_rect_width(&plane_state->src) >> 16;
3140
	src_h = drm_rect_height(&plane_state->src) >> 16;
3141
	dst_x = plane_state->dst.x1;
3142
	dst_y = plane_state->dst.y1;
3143
	dst_w = drm_rect_width(&plane_state->dst);
3144
	dst_h = drm_rect_height(&plane_state->dst);
3145
 
3146
	WARN_ON(x != src_x || y != src_y);
3147
 
3148
	if (intel_rotation_90_or_270(rotation)) {
3149
		/* stride = Surface height in tiles */
3150
		tile_height = intel_tile_height(dev, fb->pixel_format,
3151
						fb->modifier[0], 0);
3152
		stride = DIV_ROUND_UP(fb->height, tile_height);
3153
		x_offset = stride * tile_height - y - src_h;
3154
		y_offset = x;
3155
		plane_size = (src_w - 1) << 16 | (src_h - 1);
3156
	} else {
3157
		stride = fb->pitches[0] / stride_div;
3158
		x_offset = x;
3159
		y_offset = y;
3160
		plane_size = (src_h - 1) << 16 | (src_w - 1);
5354 serge 3161
	}
6084 serge 3162
	plane_offset = y_offset << 16 | x_offset;
5354 serge 3163
 
6084 serge 3164
	intel_crtc->adjusted_x = x_offset;
3165
	intel_crtc->adjusted_y = y_offset;
5354 serge 3166
 
3167
	I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
6084 serge 3168
	I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3169
	I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3170
	I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
5354 serge 3171
 
6084 serge 3172
	if (scaler_id >= 0) {
3173
		uint32_t ps_ctrl = 0;
5354 serge 3174
 
6084 serge 3175
		WARN_ON(!dst_w || !dst_h);
3176
		ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3177
			crtc_state->scaler_state.scalers[scaler_id].mode;
3178
		I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3179
		I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3180
		I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3181
		I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3182
		I915_WRITE(PLANE_POS(pipe, 0), 0);
3183
	} else {
3184
		I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3185
	}
5354 serge 3186
 
6084 serge 3187
	I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3188
 
5354 serge 3189
	POSTING_READ(PLANE_SURF(pipe, 0));
3190
}
3191
 
2327 Serge 3192
/* Assume fb object is pinned & idle & fenced and just update base pointers */
3193
static int
3194
intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3195
			   int x, int y, enum mode_set_atomic state)
3196
{
3197
	struct drm_device *dev = crtc->dev;
3198
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3199
 
6084 serge 3200
	if (dev_priv->fbc.disable_fbc)
3201
		dev_priv->fbc.disable_fbc(dev_priv);
3031 serge 3202
 
5060 serge 3203
	dev_priv->display.update_primary_plane(crtc, fb, x, y);
3204
 
3205
	return 0;
3031 serge 3206
}
3207
 
3208
#if 0
5354 serge 3209
static void intel_complete_page_flips(struct drm_device *dev)
4104 Serge 3210
{
3211
	struct drm_crtc *crtc;
3212
 
5060 serge 3213
	for_each_crtc(dev, crtc) {
4104 Serge 3214
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3215
		enum plane plane = intel_crtc->plane;
3216
 
3217
		intel_prepare_page_flip(dev, plane);
3218
		intel_finish_page_flip_plane(dev, plane);
3219
	}
5354 serge 3220
}
4104 Serge 3221
 
5354 serge 3222
static void intel_update_primary_planes(struct drm_device *dev)
3223
{
3224
	struct drm_crtc *crtc;
3225
 
5060 serge 3226
	for_each_crtc(dev, crtc) {
6084 serge 3227
		struct intel_plane *plane = to_intel_plane(crtc->primary);
3228
		struct intel_plane_state *plane_state;
4104 Serge 3229
 
6084 serge 3230
		drm_modeset_lock_crtc(crtc, &plane->base);
3231
 
3232
		plane_state = to_intel_plane_state(plane->base.state);
3233
 
3234
		if (plane_state->base.fb)
3235
			plane->commit_plane(&plane->base, plane_state);
3236
 
3237
		drm_modeset_unlock_crtc(crtc);
4104 Serge 3238
	}
3239
}
3240
 
5354 serge 3241
void intel_prepare_reset(struct drm_device *dev)
3242
{
3243
	/* no reset support for gen2 */
3244
	if (IS_GEN2(dev))
3245
		return;
3246
 
3247
	/* reset doesn't touch the display */
3248
	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3249
		return;
3250
 
3251
	drm_modeset_lock_all(dev);
3252
	/*
3253
	 * Disabling the crtcs gracefully seems nicer. Also the
3254
	 * g33 docs say we should at least disable all the planes.
3255
	 */
6084 serge 3256
	intel_display_suspend(dev);
5354 serge 3257
}
3258
 
3259
void intel_finish_reset(struct drm_device *dev)
3260
{
3261
	struct drm_i915_private *dev_priv = to_i915(dev);
3262
 
3263
	/*
3264
	 * Flips in the rings will be nuked by the reset,
3265
	 * so complete all pending flips so that user space
3266
	 * will get its events and not get stuck.
3267
	 */
3268
	intel_complete_page_flips(dev);
3269
 
3270
	/* no reset support for gen2 */
3271
	if (IS_GEN2(dev))
3272
		return;
3273
 
3274
	/* reset doesn't touch the display */
3275
	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3276
		/*
3277
		 * Flips in the rings have been nuked by the reset,
3278
		 * so update the base address of all primary
3279
		 * planes to the the last fb to make sure we're
3280
		 * showing the correct fb after a reset.
6084 serge 3281
		 *
3282
		 * FIXME: Atomic will make this obsolete since we won't schedule
3283
		 * CS-based flips (which might get lost in gpu resets) any more.
5354 serge 3284
		 */
3285
		intel_update_primary_planes(dev);
3286
		return;
3287
	}
3288
 
3289
	/*
3290
	 * The display has been reset as well,
3291
	 * so need a full re-initialization.
3292
	 */
3293
	intel_runtime_pm_disable_interrupts(dev_priv);
3294
	intel_runtime_pm_enable_interrupts(dev_priv);
3295
 
3296
	intel_modeset_init_hw(dev);
3297
 
3298
	spin_lock_irq(&dev_priv->irq_lock);
3299
	if (dev_priv->display.hpd_irq_setup)
3300
		dev_priv->display.hpd_irq_setup(dev);
3301
	spin_unlock_irq(&dev_priv->irq_lock);
3302
 
6084 serge 3303
	intel_display_resume(dev);
5354 serge 3304
 
3305
	intel_hpd_init(dev_priv);
3306
 
3307
	drm_modeset_unlock_all(dev);
3308
}
3309
 
6084 serge 3310
static void
3031 serge 3311
intel_finish_fb(struct drm_framebuffer *old_fb)
3312
{
5060 serge 3313
	struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
6084 serge 3314
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3031 serge 3315
	bool was_interruptible = dev_priv->mm.interruptible;
2327 Serge 3316
	int ret;
3317
 
3031 serge 3318
	/* Big Hammer, we also need to ensure that any pending
3319
	 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3320
	 * current scanout is retired before unpinning the old
6084 serge 3321
	 * framebuffer. Note that we rely on userspace rendering
3322
	 * into the buffer attached to the pipe they are waiting
3323
	 * on. If not, userspace generates a GPU hang with IPEHR
3324
	 * point to the MI_WAIT_FOR_EVENT.
3031 serge 3325
	 *
3326
	 * This should only fail upon a hung GPU, in which case we
3327
	 * can safely continue.
3328
	 */
3329
	dev_priv->mm.interruptible = false;
6084 serge 3330
	ret = i915_gem_object_wait_rendering(obj, true);
3031 serge 3331
	dev_priv->mm.interruptible = was_interruptible;
2327 Serge 3332
 
6084 serge 3333
	WARN_ON(ret);
2327 Serge 3334
}
4104 Serge 3335
 
5060 serge 3336
static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
4104 Serge 3337
{
3338
	struct drm_device *dev = crtc->dev;
5060 serge 3339
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 3340
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5060 serge 3341
	bool pending;
4104 Serge 3342
 
5060 serge 3343
	if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3344
	    intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3345
		return false;
4104 Serge 3346
 
5354 serge 3347
	spin_lock_irq(&dev->event_lock);
5060 serge 3348
	pending = to_intel_crtc(crtc)->unpin_work != NULL;
5354 serge 3349
	spin_unlock_irq(&dev->event_lock);
4104 Serge 3350
 
5060 serge 3351
	return pending;
4104 Serge 3352
}
3031 serge 3353
#endif
2327 Serge 3354
 
6084 serge 3355
static void intel_update_pipe_config(struct intel_crtc *crtc,
3356
				     struct intel_crtc_state *old_crtc_state)
5354 serge 3357
{
3358
	struct drm_device *dev = crtc->base.dev;
3359
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 3360
	struct intel_crtc_state *pipe_config =
3361
		to_intel_crtc_state(crtc->base.state);
5354 serge 3362
 
6084 serge 3363
	/* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3364
	crtc->base.mode = crtc->base.state->mode;
5354 serge 3365
 
6084 serge 3366
	DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3367
		      old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3368
		      pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3369
 
3370
	if (HAS_DDI(dev))
3371
		intel_set_pipe_csc(&crtc->base);
3372
 
5354 serge 3373
	/*
3374
	 * Update pipe size and adjust fitter if needed: the reason for this is
3375
	 * that in compute_mode_changes we check the native mode (not the pfit
3376
	 * mode) to see if we can flip rather than do a full mode set. In the
3377
	 * fastboot case, we'll flip, but if we don't update the pipesrc and
3378
	 * pfit state, we'll end up with a big fb scanned out into the wrong
3379
	 * sized surface.
3380
	 */
3381
 
3382
	I915_WRITE(PIPESRC(crtc->pipe),
6084 serge 3383
		   ((pipe_config->pipe_src_w - 1) << 16) |
3384
		   (pipe_config->pipe_src_h - 1));
5354 serge 3385
 
6084 serge 3386
	/* on skylake this is done by detaching scalers */
3387
	if (INTEL_INFO(dev)->gen >= 9) {
3388
		skl_detach_scalers(crtc);
2327 Serge 3389
 
6084 serge 3390
		if (pipe_config->pch_pfit.enabled)
3391
			skylake_pfit_enable(crtc);
3392
	} else if (HAS_PCH_SPLIT(dev)) {
3393
		if (pipe_config->pch_pfit.enabled)
3394
			ironlake_pfit_enable(crtc);
3395
		else if (old_crtc_state->pch_pfit.enabled)
3396
			ironlake_pfit_disable(crtc, true);
2327 Serge 3397
	}
3398
}
3399
 
3400
static void intel_fdi_normal_train(struct drm_crtc *crtc)
3401
{
3402
	struct drm_device *dev = crtc->dev;
3403
	struct drm_i915_private *dev_priv = dev->dev_private;
3404
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3405
	int pipe = intel_crtc->pipe;
3406
	u32 reg, temp;
3407
 
3408
	/* enable normal train */
3409
	reg = FDI_TX_CTL(pipe);
3410
	temp = I915_READ(reg);
3411
	if (IS_IVYBRIDGE(dev)) {
3412
		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3413
		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3414
	} else {
3415
		temp &= ~FDI_LINK_TRAIN_NONE;
3416
		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3417
	}
3418
	I915_WRITE(reg, temp);
3419
 
3420
	reg = FDI_RX_CTL(pipe);
3421
	temp = I915_READ(reg);
3422
	if (HAS_PCH_CPT(dev)) {
3423
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3424
		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3425
	} else {
3426
		temp &= ~FDI_LINK_TRAIN_NONE;
3427
		temp |= FDI_LINK_TRAIN_NONE;
3428
	}
3429
	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3430
 
3431
	/* wait one idle pattern time */
3432
	POSTING_READ(reg);
3433
	udelay(1000);
3434
 
3435
	/* IVB wants error correction enabled */
3436
	if (IS_IVYBRIDGE(dev))
3437
		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3438
			   FDI_FE_ERRC_ENABLE);
3439
}
3440
 
3441
/* The FDI link training functions for ILK/Ibexpeak. */
3442
static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3443
{
6084 serge 3444
	struct drm_device *dev = crtc->dev;
3445
	struct drm_i915_private *dev_priv = dev->dev_private;
3446
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3447
	int pipe = intel_crtc->pipe;
3448
	u32 reg, temp, tries;
2327 Serge 3449
 
5060 serge 3450
	/* FDI needs bits from pipe first */
6084 serge 3451
	assert_pipe_enabled(dev_priv, pipe);
2327 Serge 3452
 
6084 serge 3453
	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3454
	   for train result */
3455
	reg = FDI_RX_IMR(pipe);
3456
	temp = I915_READ(reg);
3457
	temp &= ~FDI_RX_SYMBOL_LOCK;
3458
	temp &= ~FDI_RX_BIT_LOCK;
3459
	I915_WRITE(reg, temp);
3460
	I915_READ(reg);
3461
	udelay(150);
2327 Serge 3462
 
6084 serge 3463
	/* enable CPU FDI TX and PCH FDI RX */
3464
	reg = FDI_TX_CTL(pipe);
3465
	temp = I915_READ(reg);
4104 Serge 3466
	temp &= ~FDI_DP_PORT_WIDTH_MASK;
6084 serge 3467
	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3468
	temp &= ~FDI_LINK_TRAIN_NONE;
3469
	temp |= FDI_LINK_TRAIN_PATTERN_1;
3470
	I915_WRITE(reg, temp | FDI_TX_ENABLE);
2327 Serge 3471
 
6084 serge 3472
	reg = FDI_RX_CTL(pipe);
3473
	temp = I915_READ(reg);
3474
	temp &= ~FDI_LINK_TRAIN_NONE;
3475
	temp |= FDI_LINK_TRAIN_PATTERN_1;
3476
	I915_WRITE(reg, temp | FDI_RX_ENABLE);
2327 Serge 3477
 
6084 serge 3478
	POSTING_READ(reg);
3479
	udelay(150);
2327 Serge 3480
 
6084 serge 3481
	/* Ironlake workaround, enable clock pointer after FDI enable*/
3482
	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3483
	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3484
		   FDI_RX_PHASE_SYNC_POINTER_EN);
2327 Serge 3485
 
6084 serge 3486
	reg = FDI_RX_IIR(pipe);
3487
	for (tries = 0; tries < 5; tries++) {
3488
		temp = I915_READ(reg);
3489
		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2327 Serge 3490
 
6084 serge 3491
		if ((temp & FDI_RX_BIT_LOCK)) {
3492
			DRM_DEBUG_KMS("FDI train 1 done.\n");
3493
			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3494
			break;
3495
		}
3496
	}
3497
	if (tries == 5)
3498
		DRM_ERROR("FDI train 1 fail!\n");
2327 Serge 3499
 
6084 serge 3500
	/* Train 2 */
3501
	reg = FDI_TX_CTL(pipe);
3502
	temp = I915_READ(reg);
3503
	temp &= ~FDI_LINK_TRAIN_NONE;
3504
	temp |= FDI_LINK_TRAIN_PATTERN_2;
3505
	I915_WRITE(reg, temp);
2327 Serge 3506
 
6084 serge 3507
	reg = FDI_RX_CTL(pipe);
3508
	temp = I915_READ(reg);
3509
	temp &= ~FDI_LINK_TRAIN_NONE;
3510
	temp |= FDI_LINK_TRAIN_PATTERN_2;
3511
	I915_WRITE(reg, temp);
2327 Serge 3512
 
6084 serge 3513
	POSTING_READ(reg);
3514
	udelay(150);
2327 Serge 3515
 
6084 serge 3516
	reg = FDI_RX_IIR(pipe);
3517
	for (tries = 0; tries < 5; tries++) {
3518
		temp = I915_READ(reg);
3519
		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2327 Serge 3520
 
6084 serge 3521
		if (temp & FDI_RX_SYMBOL_LOCK) {
3522
			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3523
			DRM_DEBUG_KMS("FDI train 2 done.\n");
3524
			break;
3525
		}
3526
	}
3527
	if (tries == 5)
3528
		DRM_ERROR("FDI train 2 fail!\n");
2327 Serge 3529
 
6084 serge 3530
	DRM_DEBUG_KMS("FDI train done\n");
2327 Serge 3531
 
3532
}
3533
 
2342 Serge 3534
static const int snb_b_fdi_train_param[] = {
6084 serge 3535
	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3536
	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3537
	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3538
	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2327 Serge 3539
};
3540
 
3541
/* The FDI link training functions for SNB/Cougarpoint. */
3542
static void gen6_fdi_link_train(struct drm_crtc *crtc)
3543
{
6084 serge 3544
	struct drm_device *dev = crtc->dev;
3545
	struct drm_i915_private *dev_priv = dev->dev_private;
3546
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3547
	int pipe = intel_crtc->pipe;
3031 serge 3548
	u32 reg, temp, i, retry;
2327 Serge 3549
 
6084 serge 3550
	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3551
	   for train result */
3552
	reg = FDI_RX_IMR(pipe);
3553
	temp = I915_READ(reg);
3554
	temp &= ~FDI_RX_SYMBOL_LOCK;
3555
	temp &= ~FDI_RX_BIT_LOCK;
3556
	I915_WRITE(reg, temp);
2327 Serge 3557
 
6084 serge 3558
	POSTING_READ(reg);
3559
	udelay(150);
2327 Serge 3560
 
6084 serge 3561
	/* enable CPU FDI TX and PCH FDI RX */
3562
	reg = FDI_TX_CTL(pipe);
3563
	temp = I915_READ(reg);
4104 Serge 3564
	temp &= ~FDI_DP_PORT_WIDTH_MASK;
6084 serge 3565
	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3566
	temp &= ~FDI_LINK_TRAIN_NONE;
3567
	temp |= FDI_LINK_TRAIN_PATTERN_1;
3568
	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3569
	/* SNB-B */
3570
	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3571
	I915_WRITE(reg, temp | FDI_TX_ENABLE);
2327 Serge 3572
 
3243 Serge 3573
	I915_WRITE(FDI_RX_MISC(pipe),
3574
		   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3575
 
6084 serge 3576
	reg = FDI_RX_CTL(pipe);
3577
	temp = I915_READ(reg);
3578
	if (HAS_PCH_CPT(dev)) {
3579
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3580
		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3581
	} else {
3582
		temp &= ~FDI_LINK_TRAIN_NONE;
3583
		temp |= FDI_LINK_TRAIN_PATTERN_1;
3584
	}
3585
	I915_WRITE(reg, temp | FDI_RX_ENABLE);
2327 Serge 3586
 
6084 serge 3587
	POSTING_READ(reg);
3588
	udelay(150);
2327 Serge 3589
 
2342 Serge 3590
	for (i = 0; i < 4; i++) {
6084 serge 3591
		reg = FDI_TX_CTL(pipe);
3592
		temp = I915_READ(reg);
3593
		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3594
		temp |= snb_b_fdi_train_param[i];
3595
		I915_WRITE(reg, temp);
2327 Serge 3596
 
6084 serge 3597
		POSTING_READ(reg);
3598
		udelay(500);
2327 Serge 3599
 
3031 serge 3600
		for (retry = 0; retry < 5; retry++) {
6084 serge 3601
			reg = FDI_RX_IIR(pipe);
3602
			temp = I915_READ(reg);
3603
			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3604
			if (temp & FDI_RX_BIT_LOCK) {
3605
				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3606
				DRM_DEBUG_KMS("FDI train 1 done.\n");
3607
				break;
3608
			}
3031 serge 3609
			udelay(50);
3610
		}
3611
		if (retry < 5)
3612
			break;
6084 serge 3613
	}
3614
	if (i == 4)
3615
		DRM_ERROR("FDI train 1 fail!\n");
2327 Serge 3616
 
6084 serge 3617
	/* Train 2 */
3618
	reg = FDI_TX_CTL(pipe);
3619
	temp = I915_READ(reg);
3620
	temp &= ~FDI_LINK_TRAIN_NONE;
3621
	temp |= FDI_LINK_TRAIN_PATTERN_2;
3622
	if (IS_GEN6(dev)) {
3623
		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3624
		/* SNB-B */
3625
		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3626
	}
3627
	I915_WRITE(reg, temp);
2327 Serge 3628
 
6084 serge 3629
	reg = FDI_RX_CTL(pipe);
3630
	temp = I915_READ(reg);
3631
	if (HAS_PCH_CPT(dev)) {
3632
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3633
		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3634
	} else {
3635
		temp &= ~FDI_LINK_TRAIN_NONE;
3636
		temp |= FDI_LINK_TRAIN_PATTERN_2;
3637
	}
3638
	I915_WRITE(reg, temp);
2327 Serge 3639
 
6084 serge 3640
	POSTING_READ(reg);
3641
	udelay(150);
2327 Serge 3642
 
2342 Serge 3643
	for (i = 0; i < 4; i++) {
6084 serge 3644
		reg = FDI_TX_CTL(pipe);
3645
		temp = I915_READ(reg);
3646
		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3647
		temp |= snb_b_fdi_train_param[i];
3648
		I915_WRITE(reg, temp);
2327 Serge 3649
 
6084 serge 3650
		POSTING_READ(reg);
3651
		udelay(500);
2327 Serge 3652
 
3031 serge 3653
		for (retry = 0; retry < 5; retry++) {
6084 serge 3654
			reg = FDI_RX_IIR(pipe);
3655
			temp = I915_READ(reg);
3656
			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3657
			if (temp & FDI_RX_SYMBOL_LOCK) {
3658
				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3659
				DRM_DEBUG_KMS("FDI train 2 done.\n");
3660
				break;
3661
			}
3031 serge 3662
			udelay(50);
3663
		}
3664
		if (retry < 5)
3665
			break;
6084 serge 3666
	}
3667
	if (i == 4)
3668
		DRM_ERROR("FDI train 2 fail!\n");
2327 Serge 3669
 
6084 serge 3670
	DRM_DEBUG_KMS("FDI train done.\n");
2327 Serge 3671
}
3672
 
3673
/* Manual link training for Ivy Bridge A0 parts */
3674
static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3675
{
6084 serge 3676
	struct drm_device *dev = crtc->dev;
3677
	struct drm_i915_private *dev_priv = dev->dev_private;
3678
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3679
	int pipe = intel_crtc->pipe;
4104 Serge 3680
	u32 reg, temp, i, j;
2327 Serge 3681
 
6084 serge 3682
	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3683
	   for train result */
3684
	reg = FDI_RX_IMR(pipe);
3685
	temp = I915_READ(reg);
3686
	temp &= ~FDI_RX_SYMBOL_LOCK;
3687
	temp &= ~FDI_RX_BIT_LOCK;
3688
	I915_WRITE(reg, temp);
2327 Serge 3689
 
6084 serge 3690
	POSTING_READ(reg);
3691
	udelay(150);
2327 Serge 3692
 
3243 Serge 3693
	DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3694
		      I915_READ(FDI_RX_IIR(pipe)));
3695
 
4104 Serge 3696
	/* Try each vswing and preemphasis setting twice before moving on */
3697
	for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3698
		/* disable first in case we need to retry */
3699
		reg = FDI_TX_CTL(pipe);
3700
		temp = I915_READ(reg);
3701
		temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3702
		temp &= ~FDI_TX_ENABLE;
3703
		I915_WRITE(reg, temp);
3704
 
3705
		reg = FDI_RX_CTL(pipe);
3706
		temp = I915_READ(reg);
3707
		temp &= ~FDI_LINK_TRAIN_AUTO;
3708
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3709
		temp &= ~FDI_RX_ENABLE;
3710
		I915_WRITE(reg, temp);
3711
 
6084 serge 3712
		/* enable CPU FDI TX and PCH FDI RX */
3713
		reg = FDI_TX_CTL(pipe);
3714
		temp = I915_READ(reg);
3715
		temp &= ~FDI_DP_PORT_WIDTH_MASK;
3716
		temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3717
		temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3718
		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4104 Serge 3719
		temp |= snb_b_fdi_train_param[j/2];
6084 serge 3720
		temp |= FDI_COMPOSITE_SYNC;
3721
		I915_WRITE(reg, temp | FDI_TX_ENABLE);
2327 Serge 3722
 
6084 serge 3723
		I915_WRITE(FDI_RX_MISC(pipe),
3724
			   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3243 Serge 3725
 
6084 serge 3726
		reg = FDI_RX_CTL(pipe);
3727
		temp = I915_READ(reg);
3728
		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3729
		temp |= FDI_COMPOSITE_SYNC;
3730
		I915_WRITE(reg, temp | FDI_RX_ENABLE);
2327 Serge 3731
 
6084 serge 3732
		POSTING_READ(reg);
4104 Serge 3733
		udelay(1); /* should be 0.5us */
2327 Serge 3734
 
6084 serge 3735
		for (i = 0; i < 4; i++) {
3736
			reg = FDI_RX_IIR(pipe);
3737
			temp = I915_READ(reg);
3738
			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2327 Serge 3739
 
6084 serge 3740
			if (temp & FDI_RX_BIT_LOCK ||
3741
			    (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3742
				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4104 Serge 3743
				DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3744
					      i);
6084 serge 3745
				break;
3746
			}
4104 Serge 3747
			udelay(1); /* should be 0.5us */
3748
		}
3749
		if (i == 4) {
3750
			DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3751
			continue;
6084 serge 3752
		}
2327 Serge 3753
 
6084 serge 3754
		/* Train 2 */
3755
		reg = FDI_TX_CTL(pipe);
3756
		temp = I915_READ(reg);
3757
		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3758
		temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3759
		I915_WRITE(reg, temp);
2327 Serge 3760
 
6084 serge 3761
		reg = FDI_RX_CTL(pipe);
3762
		temp = I915_READ(reg);
3763
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3764
		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3765
		I915_WRITE(reg, temp);
2327 Serge 3766
 
6084 serge 3767
		POSTING_READ(reg);
4104 Serge 3768
		udelay(2); /* should be 1.5us */
2327 Serge 3769
 
6084 serge 3770
		for (i = 0; i < 4; i++) {
3771
			reg = FDI_RX_IIR(pipe);
3772
			temp = I915_READ(reg);
3773
			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2327 Serge 3774
 
4104 Serge 3775
			if (temp & FDI_RX_SYMBOL_LOCK ||
3776
			    (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
6084 serge 3777
				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4104 Serge 3778
				DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3779
					      i);
3780
				goto train_done;
6084 serge 3781
			}
4104 Serge 3782
			udelay(2); /* should be 1.5us */
6084 serge 3783
		}
3784
		if (i == 4)
4104 Serge 3785
			DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3786
	}
2327 Serge 3787
 
4104 Serge 3788
train_done:
6084 serge 3789
	DRM_DEBUG_KMS("FDI train done.\n");
2327 Serge 3790
}
3791
 
3031 serge 3792
static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2327 Serge 3793
{
3031 serge 3794
	struct drm_device *dev = intel_crtc->base.dev;
2327 Serge 3795
	struct drm_i915_private *dev_priv = dev->dev_private;
3796
	int pipe = intel_crtc->pipe;
3797
	u32 reg, temp;
3798
 
3799
 
3800
	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3801
	reg = FDI_RX_CTL(pipe);
3802
	temp = I915_READ(reg);
4104 Serge 3803
	temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6084 serge 3804
	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3480 Serge 3805
	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2327 Serge 3806
	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3807
 
3808
	POSTING_READ(reg);
3809
	udelay(200);
3810
 
3811
	/* Switch from Rawclk to PCDclk */
3812
	temp = I915_READ(reg);
3813
	I915_WRITE(reg, temp | FDI_PCDCLK);
3814
 
3815
	POSTING_READ(reg);
3816
	udelay(200);
3817
 
3818
	/* Enable CPU FDI TX PLL, always on for Ironlake */
3819
	reg = FDI_TX_CTL(pipe);
3820
	temp = I915_READ(reg);
3821
	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3822
		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3823
 
3824
		POSTING_READ(reg);
3825
		udelay(100);
3826
	}
3827
}
3828
 
3031 serge 3829
static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3830
{
3831
	struct drm_device *dev = intel_crtc->base.dev;
3832
	struct drm_i915_private *dev_priv = dev->dev_private;
3833
	int pipe = intel_crtc->pipe;
3834
	u32 reg, temp;
3835
 
3836
	/* Switch from PCDclk to Rawclk */
3837
	reg = FDI_RX_CTL(pipe);
3838
	temp = I915_READ(reg);
3839
	I915_WRITE(reg, temp & ~FDI_PCDCLK);
3840
 
3841
	/* Disable CPU FDI TX PLL */
3842
	reg = FDI_TX_CTL(pipe);
3843
	temp = I915_READ(reg);
3844
	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3845
 
3846
	POSTING_READ(reg);
3847
	udelay(100);
3848
 
3849
	reg = FDI_RX_CTL(pipe);
3850
	temp = I915_READ(reg);
3851
	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3852
 
3853
	/* Wait for the clocks to turn off. */
3854
	POSTING_READ(reg);
3855
	udelay(100);
3856
}
3857
 
2327 Serge 3858
static void ironlake_fdi_disable(struct drm_crtc *crtc)
3859
{
3860
	struct drm_device *dev = crtc->dev;
3861
	struct drm_i915_private *dev_priv = dev->dev_private;
3862
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3863
	int pipe = intel_crtc->pipe;
3864
	u32 reg, temp;
3865
 
3866
	/* disable CPU FDI tx and PCH FDI rx */
3867
	reg = FDI_TX_CTL(pipe);
3868
	temp = I915_READ(reg);
3869
	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3870
	POSTING_READ(reg);
3871
 
3872
	reg = FDI_RX_CTL(pipe);
3873
	temp = I915_READ(reg);
3874
	temp &= ~(0x7 << 16);
3480 Serge 3875
	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2327 Serge 3876
	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3877
 
3878
	POSTING_READ(reg);
3879
	udelay(100);
3880
 
3881
	/* Ironlake workaround, disable clock pointer after downing FDI */
5060 serge 3882
	if (HAS_PCH_IBX(dev))
2327 Serge 3883
		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3884
 
3885
	/* still set train pattern 1 */
3886
	reg = FDI_TX_CTL(pipe);
3887
	temp = I915_READ(reg);
3888
	temp &= ~FDI_LINK_TRAIN_NONE;
3889
	temp |= FDI_LINK_TRAIN_PATTERN_1;
3890
	I915_WRITE(reg, temp);
3891
 
3892
	reg = FDI_RX_CTL(pipe);
3893
	temp = I915_READ(reg);
3894
	if (HAS_PCH_CPT(dev)) {
3895
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3896
		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3897
	} else {
3898
		temp &= ~FDI_LINK_TRAIN_NONE;
3899
		temp |= FDI_LINK_TRAIN_PATTERN_1;
3900
	}
3901
	/* BPC in FDI rx is consistent with that in PIPECONF */
3902
	temp &= ~(0x07 << 16);
3480 Serge 3903
	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2327 Serge 3904
	I915_WRITE(reg, temp);
3905
 
3906
	POSTING_READ(reg);
3907
	udelay(100);
3908
}
3909
 
5060 serge 3910
bool intel_has_pending_fb_unpin(struct drm_device *dev)
2327 Serge 3911
{
5060 serge 3912
	struct intel_crtc *crtc;
2327 Serge 3913
 
5060 serge 3914
	/* Note that we don't need to be called with mode_config.lock here
3915
	 * as our list of CRTC objects is static for the lifetime of the
3916
	 * device and so cannot disappear as we iterate. Similarly, we can
3917
	 * happily treat the predicates as racy, atomic checks as userspace
3918
	 * cannot claim and pin a new fb without at least acquring the
3919
	 * struct_mutex and so serialising with us.
3920
	 */
3921
	for_each_intel_crtc(dev, crtc) {
3922
		if (atomic_read(&crtc->unpin_work_count) == 0)
3923
			continue;
2327 Serge 3924
 
5060 serge 3925
		if (crtc->unpin_work)
3926
			intel_wait_for_vblank(dev, crtc->pipe);
3031 serge 3927
 
5060 serge 3928
		return true;
3929
	}
3930
 
3931
	return false;
2327 Serge 3932
}
3933
 
3031 serge 3934
#if 0
5060 serge 3935
void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2327 Serge 3936
{
3031 serge 3937
	struct drm_device *dev = crtc->dev;
3938
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 3939
 
3480 Serge 3940
	WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
5354 serge 3941
	if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3942
				       !intel_crtc_has_pending_flip(crtc),
3943
				       60*HZ) == 0)) {
3944
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3480 Serge 3945
 
5354 serge 3946
		spin_lock_irq(&dev->event_lock);
3947
		if (intel_crtc->unpin_work) {
3948
			WARN_ONCE(1, "Removing stuck page flip\n");
3949
			page_flip_completed(intel_crtc);
3950
		}
3951
		spin_unlock_irq(&dev->event_lock);
3952
	}
3031 serge 3953
 
5354 serge 3954
	if (crtc->primary->fb) {
6084 serge 3955
		mutex_lock(&dev->struct_mutex);
3956
		intel_finish_fb(crtc->primary->fb);
3957
		mutex_unlock(&dev->struct_mutex);
5354 serge 3958
	}
2327 Serge 3959
}
3031 serge 3960
#endif
2327 Serge 3961
 
3031 serge 3962
/* Program iCLKIP clock to the desired frequency */
3963
static void lpt_program_iclkip(struct drm_crtc *crtc)
3964
{
3965
	struct drm_device *dev = crtc->dev;
3966
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 3967
	int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3031 serge 3968
	u32 divsel, phaseinc, auxdiv, phasedir = 0;
3969
	u32 temp;
3970
 
6084 serge 3971
	mutex_lock(&dev_priv->sb_lock);
3480 Serge 3972
 
3031 serge 3973
	/* It is necessary to ungate the pixclk gate prior to programming
3974
	 * the divisors, and gate it back when it is done.
3975
	 */
3976
	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3977
 
3978
	/* Disable SSCCTL */
3979
	intel_sbi_write(dev_priv, SBI_SSCCTL6,
3243 Serge 3980
			intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3981
				SBI_SSCCTL_DISABLE,
3982
			SBI_ICLK);
3031 serge 3983
 
3984
	/* 20MHz is a corner case which is out of range for the 7-bit divisor */
4560 Serge 3985
	if (clock == 20000) {
3031 serge 3986
		auxdiv = 1;
3987
		divsel = 0x41;
3988
		phaseinc = 0x20;
3989
	} else {
3990
		/* The iCLK virtual clock root frequency is in MHz,
4560 Serge 3991
		 * but the adjusted_mode->crtc_clock in in KHz. To get the
3992
		 * divisors, it is necessary to divide one by another, so we
3031 serge 3993
		 * convert the virtual clock precision to KHz here for higher
3994
		 * precision.
3995
		 */
3996
		u32 iclk_virtual_root_freq = 172800 * 1000;
3997
		u32 iclk_pi_range = 64;
3998
		u32 desired_divisor, msb_divisor_value, pi_value;
3999
 
4560 Serge 4000
		desired_divisor = (iclk_virtual_root_freq / clock);
3031 serge 4001
		msb_divisor_value = desired_divisor / iclk_pi_range;
4002
		pi_value = desired_divisor % iclk_pi_range;
4003
 
4004
		auxdiv = 0;
4005
		divsel = msb_divisor_value - 2;
4006
		phaseinc = pi_value;
4007
	}
4008
 
4009
	/* This should not happen with any sane values */
4010
	WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4011
		~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4012
	WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4013
		~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4014
 
4015
	DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4560 Serge 4016
			clock,
3031 serge 4017
			auxdiv,
4018
			divsel,
4019
			phasedir,
4020
			phaseinc);
4021
 
4022
	/* Program SSCDIVINTPHASE6 */
3243 Serge 4023
	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3031 serge 4024
	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4025
	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4026
	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4027
	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4028
	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4029
	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3243 Serge 4030
	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3031 serge 4031
 
4032
	/* Program SSCAUXDIV */
3243 Serge 4033
	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3031 serge 4034
	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4035
	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3243 Serge 4036
	intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3031 serge 4037
 
4038
	/* Enable modulator and associated divider */
3243 Serge 4039
	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3031 serge 4040
	temp &= ~SBI_SSCCTL_DISABLE;
3243 Serge 4041
	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3031 serge 4042
 
4043
	/* Wait for initialization time */
4044
	udelay(24);
4045
 
4046
	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3480 Serge 4047
 
6084 serge 4048
	mutex_unlock(&dev_priv->sb_lock);
3031 serge 4049
}
4050
 
4104 Serge 4051
static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4052
						enum pipe pch_transcoder)
4053
{
4054
	struct drm_device *dev = crtc->base.dev;
4055
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 4056
	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4104 Serge 4057
 
4058
	I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4059
		   I915_READ(HTOTAL(cpu_transcoder)));
4060
	I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4061
		   I915_READ(HBLANK(cpu_transcoder)));
4062
	I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4063
		   I915_READ(HSYNC(cpu_transcoder)));
4064
 
4065
	I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4066
		   I915_READ(VTOTAL(cpu_transcoder)));
4067
	I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4068
		   I915_READ(VBLANK(cpu_transcoder)));
4069
	I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4070
		   I915_READ(VSYNC(cpu_transcoder)));
4071
	I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4072
		   I915_READ(VSYNCSHIFT(cpu_transcoder)));
4073
}
4074
 
6084 serge 4075
static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4280 Serge 4076
{
4077
	struct drm_i915_private *dev_priv = dev->dev_private;
4078
	uint32_t temp;
4079
 
4080
	temp = I915_READ(SOUTH_CHICKEN1);
6084 serge 4081
	if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4280 Serge 4082
		return;
4083
 
4084
	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4085
	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4086
 
6084 serge 4087
	temp &= ~FDI_BC_BIFURCATION_SELECT;
4088
	if (enable)
4089
		temp |= FDI_BC_BIFURCATION_SELECT;
4090
 
4091
	DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4280 Serge 4092
	I915_WRITE(SOUTH_CHICKEN1, temp);
4093
	POSTING_READ(SOUTH_CHICKEN1);
4094
}
4095
 
4096
static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4097
{
4098
	struct drm_device *dev = intel_crtc->base.dev;
4099
 
4100
	switch (intel_crtc->pipe) {
4101
	case PIPE_A:
4102
		break;
4103
	case PIPE_B:
6084 serge 4104
		if (intel_crtc->config->fdi_lanes > 2)
4105
			cpt_set_fdi_bc_bifurcation(dev, false);
4280 Serge 4106
		else
6084 serge 4107
			cpt_set_fdi_bc_bifurcation(dev, true);
4280 Serge 4108
 
4109
		break;
4110
	case PIPE_C:
6084 serge 4111
		cpt_set_fdi_bc_bifurcation(dev, true);
4280 Serge 4112
 
4113
		break;
4114
	default:
4115
		BUG();
4116
	}
4117
}
4118
 
2327 Serge 4119
/*
4120
 * Enable PCH resources required for PCH ports:
4121
 *   - PCH PLLs
4122
 *   - FDI training & RX/TX
4123
 *   - update transcoder timings
4124
 *   - DP transcoding bits
4125
 *   - transcoder
4126
 */
4127
static void ironlake_pch_enable(struct drm_crtc *crtc)
4128
{
4129
	struct drm_device *dev = crtc->dev;
4130
	struct drm_i915_private *dev_priv = dev->dev_private;
4131
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4132
	int pipe = intel_crtc->pipe;
3031 serge 4133
	u32 reg, temp;
2327 Serge 4134
 
4104 Serge 4135
	assert_pch_transcoder_disabled(dev_priv, pipe);
3031 serge 4136
 
4280 Serge 4137
	if (IS_IVYBRIDGE(dev))
4138
		ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4139
 
3243 Serge 4140
	/* Write the TU size bits before fdi link training, so that error
4141
	 * detection works. */
4142
	I915_WRITE(FDI_RX_TUSIZE1(pipe),
4143
		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4144
 
2327 Serge 4145
	/* For PCH output, training FDI link */
4146
	dev_priv->display.fdi_link_train(crtc);
4147
 
4104 Serge 4148
	/* We need to program the right clock selection before writing the pixel
4149
	 * mutliplier into the DPLL. */
3243 Serge 4150
	if (HAS_PCH_CPT(dev)) {
3031 serge 4151
		u32 sel;
2342 Serge 4152
 
2327 Serge 4153
		temp = I915_READ(PCH_DPLL_SEL);
4104 Serge 4154
		temp |= TRANS_DPLL_ENABLE(pipe);
4155
		sel = TRANS_DPLLB_SEL(pipe);
6084 serge 4156
		if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
3031 serge 4157
			temp |= sel;
4158
		else
4159
			temp &= ~sel;
2327 Serge 4160
		I915_WRITE(PCH_DPLL_SEL, temp);
4161
	}
4162
 
4104 Serge 4163
	/* XXX: pch pll's can be enabled any time before we enable the PCH
4164
	 * transcoder, and we actually should do this to not upset any PCH
4165
	 * transcoder that already use the clock when we share it.
4166
	 *
4167
	 * Note that enable_shared_dpll tries to do the right thing, but
4168
	 * get_shared_dpll unconditionally resets the pll - we need that to have
4169
	 * the right LVDS enable sequence. */
5060 serge 4170
	intel_enable_shared_dpll(intel_crtc);
4104 Serge 4171
 
2327 Serge 4172
	/* set transcoder timing, panel must allow it */
4173
	assert_panel_unlocked(dev_priv, pipe);
4104 Serge 4174
	ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
2327 Serge 4175
 
4176
	intel_fdi_normal_train(crtc);
4177
 
4178
	/* For PCH DP, enable TRANS_DP_CTL */
6084 serge 4179
	if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
3480 Serge 4180
		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
2327 Serge 4181
		reg = TRANS_DP_CTL(pipe);
4182
		temp = I915_READ(reg);
4183
		temp &= ~(TRANS_DP_PORT_SEL_MASK |
4184
			  TRANS_DP_SYNC_MASK |
4185
			  TRANS_DP_BPC_MASK);
6084 serge 4186
		temp |= TRANS_DP_OUTPUT_ENABLE;
2327 Serge 4187
		temp |= bpc << 9; /* same format but at 11:9 */
4188
 
4189
		if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4190
			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4191
		if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4192
			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4193
 
4194
		switch (intel_trans_dp_port_sel(crtc)) {
4195
		case PCH_DP_B:
4196
			temp |= TRANS_DP_PORT_SEL_B;
4197
			break;
4198
		case PCH_DP_C:
4199
			temp |= TRANS_DP_PORT_SEL_C;
4200
			break;
4201
		case PCH_DP_D:
4202
			temp |= TRANS_DP_PORT_SEL_D;
4203
			break;
4204
		default:
3243 Serge 4205
			BUG();
2327 Serge 4206
		}
4207
 
4208
		I915_WRITE(reg, temp);
4209
	}
4210
 
3243 Serge 4211
	ironlake_enable_pch_transcoder(dev_priv, pipe);
2327 Serge 4212
}
4213
 
3243 Serge 4214
static void lpt_pch_enable(struct drm_crtc *crtc)
4215
{
4216
	struct drm_device *dev = crtc->dev;
4217
	struct drm_i915_private *dev_priv = dev->dev_private;
4218
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6084 serge 4219
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
3243 Serge 4220
 
4104 Serge 4221
	assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3243 Serge 4222
 
4223
	lpt_program_iclkip(crtc);
4224
 
4225
	/* Set transcoder timing. */
4104 Serge 4226
	ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3243 Serge 4227
 
4228
	lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4229
}
4230
 
6084 serge 4231
struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4232
						struct intel_crtc_state *crtc_state)
3031 serge 4233
{
4104 Serge 4234
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
5354 serge 4235
	struct intel_shared_dpll *pll;
6084 serge 4236
	struct intel_shared_dpll_config *shared_dpll;
4104 Serge 4237
	enum intel_dpll_id i;
6084 serge 4238
	int max = dev_priv->num_shared_dpll;
3031 serge 4239
 
6084 serge 4240
	shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4241
 
3031 serge 4242
	if (HAS_PCH_IBX(dev_priv->dev)) {
4243
		/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4104 Serge 4244
		i = (enum intel_dpll_id) crtc->pipe;
4245
		pll = &dev_priv->shared_dplls[i];
3031 serge 4246
 
4104 Serge 4247
		DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4248
			      crtc->base.base.id, pll->name);
3031 serge 4249
 
6084 serge 4250
		WARN_ON(shared_dpll[i].crtc_mask);
5060 serge 4251
 
3031 serge 4252
		goto found;
4253
	}
4254
 
6084 serge 4255
	if (IS_BROXTON(dev_priv->dev)) {
4256
		/* PLL is attached to port in bxt */
4257
		struct intel_encoder *encoder;
4258
		struct intel_digital_port *intel_dig_port;
4259
 
4260
		encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4261
		if (WARN_ON(!encoder))
4262
			return NULL;
4263
 
4264
		intel_dig_port = enc_to_dig_port(&encoder->base);
4265
		/* 1:1 mapping between ports and PLLs */
4266
		i = (enum intel_dpll_id)intel_dig_port->port;
4104 Serge 4267
		pll = &dev_priv->shared_dplls[i];
6084 serge 4268
		DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4269
			crtc->base.base.id, pll->name);
4270
		WARN_ON(shared_dpll[i].crtc_mask);
3031 serge 4271
 
6084 serge 4272
		goto found;
4273
	} else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
4274
		/* Do not consider SPLL */
4275
		max = 2;
4276
 
4277
	for (i = 0; i < max; i++) {
4278
		pll = &dev_priv->shared_dplls[i];
4279
 
3031 serge 4280
		/* Only want to check enabled timings first */
6084 serge 4281
		if (shared_dpll[i].crtc_mask == 0)
3031 serge 4282
			continue;
4283
 
6084 serge 4284
		if (memcmp(&crtc_state->dpll_hw_state,
4285
			   &shared_dpll[i].hw_state,
4286
			   sizeof(crtc_state->dpll_hw_state)) == 0) {
5354 serge 4287
			DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4288
				      crtc->base.base.id, pll->name,
6084 serge 4289
				      shared_dpll[i].crtc_mask,
5354 serge 4290
				      pll->active);
3031 serge 4291
			goto found;
4292
		}
4293
	}
4294
 
4295
	/* Ok no matching timings, maybe there's a free one? */
4104 Serge 4296
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4297
		pll = &dev_priv->shared_dplls[i];
6084 serge 4298
		if (shared_dpll[i].crtc_mask == 0) {
4104 Serge 4299
			DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4300
				      crtc->base.base.id, pll->name);
3031 serge 4301
			goto found;
4302
		}
4303
	}
4304
 
4305
	return NULL;
4306
 
4307
found:
6084 serge 4308
	if (shared_dpll[i].crtc_mask == 0)
4309
		shared_dpll[i].hw_state =
4310
			crtc_state->dpll_hw_state;
5060 serge 4311
 
6084 serge 4312
	crtc_state->shared_dpll = i;
4104 Serge 4313
	DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4314
			 pipe_name(crtc->pipe));
4315
 
6084 serge 4316
	shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
3031 serge 4317
 
4318
	return pll;
4319
}
4320
 
6084 serge 4321
static void intel_shared_dpll_commit(struct drm_atomic_state *state)
5354 serge 4322
{
6084 serge 4323
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4324
	struct intel_shared_dpll_config *shared_dpll;
5354 serge 4325
	struct intel_shared_dpll *pll;
4326
	enum intel_dpll_id i;
4327
 
6084 serge 4328
	if (!to_intel_atomic_state(state)->dpll_set)
4329
		return;
4330
 
4331
	shared_dpll = to_intel_atomic_state(state)->shared_dpll;
5354 serge 4332
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4333
		pll = &dev_priv->shared_dplls[i];
6084 serge 4334
		pll->config = shared_dpll[i];
4335
	}
4336
}
5354 serge 4337
 
6084 serge 4338
static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4339
{
4340
	struct drm_i915_private *dev_priv = dev->dev_private;
4341
	int dslreg = PIPEDSL(pipe);
4342
	u32 temp;
5354 serge 4343
 
6084 serge 4344
	temp = I915_READ(dslreg);
4345
	udelay(500);
4346
	if (wait_for(I915_READ(dslreg) != temp, 5)) {
4347
		if (wait_for(I915_READ(dslreg) != temp, 5))
4348
			DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
5354 serge 4349
	}
6084 serge 4350
}
5354 serge 4351
 
6084 serge 4352
static int
4353
skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4354
		  unsigned scaler_user, int *scaler_id, unsigned int rotation,
4355
		  int src_w, int src_h, int dst_w, int dst_h)
4356
{
4357
	struct intel_crtc_scaler_state *scaler_state =
4358
		&crtc_state->scaler_state;
4359
	struct intel_crtc *intel_crtc =
4360
		to_intel_crtc(crtc_state->base.crtc);
4361
	int need_scaling;
5354 serge 4362
 
6084 serge 4363
	need_scaling = intel_rotation_90_or_270(rotation) ?
4364
		(src_h != dst_w || src_w != dst_h):
4365
		(src_w != dst_w || src_h != dst_h);
4366
 
4367
	/*
4368
	 * if plane is being disabled or scaler is no more required or force detach
4369
	 *  - free scaler binded to this plane/crtc
4370
	 *  - in order to do this, update crtc->scaler_usage
4371
	 *
4372
	 * Here scaler state in crtc_state is set free so that
4373
	 * scaler can be assigned to other user. Actual register
4374
	 * update to free the scaler is done in plane/panel-fit programming.
4375
	 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4376
	 */
4377
	if (force_detach || !need_scaling) {
4378
		if (*scaler_id >= 0) {
4379
			scaler_state->scaler_users &= ~(1 << scaler_user);
4380
			scaler_state->scalers[*scaler_id].in_use = 0;
4381
 
4382
			DRM_DEBUG_KMS("scaler_user index %u.%u: "
4383
				"Staged freeing scaler id %d scaler_users = 0x%x\n",
4384
				intel_crtc->pipe, scaler_user, *scaler_id,
4385
				scaler_state->scaler_users);
4386
			*scaler_id = -1;
4387
		}
4388
		return 0;
5354 serge 4389
	}
4390
 
6084 serge 4391
	/* range checks */
4392
	if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4393
		dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4394
 
4395
		src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4396
		dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4397
		DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4398
			"size is out of scaler range\n",
4399
			intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4400
		return -EINVAL;
4401
	}
4402
 
4403
	/* mark this plane as a scaler user in crtc_state */
4404
	scaler_state->scaler_users |= (1 << scaler_user);
4405
	DRM_DEBUG_KMS("scaler_user index %u.%u: "
4406
		"staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4407
		intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4408
		scaler_state->scaler_users);
4409
 
4410
	return 0;
5354 serge 4411
}
4412
 
6084 serge 4413
/**
4414
 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4415
 *
4416
 * @state: crtc's scaler state
4417
 *
4418
 * Return
4419
 *     0 - scaler_usage updated successfully
4420
 *    error - requested scaling cannot be supported or other error condition
4421
 */
4422
int skl_update_scaler_crtc(struct intel_crtc_state *state)
5354 serge 4423
{
6084 serge 4424
	struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4425
	const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
5354 serge 4426
 
6084 serge 4427
	DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4428
		      intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
5354 serge 4429
 
6084 serge 4430
	return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4431
		&state->scaler_state.scaler_id, DRM_ROTATE_0,
4432
		state->pipe_src_w, state->pipe_src_h,
4433
		adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
5354 serge 4434
}
4435
 
6084 serge 4436
/**
4437
 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4438
 *
4439
 * @state: crtc's scaler state
4440
 * @plane_state: atomic plane state to update
4441
 *
4442
 * Return
4443
 *     0 - scaler_usage updated successfully
4444
 *    error - requested scaling cannot be supported or other error condition
4445
 */
4446
static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4447
				   struct intel_plane_state *plane_state)
5354 serge 4448
{
4449
 
6084 serge 4450
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4451
	struct intel_plane *intel_plane =
4452
		to_intel_plane(plane_state->base.plane);
4453
	struct drm_framebuffer *fb = plane_state->base.fb;
4454
	int ret;
5354 serge 4455
 
6084 serge 4456
	bool force_detach = !fb || !plane_state->visible;
5354 serge 4457
 
6084 serge 4458
	DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4459
		      intel_plane->base.base.id, intel_crtc->pipe,
4460
		      drm_plane_index(&intel_plane->base));
4461
 
4462
	ret = skl_update_scaler(crtc_state, force_detach,
4463
				drm_plane_index(&intel_plane->base),
4464
				&plane_state->scaler_id,
4465
				plane_state->base.rotation,
4466
				drm_rect_width(&plane_state->src) >> 16,
4467
				drm_rect_height(&plane_state->src) >> 16,
4468
				drm_rect_width(&plane_state->dst),
4469
				drm_rect_height(&plane_state->dst));
4470
 
4471
	if (ret || plane_state->scaler_id < 0)
4472
		return ret;
4473
 
4474
	/* check colorkey */
4475
	if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4476
		DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4477
			      intel_plane->base.base.id);
4478
		return -EINVAL;
5354 serge 4479
	}
6084 serge 4480
 
4481
	/* Check src format */
4482
	switch (fb->pixel_format) {
4483
	case DRM_FORMAT_RGB565:
4484
	case DRM_FORMAT_XBGR8888:
4485
	case DRM_FORMAT_XRGB8888:
4486
	case DRM_FORMAT_ABGR8888:
4487
	case DRM_FORMAT_ARGB8888:
4488
	case DRM_FORMAT_XRGB2101010:
4489
	case DRM_FORMAT_XBGR2101010:
4490
	case DRM_FORMAT_YUYV:
4491
	case DRM_FORMAT_YVYU:
4492
	case DRM_FORMAT_UYVY:
4493
	case DRM_FORMAT_VYUY:
4494
		break;
4495
	default:
4496
		DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4497
			intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4498
		return -EINVAL;
4499
	}
4500
 
4501
	return 0;
5354 serge 4502
}
4503
 
6084 serge 4504
static void skylake_scaler_disable(struct intel_crtc *crtc)
2342 Serge 4505
{
6084 serge 4506
	int i;
2342 Serge 4507
 
6084 serge 4508
	for (i = 0; i < crtc->num_scalers; i++)
4509
		skl_detach_scaler(crtc, i);
2342 Serge 4510
}
4511
 
5354 serge 4512
static void skylake_pfit_enable(struct intel_crtc *crtc)
4513
{
4514
	struct drm_device *dev = crtc->base.dev;
4515
	struct drm_i915_private *dev_priv = dev->dev_private;
4516
	int pipe = crtc->pipe;
6084 serge 4517
	struct intel_crtc_scaler_state *scaler_state =
4518
		&crtc->config->scaler_state;
5354 serge 4519
 
6084 serge 4520
	DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4521
 
4522
	if (crtc->config->pch_pfit.enabled) {
4523
		int id;
4524
 
4525
		if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4526
			DRM_ERROR("Requesting pfit without getting a scaler first\n");
4527
			return;
4528
		}
4529
 
4530
		id = scaler_state->scaler_id;
4531
		I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4532
			PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4533
		I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4534
		I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4535
 
4536
		DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
5354 serge 4537
	}
4538
}
4539
 
4104 Serge 4540
static void ironlake_pfit_enable(struct intel_crtc *crtc)
4541
{
4542
	struct drm_device *dev = crtc->base.dev;
4543
	struct drm_i915_private *dev_priv = dev->dev_private;
4544
	int pipe = crtc->pipe;
4545
 
6084 serge 4546
	if (crtc->config->pch_pfit.enabled) {
4104 Serge 4547
		/* Force use of hard-coded filter coefficients
4548
		 * as some pre-programmed values are broken,
4549
		 * e.g. x201.
4550
		 */
4551
		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4552
			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4553
						 PF_PIPE_SEL_IVB(pipe));
4554
		else
4555
			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6084 serge 4556
		I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4557
		I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4104 Serge 4558
	}
4559
}
4560
 
4560 Serge 4561
void hsw_enable_ips(struct intel_crtc *crtc)
4562
{
5060 serge 4563
	struct drm_device *dev = crtc->base.dev;
4564
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 4565
 
6084 serge 4566
	if (!crtc->config->ips_enabled)
4560 Serge 4567
		return;
4568
 
5060 serge 4569
	/* We can only enable IPS after we enable a plane and wait for a vblank */
4570
	intel_wait_for_vblank(dev, crtc->pipe);
4571
 
4560 Serge 4572
	assert_plane_enabled(dev_priv, crtc->plane);
5060 serge 4573
	if (IS_BROADWELL(dev)) {
4560 Serge 4574
		mutex_lock(&dev_priv->rps.hw_lock);
4575
		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4576
		mutex_unlock(&dev_priv->rps.hw_lock);
4577
		/* Quoting Art Runyan: "its not safe to expect any particular
4578
		 * value in IPS_CTL bit 31 after enabling IPS through the
4579
		 * mailbox." Moreover, the mailbox may return a bogus state,
4580
		 * so we need to just enable it and continue on.
4581
		 */
4582
	} else {
4583
		I915_WRITE(IPS_CTL, IPS_ENABLE);
4584
		/* The bit only becomes 1 in the next vblank, so this wait here
4585
		 * is essentially intel_wait_for_vblank. If we don't have this
4586
		 * and don't wait for vblanks until the end of crtc_enable, then
4587
		 * the HW state readout code will complain that the expected
4588
		 * IPS_CTL value is not the one we read. */
4589
		if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4590
			DRM_ERROR("Timed out waiting for IPS enable\n");
4591
	}
4592
}
4593
 
4594
void hsw_disable_ips(struct intel_crtc *crtc)
4595
{
4596
	struct drm_device *dev = crtc->base.dev;
4597
	struct drm_i915_private *dev_priv = dev->dev_private;
4598
 
6084 serge 4599
	if (!crtc->config->ips_enabled)
4560 Serge 4600
		return;
4601
 
4602
	assert_plane_enabled(dev_priv, crtc->plane);
5060 serge 4603
	if (IS_BROADWELL(dev)) {
4560 Serge 4604
		mutex_lock(&dev_priv->rps.hw_lock);
4605
		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4606
		mutex_unlock(&dev_priv->rps.hw_lock);
5060 serge 4607
		/* wait for pcode to finish disabling IPS, which may take up to 42ms */
4608
		if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4609
			DRM_ERROR("Timed out waiting for IPS disable\n");
4560 Serge 4610
	} else {
4611
		I915_WRITE(IPS_CTL, 0);
4612
		POSTING_READ(IPS_CTL);
4613
	}
4614
 
4615
	/* We need to wait for a vblank before we can disable the plane. */
4616
	intel_wait_for_vblank(dev, crtc->pipe);
4617
}
4618
 
4619
/** Loads the palette/gamma unit for the CRTC with the prepared values */
4620
static void intel_crtc_load_lut(struct drm_crtc *crtc)
4621
{
4622
	struct drm_device *dev = crtc->dev;
4623
	struct drm_i915_private *dev_priv = dev->dev_private;
4624
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4625
	enum pipe pipe = intel_crtc->pipe;
4626
	int i;
4627
	bool reenable_ips = false;
4628
 
4629
	/* The clocks have to be on to load the palette. */
6084 serge 4630
	if (!crtc->state->active)
4560 Serge 4631
		return;
4632
 
6084 serge 4633
	if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
5354 serge 4634
		if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4560 Serge 4635
			assert_dsi_pll_enabled(dev_priv);
4636
		else
4637
			assert_pll_enabled(dev_priv, pipe);
4638
	}
4639
 
4640
	/* Workaround : Do not read or write the pipe palette/gamma data while
4641
	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4642
	 */
6084 serge 4643
	if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4560 Serge 4644
	    ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4645
	     GAMMA_MODE_MODE_SPLIT)) {
4646
		hsw_disable_ips(intel_crtc);
4647
		reenable_ips = true;
4648
	}
4649
 
4650
	for (i = 0; i < 256; i++) {
6084 serge 4651
		u32 palreg;
4652
 
4653
		if (HAS_GMCH_DISPLAY(dev))
4654
			palreg = PALETTE(pipe, i);
4655
		else
4656
			palreg = LGC_PALETTE(pipe, i);
4657
 
4658
		I915_WRITE(palreg,
4560 Serge 4659
			   (intel_crtc->lut_r[i] << 16) |
4660
			   (intel_crtc->lut_g[i] << 8) |
4661
			   intel_crtc->lut_b[i]);
4662
	}
4663
 
4664
	if (reenable_ips)
4665
		hsw_enable_ips(intel_crtc);
4666
}
4667
 
6084 serge 4668
static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
5060 serge 4669
{
6084 serge 4670
	if (intel_crtc->overlay) {
5060 serge 4671
		struct drm_device *dev = intel_crtc->base.dev;
4672
		struct drm_i915_private *dev_priv = dev->dev_private;
4673
 
4674
		mutex_lock(&dev->struct_mutex);
4675
		dev_priv->mm.interruptible = false;
5354 serge 4676
//       (void) intel_overlay_switch_off(intel_crtc->overlay);
6084 serge 4677
		dev_priv->mm.interruptible = true;
5060 serge 4678
		mutex_unlock(&dev->struct_mutex);
4679
	}
4680
 
4681
	/* Let userspace switch the overlay on again. In most cases userspace
4682
	 * has to recompute where to put it anyway.
4683
	 */
4684
}
4685
 
6084 serge 4686
/**
4687
 * intel_post_enable_primary - Perform operations after enabling primary plane
4688
 * @crtc: the CRTC whose primary plane was just enabled
4689
 *
4690
 * Performs potentially sleeping operations that must be done after the primary
4691
 * plane is enabled, such as updating FBC and IPS.  Note that this may be
4692
 * called due to an explicit primary plane update, or due to an implicit
4693
 * re-enable that is caused when a sprite plane is updated to no longer
4694
 * completely hide the primary plane.
4695
 */
4696
static void
4697
intel_post_enable_primary(struct drm_crtc *crtc)
5060 serge 4698
{
4699
	struct drm_device *dev = crtc->dev;
6084 serge 4700
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 4701
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4702
	int pipe = intel_crtc->pipe;
4703
 
6084 serge 4704
	/*
4705
	 * BDW signals flip done immediately if the plane
4706
	 * is disabled, even if the plane enable is already
4707
	 * armed to occur at the next vblank :(
4708
	 */
4709
	if (IS_BROADWELL(dev))
4710
		intel_wait_for_vblank(dev, pipe);
5060 serge 4711
 
6084 serge 4712
	/*
4713
	 * FIXME IPS should be fine as long as one plane is
4714
	 * enabled, but in practice it seems to have problems
4715
	 * when going from primary only to sprite only and vice
4716
	 * versa.
4717
	 */
5060 serge 4718
	hsw_enable_ips(intel_crtc);
4719
 
5354 serge 4720
	/*
6084 serge 4721
	 * Gen2 reports pipe underruns whenever all planes are disabled.
4722
	 * So don't enable underrun reporting before at least some planes
4723
	 * are enabled.
4724
	 * FIXME: Need to fix the logic to work when we turn off all planes
4725
	 * but leave the pipe running.
5354 serge 4726
	 */
6084 serge 4727
	if (IS_GEN2(dev))
4728
		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4729
 
4730
	/* Underruns don't raise interrupts, so check manually. */
4731
	if (HAS_GMCH_DISPLAY(dev))
4732
		i9xx_check_fifo_underruns(dev_priv);
5060 serge 4733
}
4734
 
6084 serge 4735
/**
4736
 * intel_pre_disable_primary - Perform operations before disabling primary plane
4737
 * @crtc: the CRTC whose primary plane is to be disabled
4738
 *
4739
 * Performs potentially sleeping operations that must be done before the
4740
 * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4741
 * be called due to an explicit primary plane update, or due to an implicit
4742
 * disable that is caused when a sprite plane completely hides the primary
4743
 * plane.
4744
 */
4745
static void
4746
intel_pre_disable_primary(struct drm_crtc *crtc)
5060 serge 4747
{
4748
	struct drm_device *dev = crtc->dev;
4749
	struct drm_i915_private *dev_priv = dev->dev_private;
4750
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4751
	int pipe = intel_crtc->pipe;
4752
 
6084 serge 4753
	/*
4754
	 * Gen2 reports pipe underruns whenever all planes are disabled.
4755
	 * So diasble underrun reporting before all the planes get disabled.
4756
	 * FIXME: Need to fix the logic to work when we turn off all planes
4757
	 * but leave the pipe running.
4758
	 */
4759
	if (IS_GEN2(dev))
4760
		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5060 serge 4761
 
6084 serge 4762
	/*
4763
	 * Vblank time updates from the shadow to live plane control register
4764
	 * are blocked if the memory self-refresh mode is active at that
4765
	 * moment. So to make sure the plane gets truly disabled, disable
4766
	 * first the self-refresh mode. The self-refresh enable bit in turn
4767
	 * will be checked/applied by the HW only at the next frame start
4768
	 * event which is after the vblank start event, so we need to have a
4769
	 * wait-for-vblank between disabling the plane and the pipe.
4770
	 */
4771
	if (HAS_GMCH_DISPLAY(dev)) {
4772
		intel_set_memory_cxsr(dev_priv, false);
4773
		dev_priv->wm.vlv.cxsr = false;
4774
		intel_wait_for_vblank(dev, pipe);
4775
	}
5060 serge 4776
 
6084 serge 4777
	/*
4778
	 * FIXME IPS should be fine as long as one plane is
4779
	 * enabled, but in practice it seems to have problems
4780
	 * when going from primary only to sprite only and vice
4781
	 * versa.
4782
	 */
5060 serge 4783
	hsw_disable_ips(intel_crtc);
6084 serge 4784
}
5060 serge 4785
 
6084 serge 4786
static void intel_post_plane_update(struct intel_crtc *crtc)
4787
{
4788
	struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4789
	struct drm_device *dev = crtc->base.dev;
4790
	struct drm_i915_private *dev_priv = dev->dev_private;
4791
	struct drm_plane *plane;
5354 serge 4792
 
6084 serge 4793
	if (atomic->wait_vblank)
4794
		intel_wait_for_vblank(dev, crtc->pipe);
4795
 
4796
	intel_frontbuffer_flip(dev, atomic->fb_bits);
4797
 
4798
	if (atomic->disable_cxsr)
4799
		crtc->wm.cxsr_allowed = true;
4800
 
4801
	if (crtc->atomic.update_wm_post)
4802
		intel_update_watermarks(&crtc->base);
4803
 
4804
	if (atomic->update_fbc)
4805
		intel_fbc_update(dev_priv);
4806
 
4807
	if (atomic->post_enable_primary)
4808
		intel_post_enable_primary(&crtc->base);
4809
 
4810
	drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4811
		intel_update_sprite_watermarks(plane, &crtc->base,
4812
					       0, 0, 0, false, false);
4813
 
4814
	memset(atomic, 0, sizeof(*atomic));
4815
}
4816
 
4817
static void intel_pre_plane_update(struct intel_crtc *crtc)
4818
{
4819
	struct drm_device *dev = crtc->base.dev;
4820
	struct drm_i915_private *dev_priv = dev->dev_private;
4821
	struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4822
	struct drm_plane *p;
4823
 
4824
	/* Track fb's for any planes being disabled */
4825
	drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4826
		struct intel_plane *plane = to_intel_plane(p);
4827
 
4828
		mutex_lock(&dev->struct_mutex);
4829
		i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4830
				  plane->frontbuffer_bit);
4831
		mutex_unlock(&dev->struct_mutex);
4832
	}
4833
 
4834
	if (atomic->disable_fbc)
4835
		intel_fbc_disable_crtc(crtc);
4836
 
4837
	if (crtc->atomic.disable_ips)
4838
		hsw_disable_ips(crtc);
4839
 
4840
	if (atomic->pre_disable_primary)
4841
		intel_pre_disable_primary(&crtc->base);
4842
 
4843
	if (atomic->disable_cxsr) {
4844
		crtc->wm.cxsr_allowed = false;
4845
		intel_set_memory_cxsr(dev_priv, false);
4846
	}
4847
}
4848
 
4849
static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4850
{
4851
	struct drm_device *dev = crtc->dev;
4852
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4853
	struct drm_plane *p;
4854
	int pipe = intel_crtc->pipe;
4855
 
4856
	intel_crtc_dpms_overlay_disable(intel_crtc);
4857
 
4858
	drm_for_each_plane_mask(p, dev, plane_mask)
4859
		to_intel_plane(p)->disable_plane(p, crtc);
4860
 
5354 serge 4861
	/*
4862
	 * FIXME: Once we grow proper nuclear flip support out of this we need
4863
	 * to compute the mask of flip planes precisely. For the time being
4864
	 * consider this a flip to a NULL plane.
4865
	 */
4866
//	intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
5060 serge 4867
}
4868
 
2327 Serge 4869
static void ironlake_crtc_enable(struct drm_crtc *crtc)
4870
{
6084 serge 4871
	struct drm_device *dev = crtc->dev;
4872
	struct drm_i915_private *dev_priv = dev->dev_private;
4873
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 4874
	struct intel_encoder *encoder;
6084 serge 4875
	int pipe = intel_crtc->pipe;
2327 Serge 4876
 
6084 serge 4877
	if (WARN_ON(intel_crtc->active))
4878
		return;
3031 serge 4879
 
6084 serge 4880
	if (intel_crtc->config->has_pch_encoder)
5060 serge 4881
		intel_prepare_shared_dpll(intel_crtc);
4882
 
6084 serge 4883
	if (intel_crtc->config->has_dp_encoder)
4884
		intel_dp_set_m_n(intel_crtc, M1_N1);
5060 serge 4885
 
4886
	intel_set_pipe_timings(intel_crtc);
4887
 
6084 serge 4888
	if (intel_crtc->config->has_pch_encoder) {
5060 serge 4889
		intel_cpu_transcoder_set_m_n(intel_crtc,
6084 serge 4890
				     &intel_crtc->config->fdi_m_n, NULL);
5060 serge 4891
	}
4892
 
4893
	ironlake_set_pipeconf(crtc);
4894
 
6084 serge 4895
	intel_crtc->active = true;
4104 Serge 4896
 
5354 serge 4897
	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4898
	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4104 Serge 4899
 
4900
	for_each_encoder_on_crtc(dev, crtc, encoder)
4901
		if (encoder->pre_enable)
4902
			encoder->pre_enable(encoder);
2327 Serge 4903
 
6084 serge 4904
	if (intel_crtc->config->has_pch_encoder) {
3243 Serge 4905
		/* Note: FDI PLL enabling _must_ be done before we enable the
4906
		 * cpu pipes, hence this is separate from all the other fdi/pch
4907
		 * enabling. */
3031 serge 4908
		ironlake_fdi_pll_enable(intel_crtc);
4909
	} else {
4910
		assert_fdi_tx_disabled(dev_priv, pipe);
4911
		assert_fdi_rx_disabled(dev_priv, pipe);
4912
	}
2327 Serge 4913
 
4104 Serge 4914
	ironlake_pfit_enable(intel_crtc);
3031 serge 4915
 
6084 serge 4916
	/*
4917
	 * On ILK+ LUT must be loaded before the pipe is running but with
4918
	 * clocks enabled
4919
	 */
4920
	intel_crtc_load_lut(crtc);
2327 Serge 4921
 
4560 Serge 4922
	intel_update_watermarks(crtc);
5060 serge 4923
	intel_enable_pipe(intel_crtc);
2327 Serge 4924
 
6084 serge 4925
	if (intel_crtc->config->has_pch_encoder)
4926
		ironlake_pch_enable(crtc);
2327 Serge 4927
 
6084 serge 4928
	assert_vblank_disabled(crtc);
4929
	drm_crtc_vblank_on(crtc);
4930
 
3031 serge 4931
	for_each_encoder_on_crtc(dev, crtc, encoder)
4932
		encoder->enable(encoder);
4933
 
4934
	if (HAS_PCH_CPT(dev))
4104 Serge 4935
		cpt_verify_modeset(dev, intel_crtc->pipe);
2327 Serge 4936
}
4937
 
4104 Serge 4938
/* IPS only exists on ULT machines and is tied to pipe A. */
4939
static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4940
{
4941
	return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4942
}
4943
 
3243 Serge 4944
static void haswell_crtc_enable(struct drm_crtc *crtc)
4945
{
4946
	struct drm_device *dev = crtc->dev;
4947
	struct drm_i915_private *dev_priv = dev->dev_private;
4948
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4949
	struct intel_encoder *encoder;
6084 serge 4950
	int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4951
	struct intel_crtc_state *pipe_config =
4952
		to_intel_crtc_state(crtc->state);
4953
	bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
3243 Serge 4954
 
6084 serge 4955
	if (WARN_ON(intel_crtc->active))
3243 Serge 4956
		return;
4957
 
5060 serge 4958
	if (intel_crtc_to_shared_dpll(intel_crtc))
4959
		intel_enable_shared_dpll(intel_crtc);
4960
 
6084 serge 4961
	if (intel_crtc->config->has_dp_encoder)
4962
		intel_dp_set_m_n(intel_crtc, M1_N1);
5060 serge 4963
 
4964
	intel_set_pipe_timings(intel_crtc);
4965
 
6084 serge 4966
	if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4967
		I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4968
			   intel_crtc->config->pixel_multiplier - 1);
5354 serge 4969
	}
4970
 
6084 serge 4971
	if (intel_crtc->config->has_pch_encoder) {
5060 serge 4972
		intel_cpu_transcoder_set_m_n(intel_crtc,
6084 serge 4973
				     &intel_crtc->config->fdi_m_n, NULL);
5060 serge 4974
	}
4975
 
4976
	haswell_set_pipeconf(crtc);
4977
 
4978
	intel_set_pipe_csc(crtc);
4979
 
3243 Serge 4980
	intel_crtc->active = true;
4104 Serge 4981
 
5354 serge 4982
	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6084 serge 4983
	for_each_encoder_on_crtc(dev, crtc, encoder) {
4984
		if (encoder->pre_pll_enable)
4985
			encoder->pre_pll_enable(encoder);
3243 Serge 4986
		if (encoder->pre_enable)
4987
			encoder->pre_enable(encoder);
6084 serge 4988
	}
3243 Serge 4989
 
6084 serge 4990
	if (intel_crtc->config->has_pch_encoder) {
5354 serge 4991
		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4992
						      true);
5060 serge 4993
		dev_priv->display.fdi_link_train(crtc);
4994
	}
4995
 
6084 serge 4996
	if (!is_dsi)
4997
		intel_ddi_enable_pipe_clock(intel_crtc);
3243 Serge 4998
 
6084 serge 4999
	if (INTEL_INFO(dev)->gen >= 9)
5354 serge 5000
		skylake_pfit_enable(intel_crtc);
5001
	else
6084 serge 5002
		ironlake_pfit_enable(intel_crtc);
3243 Serge 5003
 
5004
	/*
5005
	 * On ILK+ LUT must be loaded before the pipe is running but with
5006
	 * clocks enabled
5007
	 */
5008
	intel_crtc_load_lut(crtc);
5009
 
5010
	intel_ddi_set_pipe_settings(crtc);
6084 serge 5011
	if (!is_dsi)
5012
		intel_ddi_enable_transcoder_func(crtc);
3243 Serge 5013
 
4560 Serge 5014
	intel_update_watermarks(crtc);
5060 serge 5015
	intel_enable_pipe(intel_crtc);
3243 Serge 5016
 
6084 serge 5017
	if (intel_crtc->config->has_pch_encoder)
3243 Serge 5018
		lpt_pch_enable(crtc);
5019
 
6084 serge 5020
	if (intel_crtc->config->dp_encoder_is_mst && !is_dsi)
5060 serge 5021
		intel_ddi_set_vc_payload_alloc(crtc, true);
5022
 
6084 serge 5023
	assert_vblank_disabled(crtc);
5024
	drm_crtc_vblank_on(crtc);
5025
 
4560 Serge 5026
	for_each_encoder_on_crtc(dev, crtc, encoder) {
3243 Serge 5027
		encoder->enable(encoder);
4560 Serge 5028
		intel_opregion_notify_encoder(encoder, true);
5029
	}
3243 Serge 5030
 
4560 Serge 5031
	/* If we change the relative order between pipe/planes enabling, we need
5032
	 * to change the workaround. */
6084 serge 5033
	hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5034
	if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5035
		intel_wait_for_vblank(dev, hsw_workaround_pipe);
5036
		intel_wait_for_vblank(dev, hsw_workaround_pipe);
5354 serge 5037
	}
5038
}
5039
 
6084 serge 5040
static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
4104 Serge 5041
{
5042
	struct drm_device *dev = crtc->base.dev;
5043
	struct drm_i915_private *dev_priv = dev->dev_private;
5044
	int pipe = crtc->pipe;
5045
 
5046
	/* To avoid upsetting the power well on haswell only disable the pfit if
5047
	 * it's in use. The hw state code will make sure we get this right. */
6084 serge 5048
	if (force || crtc->config->pch_pfit.enabled) {
4104 Serge 5049
		I915_WRITE(PF_CTL(pipe), 0);
5050
		I915_WRITE(PF_WIN_POS(pipe), 0);
5051
		I915_WRITE(PF_WIN_SZ(pipe), 0);
5052
	}
5053
}
5054
 
2327 Serge 5055
static void ironlake_crtc_disable(struct drm_crtc *crtc)
5056
{
6084 serge 5057
	struct drm_device *dev = crtc->dev;
5058
	struct drm_i915_private *dev_priv = dev->dev_private;
5059
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 5060
	struct intel_encoder *encoder;
6084 serge 5061
	int pipe = intel_crtc->pipe;
5062
	u32 reg, temp;
2327 Serge 5063
 
6084 serge 5064
	for_each_encoder_on_crtc(dev, crtc, encoder)
5065
		encoder->disable(encoder);
2327 Serge 5066
 
5354 serge 5067
	drm_crtc_vblank_off(crtc);
5068
	assert_vblank_disabled(crtc);
5069
 
6084 serge 5070
	if (intel_crtc->config->has_pch_encoder)
5354 serge 5071
		intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
2327 Serge 5072
 
5354 serge 5073
	intel_disable_pipe(intel_crtc);
5074
 
6084 serge 5075
	ironlake_pfit_disable(intel_crtc, false);
2327 Serge 5076
 
6084 serge 5077
	if (intel_crtc->config->has_pch_encoder)
5078
		ironlake_fdi_disable(crtc);
5079
 
3031 serge 5080
	for_each_encoder_on_crtc(dev, crtc, encoder)
5081
		if (encoder->post_disable)
5082
			encoder->post_disable(encoder);
5083
 
6084 serge 5084
	if (intel_crtc->config->has_pch_encoder) {
5085
		ironlake_disable_pch_transcoder(dev_priv, pipe);
2327 Serge 5086
 
6084 serge 5087
		if (HAS_PCH_CPT(dev)) {
5088
			/* disable TRANS_DP_CTL */
5089
			reg = TRANS_DP_CTL(pipe);
5090
			temp = I915_READ(reg);
4104 Serge 5091
			temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5092
				  TRANS_DP_PORT_SEL_MASK);
6084 serge 5093
			temp |= TRANS_DP_PORT_SEL_NONE;
5094
			I915_WRITE(reg, temp);
2327 Serge 5095
 
6084 serge 5096
			/* disable DPLL_SEL */
5097
			temp = I915_READ(PCH_DPLL_SEL);
4104 Serge 5098
			temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
6084 serge 5099
			I915_WRITE(PCH_DPLL_SEL, temp);
5100
		}
2327 Serge 5101
 
6084 serge 5102
		ironlake_fdi_pll_disable(intel_crtc);
4104 Serge 5103
	}
2327 Serge 5104
}
5105
 
3243 Serge 5106
static void haswell_crtc_disable(struct drm_crtc *crtc)
5107
{
5108
	struct drm_device *dev = crtc->dev;
5109
	struct drm_i915_private *dev_priv = dev->dev_private;
5110
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5111
	struct intel_encoder *encoder;
6084 serge 5112
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5113
	bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
3243 Serge 5114
 
4560 Serge 5115
	for_each_encoder_on_crtc(dev, crtc, encoder) {
5116
		intel_opregion_notify_encoder(encoder, false);
3243 Serge 5117
		encoder->disable(encoder);
4560 Serge 5118
	}
3243 Serge 5119
 
6084 serge 5120
	drm_crtc_vblank_off(crtc);
5121
	assert_vblank_disabled(crtc);
5122
 
5123
	if (intel_crtc->config->has_pch_encoder)
5354 serge 5124
		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5125
						      false);
5126
	intel_disable_pipe(intel_crtc);
3243 Serge 5127
 
6084 serge 5128
	if (intel_crtc->config->dp_encoder_is_mst)
5097 serge 5129
		intel_ddi_set_vc_payload_alloc(crtc, false);
5130
 
6084 serge 5131
	if (!is_dsi)
5132
		intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3243 Serge 5133
 
6084 serge 5134
	if (INTEL_INFO(dev)->gen >= 9)
5135
		skylake_scaler_disable(intel_crtc);
5354 serge 5136
	else
6084 serge 5137
		ironlake_pfit_disable(intel_crtc, false);
3243 Serge 5138
 
6084 serge 5139
	if (!is_dsi)
5140
		intel_ddi_disable_pipe_clock(intel_crtc);
3243 Serge 5141
 
6084 serge 5142
	if (intel_crtc->config->has_pch_encoder) {
3243 Serge 5143
		lpt_disable_pch_transcoder(dev_priv);
5144
		intel_ddi_fdi_disable(crtc);
5145
	}
5146
 
5060 serge 5147
	for_each_encoder_on_crtc(dev, crtc, encoder)
5148
		if (encoder->post_disable)
5149
			encoder->post_disable(encoder);
3243 Serge 5150
}
5151
 
4104 Serge 5152
static void i9xx_pfit_enable(struct intel_crtc *crtc)
5153
{
5154
	struct drm_device *dev = crtc->base.dev;
5155
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 5156
	struct intel_crtc_state *pipe_config = crtc->config;
4104 Serge 5157
 
6084 serge 5158
	if (!pipe_config->gmch_pfit.control)
4104 Serge 5159
		return;
5160
 
5161
	/*
5162
	 * The panel fitter should only be adjusted whilst the pipe is disabled,
5163
	 * according to register description and PRM.
5164
	 */
5165
	WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5166
	assert_pipe_disabled(dev_priv, crtc->pipe);
5167
 
5168
	I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5169
	I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5170
 
5171
	/* Border color in case we don't scale up to the full screen. Black by
5172
	 * default, change to something else for debugging. */
5173
	I915_WRITE(BCLRPAT(crtc->pipe), 0);
5174
}
5175
 
5060 serge 5176
static enum intel_display_power_domain port_to_power_domain(enum port port)
4560 Serge 5177
{
5060 serge 5178
	switch (port) {
5179
	case PORT_A:
5180
		return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5181
	case PORT_B:
5182
		return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5183
	case PORT_C:
5184
		return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5185
	case PORT_D:
5186
		return POWER_DOMAIN_PORT_DDI_D_4_LANES;
6084 serge 5187
	case PORT_E:
5188
		return POWER_DOMAIN_PORT_DDI_E_2_LANES;
5060 serge 5189
	default:
6084 serge 5190
		MISSING_CASE(port);
5060 serge 5191
		return POWER_DOMAIN_PORT_OTHER;
5192
	}
5193
}
5194
 
6084 serge 5195
static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5196
{
5197
	switch (port) {
5198
	case PORT_A:
5199
		return POWER_DOMAIN_AUX_A;
5200
	case PORT_B:
5201
		return POWER_DOMAIN_AUX_B;
5202
	case PORT_C:
5203
		return POWER_DOMAIN_AUX_C;
5204
	case PORT_D:
5205
		return POWER_DOMAIN_AUX_D;
5206
	case PORT_E:
5207
		/* FIXME: Check VBT for actual wiring of PORT E */
5208
		return POWER_DOMAIN_AUX_D;
5209
	default:
5210
		MISSING_CASE(port);
5211
		return POWER_DOMAIN_AUX_A;
5212
	}
5213
}
5214
 
5060 serge 5215
#define for_each_power_domain(domain, mask)				\
5216
	for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)	\
5217
		if ((1 << (domain)) & (mask))
5218
 
5219
enum intel_display_power_domain
5220
intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5221
{
5222
	struct drm_device *dev = intel_encoder->base.dev;
5223
	struct intel_digital_port *intel_dig_port;
5224
 
5225
	switch (intel_encoder->type) {
5226
	case INTEL_OUTPUT_UNKNOWN:
5227
		/* Only DDI platforms should ever use this output type */
5228
		WARN_ON_ONCE(!HAS_DDI(dev));
5229
	case INTEL_OUTPUT_DISPLAYPORT:
5230
	case INTEL_OUTPUT_HDMI:
5231
	case INTEL_OUTPUT_EDP:
5232
		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5233
		return port_to_power_domain(intel_dig_port->port);
5234
	case INTEL_OUTPUT_DP_MST:
5235
		intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5236
		return port_to_power_domain(intel_dig_port->port);
5237
	case INTEL_OUTPUT_ANALOG:
5238
		return POWER_DOMAIN_PORT_CRT;
5239
	case INTEL_OUTPUT_DSI:
5240
		return POWER_DOMAIN_PORT_DSI;
5241
	default:
5242
		return POWER_DOMAIN_PORT_OTHER;
5243
	}
5244
}
5245
 
6084 serge 5246
enum intel_display_power_domain
5247
intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5248
{
5249
	struct drm_device *dev = intel_encoder->base.dev;
5250
	struct intel_digital_port *intel_dig_port;
5251
 
5252
	switch (intel_encoder->type) {
5253
	case INTEL_OUTPUT_UNKNOWN:
5254
	case INTEL_OUTPUT_HDMI:
5255
		/*
5256
		 * Only DDI platforms should ever use these output types.
5257
		 * We can get here after the HDMI detect code has already set
5258
		 * the type of the shared encoder. Since we can't be sure
5259
		 * what's the status of the given connectors, play safe and
5260
		 * run the DP detection too.
5261
		 */
5262
		WARN_ON_ONCE(!HAS_DDI(dev));
5263
	case INTEL_OUTPUT_DISPLAYPORT:
5264
	case INTEL_OUTPUT_EDP:
5265
		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5266
		return port_to_aux_power_domain(intel_dig_port->port);
5267
	case INTEL_OUTPUT_DP_MST:
5268
		intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5269
		return port_to_aux_power_domain(intel_dig_port->port);
5270
	default:
5271
		MISSING_CASE(intel_encoder->type);
5272
		return POWER_DOMAIN_AUX_A;
5273
	}
5274
}
5275
 
5060 serge 5276
static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5277
{
5278
	struct drm_device *dev = crtc->dev;
5279
	struct intel_encoder *intel_encoder;
5280
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5281
	enum pipe pipe = intel_crtc->pipe;
5282
	unsigned long mask;
5283
	enum transcoder transcoder;
5284
 
6084 serge 5285
	if (!crtc->state->active)
5286
		return 0;
5287
 
5060 serge 5288
	transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5289
 
5290
	mask = BIT(POWER_DOMAIN_PIPE(pipe));
5291
	mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6084 serge 5292
	if (intel_crtc->config->pch_pfit.enabled ||
5293
	    intel_crtc->config->pch_pfit.force_thru)
5060 serge 5294
		mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5295
 
5296
	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5297
		mask |= BIT(intel_display_port_power_domain(intel_encoder));
5298
 
5299
	return mask;
5300
}
5301
 
6084 serge 5302
static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5060 serge 5303
{
6084 serge 5304
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5305
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5306
	enum intel_display_power_domain domain;
5307
	unsigned long domains, new_domains, old_domains;
5060 serge 5308
 
6084 serge 5309
	old_domains = intel_crtc->enabled_power_domains;
5310
	intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5060 serge 5311
 
6084 serge 5312
	domains = new_domains & ~old_domains;
5060 serge 5313
 
6084 serge 5314
	for_each_power_domain(domain, domains)
5315
		intel_display_power_get(dev_priv, domain);
5060 serge 5316
 
6084 serge 5317
	return old_domains & ~new_domains;
5318
}
5060 serge 5319
 
6084 serge 5320
static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5321
				      unsigned long domains)
5322
{
5323
	enum intel_display_power_domain domain;
5354 serge 5324
 
6084 serge 5325
	for_each_power_domain(domain, domains)
5326
		intel_display_power_put(dev_priv, domain);
5327
}
5060 serge 5328
 
6084 serge 5329
static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5330
{
5331
	struct drm_device *dev = state->dev;
5332
	struct drm_i915_private *dev_priv = dev->dev_private;
5333
	unsigned long put_domains[I915_MAX_PIPES] = {};
5334
	struct drm_crtc_state *crtc_state;
5335
	struct drm_crtc *crtc;
5336
	int i;
5060 serge 5337
 
6084 serge 5338
	for_each_crtc_in_state(state, crtc, crtc_state, i) {
5339
		if (needs_modeset(crtc->state))
5340
			put_domains[to_intel_crtc(crtc)->pipe] =
5341
				modeset_get_crtc_power_domains(crtc);
5060 serge 5342
	}
5343
 
6084 serge 5344
	if (dev_priv->display.modeset_commit_cdclk) {
5345
		unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5346
 
5347
		if (cdclk != dev_priv->cdclk_freq &&
5348
		    !WARN_ON(!state->allow_modeset))
5349
			dev_priv->display.modeset_commit_cdclk(state);
5350
	}
5351
 
5352
	for (i = 0; i < I915_MAX_PIPES; i++)
5353
		if (put_domains[i])
5354
			modeset_put_power_domains(dev_priv, put_domains[i]);
5060 serge 5355
}
5356
 
6084 serge 5357
static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5060 serge 5358
{
6084 serge 5359
	int max_cdclk_freq = dev_priv->max_cdclk_freq;
4560 Serge 5360
 
6084 serge 5361
	if (INTEL_INFO(dev_priv)->gen >= 9 ||
5362
	    IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5363
		return max_cdclk_freq;
5364
	else if (IS_CHERRYVIEW(dev_priv))
5365
		return max_cdclk_freq*95/100;
5366
	else if (INTEL_INFO(dev_priv)->gen < 4)
5367
		return 2*max_cdclk_freq*90/100;
5368
	else
5369
		return max_cdclk_freq*90/100;
5370
}
4560 Serge 5371
 
6084 serge 5372
static void intel_update_max_cdclk(struct drm_device *dev)
5373
{
5374
	struct drm_i915_private *dev_priv = dev->dev_private;
5375
 
5376
	if (IS_SKYLAKE(dev)) {
5377
		u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5378
 
5379
		if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5380
			dev_priv->max_cdclk_freq = 675000;
5381
		else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5382
			dev_priv->max_cdclk_freq = 540000;
5383
		else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5384
			dev_priv->max_cdclk_freq = 450000;
5385
		else
5386
			dev_priv->max_cdclk_freq = 337500;
5387
	} else if (IS_BROADWELL(dev))  {
5388
		/*
5389
		 * FIXME with extra cooling we can allow
5390
		 * 540 MHz for ULX and 675 Mhz for ULT.
5391
		 * How can we know if extra cooling is
5392
		 * available? PCI ID, VTB, something else?
5393
		 */
5394
		if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5395
			dev_priv->max_cdclk_freq = 450000;
5396
		else if (IS_BDW_ULX(dev))
5397
			dev_priv->max_cdclk_freq = 450000;
5398
		else if (IS_BDW_ULT(dev))
5399
			dev_priv->max_cdclk_freq = 540000;
5400
		else
5401
			dev_priv->max_cdclk_freq = 675000;
5402
	} else if (IS_CHERRYVIEW(dev)) {
5403
		dev_priv->max_cdclk_freq = 320000;
5404
	} else if (IS_VALLEYVIEW(dev)) {
5405
		dev_priv->max_cdclk_freq = 400000;
5406
	} else {
5407
		/* otherwise assume cdclk is fixed */
5408
		dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5409
	}
5410
 
5411
	dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5412
 
5413
	DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5414
			 dev_priv->max_cdclk_freq);
5415
 
5416
	DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5417
			 dev_priv->max_dotclk_freq);
4560 Serge 5418
}
5419
 
6084 serge 5420
static void intel_update_cdclk(struct drm_device *dev)
5060 serge 5421
{
5422
	struct drm_i915_private *dev_priv = dev->dev_private;
5423
 
6084 serge 5424
	dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5354 serge 5425
	DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
6084 serge 5426
			 dev_priv->cdclk_freq);
5060 serge 5427
 
5428
	/*
5429
	 * Program the gmbus_freq based on the cdclk frequency.
5430
	 * BSpec erroneously claims we should aim for 4MHz, but
5431
	 * in fact 1MHz is the correct frequency.
5432
	 */
6084 serge 5433
	if (IS_VALLEYVIEW(dev)) {
5434
		/*
5435
		 * Program the gmbus_freq based on the cdclk frequency.
5436
		 * BSpec erroneously claims we should aim for 4MHz, but
5437
		 * in fact 1MHz is the correct frequency.
5438
		 */
5439
		I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5440
	}
5441
 
5442
	if (dev_priv->max_cdclk_freq == 0)
5443
		intel_update_max_cdclk(dev);
5060 serge 5444
}
5445
 
6084 serge 5446
static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5447
{
5448
	struct drm_i915_private *dev_priv = dev->dev_private;
5449
	uint32_t divider;
5450
	uint32_t ratio;
5451
	uint32_t current_freq;
5452
	int ret;
5453
 
5454
	/* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5455
	switch (frequency) {
5456
	case 144000:
5457
		divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5458
		ratio = BXT_DE_PLL_RATIO(60);
5459
		break;
5460
	case 288000:
5461
		divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5462
		ratio = BXT_DE_PLL_RATIO(60);
5463
		break;
5464
	case 384000:
5465
		divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5466
		ratio = BXT_DE_PLL_RATIO(60);
5467
		break;
5468
	case 576000:
5469
		divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5470
		ratio = BXT_DE_PLL_RATIO(60);
5471
		break;
5472
	case 624000:
5473
		divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5474
		ratio = BXT_DE_PLL_RATIO(65);
5475
		break;
5476
	case 19200:
5477
		/*
5478
		 * Bypass frequency with DE PLL disabled. Init ratio, divider
5479
		 * to suppress GCC warning.
5480
		 */
5481
		ratio = 0;
5482
		divider = 0;
5483
		break;
5484
	default:
5485
		DRM_ERROR("unsupported CDCLK freq %d", frequency);
5486
 
5487
		return;
5488
	}
5489
 
5490
	mutex_lock(&dev_priv->rps.hw_lock);
5491
	/* Inform power controller of upcoming frequency change */
5492
	ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5493
				      0x80000000);
5494
	mutex_unlock(&dev_priv->rps.hw_lock);
5495
 
5496
	if (ret) {
5497
		DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5498
			  ret, frequency);
5499
		return;
5500
	}
5501
 
5502
	current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5503
	/* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5504
	current_freq = current_freq * 500 + 1000;
5505
 
5506
	/*
5507
	 * DE PLL has to be disabled when
5508
	 * - setting to 19.2MHz (bypass, PLL isn't used)
5509
	 * - before setting to 624MHz (PLL needs toggling)
5510
	 * - before setting to any frequency from 624MHz (PLL needs toggling)
5511
	 */
5512
	if (frequency == 19200 || frequency == 624000 ||
5513
	    current_freq == 624000) {
5514
		I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5515
		/* Timeout 200us */
5516
		if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5517
			     1))
5518
			DRM_ERROR("timout waiting for DE PLL unlock\n");
5519
	}
5520
 
5521
	if (frequency != 19200) {
5522
		uint32_t val;
5523
 
5524
		val = I915_READ(BXT_DE_PLL_CTL);
5525
		val &= ~BXT_DE_PLL_RATIO_MASK;
5526
		val |= ratio;
5527
		I915_WRITE(BXT_DE_PLL_CTL, val);
5528
 
5529
		I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5530
		/* Timeout 200us */
5531
		if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5532
			DRM_ERROR("timeout waiting for DE PLL lock\n");
5533
 
5534
		val = I915_READ(CDCLK_CTL);
5535
		val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5536
		val |= divider;
5537
		/*
5538
		 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5539
		 * enable otherwise.
5540
		 */
5541
		val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5542
		if (frequency >= 500000)
5543
			val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5544
 
5545
		val &= ~CDCLK_FREQ_DECIMAL_MASK;
5546
		/* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5547
		val |= (frequency - 1000) / 500;
5548
		I915_WRITE(CDCLK_CTL, val);
5549
	}
5550
 
5551
	mutex_lock(&dev_priv->rps.hw_lock);
5552
	ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5553
				      DIV_ROUND_UP(frequency, 25000));
5554
	mutex_unlock(&dev_priv->rps.hw_lock);
5555
 
5556
	if (ret) {
5557
		DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5558
			  ret, frequency);
5559
		return;
5560
	}
5561
 
5562
	intel_update_cdclk(dev);
5563
}
5564
 
5565
void broxton_init_cdclk(struct drm_device *dev)
5566
{
5567
	struct drm_i915_private *dev_priv = dev->dev_private;
5568
	uint32_t val;
5569
 
5570
	/*
5571
	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5572
	 * or else the reset will hang because there is no PCH to respond.
5573
	 * Move the handshake programming to initialization sequence.
5574
	 * Previously was left up to BIOS.
5575
	 */
5576
	val = I915_READ(HSW_NDE_RSTWRN_OPT);
5577
	val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5578
	I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5579
 
5580
	/* Enable PG1 for cdclk */
5581
	intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5582
 
5583
	/* check if cd clock is enabled */
5584
	if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5585
		DRM_DEBUG_KMS("Display already initialized\n");
5586
		return;
5587
	}
5588
 
5589
	/*
5590
	 * FIXME:
5591
	 * - The initial CDCLK needs to be read from VBT.
5592
	 *   Need to make this change after VBT has changes for BXT.
5593
	 * - check if setting the max (or any) cdclk freq is really necessary
5594
	 *   here, it belongs to modeset time
5595
	 */
5596
	broxton_set_cdclk(dev, 624000);
5597
 
5598
	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5599
	POSTING_READ(DBUF_CTL);
5600
 
5601
	udelay(10);
5602
 
5603
	if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5604
		DRM_ERROR("DBuf power enable timeout!\n");
5605
}
5606
 
5607
void broxton_uninit_cdclk(struct drm_device *dev)
5608
{
5609
	struct drm_i915_private *dev_priv = dev->dev_private;
5610
 
5611
	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5612
	POSTING_READ(DBUF_CTL);
5613
 
5614
	udelay(10);
5615
 
5616
	if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5617
		DRM_ERROR("DBuf power disable timeout!\n");
5618
 
5619
	/* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5620
	broxton_set_cdclk(dev, 19200);
5621
 
5622
	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5623
}
5624
 
5625
static const struct skl_cdclk_entry {
5626
	unsigned int freq;
5627
	unsigned int vco;
5628
} skl_cdclk_frequencies[] = {
5629
	{ .freq = 308570, .vco = 8640 },
5630
	{ .freq = 337500, .vco = 8100 },
5631
	{ .freq = 432000, .vco = 8640 },
5632
	{ .freq = 450000, .vco = 8100 },
5633
	{ .freq = 540000, .vco = 8100 },
5634
	{ .freq = 617140, .vco = 8640 },
5635
	{ .freq = 675000, .vco = 8100 },
5636
};
5637
 
5638
static unsigned int skl_cdclk_decimal(unsigned int freq)
5639
{
5640
	return (freq - 1000) / 500;
5641
}
5642
 
5643
static unsigned int skl_cdclk_get_vco(unsigned int freq)
5644
{
5645
	unsigned int i;
5646
 
5647
	for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5648
		const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5649
 
5650
		if (e->freq == freq)
5651
			return e->vco;
5652
	}
5653
 
5654
	return 8100;
5655
}
5656
 
5657
static void
5658
skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5659
{
5660
	unsigned int min_freq;
5661
	u32 val;
5662
 
5663
	/* select the minimum CDCLK before enabling DPLL 0 */
5664
	val = I915_READ(CDCLK_CTL);
5665
	val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5666
	val |= CDCLK_FREQ_337_308;
5667
 
5668
	if (required_vco == 8640)
5669
		min_freq = 308570;
5670
	else
5671
		min_freq = 337500;
5672
 
5673
	val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5674
 
5675
	I915_WRITE(CDCLK_CTL, val);
5676
	POSTING_READ(CDCLK_CTL);
5677
 
5678
	/*
5679
	 * We always enable DPLL0 with the lowest link rate possible, but still
5680
	 * taking into account the VCO required to operate the eDP panel at the
5681
	 * desired frequency. The usual DP link rates operate with a VCO of
5682
	 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5683
	 * The modeset code is responsible for the selection of the exact link
5684
	 * rate later on, with the constraint of choosing a frequency that
5685
	 * works with required_vco.
5686
	 */
5687
	val = I915_READ(DPLL_CTRL1);
5688
 
5689
	val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5690
		 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5691
	val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5692
	if (required_vco == 8640)
5693
		val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5694
					    SKL_DPLL0);
5695
	else
5696
		val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5697
					    SKL_DPLL0);
5698
 
5699
	I915_WRITE(DPLL_CTRL1, val);
5700
	POSTING_READ(DPLL_CTRL1);
5701
 
5702
	I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5703
 
5704
	if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5705
		DRM_ERROR("DPLL0 not locked\n");
5706
}
5707
 
5708
static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5709
{
5710
	int ret;
5711
	u32 val;
5712
 
5713
	/* inform PCU we want to change CDCLK */
5714
	val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5715
	mutex_lock(&dev_priv->rps.hw_lock);
5716
	ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5717
	mutex_unlock(&dev_priv->rps.hw_lock);
5718
 
5719
	return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5720
}
5721
 
5722
static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5723
{
5724
	unsigned int i;
5725
 
5726
	for (i = 0; i < 15; i++) {
5727
		if (skl_cdclk_pcu_ready(dev_priv))
5728
			return true;
5729
		udelay(10);
5730
	}
5731
 
5732
	return false;
5733
}
5734
 
5735
static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5736
{
5737
	struct drm_device *dev = dev_priv->dev;
5738
	u32 freq_select, pcu_ack;
5739
 
5740
	DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5741
 
5742
	if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5743
		DRM_ERROR("failed to inform PCU about cdclk change\n");
5744
		return;
5745
	}
5746
 
5747
	/* set CDCLK_CTL */
5748
	switch(freq) {
5749
	case 450000:
5750
	case 432000:
5751
		freq_select = CDCLK_FREQ_450_432;
5752
		pcu_ack = 1;
5753
		break;
5754
	case 540000:
5755
		freq_select = CDCLK_FREQ_540;
5756
		pcu_ack = 2;
5757
		break;
5758
	case 308570:
5759
	case 337500:
5760
	default:
5761
		freq_select = CDCLK_FREQ_337_308;
5762
		pcu_ack = 0;
5763
		break;
5764
	case 617140:
5765
	case 675000:
5766
		freq_select = CDCLK_FREQ_675_617;
5767
		pcu_ack = 3;
5768
		break;
5769
	}
5770
 
5771
	I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5772
	POSTING_READ(CDCLK_CTL);
5773
 
5774
	/* inform PCU of the change */
5775
	mutex_lock(&dev_priv->rps.hw_lock);
5776
	sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5777
	mutex_unlock(&dev_priv->rps.hw_lock);
5778
 
5779
	intel_update_cdclk(dev);
5780
}
5781
 
5782
void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5783
{
5784
	/* disable DBUF power */
5785
	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5786
	POSTING_READ(DBUF_CTL);
5787
 
5788
	udelay(10);
5789
 
5790
	if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5791
		DRM_ERROR("DBuf power disable timeout\n");
5792
 
5793
	/*
5794
	 * DMC assumes ownership of LCPLL and will get confused if we touch it.
5795
	 */
5796
	if (dev_priv->csr.dmc_payload) {
5797
		/* disable DPLL0 */
5798
		I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) &
5799
					~LCPLL_PLL_ENABLE);
5800
		if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5801
			DRM_ERROR("Couldn't disable DPLL0\n");
5802
	}
5803
 
5804
	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5805
}
5806
 
5807
void skl_init_cdclk(struct drm_i915_private *dev_priv)
5808
{
5809
	u32 val;
5810
	unsigned int required_vco;
5811
 
5812
	/* enable PCH reset handshake */
5813
	val = I915_READ(HSW_NDE_RSTWRN_OPT);
5814
	I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5815
 
5816
	/* enable PG1 and Misc I/O */
5817
	intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5818
 
5819
	/* DPLL0 not enabled (happens on early BIOS versions) */
5820
	if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5821
		/* enable DPLL0 */
5822
		required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5823
		skl_dpll0_enable(dev_priv, required_vco);
5824
	}
5825
 
5826
	/* set CDCLK to the frequency the BIOS chose */
5827
	skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5828
 
5829
	/* enable DBUF power */
5830
	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5831
	POSTING_READ(DBUF_CTL);
5832
 
5833
	udelay(10);
5834
 
5835
	if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5836
		DRM_ERROR("DBuf power enable timeout\n");
5837
}
5838
 
4560 Serge 5839
/* Adjust CDclk dividers to allow high res or save power if possible */
5840
static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5841
{
5842
	struct drm_i915_private *dev_priv = dev->dev_private;
5843
	u32 val, cmd;
5844
 
6084 serge 5845
	WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5846
					!= dev_priv->cdclk_freq);
5060 serge 5847
 
5848
	if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4560 Serge 5849
		cmd = 2;
5060 serge 5850
	else if (cdclk == 266667)
4560 Serge 5851
		cmd = 1;
5852
	else
5853
		cmd = 0;
5854
 
5855
	mutex_lock(&dev_priv->rps.hw_lock);
5856
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5857
	val &= ~DSPFREQGUAR_MASK;
5858
	val |= (cmd << DSPFREQGUAR_SHIFT);
5859
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5860
	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5861
		      DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5862
		     50)) {
5863
		DRM_ERROR("timed out waiting for CDclk change\n");
5864
	}
5865
	mutex_unlock(&dev_priv->rps.hw_lock);
5866
 
6084 serge 5867
	mutex_lock(&dev_priv->sb_lock);
5868
 
5060 serge 5869
	if (cdclk == 400000) {
5354 serge 5870
		u32 divider;
4560 Serge 5871
 
5354 serge 5872
		divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
4560 Serge 5873
 
5874
		/* adjust cdclk divider */
5875
		val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6084 serge 5876
		val &= ~CCK_FREQUENCY_VALUES;
4560 Serge 5877
		val |= divider;
5878
		vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5060 serge 5879
 
5880
		if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
6084 serge 5881
			      CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5060 serge 5882
			     50))
5883
			DRM_ERROR("timed out waiting for CDclk change\n");
4560 Serge 5884
	}
5885
 
5886
	/* adjust self-refresh exit latency value */
5887
	val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5888
	val &= ~0x7f;
5889
 
5890
	/*
5891
	 * For high bandwidth configs, we set a higher latency in the bunit
5892
	 * so that the core display fetch happens in time to avoid underruns.
5893
	 */
5060 serge 5894
	if (cdclk == 400000)
4560 Serge 5895
		val |= 4500 / 250; /* 4.5 usec */
5896
	else
5897
		val |= 3000 / 250; /* 3.0 usec */
5898
	vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5899
 
6084 serge 5900
	mutex_unlock(&dev_priv->sb_lock);
5901
 
5902
	intel_update_cdclk(dev);
4560 Serge 5903
}
5904
 
5354 serge 5905
static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5906
{
5907
	struct drm_i915_private *dev_priv = dev->dev_private;
5908
	u32 val, cmd;
5909
 
6084 serge 5910
	WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5911
						!= dev_priv->cdclk_freq);
5354 serge 5912
 
5913
	switch (cdclk) {
5914
	case 333333:
5915
	case 320000:
5916
	case 266667:
5917
	case 200000:
5918
		break;
5919
	default:
6084 serge 5920
		MISSING_CASE(cdclk);
5354 serge 5921
		return;
5922
	}
5923
 
6084 serge 5924
	/*
5925
	 * Specs are full of misinformation, but testing on actual
5926
	 * hardware has shown that we just need to write the desired
5927
	 * CCK divider into the Punit register.
5928
	 */
5929
	cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5930
 
5354 serge 5931
	mutex_lock(&dev_priv->rps.hw_lock);
5932
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5933
	val &= ~DSPFREQGUAR_MASK_CHV;
5934
	val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5935
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5936
	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5937
		      DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5938
		     50)) {
5939
		DRM_ERROR("timed out waiting for CDclk change\n");
5940
	}
5941
	mutex_unlock(&dev_priv->rps.hw_lock);
5942
 
6084 serge 5943
	intel_update_cdclk(dev);
5354 serge 5944
}
5945
 
4560 Serge 5946
static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5947
				 int max_pixclk)
5948
{
5354 serge 5949
	int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
6084 serge 5950
	int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
4560 Serge 5951
 
5952
	/*
5953
	 * Really only a few cases to deal with, as only 4 CDclks are supported:
5954
	 *   200MHz
5955
	 *   267MHz
5060 serge 5956
	 *   320/333MHz (depends on HPLL freq)
6084 serge 5957
	 *   400MHz (VLV only)
5958
	 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5959
	 * of the lower bin and adjust if needed.
5060 serge 5960
	 *
5961
	 * We seem to get an unstable or solid color picture at 200MHz.
5962
	 * Not sure what's wrong. For now use 200MHz only when all pipes
5963
	 * are off.
4560 Serge 5964
	 */
6084 serge 5965
	if (!IS_CHERRYVIEW(dev_priv) &&
5966
	    max_pixclk > freq_320*limit/100)
5060 serge 5967
		return 400000;
6084 serge 5968
	else if (max_pixclk > 266667*limit/100)
5060 serge 5969
		return freq_320;
5970
	else if (max_pixclk > 0)
5971
		return 266667;
5972
	else
5973
		return 200000;
4560 Serge 5974
}
5975
 
6084 serge 5976
static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5977
			      int max_pixclk)
4560 Serge 5978
{
6084 serge 5979
	/*
5980
	 * FIXME:
5981
	 * - remove the guardband, it's not needed on BXT
5982
	 * - set 19.2MHz bypass frequency if there are no active pipes
5983
	 */
5984
	if (max_pixclk > 576000*9/10)
5985
		return 624000;
5986
	else if (max_pixclk > 384000*9/10)
5987
		return 576000;
5988
	else if (max_pixclk > 288000*9/10)
5989
		return 384000;
5990
	else if (max_pixclk > 144000*9/10)
5991
		return 288000;
5992
	else
5993
		return 144000;
5994
}
5995
 
5996
/* Compute the max pixel clock for new configuration. Uses atomic state if
5997
 * that's non-NULL, look at current state otherwise. */
5998
static int intel_mode_max_pixclk(struct drm_device *dev,
5999
				 struct drm_atomic_state *state)
6000
{
4560 Serge 6001
	struct intel_crtc *intel_crtc;
6084 serge 6002
	struct intel_crtc_state *crtc_state;
4560 Serge 6003
	int max_pixclk = 0;
6004
 
5060 serge 6005
	for_each_intel_crtc(dev, intel_crtc) {
6084 serge 6006
		crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6007
		if (IS_ERR(crtc_state))
6008
			return PTR_ERR(crtc_state);
6009
 
6010
		if (!crtc_state->base.enable)
6011
			continue;
6012
 
6013
		max_pixclk = max(max_pixclk,
6014
				 crtc_state->base.adjusted_mode.crtc_clock);
4560 Serge 6015
	}
6016
 
6017
	return max_pixclk;
6018
}
6019
 
6084 serge 6020
static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
4560 Serge 6021
{
6084 serge 6022
	struct drm_device *dev = state->dev;
4560 Serge 6023
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 6024
	int max_pixclk = intel_mode_max_pixclk(dev, state);
4560 Serge 6025
 
6084 serge 6026
	if (max_pixclk < 0)
6027
		return max_pixclk;
4560 Serge 6028
 
6084 serge 6029
	to_intel_atomic_state(state)->cdclk =
6030
		valleyview_calc_cdclk(dev_priv, max_pixclk);
6031
 
6032
	return 0;
4560 Serge 6033
}
6034
 
6084 serge 6035
static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
4560 Serge 6036
{
6084 serge 6037
	struct drm_device *dev = state->dev;
4560 Serge 6038
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 6039
	int max_pixclk = intel_mode_max_pixclk(dev, state);
4560 Serge 6040
 
6084 serge 6041
	if (max_pixclk < 0)
6042
		return max_pixclk;
5354 serge 6043
 
6084 serge 6044
	to_intel_atomic_state(state)->cdclk =
6045
		broxton_calc_cdclk(dev_priv, max_pixclk);
6046
 
6047
	return 0;
6048
}
6049
 
6050
static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6051
{
6052
	unsigned int credits, default_credits;
6053
 
6054
	if (IS_CHERRYVIEW(dev_priv))
6055
		default_credits = PFI_CREDIT(12);
6056
	else
6057
		default_credits = PFI_CREDIT(8);
6058
 
6059
	if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6060
		/* CHV suggested value is 31 or 63 */
6061
		if (IS_CHERRYVIEW(dev_priv))
6062
			credits = PFI_CREDIT_63;
5354 serge 6063
		else
6084 serge 6064
			credits = PFI_CREDIT(15);
6065
	} else {
6066
		credits = default_credits;
6067
	}
6068
 
6069
	/*
6070
	 * WA - write default credits before re-programming
6071
	 * FIXME: should we also set the resend bit here?
6072
	 */
6073
	I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6074
		   default_credits);
6075
 
6076
	I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6077
		   credits | PFI_CREDIT_RESEND);
6078
 
6079
	/*
6080
	 * FIXME is this guaranteed to clear
6081
	 * immediately or should we poll for it?
6082
	 */
6083
	WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6084
}
6085
 
6086
static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6087
{
6088
	struct drm_device *dev = old_state->dev;
6089
	unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
6090
	struct drm_i915_private *dev_priv = dev->dev_private;
6091
 
6092
	/*
6093
	 * FIXME: We can end up here with all power domains off, yet
6094
	 * with a CDCLK frequency other than the minimum. To account
6095
	 * for this take the PIPE-A power domain, which covers the HW
6096
	 * blocks needed for the following programming. This can be
6097
	 * removed once it's guaranteed that we get here either with
6098
	 * the minimum CDCLK set, or the required power domains
6099
	 * enabled.
6100
	 */
6101
	intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6102
 
6103
	if (IS_CHERRYVIEW(dev))
6104
		cherryview_set_cdclk(dev, req_cdclk);
6105
	else
4560 Serge 6106
		valleyview_set_cdclk(dev, req_cdclk);
5354 serge 6107
 
6084 serge 6108
	vlv_program_pfi_credits(dev_priv);
6109
 
6110
	intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
4560 Serge 6111
}
6112
 
4104 Serge 6113
static void valleyview_crtc_enable(struct drm_crtc *crtc)
6114
{
6115
	struct drm_device *dev = crtc->dev;
5354 serge 6116
	struct drm_i915_private *dev_priv = to_i915(dev);
4104 Serge 6117
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6118
	struct intel_encoder *encoder;
6119
	int pipe = intel_crtc->pipe;
4560 Serge 6120
	bool is_dsi;
4104 Serge 6121
 
6084 serge 6122
	if (WARN_ON(intel_crtc->active))
4104 Serge 6123
		return;
6124
 
5354 serge 6125
	is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5060 serge 6126
 
6084 serge 6127
	if (intel_crtc->config->has_dp_encoder)
6128
		intel_dp_set_m_n(intel_crtc, M1_N1);
5060 serge 6129
 
6130
	intel_set_pipe_timings(intel_crtc);
6131
 
5354 serge 6132
	if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6133
		struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 6134
 
5354 serge 6135
		I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6136
		I915_WRITE(CHV_CANVAS(pipe), 0);
6137
	}
6138
 
5060 serge 6139
	i9xx_set_pipeconf(intel_crtc);
6140
 
4104 Serge 6141
	intel_crtc->active = true;
6142
 
5354 serge 6143
	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5060 serge 6144
 
4104 Serge 6145
	for_each_encoder_on_crtc(dev, crtc, encoder)
6146
		if (encoder->pre_pll_enable)
6147
			encoder->pre_pll_enable(encoder);
6148
 
5060 serge 6149
	if (!is_dsi) {
6084 serge 6150
		if (IS_CHERRYVIEW(dev)) {
6151
			chv_prepare_pll(intel_crtc, intel_crtc->config);
6152
			chv_enable_pll(intel_crtc, intel_crtc->config);
6153
		} else {
6154
			vlv_prepare_pll(intel_crtc, intel_crtc->config);
6155
			vlv_enable_pll(intel_crtc, intel_crtc->config);
6156
		}
5060 serge 6157
	}
4104 Serge 6158
 
6159
	for_each_encoder_on_crtc(dev, crtc, encoder)
6160
		if (encoder->pre_enable)
6161
			encoder->pre_enable(encoder);
6162
 
6163
	i9xx_pfit_enable(intel_crtc);
6164
 
6165
	intel_crtc_load_lut(crtc);
6166
 
5060 serge 6167
	intel_enable_pipe(intel_crtc);
4104 Serge 6168
 
5354 serge 6169
	assert_vblank_disabled(crtc);
6170
	drm_crtc_vblank_on(crtc);
6171
 
6084 serge 6172
	for_each_encoder_on_crtc(dev, crtc, encoder)
6173
		encoder->enable(encoder);
4104 Serge 6174
}
6175
 
5060 serge 6176
static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6177
{
6178
	struct drm_device *dev = crtc->base.dev;
6179
	struct drm_i915_private *dev_priv = dev->dev_private;
6180
 
6084 serge 6181
	I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6182
	I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5060 serge 6183
}
6184
 
2327 Serge 6185
static void i9xx_crtc_enable(struct drm_crtc *crtc)
6186
{
6084 serge 6187
	struct drm_device *dev = crtc->dev;
5354 serge 6188
	struct drm_i915_private *dev_priv = to_i915(dev);
6084 serge 6189
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 6190
	struct intel_encoder *encoder;
6084 serge 6191
	int pipe = intel_crtc->pipe;
2327 Serge 6192
 
6084 serge 6193
	if (WARN_ON(intel_crtc->active))
6194
		return;
3031 serge 6195
 
5060 serge 6196
	i9xx_set_pll_dividers(intel_crtc);
6197
 
6084 serge 6198
	if (intel_crtc->config->has_dp_encoder)
6199
		intel_dp_set_m_n(intel_crtc, M1_N1);
5060 serge 6200
 
6201
	intel_set_pipe_timings(intel_crtc);
6202
 
6203
	i9xx_set_pipeconf(intel_crtc);
6204
 
6084 serge 6205
	intel_crtc->active = true;
2327 Serge 6206
 
5060 serge 6207
	if (!IS_GEN2(dev))
5354 serge 6208
		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5060 serge 6209
 
3480 Serge 6210
	for_each_encoder_on_crtc(dev, crtc, encoder)
6211
		if (encoder->pre_enable)
6212
			encoder->pre_enable(encoder);
6213
 
4104 Serge 6214
	i9xx_enable_pll(intel_crtc);
6215
 
6216
	i9xx_pfit_enable(intel_crtc);
6217
 
6218
	intel_crtc_load_lut(crtc);
6219
 
4560 Serge 6220
	intel_update_watermarks(crtc);
5060 serge 6221
	intel_enable_pipe(intel_crtc);
2327 Serge 6222
 
5354 serge 6223
	assert_vblank_disabled(crtc);
6224
	drm_crtc_vblank_on(crtc);
6225
 
6084 serge 6226
	for_each_encoder_on_crtc(dev, crtc, encoder)
6227
		encoder->enable(encoder);
2327 Serge 6228
}
6229
 
3746 Serge 6230
static void i9xx_pfit_disable(struct intel_crtc *crtc)
6231
{
6232
	struct drm_device *dev = crtc->base.dev;
6233
	struct drm_i915_private *dev_priv = dev->dev_private;
6234
 
6084 serge 6235
	if (!crtc->config->gmch_pfit.control)
4104 Serge 6236
		return;
6237
 
3746 Serge 6238
	assert_pipe_disabled(dev_priv, crtc->pipe);
6239
 
4104 Serge 6240
	DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6241
			 I915_READ(PFIT_CONTROL));
6084 serge 6242
	I915_WRITE(PFIT_CONTROL, 0);
3746 Serge 6243
}
6244
 
2327 Serge 6245
static void i9xx_crtc_disable(struct drm_crtc *crtc)
6246
{
6084 serge 6247
	struct drm_device *dev = crtc->dev;
6248
	struct drm_i915_private *dev_priv = dev->dev_private;
6249
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 6250
	struct intel_encoder *encoder;
6084 serge 6251
	int pipe = intel_crtc->pipe;
2327 Serge 6252
 
5060 serge 6253
	/*
6254
	 * On gen2 planes are double buffered but the pipe isn't, so we must
6255
	 * wait for planes to fully turn off before disabling the pipe.
6256
	 * We also need to wait on all gmch platforms because of the
6257
	 * self-refresh mode constraint explained above.
6258
	 */
6084 serge 6259
	intel_wait_for_vblank(dev, pipe);
2327 Serge 6260
 
6084 serge 6261
	for_each_encoder_on_crtc(dev, crtc, encoder)
6262
		encoder->disable(encoder);
6263
 
5354 serge 6264
	drm_crtc_vblank_off(crtc);
6265
	assert_vblank_disabled(crtc);
3480 Serge 6266
 
5354 serge 6267
	intel_disable_pipe(intel_crtc);
6268
 
3746 Serge 6269
	i9xx_pfit_disable(intel_crtc);
3480 Serge 6270
 
4104 Serge 6271
	for_each_encoder_on_crtc(dev, crtc, encoder)
6272
		if (encoder->post_disable)
6273
			encoder->post_disable(encoder);
2327 Serge 6274
 
5354 serge 6275
	if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5060 serge 6276
		if (IS_CHERRYVIEW(dev))
6277
			chv_disable_pll(dev_priv, pipe);
6278
		else if (IS_VALLEYVIEW(dev))
6084 serge 6279
			vlv_disable_pll(dev_priv, pipe);
5060 serge 6280
		else
5354 serge 6281
			i9xx_disable_pll(intel_crtc);
5060 serge 6282
	}
4104 Serge 6283
 
6084 serge 6284
	for_each_encoder_on_crtc(dev, crtc, encoder)
6285
		if (encoder->post_pll_disable)
6286
			encoder->post_pll_disable(encoder);
6287
 
5060 serge 6288
	if (!IS_GEN2(dev))
5354 serge 6289
		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
2327 Serge 6290
}
6291
 
6084 serge 6292
static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
2327 Serge 6293
{
5060 serge 6294
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6084 serge 6295
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5060 serge 6296
	enum intel_display_power_domain domain;
6297
	unsigned long domains;
6298
 
6084 serge 6299
	if (!intel_crtc->active)
6300
		return;
5060 serge 6301
 
6084 serge 6302
	if (to_intel_plane_state(crtc->primary->state)->visible) {
6303
		intel_pre_disable_primary(crtc);
5060 serge 6304
 
6084 serge 6305
		intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6306
		to_intel_plane_state(crtc->primary->state)->visible = false;
5060 serge 6307
	}
6084 serge 6308
 
6309
	dev_priv->display.crtc_disable(crtc);
6310
	intel_crtc->active = false;
6311
	intel_update_watermarks(crtc);
6312
	intel_disable_shared_dpll(intel_crtc);
6313
 
6314
	domains = intel_crtc->enabled_power_domains;
6315
	for_each_power_domain(domain, domains)
6316
		intel_display_power_put(dev_priv, domain);
6317
	intel_crtc->enabled_power_domains = 0;
2330 Serge 6318
}
2327 Serge 6319
 
6084 serge 6320
/*
6321
 * turn all crtc's off, but do not adjust state
6322
 * This has to be paired with a call to intel_modeset_setup_hw_state.
3031 serge 6323
 */
6084 serge 6324
int intel_display_suspend(struct drm_device *dev)
3031 serge 6325
{
6084 serge 6326
	struct drm_mode_config *config = &dev->mode_config;
6327
	struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6328
	struct drm_atomic_state *state;
6329
	struct drm_crtc *crtc;
6330
	unsigned crtc_mask = 0;
6331
	int ret = 0;
3031 serge 6332
 
6084 serge 6333
	if (WARN_ON(!ctx))
6334
		return 0;
3031 serge 6335
 
6084 serge 6336
	lockdep_assert_held(&ctx->ww_ctx);
6337
	state = drm_atomic_state_alloc(dev);
6338
	if (WARN_ON(!state))
6339
		return -ENOMEM;
3031 serge 6340
 
6084 serge 6341
	state->acquire_ctx = ctx;
6342
	state->allow_modeset = true;
2327 Serge 6343
 
6084 serge 6344
	for_each_crtc(dev, crtc) {
6345
		struct drm_crtc_state *crtc_state =
6346
			drm_atomic_get_crtc_state(state, crtc);
2327 Serge 6347
 
6084 serge 6348
		ret = PTR_ERR_OR_ZERO(crtc_state);
6349
		if (ret)
6350
			goto free;
3031 serge 6351
 
6084 serge 6352
		if (!crtc_state->active)
6353
			continue;
6354
 
6355
		crtc_state->active = false;
6356
		crtc_mask |= 1 << drm_crtc_index(crtc);
4280 Serge 6357
	}
3031 serge 6358
 
6084 serge 6359
	if (crtc_mask) {
6360
		ret = drm_atomic_commit(state);
3031 serge 6361
 
6084 serge 6362
		if (!ret) {
6363
			for_each_crtc(dev, crtc)
6364
				if (crtc_mask & (1 << drm_crtc_index(crtc)))
6365
					crtc->state->active = true;
3031 serge 6366
 
6084 serge 6367
			return ret;
6368
		}
2330 Serge 6369
	}
6084 serge 6370
 
6371
free:
6372
	if (ret)
6373
		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6374
	drm_atomic_state_free(state);
6375
	return ret;
2330 Serge 6376
}
2327 Serge 6377
 
3031 serge 6378
void intel_encoder_destroy(struct drm_encoder *encoder)
2330 Serge 6379
{
3031 serge 6380
	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6381
 
6382
	drm_encoder_cleanup(encoder);
6383
	kfree(intel_encoder);
2330 Serge 6384
}
2327 Serge 6385
 
3031 serge 6386
/* Cross check the actual hw state with our own modeset state tracking (and it's
6387
 * internal consistency). */
6388
static void intel_connector_check_state(struct intel_connector *connector)
2330 Serge 6389
{
6084 serge 6390
	struct drm_crtc *crtc = connector->base.state->crtc;
6391
 
6392
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6393
		      connector->base.base.id,
6394
		      connector->base.name);
6395
 
3031 serge 6396
	if (connector->get_hw_state(connector)) {
6397
		struct intel_encoder *encoder = connector->encoder;
6084 serge 6398
		struct drm_connector_state *conn_state = connector->base.state;
3031 serge 6399
 
6084 serge 6400
		I915_STATE_WARN(!crtc,
6401
			 "connector enabled without attached crtc\n");
3031 serge 6402
 
6084 serge 6403
		if (!crtc)
5060 serge 6404
			return;
6405
 
6084 serge 6406
		I915_STATE_WARN(!crtc->state->active,
6407
		      "connector is active, but attached crtc isn't\n");
5060 serge 6408
 
6084 serge 6409
		if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
3031 serge 6410
			return;
6411
 
6084 serge 6412
		I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6413
			"atomic encoder doesn't match attached encoder\n");
3031 serge 6414
 
6084 serge 6415
		I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6416
			"attached encoder crtc differs from connector crtc\n");
6417
	} else {
6418
		I915_STATE_WARN(crtc && crtc->state->active,
6419
			"attached crtc is active, but connector isn't\n");
6420
		I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6421
			"best encoder set without crtc!\n");
3031 serge 6422
	}
2330 Serge 6423
}
2327 Serge 6424
 
6084 serge 6425
int intel_connector_init(struct intel_connector *connector)
2330 Serge 6426
{
6084 serge 6427
	struct drm_connector_state *connector_state;
2342 Serge 6428
 
6084 serge 6429
	connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6430
	if (!connector_state)
6431
		return -ENOMEM;
3031 serge 6432
 
6084 serge 6433
	connector->base.state = connector_state;
6434
	return 0;
6435
}
3031 serge 6436
 
6084 serge 6437
struct intel_connector *intel_connector_alloc(void)
6438
{
6439
	struct intel_connector *connector;
3031 serge 6440
 
6084 serge 6441
	connector = kzalloc(sizeof *connector, GFP_KERNEL);
6442
	if (!connector)
6443
		return NULL;
6444
 
6445
	if (intel_connector_init(connector) < 0) {
6446
		kfree(connector);
6447
		return NULL;
6448
	}
6449
 
6450
	return connector;
2330 Serge 6451
}
2327 Serge 6452
 
3031 serge 6453
/* Simple connector->get_hw_state implementation for encoders that support only
6454
 * one connector and no cloning and hence the encoder state determines the state
6455
 * of the connector. */
6456
bool intel_connector_get_hw_state(struct intel_connector *connector)
2330 Serge 6457
{
3031 serge 6458
	enum pipe pipe = 0;
6459
	struct intel_encoder *encoder = connector->encoder;
2330 Serge 6460
 
3031 serge 6461
	return encoder->get_hw_state(encoder, &pipe);
2330 Serge 6462
}
6463
 
6084 serge 6464
static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
4104 Serge 6465
{
6084 serge 6466
	if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6467
		return crtc_state->fdi_lanes;
4104 Serge 6468
 
6084 serge 6469
	return 0;
6470
}
6471
 
6472
static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6473
				     struct intel_crtc_state *pipe_config)
6474
{
6475
	struct drm_atomic_state *state = pipe_config->base.state;
6476
	struct intel_crtc *other_crtc;
6477
	struct intel_crtc_state *other_crtc_state;
6478
 
4104 Serge 6479
	DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6480
		      pipe_name(pipe), pipe_config->fdi_lanes);
6481
	if (pipe_config->fdi_lanes > 4) {
6482
		DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6483
			      pipe_name(pipe), pipe_config->fdi_lanes);
6084 serge 6484
		return -EINVAL;
4104 Serge 6485
	}
6486
 
4560 Serge 6487
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4104 Serge 6488
		if (pipe_config->fdi_lanes > 2) {
6489
			DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6490
				      pipe_config->fdi_lanes);
6084 serge 6491
			return -EINVAL;
4104 Serge 6492
		} else {
6084 serge 6493
			return 0;
4104 Serge 6494
		}
6495
	}
6496
 
6497
	if (INTEL_INFO(dev)->num_pipes == 2)
6084 serge 6498
		return 0;
4104 Serge 6499
 
6500
	/* Ivybridge 3 pipe is really complicated */
6501
	switch (pipe) {
6502
	case PIPE_A:
6084 serge 6503
		return 0;
4104 Serge 6504
	case PIPE_B:
6084 serge 6505
		if (pipe_config->fdi_lanes <= 2)
6506
			return 0;
6507
 
6508
		other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6509
		other_crtc_state =
6510
			intel_atomic_get_crtc_state(state, other_crtc);
6511
		if (IS_ERR(other_crtc_state))
6512
			return PTR_ERR(other_crtc_state);
6513
 
6514
		if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
4104 Serge 6515
			DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6516
				      pipe_name(pipe), pipe_config->fdi_lanes);
6084 serge 6517
			return -EINVAL;
4104 Serge 6518
		}
6084 serge 6519
		return 0;
4104 Serge 6520
	case PIPE_C:
6084 serge 6521
		if (pipe_config->fdi_lanes > 2) {
6522
			DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6523
				      pipe_name(pipe), pipe_config->fdi_lanes);
6524
			return -EINVAL;
6525
		}
6526
 
6527
		other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6528
		other_crtc_state =
6529
			intel_atomic_get_crtc_state(state, other_crtc);
6530
		if (IS_ERR(other_crtc_state))
6531
			return PTR_ERR(other_crtc_state);
6532
 
6533
		if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
4104 Serge 6534
			DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6084 serge 6535
			return -EINVAL;
4104 Serge 6536
		}
6084 serge 6537
		return 0;
4104 Serge 6538
	default:
6539
		BUG();
6540
	}
6541
}
6542
 
6543
#define RETRY 1
6544
static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6084 serge 6545
				       struct intel_crtc_state *pipe_config)
2330 Serge 6546
{
4104 Serge 6547
	struct drm_device *dev = intel_crtc->base.dev;
6084 serge 6548
	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6549
	int lane, link_bw, fdi_dotclock, ret;
6550
	bool needs_recompute = false;
2330 Serge 6551
 
4104 Serge 6552
retry:
6553
	/* FDI is a binary signal running at ~2.7GHz, encoding
6554
	 * each output octet as 10 bits. The actual frequency
6555
	 * is stored as a divider into a 100MHz clock, and the
6556
	 * mode pixel clock is stored in units of 1KHz.
6557
	 * Hence the bw of each lane in terms of the mode signal
6558
	 * is:
6559
	 */
6560
	link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6561
 
4560 Serge 6562
	fdi_dotclock = adjusted_mode->crtc_clock;
4104 Serge 6563
 
6564
	lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6565
					   pipe_config->pipe_bpp);
6566
 
6567
	pipe_config->fdi_lanes = lane;
6568
 
6569
	intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6570
			       link_bw, &pipe_config->fdi_m_n);
6571
 
6084 serge 6572
	ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6573
				       intel_crtc->pipe, pipe_config);
6574
	if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
4104 Serge 6575
		pipe_config->pipe_bpp -= 2*3;
6576
		DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6577
			      pipe_config->pipe_bpp);
6578
		needs_recompute = true;
6579
		pipe_config->bw_constrained = true;
6580
 
6581
		goto retry;
6582
	}
6583
 
6584
	if (needs_recompute)
6585
		return RETRY;
6586
 
6084 serge 6587
	return ret;
4104 Serge 6588
}
6589
 
6084 serge 6590
static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6591
				     struct intel_crtc_state *pipe_config)
6592
{
6593
	if (pipe_config->pipe_bpp > 24)
6594
		return false;
6595
 
6596
	/* HSW can handle pixel rate up to cdclk? */
6597
	if (IS_HASWELL(dev_priv->dev))
6598
		return true;
6599
 
6600
	/*
6601
	 * We compare against max which means we must take
6602
	 * the increased cdclk requirement into account when
6603
	 * calculating the new cdclk.
6604
	 *
6605
	 * Should measure whether using a lower cdclk w/o IPS
6606
	 */
6607
	return ilk_pipe_pixel_rate(pipe_config) <=
6608
		dev_priv->max_cdclk_freq * 95 / 100;
6609
}
6610
 
4104 Serge 6611
static void hsw_compute_ips_config(struct intel_crtc *crtc,
6084 serge 6612
				   struct intel_crtc_state *pipe_config)
4104 Serge 6613
{
6084 serge 6614
	struct drm_device *dev = crtc->base.dev;
6615
	struct drm_i915_private *dev_priv = dev->dev_private;
6616
 
5060 serge 6617
	pipe_config->ips_enabled = i915.enable_ips &&
6084 serge 6618
		hsw_crtc_supports_ips(crtc) &&
6619
		pipe_config_supports_ips(dev_priv, pipe_config);
4104 Serge 6620
}
6621
 
6622
static int intel_crtc_compute_config(struct intel_crtc *crtc,
6084 serge 6623
				     struct intel_crtc_state *pipe_config)
4104 Serge 6624
{
6625
	struct drm_device *dev = crtc->base.dev;
5354 serge 6626
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 6627
	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
4104 Serge 6628
 
4560 Serge 6629
	/* FIXME should check pixel clock limits on all platforms */
6630
	if (INTEL_INFO(dev)->gen < 4) {
6084 serge 6631
		int clock_limit = dev_priv->max_cdclk_freq;
4560 Serge 6632
 
6633
		/*
6634
		 * Enable pixel doubling when the dot clock
6635
		 * is > 90% of the (display) core speed.
6636
		 *
6637
		 * GDG double wide on either pipe,
6638
		 * otherwise pipe A only.
6639
		 */
6640
		if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6641
		    adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6642
			clock_limit *= 2;
6643
			pipe_config->double_wide = true;
6644
		}
6645
 
6646
		if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4104 Serge 6647
			return -EINVAL;
2330 Serge 6648
	}
6649
 
4560 Serge 6650
	/*
6651
	 * Pipe horizontal size must be even in:
6652
	 * - DVO ganged mode
6653
	 * - LVDS dual channel mode
6654
	 * - Double wide pipe
6655
	 */
6084 serge 6656
	if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
4560 Serge 6657
	     intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6658
		pipe_config->pipe_src_w &= ~1;
6659
 
4104 Serge 6660
	/* Cantiga+ cannot handle modes with a hsync front porch of 0.
6661
	 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
3031 serge 6662
	 */
6663
	if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6084 serge 6664
		adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
4104 Serge 6665
		return -EINVAL;
3031 serge 6666
 
4104 Serge 6667
	if (HAS_IPS(dev))
6668
		hsw_compute_ips_config(crtc, pipe_config);
6669
 
6670
	if (pipe_config->has_pch_encoder)
6671
		return ironlake_fdi_compute_config(crtc, pipe_config);
6672
 
6673
	return 0;
2330 Serge 6674
}
6675
 
6084 serge 6676
static int skylake_get_display_clock_speed(struct drm_device *dev)
3031 serge 6677
{
6084 serge 6678
	struct drm_i915_private *dev_priv = to_i915(dev);
6679
	uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6680
	uint32_t cdctl = I915_READ(CDCLK_CTL);
6681
	uint32_t linkrate;
5060 serge 6682
 
6084 serge 6683
	if (!(lcpll1 & LCPLL_PLL_ENABLE))
6684
		return 24000; /* 24MHz is the cd freq with NSSC ref */
5354 serge 6685
 
6084 serge 6686
	if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6687
		return 540000;
5354 serge 6688
 
6084 serge 6689
	linkrate = (I915_READ(DPLL_CTRL1) &
6690
		    DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
5060 serge 6691
 
6084 serge 6692
	if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6693
	    linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6694
		/* vco 8640 */
6695
		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6696
		case CDCLK_FREQ_450_432:
6697
			return 432000;
6698
		case CDCLK_FREQ_337_308:
6699
			return 308570;
6700
		case CDCLK_FREQ_675_617:
6701
			return 617140;
6702
		default:
6703
			WARN(1, "Unknown cd freq selection\n");
6704
		}
6705
	} else {
6706
		/* vco 8100 */
6707
		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6708
		case CDCLK_FREQ_450_432:
6709
			return 450000;
6710
		case CDCLK_FREQ_337_308:
6711
			return 337500;
6712
		case CDCLK_FREQ_675_617:
6713
			return 675000;
6714
		default:
6715
			WARN(1, "Unknown cd freq selection\n");
6716
		}
6717
	}
5060 serge 6718
 
6084 serge 6719
	/* error case, do as if DPLL0 isn't enabled */
6720
	return 24000;
6721
}
5060 serge 6722
 
6084 serge 6723
static int broxton_get_display_clock_speed(struct drm_device *dev)
6724
{
6725
	struct drm_i915_private *dev_priv = to_i915(dev);
6726
	uint32_t cdctl = I915_READ(CDCLK_CTL);
6727
	uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6728
	uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6729
	int cdclk;
6730
 
6731
	if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6732
		return 19200;
6733
 
6734
	cdclk = 19200 * pll_ratio / 2;
6735
 
6736
	switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6737
	case BXT_CDCLK_CD2X_DIV_SEL_1:
6738
		return cdclk;  /* 576MHz or 624MHz */
6739
	case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6740
		return cdclk * 2 / 3; /* 384MHz */
6741
	case BXT_CDCLK_CD2X_DIV_SEL_2:
6742
		return cdclk / 2; /* 288MHz */
6743
	case BXT_CDCLK_CD2X_DIV_SEL_4:
6744
		return cdclk / 4; /* 144MHz */
6745
	}
6746
 
6747
	/* error case, do as if DE PLL isn't enabled */
6748
	return 19200;
3031 serge 6749
}
6750
 
6084 serge 6751
static int broadwell_get_display_clock_speed(struct drm_device *dev)
6752
{
6753
	struct drm_i915_private *dev_priv = dev->dev_private;
6754
	uint32_t lcpll = I915_READ(LCPLL_CTL);
6755
	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6756
 
6757
	if (lcpll & LCPLL_CD_SOURCE_FCLK)
6758
		return 800000;
6759
	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6760
		return 450000;
6761
	else if (freq == LCPLL_CLK_FREQ_450)
6762
		return 450000;
6763
	else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6764
		return 540000;
6765
	else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6766
		return 337500;
6767
	else
6768
		return 675000;
6769
}
6770
 
6771
static int haswell_get_display_clock_speed(struct drm_device *dev)
6772
{
6773
	struct drm_i915_private *dev_priv = dev->dev_private;
6774
	uint32_t lcpll = I915_READ(LCPLL_CTL);
6775
	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6776
 
6777
	if (lcpll & LCPLL_CD_SOURCE_FCLK)
6778
		return 800000;
6779
	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6780
		return 450000;
6781
	else if (freq == LCPLL_CLK_FREQ_450)
6782
		return 450000;
6783
	else if (IS_HSW_ULT(dev))
6784
		return 337500;
6785
	else
6786
		return 540000;
6787
}
6788
 
6789
static int valleyview_get_display_clock_speed(struct drm_device *dev)
6790
{
6791
	return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6792
				      CCK_DISPLAY_CLOCK_CONTROL);
6793
}
6794
 
6795
static int ilk_get_display_clock_speed(struct drm_device *dev)
6796
{
6797
	return 450000;
6798
}
6799
 
2327 Serge 6800
static int i945_get_display_clock_speed(struct drm_device *dev)
6801
{
6802
	return 400000;
6803
}
6804
 
6805
static int i915_get_display_clock_speed(struct drm_device *dev)
6806
{
6084 serge 6807
	return 333333;
2327 Serge 6808
}
6809
 
6810
static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6811
{
6812
	return 200000;
6813
}
6814
 
4104 Serge 6815
static int pnv_get_display_clock_speed(struct drm_device *dev)
6816
{
6817
	u16 gcfgc = 0;
6818
 
6819
	pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6820
 
6821
	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6822
	case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6084 serge 6823
		return 266667;
4104 Serge 6824
	case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6084 serge 6825
		return 333333;
4104 Serge 6826
	case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6084 serge 6827
		return 444444;
4104 Serge 6828
	case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6829
		return 200000;
6830
	default:
6831
		DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6832
	case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6084 serge 6833
		return 133333;
4104 Serge 6834
	case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6084 serge 6835
		return 166667;
4104 Serge 6836
	}
6837
}
6838
 
2327 Serge 6839
static int i915gm_get_display_clock_speed(struct drm_device *dev)
6840
{
6841
	u16 gcfgc = 0;
6842
 
6843
	pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6844
 
6845
	if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6084 serge 6846
		return 133333;
2327 Serge 6847
	else {
6848
		switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6849
		case GC_DISPLAY_CLOCK_333_MHZ:
6084 serge 6850
			return 333333;
2327 Serge 6851
		default:
6852
		case GC_DISPLAY_CLOCK_190_200_MHZ:
6853
			return 190000;
6854
		}
6855
	}
6856
}
6857
 
6858
static int i865_get_display_clock_speed(struct drm_device *dev)
6859
{
6084 serge 6860
	return 266667;
2327 Serge 6861
}
6862
 
6084 serge 6863
static int i85x_get_display_clock_speed(struct drm_device *dev)
2327 Serge 6864
{
6865
	u16 hpllcc = 0;
6084 serge 6866
 
6867
	/*
6868
	 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6869
	 * encoding is different :(
6870
	 * FIXME is this the right way to detect 852GM/852GMV?
6871
	 */
6872
	if (dev->pdev->revision == 0x1)
6873
		return 133333;
6874
 
6875
//   pci_bus_read_config_word(dev->pdev->bus,
6876
//                PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6877
 
2327 Serge 6878
	/* Assume that the hardware is in the high speed state.  This
6879
	 * should be the default.
6880
	 */
6881
	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6882
	case GC_CLOCK_133_200:
6084 serge 6883
	case GC_CLOCK_133_200_2:
2327 Serge 6884
	case GC_CLOCK_100_200:
6885
		return 200000;
6886
	case GC_CLOCK_166_250:
6887
		return 250000;
6888
	case GC_CLOCK_100_133:
6084 serge 6889
		return 133333;
6890
	case GC_CLOCK_133_266:
6891
	case GC_CLOCK_133_266_2:
6892
	case GC_CLOCK_166_266:
6893
		return 266667;
2327 Serge 6894
	}
6895
 
6896
	/* Shouldn't happen */
6897
	return 0;
6898
}
6899
 
6900
static int i830_get_display_clock_speed(struct drm_device *dev)
6901
{
6084 serge 6902
	return 133333;
2327 Serge 6903
}
6904
 
6084 serge 6905
static unsigned int intel_hpll_vco(struct drm_device *dev)
6906
{
6907
	struct drm_i915_private *dev_priv = dev->dev_private;
6908
	static const unsigned int blb_vco[8] = {
6909
		[0] = 3200000,
6910
		[1] = 4000000,
6911
		[2] = 5333333,
6912
		[3] = 4800000,
6913
		[4] = 6400000,
6914
	};
6915
	static const unsigned int pnv_vco[8] = {
6916
		[0] = 3200000,
6917
		[1] = 4000000,
6918
		[2] = 5333333,
6919
		[3] = 4800000,
6920
		[4] = 2666667,
6921
	};
6922
	static const unsigned int cl_vco[8] = {
6923
		[0] = 3200000,
6924
		[1] = 4000000,
6925
		[2] = 5333333,
6926
		[3] = 6400000,
6927
		[4] = 3333333,
6928
		[5] = 3566667,
6929
		[6] = 4266667,
6930
	};
6931
	static const unsigned int elk_vco[8] = {
6932
		[0] = 3200000,
6933
		[1] = 4000000,
6934
		[2] = 5333333,
6935
		[3] = 4800000,
6936
	};
6937
	static const unsigned int ctg_vco[8] = {
6938
		[0] = 3200000,
6939
		[1] = 4000000,
6940
		[2] = 5333333,
6941
		[3] = 6400000,
6942
		[4] = 2666667,
6943
		[5] = 4266667,
6944
	};
6945
	const unsigned int *vco_table;
6946
	unsigned int vco;
6947
	uint8_t tmp = 0;
6948
 
6949
	/* FIXME other chipsets? */
6950
	if (IS_GM45(dev))
6951
		vco_table = ctg_vco;
6952
	else if (IS_G4X(dev))
6953
		vco_table = elk_vco;
6954
	else if (IS_CRESTLINE(dev))
6955
		vco_table = cl_vco;
6956
	else if (IS_PINEVIEW(dev))
6957
		vco_table = pnv_vco;
6958
	else if (IS_G33(dev))
6959
		vco_table = blb_vco;
6960
	else
6961
		return 0;
6962
 
6963
	tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6964
 
6965
	vco = vco_table[tmp & 0x7];
6966
	if (vco == 0)
6967
		DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6968
	else
6969
		DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6970
 
6971
	return vco;
6972
}
6973
 
6974
static int gm45_get_display_clock_speed(struct drm_device *dev)
6975
{
6976
	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6977
	uint16_t tmp = 0;
6978
 
6979
	pci_read_config_word(dev->pdev, GCFGC, &tmp);
6980
 
6981
	cdclk_sel = (tmp >> 12) & 0x1;
6982
 
6983
	switch (vco) {
6984
	case 2666667:
6985
	case 4000000:
6986
	case 5333333:
6987
		return cdclk_sel ? 333333 : 222222;
6988
	case 3200000:
6989
		return cdclk_sel ? 320000 : 228571;
6990
	default:
6991
		DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6992
		return 222222;
6993
	}
6994
}
6995
 
6996
static int i965gm_get_display_clock_speed(struct drm_device *dev)
6997
{
6998
	static const uint8_t div_3200[] = { 16, 10,  8 };
6999
	static const uint8_t div_4000[] = { 20, 12, 10 };
7000
	static const uint8_t div_5333[] = { 24, 16, 14 };
7001
	const uint8_t *div_table;
7002
	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7003
	uint16_t tmp = 0;
7004
 
7005
	pci_read_config_word(dev->pdev, GCFGC, &tmp);
7006
 
7007
	cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7008
 
7009
	if (cdclk_sel >= ARRAY_SIZE(div_3200))
7010
		goto fail;
7011
 
7012
	switch (vco) {
7013
	case 3200000:
7014
		div_table = div_3200;
7015
		break;
7016
	case 4000000:
7017
		div_table = div_4000;
7018
		break;
7019
	case 5333333:
7020
		div_table = div_5333;
7021
		break;
7022
	default:
7023
		goto fail;
7024
	}
7025
 
7026
	return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7027
 
7028
fail:
7029
	DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7030
	return 200000;
7031
}
7032
 
7033
static int g33_get_display_clock_speed(struct drm_device *dev)
7034
{
7035
	static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7036
	static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7037
	static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7038
	static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7039
	const uint8_t *div_table;
7040
	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7041
	uint16_t tmp = 0;
7042
 
7043
	pci_read_config_word(dev->pdev, GCFGC, &tmp);
7044
 
7045
	cdclk_sel = (tmp >> 4) & 0x7;
7046
 
7047
	if (cdclk_sel >= ARRAY_SIZE(div_3200))
7048
		goto fail;
7049
 
7050
	switch (vco) {
7051
	case 3200000:
7052
		div_table = div_3200;
7053
		break;
7054
	case 4000000:
7055
		div_table = div_4000;
7056
		break;
7057
	case 4800000:
7058
		div_table = div_4800;
7059
		break;
7060
	case 5333333:
7061
		div_table = div_5333;
7062
		break;
7063
	default:
7064
		goto fail;
7065
	}
7066
 
7067
	return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7068
 
7069
fail:
7070
	DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7071
	return 190476;
7072
}
7073
 
2327 Serge 7074
static void
3746 Serge 7075
intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2327 Serge 7076
{
3746 Serge 7077
	while (*num > DATA_LINK_M_N_MASK ||
7078
	       *den > DATA_LINK_M_N_MASK) {
2327 Serge 7079
		*num >>= 1;
7080
		*den >>= 1;
7081
	}
7082
}
7083
 
3746 Serge 7084
static void compute_m_n(unsigned int m, unsigned int n,
7085
			uint32_t *ret_m, uint32_t *ret_n)
7086
{
7087
	*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7088
	*ret_m = div_u64((uint64_t) m * *ret_n, n);
7089
	intel_reduce_m_n_ratio(ret_m, ret_n);
7090
}
7091
 
3480 Serge 7092
void
7093
intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7094
		       int pixel_clock, int link_clock,
7095
		       struct intel_link_m_n *m_n)
2327 Serge 7096
{
3480 Serge 7097
	m_n->tu = 64;
3746 Serge 7098
 
7099
	compute_m_n(bits_per_pixel * pixel_clock,
7100
		    link_clock * nlanes * 8,
7101
		    &m_n->gmch_m, &m_n->gmch_n);
7102
 
7103
	compute_m_n(pixel_clock, link_clock,
7104
		    &m_n->link_m, &m_n->link_n);
2327 Serge 7105
}
7106
 
7107
static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7108
{
5060 serge 7109
	if (i915.panel_use_ssc >= 0)
7110
		return i915.panel_use_ssc != 0;
4104 Serge 7111
	return dev_priv->vbt.lvds_use_ssc
2327 Serge 7112
		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7113
}
7114
 
6084 serge 7115
static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7116
			   int num_connectors)
3031 serge 7117
{
6084 serge 7118
	struct drm_device *dev = crtc_state->base.crtc->dev;
3031 serge 7119
	struct drm_i915_private *dev_priv = dev->dev_private;
7120
	int refclk;
2327 Serge 7121
 
6084 serge 7122
	WARN_ON(!crtc_state->base.state);
7123
 
7124
	if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
4560 Serge 7125
		refclk = 100000;
6084 serge 7126
	} else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
3031 serge 7127
	    intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4560 Serge 7128
		refclk = dev_priv->vbt.lvds_ssc_freq;
7129
		DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
3031 serge 7130
	} else if (!IS_GEN2(dev)) {
7131
		refclk = 96000;
7132
	} else {
7133
		refclk = 48000;
7134
	}
2327 Serge 7135
 
3031 serge 7136
	return refclk;
7137
}
2327 Serge 7138
 
4104 Serge 7139
static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
3031 serge 7140
{
4104 Serge 7141
	return (1 << dpll->n) << 16 | dpll->m2;
7142
}
3746 Serge 7143
 
4104 Serge 7144
static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7145
{
7146
	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
3031 serge 7147
}
2327 Serge 7148
 
3746 Serge 7149
static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6084 serge 7150
				     struct intel_crtc_state *crtc_state,
3031 serge 7151
				     intel_clock_t *reduced_clock)
7152
{
3746 Serge 7153
	struct drm_device *dev = crtc->base.dev;
3031 serge 7154
	u32 fp, fp2 = 0;
2327 Serge 7155
 
3031 serge 7156
	if (IS_PINEVIEW(dev)) {
6084 serge 7157
		fp = pnv_dpll_compute_fp(&crtc_state->dpll);
3031 serge 7158
		if (reduced_clock)
4104 Serge 7159
			fp2 = pnv_dpll_compute_fp(reduced_clock);
3031 serge 7160
	} else {
6084 serge 7161
		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
3031 serge 7162
		if (reduced_clock)
4104 Serge 7163
			fp2 = i9xx_dpll_compute_fp(reduced_clock);
3031 serge 7164
	}
2327 Serge 7165
 
6084 serge 7166
	crtc_state->dpll_hw_state.fp0 = fp;
2327 Serge 7167
 
3746 Serge 7168
	crtc->lowfreq_avail = false;
6084 serge 7169
	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7170
	    reduced_clock) {
7171
		crtc_state->dpll_hw_state.fp1 = fp2;
3746 Serge 7172
		crtc->lowfreq_avail = true;
3031 serge 7173
	} else {
6084 serge 7174
		crtc_state->dpll_hw_state.fp1 = fp;
3031 serge 7175
	}
7176
}
2327 Serge 7177
 
4560 Serge 7178
static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7179
		pipe)
4104 Serge 7180
{
7181
	u32 reg_val;
7182
 
7183
	/*
7184
	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7185
	 * and set it to a reasonable value instead.
7186
	 */
4560 Serge 7187
	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
4104 Serge 7188
	reg_val &= 0xffffff00;
7189
	reg_val |= 0x00000030;
4560 Serge 7190
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
4104 Serge 7191
 
4560 Serge 7192
	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
4104 Serge 7193
	reg_val &= 0x8cffffff;
7194
	reg_val = 0x8c000000;
4560 Serge 7195
	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
4104 Serge 7196
 
4560 Serge 7197
	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
4104 Serge 7198
	reg_val &= 0xffffff00;
4560 Serge 7199
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
4104 Serge 7200
 
4560 Serge 7201
	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
4104 Serge 7202
	reg_val &= 0x00ffffff;
7203
	reg_val |= 0xb0000000;
4560 Serge 7204
	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
4104 Serge 7205
}
7206
 
7207
static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7208
					 struct intel_link_m_n *m_n)
7209
{
7210
	struct drm_device *dev = crtc->base.dev;
7211
	struct drm_i915_private *dev_priv = dev->dev_private;
7212
	int pipe = crtc->pipe;
7213
 
7214
	I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7215
	I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7216
	I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7217
	I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7218
}
7219
 
7220
static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5354 serge 7221
					 struct intel_link_m_n *m_n,
7222
					 struct intel_link_m_n *m2_n2)
4104 Serge 7223
{
7224
	struct drm_device *dev = crtc->base.dev;
7225
	struct drm_i915_private *dev_priv = dev->dev_private;
7226
	int pipe = crtc->pipe;
6084 serge 7227
	enum transcoder transcoder = crtc->config->cpu_transcoder;
4104 Serge 7228
 
7229
	if (INTEL_INFO(dev)->gen >= 5) {
7230
		I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7231
		I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7232
		I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7233
		I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5354 serge 7234
		/* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7235
		 * for gen < 8) and if DRRS is supported (to make sure the
7236
		 * registers are not unnecessarily accessed).
7237
		 */
6084 serge 7238
		if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7239
			crtc->config->has_drrs) {
5354 serge 7240
			I915_WRITE(PIPE_DATA_M2(transcoder),
7241
					TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7242
			I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7243
			I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7244
			I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7245
		}
4104 Serge 7246
	} else {
7247
		I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7248
		I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7249
		I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7250
		I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7251
	}
7252
}
7253
 
6084 serge 7254
void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
3031 serge 7255
{
6084 serge 7256
	struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7257
 
7258
	if (m_n == M1_N1) {
7259
		dp_m_n = &crtc->config->dp_m_n;
7260
		dp_m2_n2 = &crtc->config->dp_m2_n2;
7261
	} else if (m_n == M2_N2) {
7262
 
7263
		/*
7264
		 * M2_N2 registers are not supported. Hence m2_n2 divider value
7265
		 * needs to be programmed into M1_N1.
7266
		 */
7267
		dp_m_n = &crtc->config->dp_m2_n2;
7268
	} else {
7269
		DRM_ERROR("Unsupported divider value\n");
7270
		return;
7271
	}
7272
 
7273
	if (crtc->config->has_pch_encoder)
7274
		intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
3746 Serge 7275
	else
6084 serge 7276
		intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
3746 Serge 7277
}
7278
 
6084 serge 7279
static void vlv_compute_dpll(struct intel_crtc *crtc,
7280
			     struct intel_crtc_state *pipe_config)
3746 Serge 7281
{
5060 serge 7282
	u32 dpll, dpll_md;
7283
 
7284
	/*
7285
	 * Enable DPIO clock input. We should never disable the reference
7286
	 * clock for pipe B, since VGA hotplug / manual detection depends
7287
	 * on it.
7288
	 */
6084 serge 7289
	dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7290
		DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
5060 serge 7291
	/* We should never disable this, set it here for state tracking */
7292
	if (crtc->pipe == PIPE_B)
7293
		dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7294
	dpll |= DPLL_VCO_ENABLE;
5354 serge 7295
	pipe_config->dpll_hw_state.dpll = dpll;
5060 serge 7296
 
5354 serge 7297
	dpll_md = (pipe_config->pixel_multiplier - 1)
5060 serge 7298
		<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
5354 serge 7299
	pipe_config->dpll_hw_state.dpll_md = dpll_md;
5060 serge 7300
}
7301
 
5354 serge 7302
static void vlv_prepare_pll(struct intel_crtc *crtc,
6084 serge 7303
			    const struct intel_crtc_state *pipe_config)
5060 serge 7304
{
3746 Serge 7305
	struct drm_device *dev = crtc->base.dev;
3031 serge 7306
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 7307
	int pipe = crtc->pipe;
5060 serge 7308
	u32 mdiv;
3031 serge 7309
	u32 bestn, bestm1, bestm2, bestp1, bestp2;
5060 serge 7310
	u32 coreclk, reg_val;
2327 Serge 7311
 
6084 serge 7312
	mutex_lock(&dev_priv->sb_lock);
3480 Serge 7313
 
5354 serge 7314
	bestn = pipe_config->dpll.n;
7315
	bestm1 = pipe_config->dpll.m1;
7316
	bestm2 = pipe_config->dpll.m2;
7317
	bestp1 = pipe_config->dpll.p1;
7318
	bestp2 = pipe_config->dpll.p2;
3031 serge 7319
 
4104 Serge 7320
	/* See eDP HDMI DPIO driver vbios notes doc */
7321
 
7322
	/* PLL B needs special handling */
5060 serge 7323
	if (pipe == PIPE_B)
4560 Serge 7324
		vlv_pllb_recal_opamp(dev_priv, pipe);
4104 Serge 7325
 
7326
	/* Set up Tx target for periodic Rcomp update */
4560 Serge 7327
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
4104 Serge 7328
 
7329
	/* Disable target IRef on PLL */
4560 Serge 7330
	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
4104 Serge 7331
	reg_val &= 0x00ffffff;
4560 Serge 7332
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
4104 Serge 7333
 
7334
	/* Disable fast lock */
4560 Serge 7335
	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
4104 Serge 7336
 
7337
	/* Set idtafcrecal before PLL is enabled */
3031 serge 7338
	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7339
	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7340
	mdiv |= ((bestn << DPIO_N_SHIFT));
7341
	mdiv |= (1 << DPIO_K_SHIFT);
4104 Serge 7342
 
7343
	/*
7344
	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7345
	 * but we don't support that).
7346
	 * Note: don't use the DAC post divider as it seems unstable.
7347
	 */
7348
	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4560 Serge 7349
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
4104 Serge 7350
 
3031 serge 7351
	mdiv |= DPIO_ENABLE_CALIBRATION;
4560 Serge 7352
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
3031 serge 7353
 
4104 Serge 7354
	/* Set HBR and RBR LPF coefficients */
5354 serge 7355
	if (pipe_config->port_clock == 162000 ||
7356
	    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7357
	    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4560 Serge 7358
		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
4104 Serge 7359
				 0x009f0003);
7360
	else
4560 Serge 7361
		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
4104 Serge 7362
				 0x00d0000f);
3031 serge 7363
 
6084 serge 7364
	if (pipe_config->has_dp_encoder) {
4104 Serge 7365
		/* Use SSC source */
5060 serge 7366
		if (pipe == PIPE_A)
4560 Serge 7367
			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4104 Serge 7368
					 0x0df40000);
7369
		else
4560 Serge 7370
			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4104 Serge 7371
					 0x0df70000);
7372
	} else { /* HDMI or VGA */
7373
		/* Use bend source */
5060 serge 7374
		if (pipe == PIPE_A)
4560 Serge 7375
			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4104 Serge 7376
					 0x0df70000);
7377
		else
4560 Serge 7378
			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4104 Serge 7379
					 0x0df40000);
7380
	}
3031 serge 7381
 
4560 Serge 7382
	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
4104 Serge 7383
	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5354 serge 7384
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7385
	    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
4104 Serge 7386
		coreclk |= 0x01000000;
4560 Serge 7387
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
3031 serge 7388
 
4560 Serge 7389
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6084 serge 7390
	mutex_unlock(&dev_priv->sb_lock);
5060 serge 7391
}
4104 Serge 7392
 
6084 serge 7393
static void chv_compute_dpll(struct intel_crtc *crtc,
7394
			     struct intel_crtc_state *pipe_config)
5060 serge 7395
{
6084 serge 7396
	pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7397
		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5354 serge 7398
		DPLL_VCO_ENABLE;
7399
	if (crtc->pipe != PIPE_A)
7400
		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7401
 
7402
	pipe_config->dpll_hw_state.dpll_md =
7403
		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7404
}
7405
 
7406
static void chv_prepare_pll(struct intel_crtc *crtc,
6084 serge 7407
			    const struct intel_crtc_state *pipe_config)
5354 serge 7408
{
5060 serge 7409
	struct drm_device *dev = crtc->base.dev;
7410
	struct drm_i915_private *dev_priv = dev->dev_private;
7411
	int pipe = crtc->pipe;
7412
	int dpll_reg = DPLL(crtc->pipe);
7413
	enum dpio_channel port = vlv_pipe_to_channel(pipe);
6084 serge 7414
	u32 loopfilter, tribuf_calcntr;
5060 serge 7415
	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6084 serge 7416
	u32 dpio_val;
7417
	int vco;
5060 serge 7418
 
5354 serge 7419
	bestn = pipe_config->dpll.n;
7420
	bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7421
	bestm1 = pipe_config->dpll.m1;
7422
	bestm2 = pipe_config->dpll.m2 >> 22;
7423
	bestp1 = pipe_config->dpll.p1;
7424
	bestp2 = pipe_config->dpll.p2;
6084 serge 7425
	vco = pipe_config->dpll.vco;
7426
	dpio_val = 0;
7427
	loopfilter = 0;
5060 serge 7428
 
4560 Serge 7429
	/*
5060 serge 7430
	 * Enable Refclk and SSC
4560 Serge 7431
	 */
5060 serge 7432
	I915_WRITE(dpll_reg,
5354 serge 7433
		   pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
3031 serge 7434
 
6084 serge 7435
	mutex_lock(&dev_priv->sb_lock);
3031 serge 7436
 
5060 serge 7437
	/* p1 and p2 divider */
7438
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7439
			5 << DPIO_CHV_S1_DIV_SHIFT |
7440
			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7441
			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7442
			1 << DPIO_CHV_K_DIV_SHIFT);
3243 Serge 7443
 
5060 serge 7444
	/* Feedback post-divider - m2 */
7445
	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7446
 
7447
	/* Feedback refclk divider - n and m1 */
7448
	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7449
			DPIO_CHV_M1_DIV_BY_2 |
7450
			1 << DPIO_CHV_N_DIV_SHIFT);
7451
 
7452
	/* M2 fraction division */
7453
	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7454
 
7455
	/* M2 fraction division enable */
6084 serge 7456
	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7457
	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7458
	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7459
	if (bestm2_frac)
7460
		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7461
	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
5060 serge 7462
 
6084 serge 7463
	/* Program digital lock detect threshold */
7464
	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7465
	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7466
					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7467
	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7468
	if (!bestm2_frac)
7469
		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7470
	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7471
 
5060 serge 7472
	/* Loop filter */
6084 serge 7473
	if (vco == 5400000) {
7474
		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7475
		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7476
		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7477
		tribuf_calcntr = 0x9;
7478
	} else if (vco <= 6200000) {
7479
		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7480
		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7481
		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7482
		tribuf_calcntr = 0x9;
7483
	} else if (vco <= 6480000) {
7484
		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7485
		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7486
		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7487
		tribuf_calcntr = 0x8;
7488
	} else {
7489
		/* Not supported. Apply the same limits as in the max case */
7490
		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7491
		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7492
		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7493
		tribuf_calcntr = 0;
7494
	}
5060 serge 7495
	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7496
 
6084 serge 7497
	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7498
	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7499
	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7500
	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7501
 
5060 serge 7502
	/* AFC Recal */
7503
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7504
			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7505
			DPIO_AFC_RECAL);
7506
 
6084 serge 7507
	mutex_unlock(&dev_priv->sb_lock);
3031 serge 7508
}
7509
 
5354 serge 7510
/**
7511
 * vlv_force_pll_on - forcibly enable just the PLL
7512
 * @dev_priv: i915 private structure
7513
 * @pipe: pipe PLL to enable
7514
 * @dpll: PLL configuration
7515
 *
7516
 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7517
 * in cases where we need the PLL enabled even when @pipe is not going to
7518
 * be enabled.
7519
 */
7520
void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7521
		      const struct dpll *dpll)
7522
{
7523
	struct intel_crtc *crtc =
7524
		to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6084 serge 7525
	struct intel_crtc_state pipe_config = {
7526
		.base.crtc = &crtc->base,
5354 serge 7527
		.pixel_multiplier = 1,
7528
		.dpll = *dpll,
7529
	};
7530
 
7531
	if (IS_CHERRYVIEW(dev)) {
6084 serge 7532
		chv_compute_dpll(crtc, &pipe_config);
5354 serge 7533
		chv_prepare_pll(crtc, &pipe_config);
7534
		chv_enable_pll(crtc, &pipe_config);
7535
	} else {
6084 serge 7536
		vlv_compute_dpll(crtc, &pipe_config);
5354 serge 7537
		vlv_prepare_pll(crtc, &pipe_config);
7538
		vlv_enable_pll(crtc, &pipe_config);
7539
	}
7540
}
7541
 
7542
/**
7543
 * vlv_force_pll_off - forcibly disable just the PLL
7544
 * @dev_priv: i915 private structure
7545
 * @pipe: pipe PLL to disable
7546
 *
7547
 * Disable the PLL for @pipe. To be used in cases where we need
7548
 * the PLL enabled even when @pipe is not going to be enabled.
7549
 */
7550
void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7551
{
7552
	if (IS_CHERRYVIEW(dev))
7553
		chv_disable_pll(to_i915(dev), pipe);
7554
	else
7555
		vlv_disable_pll(to_i915(dev), pipe);
7556
}
7557
 
6084 serge 7558
static void i9xx_compute_dpll(struct intel_crtc *crtc,
7559
			      struct intel_crtc_state *crtc_state,
7560
			      intel_clock_t *reduced_clock,
7561
			      int num_connectors)
3031 serge 7562
{
3746 Serge 7563
	struct drm_device *dev = crtc->base.dev;
3031 serge 7564
	struct drm_i915_private *dev_priv = dev->dev_private;
7565
	u32 dpll;
7566
	bool is_sdvo;
6084 serge 7567
	struct dpll *clock = &crtc_state->dpll;
3031 serge 7568
 
6084 serge 7569
	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
3243 Serge 7570
 
6084 serge 7571
	is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7572
		intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
3031 serge 7573
 
7574
	dpll = DPLL_VGA_MODE_DIS;
7575
 
6084 serge 7576
	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
3031 serge 7577
		dpll |= DPLLB_MODE_LVDS;
7578
	else
7579
		dpll |= DPLLB_MODE_DAC_SERIAL;
3746 Serge 7580
 
4104 Serge 7581
	if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6084 serge 7582
		dpll |= (crtc_state->pixel_multiplier - 1)
7583
			<< SDVO_MULTIPLIER_SHIFT_HIRES;
7584
	}
4104 Serge 7585
 
7586
	if (is_sdvo)
7587
		dpll |= DPLL_SDVO_HIGH_SPEED;
7588
 
6084 serge 7589
	if (crtc_state->has_dp_encoder)
4104 Serge 7590
		dpll |= DPLL_SDVO_HIGH_SPEED;
2342 Serge 7591
 
3031 serge 7592
	/* compute bitmask from p1 value */
7593
	if (IS_PINEVIEW(dev))
7594
		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7595
	else {
7596
		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7597
		if (IS_G4X(dev) && reduced_clock)
7598
			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7599
	}
7600
	switch (clock->p2) {
7601
	case 5:
7602
		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7603
		break;
7604
	case 7:
7605
		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7606
		break;
7607
	case 10:
7608
		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7609
		break;
7610
	case 14:
7611
		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7612
		break;
7613
	}
7614
	if (INTEL_INFO(dev)->gen >= 4)
7615
		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
2327 Serge 7616
 
6084 serge 7617
	if (crtc_state->sdvo_tv_clock)
3031 serge 7618
		dpll |= PLL_REF_INPUT_TVCLKINBC;
6084 serge 7619
	else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
3031 serge 7620
		 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7621
		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7622
	else
7623
		dpll |= PLL_REF_INPUT_DREFCLK;
2327 Serge 7624
 
3031 serge 7625
	dpll |= DPLL_VCO_ENABLE;
6084 serge 7626
	crtc_state->dpll_hw_state.dpll = dpll;
2327 Serge 7627
 
4104 Serge 7628
	if (INTEL_INFO(dev)->gen >= 4) {
6084 serge 7629
		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7630
			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
7631
		crtc_state->dpll_hw_state.dpll_md = dpll_md;
4104 Serge 7632
	}
3031 serge 7633
}
2327 Serge 7634
 
6084 serge 7635
static void i8xx_compute_dpll(struct intel_crtc *crtc,
7636
			      struct intel_crtc_state *crtc_state,
7637
			      intel_clock_t *reduced_clock,
7638
			      int num_connectors)
3031 serge 7639
{
3746 Serge 7640
	struct drm_device *dev = crtc->base.dev;
3031 serge 7641
	struct drm_i915_private *dev_priv = dev->dev_private;
7642
	u32 dpll;
6084 serge 7643
	struct dpll *clock = &crtc_state->dpll;
2327 Serge 7644
 
6084 serge 7645
	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
3243 Serge 7646
 
3031 serge 7647
	dpll = DPLL_VGA_MODE_DIS;
2327 Serge 7648
 
6084 serge 7649
	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
3031 serge 7650
		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7651
	} else {
7652
		if (clock->p1 == 2)
7653
			dpll |= PLL_P1_DIVIDE_BY_TWO;
7654
		else
7655
			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7656
		if (clock->p2 == 4)
7657
			dpll |= PLL_P2_DIVIDE_BY_4;
7658
	}
2327 Serge 7659
 
6084 serge 7660
	if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
4104 Serge 7661
		dpll |= DPLL_DVO_2X_MODE;
7662
 
6084 serge 7663
	if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
3031 serge 7664
		 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7665
		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7666
	else
7667
		dpll |= PLL_REF_INPUT_DREFCLK;
7668
 
7669
	dpll |= DPLL_VCO_ENABLE;
6084 serge 7670
	crtc_state->dpll_hw_state.dpll = dpll;
3031 serge 7671
}
7672
 
4104 Serge 7673
static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
3243 Serge 7674
{
7675
	struct drm_device *dev = intel_crtc->base.dev;
7676
	struct drm_i915_private *dev_priv = dev->dev_private;
7677
	enum pipe pipe = intel_crtc->pipe;
6084 serge 7678
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7679
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
5060 serge 7680
	uint32_t crtc_vtotal, crtc_vblank_end;
7681
	int vsyncshift = 0;
3243 Serge 7682
 
4104 Serge 7683
	/* We need to be careful not to changed the adjusted mode, for otherwise
7684
	 * the hw state checker will get angry at the mismatch. */
7685
	crtc_vtotal = adjusted_mode->crtc_vtotal;
7686
	crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7687
 
5060 serge 7688
	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
3243 Serge 7689
		/* the chip adds 2 halflines automatically */
4104 Serge 7690
		crtc_vtotal -= 1;
7691
		crtc_vblank_end -= 1;
5060 serge 7692
 
5354 serge 7693
		if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
5060 serge 7694
			vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7695
		else
7696
			vsyncshift = adjusted_mode->crtc_hsync_start -
7697
				adjusted_mode->crtc_htotal / 2;
7698
		if (vsyncshift < 0)
7699
			vsyncshift += adjusted_mode->crtc_htotal;
3243 Serge 7700
	}
7701
 
7702
	if (INTEL_INFO(dev)->gen > 3)
7703
		I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7704
 
7705
	I915_WRITE(HTOTAL(cpu_transcoder),
7706
		   (adjusted_mode->crtc_hdisplay - 1) |
7707
		   ((adjusted_mode->crtc_htotal - 1) << 16));
7708
	I915_WRITE(HBLANK(cpu_transcoder),
7709
		   (adjusted_mode->crtc_hblank_start - 1) |
7710
		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
7711
	I915_WRITE(HSYNC(cpu_transcoder),
7712
		   (adjusted_mode->crtc_hsync_start - 1) |
7713
		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
7714
 
7715
	I915_WRITE(VTOTAL(cpu_transcoder),
7716
		   (adjusted_mode->crtc_vdisplay - 1) |
4104 Serge 7717
		   ((crtc_vtotal - 1) << 16));
3243 Serge 7718
	I915_WRITE(VBLANK(cpu_transcoder),
7719
		   (adjusted_mode->crtc_vblank_start - 1) |
4104 Serge 7720
		   ((crtc_vblank_end - 1) << 16));
3243 Serge 7721
	I915_WRITE(VSYNC(cpu_transcoder),
7722
		   (adjusted_mode->crtc_vsync_start - 1) |
7723
		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
7724
 
7725
	/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7726
	 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7727
	 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7728
	 * bits. */
7729
	if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7730
	    (pipe == PIPE_B || pipe == PIPE_C))
7731
		I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7732
 
7733
	/* pipesrc controls the size that is scaled from, which should
7734
	 * always be the user's requested size.
7735
	 */
7736
	I915_WRITE(PIPESRC(pipe),
6084 serge 7737
		   ((intel_crtc->config->pipe_src_w - 1) << 16) |
7738
		   (intel_crtc->config->pipe_src_h - 1));
3243 Serge 7739
}
7740
 
4104 Serge 7741
static void intel_get_pipe_timings(struct intel_crtc *crtc,
6084 serge 7742
				   struct intel_crtc_state *pipe_config)
4104 Serge 7743
{
7744
	struct drm_device *dev = crtc->base.dev;
7745
	struct drm_i915_private *dev_priv = dev->dev_private;
7746
	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7747
	uint32_t tmp;
7748
 
7749
	tmp = I915_READ(HTOTAL(cpu_transcoder));
6084 serge 7750
	pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7751
	pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4104 Serge 7752
	tmp = I915_READ(HBLANK(cpu_transcoder));
6084 serge 7753
	pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7754
	pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4104 Serge 7755
	tmp = I915_READ(HSYNC(cpu_transcoder));
6084 serge 7756
	pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7757
	pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4104 Serge 7758
 
7759
	tmp = I915_READ(VTOTAL(cpu_transcoder));
6084 serge 7760
	pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7761
	pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4104 Serge 7762
	tmp = I915_READ(VBLANK(cpu_transcoder));
6084 serge 7763
	pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7764
	pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4104 Serge 7765
	tmp = I915_READ(VSYNC(cpu_transcoder));
6084 serge 7766
	pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7767
	pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4104 Serge 7768
 
7769
	if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6084 serge 7770
		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7771
		pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7772
		pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
4104 Serge 7773
	}
7774
 
7775
	tmp = I915_READ(PIPESRC(crtc->pipe));
4560 Serge 7776
	pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7777
	pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7778
 
6084 serge 7779
	pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7780
	pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
4104 Serge 7781
}
7782
 
5060 serge 7783
void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6084 serge 7784
				 struct intel_crtc_state *pipe_config)
4104 Serge 7785
{
6084 serge 7786
	mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7787
	mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7788
	mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7789
	mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
4104 Serge 7790
 
6084 serge 7791
	mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7792
	mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7793
	mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7794
	mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
4104 Serge 7795
 
6084 serge 7796
	mode->flags = pipe_config->base.adjusted_mode.flags;
7797
	mode->type = DRM_MODE_TYPE_DRIVER;
4104 Serge 7798
 
6084 serge 7799
	mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7800
	mode->flags |= pipe_config->base.adjusted_mode.flags;
7801
 
7802
	mode->hsync = drm_mode_hsync(mode);
7803
	mode->vrefresh = drm_mode_vrefresh(mode);
7804
	drm_mode_set_name(mode);
4104 Serge 7805
}
7806
 
3746 Serge 7807
static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7808
{
7809
	struct drm_device *dev = intel_crtc->base.dev;
7810
	struct drm_i915_private *dev_priv = dev->dev_private;
7811
	uint32_t pipeconf;
7812
 
4104 Serge 7813
	pipeconf = 0;
3746 Serge 7814
 
5354 serge 7815
	if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7816
	    (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7817
		pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
4104 Serge 7818
 
6084 serge 7819
	if (intel_crtc->config->double_wide)
7820
		pipeconf |= PIPECONF_DOUBLE_WIDE;
3746 Serge 7821
 
4104 Serge 7822
	/* only g4x and later have fancy bpc/dither controls */
7823
	if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7824
		/* Bspec claims that we can't use dithering for 30bpp pipes. */
6084 serge 7825
		if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
4104 Serge 7826
			pipeconf |= PIPECONF_DITHER_EN |
3746 Serge 7827
				    PIPECONF_DITHER_TYPE_SP;
7828
 
6084 serge 7829
		switch (intel_crtc->config->pipe_bpp) {
4104 Serge 7830
		case 18:
7831
			pipeconf |= PIPECONF_6BPC;
7832
			break;
7833
		case 24:
7834
			pipeconf |= PIPECONF_8BPC;
7835
			break;
7836
		case 30:
7837
			pipeconf |= PIPECONF_10BPC;
7838
			break;
7839
		default:
7840
			/* Case prevented by intel_choose_pipe_bpp_dither. */
7841
			BUG();
3746 Serge 7842
		}
7843
	}
7844
 
7845
	if (HAS_PIPE_CXSR(dev)) {
7846
		if (intel_crtc->lowfreq_avail) {
7847
			DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7848
			pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7849
		} else {
7850
			DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7851
		}
7852
	}
7853
 
6084 serge 7854
	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
5060 serge 7855
		if (INTEL_INFO(dev)->gen < 4 ||
5354 serge 7856
		    intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6084 serge 7857
			pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7858
		else
5060 serge 7859
			pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7860
	} else
3746 Serge 7861
		pipeconf |= PIPECONF_PROGRESSIVE;
7862
 
6084 serge 7863
	if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7864
		pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
3746 Serge 7865
 
7866
	I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7867
	POSTING_READ(PIPECONF(intel_crtc->pipe));
7868
}
7869
 
6084 serge 7870
static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7871
				   struct intel_crtc_state *crtc_state)
3031 serge 7872
{
5354 serge 7873
	struct drm_device *dev = crtc->base.dev;
3031 serge 7874
	struct drm_i915_private *dev_priv = dev->dev_private;
7875
	int refclk, num_connectors = 0;
6084 serge 7876
	intel_clock_t clock;
7877
	bool ok;
7878
	bool is_dsi = false;
3031 serge 7879
	struct intel_encoder *encoder;
7880
	const intel_limit_t *limit;
6084 serge 7881
	struct drm_atomic_state *state = crtc_state->base.state;
7882
	struct drm_connector *connector;
7883
	struct drm_connector_state *connector_state;
7884
	int i;
3031 serge 7885
 
6084 serge 7886
	memset(&crtc_state->dpll_hw_state, 0,
7887
	       sizeof(crtc_state->dpll_hw_state));
7888
 
7889
	for_each_connector_in_state(state, connector, connector_state, i) {
7890
		if (connector_state->crtc != &crtc->base)
5354 serge 7891
			continue;
7892
 
6084 serge 7893
		encoder = to_intel_encoder(connector_state->best_encoder);
7894
 
3031 serge 7895
		switch (encoder->type) {
4560 Serge 7896
		case INTEL_OUTPUT_DSI:
7897
			is_dsi = true;
7898
			break;
5354 serge 7899
		default:
7900
			break;
3031 serge 7901
		}
7902
 
7903
		num_connectors++;
7904
	}
7905
 
4560 Serge 7906
	if (is_dsi)
5060 serge 7907
		return 0;
4560 Serge 7908
 
6084 serge 7909
	if (!crtc_state->clock_set) {
7910
		refclk = i9xx_get_refclk(crtc_state, num_connectors);
3031 serge 7911
 
6084 serge 7912
		/*
4560 Serge 7913
		 * Returns a set of divisors for the desired target clock with
7914
		 * the given refclk, or FALSE.  The returned values represent
7915
		 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7916
		 * 2) / p1 / p2.
6084 serge 7917
		 */
7918
		limit = intel_limit(crtc_state, refclk);
7919
		ok = dev_priv->display.find_dpll(limit, crtc_state,
7920
						 crtc_state->port_clock,
7921
						 refclk, NULL, &clock);
4560 Serge 7922
		if (!ok) {
6084 serge 7923
			DRM_ERROR("Couldn't find PLL settings for mode!\n");
7924
			return -EINVAL;
7925
		}
3031 serge 7926
 
6084 serge 7927
		/* Compat-code for transition, will disappear. */
7928
		crtc_state->dpll.n = clock.n;
7929
		crtc_state->dpll.m1 = clock.m1;
7930
		crtc_state->dpll.m2 = clock.m2;
7931
		crtc_state->dpll.p1 = clock.p1;
7932
		crtc_state->dpll.p2 = clock.p2;
3031 serge 7933
	}
7934
 
4560 Serge 7935
	if (IS_GEN2(dev)) {
6084 serge 7936
		i8xx_compute_dpll(crtc, crtc_state, NULL,
7937
				  num_connectors);
5060 serge 7938
	} else if (IS_CHERRYVIEW(dev)) {
6084 serge 7939
		chv_compute_dpll(crtc, crtc_state);
4560 Serge 7940
	} else if (IS_VALLEYVIEW(dev)) {
6084 serge 7941
		vlv_compute_dpll(crtc, crtc_state);
4560 Serge 7942
	} else {
6084 serge 7943
		i9xx_compute_dpll(crtc, crtc_state, NULL,
7944
				  num_connectors);
4560 Serge 7945
	}
3031 serge 7946
 
5060 serge 7947
	return 0;
2327 Serge 7948
}
7949
 
4104 Serge 7950
static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6084 serge 7951
				 struct intel_crtc_state *pipe_config)
4104 Serge 7952
{
7953
	struct drm_device *dev = crtc->base.dev;
7954
	struct drm_i915_private *dev_priv = dev->dev_private;
7955
	uint32_t tmp;
7956
 
4560 Serge 7957
	if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7958
		return;
7959
 
4104 Serge 7960
	tmp = I915_READ(PFIT_CONTROL);
7961
	if (!(tmp & PFIT_ENABLE))
7962
		return;
7963
 
7964
	/* Check whether the pfit is attached to our pipe. */
7965
	if (INTEL_INFO(dev)->gen < 4) {
7966
		if (crtc->pipe != PIPE_B)
7967
			return;
7968
	} else {
7969
		if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7970
			return;
7971
	}
7972
 
7973
	pipe_config->gmch_pfit.control = tmp;
7974
	pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7975
	if (INTEL_INFO(dev)->gen < 5)
7976
		pipe_config->gmch_pfit.lvds_border_bits =
7977
			I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7978
}
7979
 
4398 Serge 7980
static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6084 serge 7981
			       struct intel_crtc_state *pipe_config)
4398 Serge 7982
{
7983
	struct drm_device *dev = crtc->base.dev;
7984
	struct drm_i915_private *dev_priv = dev->dev_private;
7985
	int pipe = pipe_config->cpu_transcoder;
7986
	intel_clock_t clock;
7987
	u32 mdiv;
7988
	int refclk = 100000;
7989
 
5060 serge 7990
	/* In case of MIPI DPLL will not even be used */
7991
	if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7992
		return;
7993
 
6084 serge 7994
	mutex_lock(&dev_priv->sb_lock);
4560 Serge 7995
	mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6084 serge 7996
	mutex_unlock(&dev_priv->sb_lock);
4398 Serge 7997
 
7998
	clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7999
	clock.m2 = mdiv & DPIO_M2DIV_MASK;
8000
	clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8001
	clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8002
	clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8003
 
6084 serge 8004
	pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
4398 Serge 8005
}
8006
 
6084 serge 8007
static void
8008
i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8009
			      struct intel_initial_plane_config *plane_config)
5060 serge 8010
{
8011
	struct drm_device *dev = crtc->base.dev;
8012
	struct drm_i915_private *dev_priv = dev->dev_private;
8013
	u32 val, base, offset;
8014
	int pipe = crtc->pipe, plane = crtc->plane;
8015
	int fourcc, pixel_format;
6084 serge 8016
	unsigned int aligned_height;
8017
	struct drm_framebuffer *fb;
8018
	struct intel_framebuffer *intel_fb;
5060 serge 8019
 
6084 serge 8020
	val = I915_READ(DSPCNTR(plane));
8021
	if (!(val & DISPLAY_PLANE_ENABLE))
8022
		return;
8023
 
8024
	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8025
	if (!intel_fb) {
5060 serge 8026
		DRM_DEBUG_KMS("failed to alloc fb\n");
8027
		return;
8028
	}
8029
 
6084 serge 8030
	fb = &intel_fb->base;
5060 serge 8031
 
6084 serge 8032
	if (INTEL_INFO(dev)->gen >= 4) {
8033
		if (val & DISPPLANE_TILED) {
8034
			plane_config->tiling = I915_TILING_X;
8035
			fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8036
		}
8037
	}
5060 serge 8038
 
8039
	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6084 serge 8040
	fourcc = i9xx_format_to_fourcc(pixel_format);
8041
	fb->pixel_format = fourcc;
8042
	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
5060 serge 8043
 
8044
	if (INTEL_INFO(dev)->gen >= 4) {
6084 serge 8045
		if (plane_config->tiling)
5060 serge 8046
			offset = I915_READ(DSPTILEOFF(plane));
8047
		else
8048
			offset = I915_READ(DSPLINOFF(plane));
8049
		base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8050
	} else {
8051
		base = I915_READ(DSPADDR(plane));
8052
	}
8053
	plane_config->base = base;
8054
 
8055
	val = I915_READ(PIPESRC(pipe));
6084 serge 8056
	fb->width = ((val >> 16) & 0xfff) + 1;
8057
	fb->height = ((val >> 0) & 0xfff) + 1;
5060 serge 8058
 
8059
	val = I915_READ(DSPSTRIDE(pipe));
6084 serge 8060
//   fb->pitches[0] = val & 0xffffffc0;
8061
	fb->pitches[0] = 2560*4;
5060 serge 8062
 
6084 serge 8063
	aligned_height = intel_fb_align_height(dev, fb->height,
8064
					       fb->pixel_format,
8065
					       fb->modifier[0]);
5060 serge 8066
 
6084 serge 8067
//   plane_config->size = fb->pitches[0] * aligned_height;
8068
 	plane_config->size = i915_fbsize*1024*1024;
5060 serge 8069
 
6084 serge 8070
	DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8071
		      pipe_name(pipe), plane, fb->width, fb->height,
8072
		      fb->bits_per_pixel, base, fb->pitches[0],
5060 serge 8073
		      plane_config->size);
8074
 
6084 serge 8075
	plane_config->fb = intel_fb;
5060 serge 8076
}
8077
 
8078
static void chv_crtc_clock_get(struct intel_crtc *crtc,
6084 serge 8079
			       struct intel_crtc_state *pipe_config)
5060 serge 8080
{
8081
	struct drm_device *dev = crtc->base.dev;
8082
	struct drm_i915_private *dev_priv = dev->dev_private;
8083
	int pipe = pipe_config->cpu_transcoder;
8084
	enum dpio_channel port = vlv_pipe_to_channel(pipe);
8085
	intel_clock_t clock;
6084 serge 8086
	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
5060 serge 8087
	int refclk = 100000;
8088
 
6084 serge 8089
	mutex_lock(&dev_priv->sb_lock);
5060 serge 8090
	cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8091
	pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8092
	pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8093
	pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6084 serge 8094
	pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8095
	mutex_unlock(&dev_priv->sb_lock);
5060 serge 8096
 
8097
	clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6084 serge 8098
	clock.m2 = (pll_dw0 & 0xff) << 22;
8099
	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8100
		clock.m2 |= pll_dw2 & 0x3fffff;
5060 serge 8101
	clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8102
	clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8103
	clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8104
 
6084 serge 8105
	pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
5060 serge 8106
}
8107
 
3746 Serge 8108
static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6084 serge 8109
				 struct intel_crtc_state *pipe_config)
3746 Serge 8110
{
8111
	struct drm_device *dev = crtc->base.dev;
8112
	struct drm_i915_private *dev_priv = dev->dev_private;
8113
	uint32_t tmp;
8114
 
5354 serge 8115
	if (!intel_display_power_is_enabled(dev_priv,
6084 serge 8116
					    POWER_DOMAIN_PIPE(crtc->pipe)))
5060 serge 8117
		return false;
8118
 
4104 Serge 8119
	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8120
	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8121
 
3746 Serge 8122
	tmp = I915_READ(PIPECONF(crtc->pipe));
8123
	if (!(tmp & PIPECONF_ENABLE))
8124
		return false;
8125
 
4280 Serge 8126
	if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8127
		switch (tmp & PIPECONF_BPC_MASK) {
8128
		case PIPECONF_6BPC:
8129
			pipe_config->pipe_bpp = 18;
8130
			break;
8131
		case PIPECONF_8BPC:
8132
			pipe_config->pipe_bpp = 24;
8133
			break;
8134
		case PIPECONF_10BPC:
8135
			pipe_config->pipe_bpp = 30;
8136
			break;
8137
		default:
8138
			break;
8139
		}
8140
	}
8141
 
5060 serge 8142
	if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8143
		pipe_config->limited_color_range = true;
8144
 
4560 Serge 8145
	if (INTEL_INFO(dev)->gen < 4)
8146
		pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8147
 
4104 Serge 8148
	intel_get_pipe_timings(crtc, pipe_config);
8149
 
8150
	i9xx_get_pfit_config(crtc, pipe_config);
8151
 
8152
	if (INTEL_INFO(dev)->gen >= 4) {
8153
		tmp = I915_READ(DPLL_MD(crtc->pipe));
8154
		pipe_config->pixel_multiplier =
8155
			((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8156
			 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8157
		pipe_config->dpll_hw_state.dpll_md = tmp;
8158
	} else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8159
		tmp = I915_READ(DPLL(crtc->pipe));
8160
		pipe_config->pixel_multiplier =
8161
			((tmp & SDVO_MULTIPLIER_MASK)
8162
			 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8163
	} else {
8164
		/* Note that on i915G/GM the pixel multiplier is in the sdvo
8165
		 * port and will be fixed up in the encoder->get_config
8166
		 * function. */
8167
		pipe_config->pixel_multiplier = 1;
8168
	}
8169
	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8170
	if (!IS_VALLEYVIEW(dev)) {
5354 serge 8171
		/*
8172
		 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8173
		 * on 830. Filter it out here so that we don't
8174
		 * report errors due to that.
8175
		 */
8176
		if (IS_I830(dev))
8177
			pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8178
 
4104 Serge 8179
		pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8180
		pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8181
	} else {
8182
		/* Mask out read-only status bits. */
8183
		pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8184
						     DPLL_PORTC_READY_MASK |
8185
						     DPLL_PORTB_READY_MASK);
8186
	}
8187
 
5060 serge 8188
	if (IS_CHERRYVIEW(dev))
8189
		chv_crtc_clock_get(crtc, pipe_config);
8190
	else if (IS_VALLEYVIEW(dev))
4560 Serge 8191
		vlv_crtc_clock_get(crtc, pipe_config);
8192
	else
8193
		i9xx_crtc_clock_get(crtc, pipe_config);
8194
 
6084 serge 8195
	/*
8196
	 * Normally the dotclock is filled in by the encoder .get_config()
8197
	 * but in case the pipe is enabled w/o any ports we need a sane
8198
	 * default.
8199
	 */
8200
	pipe_config->base.adjusted_mode.crtc_clock =
8201
		pipe_config->port_clock / pipe_config->pixel_multiplier;
8202
 
3746 Serge 8203
	return true;
8204
}
8205
 
3243 Serge 8206
static void ironlake_init_pch_refclk(struct drm_device *dev)
2327 Serge 8207
{
8208
	struct drm_i915_private *dev_priv = dev->dev_private;
8209
	struct intel_encoder *encoder;
3746 Serge 8210
	u32 val, final;
2327 Serge 8211
	bool has_lvds = false;
2342 Serge 8212
	bool has_cpu_edp = false;
8213
	bool has_panel = false;
8214
	bool has_ck505 = false;
8215
	bool can_ssc = false;
2327 Serge 8216
 
8217
	/* We need to take the global config into account */
5354 serge 8218
	for_each_intel_encoder(dev, encoder) {
6084 serge 8219
		switch (encoder->type) {
8220
		case INTEL_OUTPUT_LVDS:
2342 Serge 8221
			has_panel = true;
6084 serge 8222
			has_lvds = true;
2342 Serge 8223
			break;
6084 serge 8224
		case INTEL_OUTPUT_EDP:
2342 Serge 8225
			has_panel = true;
4104 Serge 8226
			if (enc_to_dig_port(&encoder->base)->port == PORT_A)
2342 Serge 8227
				has_cpu_edp = true;
6084 serge 8228
			break;
5354 serge 8229
		default:
8230
			break;
2327 Serge 8231
		}
6084 serge 8232
	}
2342 Serge 8233
 
8234
	if (HAS_PCH_IBX(dev)) {
4104 Serge 8235
		has_ck505 = dev_priv->vbt.display_clock_mode;
2342 Serge 8236
		can_ssc = has_ck505;
8237
	} else {
8238
		has_ck505 = false;
8239
		can_ssc = true;
2327 Serge 8240
	}
8241
 
4104 Serge 8242
	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8243
		      has_panel, has_lvds, has_ck505);
2342 Serge 8244
 
2327 Serge 8245
	/* Ironlake: try to setup display ref clock before DPLL
8246
	 * enabling. This is only under driver's control after
8247
	 * PCH B stepping, previous chipset stepping should be
8248
	 * ignoring this setting.
8249
	 */
3746 Serge 8250
	val = I915_READ(PCH_DREF_CONTROL);
8251
 
8252
	/* As we must carefully and slowly disable/enable each source in turn,
8253
	 * compute the final state we want first and check if we need to
8254
	 * make any changes at all.
8255
	 */
8256
	final = val;
8257
	final &= ~DREF_NONSPREAD_SOURCE_MASK;
8258
	if (has_ck505)
8259
		final |= DREF_NONSPREAD_CK505_ENABLE;
8260
	else
8261
		final |= DREF_NONSPREAD_SOURCE_ENABLE;
8262
 
8263
	final &= ~DREF_SSC_SOURCE_MASK;
8264
	final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8265
	final &= ~DREF_SSC1_ENABLE;
8266
 
8267
	if (has_panel) {
8268
		final |= DREF_SSC_SOURCE_ENABLE;
8269
 
8270
		if (intel_panel_use_ssc(dev_priv) && can_ssc)
8271
			final |= DREF_SSC1_ENABLE;
8272
 
8273
		if (has_cpu_edp) {
8274
			if (intel_panel_use_ssc(dev_priv) && can_ssc)
8275
				final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8276
			else
8277
				final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8278
		} else
8279
			final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8280
	} else {
8281
		final |= DREF_SSC_SOURCE_DISABLE;
8282
		final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8283
	}
8284
 
8285
	if (final == val)
8286
		return;
8287
 
2327 Serge 8288
	/* Always enable nonspread source */
3746 Serge 8289
	val &= ~DREF_NONSPREAD_SOURCE_MASK;
2342 Serge 8290
 
8291
	if (has_ck505)
3746 Serge 8292
		val |= DREF_NONSPREAD_CK505_ENABLE;
2342 Serge 8293
	else
3746 Serge 8294
		val |= DREF_NONSPREAD_SOURCE_ENABLE;
2342 Serge 8295
 
8296
	if (has_panel) {
3746 Serge 8297
		val &= ~DREF_SSC_SOURCE_MASK;
8298
		val |= DREF_SSC_SOURCE_ENABLE;
2327 Serge 8299
 
2342 Serge 8300
		/* SSC must be turned on before enabling the CPU output  */
8301
		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8302
			DRM_DEBUG_KMS("Using SSC on panel\n");
3746 Serge 8303
			val |= DREF_SSC1_ENABLE;
3031 serge 8304
		} else
3746 Serge 8305
			val &= ~DREF_SSC1_ENABLE;
2327 Serge 8306
 
2342 Serge 8307
		/* Get SSC going before enabling the outputs */
3746 Serge 8308
		I915_WRITE(PCH_DREF_CONTROL, val);
6084 serge 8309
		POSTING_READ(PCH_DREF_CONTROL);
8310
		udelay(200);
2342 Serge 8311
 
3746 Serge 8312
		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
2327 Serge 8313
 
8314
		/* Enable CPU source on CPU attached eDP */
2342 Serge 8315
		if (has_cpu_edp) {
8316
			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8317
				DRM_DEBUG_KMS("Using SSC on eDP\n");
3746 Serge 8318
				val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5060 serge 8319
			} else
3746 Serge 8320
				val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
2342 Serge 8321
		} else
3746 Serge 8322
			val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
2342 Serge 8323
 
3746 Serge 8324
		I915_WRITE(PCH_DREF_CONTROL, val);
2342 Serge 8325
		POSTING_READ(PCH_DREF_CONTROL);
8326
		udelay(200);
6084 serge 8327
	} else {
2342 Serge 8328
		DRM_DEBUG_KMS("Disabling SSC entirely\n");
8329
 
3746 Serge 8330
		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
2342 Serge 8331
 
8332
		/* Turn off CPU output */
3746 Serge 8333
		val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
2342 Serge 8334
 
3746 Serge 8335
		I915_WRITE(PCH_DREF_CONTROL, val);
2327 Serge 8336
		POSTING_READ(PCH_DREF_CONTROL);
8337
		udelay(200);
2342 Serge 8338
 
8339
		/* Turn off the SSC source */
3746 Serge 8340
		val &= ~DREF_SSC_SOURCE_MASK;
8341
		val |= DREF_SSC_SOURCE_DISABLE;
2342 Serge 8342
 
8343
		/* Turn off SSC1 */
3746 Serge 8344
		val &= ~DREF_SSC1_ENABLE;
2342 Serge 8345
 
3746 Serge 8346
		I915_WRITE(PCH_DREF_CONTROL, val);
2342 Serge 8347
		POSTING_READ(PCH_DREF_CONTROL);
8348
		udelay(200);
2327 Serge 8349
	}
3746 Serge 8350
 
8351
	BUG_ON(val != final);
2327 Serge 8352
}
8353
 
4104 Serge 8354
static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
3243 Serge 8355
{
4104 Serge 8356
	uint32_t tmp;
3243 Serge 8357
 
6084 serge 8358
	tmp = I915_READ(SOUTH_CHICKEN2);
8359
	tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8360
	I915_WRITE(SOUTH_CHICKEN2, tmp);
3243 Serge 8361
 
6084 serge 8362
	if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8363
			       FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8364
		DRM_ERROR("FDI mPHY reset assert timeout\n");
3243 Serge 8365
 
6084 serge 8366
	tmp = I915_READ(SOUTH_CHICKEN2);
8367
	tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8368
	I915_WRITE(SOUTH_CHICKEN2, tmp);
3243 Serge 8369
 
6084 serge 8370
	if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
4104 Serge 8371
				FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6084 serge 8372
		DRM_ERROR("FDI mPHY reset de-assert timeout\n");
4539 Serge 8373
}
3243 Serge 8374
 
4104 Serge 8375
/* WaMPhyProgramming:hsw */
8376
static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8377
{
8378
	uint32_t tmp;
8379
 
3243 Serge 8380
	tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8381
	tmp &= ~(0xFF << 24);
8382
	tmp |= (0x12 << 24);
8383
	intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8384
 
8385
	tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8386
	tmp |= (1 << 11);
8387
	intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8388
 
8389
	tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8390
	tmp |= (1 << 11);
8391
	intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8392
 
8393
	tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8394
	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8395
	intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8396
 
8397
	tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8398
	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8399
	intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8400
 
6084 serge 8401
	tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8402
	tmp &= ~(7 << 13);
8403
	tmp |= (5 << 13);
8404
	intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
3243 Serge 8405
 
6084 serge 8406
	tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8407
	tmp &= ~(7 << 13);
8408
	tmp |= (5 << 13);
8409
	intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
3243 Serge 8410
 
8411
	tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8412
	tmp &= ~0xFF;
8413
	tmp |= 0x1C;
8414
	intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8415
 
8416
	tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8417
	tmp &= ~0xFF;
8418
	tmp |= 0x1C;
8419
	intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8420
 
8421
	tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8422
	tmp &= ~(0xFF << 16);
8423
	tmp |= (0x1C << 16);
8424
	intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8425
 
8426
	tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8427
	tmp &= ~(0xFF << 16);
8428
	tmp |= (0x1C << 16);
8429
	intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8430
 
6084 serge 8431
	tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8432
	tmp |= (1 << 27);
8433
	intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
3243 Serge 8434
 
6084 serge 8435
	tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8436
	tmp |= (1 << 27);
8437
	intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
3243 Serge 8438
 
6084 serge 8439
	tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8440
	tmp &= ~(0xF << 28);
8441
	tmp |= (4 << 28);
8442
	intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
3243 Serge 8443
 
6084 serge 8444
	tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8445
	tmp &= ~(0xF << 28);
8446
	tmp |= (4 << 28);
8447
	intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
4539 Serge 8448
}
3243 Serge 8449
 
4104 Serge 8450
/* Implements 3 different sequences from BSpec chapter "Display iCLK
8451
 * Programming" based on the parameters passed:
8452
 * - Sequence to enable CLKOUT_DP
8453
 * - Sequence to enable CLKOUT_DP without spread
8454
 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8455
 */
8456
static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8457
				 bool with_fdi)
8458
{
8459
	struct drm_i915_private *dev_priv = dev->dev_private;
8460
	uint32_t reg, tmp;
3480 Serge 8461
 
4104 Serge 8462
	if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8463
		with_spread = true;
6084 serge 8464
	if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
4104 Serge 8465
		with_fdi = false;
8466
 
6084 serge 8467
	mutex_lock(&dev_priv->sb_lock);
4104 Serge 8468
 
8469
	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8470
	tmp &= ~SBI_SSCCTL_DISABLE;
8471
	tmp |= SBI_SSCCTL_PATHALT;
8472
	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8473
 
8474
	udelay(24);
8475
 
8476
	if (with_spread) {
8477
		tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8478
		tmp &= ~SBI_SSCCTL_PATHALT;
8479
		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8480
 
8481
		if (with_fdi) {
8482
			lpt_reset_fdi_mphy(dev_priv);
8483
			lpt_program_fdi_mphy(dev_priv);
8484
		}
8485
	}
8486
 
6084 serge 8487
	reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
4104 Serge 8488
	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8489
	tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8490
	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8491
 
6084 serge 8492
	mutex_unlock(&dev_priv->sb_lock);
3243 Serge 8493
}
8494
 
4104 Serge 8495
/* Sequence to disable CLKOUT_DP */
8496
static void lpt_disable_clkout_dp(struct drm_device *dev)
8497
{
8498
	struct drm_i915_private *dev_priv = dev->dev_private;
8499
	uint32_t reg, tmp;
8500
 
6084 serge 8501
	mutex_lock(&dev_priv->sb_lock);
4104 Serge 8502
 
6084 serge 8503
	reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
4104 Serge 8504
	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8505
	tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8506
	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8507
 
8508
	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8509
	if (!(tmp & SBI_SSCCTL_DISABLE)) {
8510
		if (!(tmp & SBI_SSCCTL_PATHALT)) {
8511
			tmp |= SBI_SSCCTL_PATHALT;
8512
			intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8513
			udelay(32);
8514
		}
8515
		tmp |= SBI_SSCCTL_DISABLE;
8516
		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8517
	}
8518
 
6084 serge 8519
	mutex_unlock(&dev_priv->sb_lock);
4104 Serge 8520
}
8521
 
8522
static void lpt_init_pch_refclk(struct drm_device *dev)
8523
{
8524
	struct intel_encoder *encoder;
8525
	bool has_vga = false;
8526
 
5354 serge 8527
	for_each_intel_encoder(dev, encoder) {
4104 Serge 8528
		switch (encoder->type) {
8529
		case INTEL_OUTPUT_ANALOG:
8530
			has_vga = true;
8531
			break;
5354 serge 8532
		default:
8533
			break;
4104 Serge 8534
		}
8535
	}
8536
 
8537
	if (has_vga)
8538
		lpt_enable_clkout_dp(dev, true, true);
8539
	else
8540
		lpt_disable_clkout_dp(dev);
8541
}
8542
 
3243 Serge 8543
/*
8544
 * Initialize reference clocks when the driver loads
8545
 */
8546
void intel_init_pch_refclk(struct drm_device *dev)
8547
{
8548
	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8549
		ironlake_init_pch_refclk(dev);
8550
	else if (HAS_PCH_LPT(dev))
8551
		lpt_init_pch_refclk(dev);
8552
}
8553
 
6084 serge 8554
static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
2342 Serge 8555
{
6084 serge 8556
	struct drm_device *dev = crtc_state->base.crtc->dev;
2342 Serge 8557
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 8558
	struct drm_atomic_state *state = crtc_state->base.state;
8559
	struct drm_connector *connector;
8560
	struct drm_connector_state *connector_state;
2342 Serge 8561
	struct intel_encoder *encoder;
6084 serge 8562
	int num_connectors = 0, i;
2342 Serge 8563
	bool is_lvds = false;
8564
 
6084 serge 8565
	for_each_connector_in_state(state, connector, connector_state, i) {
8566
		if (connector_state->crtc != crtc_state->base.crtc)
5354 serge 8567
			continue;
8568
 
6084 serge 8569
		encoder = to_intel_encoder(connector_state->best_encoder);
8570
 
2342 Serge 8571
		switch (encoder->type) {
8572
		case INTEL_OUTPUT_LVDS:
8573
			is_lvds = true;
8574
			break;
5354 serge 8575
		default:
8576
			break;
2342 Serge 8577
		}
8578
		num_connectors++;
8579
	}
8580
 
8581
	if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4560 Serge 8582
		DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
4104 Serge 8583
			      dev_priv->vbt.lvds_ssc_freq);
4560 Serge 8584
		return dev_priv->vbt.lvds_ssc_freq;
2342 Serge 8585
	}
8586
 
8587
	return 120000;
8588
}
8589
 
4104 Serge 8590
static void ironlake_set_pipeconf(struct drm_crtc *crtc)
3031 serge 8591
{
8592
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8593
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8594
	int pipe = intel_crtc->pipe;
8595
	uint32_t val;
8596
 
4104 Serge 8597
	val = 0;
3031 serge 8598
 
6084 serge 8599
	switch (intel_crtc->config->pipe_bpp) {
3031 serge 8600
	case 18:
3480 Serge 8601
		val |= PIPECONF_6BPC;
3031 serge 8602
		break;
8603
	case 24:
3480 Serge 8604
		val |= PIPECONF_8BPC;
3031 serge 8605
		break;
8606
	case 30:
3480 Serge 8607
		val |= PIPECONF_10BPC;
3031 serge 8608
		break;
8609
	case 36:
3480 Serge 8610
		val |= PIPECONF_12BPC;
3031 serge 8611
		break;
8612
	default:
3243 Serge 8613
		/* Case prevented by intel_choose_pipe_bpp_dither. */
8614
		BUG();
3031 serge 8615
	}
8616
 
6084 serge 8617
	if (intel_crtc->config->dither)
3031 serge 8618
		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8619
 
6084 serge 8620
	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3031 serge 8621
		val |= PIPECONF_INTERLACED_ILK;
8622
	else
8623
		val |= PIPECONF_PROGRESSIVE;
8624
 
6084 serge 8625
	if (intel_crtc->config->limited_color_range)
3480 Serge 8626
		val |= PIPECONF_COLOR_RANGE_SELECT;
8627
 
3031 serge 8628
	I915_WRITE(PIPECONF(pipe), val);
8629
	POSTING_READ(PIPECONF(pipe));
8630
}
8631
 
3480 Serge 8632
/*
8633
 * Set up the pipe CSC unit.
8634
 *
8635
 * Currently only full range RGB to limited range RGB conversion
8636
 * is supported, but eventually this should handle various
8637
 * RGB<->YCbCr scenarios as well.
8638
 */
3746 Serge 8639
static void intel_set_pipe_csc(struct drm_crtc *crtc)
3480 Serge 8640
{
8641
	struct drm_device *dev = crtc->dev;
8642
	struct drm_i915_private *dev_priv = dev->dev_private;
8643
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8644
	int pipe = intel_crtc->pipe;
8645
	uint16_t coeff = 0x7800; /* 1.0 */
8646
 
8647
	/*
8648
	 * TODO: Check what kind of values actually come out of the pipe
8649
	 * with these coeff/postoff values and adjust to get the best
8650
	 * accuracy. Perhaps we even need to take the bpc value into
8651
	 * consideration.
8652
	 */
8653
 
6084 serge 8654
	if (intel_crtc->config->limited_color_range)
3480 Serge 8655
		coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8656
 
8657
	/*
8658
	 * GY/GU and RY/RU should be the other way around according
8659
	 * to BSpec, but reality doesn't agree. Just set them up in
8660
	 * a way that results in the correct picture.
8661
	 */
8662
	I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8663
	I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8664
 
8665
	I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8666
	I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8667
 
8668
	I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8669
	I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8670
 
8671
	I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8672
	I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8673
	I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8674
 
8675
	if (INTEL_INFO(dev)->gen > 6) {
8676
		uint16_t postoff = 0;
8677
 
6084 serge 8678
		if (intel_crtc->config->limited_color_range)
4398 Serge 8679
			postoff = (16 * (1 << 12) / 255) & 0x1fff;
3480 Serge 8680
 
8681
		I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8682
		I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8683
		I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8684
 
8685
		I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8686
	} else {
8687
		uint32_t mode = CSC_MODE_YUV_TO_RGB;
8688
 
6084 serge 8689
		if (intel_crtc->config->limited_color_range)
3480 Serge 8690
			mode |= CSC_BLACK_SCREEN_OFFSET;
8691
 
8692
		I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8693
	}
8694
}
8695
 
4104 Serge 8696
static void haswell_set_pipeconf(struct drm_crtc *crtc)
3243 Serge 8697
{
4560 Serge 8698
	struct drm_device *dev = crtc->dev;
8699
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 8700
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4560 Serge 8701
	enum pipe pipe = intel_crtc->pipe;
6084 serge 8702
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
3243 Serge 8703
	uint32_t val;
8704
 
4104 Serge 8705
	val = 0;
3243 Serge 8706
 
6084 serge 8707
	if (IS_HASWELL(dev) && intel_crtc->config->dither)
3243 Serge 8708
		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8709
 
6084 serge 8710
	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3243 Serge 8711
		val |= PIPECONF_INTERLACED_ILK;
8712
	else
8713
		val |= PIPECONF_PROGRESSIVE;
8714
 
8715
	I915_WRITE(PIPECONF(cpu_transcoder), val);
8716
	POSTING_READ(PIPECONF(cpu_transcoder));
4104 Serge 8717
 
8718
	I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8719
	POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
4560 Serge 8720
 
5354 serge 8721
	if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
4560 Serge 8722
		val = 0;
8723
 
6084 serge 8724
		switch (intel_crtc->config->pipe_bpp) {
4560 Serge 8725
		case 18:
8726
			val |= PIPEMISC_DITHER_6_BPC;
8727
			break;
8728
		case 24:
8729
			val |= PIPEMISC_DITHER_8_BPC;
8730
			break;
8731
		case 30:
8732
			val |= PIPEMISC_DITHER_10_BPC;
8733
			break;
8734
		case 36:
8735
			val |= PIPEMISC_DITHER_12_BPC;
8736
			break;
8737
		default:
8738
			/* Case prevented by pipe_config_set_bpp. */
8739
			BUG();
8740
		}
8741
 
6084 serge 8742
		if (intel_crtc->config->dither)
4560 Serge 8743
			val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8744
 
8745
		I915_WRITE(PIPEMISC(pipe), val);
8746
	}
3243 Serge 8747
}
8748
 
3031 serge 8749
static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6084 serge 8750
				    struct intel_crtc_state *crtc_state,
3031 serge 8751
				    intel_clock_t *clock,
8752
				    bool *has_reduced_clock,
8753
				    intel_clock_t *reduced_clock)
8754
{
8755
	struct drm_device *dev = crtc->dev;
8756
	struct drm_i915_private *dev_priv = dev->dev_private;
8757
	int refclk;
8758
	const intel_limit_t *limit;
6084 serge 8759
	bool ret;
3031 serge 8760
 
6084 serge 8761
	refclk = ironlake_get_refclk(crtc_state);
3031 serge 8762
 
8763
	/*
8764
	 * Returns a set of divisors for the desired target clock with the given
8765
	 * refclk, or FALSE.  The returned values represent the clock equation:
8766
	 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8767
	 */
6084 serge 8768
	limit = intel_limit(crtc_state, refclk);
8769
	ret = dev_priv->display.find_dpll(limit, crtc_state,
8770
					  crtc_state->port_clock,
4104 Serge 8771
					  refclk, NULL, clock);
3031 serge 8772
	if (!ret)
8773
		return false;
8774
 
8775
	return true;
8776
}
8777
 
3243 Serge 8778
int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8779
{
8780
	/*
8781
	 * Account for spread spectrum to avoid
8782
	 * oversubscribing the link. Max center spread
8783
	 * is 2.5%; use 5% for safety's sake.
8784
	 */
8785
	u32 bps = target_clock * bpp * 21 / 20;
5060 serge 8786
	return DIV_ROUND_UP(bps, link_bw * 8);
3243 Serge 8787
}
8788
 
4104 Serge 8789
static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
2327 Serge 8790
{
4104 Serge 8791
	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
3746 Serge 8792
}
8793
 
3243 Serge 8794
static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6084 serge 8795
				      struct intel_crtc_state *crtc_state,
4104 Serge 8796
				      u32 *fp,
3746 Serge 8797
				      intel_clock_t *reduced_clock, u32 *fp2)
3243 Serge 8798
{
8799
	struct drm_crtc *crtc = &intel_crtc->base;
8800
	struct drm_device *dev = crtc->dev;
8801
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 8802
	struct drm_atomic_state *state = crtc_state->base.state;
8803
	struct drm_connector *connector;
8804
	struct drm_connector_state *connector_state;
8805
	struct intel_encoder *encoder;
3243 Serge 8806
	uint32_t dpll;
6084 serge 8807
	int factor, num_connectors = 0, i;
4104 Serge 8808
	bool is_lvds = false, is_sdvo = false;
3243 Serge 8809
 
6084 serge 8810
	for_each_connector_in_state(state, connector, connector_state, i) {
8811
		if (connector_state->crtc != crtc_state->base.crtc)
5354 serge 8812
			continue;
8813
 
6084 serge 8814
		encoder = to_intel_encoder(connector_state->best_encoder);
8815
 
8816
		switch (encoder->type) {
3243 Serge 8817
		case INTEL_OUTPUT_LVDS:
8818
			is_lvds = true;
8819
			break;
8820
		case INTEL_OUTPUT_SDVO:
8821
		case INTEL_OUTPUT_HDMI:
8822
			is_sdvo = true;
8823
			break;
5354 serge 8824
		default:
8825
			break;
3243 Serge 8826
		}
8827
 
8828
		num_connectors++;
8829
	}
8830
 
6084 serge 8831
	/* Enable autotuning of the PLL clock (if permissible) */
8832
	factor = 21;
8833
	if (is_lvds) {
8834
		if ((intel_panel_use_ssc(dev_priv) &&
4560 Serge 8835
		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
3746 Serge 8836
		    (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6084 serge 8837
			factor = 25;
8838
	} else if (crtc_state->sdvo_tv_clock)
8839
		factor = 20;
2327 Serge 8840
 
6084 serge 8841
	if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
3746 Serge 8842
		*fp |= FP_CB_TUNE;
2327 Serge 8843
 
3746 Serge 8844
	if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8845
		*fp2 |= FP_CB_TUNE;
8846
 
6084 serge 8847
	dpll = 0;
2327 Serge 8848
 
6084 serge 8849
	if (is_lvds)
8850
		dpll |= DPLLB_MODE_LVDS;
8851
	else
8852
		dpll |= DPLLB_MODE_DAC_SERIAL;
4104 Serge 8853
 
6084 serge 8854
	dpll |= (crtc_state->pixel_multiplier - 1)
8855
		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
2327 Serge 8856
 
4104 Serge 8857
	if (is_sdvo)
8858
		dpll |= DPLL_SDVO_HIGH_SPEED;
6084 serge 8859
	if (crtc_state->has_dp_encoder)
4104 Serge 8860
		dpll |= DPLL_SDVO_HIGH_SPEED;
8861
 
6084 serge 8862
	/* compute bitmask from p1 value */
8863
	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8864
	/* also FPA1 */
8865
	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2327 Serge 8866
 
6084 serge 8867
	switch (crtc_state->dpll.p2) {
8868
	case 5:
8869
		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8870
		break;
8871
	case 7:
8872
		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8873
		break;
8874
	case 10:
8875
		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8876
		break;
8877
	case 14:
8878
		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8879
		break;
8880
	}
2327 Serge 8881
 
4104 Serge 8882
	if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6084 serge 8883
		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8884
	else
8885
		dpll |= PLL_REF_INPUT_DREFCLK;
2327 Serge 8886
 
4104 Serge 8887
	return dpll | DPLL_VCO_ENABLE;
3243 Serge 8888
}
8889
 
6084 serge 8890
static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8891
				       struct intel_crtc_state *crtc_state)
3243 Serge 8892
{
5354 serge 8893
	struct drm_device *dev = crtc->base.dev;
3243 Serge 8894
	intel_clock_t clock, reduced_clock;
4104 Serge 8895
	u32 dpll = 0, fp = 0, fp2 = 0;
3243 Serge 8896
	bool ok, has_reduced_clock = false;
3746 Serge 8897
	bool is_lvds = false;
4104 Serge 8898
	struct intel_shared_dpll *pll;
3243 Serge 8899
 
6084 serge 8900
	memset(&crtc_state->dpll_hw_state, 0,
8901
	       sizeof(crtc_state->dpll_hw_state));
8902
 
5354 serge 8903
	is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
3243 Serge 8904
 
8905
	WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8906
	     "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8907
 
6084 serge 8908
	ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
3243 Serge 8909
				     &has_reduced_clock, &reduced_clock);
6084 serge 8910
	if (!ok && !crtc_state->clock_set) {
3243 Serge 8911
		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8912
		return -EINVAL;
8913
	}
3746 Serge 8914
	/* Compat-code for transition, will disappear. */
6084 serge 8915
	if (!crtc_state->clock_set) {
8916
		crtc_state->dpll.n = clock.n;
8917
		crtc_state->dpll.m1 = clock.m1;
8918
		crtc_state->dpll.m2 = clock.m2;
8919
		crtc_state->dpll.p1 = clock.p1;
8920
		crtc_state->dpll.p2 = clock.p2;
3746 Serge 8921
	}
3243 Serge 8922
 
4104 Serge 8923
	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6084 serge 8924
	if (crtc_state->has_pch_encoder) {
8925
		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8926
		if (has_reduced_clock)
4104 Serge 8927
			fp2 = i9xx_dpll_compute_fp(&reduced_clock);
3243 Serge 8928
 
6084 serge 8929
		dpll = ironlake_compute_dpll(crtc, crtc_state,
4104 Serge 8930
					     &fp, &reduced_clock,
5060 serge 8931
					     has_reduced_clock ? &fp2 : NULL);
3243 Serge 8932
 
6084 serge 8933
		crtc_state->dpll_hw_state.dpll = dpll;
8934
		crtc_state->dpll_hw_state.fp0 = fp;
4104 Serge 8935
		if (has_reduced_clock)
6084 serge 8936
			crtc_state->dpll_hw_state.fp1 = fp2;
4104 Serge 8937
		else
6084 serge 8938
			crtc_state->dpll_hw_state.fp1 = fp;
2327 Serge 8939
 
6084 serge 8940
		pll = intel_get_shared_dpll(crtc, crtc_state);
3031 serge 8941
		if (pll == NULL) {
4104 Serge 8942
			DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5354 serge 8943
					 pipe_name(crtc->pipe));
2342 Serge 8944
			return -EINVAL;
6084 serge 8945
		}
5354 serge 8946
	}
2327 Serge 8947
 
6084 serge 8948
	if (is_lvds && has_reduced_clock)
5354 serge 8949
		crtc->lowfreq_avail = true;
4104 Serge 8950
	else
5354 serge 8951
		crtc->lowfreq_avail = false;
2327 Serge 8952
 
5060 serge 8953
	return 0;
4104 Serge 8954
}
3243 Serge 8955
 
4560 Serge 8956
static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8957
					 struct intel_link_m_n *m_n)
4104 Serge 8958
{
8959
	struct drm_device *dev = crtc->base.dev;
8960
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 8961
	enum pipe pipe = crtc->pipe;
4104 Serge 8962
 
4560 Serge 8963
	m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8964
	m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8965
	m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8966
		& ~TU_SIZE_MASK;
8967
	m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8968
	m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8969
		    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8970
}
8971
 
8972
static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8973
					 enum transcoder transcoder,
5354 serge 8974
					 struct intel_link_m_n *m_n,
8975
					 struct intel_link_m_n *m2_n2)
4560 Serge 8976
{
8977
	struct drm_device *dev = crtc->base.dev;
8978
	struct drm_i915_private *dev_priv = dev->dev_private;
8979
	enum pipe pipe = crtc->pipe;
8980
 
8981
	if (INTEL_INFO(dev)->gen >= 5) {
8982
		m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8983
		m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8984
		m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6084 serge 8985
			& ~TU_SIZE_MASK;
4560 Serge 8986
		m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8987
		m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6084 serge 8988
			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5354 serge 8989
		/* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8990
		 * gen < 8) and if DRRS is supported (to make sure the
8991
		 * registers are not unnecessarily read).
8992
		 */
8993
		if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6084 serge 8994
			crtc->config->has_drrs) {
5354 serge 8995
			m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8996
			m2_n2->link_n =	I915_READ(PIPE_LINK_N2(transcoder));
8997
			m2_n2->gmch_m =	I915_READ(PIPE_DATA_M2(transcoder))
8998
					& ~TU_SIZE_MASK;
8999
			m2_n2->gmch_n =	I915_READ(PIPE_DATA_N2(transcoder));
9000
			m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9001
					& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9002
		}
4560 Serge 9003
	} else {
9004
		m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9005
		m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9006
		m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9007
			& ~TU_SIZE_MASK;
9008
		m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9009
		m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9010
			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9011
	}
3243 Serge 9012
}
9013
 
4560 Serge 9014
void intel_dp_get_m_n(struct intel_crtc *crtc,
6084 serge 9015
		      struct intel_crtc_state *pipe_config)
4560 Serge 9016
{
6084 serge 9017
	if (pipe_config->has_pch_encoder)
4560 Serge 9018
		intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9019
	else
9020
		intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
5354 serge 9021
					     &pipe_config->dp_m_n,
9022
					     &pipe_config->dp_m2_n2);
4560 Serge 9023
}
9024
 
9025
static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6084 serge 9026
					struct intel_crtc_state *pipe_config)
4560 Serge 9027
{
9028
	intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
5354 serge 9029
				     &pipe_config->fdi_m_n, NULL);
4560 Serge 9030
}
9031
 
5354 serge 9032
static void skylake_get_pfit_config(struct intel_crtc *crtc,
6084 serge 9033
				    struct intel_crtc_state *pipe_config)
5354 serge 9034
{
9035
	struct drm_device *dev = crtc->base.dev;
9036
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 9037
	struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9038
	uint32_t ps_ctrl = 0;
9039
	int id = -1;
9040
	int i;
5354 serge 9041
 
6084 serge 9042
	/* find scaler attached to this pipe */
9043
	for (i = 0; i < crtc->num_scalers; i++) {
9044
		ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9045
		if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9046
			id = i;
9047
			pipe_config->pch_pfit.enabled = true;
9048
			pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9049
			pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9050
			break;
9051
		}
9052
	}
5354 serge 9053
 
6084 serge 9054
	scaler_state->scaler_id = id;
9055
	if (id >= 0) {
9056
		scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9057
	} else {
9058
		scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
5354 serge 9059
	}
9060
}
9061
 
6084 serge 9062
static void
9063
skylake_get_initial_plane_config(struct intel_crtc *crtc,
9064
				 struct intel_initial_plane_config *plane_config)
9065
{
9066
	struct drm_device *dev = crtc->base.dev;
9067
	struct drm_i915_private *dev_priv = dev->dev_private;
9068
	u32 val, base, offset, stride_mult, tiling;
9069
	int pipe = crtc->pipe;
9070
	int fourcc, pixel_format;
9071
	unsigned int aligned_height;
9072
	struct drm_framebuffer *fb;
9073
	struct intel_framebuffer *intel_fb;
9074
 
9075
	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9076
	if (!intel_fb) {
9077
		DRM_DEBUG_KMS("failed to alloc fb\n");
9078
		return;
9079
	}
9080
 
9081
	fb = &intel_fb->base;
9082
 
9083
	val = I915_READ(PLANE_CTL(pipe, 0));
9084
	if (!(val & PLANE_CTL_ENABLE))
9085
		goto error;
9086
 
9087
	pixel_format = val & PLANE_CTL_FORMAT_MASK;
9088
	fourcc = skl_format_to_fourcc(pixel_format,
9089
				      val & PLANE_CTL_ORDER_RGBX,
9090
				      val & PLANE_CTL_ALPHA_MASK);
9091
	fb->pixel_format = fourcc;
9092
	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9093
 
9094
	tiling = val & PLANE_CTL_TILED_MASK;
9095
	switch (tiling) {
9096
	case PLANE_CTL_TILED_LINEAR:
9097
		fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9098
		break;
9099
	case PLANE_CTL_TILED_X:
9100
		plane_config->tiling = I915_TILING_X;
9101
		fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9102
		break;
9103
	case PLANE_CTL_TILED_Y:
9104
		fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9105
		break;
9106
	case PLANE_CTL_TILED_YF:
9107
		fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9108
		break;
9109
	default:
9110
		MISSING_CASE(tiling);
9111
		goto error;
9112
	}
9113
 
9114
	base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9115
	plane_config->base = base;
9116
 
9117
	offset = I915_READ(PLANE_OFFSET(pipe, 0));
9118
 
9119
	val = I915_READ(PLANE_SIZE(pipe, 0));
9120
	fb->height = ((val >> 16) & 0xfff) + 1;
9121
	fb->width = ((val >> 0) & 0x1fff) + 1;
9122
 
9123
	val = I915_READ(PLANE_STRIDE(pipe, 0));
9124
	stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9125
						fb->pixel_format);
9126
//   fb->pitches[0] = (val & 0x3ff) * stride_mult;
9127
    fb->pitches[0] = 2560*4;
9128
 
9129
	aligned_height = intel_fb_align_height(dev, fb->height,
9130
					       fb->pixel_format,
9131
					       fb->modifier[0]);
9132
 
9133
//   plane_config->size = fb->pitches[0] * aligned_height;
9134
    plane_config->size = i915_fbsize*1024*1024;
9135
 
9136
	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9137
		      pipe_name(pipe), fb->width, fb->height,
9138
		      fb->bits_per_pixel, base, fb->pitches[0],
9139
		      plane_config->size);
9140
 
9141
	plane_config->fb = intel_fb;
9142
	return;
9143
 
9144
error:
9145
	kfree(fb);
9146
}
9147
 
4104 Serge 9148
static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6084 serge 9149
				     struct intel_crtc_state *pipe_config)
4104 Serge 9150
{
9151
	struct drm_device *dev = crtc->base.dev;
9152
	struct drm_i915_private *dev_priv = dev->dev_private;
9153
	uint32_t tmp;
9154
 
9155
	tmp = I915_READ(PF_CTL(crtc->pipe));
9156
 
9157
	if (tmp & PF_ENABLE) {
9158
		pipe_config->pch_pfit.enabled = true;
9159
		pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9160
		pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9161
 
9162
		/* We currently do not free assignements of panel fitters on
9163
		 * ivb/hsw (since we don't use the higher upscaling modes which
9164
		 * differentiates them) so just WARN about this case for now. */
9165
		if (IS_GEN7(dev)) {
9166
			WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9167
				PF_PIPE_SEL_IVB(crtc->pipe));
9168
		}
9169
	}
9170
}
9171
 
6084 serge 9172
static void
9173
ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9174
				  struct intel_initial_plane_config *plane_config)
5060 serge 9175
{
9176
	struct drm_device *dev = crtc->base.dev;
9177
	struct drm_i915_private *dev_priv = dev->dev_private;
9178
	u32 val, base, offset;
6084 serge 9179
	int pipe = crtc->pipe;
5060 serge 9180
	int fourcc, pixel_format;
6084 serge 9181
	unsigned int aligned_height;
9182
	struct drm_framebuffer *fb;
9183
	struct intel_framebuffer *intel_fb;
5060 serge 9184
 
6084 serge 9185
	val = I915_READ(DSPCNTR(pipe));
9186
	if (!(val & DISPLAY_PLANE_ENABLE))
9187
		return;
9188
 
9189
	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9190
	if (!intel_fb) {
5060 serge 9191
		DRM_DEBUG_KMS("failed to alloc fb\n");
9192
		return;
9193
	}
9194
 
6084 serge 9195
	fb = &intel_fb->base;
5060 serge 9196
 
6084 serge 9197
	if (INTEL_INFO(dev)->gen >= 4) {
9198
		if (val & DISPPLANE_TILED) {
9199
			plane_config->tiling = I915_TILING_X;
9200
			fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9201
		}
9202
	}
5060 serge 9203
 
9204
	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6084 serge 9205
	fourcc = i9xx_format_to_fourcc(pixel_format);
9206
	fb->pixel_format = fourcc;
9207
	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
5060 serge 9208
 
6084 serge 9209
	base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
5060 serge 9210
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6084 serge 9211
		offset = I915_READ(DSPOFFSET(pipe));
5060 serge 9212
	} else {
6084 serge 9213
		if (plane_config->tiling)
9214
			offset = I915_READ(DSPTILEOFF(pipe));
5060 serge 9215
		else
6084 serge 9216
			offset = I915_READ(DSPLINOFF(pipe));
5060 serge 9217
	}
9218
	plane_config->base = base;
9219
 
9220
	val = I915_READ(PIPESRC(pipe));
6084 serge 9221
	fb->width = ((val >> 16) & 0xfff) + 1;
9222
	fb->height = ((val >> 0) & 0xfff) + 1;
5060 serge 9223
 
9224
	val = I915_READ(DSPSTRIDE(pipe));
6084 serge 9225
//   fb->pitches[0] = val & 0xffffffc0;
9226
    fb->pitches[0] = 2560*4;
5060 serge 9227
 
6084 serge 9228
	aligned_height = intel_fb_align_height(dev, fb->height,
9229
					       fb->pixel_format,
9230
					       fb->modifier[0]);
5060 serge 9231
 
6084 serge 9232
//   plane_config->size = fb->pitches[0] * aligned_height;
9233
    plane_config->size = i915_fbsize*1024*1024;
5060 serge 9234
 
6084 serge 9235
	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9236
		      pipe_name(pipe), fb->width, fb->height,
9237
		      fb->bits_per_pixel, base, fb->pitches[0],
5060 serge 9238
		      plane_config->size);
6084 serge 9239
 
9240
	plane_config->fb = intel_fb;
5060 serge 9241
}
9242
 
3746 Serge 9243
static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6084 serge 9244
				     struct intel_crtc_state *pipe_config)
3746 Serge 9245
{
9246
	struct drm_device *dev = crtc->base.dev;
9247
	struct drm_i915_private *dev_priv = dev->dev_private;
9248
	uint32_t tmp;
9249
 
5354 serge 9250
	if (!intel_display_power_is_enabled(dev_priv,
6084 serge 9251
					    POWER_DOMAIN_PIPE(crtc->pipe)))
5060 serge 9252
		return false;
9253
 
4104 Serge 9254
	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9255
	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9256
 
3746 Serge 9257
	tmp = I915_READ(PIPECONF(crtc->pipe));
9258
	if (!(tmp & PIPECONF_ENABLE))
9259
		return false;
9260
 
4280 Serge 9261
	switch (tmp & PIPECONF_BPC_MASK) {
9262
	case PIPECONF_6BPC:
9263
		pipe_config->pipe_bpp = 18;
9264
		break;
9265
	case PIPECONF_8BPC:
9266
		pipe_config->pipe_bpp = 24;
9267
		break;
9268
	case PIPECONF_10BPC:
9269
		pipe_config->pipe_bpp = 30;
9270
		break;
9271
	case PIPECONF_12BPC:
9272
		pipe_config->pipe_bpp = 36;
9273
		break;
9274
	default:
9275
		break;
9276
	}
9277
 
5060 serge 9278
	if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9279
		pipe_config->limited_color_range = true;
9280
 
4104 Serge 9281
	if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9282
		struct intel_shared_dpll *pll;
9283
 
3746 Serge 9284
		pipe_config->has_pch_encoder = true;
9285
 
4104 Serge 9286
		tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9287
		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9288
					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
9289
 
9290
		ironlake_get_fdi_m_n_config(crtc, pipe_config);
9291
 
9292
		if (HAS_PCH_IBX(dev_priv->dev)) {
9293
			pipe_config->shared_dpll =
9294
				(enum intel_dpll_id) crtc->pipe;
9295
		} else {
9296
			tmp = I915_READ(PCH_DPLL_SEL);
9297
			if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9298
				pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9299
			else
9300
				pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9301
		}
9302
 
9303
		pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9304
 
9305
		WARN_ON(!pll->get_hw_state(dev_priv, pll,
9306
					   &pipe_config->dpll_hw_state));
9307
 
9308
		tmp = pipe_config->dpll_hw_state.dpll;
9309
		pipe_config->pixel_multiplier =
9310
			((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9311
			 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
4560 Serge 9312
 
9313
		ironlake_pch_clock_get(crtc, pipe_config);
4104 Serge 9314
	} else {
9315
		pipe_config->pixel_multiplier = 1;
9316
	}
9317
 
9318
	intel_get_pipe_timings(crtc, pipe_config);
9319
 
9320
	ironlake_get_pfit_config(crtc, pipe_config);
9321
 
3746 Serge 9322
	return true;
9323
}
9324
 
4104 Serge 9325
static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9326
{
9327
	struct drm_device *dev = dev_priv->dev;
9328
	struct intel_crtc *crtc;
9329
 
5060 serge 9330
	for_each_intel_crtc(dev, crtc)
6084 serge 9331
		I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
4104 Serge 9332
		     pipe_name(crtc->pipe));
9333
 
6084 serge 9334
	I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9335
	I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9336
	I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9337
	I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9338
	I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9339
	I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
4104 Serge 9340
	     "CPU PWM1 enabled\n");
5060 serge 9341
	if (IS_HASWELL(dev))
6084 serge 9342
		I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9343
		     "CPU PWM2 enabled\n");
9344
	I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
4104 Serge 9345
	     "PCH PWM1 enabled\n");
6084 serge 9346
	I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
4104 Serge 9347
	     "Utility pin enabled\n");
6084 serge 9348
	I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
4104 Serge 9349
 
5060 serge 9350
	/*
9351
	 * In theory we can still leave IRQs enabled, as long as only the HPD
9352
	 * interrupts remain enabled. We used to check for that, but since it's
9353
	 * gen-specific and since we only disable LCPLL after we fully disable
9354
	 * the interrupts, the check below should be enough.
9355
	 */
6084 serge 9356
	I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
4104 Serge 9357
}
9358
 
5060 serge 9359
static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9360
{
9361
	struct drm_device *dev = dev_priv->dev;
9362
 
9363
	if (IS_HASWELL(dev))
9364
		return I915_READ(D_COMP_HSW);
9365
	else
9366
		return I915_READ(D_COMP_BDW);
9367
}
9368
 
9369
static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9370
{
9371
	struct drm_device *dev = dev_priv->dev;
9372
 
9373
	if (IS_HASWELL(dev)) {
9374
		mutex_lock(&dev_priv->rps.hw_lock);
9375
		if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9376
					    val))
9377
			DRM_ERROR("Failed to write to D_COMP\n");
9378
		mutex_unlock(&dev_priv->rps.hw_lock);
9379
	} else {
9380
		I915_WRITE(D_COMP_BDW, val);
9381
		POSTING_READ(D_COMP_BDW);
9382
	}
9383
}
9384
 
4104 Serge 9385
/*
9386
 * This function implements pieces of two sequences from BSpec:
9387
 * - Sequence for display software to disable LCPLL
9388
 * - Sequence for display software to allow package C8+
9389
 * The steps implemented here are just the steps that actually touch the LCPLL
9390
 * register. Callers should take care of disabling all the display engine
9391
 * functions, doing the mode unset, fixing interrupts, etc.
9392
 */
4560 Serge 9393
static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6084 serge 9394
			      bool switch_to_fclk, bool allow_power_down)
4104 Serge 9395
{
9396
	uint32_t val;
9397
 
9398
	assert_can_disable_lcpll(dev_priv);
9399
 
9400
	val = I915_READ(LCPLL_CTL);
9401
 
9402
	if (switch_to_fclk) {
9403
		val |= LCPLL_CD_SOURCE_FCLK;
9404
		I915_WRITE(LCPLL_CTL, val);
9405
 
9406
		if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9407
				       LCPLL_CD_SOURCE_FCLK_DONE, 1))
9408
			DRM_ERROR("Switching to FCLK failed\n");
9409
 
9410
		val = I915_READ(LCPLL_CTL);
9411
	}
9412
 
9413
	val |= LCPLL_PLL_DISABLE;
9414
	I915_WRITE(LCPLL_CTL, val);
9415
	POSTING_READ(LCPLL_CTL);
9416
 
9417
	if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9418
		DRM_ERROR("LCPLL still locked\n");
9419
 
5060 serge 9420
	val = hsw_read_dcomp(dev_priv);
4104 Serge 9421
	val |= D_COMP_COMP_DISABLE;
5060 serge 9422
	hsw_write_dcomp(dev_priv, val);
9423
	ndelay(100);
4104 Serge 9424
 
5060 serge 9425
	if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9426
		     1))
4104 Serge 9427
		DRM_ERROR("D_COMP RCOMP still in progress\n");
9428
 
9429
	if (allow_power_down) {
9430
		val = I915_READ(LCPLL_CTL);
9431
		val |= LCPLL_POWER_DOWN_ALLOW;
9432
		I915_WRITE(LCPLL_CTL, val);
9433
		POSTING_READ(LCPLL_CTL);
9434
	}
9435
}
9436
 
9437
/*
9438
 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9439
 * source.
9440
 */
4560 Serge 9441
static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
4104 Serge 9442
{
9443
	uint32_t val;
9444
 
9445
	val = I915_READ(LCPLL_CTL);
9446
 
9447
	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9448
		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9449
		return;
9450
 
5060 serge 9451
	/*
9452
	 * Make sure we're not on PC8 state before disabling PC8, otherwise
9453
	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9454
	 */
6084 serge 9455
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4104 Serge 9456
 
9457
	if (val & LCPLL_POWER_DOWN_ALLOW) {
9458
		val &= ~LCPLL_POWER_DOWN_ALLOW;
9459
		I915_WRITE(LCPLL_CTL, val);
9460
		POSTING_READ(LCPLL_CTL);
9461
	}
9462
 
5060 serge 9463
	val = hsw_read_dcomp(dev_priv);
4104 Serge 9464
	val |= D_COMP_COMP_FORCE;
9465
	val &= ~D_COMP_COMP_DISABLE;
5060 serge 9466
	hsw_write_dcomp(dev_priv, val);
4104 Serge 9467
 
9468
	val = I915_READ(LCPLL_CTL);
9469
	val &= ~LCPLL_PLL_DISABLE;
9470
	I915_WRITE(LCPLL_CTL, val);
9471
 
9472
	if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9473
		DRM_ERROR("LCPLL not locked yet\n");
9474
 
9475
	if (val & LCPLL_CD_SOURCE_FCLK) {
9476
		val = I915_READ(LCPLL_CTL);
9477
		val &= ~LCPLL_CD_SOURCE_FCLK;
9478
		I915_WRITE(LCPLL_CTL, val);
9479
 
9480
		if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9481
					LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9482
			DRM_ERROR("Switching back to LCPLL failed\n");
9483
	}
9484
 
6084 serge 9485
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9486
	intel_update_cdclk(dev_priv->dev);
4104 Serge 9487
}
9488
 
5060 serge 9489
/*
9490
 * Package states C8 and deeper are really deep PC states that can only be
9491
 * reached when all the devices on the system allow it, so even if the graphics
9492
 * device allows PC8+, it doesn't mean the system will actually get to these
9493
 * states. Our driver only allows PC8+ when going into runtime PM.
9494
 *
9495
 * The requirements for PC8+ are that all the outputs are disabled, the power
9496
 * well is disabled and most interrupts are disabled, and these are also
9497
 * requirements for runtime PM. When these conditions are met, we manually do
9498
 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9499
 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9500
 * hang the machine.
9501
 *
9502
 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9503
 * the state of some registers, so when we come back from PC8+ we need to
9504
 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9505
 * need to take care of the registers kept by RC6. Notice that this happens even
9506
 * if we don't put the device in PCI D3 state (which is what currently happens
9507
 * because of the runtime PM support).
9508
 *
9509
 * For more, read "Display Sequences for Package C8" on the hardware
9510
 * documentation.
9511
 */
9512
void hsw_enable_pc8(struct drm_i915_private *dev_priv)
4104 Serge 9513
{
9514
	struct drm_device *dev = dev_priv->dev;
9515
	uint32_t val;
9516
 
9517
	DRM_DEBUG_KMS("Enabling package C8+\n");
9518
 
6084 serge 9519
	if (HAS_PCH_LPT_LP(dev)) {
4104 Serge 9520
		val = I915_READ(SOUTH_DSPCLK_GATE_D);
9521
		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9522
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9523
	}
9524
 
9525
	lpt_disable_clkout_dp(dev);
9526
	hsw_disable_lcpll(dev_priv, true, true);
9527
}
9528
 
5060 serge 9529
void hsw_disable_pc8(struct drm_i915_private *dev_priv)
4104 Serge 9530
{
9531
	struct drm_device *dev = dev_priv->dev;
9532
	uint32_t val;
9533
 
9534
	DRM_DEBUG_KMS("Disabling package C8+\n");
9535
 
9536
	hsw_restore_lcpll(dev_priv);
9537
	lpt_init_pch_refclk(dev);
9538
 
6084 serge 9539
	if (HAS_PCH_LPT_LP(dev)) {
4104 Serge 9540
		val = I915_READ(SOUTH_DSPCLK_GATE_D);
9541
		val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9542
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9543
	}
9544
 
9545
	intel_prepare_ddi(dev);
9546
}
9547
 
6084 serge 9548
static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
4104 Serge 9549
{
6084 serge 9550
	struct drm_device *dev = old_state->dev;
9551
	unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9552
 
9553
	broxton_set_cdclk(dev, req_cdclk);
9554
}
9555
 
9556
/* compute the max rate for new configuration */
9557
static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9558
{
9559
	struct intel_crtc *intel_crtc;
9560
	struct intel_crtc_state *crtc_state;
9561
	int max_pixel_rate = 0;
9562
 
9563
	for_each_intel_crtc(state->dev, intel_crtc) {
9564
		int pixel_rate;
9565
 
9566
		crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9567
		if (IS_ERR(crtc_state))
9568
			return PTR_ERR(crtc_state);
9569
 
9570
		if (!crtc_state->base.enable)
9571
			continue;
9572
 
9573
		pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9574
 
9575
		/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9576
		if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9577
			pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9578
 
9579
		max_pixel_rate = max(max_pixel_rate, pixel_rate);
9580
	}
9581
 
9582
	return max_pixel_rate;
9583
}
9584
 
9585
static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9586
{
9587
	struct drm_i915_private *dev_priv = dev->dev_private;
9588
	uint32_t val, data;
9589
	int ret;
9590
 
9591
	if (WARN((I915_READ(LCPLL_CTL) &
9592
		  (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9593
		   LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9594
		   LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9595
		   LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9596
		 "trying to change cdclk frequency with cdclk not enabled\n"))
9597
		return;
9598
 
9599
	mutex_lock(&dev_priv->rps.hw_lock);
9600
	ret = sandybridge_pcode_write(dev_priv,
9601
				      BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9602
	mutex_unlock(&dev_priv->rps.hw_lock);
9603
	if (ret) {
9604
		DRM_ERROR("failed to inform pcode about cdclk change\n");
9605
		return;
9606
	}
9607
 
9608
	val = I915_READ(LCPLL_CTL);
9609
	val |= LCPLL_CD_SOURCE_FCLK;
9610
	I915_WRITE(LCPLL_CTL, val);
9611
 
9612
	if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9613
			       LCPLL_CD_SOURCE_FCLK_DONE, 1))
9614
		DRM_ERROR("Switching to FCLK failed\n");
9615
 
9616
	val = I915_READ(LCPLL_CTL);
9617
	val &= ~LCPLL_CLK_FREQ_MASK;
9618
 
9619
	switch (cdclk) {
9620
	case 450000:
9621
		val |= LCPLL_CLK_FREQ_450;
9622
		data = 0;
9623
		break;
9624
	case 540000:
9625
		val |= LCPLL_CLK_FREQ_54O_BDW;
9626
		data = 1;
9627
		break;
9628
	case 337500:
9629
		val |= LCPLL_CLK_FREQ_337_5_BDW;
9630
		data = 2;
9631
		break;
9632
	case 675000:
9633
		val |= LCPLL_CLK_FREQ_675_BDW;
9634
		data = 3;
9635
		break;
9636
	default:
9637
		WARN(1, "invalid cdclk frequency\n");
9638
		return;
9639
	}
9640
 
9641
	I915_WRITE(LCPLL_CTL, val);
9642
 
9643
	val = I915_READ(LCPLL_CTL);
9644
	val &= ~LCPLL_CD_SOURCE_FCLK;
9645
	I915_WRITE(LCPLL_CTL, val);
9646
 
9647
	if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9648
				LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9649
		DRM_ERROR("Switching back to LCPLL failed\n");
9650
 
9651
	mutex_lock(&dev_priv->rps.hw_lock);
9652
	sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9653
	mutex_unlock(&dev_priv->rps.hw_lock);
9654
 
9655
	intel_update_cdclk(dev);
9656
 
9657
	WARN(cdclk != dev_priv->cdclk_freq,
9658
	     "cdclk requested %d kHz but got %d kHz\n",
9659
	     cdclk, dev_priv->cdclk_freq);
9660
}
9661
 
9662
static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9663
{
9664
	struct drm_i915_private *dev_priv = to_i915(state->dev);
9665
	int max_pixclk = ilk_max_pixel_rate(state);
9666
	int cdclk;
9667
 
9668
	/*
9669
	 * FIXME should also account for plane ratio
9670
	 * once 64bpp pixel formats are supported.
9671
	 */
9672
	if (max_pixclk > 540000)
9673
		cdclk = 675000;
9674
	else if (max_pixclk > 450000)
9675
		cdclk = 540000;
9676
	else if (max_pixclk > 337500)
9677
		cdclk = 450000;
9678
	else
9679
		cdclk = 337500;
9680
 
9681
	/*
9682
	 * FIXME move the cdclk caclulation to
9683
	 * compute_config() so we can fail gracegully.
9684
	 */
9685
	if (cdclk > dev_priv->max_cdclk_freq) {
9686
		DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9687
			  cdclk, dev_priv->max_cdclk_freq);
9688
		cdclk = dev_priv->max_cdclk_freq;
9689
	}
9690
 
9691
	to_intel_atomic_state(state)->cdclk = cdclk;
9692
 
9693
	return 0;
9694
}
9695
 
9696
static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9697
{
9698
	struct drm_device *dev = old_state->dev;
9699
	unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9700
 
9701
	broadwell_set_cdclk(dev, req_cdclk);
9702
}
9703
 
9704
static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9705
				      struct intel_crtc_state *crtc_state)
9706
{
9707
	if (!intel_ddi_pll_select(crtc, crtc_state))
5354 serge 9708
		return -EINVAL;
9709
 
9710
	crtc->lowfreq_avail = false;
9711
 
9712
	return 0;
4104 Serge 9713
}
9714
 
6084 serge 9715
static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9716
				enum port port,
9717
				struct intel_crtc_state *pipe_config)
9718
{
9719
	switch (port) {
9720
	case PORT_A:
9721
		pipe_config->ddi_pll_sel = SKL_DPLL0;
9722
		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9723
		break;
9724
	case PORT_B:
9725
		pipe_config->ddi_pll_sel = SKL_DPLL1;
9726
		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9727
		break;
9728
	case PORT_C:
9729
		pipe_config->ddi_pll_sel = SKL_DPLL2;
9730
		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9731
		break;
9732
	default:
9733
		DRM_ERROR("Incorrect port type\n");
9734
	}
9735
}
9736
 
5354 serge 9737
static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9738
				enum port port,
6084 serge 9739
				struct intel_crtc_state *pipe_config)
4104 Serge 9740
{
6084 serge 9741
	u32 temp, dpll_ctl1;
5354 serge 9742
 
9743
	temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9744
	pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9745
 
9746
	switch (pipe_config->ddi_pll_sel) {
6084 serge 9747
	case SKL_DPLL0:
9748
		/*
9749
		 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9750
		 * of the shared DPLL framework and thus needs to be read out
9751
		 * separately
9752
		 */
9753
		dpll_ctl1 = I915_READ(DPLL_CTRL1);
9754
		pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9755
		break;
5354 serge 9756
	case SKL_DPLL1:
9757
		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9758
		break;
9759
	case SKL_DPLL2:
9760
		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9761
		break;
9762
	case SKL_DPLL3:
9763
		pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9764
		break;
9765
	}
4104 Serge 9766
}
9767
 
5354 serge 9768
static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9769
				enum port port,
6084 serge 9770
				struct intel_crtc_state *pipe_config)
4104 Serge 9771
{
5354 serge 9772
	pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
4104 Serge 9773
 
5354 serge 9774
	switch (pipe_config->ddi_pll_sel) {
9775
	case PORT_CLK_SEL_WRPLL1:
9776
		pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9777
		break;
9778
	case PORT_CLK_SEL_WRPLL2:
9779
		pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9780
		break;
6084 serge 9781
	case PORT_CLK_SEL_SPLL:
9782
		pipe_config->shared_dpll = DPLL_ID_SPLL;
5354 serge 9783
	}
4104 Serge 9784
}
9785
 
5060 serge 9786
static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
6084 serge 9787
				       struct intel_crtc_state *pipe_config)
4104 Serge 9788
{
5060 serge 9789
	struct drm_device *dev = crtc->base.dev;
4104 Serge 9790
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 9791
	struct intel_shared_dpll *pll;
9792
	enum port port;
9793
	uint32_t tmp;
4104 Serge 9794
 
5060 serge 9795
	tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
4560 Serge 9796
 
5060 serge 9797
	port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
4104 Serge 9798
 
5354 serge 9799
	if (IS_SKYLAKE(dev))
9800
		skylake_get_ddi_pll(dev_priv, port, pipe_config);
6084 serge 9801
	else if (IS_BROXTON(dev))
9802
		bxt_get_ddi_pll(dev_priv, port, pipe_config);
5354 serge 9803
	else
9804
		haswell_get_ddi_pll(dev_priv, port, pipe_config);
4104 Serge 9805
 
5060 serge 9806
	if (pipe_config->shared_dpll >= 0) {
9807
		pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
4560 Serge 9808
 
5060 serge 9809
		WARN_ON(!pll->get_hw_state(dev_priv, pll,
9810
					   &pipe_config->dpll_hw_state));
4104 Serge 9811
	}
9812
 
4560 Serge 9813
	/*
5060 serge 9814
	 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9815
	 * DDI E. So just check whether this pipe is wired to DDI E and whether
9816
	 * the PCH transcoder is on.
4560 Serge 9817
	 */
5354 serge 9818
	if (INTEL_INFO(dev)->gen < 9 &&
9819
	    (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
5060 serge 9820
		pipe_config->has_pch_encoder = true;
4560 Serge 9821
 
5060 serge 9822
		tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9823
		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9824
					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
3480 Serge 9825
 
5060 serge 9826
		ironlake_get_fdi_m_n_config(crtc, pipe_config);
3480 Serge 9827
	}
4560 Serge 9828
}
9829
 
3746 Serge 9830
static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6084 serge 9831
				    struct intel_crtc_state *pipe_config)
3746 Serge 9832
{
9833
	struct drm_device *dev = crtc->base.dev;
9834
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 9835
	enum intel_display_power_domain pfit_domain;
3746 Serge 9836
	uint32_t tmp;
9837
 
5354 serge 9838
	if (!intel_display_power_is_enabled(dev_priv,
5060 serge 9839
					 POWER_DOMAIN_PIPE(crtc->pipe)))
9840
		return false;
9841
 
4104 Serge 9842
	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9843
	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9844
 
9845
	tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9846
	if (tmp & TRANS_DDI_FUNC_ENABLE) {
9847
		enum pipe trans_edp_pipe;
9848
		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9849
		default:
9850
			WARN(1, "unknown pipe linked to edp transcoder\n");
9851
		case TRANS_DDI_EDP_INPUT_A_ONOFF:
9852
		case TRANS_DDI_EDP_INPUT_A_ON:
9853
			trans_edp_pipe = PIPE_A;
9854
			break;
9855
		case TRANS_DDI_EDP_INPUT_B_ONOFF:
9856
			trans_edp_pipe = PIPE_B;
9857
			break;
9858
		case TRANS_DDI_EDP_INPUT_C_ONOFF:
9859
			trans_edp_pipe = PIPE_C;
9860
			break;
9861
		}
9862
 
9863
		if (trans_edp_pipe == crtc->pipe)
9864
			pipe_config->cpu_transcoder = TRANSCODER_EDP;
9865
	}
9866
 
5354 serge 9867
	if (!intel_display_power_is_enabled(dev_priv,
4104 Serge 9868
			POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9869
		return false;
9870
 
9871
	tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
3746 Serge 9872
	if (!(tmp & PIPECONF_ENABLE))
9873
		return false;
9874
 
5060 serge 9875
	haswell_get_ddi_port_state(crtc, pipe_config);
3746 Serge 9876
 
4104 Serge 9877
	intel_get_pipe_timings(crtc, pipe_config);
9878
 
6084 serge 9879
	if (INTEL_INFO(dev)->gen >= 9) {
9880
		skl_init_scalers(dev, crtc, pipe_config);
9881
	}
9882
 
4104 Serge 9883
	pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6084 serge 9884
 
9885
	if (INTEL_INFO(dev)->gen >= 9) {
9886
		pipe_config->scaler_state.scaler_id = -1;
9887
		pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9888
	}
9889
 
5354 serge 9890
	if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
6084 serge 9891
		if (INTEL_INFO(dev)->gen >= 9)
5354 serge 9892
			skylake_get_pfit_config(crtc, pipe_config);
9893
		else
6084 serge 9894
			ironlake_get_pfit_config(crtc, pipe_config);
5354 serge 9895
	}
4104 Serge 9896
 
4560 Serge 9897
	if (IS_HASWELL(dev))
6084 serge 9898
		pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9899
			(I915_READ(IPS_CTL) & IPS_ENABLE);
4104 Serge 9900
 
5354 serge 9901
	if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9902
		pipe_config->pixel_multiplier =
9903
			I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9904
	} else {
6084 serge 9905
		pipe_config->pixel_multiplier = 1;
4560 Serge 9906
	}
9907
 
2342 Serge 9908
	return true;
9909
}
9910
 
6084 serge 9911
static void i845_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
2342 Serge 9912
{
5354 serge 9913
	struct drm_device *dev = crtc->dev;
9914
	struct drm_i915_private *dev_priv = dev->dev_private;
9915
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9916
	uint32_t cntl = 0, size = 0;
2342 Serge 9917
 
6084 serge 9918
	if (on) {
9919
		unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9920
		unsigned int height = intel_crtc->base.cursor->state->crtc_h;
5354 serge 9921
		unsigned int stride = roundup_pow_of_two(width) * 4;
2342 Serge 9922
 
5354 serge 9923
		switch (stride) {
9924
		default:
9925
			WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9926
				  width, stride);
9927
			stride = 256;
9928
			/* fallthrough */
9929
		case 256:
9930
		case 512:
9931
		case 1024:
9932
		case 2048:
9933
			break;
6084 serge 9934
		}
3031 serge 9935
 
5354 serge 9936
		cntl |= CURSOR_ENABLE |
9937
			CURSOR_GAMMA_ENABLE |
9938
			CURSOR_FORMAT_ARGB |
9939
			CURSOR_STRIDE(stride);
3031 serge 9940
 
5354 serge 9941
		size = (height << 12) | width;
2342 Serge 9942
	}
9943
 
5354 serge 9944
	if (intel_crtc->cursor_cntl != 0 &&
9945
	    (intel_crtc->cursor_base != base ||
9946
	     intel_crtc->cursor_size != size ||
9947
	     intel_crtc->cursor_cntl != cntl)) {
9948
		/* On these chipsets we can only modify the base/size/stride
9949
		 * whilst the cursor is disabled.
3031 serge 9950
		 */
6084 serge 9951
		I915_WRITE(CURCNTR(PIPE_A), 0);
9952
		POSTING_READ(CURCNTR(PIPE_A));
9953
		intel_crtc->cursor_cntl = 0;
9954
	}
5060 serge 9955
 
5354 serge 9956
	if (intel_crtc->cursor_base != base) {
6084 serge 9957
		I915_WRITE(CURBASE(PIPE_A), base);
5354 serge 9958
		intel_crtc->cursor_base = base;
5060 serge 9959
	}
2327 Serge 9960
 
5354 serge 9961
	if (intel_crtc->cursor_size != size) {
9962
		I915_WRITE(CURSIZE, size);
9963
		intel_crtc->cursor_size = size;
9964
	}
9965
 
5060 serge 9966
	if (intel_crtc->cursor_cntl != cntl) {
6084 serge 9967
		I915_WRITE(CURCNTR(PIPE_A), cntl);
9968
		POSTING_READ(CURCNTR(PIPE_A));
5060 serge 9969
		intel_crtc->cursor_cntl = cntl;
9970
	}
3031 serge 9971
}
2327 Serge 9972
 
6084 serge 9973
static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
3031 serge 9974
{
9975
	struct drm_device *dev = crtc->dev;
9976
	struct drm_i915_private *dev_priv = dev->dev_private;
9977
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9978
	int pipe = intel_crtc->pipe;
6084 serge 9979
	uint32_t cntl = 0;
2327 Serge 9980
 
6084 serge 9981
	if (on) {
5060 serge 9982
		cntl = MCURSOR_GAMMA_ENABLE;
6084 serge 9983
		switch (intel_crtc->base.cursor->state->crtc_w) {
5060 serge 9984
			case 64:
9985
				cntl |= CURSOR_MODE_64_ARGB_AX;
9986
				break;
9987
			case 128:
9988
				cntl |= CURSOR_MODE_128_ARGB_AX;
9989
				break;
9990
			case 256:
9991
				cntl |= CURSOR_MODE_256_ARGB_AX;
9992
				break;
9993
			default:
6084 serge 9994
				MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
5060 serge 9995
				return;
6084 serge 9996
		}
9997
		cntl |= pipe << 28; /* Connect to correct pipe */
2327 Serge 9998
 
6084 serge 9999
		if (HAS_DDI(dev))
3480 Serge 10000
			cntl |= CURSOR_PIPE_CSC_ENABLE;
5354 serge 10001
	}
5060 serge 10002
 
6084 serge 10003
	if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
5354 serge 10004
		cntl |= CURSOR_ROTATE_180;
10005
 
5060 serge 10006
	if (intel_crtc->cursor_cntl != cntl) {
10007
		I915_WRITE(CURCNTR(pipe), cntl);
10008
		POSTING_READ(CURCNTR(pipe));
10009
		intel_crtc->cursor_cntl = cntl;
6084 serge 10010
	}
2327 Serge 10011
 
3031 serge 10012
	/* and commit changes on next vblank */
5060 serge 10013
	I915_WRITE(CURBASE(pipe), base);
10014
	POSTING_READ(CURBASE(pipe));
5354 serge 10015
 
10016
	intel_crtc->cursor_base = base;
3031 serge 10017
}
2327 Serge 10018
 
3031 serge 10019
/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5060 serge 10020
void intel_crtc_update_cursor(struct drm_crtc *crtc,
3031 serge 10021
				     bool on)
10022
{
10023
	struct drm_device *dev = crtc->dev;
10024
	struct drm_i915_private *dev_priv = dev->dev_private;
10025
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10026
	int pipe = intel_crtc->pipe;
6084 serge 10027
	struct drm_plane_state *cursor_state = crtc->cursor->state;
10028
	int x = cursor_state->crtc_x;
10029
	int y = cursor_state->crtc_y;
4560 Serge 10030
	u32 base = 0, pos = 0;
2327 Serge 10031
 
6084 serge 10032
	base = intel_crtc->cursor_addr;
2327 Serge 10033
 
6084 serge 10034
	if (x >= intel_crtc->config->pipe_src_w)
10035
		on = false;
2327 Serge 10036
 
6084 serge 10037
	if (y >= intel_crtc->config->pipe_src_h)
10038
		on = false;
2327 Serge 10039
 
3031 serge 10040
	if (x < 0) {
6084 serge 10041
		if (x + cursor_state->crtc_w <= 0)
10042
			on = false;
2327 Serge 10043
 
3031 serge 10044
		pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10045
		x = -x;
10046
	}
10047
	pos |= x << CURSOR_X_SHIFT;
2327 Serge 10048
 
3031 serge 10049
	if (y < 0) {
6084 serge 10050
		if (y + cursor_state->crtc_h <= 0)
10051
			on = false;
2327 Serge 10052
 
3031 serge 10053
		pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10054
		y = -y;
10055
	}
10056
	pos |= y << CURSOR_Y_SHIFT;
2327 Serge 10057
 
5060 serge 10058
	I915_WRITE(CURPOS(pipe), pos);
10059
 
5354 serge 10060
	/* ILK+ do this automagically */
10061
	if (HAS_GMCH_DISPLAY(dev) &&
6084 serge 10062
	    crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10063
		base += (cursor_state->crtc_h *
10064
			 cursor_state->crtc_w - 1) * 4;
5354 serge 10065
	}
10066
 
10067
	if (IS_845G(dev) || IS_I865G(dev))
6084 serge 10068
		i845_update_cursor(crtc, base, on);
5060 serge 10069
	else
6084 serge 10070
		i9xx_update_cursor(crtc, base, on);
3031 serge 10071
}
2327 Serge 10072
 
5354 serge 10073
static bool cursor_size_ok(struct drm_device *dev,
10074
			   uint32_t width, uint32_t height)
10075
{
10076
	if (width == 0 || height == 0)
10077
		return false;
10078
 
10079
	/*
10080
	 * 845g/865g are special in that they are only limited by
10081
	 * the width of their cursors, the height is arbitrary up to
10082
	 * the precision of the register. Everything else requires
10083
	 * square cursors, limited to a few power-of-two sizes.
6084 serge 10084
	 */
5354 serge 10085
	if (IS_845G(dev) || IS_I865G(dev)) {
10086
		if ((width & 63) != 0)
10087
			return false;
10088
 
10089
		if (width > (IS_845G(dev) ? 64 : 512))
10090
			return false;
10091
 
10092
		if (height > 1023)
10093
			return false;
10094
	} else {
10095
		switch (width | height) {
10096
		case 256:
10097
		case 128:
10098
			if (IS_GEN2(dev))
10099
				return false;
10100
		case 64:
10101
			break;
10102
		default:
10103
			return false;
10104
		}
10105
	}
10106
 
10107
	return true;
10108
}
10109
 
2330 Serge 10110
static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10111
				 u16 *blue, uint32_t start, uint32_t size)
10112
{
10113
	int end = (start + size > 256) ? 256 : start + size, i;
10114
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 Serge 10115
 
2330 Serge 10116
	for (i = start; i < end; i++) {
10117
		intel_crtc->lut_r[i] = red[i] >> 8;
10118
		intel_crtc->lut_g[i] = green[i] >> 8;
10119
		intel_crtc->lut_b[i] = blue[i] >> 8;
10120
	}
2327 Serge 10121
 
2330 Serge 10122
	intel_crtc_load_lut(crtc);
10123
}
2327 Serge 10124
 
2330 Serge 10125
/* VESA 640x480x72Hz mode to set on the pipe */
10126
static struct drm_display_mode load_detect_mode = {
10127
	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10128
		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10129
};
2327 Serge 10130
 
4560 Serge 10131
struct drm_framebuffer *
5060 serge 10132
__intel_framebuffer_create(struct drm_device *dev,
6084 serge 10133
			   struct drm_mode_fb_cmd2 *mode_cmd,
10134
			   struct drm_i915_gem_object *obj)
3031 serge 10135
{
10136
	struct intel_framebuffer *intel_fb;
10137
	int ret;
2327 Serge 10138
 
3031 serge 10139
	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10140
	if (!intel_fb) {
5354 serge 10141
		drm_gem_object_unreference(&obj->base);
3031 serge 10142
		return ERR_PTR(-ENOMEM);
10143
	}
2327 Serge 10144
 
3031 serge 10145
	ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
4560 Serge 10146
	if (ret)
10147
		goto err;
10148
 
10149
	return &intel_fb->base;
10150
err:
5354 serge 10151
	drm_gem_object_unreference(&obj->base);
6084 serge 10152
	kfree(intel_fb);
4560 Serge 10153
 
6084 serge 10154
	return ERR_PTR(ret);
3031 serge 10155
}
2327 Serge 10156
 
5060 serge 10157
static struct drm_framebuffer *
10158
intel_framebuffer_create(struct drm_device *dev,
10159
			 struct drm_mode_fb_cmd2 *mode_cmd,
10160
			 struct drm_i915_gem_object *obj)
10161
{
10162
	struct drm_framebuffer *fb;
10163
	int ret;
10164
 
10165
	ret = i915_mutex_lock_interruptible(dev);
10166
	if (ret)
10167
		return ERR_PTR(ret);
10168
	fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10169
	mutex_unlock(&dev->struct_mutex);
10170
 
10171
	return fb;
10172
}
10173
 
2330 Serge 10174
static u32
10175
intel_framebuffer_pitch_for_width(int width, int bpp)
10176
{
10177
	u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10178
	return ALIGN(pitch, 64);
10179
}
2327 Serge 10180
 
2330 Serge 10181
static u32
10182
intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10183
{
10184
	u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5060 serge 10185
	return PAGE_ALIGN(pitch * mode->vdisplay);
2330 Serge 10186
}
2327 Serge 10187
 
2330 Serge 10188
static struct drm_framebuffer *
10189
intel_framebuffer_create_for_mode(struct drm_device *dev,
10190
				  struct drm_display_mode *mode,
10191
				  int depth, int bpp)
10192
{
10193
	struct drm_i915_gem_object *obj;
3243 Serge 10194
	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2327 Serge 10195
 
5060 serge 10196
	obj = i915_gem_alloc_object(dev,
10197
				    intel_framebuffer_size_for_mode(mode, bpp));
10198
	if (obj == NULL)
10199
		return ERR_PTR(-ENOMEM);
10200
 
10201
	mode_cmd.width = mode->hdisplay;
10202
	mode_cmd.height = mode->vdisplay;
10203
	mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10204
								bpp);
10205
	mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10206
 
10207
	return intel_framebuffer_create(dev, &mode_cmd, obj);
2330 Serge 10208
}
2327 Serge 10209
 
2330 Serge 10210
static struct drm_framebuffer *
10211
mode_fits_in_fbdev(struct drm_device *dev,
10212
		   struct drm_display_mode *mode)
10213
{
6084 serge 10214
#ifdef CONFIG_DRM_FBDEV_EMULATION
2330 Serge 10215
	struct drm_i915_private *dev_priv = dev->dev_private;
10216
	struct drm_i915_gem_object *obj;
10217
	struct drm_framebuffer *fb;
2327 Serge 10218
 
5060 serge 10219
	if (!dev_priv->fbdev)
4280 Serge 10220
		return NULL;
2327 Serge 10221
 
5060 serge 10222
	if (!dev_priv->fbdev->fb)
2330 Serge 10223
		return NULL;
2327 Serge 10224
 
5060 serge 10225
	obj = dev_priv->fbdev->fb->obj;
10226
	BUG_ON(!obj);
10227
 
10228
	fb = &dev_priv->fbdev->fb->base;
3031 serge 10229
	if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10230
							       fb->bits_per_pixel))
4280 Serge 10231
		return NULL;
2327 Serge 10232
 
3031 serge 10233
	if (obj->base.size < mode->vdisplay * fb->pitches[0])
10234
		return NULL;
10235
 
4280 Serge 10236
	return fb;
4560 Serge 10237
#else
10238
	return NULL;
10239
#endif
2330 Serge 10240
}
2327 Serge 10241
 
6084 serge 10242
static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10243
					   struct drm_crtc *crtc,
10244
					   struct drm_display_mode *mode,
10245
					   struct drm_framebuffer *fb,
10246
					   int x, int y)
10247
{
10248
	struct drm_plane_state *plane_state;
10249
	int hdisplay, vdisplay;
10250
	int ret;
10251
 
10252
	plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10253
	if (IS_ERR(plane_state))
10254
		return PTR_ERR(plane_state);
10255
 
10256
	if (mode)
10257
		drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10258
	else
10259
		hdisplay = vdisplay = 0;
10260
 
10261
	ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10262
	if (ret)
10263
		return ret;
10264
	drm_atomic_set_fb_for_plane(plane_state, fb);
10265
	plane_state->crtc_x = 0;
10266
	plane_state->crtc_y = 0;
10267
	plane_state->crtc_w = hdisplay;
10268
	plane_state->crtc_h = vdisplay;
10269
	plane_state->src_x = x << 16;
10270
	plane_state->src_y = y << 16;
10271
	plane_state->src_w = hdisplay << 16;
10272
	plane_state->src_h = vdisplay << 16;
10273
 
10274
	return 0;
10275
}
10276
 
3031 serge 10277
bool intel_get_load_detect_pipe(struct drm_connector *connector,
2330 Serge 10278
				struct drm_display_mode *mode,
5060 serge 10279
				struct intel_load_detect_pipe *old,
10280
				struct drm_modeset_acquire_ctx *ctx)
2330 Serge 10281
{
10282
	struct intel_crtc *intel_crtc;
3031 serge 10283
	struct intel_encoder *intel_encoder =
10284
		intel_attached_encoder(connector);
2330 Serge 10285
	struct drm_crtc *possible_crtc;
10286
	struct drm_encoder *encoder = &intel_encoder->base;
10287
	struct drm_crtc *crtc = NULL;
10288
	struct drm_device *dev = encoder->dev;
3031 serge 10289
	struct drm_framebuffer *fb;
5060 serge 10290
	struct drm_mode_config *config = &dev->mode_config;
6084 serge 10291
	struct drm_atomic_state *state = NULL;
10292
	struct drm_connector_state *connector_state;
10293
	struct intel_crtc_state *crtc_state;
5060 serge 10294
	int ret, i = -1;
2327 Serge 10295
 
2330 Serge 10296
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5060 serge 10297
		      connector->base.id, connector->name,
10298
		      encoder->base.id, encoder->name);
2327 Serge 10299
 
5060 serge 10300
retry:
10301
	ret = drm_modeset_lock(&config->connection_mutex, ctx);
10302
	if (ret)
6084 serge 10303
		goto fail;
5060 serge 10304
 
2330 Serge 10305
	/*
10306
	 * Algorithm gets a little messy:
10307
	 *
10308
	 *   - if the connector already has an assigned crtc, use it (but make
10309
	 *     sure it's on first)
10310
	 *
10311
	 *   - try to find the first unused crtc that can drive this connector,
10312
	 *     and use that if we find one
10313
	 */
2327 Serge 10314
 
2330 Serge 10315
	/* See if we already have a CRTC for this connector */
10316
	if (encoder->crtc) {
10317
		crtc = encoder->crtc;
2327 Serge 10318
 
5060 serge 10319
		ret = drm_modeset_lock(&crtc->mutex, ctx);
10320
		if (ret)
6084 serge 10321
			goto fail;
5354 serge 10322
		ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10323
		if (ret)
6084 serge 10324
			goto fail;
3480 Serge 10325
 
3031 serge 10326
		old->dpms_mode = connector->dpms;
2330 Serge 10327
		old->load_detect_temp = false;
2327 Serge 10328
 
2330 Serge 10329
		/* Make sure the crtc and connector are running */
3031 serge 10330
		if (connector->dpms != DRM_MODE_DPMS_ON)
10331
			connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
2327 Serge 10332
 
2330 Serge 10333
		return true;
10334
	}
2327 Serge 10335
 
2330 Serge 10336
	/* Find an unused one (if possible) */
5060 serge 10337
	for_each_crtc(dev, possible_crtc) {
2330 Serge 10338
		i++;
10339
		if (!(encoder->possible_crtcs & (1 << i)))
10340
			continue;
6084 serge 10341
		if (possible_crtc->state->enable)
5060 serge 10342
			continue;
10343
 
6084 serge 10344
		crtc = possible_crtc;
10345
		break;
10346
	}
2327 Serge 10347
 
2330 Serge 10348
	/*
10349
	 * If we didn't find an unused CRTC, don't use any.
10350
	 */
10351
	if (!crtc) {
10352
		DRM_DEBUG_KMS("no pipe available for load-detect\n");
6084 serge 10353
		goto fail;
2330 Serge 10354
	}
2327 Serge 10355
 
5060 serge 10356
	ret = drm_modeset_lock(&crtc->mutex, ctx);
10357
	if (ret)
6084 serge 10358
		goto fail;
5354 serge 10359
	ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10360
	if (ret)
6084 serge 10361
		goto fail;
2327 Serge 10362
 
2330 Serge 10363
	intel_crtc = to_intel_crtc(crtc);
3031 serge 10364
	old->dpms_mode = connector->dpms;
2330 Serge 10365
	old->load_detect_temp = true;
10366
	old->release_fb = NULL;
2327 Serge 10367
 
6084 serge 10368
	state = drm_atomic_state_alloc(dev);
10369
	if (!state)
10370
		return false;
10371
 
10372
	state->acquire_ctx = ctx;
10373
 
10374
	connector_state = drm_atomic_get_connector_state(state, connector);
10375
	if (IS_ERR(connector_state)) {
10376
		ret = PTR_ERR(connector_state);
10377
		goto fail;
10378
	}
10379
 
10380
	connector_state->crtc = crtc;
10381
	connector_state->best_encoder = &intel_encoder->base;
10382
 
10383
	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10384
	if (IS_ERR(crtc_state)) {
10385
		ret = PTR_ERR(crtc_state);
10386
		goto fail;
10387
	}
10388
 
10389
	crtc_state->base.active = crtc_state->base.enable = true;
10390
 
2330 Serge 10391
	if (!mode)
10392
		mode = &load_detect_mode;
2327 Serge 10393
 
2330 Serge 10394
	/* We need a framebuffer large enough to accommodate all accesses
10395
	 * that the plane may generate whilst we perform load detection.
10396
	 * We can not rely on the fbcon either being present (we get called
10397
	 * during its initialisation to detect all boot displays, or it may
10398
	 * not even exist) or that it is large enough to satisfy the
10399
	 * requested mode.
10400
	 */
3031 serge 10401
	fb = mode_fits_in_fbdev(dev, mode);
10402
	if (fb == NULL) {
2330 Serge 10403
		DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
3031 serge 10404
		fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10405
		old->release_fb = fb;
2330 Serge 10406
	} else
10407
		DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
3031 serge 10408
	if (IS_ERR(fb)) {
2330 Serge 10409
		DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5060 serge 10410
		goto fail;
2330 Serge 10411
	}
2327 Serge 10412
 
6084 serge 10413
	ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10414
	if (ret)
10415
		goto fail;
10416
 
10417
	drm_mode_copy(&crtc_state->base.mode, mode);
10418
 
10419
	if (drm_atomic_commit(state)) {
2330 Serge 10420
		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10421
		if (old->release_fb)
10422
			old->release_fb->funcs->destroy(old->release_fb);
5060 serge 10423
		goto fail;
2330 Serge 10424
	}
6084 serge 10425
	crtc->primary->crtc = crtc;
2327 Serge 10426
 
2330 Serge 10427
	/* let the connector get through one full cycle before testing */
10428
	intel_wait_for_vblank(dev, intel_crtc->pipe);
10429
	return true;
5060 serge 10430
 
6084 serge 10431
fail:
10432
	drm_atomic_state_free(state);
10433
	state = NULL;
10434
 
5060 serge 10435
	if (ret == -EDEADLK) {
10436
		drm_modeset_backoff(ctx);
10437
		goto retry;
10438
	}
10439
 
10440
	return false;
2330 Serge 10441
}
2327 Serge 10442
 
3031 serge 10443
void intel_release_load_detect_pipe(struct drm_connector *connector,
6084 serge 10444
				    struct intel_load_detect_pipe *old,
10445
				    struct drm_modeset_acquire_ctx *ctx)
2330 Serge 10446
{
6084 serge 10447
	struct drm_device *dev = connector->dev;
3031 serge 10448
	struct intel_encoder *intel_encoder =
10449
		intel_attached_encoder(connector);
2330 Serge 10450
	struct drm_encoder *encoder = &intel_encoder->base;
3480 Serge 10451
	struct drm_crtc *crtc = encoder->crtc;
5060 serge 10452
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6084 serge 10453
	struct drm_atomic_state *state;
10454
	struct drm_connector_state *connector_state;
10455
	struct intel_crtc_state *crtc_state;
10456
	int ret;
2327 Serge 10457
 
2330 Serge 10458
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5060 serge 10459
		      connector->base.id, connector->name,
10460
		      encoder->base.id, encoder->name);
2327 Serge 10461
 
2330 Serge 10462
	if (old->load_detect_temp) {
6084 serge 10463
		state = drm_atomic_state_alloc(dev);
10464
		if (!state)
10465
			goto fail;
3031 serge 10466
 
6084 serge 10467
		state->acquire_ctx = ctx;
10468
 
10469
		connector_state = drm_atomic_get_connector_state(state, connector);
10470
		if (IS_ERR(connector_state))
10471
			goto fail;
10472
 
10473
		crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10474
		if (IS_ERR(crtc_state))
10475
			goto fail;
10476
 
10477
		connector_state->best_encoder = NULL;
10478
		connector_state->crtc = NULL;
10479
 
10480
		crtc_state->base.enable = crtc_state->base.active = false;
10481
 
10482
		ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10483
						      0, 0);
10484
		if (ret)
10485
			goto fail;
10486
 
10487
		ret = drm_atomic_commit(state);
10488
		if (ret)
10489
			goto fail;
10490
 
3480 Serge 10491
		if (old->release_fb) {
10492
			drm_framebuffer_unregister_private(old->release_fb);
10493
			drm_framebuffer_unreference(old->release_fb);
10494
		}
2327 Serge 10495
 
2330 Serge 10496
		return;
10497
	}
2327 Serge 10498
 
2330 Serge 10499
	/* Switch crtc and encoder back off if necessary */
3031 serge 10500
	if (old->dpms_mode != DRM_MODE_DPMS_ON)
10501
		connector->funcs->dpms(connector, old->dpms_mode);
6084 serge 10502
 
10503
	return;
10504
fail:
10505
	DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10506
	drm_atomic_state_free(state);
2330 Serge 10507
}
2327 Serge 10508
 
4560 Serge 10509
static int i9xx_pll_refclk(struct drm_device *dev,
6084 serge 10510
			   const struct intel_crtc_state *pipe_config)
4560 Serge 10511
{
10512
	struct drm_i915_private *dev_priv = dev->dev_private;
10513
	u32 dpll = pipe_config->dpll_hw_state.dpll;
10514
 
10515
	if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10516
		return dev_priv->vbt.lvds_ssc_freq;
10517
	else if (HAS_PCH_SPLIT(dev))
10518
		return 120000;
10519
	else if (!IS_GEN2(dev))
10520
		return 96000;
10521
	else
10522
		return 48000;
10523
}
10524
 
2330 Serge 10525
/* Returns the clock of the currently programmed mode of the given pipe. */
4104 Serge 10526
static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
6084 serge 10527
				struct intel_crtc_state *pipe_config)
2330 Serge 10528
{
4104 Serge 10529
	struct drm_device *dev = crtc->base.dev;
2330 Serge 10530
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 10531
	int pipe = pipe_config->cpu_transcoder;
4560 Serge 10532
	u32 dpll = pipe_config->dpll_hw_state.dpll;
2330 Serge 10533
	u32 fp;
10534
	intel_clock_t clock;
6084 serge 10535
	int port_clock;
4560 Serge 10536
	int refclk = i9xx_pll_refclk(dev, pipe_config);
2327 Serge 10537
 
2330 Serge 10538
	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4560 Serge 10539
		fp = pipe_config->dpll_hw_state.fp0;
2330 Serge 10540
	else
4560 Serge 10541
		fp = pipe_config->dpll_hw_state.fp1;
2327 Serge 10542
 
2330 Serge 10543
	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10544
	if (IS_PINEVIEW(dev)) {
10545
		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10546
		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10547
	} else {
10548
		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10549
		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10550
	}
2327 Serge 10551
 
2330 Serge 10552
	if (!IS_GEN2(dev)) {
10553
		if (IS_PINEVIEW(dev))
10554
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10555
				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10556
		else
10557
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10558
			       DPLL_FPA01_P1_POST_DIV_SHIFT);
2327 Serge 10559
 
2330 Serge 10560
		switch (dpll & DPLL_MODE_MASK) {
10561
		case DPLLB_MODE_DAC_SERIAL:
10562
			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10563
				5 : 10;
10564
			break;
10565
		case DPLLB_MODE_LVDS:
10566
			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10567
				7 : 14;
10568
			break;
10569
		default:
10570
			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10571
				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
4104 Serge 10572
			return;
2330 Serge 10573
		}
2327 Serge 10574
 
4104 Serge 10575
		if (IS_PINEVIEW(dev))
6084 serge 10576
			port_clock = pnv_calc_dpll_params(refclk, &clock);
4104 Serge 10577
		else
6084 serge 10578
			port_clock = i9xx_calc_dpll_params(refclk, &clock);
2330 Serge 10579
	} else {
4560 Serge 10580
		u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10581
		bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
2327 Serge 10582
 
2330 Serge 10583
		if (is_lvds) {
10584
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10585
				       DPLL_FPA01_P1_POST_DIV_SHIFT);
4560 Serge 10586
 
10587
			if (lvds & LVDS_CLKB_POWER_UP)
10588
				clock.p2 = 7;
10589
			else
6084 serge 10590
				clock.p2 = 14;
2330 Serge 10591
		} else {
10592
			if (dpll & PLL_P1_DIVIDE_BY_TWO)
10593
				clock.p1 = 2;
10594
			else {
10595
				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10596
					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10597
			}
10598
			if (dpll & PLL_P2_DIVIDE_BY_4)
10599
				clock.p2 = 4;
10600
			else
10601
				clock.p2 = 2;
4560 Serge 10602
		}
2327 Serge 10603
 
6084 serge 10604
		port_clock = i9xx_calc_dpll_params(refclk, &clock);
2330 Serge 10605
	}
2327 Serge 10606
 
4560 Serge 10607
	/*
10608
	 * This value includes pixel_multiplier. We will use
10609
	 * port_clock to compute adjusted_mode.crtc_clock in the
10610
	 * encoder's get_config() function.
10611
	 */
6084 serge 10612
	pipe_config->port_clock = port_clock;
4104 Serge 10613
}
10614
 
4560 Serge 10615
int intel_dotclock_calculate(int link_freq,
10616
			     const struct intel_link_m_n *m_n)
4104 Serge 10617
{
10618
	/*
10619
	 * The calculation for the data clock is:
4560 Serge 10620
	 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
4104 Serge 10621
	 * But we want to avoid losing precison if possible, so:
4560 Serge 10622
	 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
4104 Serge 10623
	 *
10624
	 * and the link clock is simpler:
4560 Serge 10625
	 * link_clock = (m * link_clock) / n
2330 Serge 10626
	 */
2327 Serge 10627
 
4560 Serge 10628
	if (!m_n->link_n)
10629
		return 0;
4104 Serge 10630
 
4560 Serge 10631
	return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10632
}
4104 Serge 10633
 
4560 Serge 10634
static void ironlake_pch_clock_get(struct intel_crtc *crtc,
6084 serge 10635
				   struct intel_crtc_state *pipe_config)
4560 Serge 10636
{
10637
	struct drm_device *dev = crtc->base.dev;
4104 Serge 10638
 
4560 Serge 10639
	/* read out port_clock from the DPLL */
10640
	i9xx_crtc_clock_get(crtc, pipe_config);
4104 Serge 10641
 
4560 Serge 10642
	/*
10643
	 * This value does not include pixel_multiplier.
10644
	 * We will check that port_clock and adjusted_mode.crtc_clock
10645
	 * agree once we know their relationship in the encoder's
10646
	 * get_config() function.
10647
	 */
6084 serge 10648
	pipe_config->base.adjusted_mode.crtc_clock =
4560 Serge 10649
		intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10650
					 &pipe_config->fdi_m_n);
2330 Serge 10651
}
2327 Serge 10652
 
2330 Serge 10653
/** Returns the currently programmed mode of the given pipe. */
10654
struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10655
					     struct drm_crtc *crtc)
10656
{
10657
	struct drm_i915_private *dev_priv = dev->dev_private;
10658
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6084 serge 10659
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
2330 Serge 10660
	struct drm_display_mode *mode;
6084 serge 10661
	struct intel_crtc_state pipe_config;
3243 Serge 10662
	int htot = I915_READ(HTOTAL(cpu_transcoder));
10663
	int hsync = I915_READ(HSYNC(cpu_transcoder));
10664
	int vtot = I915_READ(VTOTAL(cpu_transcoder));
10665
	int vsync = I915_READ(VSYNC(cpu_transcoder));
4560 Serge 10666
	enum pipe pipe = intel_crtc->pipe;
2327 Serge 10667
 
2330 Serge 10668
	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10669
	if (!mode)
10670
		return NULL;
10671
 
4104 Serge 10672
	/*
10673
	 * Construct a pipe_config sufficient for getting the clock info
10674
	 * back out of crtc_clock_get.
10675
	 *
10676
	 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10677
	 * to use a real value here instead.
10678
	 */
4560 Serge 10679
	pipe_config.cpu_transcoder = (enum transcoder) pipe;
4104 Serge 10680
	pipe_config.pixel_multiplier = 1;
4560 Serge 10681
	pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10682
	pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10683
	pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
4104 Serge 10684
	i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10685
 
4560 Serge 10686
	mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
2330 Serge 10687
	mode->hdisplay = (htot & 0xffff) + 1;
10688
	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10689
	mode->hsync_start = (hsync & 0xffff) + 1;
10690
	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10691
	mode->vdisplay = (vtot & 0xffff) + 1;
10692
	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10693
	mode->vsync_start = (vsync & 0xffff) + 1;
10694
	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10695
 
10696
	drm_mode_set_name(mode);
10697
 
10698
	return mode;
10699
}
10700
 
3031 serge 10701
void intel_mark_busy(struct drm_device *dev)
10702
{
4104 Serge 10703
	struct drm_i915_private *dev_priv = dev->dev_private;
10704
 
5060 serge 10705
	if (dev_priv->mm.busy)
10706
		return;
10707
 
10708
	intel_runtime_pm_get(dev_priv);
4104 Serge 10709
	i915_update_gfx_val(dev_priv);
6084 serge 10710
	if (INTEL_INFO(dev)->gen >= 6)
10711
		gen6_rps_busy(dev_priv);
5060 serge 10712
	dev_priv->mm.busy = true;
3031 serge 10713
}
2327 Serge 10714
 
3031 serge 10715
void intel_mark_idle(struct drm_device *dev)
10716
{
4104 Serge 10717
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 10718
 
5060 serge 10719
	if (!dev_priv->mm.busy)
3031 serge 10720
		return;
2327 Serge 10721
 
5060 serge 10722
	dev_priv->mm.busy = false;
10723
 
10724
	if (INTEL_INFO(dev)->gen >= 6)
4560 Serge 10725
		gen6_rps_idle(dev->dev_private);
5060 serge 10726
 
10727
	intel_runtime_pm_put(dev_priv);
3031 serge 10728
}
2327 Serge 10729
 
2330 Serge 10730
static void intel_crtc_destroy(struct drm_crtc *crtc)
10731
{
10732
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10733
	struct drm_device *dev = crtc->dev;
10734
	struct intel_unpin_work *work;
2327 Serge 10735
 
5354 serge 10736
	spin_lock_irq(&dev->event_lock);
2330 Serge 10737
	work = intel_crtc->unpin_work;
10738
	intel_crtc->unpin_work = NULL;
5354 serge 10739
	spin_unlock_irq(&dev->event_lock);
2327 Serge 10740
 
2330 Serge 10741
	if (work) {
4293 Serge 10742
		cancel_work_sync(&work->work);
2330 Serge 10743
		kfree(work);
10744
	}
2327 Serge 10745
 
2330 Serge 10746
	drm_crtc_cleanup(crtc);
2327 Serge 10747
 
2330 Serge 10748
	kfree(intel_crtc);
10749
}
2327 Serge 10750
 
3031 serge 10751
#if 0
10752
static void intel_unpin_work_fn(struct work_struct *__work)
10753
{
10754
	struct intel_unpin_work *work =
10755
		container_of(__work, struct intel_unpin_work, work);
6084 serge 10756
	struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10757
	struct drm_device *dev = crtc->base.dev;
10758
	struct drm_plane *primary = crtc->base.primary;
2327 Serge 10759
 
3243 Serge 10760
	mutex_lock(&dev->struct_mutex);
6084 serge 10761
	intel_unpin_fb_obj(work->old_fb, primary->state);
3031 serge 10762
	drm_gem_object_unreference(&work->pending_flip_obj->base);
2327 Serge 10763
 
6084 serge 10764
	if (work->flip_queued_req)
10765
		i915_gem_request_assign(&work->flip_queued_req, NULL);
3243 Serge 10766
	mutex_unlock(&dev->struct_mutex);
10767
 
6084 serge 10768
	intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10769
	drm_framebuffer_unreference(work->old_fb);
5354 serge 10770
 
6084 serge 10771
	BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10772
	atomic_dec(&crtc->unpin_work_count);
3243 Serge 10773
 
3031 serge 10774
	kfree(work);
10775
}
2327 Serge 10776
 
3031 serge 10777
static void do_intel_finish_page_flip(struct drm_device *dev,
10778
				      struct drm_crtc *crtc)
10779
{
10780
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10781
	struct intel_unpin_work *work;
10782
	unsigned long flags;
2327 Serge 10783
 
3031 serge 10784
	/* Ignore early vblank irqs */
10785
	if (intel_crtc == NULL)
10786
		return;
2327 Serge 10787
 
5354 serge 10788
	/*
10789
	 * This is called both by irq handlers and the reset code (to complete
10790
	 * lost pageflips) so needs the full irqsave spinlocks.
10791
	 */
3031 serge 10792
	spin_lock_irqsave(&dev->event_lock, flags);
10793
	work = intel_crtc->unpin_work;
3243 Serge 10794
 
10795
	/* Ensure we don't miss a work->pending update ... */
10796
	smp_rmb();
10797
 
10798
	if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
3031 serge 10799
		spin_unlock_irqrestore(&dev->event_lock, flags);
10800
		return;
10801
	}
2327 Serge 10802
 
5354 serge 10803
	page_flip_completed(intel_crtc);
3243 Serge 10804
 
3031 serge 10805
	spin_unlock_irqrestore(&dev->event_lock, flags);
10806
}
2327 Serge 10807
 
3031 serge 10808
void intel_finish_page_flip(struct drm_device *dev, int pipe)
10809
{
5060 serge 10810
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 10811
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2327 Serge 10812
 
3031 serge 10813
	do_intel_finish_page_flip(dev, crtc);
10814
}
2327 Serge 10815
 
3031 serge 10816
void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10817
{
5060 serge 10818
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 10819
	struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
2327 Serge 10820
 
3031 serge 10821
	do_intel_finish_page_flip(dev, crtc);
10822
}
2327 Serge 10823
 
5060 serge 10824
/* Is 'a' after or equal to 'b'? */
10825
static bool g4x_flip_count_after_eq(u32 a, u32 b)
10826
{
10827
	return !((a - b) & 0x80000000);
10828
}
10829
 
10830
static bool page_flip_finished(struct intel_crtc *crtc)
10831
{
10832
	struct drm_device *dev = crtc->base.dev;
10833
	struct drm_i915_private *dev_priv = dev->dev_private;
10834
 
5354 serge 10835
	if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10836
	    crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10837
		return true;
10838
 
5060 serge 10839
	/*
10840
	 * The relevant registers doen't exist on pre-ctg.
10841
	 * As the flip done interrupt doesn't trigger for mmio
10842
	 * flips on gmch platforms, a flip count check isn't
10843
	 * really needed there. But since ctg has the registers,
10844
	 * include it in the check anyway.
10845
	 */
10846
	if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10847
		return true;
10848
 
10849
	/*
10850
	 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10851
	 * used the same base address. In that case the mmio flip might
10852
	 * have completed, but the CS hasn't even executed the flip yet.
10853
	 *
10854
	 * A flip count check isn't enough as the CS might have updated
10855
	 * the base address just after start of vblank, but before we
10856
	 * managed to process the interrupt. This means we'd complete the
10857
	 * CS flip too soon.
10858
	 *
10859
	 * Combining both checks should get us a good enough result. It may
10860
	 * still happen that the CS flip has been executed, but has not
10861
	 * yet actually completed. But in case the base address is the same
10862
	 * anyway, we don't really care.
10863
	 */
10864
	return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10865
		crtc->unpin_work->gtt_offset &&
6084 serge 10866
		g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
5060 serge 10867
				    crtc->unpin_work->flip_count);
10868
}
10869
 
3031 serge 10870
void intel_prepare_page_flip(struct drm_device *dev, int plane)
10871
{
5060 serge 10872
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 10873
	struct intel_crtc *intel_crtc =
10874
		to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10875
	unsigned long flags;
2327 Serge 10876
 
5354 serge 10877
 
10878
	/*
10879
	 * This is called both by irq handlers and the reset code (to complete
10880
	 * lost pageflips) so needs the full irqsave spinlocks.
10881
	 *
10882
	 * NB: An MMIO update of the plane base pointer will also
3243 Serge 10883
	 * generate a page-flip completion irq, i.e. every modeset
10884
	 * is also accompanied by a spurious intel_prepare_page_flip().
10885
	 */
3031 serge 10886
	spin_lock_irqsave(&dev->event_lock, flags);
5060 serge 10887
	if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
3243 Serge 10888
		atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
3031 serge 10889
	spin_unlock_irqrestore(&dev->event_lock, flags);
10890
}
2327 Serge 10891
 
6084 serge 10892
static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
3243 Serge 10893
{
10894
	/* Ensure that the work item is consistent when activating it ... */
10895
	smp_wmb();
6084 serge 10896
	atomic_set(&work->pending, INTEL_FLIP_PENDING);
3243 Serge 10897
	/* and that it is marked active as soon as the irq could fire. */
10898
	smp_wmb();
10899
}
10900
 
3031 serge 10901
static int intel_gen2_queue_flip(struct drm_device *dev,
10902
				 struct drm_crtc *crtc,
10903
				 struct drm_framebuffer *fb,
4104 Serge 10904
				 struct drm_i915_gem_object *obj,
6084 serge 10905
				 struct drm_i915_gem_request *req,
4104 Serge 10906
				 uint32_t flags)
3031 serge 10907
{
6084 serge 10908
	struct intel_engine_cs *ring = req->ring;
3031 serge 10909
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10910
	u32 flip_mask;
10911
	int ret;
2327 Serge 10912
 
6084 serge 10913
	ret = intel_ring_begin(req, 6);
3031 serge 10914
	if (ret)
5060 serge 10915
		return ret;
2327 Serge 10916
 
3031 serge 10917
	/* Can't queue multiple flips, so wait for the previous
10918
	 * one to finish before executing the next.
10919
	 */
10920
	if (intel_crtc->plane)
10921
		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10922
	else
10923
		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10924
	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10925
	intel_ring_emit(ring, MI_NOOP);
10926
	intel_ring_emit(ring, MI_DISPLAY_FLIP |
10927
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10928
	intel_ring_emit(ring, fb->pitches[0]);
5060 serge 10929
	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
3031 serge 10930
	intel_ring_emit(ring, 0); /* aux display base address, unused */
3243 Serge 10931
 
6084 serge 10932
	intel_mark_page_flip_active(intel_crtc->unpin_work);
3031 serge 10933
	return 0;
10934
}
2327 Serge 10935
 
3031 serge 10936
static int intel_gen3_queue_flip(struct drm_device *dev,
10937
				 struct drm_crtc *crtc,
10938
				 struct drm_framebuffer *fb,
4104 Serge 10939
				 struct drm_i915_gem_object *obj,
6084 serge 10940
				 struct drm_i915_gem_request *req,
4104 Serge 10941
				 uint32_t flags)
3031 serge 10942
{
6084 serge 10943
	struct intel_engine_cs *ring = req->ring;
3031 serge 10944
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10945
	u32 flip_mask;
10946
	int ret;
2327 Serge 10947
 
6084 serge 10948
	ret = intel_ring_begin(req, 6);
3031 serge 10949
	if (ret)
5060 serge 10950
		return ret;
2327 Serge 10951
 
3031 serge 10952
	if (intel_crtc->plane)
10953
		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10954
	else
10955
		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10956
	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10957
	intel_ring_emit(ring, MI_NOOP);
10958
	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10959
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10960
	intel_ring_emit(ring, fb->pitches[0]);
5060 serge 10961
	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
3031 serge 10962
	intel_ring_emit(ring, MI_NOOP);
2327 Serge 10963
 
6084 serge 10964
	intel_mark_page_flip_active(intel_crtc->unpin_work);
3031 serge 10965
	return 0;
10966
}
2327 Serge 10967
 
3031 serge 10968
static int intel_gen4_queue_flip(struct drm_device *dev,
10969
				 struct drm_crtc *crtc,
10970
				 struct drm_framebuffer *fb,
4104 Serge 10971
				 struct drm_i915_gem_object *obj,
6084 serge 10972
				 struct drm_i915_gem_request *req,
4104 Serge 10973
				 uint32_t flags)
3031 serge 10974
{
6084 serge 10975
	struct intel_engine_cs *ring = req->ring;
3031 serge 10976
	struct drm_i915_private *dev_priv = dev->dev_private;
10977
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10978
	uint32_t pf, pipesrc;
10979
	int ret;
2327 Serge 10980
 
6084 serge 10981
	ret = intel_ring_begin(req, 4);
3031 serge 10982
	if (ret)
5060 serge 10983
		return ret;
2327 Serge 10984
 
3031 serge 10985
	/* i965+ uses the linear or tiled offsets from the
10986
	 * Display Registers (which do not change across a page-flip)
10987
	 * so we need only reprogram the base address.
10988
	 */
10989
	intel_ring_emit(ring, MI_DISPLAY_FLIP |
10990
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10991
	intel_ring_emit(ring, fb->pitches[0]);
5060 serge 10992
	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
3031 serge 10993
			obj->tiling_mode);
2327 Serge 10994
 
3031 serge 10995
	/* XXX Enabling the panel-fitter across page-flip is so far
10996
	 * untested on non-native modes, so ignore it for now.
10997
	 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10998
	 */
10999
	pf = 0;
11000
	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11001
	intel_ring_emit(ring, pf | pipesrc);
3243 Serge 11002
 
6084 serge 11003
	intel_mark_page_flip_active(intel_crtc->unpin_work);
3031 serge 11004
	return 0;
11005
}
2327 Serge 11006
 
3031 serge 11007
static int intel_gen6_queue_flip(struct drm_device *dev,
11008
				 struct drm_crtc *crtc,
11009
				 struct drm_framebuffer *fb,
4104 Serge 11010
				 struct drm_i915_gem_object *obj,
6084 serge 11011
				 struct drm_i915_gem_request *req,
4104 Serge 11012
				 uint32_t flags)
3031 serge 11013
{
6084 serge 11014
	struct intel_engine_cs *ring = req->ring;
3031 serge 11015
	struct drm_i915_private *dev_priv = dev->dev_private;
11016
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11017
	uint32_t pf, pipesrc;
11018
	int ret;
2327 Serge 11019
 
6084 serge 11020
	ret = intel_ring_begin(req, 4);
3031 serge 11021
	if (ret)
5060 serge 11022
		return ret;
2327 Serge 11023
 
3031 serge 11024
	intel_ring_emit(ring, MI_DISPLAY_FLIP |
11025
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11026
	intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
5060 serge 11027
	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
2327 Serge 11028
 
3031 serge 11029
	/* Contrary to the suggestions in the documentation,
11030
	 * "Enable Panel Fitter" does not seem to be required when page
11031
	 * flipping with a non-native mode, and worse causes a normal
11032
	 * modeset to fail.
11033
	 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11034
	 */
11035
	pf = 0;
11036
	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11037
	intel_ring_emit(ring, pf | pipesrc);
3243 Serge 11038
 
6084 serge 11039
	intel_mark_page_flip_active(intel_crtc->unpin_work);
3031 serge 11040
	return 0;
11041
}
2327 Serge 11042
 
3031 serge 11043
static int intel_gen7_queue_flip(struct drm_device *dev,
11044
				 struct drm_crtc *crtc,
11045
				 struct drm_framebuffer *fb,
4104 Serge 11046
				 struct drm_i915_gem_object *obj,
6084 serge 11047
				 struct drm_i915_gem_request *req,
4104 Serge 11048
				 uint32_t flags)
3031 serge 11049
{
6084 serge 11050
	struct intel_engine_cs *ring = req->ring;
3031 serge 11051
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11052
	uint32_t plane_bit = 0;
4104 Serge 11053
	int len, ret;
2327 Serge 11054
 
5060 serge 11055
	switch (intel_crtc->plane) {
3031 serge 11056
	case PLANE_A:
11057
		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11058
		break;
11059
	case PLANE_B:
11060
		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11061
		break;
11062
	case PLANE_C:
11063
		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11064
		break;
11065
	default:
11066
		WARN_ONCE(1, "unknown plane in flip command\n");
5060 serge 11067
		return -ENODEV;
3031 serge 11068
	}
2327 Serge 11069
 
4104 Serge 11070
	len = 4;
5060 serge 11071
	if (ring->id == RCS) {
4104 Serge 11072
		len += 6;
5060 serge 11073
		/*
11074
		 * On Gen 8, SRM is now taking an extra dword to accommodate
11075
		 * 48bits addresses, and we need a NOOP for the batch size to
11076
		 * stay even.
11077
		 */
11078
		if (IS_GEN8(dev))
11079
			len += 2;
11080
	}
4104 Serge 11081
 
5060 serge 11082
	/*
11083
	 * BSpec MI_DISPLAY_FLIP for IVB:
11084
	 * "The full packet must be contained within the same cache line."
11085
	 *
11086
	 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11087
	 * cacheline, if we ever start emitting more commands before
11088
	 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11089
	 * then do the cacheline alignment, and finally emit the
11090
	 * MI_DISPLAY_FLIP.
11091
	 */
6084 serge 11092
	ret = intel_ring_cacheline_align(req);
5060 serge 11093
	if (ret)
11094
		return ret;
11095
 
6084 serge 11096
	ret = intel_ring_begin(req, len);
3031 serge 11097
	if (ret)
5060 serge 11098
		return ret;
2327 Serge 11099
 
4104 Serge 11100
	/* Unmask the flip-done completion message. Note that the bspec says that
11101
	 * we should do this for both the BCS and RCS, and that we must not unmask
11102
	 * more than one flip event at any time (or ensure that one flip message
11103
	 * can be sent by waiting for flip-done prior to queueing new flips).
11104
	 * Experimentation says that BCS works despite DERRMR masking all
11105
	 * flip-done completion events and that unmasking all planes at once
11106
	 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11107
	 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11108
	 */
11109
	if (ring->id == RCS) {
11110
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11111
		intel_ring_emit(ring, DERRMR);
11112
		intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11113
					DERRMR_PIPEB_PRI_FLIP_DONE |
11114
					DERRMR_PIPEC_PRI_FLIP_DONE));
5060 serge 11115
		if (IS_GEN8(dev))
6084 serge 11116
			intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
5060 serge 11117
					      MI_SRM_LRM_GLOBAL_GTT);
11118
		else
6084 serge 11119
			intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11120
					      MI_SRM_LRM_GLOBAL_GTT);
4104 Serge 11121
		intel_ring_emit(ring, DERRMR);
11122
		intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
5060 serge 11123
		if (IS_GEN8(dev)) {
11124
			intel_ring_emit(ring, 0);
11125
			intel_ring_emit(ring, MI_NOOP);
11126
		}
4104 Serge 11127
	}
11128
 
3031 serge 11129
	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11130
	intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
5060 serge 11131
	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
3031 serge 11132
	intel_ring_emit(ring, (MI_NOOP));
3243 Serge 11133
 
6084 serge 11134
	intel_mark_page_flip_active(intel_crtc->unpin_work);
3031 serge 11135
	return 0;
11136
}
2327 Serge 11137
 
6084 serge 11138
static bool use_mmio_flip(struct intel_engine_cs *ring,
11139
			  struct drm_i915_gem_object *obj)
11140
{
11141
	/*
11142
	 * This is not being used for older platforms, because
11143
	 * non-availability of flip done interrupt forces us to use
11144
	 * CS flips. Older platforms derive flip done using some clever
11145
	 * tricks involving the flip_pending status bits and vblank irqs.
11146
	 * So using MMIO flips there would disrupt this mechanism.
11147
	 */
11148
 
11149
	if (ring == NULL)
11150
		return true;
11151
 
11152
	if (INTEL_INFO(ring->dev)->gen < 5)
11153
		return false;
11154
 
11155
	if (i915.use_mmio_flip < 0)
11156
		return false;
11157
	else if (i915.use_mmio_flip > 0)
11158
		return true;
11159
	else if (i915.enable_execlists)
11160
		return true;
11161
	else
11162
		return ring != i915_gem_request_get_ring(obj->last_write_req);
11163
}
11164
 
11165
static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11166
			     struct intel_unpin_work *work)
11167
{
11168
	struct drm_device *dev = intel_crtc->base.dev;
11169
	struct drm_i915_private *dev_priv = dev->dev_private;
11170
	struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11171
	const enum pipe pipe = intel_crtc->pipe;
11172
	u32 ctl, stride;
11173
 
11174
	ctl = I915_READ(PLANE_CTL(pipe, 0));
11175
	ctl &= ~PLANE_CTL_TILED_MASK;
11176
	switch (fb->modifier[0]) {
11177
	case DRM_FORMAT_MOD_NONE:
11178
		break;
11179
	case I915_FORMAT_MOD_X_TILED:
11180
		ctl |= PLANE_CTL_TILED_X;
11181
		break;
11182
	case I915_FORMAT_MOD_Y_TILED:
11183
		ctl |= PLANE_CTL_TILED_Y;
11184
		break;
11185
	case I915_FORMAT_MOD_Yf_TILED:
11186
		ctl |= PLANE_CTL_TILED_YF;
11187
		break;
11188
	default:
11189
		MISSING_CASE(fb->modifier[0]);
11190
	}
11191
 
11192
	/*
11193
	 * The stride is either expressed as a multiple of 64 bytes chunks for
11194
	 * linear buffers or in number of tiles for tiled buffers.
11195
	 */
11196
	stride = fb->pitches[0] /
11197
		 intel_fb_stride_alignment(dev, fb->modifier[0],
11198
					   fb->pixel_format);
11199
 
11200
	/*
11201
	 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11202
	 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11203
	 */
11204
	I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11205
	I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11206
 
11207
	I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11208
	POSTING_READ(PLANE_SURF(pipe, 0));
11209
}
11210
 
11211
static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11212
			     struct intel_unpin_work *work)
11213
{
11214
	struct drm_device *dev = intel_crtc->base.dev;
11215
	struct drm_i915_private *dev_priv = dev->dev_private;
11216
	struct intel_framebuffer *intel_fb =
11217
		to_intel_framebuffer(intel_crtc->base.primary->fb);
11218
	struct drm_i915_gem_object *obj = intel_fb->obj;
11219
	u32 dspcntr;
11220
	u32 reg;
11221
 
11222
	reg = DSPCNTR(intel_crtc->plane);
11223
	dspcntr = I915_READ(reg);
11224
 
11225
	if (obj->tiling_mode != I915_TILING_NONE)
11226
		dspcntr |= DISPPLANE_TILED;
11227
	else
11228
		dspcntr &= ~DISPPLANE_TILED;
11229
 
11230
	I915_WRITE(reg, dspcntr);
11231
 
11232
	I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11233
	POSTING_READ(DSPSURF(intel_crtc->plane));
11234
}
11235
 
11236
/*
11237
 * XXX: This is the temporary way to update the plane registers until we get
11238
 * around to using the usual plane update functions for MMIO flips
11239
 */
11240
static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11241
{
11242
	struct intel_crtc *crtc = mmio_flip->crtc;
11243
	struct intel_unpin_work *work;
11244
 
11245
	spin_lock_irq(&crtc->base.dev->event_lock);
11246
	work = crtc->unpin_work;
11247
	spin_unlock_irq(&crtc->base.dev->event_lock);
11248
	if (work == NULL)
11249
		return;
11250
 
11251
	intel_mark_page_flip_active(work);
11252
 
11253
	intel_pipe_update_start(crtc);
11254
 
11255
	if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11256
		skl_do_mmio_flip(crtc, work);
11257
	else
11258
		/* use_mmio_flip() retricts MMIO flips to ilk+ */
11259
		ilk_do_mmio_flip(crtc, work);
11260
 
11261
	intel_pipe_update_end(crtc);
11262
}
11263
 
11264
static void intel_mmio_flip_work_func(struct work_struct *work)
11265
{
11266
	struct intel_mmio_flip *mmio_flip =
11267
		container_of(work, struct intel_mmio_flip, work);
11268
 
11269
	if (mmio_flip->req) {
11270
		WARN_ON(__i915_wait_request(mmio_flip->req,
11271
					    mmio_flip->crtc->reset_counter,
11272
					    false, NULL,
11273
					    &mmio_flip->i915->rps.mmioflips));
11274
		i915_gem_request_unreference__unlocked(mmio_flip->req);
11275
	}
11276
 
11277
	intel_do_mmio_flip(mmio_flip);
11278
	kfree(mmio_flip);
11279
}
11280
 
11281
static int intel_queue_mmio_flip(struct drm_device *dev,
11282
				 struct drm_crtc *crtc,
11283
				 struct drm_framebuffer *fb,
11284
				 struct drm_i915_gem_object *obj,
11285
				 struct intel_engine_cs *ring,
11286
				 uint32_t flags)
11287
{
11288
	struct intel_mmio_flip *mmio_flip;
11289
 
11290
	mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11291
	if (mmio_flip == NULL)
11292
		return -ENOMEM;
11293
 
11294
	mmio_flip->i915 = to_i915(dev);
11295
	mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11296
	mmio_flip->crtc = to_intel_crtc(crtc);
11297
 
11298
	INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11299
	schedule_work(&mmio_flip->work);
11300
 
11301
	return 0;
11302
}
11303
 
3031 serge 11304
static int intel_default_queue_flip(struct drm_device *dev,
11305
				    struct drm_crtc *crtc,
11306
				    struct drm_framebuffer *fb,
4104 Serge 11307
				    struct drm_i915_gem_object *obj,
6084 serge 11308
				    struct drm_i915_gem_request *req,
4104 Serge 11309
				    uint32_t flags)
3031 serge 11310
{
11311
	return -ENODEV;
11312
}
2327 Serge 11313
 
6084 serge 11314
static bool __intel_pageflip_stall_check(struct drm_device *dev,
11315
					 struct drm_crtc *crtc)
11316
{
11317
	struct drm_i915_private *dev_priv = dev->dev_private;
11318
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11319
	struct intel_unpin_work *work = intel_crtc->unpin_work;
11320
	u32 addr;
11321
 
11322
	if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11323
		return true;
11324
 
11325
	if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11326
		return false;
11327
 
11328
	if (!work->enable_stall_check)
11329
		return false;
11330
 
11331
	if (work->flip_ready_vblank == 0) {
11332
		if (work->flip_queued_req &&
11333
		    !i915_gem_request_completed(work->flip_queued_req, true))
11334
			return false;
11335
 
11336
		work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11337
	}
11338
 
11339
	if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11340
		return false;
11341
 
11342
	/* Potential stall - if we see that the flip has happened,
11343
	 * assume a missed interrupt. */
11344
	if (INTEL_INFO(dev)->gen >= 4)
11345
		addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11346
	else
11347
		addr = I915_READ(DSPADDR(intel_crtc->plane));
11348
 
11349
	/* There is a potential issue here with a false positive after a flip
11350
	 * to the same address. We could address this by checking for a
11351
	 * non-incrementing frame counter.
11352
	 */
11353
	return addr == work->gtt_offset;
11354
}
11355
 
11356
void intel_check_page_flip(struct drm_device *dev, int pipe)
11357
{
11358
	struct drm_i915_private *dev_priv = dev->dev_private;
11359
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11360
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11361
	struct intel_unpin_work *work;
11362
 
11363
	WARN_ON(!in_interrupt());
11364
 
11365
	if (crtc == NULL)
11366
		return;
11367
 
11368
	spin_lock(&dev->event_lock);
11369
	work = intel_crtc->unpin_work;
11370
	if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11371
		WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11372
			 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11373
		page_flip_completed(intel_crtc);
11374
		work = NULL;
11375
	}
11376
	if (work != NULL &&
11377
	    drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11378
		intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11379
	spin_unlock(&dev->event_lock);
11380
}
11381
 
3031 serge 11382
static int intel_crtc_page_flip(struct drm_crtc *crtc,
11383
				struct drm_framebuffer *fb,
4104 Serge 11384
				struct drm_pending_vblank_event *event,
11385
				uint32_t page_flip_flags)
3031 serge 11386
{
11387
	struct drm_device *dev = crtc->dev;
11388
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 11389
	struct drm_framebuffer *old_fb = crtc->primary->fb;
11390
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3031 serge 11391
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6084 serge 11392
	struct drm_plane *primary = crtc->primary;
5060 serge 11393
	enum pipe pipe = intel_crtc->pipe;
3031 serge 11394
	struct intel_unpin_work *work;
5060 serge 11395
	struct intel_engine_cs *ring;
6084 serge 11396
	bool mmio_flip;
11397
	struct drm_i915_gem_request *request = NULL;
3031 serge 11398
	int ret;
2327 Serge 11399
 
5060 serge 11400
	/*
11401
	 * drm_mode_page_flip_ioctl() should already catch this, but double
11402
	 * check to be safe.  In the future we may enable pageflipping from
11403
	 * a disabled primary plane.
11404
	 */
11405
	if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11406
		return -EBUSY;
11407
 
3031 serge 11408
	/* Can't change pixel format via MI display flips. */
5060 serge 11409
	if (fb->pixel_format != crtc->primary->fb->pixel_format)
3031 serge 11410
		return -EINVAL;
2327 Serge 11411
 
3031 serge 11412
	/*
11413
	 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11414
	 * Note that pitch changes could also affect these register.
11415
	 */
11416
	if (INTEL_INFO(dev)->gen > 3 &&
5060 serge 11417
	    (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11418
	     fb->pitches[0] != crtc->primary->fb->pitches[0]))
3031 serge 11419
		return -EINVAL;
2327 Serge 11420
 
5354 serge 11421
	if (i915_terminally_wedged(&dev_priv->gpu_error))
11422
		goto out_hang;
11423
 
4560 Serge 11424
	work = kzalloc(sizeof(*work), GFP_KERNEL);
3031 serge 11425
	if (work == NULL)
11426
		return -ENOMEM;
2327 Serge 11427
 
3031 serge 11428
	work->event = event;
3243 Serge 11429
	work->crtc = crtc;
6084 serge 11430
	work->old_fb = old_fb;
3031 serge 11431
	INIT_WORK(&work->work, intel_unpin_work_fn);
2327 Serge 11432
 
5060 serge 11433
	ret = drm_crtc_vblank_get(crtc);
3031 serge 11434
	if (ret)
11435
		goto free_work;
2327 Serge 11436
 
3031 serge 11437
	/* We borrow the event spin lock for protecting unpin_work */
5354 serge 11438
	spin_lock_irq(&dev->event_lock);
3031 serge 11439
	if (intel_crtc->unpin_work) {
5354 serge 11440
		/* Before declaring the flip queue wedged, check if
11441
		 * the hardware completed the operation behind our backs.
11442
		 */
11443
		if (__intel_pageflip_stall_check(dev, crtc)) {
11444
			DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11445
			page_flip_completed(intel_crtc);
11446
		} else {
11447
			DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11448
			spin_unlock_irq(&dev->event_lock);
11449
 
11450
			drm_crtc_vblank_put(crtc);
6084 serge 11451
			kfree(work);
11452
			return -EBUSY;
11453
		}
3031 serge 11454
	}
11455
	intel_crtc->unpin_work = work;
5354 serge 11456
	spin_unlock_irq(&dev->event_lock);
2327 Serge 11457
 
3243 Serge 11458
	if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11459
		flush_workqueue(dev_priv->wq);
11460
 
3031 serge 11461
	/* Reference the objects for the scheduled work. */
6084 serge 11462
	drm_framebuffer_reference(work->old_fb);
3031 serge 11463
	drm_gem_object_reference(&obj->base);
2327 Serge 11464
 
5060 serge 11465
	crtc->primary->fb = fb;
6084 serge 11466
	update_state_fb(crtc->primary);
2327 Serge 11467
 
3031 serge 11468
	work->pending_flip_obj = obj;
2327 Serge 11469
 
6084 serge 11470
	ret = i915_mutex_lock_interruptible(dev);
11471
	if (ret)
11472
		goto cleanup;
11473
 
3243 Serge 11474
	atomic_inc(&intel_crtc->unpin_work_count);
3480 Serge 11475
	intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3031 serge 11476
 
5060 serge 11477
	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
6084 serge 11478
		work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
5060 serge 11479
 
11480
	if (IS_VALLEYVIEW(dev)) {
11481
		ring = &dev_priv->ring[BCS];
6084 serge 11482
		if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
5060 serge 11483
			/* vlv: DISPLAY_FLIP fails to change tiling */
11484
			ring = NULL;
6084 serge 11485
	} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5060 serge 11486
		ring = &dev_priv->ring[BCS];
11487
	} else if (INTEL_INFO(dev)->gen >= 7) {
6084 serge 11488
		ring = i915_gem_request_get_ring(obj->last_write_req);
5060 serge 11489
		if (ring == NULL || ring->id != RCS)
11490
			ring = &dev_priv->ring[BCS];
11491
	} else {
11492
		ring = &dev_priv->ring[RCS];
11493
	}
11494
 
6084 serge 11495
	mmio_flip = use_mmio_flip(ring, obj);
11496
 
11497
	/* When using CS flips, we want to emit semaphores between rings.
11498
	 * However, when using mmio flips we will create a task to do the
11499
	 * synchronisation, so all we want here is to pin the framebuffer
11500
	 * into the display plane and skip any waits.
11501
	 */
11502
	ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11503
					 crtc->primary->state,
11504
					 mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
3031 serge 11505
	if (ret)
11506
		goto cleanup_pending;
11507
 
6084 serge 11508
	work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11509
						  obj, 0);
11510
	work->gtt_offset += intel_crtc->dspaddr_offset;
5060 serge 11511
 
6084 serge 11512
	if (mmio_flip) {
5060 serge 11513
		ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11514
					    page_flip_flags);
5354 serge 11515
		if (ret)
11516
			goto cleanup_unpin;
11517
 
6084 serge 11518
		i915_gem_request_assign(&work->flip_queued_req,
11519
					obj->last_write_req);
5354 serge 11520
	} else {
6084 serge 11521
		if (!request) {
11522
			ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11523
			if (ret)
11524
				goto cleanup_unpin;
11525
		}
5060 serge 11526
 
6084 serge 11527
		ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11528
						   page_flip_flags);
11529
		if (ret)
11530
			goto cleanup_unpin;
11531
 
11532
		i915_gem_request_assign(&work->flip_queued_req, request);
5354 serge 11533
	}
11534
 
6084 serge 11535
	if (request)
11536
		i915_add_request_no_flush(request);
11537
 
11538
	work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
5354 serge 11539
	work->enable_stall_check = true;
11540
 
6084 serge 11541
	i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11542
			  to_intel_plane(primary)->frontbuffer_bit);
3031 serge 11543
	mutex_unlock(&dev->struct_mutex);
11544
 
6084 serge 11545
	intel_fbc_disable_crtc(intel_crtc);
11546
	intel_frontbuffer_flip_prepare(dev,
11547
				       to_intel_plane(primary)->frontbuffer_bit);
11548
 
3031 serge 11549
	trace_i915_flip_request(intel_crtc->plane, obj);
11550
 
11551
	return 0;
11552
 
5060 serge 11553
cleanup_unpin:
6084 serge 11554
	intel_unpin_fb_obj(fb, crtc->primary->state);
3031 serge 11555
cleanup_pending:
6084 serge 11556
	if (request)
11557
		i915_gem_request_cancel(request);
3243 Serge 11558
	atomic_dec(&intel_crtc->unpin_work_count);
6084 serge 11559
	mutex_unlock(&dev->struct_mutex);
11560
cleanup:
5060 serge 11561
	crtc->primary->fb = old_fb;
6084 serge 11562
	update_state_fb(crtc->primary);
3031 serge 11563
 
6084 serge 11564
	drm_gem_object_unreference_unlocked(&obj->base);
11565
	drm_framebuffer_unreference(work->old_fb);
11566
 
5354 serge 11567
	spin_lock_irq(&dev->event_lock);
3031 serge 11568
	intel_crtc->unpin_work = NULL;
5354 serge 11569
	spin_unlock_irq(&dev->event_lock);
3031 serge 11570
 
5060 serge 11571
	drm_crtc_vblank_put(crtc);
3031 serge 11572
free_work:
11573
	kfree(work);
11574
 
5060 serge 11575
	if (ret == -EIO) {
6084 serge 11576
		struct drm_atomic_state *state;
11577
		struct drm_plane_state *plane_state;
11578
 
5060 serge 11579
out_hang:
6084 serge 11580
		state = drm_atomic_state_alloc(dev);
11581
		if (!state)
11582
			return -ENOMEM;
11583
		state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11584
 
11585
retry:
11586
		plane_state = drm_atomic_get_plane_state(state, primary);
11587
		ret = PTR_ERR_OR_ZERO(plane_state);
11588
		if (!ret) {
11589
			drm_atomic_set_fb_for_plane(plane_state, fb);
11590
 
11591
			ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11592
			if (!ret)
11593
				ret = drm_atomic_commit(state);
11594
		}
11595
 
11596
		if (ret == -EDEADLK) {
11597
			drm_modeset_backoff(state->acquire_ctx);
11598
			drm_atomic_state_clear(state);
11599
			goto retry;
11600
		}
11601
 
11602
		if (ret)
11603
			drm_atomic_state_free(state);
11604
 
5354 serge 11605
		if (ret == 0 && event) {
11606
			spin_lock_irq(&dev->event_lock);
5060 serge 11607
			drm_send_vblank_event(dev, pipe, event);
5354 serge 11608
			spin_unlock_irq(&dev->event_lock);
11609
		}
5060 serge 11610
	}
3031 serge 11611
	return ret;
11612
}
11613
#endif
11614
 
11615
 
11616
/**
6084 serge 11617
 * intel_wm_need_update - Check whether watermarks need updating
11618
 * @plane: drm plane
11619
 * @state: new plane state
3031 serge 11620
 *
6084 serge 11621
 * Check current plane state versus the new one to determine whether
11622
 * watermarks need to be recalculated.
11623
 *
11624
 * Returns true or false.
3031 serge 11625
 */
6084 serge 11626
static bool intel_wm_need_update(struct drm_plane *plane,
11627
				 struct drm_plane_state *state)
3031 serge 11628
{
6084 serge 11629
	/* Update watermarks on tiling changes. */
11630
	if (!plane->state->fb || !state->fb ||
11631
	    plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11632
	    plane->state->rotation != state->rotation)
11633
		return true;
3031 serge 11634
 
6084 serge 11635
	if (plane->state->crtc_w != state->crtc_w)
11636
		return true;
11637
 
11638
	return false;
11639
}
11640
 
11641
int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11642
				    struct drm_plane_state *plane_state)
11643
{
11644
	struct drm_crtc *crtc = crtc_state->crtc;
11645
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11646
	struct drm_plane *plane = plane_state->plane;
11647
	struct drm_device *dev = crtc->dev;
11648
	struct drm_i915_private *dev_priv = dev->dev_private;
11649
	struct intel_plane_state *old_plane_state =
11650
		to_intel_plane_state(plane->state);
11651
	int idx = intel_crtc->base.base.id, ret;
11652
	int i = drm_plane_index(plane);
11653
	bool mode_changed = needs_modeset(crtc_state);
11654
	bool was_crtc_enabled = crtc->state->active;
11655
	bool is_crtc_enabled = crtc_state->active;
11656
 
11657
	bool turn_off, turn_on, visible, was_visible;
11658
	struct drm_framebuffer *fb = plane_state->fb;
11659
 
11660
	if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11661
	    plane->type != DRM_PLANE_TYPE_CURSOR) {
11662
		ret = skl_update_scaler_plane(
11663
			to_intel_crtc_state(crtc_state),
11664
			to_intel_plane_state(plane_state));
11665
		if (ret)
11666
			return ret;
3031 serge 11667
	}
11668
 
6084 serge 11669
	/*
11670
	 * Disabling a plane is always okay; we just need to update
11671
	 * fb tracking in a special way since cleanup_fb() won't
11672
	 * get called by the plane helpers.
11673
	 */
11674
	if (old_plane_state->base.fb && !fb)
11675
		intel_crtc->atomic.disabled_planes |= 1 << i;
11676
 
11677
	was_visible = old_plane_state->visible;
11678
	visible = to_intel_plane_state(plane_state)->visible;
11679
 
11680
	if (!was_crtc_enabled && WARN_ON(was_visible))
11681
		was_visible = false;
11682
 
11683
	if (!is_crtc_enabled && WARN_ON(visible))
11684
		visible = false;
11685
 
11686
	if (!was_visible && !visible)
11687
		return 0;
11688
 
11689
	turn_off = was_visible && (!visible || mode_changed);
11690
	turn_on = visible && (!was_visible || mode_changed);
11691
 
11692
	DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11693
			 plane->base.id, fb ? fb->base.id : -1);
11694
 
11695
	DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11696
			 plane->base.id, was_visible, visible,
11697
			 turn_off, turn_on, mode_changed);
11698
 
11699
	if (turn_on) {
11700
		intel_crtc->atomic.update_wm_pre = true;
11701
		/* must disable cxsr around plane enable/disable */
11702
		if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11703
			intel_crtc->atomic.disable_cxsr = true;
11704
			/* to potentially re-enable cxsr */
11705
			intel_crtc->atomic.wait_vblank = true;
11706
			intel_crtc->atomic.update_wm_post = true;
11707
		}
11708
	} else if (turn_off) {
11709
		intel_crtc->atomic.update_wm_post = true;
11710
		/* must disable cxsr around plane enable/disable */
11711
		if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11712
			if (is_crtc_enabled)
11713
				intel_crtc->atomic.wait_vblank = true;
11714
			intel_crtc->atomic.disable_cxsr = true;
11715
		}
11716
	} else if (intel_wm_need_update(plane, plane_state)) {
11717
		intel_crtc->atomic.update_wm_pre = true;
3031 serge 11718
	}
5060 serge 11719
 
6084 serge 11720
	if (visible || was_visible)
11721
		intel_crtc->atomic.fb_bits |=
11722
			to_intel_plane(plane)->frontbuffer_bit;
5060 serge 11723
 
6084 serge 11724
	switch (plane->type) {
11725
	case DRM_PLANE_TYPE_PRIMARY:
11726
		intel_crtc->atomic.wait_for_flips = true;
11727
		intel_crtc->atomic.pre_disable_primary = turn_off;
11728
		intel_crtc->atomic.post_enable_primary = turn_on;
11729
 
11730
		if (turn_off) {
11731
			/*
11732
			 * FIXME: Actually if we will still have any other
11733
			 * plane enabled on the pipe we could let IPS enabled
11734
			 * still, but for now lets consider that when we make
11735
			 * primary invisible by setting DSPCNTR to 0 on
11736
			 * update_primary_plane function IPS needs to be
11737
			 * disable.
11738
			 */
11739
			intel_crtc->atomic.disable_ips = true;
11740
 
11741
			intel_crtc->atomic.disable_fbc = true;
11742
		}
11743
 
11744
		/*
11745
		 * FBC does not work on some platforms for rotated
11746
		 * planes, so disable it when rotation is not 0 and
11747
		 * update it when rotation is set back to 0.
11748
		 *
11749
		 * FIXME: This is redundant with the fbc update done in
11750
		 * the primary plane enable function except that that
11751
		 * one is done too late. We eventually need to unify
11752
		 * this.
11753
		 */
11754
 
11755
		if (visible &&
11756
		    INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11757
		    dev_priv->fbc.crtc == intel_crtc &&
11758
		    plane_state->rotation != BIT(DRM_ROTATE_0))
11759
			intel_crtc->atomic.disable_fbc = true;
11760
 
11761
		/*
11762
		 * BDW signals flip done immediately if the plane
11763
		 * is disabled, even if the plane enable is already
11764
		 * armed to occur at the next vblank :(
11765
		 */
11766
		if (turn_on && IS_BROADWELL(dev))
11767
			intel_crtc->atomic.wait_vblank = true;
11768
 
11769
		intel_crtc->atomic.update_fbc |= visible || mode_changed;
11770
		break;
11771
	case DRM_PLANE_TYPE_CURSOR:
11772
		break;
11773
	case DRM_PLANE_TYPE_OVERLAY:
11774
		if (turn_off && !mode_changed) {
11775
			intel_crtc->atomic.wait_vblank = true;
11776
			intel_crtc->atomic.update_sprite_watermarks |=
11777
				1 << i;
11778
		}
5060 serge 11779
	}
6084 serge 11780
	return 0;
3031 serge 11781
}
11782
 
6084 serge 11783
static bool encoders_cloneable(const struct intel_encoder *a,
11784
			       const struct intel_encoder *b)
3031 serge 11785
{
6084 serge 11786
	/* masks could be asymmetric, so check both ways */
11787
	return a == b || (a->cloneable & (1 << b->type) &&
11788
			  b->cloneable & (1 << a->type));
11789
}
11790
 
11791
static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11792
					 struct intel_crtc *crtc,
11793
					 struct intel_encoder *encoder)
11794
{
11795
	struct intel_encoder *source_encoder;
11796
	struct drm_connector *connector;
11797
	struct drm_connector_state *connector_state;
11798
	int i;
11799
 
11800
	for_each_connector_in_state(state, connector, connector_state, i) {
11801
		if (connector_state->crtc != &crtc->base)
11802
			continue;
11803
 
11804
		source_encoder =
11805
			to_intel_encoder(connector_state->best_encoder);
11806
		if (!encoders_cloneable(encoder, source_encoder))
11807
			return false;
11808
	}
11809
 
11810
	return true;
11811
}
11812
 
11813
static bool check_encoder_cloning(struct drm_atomic_state *state,
11814
				  struct intel_crtc *crtc)
11815
{
3031 serge 11816
	struct intel_encoder *encoder;
6084 serge 11817
	struct drm_connector *connector;
11818
	struct drm_connector_state *connector_state;
11819
	int i;
3031 serge 11820
 
6084 serge 11821
	for_each_connector_in_state(state, connector, connector_state, i) {
11822
		if (connector_state->crtc != &crtc->base)
11823
			continue;
11824
 
11825
		encoder = to_intel_encoder(connector_state->best_encoder);
11826
		if (!check_single_encoder_cloning(state, crtc, encoder))
11827
			return false;
3031 serge 11828
	}
11829
 
6084 serge 11830
	return true;
11831
}
11832
 
11833
static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11834
				   struct drm_crtc_state *crtc_state)
11835
{
11836
	struct drm_device *dev = crtc->dev;
11837
	struct drm_i915_private *dev_priv = dev->dev_private;
11838
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11839
	struct intel_crtc_state *pipe_config =
11840
		to_intel_crtc_state(crtc_state);
11841
	struct drm_atomic_state *state = crtc_state->state;
11842
	int ret;
11843
	bool mode_changed = needs_modeset(crtc_state);
11844
 
11845
	if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11846
		DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11847
		return -EINVAL;
3031 serge 11848
	}
5060 serge 11849
 
6084 serge 11850
	if (mode_changed && !crtc_state->active)
11851
		intel_crtc->atomic.update_wm_post = true;
11852
 
11853
	if (mode_changed && crtc_state->enable &&
11854
	    dev_priv->display.crtc_compute_clock &&
11855
	    !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11856
		ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11857
							   pipe_config);
11858
		if (ret)
11859
			return ret;
5060 serge 11860
	}
6084 serge 11861
 
11862
	ret = 0;
11863
	if (INTEL_INFO(dev)->gen >= 9) {
11864
		if (mode_changed)
11865
			ret = skl_update_scaler_crtc(pipe_config);
11866
 
11867
		if (!ret)
11868
			ret = intel_atomic_setup_scalers(dev, intel_crtc,
11869
							 pipe_config);
11870
	}
11871
 
11872
	return ret;
3031 serge 11873
}
11874
 
6084 serge 11875
static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11876
	.mode_set_base_atomic = intel_pipe_set_base_atomic,
11877
	.load_lut = intel_crtc_load_lut,
11878
	.atomic_begin = intel_begin_crtc_commit,
11879
	.atomic_flush = intel_finish_crtc_commit,
11880
	.atomic_check = intel_crtc_atomic_check,
11881
};
11882
 
11883
static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11884
{
11885
	struct intel_connector *connector;
11886
 
11887
	for_each_intel_connector(dev, connector) {
11888
		if (connector->base.encoder) {
11889
			connector->base.state->best_encoder =
11890
				connector->base.encoder;
11891
			connector->base.state->crtc =
11892
				connector->base.encoder->crtc;
11893
		} else {
11894
			connector->base.state->best_encoder = NULL;
11895
			connector->base.state->crtc = NULL;
11896
		}
11897
	}
11898
}
11899
 
4104 Serge 11900
static void
5060 serge 11901
connected_sink_compute_bpp(struct intel_connector *connector,
6084 serge 11902
			   struct intel_crtc_state *pipe_config)
4104 Serge 11903
{
11904
	int bpp = pipe_config->pipe_bpp;
11905
 
11906
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11907
		connector->base.base.id,
5060 serge 11908
		connector->base.name);
4104 Serge 11909
 
11910
	/* Don't use an invalid EDID bpc value */
11911
	if (connector->base.display_info.bpc &&
11912
	    connector->base.display_info.bpc * 3 < bpp) {
11913
		DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11914
			      bpp, connector->base.display_info.bpc*3);
11915
		pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11916
	}
11917
 
11918
	/* Clamp bpp to 8 on screens without EDID 1.4 */
11919
	if (connector->base.display_info.bpc == 0 && bpp > 24) {
11920
		DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11921
			      bpp);
11922
		pipe_config->pipe_bpp = 24;
11923
	}
11924
}
11925
 
3746 Serge 11926
static int
4104 Serge 11927
compute_baseline_pipe_bpp(struct intel_crtc *crtc,
6084 serge 11928
			  struct intel_crtc_state *pipe_config)
3746 Serge 11929
{
4104 Serge 11930
	struct drm_device *dev = crtc->base.dev;
6084 serge 11931
	struct drm_atomic_state *state;
11932
	struct drm_connector *connector;
11933
	struct drm_connector_state *connector_state;
11934
	int bpp, i;
3746 Serge 11935
 
6084 serge 11936
	if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11937
		bpp = 10*3;
11938
	else if (INTEL_INFO(dev)->gen >= 5)
11939
		bpp = 12*3;
11940
	else
3746 Serge 11941
		bpp = 8*3;
11942
 
6084 serge 11943
 
3746 Serge 11944
	pipe_config->pipe_bpp = bpp;
11945
 
6084 serge 11946
	state = pipe_config->base.state;
11947
 
3746 Serge 11948
	/* Clamp display bpp to EDID value */
6084 serge 11949
	for_each_connector_in_state(state, connector, connector_state, i) {
11950
		if (connector_state->crtc != &crtc->base)
3746 Serge 11951
			continue;
11952
 
6084 serge 11953
		connected_sink_compute_bpp(to_intel_connector(connector),
11954
					   pipe_config);
3746 Serge 11955
	}
11956
 
11957
	return bpp;
11958
}
11959
 
4560 Serge 11960
static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11961
{
11962
	DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11963
			"type: 0x%x flags: 0x%x\n",
11964
		mode->crtc_clock,
11965
		mode->crtc_hdisplay, mode->crtc_hsync_start,
11966
		mode->crtc_hsync_end, mode->crtc_htotal,
11967
		mode->crtc_vdisplay, mode->crtc_vsync_start,
11968
		mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11969
}
11970
 
4104 Serge 11971
static void intel_dump_pipe_config(struct intel_crtc *crtc,
6084 serge 11972
				   struct intel_crtc_state *pipe_config,
4104 Serge 11973
				   const char *context)
11974
{
6084 serge 11975
	struct drm_device *dev = crtc->base.dev;
11976
	struct drm_plane *plane;
11977
	struct intel_plane *intel_plane;
11978
	struct intel_plane_state *state;
11979
	struct drm_framebuffer *fb;
4104 Serge 11980
 
6084 serge 11981
	DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11982
		      context, pipe_config, pipe_name(crtc->pipe));
11983
 
4104 Serge 11984
	DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11985
	DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11986
		      pipe_config->pipe_bpp, pipe_config->dither);
11987
	DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11988
		      pipe_config->has_pch_encoder,
11989
		      pipe_config->fdi_lanes,
11990
		      pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11991
		      pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11992
		      pipe_config->fdi_m_n.tu);
6084 serge 11993
	DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
4560 Serge 11994
		      pipe_config->has_dp_encoder,
6084 serge 11995
		      pipe_config->lane_count,
4560 Serge 11996
		      pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11997
		      pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11998
		      pipe_config->dp_m_n.tu);
5354 serge 11999
 
6084 serge 12000
	DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
5354 serge 12001
		      pipe_config->has_dp_encoder,
6084 serge 12002
		      pipe_config->lane_count,
5354 serge 12003
		      pipe_config->dp_m2_n2.gmch_m,
12004
		      pipe_config->dp_m2_n2.gmch_n,
12005
		      pipe_config->dp_m2_n2.link_m,
12006
		      pipe_config->dp_m2_n2.link_n,
12007
		      pipe_config->dp_m2_n2.tu);
12008
 
12009
	DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12010
		      pipe_config->has_audio,
12011
		      pipe_config->has_infoframe);
12012
 
4104 Serge 12013
	DRM_DEBUG_KMS("requested mode:\n");
6084 serge 12014
	drm_mode_debug_printmodeline(&pipe_config->base.mode);
4104 Serge 12015
	DRM_DEBUG_KMS("adjusted mode:\n");
6084 serge 12016
	drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12017
	intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
4560 Serge 12018
	DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12019
	DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12020
		      pipe_config->pipe_src_w, pipe_config->pipe_src_h);
6084 serge 12021
	DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12022
		      crtc->num_scalers,
12023
		      pipe_config->scaler_state.scaler_users,
12024
		      pipe_config->scaler_state.scaler_id);
4104 Serge 12025
	DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12026
		      pipe_config->gmch_pfit.control,
12027
		      pipe_config->gmch_pfit.pgm_ratios,
12028
		      pipe_config->gmch_pfit.lvds_border_bits);
12029
	DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12030
		      pipe_config->pch_pfit.pos,
12031
		      pipe_config->pch_pfit.size,
12032
		      pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12033
	DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
4560 Serge 12034
	DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
4104 Serge 12035
 
6084 serge 12036
	if (IS_BROXTON(dev)) {
12037
		DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12038
			      "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12039
			      "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12040
			      pipe_config->ddi_pll_sel,
12041
			      pipe_config->dpll_hw_state.ebb0,
12042
			      pipe_config->dpll_hw_state.ebb4,
12043
			      pipe_config->dpll_hw_state.pll0,
12044
			      pipe_config->dpll_hw_state.pll1,
12045
			      pipe_config->dpll_hw_state.pll2,
12046
			      pipe_config->dpll_hw_state.pll3,
12047
			      pipe_config->dpll_hw_state.pll6,
12048
			      pipe_config->dpll_hw_state.pll8,
12049
			      pipe_config->dpll_hw_state.pll9,
12050
			      pipe_config->dpll_hw_state.pll10,
12051
			      pipe_config->dpll_hw_state.pcsdw12);
12052
	} else if (IS_SKYLAKE(dev)) {
12053
		DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12054
			      "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12055
			      pipe_config->ddi_pll_sel,
12056
			      pipe_config->dpll_hw_state.ctrl1,
12057
			      pipe_config->dpll_hw_state.cfgcr1,
12058
			      pipe_config->dpll_hw_state.cfgcr2);
12059
	} else if (HAS_DDI(dev)) {
12060
		DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12061
			      pipe_config->ddi_pll_sel,
12062
			      pipe_config->dpll_hw_state.wrpll,
12063
			      pipe_config->dpll_hw_state.spll);
12064
	} else {
12065
		DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12066
			      "fp0: 0x%x, fp1: 0x%x\n",
12067
			      pipe_config->dpll_hw_state.dpll,
12068
			      pipe_config->dpll_hw_state.dpll_md,
12069
			      pipe_config->dpll_hw_state.fp0,
12070
			      pipe_config->dpll_hw_state.fp1);
12071
	}
5060 serge 12072
 
6084 serge 12073
	DRM_DEBUG_KMS("planes on this crtc\n");
12074
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12075
		intel_plane = to_intel_plane(plane);
12076
		if (intel_plane->pipe != crtc->pipe)
5060 serge 12077
			continue;
12078
 
6084 serge 12079
		state = to_intel_plane_state(plane->state);
12080
		fb = state->base.fb;
12081
		if (!fb) {
12082
			DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12083
				"disabled, scaler_id = %d\n",
12084
				plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12085
				plane->base.id, intel_plane->pipe,
12086
				(crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12087
				drm_plane_index(plane), state->scaler_id);
4104 Serge 12088
			continue;
6084 serge 12089
		}
4104 Serge 12090
 
6084 serge 12091
		DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12092
			plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12093
			plane->base.id, intel_plane->pipe,
12094
			crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12095
			drm_plane_index(plane));
12096
		DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12097
			fb->base.id, fb->width, fb->height, fb->pixel_format);
12098
		DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12099
			state->scaler_id,
12100
			state->src.x1 >> 16, state->src.y1 >> 16,
12101
			drm_rect_width(&state->src) >> 16,
12102
			drm_rect_height(&state->src) >> 16,
12103
			state->dst.x1, state->dst.y1,
12104
			drm_rect_width(&state->dst), drm_rect_height(&state->dst));
4104 Serge 12105
	}
12106
}
12107
 
6084 serge 12108
static bool check_digital_port_conflicts(struct drm_atomic_state *state)
5354 serge 12109
{
6084 serge 12110
	struct drm_device *dev = state->dev;
12111
	struct drm_connector *connector;
5354 serge 12112
	unsigned int used_ports = 0;
12113
 
12114
	/*
12115
	 * Walk the connector list instead of the encoder
12116
	 * list to detect the problem on ddi platforms
12117
	 * where there's just one encoder per digital port.
12118
	 */
6084 serge 12119
	drm_for_each_connector(connector, dev) {
12120
		struct drm_connector_state *connector_state;
12121
		struct intel_encoder *encoder;
5354 serge 12122
 
6084 serge 12123
		connector_state = drm_atomic_get_existing_connector_state(state, connector);
12124
		if (!connector_state)
12125
			connector_state = connector->state;
12126
 
12127
		if (!connector_state->best_encoder)
5354 serge 12128
			continue;
12129
 
6084 serge 12130
		encoder = to_intel_encoder(connector_state->best_encoder);
5354 serge 12131
 
6084 serge 12132
		WARN_ON(!connector_state->crtc);
12133
 
5354 serge 12134
		switch (encoder->type) {
12135
			unsigned int port_mask;
12136
		case INTEL_OUTPUT_UNKNOWN:
12137
			if (WARN_ON(!HAS_DDI(dev)))
12138
				break;
12139
		case INTEL_OUTPUT_DISPLAYPORT:
12140
		case INTEL_OUTPUT_HDMI:
12141
		case INTEL_OUTPUT_EDP:
12142
			port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12143
 
12144
			/* the same port mustn't appear more than once */
12145
			if (used_ports & port_mask)
12146
				return false;
12147
 
12148
			used_ports |= port_mask;
12149
		default:
12150
			break;
12151
		}
12152
	}
12153
 
12154
	return true;
12155
}
12156
 
6084 serge 12157
static void
12158
clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12159
{
12160
	struct drm_crtc_state tmp_state;
12161
	struct intel_crtc_scaler_state scaler_state;
12162
	struct intel_dpll_hw_state dpll_hw_state;
12163
	enum intel_dpll_id shared_dpll;
12164
	uint32_t ddi_pll_sel;
12165
	bool force_thru;
12166
 
12167
	/* FIXME: before the switch to atomic started, a new pipe_config was
12168
	 * kzalloc'd. Code that depends on any field being zero should be
12169
	 * fixed, so that the crtc_state can be safely duplicated. For now,
12170
	 * only fields that are know to not cause problems are preserved. */
12171
 
12172
	tmp_state = crtc_state->base;
12173
	scaler_state = crtc_state->scaler_state;
12174
	shared_dpll = crtc_state->shared_dpll;
12175
	dpll_hw_state = crtc_state->dpll_hw_state;
12176
	ddi_pll_sel = crtc_state->ddi_pll_sel;
12177
	force_thru = crtc_state->pch_pfit.force_thru;
12178
 
12179
	memset(crtc_state, 0, sizeof *crtc_state);
12180
 
12181
	crtc_state->base = tmp_state;
12182
	crtc_state->scaler_state = scaler_state;
12183
	crtc_state->shared_dpll = shared_dpll;
12184
	crtc_state->dpll_hw_state = dpll_hw_state;
12185
	crtc_state->ddi_pll_sel = ddi_pll_sel;
12186
	crtc_state->pch_pfit.force_thru = force_thru;
12187
}
12188
 
12189
static int
3746 Serge 12190
intel_modeset_pipe_config(struct drm_crtc *crtc,
6084 serge 12191
			  struct intel_crtc_state *pipe_config)
3031 serge 12192
{
6084 serge 12193
	struct drm_atomic_state *state = pipe_config->base.state;
3031 serge 12194
	struct intel_encoder *encoder;
6084 serge 12195
	struct drm_connector *connector;
12196
	struct drm_connector_state *connector_state;
12197
	int base_bpp, ret = -EINVAL;
12198
	int i;
4104 Serge 12199
	bool retry = true;
3031 serge 12200
 
6084 serge 12201
	clear_intel_crtc_state(pipe_config);
4104 Serge 12202
 
12203
	pipe_config->cpu_transcoder =
12204
		(enum transcoder) to_intel_crtc(crtc)->pipe;
3746 Serge 12205
 
4104 Serge 12206
	/*
12207
	 * Sanitize sync polarity flags based on requested ones. If neither
12208
	 * positive or negative polarity is requested, treat this as meaning
12209
	 * negative polarity.
12210
	 */
6084 serge 12211
	if (!(pipe_config->base.adjusted_mode.flags &
4104 Serge 12212
	      (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
6084 serge 12213
		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
4104 Serge 12214
 
6084 serge 12215
	if (!(pipe_config->base.adjusted_mode.flags &
4104 Serge 12216
	      (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
6084 serge 12217
		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
4104 Serge 12218
 
6084 serge 12219
	base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12220
					     pipe_config);
12221
	if (base_bpp < 0)
3746 Serge 12222
		goto fail;
12223
 
4560 Serge 12224
	/*
12225
	 * Determine the real pipe dimensions. Note that stereo modes can
12226
	 * increase the actual pipe size due to the frame doubling and
12227
	 * insertion of additional space for blanks between the frame. This
12228
	 * is stored in the crtc timings. We use the requested mode to do this
12229
	 * computation to clearly distinguish it from the adjusted mode, which
12230
	 * can be changed by the connectors in the below retry loop.
12231
	 */
6084 serge 12232
	drm_crtc_get_hv_timing(&pipe_config->base.mode,
12233
			       &pipe_config->pipe_src_w,
12234
			       &pipe_config->pipe_src_h);
4560 Serge 12235
 
4104 Serge 12236
encoder_retry:
12237
	/* Ensure the port clock defaults are reset when retrying. */
12238
	pipe_config->port_clock = 0;
12239
	pipe_config->pixel_multiplier = 1;
12240
 
12241
	/* Fill in default crtc timings, allow encoders to overwrite them. */
6084 serge 12242
	drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12243
			      CRTC_STEREO_DOUBLE);
4104 Serge 12244
 
3031 serge 12245
	/* Pass our mode to the connectors and the CRTC to give them a chance to
12246
	 * adjust it according to limitations or connector properties, and also
12247
	 * a chance to reject the mode entirely.
2330 Serge 12248
	 */
6084 serge 12249
	for_each_connector_in_state(state, connector, connector_state, i) {
12250
		if (connector_state->crtc != crtc)
3031 serge 12251
			continue;
3746 Serge 12252
 
6084 serge 12253
		encoder = to_intel_encoder(connector_state->best_encoder);
12254
 
12255
		if (!(encoder->compute_config(encoder, pipe_config))) {
12256
			DRM_DEBUG_KMS("Encoder config failure\n");
12257
			goto fail;
3746 Serge 12258
		}
6084 serge 12259
	}
3746 Serge 12260
 
4104 Serge 12261
	/* Set default port clock if not overwritten by the encoder. Needs to be
12262
	 * done afterwards in case the encoder adjusts the mode. */
12263
	if (!pipe_config->port_clock)
6084 serge 12264
		pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
4560 Serge 12265
			* pipe_config->pixel_multiplier;
2327 Serge 12266
 
4104 Serge 12267
	ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12268
	if (ret < 0) {
3031 serge 12269
		DRM_DEBUG_KMS("CRTC fixup failed\n");
12270
		goto fail;
12271
	}
2327 Serge 12272
 
4104 Serge 12273
	if (ret == RETRY) {
12274
		if (WARN(!retry, "loop in pipe configuration computation\n")) {
12275
			ret = -EINVAL;
12276
			goto fail;
12277
		}
12278
 
12279
		DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12280
		retry = false;
12281
		goto encoder_retry;
12282
	}
12283
 
6084 serge 12284
	/* Dithering seems to not pass-through bits correctly when it should, so
12285
	 * only enable it on 6bpc panels. */
12286
	pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12287
	DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12288
		      base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
3746 Serge 12289
 
3031 serge 12290
fail:
6084 serge 12291
	return ret;
3031 serge 12292
}
2327 Serge 12293
 
3031 serge 12294
static void
6084 serge 12295
intel_modeset_update_crtc_state(struct drm_atomic_state *state)
3031 serge 12296
{
6084 serge 12297
	struct drm_crtc *crtc;
12298
	struct drm_crtc_state *crtc_state;
12299
	int i;
3031 serge 12300
 
6084 serge 12301
	/* Double check state. */
12302
	for_each_crtc_in_state(state, crtc, crtc_state, i) {
12303
		to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
3031 serge 12304
 
6084 serge 12305
		/* Update hwmode for vblank functions */
12306
		if (crtc->state->active)
12307
			crtc->hwmode = crtc->state->adjusted_mode;
5060 serge 12308
		else
6084 serge 12309
			crtc->hwmode.crtc_clock = 0;
3031 serge 12310
	}
2330 Serge 12311
}
2327 Serge 12312
 
4560 Serge 12313
static bool intel_fuzzy_clock_check(int clock1, int clock2)
4104 Serge 12314
{
4560 Serge 12315
	int diff;
4104 Serge 12316
 
12317
	if (clock1 == clock2)
12318
		return true;
12319
 
12320
	if (!clock1 || !clock2)
12321
		return false;
12322
 
12323
	diff = abs(clock1 - clock2);
12324
 
12325
	if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12326
		return true;
12327
 
12328
	return false;
12329
}
12330
 
3031 serge 12331
#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12332
	list_for_each_entry((intel_crtc), \
12333
			    &(dev)->mode_config.crtc_list, \
12334
			    base.head) \
4104 Serge 12335
		if (mask & (1 <<(intel_crtc)->pipe))
3031 serge 12336
 
3746 Serge 12337
static bool
6084 serge 12338
intel_compare_m_n(unsigned int m, unsigned int n,
12339
		  unsigned int m2, unsigned int n2,
12340
		  bool exact)
12341
{
12342
	if (m == m2 && n == n2)
12343
		return true;
12344
 
12345
	if (exact || !m || !n || !m2 || !n2)
12346
		return false;
12347
 
12348
	BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12349
 
12350
	if (m > m2) {
12351
		while (m > m2) {
12352
			m2 <<= 1;
12353
			n2 <<= 1;
12354
		}
12355
	} else if (m < m2) {
12356
		while (m < m2) {
12357
			m <<= 1;
12358
			n <<= 1;
12359
		}
12360
	}
12361
 
12362
	return m == m2 && n == n2;
12363
}
12364
 
12365
static bool
12366
intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12367
		       struct intel_link_m_n *m2_n2,
12368
		       bool adjust)
12369
{
12370
	if (m_n->tu == m2_n2->tu &&
12371
	    intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12372
			      m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12373
	    intel_compare_m_n(m_n->link_m, m_n->link_n,
12374
			      m2_n2->link_m, m2_n2->link_n, !adjust)) {
12375
		if (adjust)
12376
			*m2_n2 = *m_n;
12377
 
12378
		return true;
12379
	}
12380
 
12381
	return false;
12382
}
12383
 
12384
static bool
4104 Serge 12385
intel_pipe_config_compare(struct drm_device *dev,
6084 serge 12386
			  struct intel_crtc_state *current_config,
12387
			  struct intel_crtc_state *pipe_config,
12388
			  bool adjust)
3746 Serge 12389
{
6084 serge 12390
	bool ret = true;
12391
 
12392
#define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12393
	do { \
12394
		if (!adjust) \
12395
			DRM_ERROR(fmt, ##__VA_ARGS__); \
12396
		else \
12397
			DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12398
	} while (0)
12399
 
4104 Serge 12400
#define PIPE_CONF_CHECK_X(name)	\
12401
	if (current_config->name != pipe_config->name) { \
6084 serge 12402
		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
4104 Serge 12403
			  "(expected 0x%08x, found 0x%08x)\n", \
12404
			  current_config->name, \
12405
			  pipe_config->name); \
6084 serge 12406
		ret = false; \
3746 Serge 12407
	}
12408
 
4104 Serge 12409
#define PIPE_CONF_CHECK_I(name)	\
12410
	if (current_config->name != pipe_config->name) { \
6084 serge 12411
		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
4104 Serge 12412
			  "(expected %i, found %i)\n", \
12413
			  current_config->name, \
12414
			  pipe_config->name); \
6084 serge 12415
		ret = false; \
4104 Serge 12416
	}
12417
 
6084 serge 12418
#define PIPE_CONF_CHECK_M_N(name) \
12419
	if (!intel_compare_link_m_n(¤t_config->name, \
12420
				    &pipe_config->name,\
12421
				    adjust)) { \
12422
		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12423
			  "(expected tu %i gmch %i/%i link %i/%i, " \
12424
			  "found tu %i, gmch %i/%i link %i/%i)\n", \
12425
			  current_config->name.tu, \
12426
			  current_config->name.gmch_m, \
12427
			  current_config->name.gmch_n, \
12428
			  current_config->name.link_m, \
12429
			  current_config->name.link_n, \
12430
			  pipe_config->name.tu, \
12431
			  pipe_config->name.gmch_m, \
12432
			  pipe_config->name.gmch_n, \
12433
			  pipe_config->name.link_m, \
12434
			  pipe_config->name.link_n); \
12435
		ret = false; \
12436
	}
12437
 
12438
#define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12439
	if (!intel_compare_link_m_n(¤t_config->name, \
12440
				    &pipe_config->name, adjust) && \
12441
	    !intel_compare_link_m_n(¤t_config->alt_name, \
12442
				    &pipe_config->name, adjust)) { \
12443
		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12444
			  "(expected tu %i gmch %i/%i link %i/%i, " \
12445
			  "or tu %i gmch %i/%i link %i/%i, " \
12446
			  "found tu %i, gmch %i/%i link %i/%i)\n", \
12447
			  current_config->name.tu, \
12448
			  current_config->name.gmch_m, \
12449
			  current_config->name.gmch_n, \
12450
			  current_config->name.link_m, \
12451
			  current_config->name.link_n, \
12452
			  current_config->alt_name.tu, \
12453
			  current_config->alt_name.gmch_m, \
12454
			  current_config->alt_name.gmch_n, \
12455
			  current_config->alt_name.link_m, \
12456
			  current_config->alt_name.link_n, \
12457
			  pipe_config->name.tu, \
12458
			  pipe_config->name.gmch_m, \
12459
			  pipe_config->name.gmch_n, \
12460
			  pipe_config->name.link_m, \
12461
			  pipe_config->name.link_n); \
12462
		ret = false; \
12463
	}
12464
 
5354 serge 12465
/* This is required for BDW+ where there is only one set of registers for
12466
 * switching between high and low RR.
12467
 * This macro can be used whenever a comparison has to be made between one
12468
 * hw state and multiple sw state variables.
12469
 */
12470
#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12471
	if ((current_config->name != pipe_config->name) && \
12472
		(current_config->alt_name != pipe_config->name)) { \
6084 serge 12473
			INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
5354 serge 12474
				  "(expected %i or %i, found %i)\n", \
12475
				  current_config->name, \
12476
				  current_config->alt_name, \
12477
				  pipe_config->name); \
6084 serge 12478
			ret = false; \
5354 serge 12479
	}
12480
 
4104 Serge 12481
#define PIPE_CONF_CHECK_FLAGS(name, mask)	\
12482
	if ((current_config->name ^ pipe_config->name) & (mask)) { \
6084 serge 12483
		INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
4104 Serge 12484
			  "(expected %i, found %i)\n", \
12485
			  current_config->name & (mask), \
12486
			  pipe_config->name & (mask)); \
6084 serge 12487
		ret = false; \
4104 Serge 12488
	}
12489
 
4560 Serge 12490
#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12491
	if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
6084 serge 12492
		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
4560 Serge 12493
			  "(expected %i, found %i)\n", \
12494
			  current_config->name, \
12495
			  pipe_config->name); \
6084 serge 12496
		ret = false; \
4560 Serge 12497
	}
12498
 
4104 Serge 12499
#define PIPE_CONF_QUIRK(quirk)	\
12500
	((current_config->quirks | pipe_config->quirks) & (quirk))
12501
 
12502
	PIPE_CONF_CHECK_I(cpu_transcoder);
12503
 
12504
	PIPE_CONF_CHECK_I(has_pch_encoder);
12505
	PIPE_CONF_CHECK_I(fdi_lanes);
6084 serge 12506
	PIPE_CONF_CHECK_M_N(fdi_m_n);
4104 Serge 12507
 
4560 Serge 12508
	PIPE_CONF_CHECK_I(has_dp_encoder);
6084 serge 12509
	PIPE_CONF_CHECK_I(lane_count);
5354 serge 12510
 
12511
	if (INTEL_INFO(dev)->gen < 8) {
6084 serge 12512
		PIPE_CONF_CHECK_M_N(dp_m_n);
4560 Serge 12513
 
6084 serge 12514
		if (current_config->has_drrs)
12515
			PIPE_CONF_CHECK_M_N(dp_m2_n2);
12516
	} else
12517
		PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
5354 serge 12518
 
6084 serge 12519
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12520
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12521
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12522
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12523
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12524
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
4104 Serge 12525
 
6084 serge 12526
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12527
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12528
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12529
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12530
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12531
	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
4104 Serge 12532
 
6084 serge 12533
	PIPE_CONF_CHECK_I(pixel_multiplier);
5060 serge 12534
	PIPE_CONF_CHECK_I(has_hdmi_sink);
12535
	if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12536
	    IS_VALLEYVIEW(dev))
12537
		PIPE_CONF_CHECK_I(limited_color_range);
5354 serge 12538
	PIPE_CONF_CHECK_I(has_infoframe);
4104 Serge 12539
 
5060 serge 12540
	PIPE_CONF_CHECK_I(has_audio);
12541
 
6084 serge 12542
	PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
4104 Serge 12543
			      DRM_MODE_FLAG_INTERLACE);
12544
 
12545
	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
6084 serge 12546
		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
4104 Serge 12547
				      DRM_MODE_FLAG_PHSYNC);
6084 serge 12548
		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
4104 Serge 12549
				      DRM_MODE_FLAG_NHSYNC);
6084 serge 12550
		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
4104 Serge 12551
				      DRM_MODE_FLAG_PVSYNC);
6084 serge 12552
		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
4104 Serge 12553
				      DRM_MODE_FLAG_NVSYNC);
12554
	}
12555
 
6084 serge 12556
	PIPE_CONF_CHECK_X(gmch_pfit.control);
4104 Serge 12557
	/* pfit ratios are autocomputed by the hw on gen4+ */
12558
	if (INTEL_INFO(dev)->gen < 4)
12559
		PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
6084 serge 12560
	PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
5060 serge 12561
 
6084 serge 12562
	if (!adjust) {
12563
		PIPE_CONF_CHECK_I(pipe_src_w);
12564
		PIPE_CONF_CHECK_I(pipe_src_h);
12565
 
12566
		PIPE_CONF_CHECK_I(pch_pfit.enabled);
12567
		if (current_config->pch_pfit.enabled) {
12568
			PIPE_CONF_CHECK_X(pch_pfit.pos);
12569
			PIPE_CONF_CHECK_X(pch_pfit.size);
12570
		}
12571
 
12572
		PIPE_CONF_CHECK_I(scaler_state.scaler_id);
4104 Serge 12573
	}
12574
 
4560 Serge 12575
	/* BDW+ don't expose a synchronous way to read the state */
12576
	if (IS_HASWELL(dev))
6084 serge 12577
		PIPE_CONF_CHECK_I(ips_enabled);
4104 Serge 12578
 
4560 Serge 12579
	PIPE_CONF_CHECK_I(double_wide);
12580
 
5060 serge 12581
	PIPE_CONF_CHECK_X(ddi_pll_sel);
12582
 
4104 Serge 12583
	PIPE_CONF_CHECK_I(shared_dpll);
12584
	PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12585
	PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12586
	PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12587
	PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
5060 serge 12588
	PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
6084 serge 12589
	PIPE_CONF_CHECK_X(dpll_hw_state.spll);
5354 serge 12590
	PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12591
	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12592
	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
4104 Serge 12593
 
4280 Serge 12594
	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12595
		PIPE_CONF_CHECK_I(pipe_bpp);
12596
 
6084 serge 12597
	PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12598
	PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
4560 Serge 12599
 
4104 Serge 12600
#undef PIPE_CONF_CHECK_X
12601
#undef PIPE_CONF_CHECK_I
5354 serge 12602
#undef PIPE_CONF_CHECK_I_ALT
4104 Serge 12603
#undef PIPE_CONF_CHECK_FLAGS
4560 Serge 12604
#undef PIPE_CONF_CHECK_CLOCK_FUZZY
4104 Serge 12605
#undef PIPE_CONF_QUIRK
6084 serge 12606
#undef INTEL_ERR_OR_DBG_KMS
4104 Serge 12607
 
6084 serge 12608
	return ret;
3746 Serge 12609
}
12610
 
5354 serge 12611
static void check_wm_state(struct drm_device *dev)
12612
{
12613
	struct drm_i915_private *dev_priv = dev->dev_private;
12614
	struct skl_ddb_allocation hw_ddb, *sw_ddb;
12615
	struct intel_crtc *intel_crtc;
12616
	int plane;
12617
 
12618
	if (INTEL_INFO(dev)->gen < 9)
12619
		return;
12620
 
12621
	skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12622
	sw_ddb = &dev_priv->wm.skl_hw.ddb;
12623
 
12624
	for_each_intel_crtc(dev, intel_crtc) {
12625
		struct skl_ddb_entry *hw_entry, *sw_entry;
12626
		const enum pipe pipe = intel_crtc->pipe;
12627
 
12628
		if (!intel_crtc->active)
12629
			continue;
12630
 
12631
		/* planes */
6084 serge 12632
		for_each_plane(dev_priv, pipe, plane) {
5354 serge 12633
			hw_entry = &hw_ddb.plane[pipe][plane];
12634
			sw_entry = &sw_ddb->plane[pipe][plane];
12635
 
12636
			if (skl_ddb_entry_equal(hw_entry, sw_entry))
12637
				continue;
12638
 
12639
			DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12640
				  "(expected (%u,%u), found (%u,%u))\n",
12641
				  pipe_name(pipe), plane + 1,
12642
				  sw_entry->start, sw_entry->end,
12643
				  hw_entry->start, hw_entry->end);
12644
		}
12645
 
12646
		/* cursor */
6084 serge 12647
		hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12648
		sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
5354 serge 12649
 
12650
		if (skl_ddb_entry_equal(hw_entry, sw_entry))
12651
			continue;
12652
 
12653
		DRM_ERROR("mismatch in DDB state pipe %c cursor "
12654
			  "(expected (%u,%u), found (%u,%u))\n",
12655
			  pipe_name(pipe),
12656
			  sw_entry->start, sw_entry->end,
12657
			  hw_entry->start, hw_entry->end);
12658
	}
12659
}
12660
 
4104 Serge 12661
static void
6084 serge 12662
check_connector_state(struct drm_device *dev,
12663
		      struct drm_atomic_state *old_state)
3031 serge 12664
{
6084 serge 12665
	struct drm_connector_state *old_conn_state;
12666
	struct drm_connector *connector;
12667
	int i;
3031 serge 12668
 
6084 serge 12669
	for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12670
		struct drm_encoder *encoder = connector->encoder;
12671
		struct drm_connector_state *state = connector->state;
12672
 
3031 serge 12673
		/* This also checks the encoder/connector hw state with the
12674
		 * ->get_hw_state callbacks. */
6084 serge 12675
		intel_connector_check_state(to_intel_connector(connector));
3031 serge 12676
 
6084 serge 12677
		I915_STATE_WARN(state->best_encoder != encoder,
12678
		     "connector's atomic encoder doesn't match legacy encoder\n");
3031 serge 12679
	}
4104 Serge 12680
}
3031 serge 12681
 
4104 Serge 12682
static void
12683
check_encoder_state(struct drm_device *dev)
12684
{
12685
	struct intel_encoder *encoder;
12686
	struct intel_connector *connector;
12687
 
5354 serge 12688
	for_each_intel_encoder(dev, encoder) {
3031 serge 12689
		bool enabled = false;
6084 serge 12690
		enum pipe pipe;
3031 serge 12691
 
12692
		DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12693
			      encoder->base.base.id,
5060 serge 12694
			      encoder->base.name);
3031 serge 12695
 
6084 serge 12696
		for_each_intel_connector(dev, connector) {
12697
			if (connector->base.state->best_encoder != &encoder->base)
3031 serge 12698
				continue;
12699
			enabled = true;
6084 serge 12700
 
12701
			I915_STATE_WARN(connector->base.state->crtc !=
12702
					encoder->base.crtc,
12703
			     "connector's crtc doesn't match encoder crtc\n");
3031 serge 12704
		}
5060 serge 12705
 
6084 serge 12706
		I915_STATE_WARN(!!encoder->base.crtc != enabled,
3031 serge 12707
		     "encoder's enabled state mismatch "
12708
		     "(expected %i, found %i)\n",
12709
		     !!encoder->base.crtc, enabled);
12710
 
6084 serge 12711
		if (!encoder->base.crtc) {
12712
			bool active;
3031 serge 12713
 
6084 serge 12714
			active = encoder->get_hw_state(encoder, &pipe);
12715
			I915_STATE_WARN(active,
12716
			     "encoder detached but still enabled on pipe %c.\n",
12717
			     pipe_name(pipe));
12718
		}
3031 serge 12719
	}
4104 Serge 12720
}
3031 serge 12721
 
4104 Serge 12722
static void
6084 serge 12723
check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
4104 Serge 12724
{
5060 serge 12725
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 12726
	struct intel_encoder *encoder;
6084 serge 12727
	struct drm_crtc_state *old_crtc_state;
12728
	struct drm_crtc *crtc;
12729
	int i;
4104 Serge 12730
 
6084 serge 12731
	for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12732
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12733
		struct intel_crtc_state *pipe_config, *sw_config;
12734
		bool active;
3031 serge 12735
 
6084 serge 12736
		if (!needs_modeset(crtc->state) &&
12737
		    !to_intel_crtc_state(crtc->state)->update_pipe)
12738
			continue;
4104 Serge 12739
 
6084 serge 12740
		__drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12741
		pipe_config = to_intel_crtc_state(old_crtc_state);
12742
		memset(pipe_config, 0, sizeof(*pipe_config));
12743
		pipe_config->base.crtc = crtc;
12744
		pipe_config->base.state = old_state;
12745
 
3031 serge 12746
		DRM_DEBUG_KMS("[CRTC:%d]\n",
6084 serge 12747
			      crtc->base.id);
3031 serge 12748
 
6084 serge 12749
		active = dev_priv->display.get_pipe_config(intel_crtc,
12750
							   pipe_config);
3031 serge 12751
 
6084 serge 12752
		/* hw state is inconsistent with the pipe quirk */
12753
		if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12754
		    (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12755
			active = crtc->state->active;
4104 Serge 12756
 
6084 serge 12757
		I915_STATE_WARN(crtc->state->active != active,
12758
		     "crtc active state doesn't match with hw state "
12759
		     "(expected %i, found %i)\n", crtc->state->active, active);
3031 serge 12760
 
6084 serge 12761
		I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12762
		     "transitional active state does not match atomic hw state "
12763
		     "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
3746 Serge 12764
 
6084 serge 12765
		for_each_encoder_on_crtc(dev, crtc, encoder) {
12766
			enum pipe pipe;
3746 Serge 12767
 
6084 serge 12768
			active = encoder->get_hw_state(encoder, &pipe);
12769
			I915_STATE_WARN(active != crtc->state->active,
12770
				"[ENCODER:%i] active %i with crtc active %i\n",
12771
				encoder->base.base.id, active, crtc->state->active);
12772
 
12773
			I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12774
					"Encoder connected to wrong pipe %c\n",
12775
					pipe_name(pipe));
12776
 
12777
			if (active)
12778
				encoder->get_config(encoder, pipe_config);
4104 Serge 12779
		}
12780
 
6084 serge 12781
		if (!crtc->state->active)
12782
			continue;
3746 Serge 12783
 
6084 serge 12784
		sw_config = to_intel_crtc_state(crtc->state);
12785
		if (!intel_pipe_config_compare(dev, sw_config,
12786
					       pipe_config, false)) {
12787
			I915_STATE_WARN(1, "pipe state doesn't match!\n");
12788
			intel_dump_pipe_config(intel_crtc, pipe_config,
4104 Serge 12789
					       "[hw state]");
6084 serge 12790
			intel_dump_pipe_config(intel_crtc, sw_config,
4104 Serge 12791
					       "[sw state]");
12792
		}
3031 serge 12793
	}
12794
}
12795
 
4104 Serge 12796
static void
12797
check_shared_dpll_state(struct drm_device *dev)
12798
{
5060 serge 12799
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 12800
	struct intel_crtc *crtc;
12801
	struct intel_dpll_hw_state dpll_hw_state;
12802
	int i;
12803
 
12804
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12805
		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12806
		int enabled_crtcs = 0, active_crtcs = 0;
12807
		bool active;
12808
 
12809
		memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12810
 
12811
		DRM_DEBUG_KMS("%s\n", pll->name);
12812
 
12813
		active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12814
 
6084 serge 12815
		I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
4104 Serge 12816
		     "more active pll users than references: %i vs %i\n",
5354 serge 12817
		     pll->active, hweight32(pll->config.crtc_mask));
6084 serge 12818
		I915_STATE_WARN(pll->active && !pll->on,
4104 Serge 12819
		     "pll in active use but not on in sw tracking\n");
6084 serge 12820
		I915_STATE_WARN(pll->on && !pll->active,
4104 Serge 12821
		     "pll in on but not on in use in sw tracking\n");
6084 serge 12822
		I915_STATE_WARN(pll->on != active,
4104 Serge 12823
		     "pll on state mismatch (expected %i, found %i)\n",
12824
		     pll->on, active);
12825
 
5060 serge 12826
		for_each_intel_crtc(dev, crtc) {
6084 serge 12827
			if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
4104 Serge 12828
				enabled_crtcs++;
12829
			if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12830
				active_crtcs++;
12831
		}
6084 serge 12832
		I915_STATE_WARN(pll->active != active_crtcs,
4104 Serge 12833
		     "pll active crtcs mismatch (expected %i, found %i)\n",
12834
		     pll->active, active_crtcs);
6084 serge 12835
		I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
4104 Serge 12836
		     "pll enabled crtcs mismatch (expected %i, found %i)\n",
5354 serge 12837
		     hweight32(pll->config.crtc_mask), enabled_crtcs);
4104 Serge 12838
 
6084 serge 12839
		I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
4104 Serge 12840
				       sizeof(dpll_hw_state)),
12841
		     "pll hw state mismatch\n");
12842
	}
12843
}
12844
 
6084 serge 12845
static void
12846
intel_modeset_check_state(struct drm_device *dev,
12847
			  struct drm_atomic_state *old_state)
4104 Serge 12848
{
5354 serge 12849
	check_wm_state(dev);
6084 serge 12850
	check_connector_state(dev, old_state);
4104 Serge 12851
	check_encoder_state(dev);
6084 serge 12852
	check_crtc_state(dev, old_state);
4104 Serge 12853
	check_shared_dpll_state(dev);
12854
}
12855
 
6084 serge 12856
void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
4560 Serge 12857
				     int dotclock)
12858
{
12859
	/*
12860
	 * FDI already provided one idea for the dotclock.
12861
	 * Yell if the encoder disagrees.
12862
	 */
6084 serge 12863
	WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
4560 Serge 12864
	     "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
6084 serge 12865
	     pipe_config->base.adjusted_mode.crtc_clock, dotclock);
4560 Serge 12866
}
12867
 
5060 serge 12868
static void update_scanline_offset(struct intel_crtc *crtc)
12869
{
12870
	struct drm_device *dev = crtc->base.dev;
12871
 
12872
	/*
12873
	 * The scanline counter increments at the leading edge of hsync.
12874
	 *
12875
	 * On most platforms it starts counting from vtotal-1 on the
12876
	 * first active line. That means the scanline counter value is
12877
	 * always one less than what we would expect. Ie. just after
12878
	 * start of vblank, which also occurs at start of hsync (on the
12879
	 * last active line), the scanline counter will read vblank_start-1.
12880
	 *
12881
	 * On gen2 the scanline counter starts counting from 1 instead
12882
	 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12883
	 * to keep the value positive), instead of adding one.
12884
	 *
12885
	 * On HSW+ the behaviour of the scanline counter depends on the output
12886
	 * type. For DP ports it behaves like most other platforms, but on HDMI
12887
	 * there's an extra 1 line difference. So we need to add two instead of
12888
	 * one to the value.
12889
	 */
12890
	if (IS_GEN2(dev)) {
6084 serge 12891
		const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
5060 serge 12892
		int vtotal;
12893
 
6084 serge 12894
		vtotal = adjusted_mode->crtc_vtotal;
12895
		if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5060 serge 12896
			vtotal /= 2;
12897
 
12898
		crtc->scanline_offset = vtotal - 1;
12899
	} else if (HAS_DDI(dev) &&
5354 serge 12900
		   intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
5060 serge 12901
		crtc->scanline_offset = 2;
12902
	} else
12903
		crtc->scanline_offset = 1;
12904
}
12905
 
6084 serge 12906
static void intel_modeset_clear_plls(struct drm_atomic_state *state)
5354 serge 12907
{
6084 serge 12908
	struct drm_device *dev = state->dev;
12909
	struct drm_i915_private *dev_priv = to_i915(dev);
12910
	struct intel_shared_dpll_config *shared_dpll = NULL;
12911
	struct intel_crtc *intel_crtc;
12912
	struct intel_crtc_state *intel_crtc_state;
12913
	struct drm_crtc *crtc;
12914
	struct drm_crtc_state *crtc_state;
12915
	int i;
5354 serge 12916
 
6084 serge 12917
	if (!dev_priv->display.crtc_compute_clock)
12918
		return;
5354 serge 12919
 
6084 serge 12920
	for_each_crtc_in_state(state, crtc, crtc_state, i) {
12921
		int dpll;
5354 serge 12922
 
6084 serge 12923
		intel_crtc = to_intel_crtc(crtc);
12924
		intel_crtc_state = to_intel_crtc_state(crtc_state);
12925
		dpll = intel_crtc_state->shared_dpll;
12926
 
12927
		if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12928
			continue;
12929
 
12930
		intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12931
 
12932
		if (!shared_dpll)
12933
			shared_dpll = intel_atomic_get_shared_dpll_state(state);
12934
 
12935
		shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
5354 serge 12936
	}
12937
}
12938
 
6084 serge 12939
/*
12940
 * This implements the workaround described in the "notes" section of the mode
12941
 * set sequence documentation. When going from no pipes or single pipe to
12942
 * multiple pipes, and planes are enabled after the pipe, we need to wait at
12943
 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12944
 */
12945
static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
3031 serge 12946
{
6084 serge 12947
	struct drm_crtc_state *crtc_state;
3031 serge 12948
	struct intel_crtc *intel_crtc;
6084 serge 12949
	struct drm_crtc *crtc;
12950
	struct intel_crtc_state *first_crtc_state = NULL;
12951
	struct intel_crtc_state *other_crtc_state = NULL;
12952
	enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12953
	int i;
3031 serge 12954
 
6084 serge 12955
	/* look at all crtc's that are going to be enabled in during modeset */
12956
	for_each_crtc_in_state(state, crtc, crtc_state, i) {
12957
		intel_crtc = to_intel_crtc(crtc);
3480 Serge 12958
 
6084 serge 12959
		if (!crtc_state->active || !needs_modeset(crtc_state))
12960
			continue;
3031 serge 12961
 
6084 serge 12962
		if (first_crtc_state) {
12963
			other_crtc_state = to_intel_crtc_state(crtc_state);
12964
			break;
12965
		} else {
12966
			first_crtc_state = to_intel_crtc_state(crtc_state);
12967
			first_pipe = intel_crtc->pipe;
12968
		}
12969
	}
3031 serge 12970
 
6084 serge 12971
	/* No workaround needed? */
12972
	if (!first_crtc_state)
12973
		return 0;
4560 Serge 12974
 
6084 serge 12975
	/* w/a possibly needed, check how many crtc's are already enabled. */
12976
	for_each_intel_crtc(state->dev, intel_crtc) {
12977
		struct intel_crtc_state *pipe_config;
4560 Serge 12978
 
6084 serge 12979
		pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12980
		if (IS_ERR(pipe_config))
12981
			return PTR_ERR(pipe_config);
5354 serge 12982
 
6084 serge 12983
		pipe_config->hsw_workaround_pipe = INVALID_PIPE;
5354 serge 12984
 
6084 serge 12985
		if (!pipe_config->base.active ||
12986
		    needs_modeset(&pipe_config->base))
12987
			continue;
5354 serge 12988
 
6084 serge 12989
		/* 2 or more enabled crtcs means no need for w/a */
12990
		if (enabled_pipe != INVALID_PIPE)
12991
			return 0;
3746 Serge 12992
 
6084 serge 12993
		enabled_pipe = intel_crtc->pipe;
3031 serge 12994
	}
12995
 
6084 serge 12996
	if (enabled_pipe != INVALID_PIPE)
12997
		first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12998
	else if (other_crtc_state)
12999
		other_crtc_state->hsw_workaround_pipe = first_pipe;
4560 Serge 13000
 
6084 serge 13001
	return 0;
13002
}
2327 Serge 13003
 
6084 serge 13004
static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13005
{
13006
	struct drm_crtc *crtc;
13007
	struct drm_crtc_state *crtc_state;
13008
	int ret = 0;
3031 serge 13009
 
6084 serge 13010
	/* add all active pipes to the state */
13011
	for_each_crtc(state->dev, crtc) {
13012
		crtc_state = drm_atomic_get_crtc_state(state, crtc);
13013
		if (IS_ERR(crtc_state))
13014
			return PTR_ERR(crtc_state);
3243 Serge 13015
 
6084 serge 13016
		if (!crtc_state->active || needs_modeset(crtc_state))
13017
			continue;
5060 serge 13018
 
6084 serge 13019
		crtc_state->mode_changed = true;
5060 serge 13020
 
6084 serge 13021
		ret = drm_atomic_add_affected_connectors(state, crtc);
13022
		if (ret)
13023
			break;
3031 serge 13024
 
6084 serge 13025
		ret = drm_atomic_add_affected_planes(state, crtc);
13026
		if (ret)
13027
			break;
5060 serge 13028
	}
3031 serge 13029
 
13030
	return ret;
2330 Serge 13031
}
2327 Serge 13032
 
6084 serge 13033
static int intel_modeset_checks(struct drm_atomic_state *state)
3746 Serge 13034
{
6084 serge 13035
	struct drm_device *dev = state->dev;
13036
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 13037
	int ret;
13038
 
6084 serge 13039
	if (!check_digital_port_conflicts(state)) {
13040
		DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13041
		return -EINVAL;
13042
	}
3746 Serge 13043
 
6084 serge 13044
	/*
13045
	 * See if the config requires any additional preparation, e.g.
13046
	 * to adjust global state with pipes off.  We need to do this
13047
	 * here so we can get the modeset_pipe updated config for the new
13048
	 * mode set on this crtc.  For other crtcs we need to use the
13049
	 * adjusted_mode bits in the crtc directly.
13050
	 */
13051
	if (dev_priv->display.modeset_calc_cdclk) {
13052
		unsigned int cdclk;
3746 Serge 13053
 
6084 serge 13054
		ret = dev_priv->display.modeset_calc_cdclk(state);
3746 Serge 13055
 
6084 serge 13056
		cdclk = to_intel_atomic_state(state)->cdclk;
13057
		if (!ret && cdclk != dev_priv->cdclk_freq)
13058
			ret = intel_modeset_all_pipes(state);
5354 serge 13059
 
6084 serge 13060
		if (ret < 0)
13061
			return ret;
13062
	} else
13063
		to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
5354 serge 13064
 
6084 serge 13065
	intel_modeset_clear_plls(state);
5354 serge 13066
 
6084 serge 13067
	if (IS_HASWELL(dev))
13068
		return haswell_mode_set_planes_workaround(state);
5354 serge 13069
 
6084 serge 13070
	return 0;
3480 Serge 13071
}
13072
 
6084 serge 13073
/**
13074
 * intel_atomic_check - validate state object
13075
 * @dev: drm device
13076
 * @state: state to validate
13077
 */
13078
static int intel_atomic_check(struct drm_device *dev,
13079
			      struct drm_atomic_state *state)
3031 serge 13080
{
6084 serge 13081
	struct drm_crtc *crtc;
13082
	struct drm_crtc_state *crtc_state;
13083
	int ret, i;
13084
	bool any_ms = false;
3031 serge 13085
 
6084 serge 13086
	ret = drm_atomic_helper_check_modeset(dev, state);
13087
	if (ret)
13088
		return ret;
3031 serge 13089
 
6084 serge 13090
	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13091
		struct intel_crtc_state *pipe_config =
13092
			to_intel_crtc_state(crtc_state);
3031 serge 13093
 
6084 serge 13094
		memset(&to_intel_crtc(crtc)->atomic, 0,
13095
		       sizeof(struct intel_crtc_atomic_commit));
5060 serge 13096
 
6084 serge 13097
		/* Catch I915_MODE_FLAG_INHERITED */
13098
		if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13099
			crtc_state->mode_changed = true;
3031 serge 13100
 
6084 serge 13101
		if (!crtc_state->enable) {
13102
			if (needs_modeset(crtc_state))
13103
				any_ms = true;
13104
			continue;
13105
		}
3031 serge 13106
 
6084 serge 13107
		if (!needs_modeset(crtc_state))
13108
			continue;
5060 serge 13109
 
6084 serge 13110
		/* FIXME: For only active_changed we shouldn't need to do any
13111
		 * state recomputation at all. */
3031 serge 13112
 
6084 serge 13113
		ret = drm_atomic_add_affected_connectors(state, crtc);
13114
		if (ret)
13115
			return ret;
3031 serge 13116
 
6084 serge 13117
		ret = intel_modeset_pipe_config(crtc, pipe_config);
13118
		if (ret)
13119
			return ret;
3031 serge 13120
 
6084 serge 13121
		if (i915.fastboot &&
13122
		    intel_pipe_config_compare(state->dev,
13123
					to_intel_crtc_state(crtc->state),
13124
					pipe_config, true)) {
13125
			crtc_state->mode_changed = false;
13126
			to_intel_crtc_state(crtc_state)->update_pipe = true;
13127
		}
3031 serge 13128
 
6084 serge 13129
		if (needs_modeset(crtc_state)) {
13130
			any_ms = true;
5060 serge 13131
 
6084 serge 13132
			ret = drm_atomic_add_affected_planes(state, crtc);
13133
			if (ret)
13134
				return ret;
13135
		}
5060 serge 13136
 
6084 serge 13137
		intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13138
				       needs_modeset(crtc_state) ?
13139
				       "[modeset]" : "[fastset]");
3031 serge 13140
	}
13141
 
6084 serge 13142
	if (any_ms) {
13143
		ret = intel_modeset_checks(state);
3031 serge 13144
 
6084 serge 13145
		if (ret)
13146
			return ret;
13147
	} else
13148
		to_intel_atomic_state(state)->cdclk =
13149
			to_i915(state->dev)->cdclk_freq;
3746 Serge 13150
 
6084 serge 13151
	return drm_atomic_helper_check_planes(state->dev, state);
3746 Serge 13152
}
13153
 
6084 serge 13154
/**
13155
 * intel_atomic_commit - commit validated state object
13156
 * @dev: DRM device
13157
 * @state: the top-level driver state object
13158
 * @async: asynchronous commit
13159
 *
13160
 * This function commits a top-level state object that has been validated
13161
 * with drm_atomic_helper_check().
13162
 *
13163
 * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13164
 * we can only handle plane-related operations and do not yet support
13165
 * asynchronous commit.
13166
 *
13167
 * RETURNS
13168
 * Zero for success or -errno.
13169
 */
13170
static int intel_atomic_commit(struct drm_device *dev,
13171
			       struct drm_atomic_state *state,
13172
			       bool async)
3031 serge 13173
{
6084 serge 13174
	struct drm_i915_private *dev_priv = dev->dev_private;
13175
	struct drm_crtc *crtc;
13176
	struct drm_crtc_state *crtc_state;
13177
	int ret = 0;
13178
	int i;
13179
	bool any_ms = false;
3031 serge 13180
 
6084 serge 13181
	if (async) {
13182
		DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13183
		return -EINVAL;
3031 serge 13184
	}
13185
 
6084 serge 13186
	ret = drm_atomic_helper_prepare_planes(dev, state);
13187
	if (ret)
13188
		return ret;
3031 serge 13189
 
6084 serge 13190
	drm_atomic_helper_swap_state(dev, state);
4104 Serge 13191
 
6084 serge 13192
	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13193
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 13194
 
6084 serge 13195
		if (!needs_modeset(crtc->state))
13196
			continue;
3031 serge 13197
 
6084 serge 13198
		any_ms = true;
13199
		intel_pre_plane_update(intel_crtc);
3031 serge 13200
 
6084 serge 13201
		if (crtc_state->active) {
13202
			intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13203
			dev_priv->display.crtc_disable(crtc);
13204
			intel_crtc->active = false;
13205
			intel_disable_shared_dpll(intel_crtc);
3031 serge 13206
		}
6084 serge 13207
	}
3031 serge 13208
 
6084 serge 13209
	/* Only after disabling all output pipelines that will be changed can we
13210
	 * update the the output configuration. */
13211
	intel_modeset_update_crtc_state(state);
3031 serge 13212
 
6084 serge 13213
	if (any_ms) {
13214
		intel_shared_dpll_commit(state);
3031 serge 13215
 
6084 serge 13216
		drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13217
		modeset_update_crtc_power_domains(state);
3031 serge 13218
	}
13219
 
6084 serge 13220
	/* Now enable the clocks, plane, pipe, and connectors that we set up. */
13221
	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13222
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13223
		bool modeset = needs_modeset(crtc->state);
13224
		bool update_pipe = !modeset &&
13225
			to_intel_crtc_state(crtc->state)->update_pipe;
13226
		unsigned long put_domains = 0;
5060 serge 13227
 
6084 serge 13228
		if (modeset && crtc->state->active) {
13229
			update_scanline_offset(to_intel_crtc(crtc));
13230
			dev_priv->display.crtc_enable(crtc);
3031 serge 13231
		}
13232
 
6084 serge 13233
		if (update_pipe) {
13234
			put_domains = modeset_get_crtc_power_domains(crtc);
3031 serge 13235
 
6084 serge 13236
			/* make sure intel_modeset_check_state runs */
13237
			any_ms = true;
3031 serge 13238
		}
4560 Serge 13239
 
6084 serge 13240
		if (!modeset)
13241
			intel_pre_plane_update(intel_crtc);
4560 Serge 13242
 
6084 serge 13243
		drm_atomic_helper_commit_planes_on_crtc(crtc_state);
3031 serge 13244
 
6084 serge 13245
		if (put_domains)
13246
			modeset_put_power_domains(dev_priv, put_domains);
5060 serge 13247
 
6084 serge 13248
		intel_post_plane_update(intel_crtc);
5060 serge 13249
	}
13250
 
6084 serge 13251
	/* FIXME: add subpixel order */
3031 serge 13252
 
6084 serge 13253
//   drm_atomic_helper_wait_for_vblanks(dev, state);
5060 serge 13254
 
6084 serge 13255
	drm_atomic_helper_cleanup_planes(dev, state);
5060 serge 13256
 
6084 serge 13257
	if (any_ms)
13258
		intel_modeset_check_state(dev, state);
5060 serge 13259
 
6084 serge 13260
	drm_atomic_state_free(state);
5060 serge 13261
 
6084 serge 13262
	return 0;
5060 serge 13263
}
13264
 
6084 serge 13265
void intel_crtc_restore_mode(struct drm_crtc *crtc)
3031 serge 13266
{
6084 serge 13267
	struct drm_device *dev = crtc->dev;
13268
	struct drm_atomic_state *state;
13269
	struct drm_crtc_state *crtc_state;
3031 serge 13270
	int ret;
13271
 
6084 serge 13272
	state = drm_atomic_state_alloc(dev);
13273
	if (!state) {
13274
		DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13275
			      crtc->base.id);
13276
		return;
3031 serge 13277
	}
13278
 
6084 serge 13279
	state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
3031 serge 13280
 
6084 serge 13281
retry:
13282
	crtc_state = drm_atomic_get_crtc_state(state, crtc);
13283
	ret = PTR_ERR_OR_ZERO(crtc_state);
13284
	if (!ret) {
13285
		if (!crtc_state->active)
13286
			goto out;
3031 serge 13287
 
6084 serge 13288
		crtc_state->mode_changed = true;
13289
		ret = drm_atomic_commit(state);
5354 serge 13290
	}
13291
 
6084 serge 13292
	if (ret == -EDEADLK) {
13293
		drm_atomic_state_clear(state);
13294
		drm_modeset_backoff(state->acquire_ctx);
13295
		goto retry;
3031 serge 13296
	}
13297
 
6084 serge 13298
	if (ret)
13299
out:
13300
		drm_atomic_state_free(state);
13301
}
3031 serge 13302
 
6084 serge 13303
#undef for_each_intel_crtc_masked
5060 serge 13304
 
2330 Serge 13305
static const struct drm_crtc_funcs intel_crtc_funcs = {
13306
	.gamma_set = intel_crtc_gamma_set,
6084 serge 13307
	.set_config = drm_atomic_helper_set_config,
2330 Serge 13308
	.destroy = intel_crtc_destroy,
13309
//	.page_flip = intel_crtc_page_flip,
6084 serge 13310
	.atomic_duplicate_state = intel_crtc_duplicate_state,
13311
	.atomic_destroy_state = intel_crtc_destroy_state,
2330 Serge 13312
};
2327 Serge 13313
 
4104 Serge 13314
static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13315
				      struct intel_shared_dpll *pll,
13316
				      struct intel_dpll_hw_state *hw_state)
3031 serge 13317
{
4104 Serge 13318
	uint32_t val;
3031 serge 13319
 
5354 serge 13320
	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
5060 serge 13321
		return false;
13322
 
4104 Serge 13323
	val = I915_READ(PCH_DPLL(pll->id));
13324
	hw_state->dpll = val;
13325
	hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13326
	hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13327
 
13328
	return val & DPLL_VCO_ENABLE;
13329
}
13330
 
13331
static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13332
				  struct intel_shared_dpll *pll)
13333
{
5354 serge 13334
	I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13335
	I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
4104 Serge 13336
}
13337
 
13338
static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13339
				struct intel_shared_dpll *pll)
13340
{
13341
	/* PCH refclock must be enabled first */
4560 Serge 13342
	ibx_assert_pch_refclk_enabled(dev_priv);
4104 Serge 13343
 
5354 serge 13344
	I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
4104 Serge 13345
 
13346
	/* Wait for the clocks to stabilize. */
13347
	POSTING_READ(PCH_DPLL(pll->id));
13348
	udelay(150);
13349
 
13350
	/* The pixel multiplier can only be updated once the
13351
	 * DPLL is enabled and the clocks are stable.
13352
	 *
13353
	 * So write it again.
13354
	 */
5354 serge 13355
	I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
4104 Serge 13356
	POSTING_READ(PCH_DPLL(pll->id));
13357
	udelay(200);
13358
}
13359
 
13360
static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13361
				 struct intel_shared_dpll *pll)
13362
{
13363
	struct drm_device *dev = dev_priv->dev;
13364
	struct intel_crtc *crtc;
13365
 
13366
	/* Make sure no transcoder isn't still depending on us. */
5060 serge 13367
	for_each_intel_crtc(dev, crtc) {
4104 Serge 13368
		if (intel_crtc_to_shared_dpll(crtc) == pll)
13369
			assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
3031 serge 13370
	}
13371
 
4104 Serge 13372
	I915_WRITE(PCH_DPLL(pll->id), 0);
13373
	POSTING_READ(PCH_DPLL(pll->id));
13374
	udelay(200);
13375
}
13376
 
13377
static char *ibx_pch_dpll_names[] = {
13378
	"PCH DPLL A",
13379
	"PCH DPLL B",
13380
};
13381
 
13382
static void ibx_pch_dpll_init(struct drm_device *dev)
13383
{
13384
	struct drm_i915_private *dev_priv = dev->dev_private;
13385
	int i;
13386
 
13387
	dev_priv->num_shared_dpll = 2;
13388
 
13389
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13390
		dev_priv->shared_dplls[i].id = i;
13391
		dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13392
		dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13393
		dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13394
		dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13395
		dev_priv->shared_dplls[i].get_hw_state =
13396
			ibx_pch_dpll_get_hw_state;
3031 serge 13397
	}
13398
}
13399
 
4104 Serge 13400
static void intel_shared_dpll_init(struct drm_device *dev)
13401
{
13402
	struct drm_i915_private *dev_priv = dev->dev_private;
13403
 
5060 serge 13404
	if (HAS_DDI(dev))
13405
		intel_ddi_pll_init(dev);
13406
	else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4104 Serge 13407
		ibx_pch_dpll_init(dev);
13408
	else
13409
		dev_priv->num_shared_dpll = 0;
13410
 
13411
	BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13412
}
13413
 
6084 serge 13414
/**
13415
 * intel_prepare_plane_fb - Prepare fb for usage on plane
13416
 * @plane: drm plane to prepare for
13417
 * @fb: framebuffer to prepare for presentation
13418
 *
13419
 * Prepares a framebuffer for usage on a display plane.  Generally this
13420
 * involves pinning the underlying object and updating the frontbuffer tracking
13421
 * bits.  Some older platforms need special physical address handling for
13422
 * cursor planes.
13423
 *
13424
 * Returns 0 on success, negative error code on failure.
13425
 */
13426
int
13427
intel_prepare_plane_fb(struct drm_plane *plane,
13428
		       const struct drm_plane_state *new_state)
5060 serge 13429
{
13430
	struct drm_device *dev = plane->dev;
6084 serge 13431
	struct drm_framebuffer *fb = new_state->fb;
13432
	struct intel_plane *intel_plane = to_intel_plane(plane);
13433
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13434
	struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13435
	int ret = 0;
5060 serge 13436
 
6084 serge 13437
	if (!obj)
5060 serge 13438
		return 0;
13439
 
6084 serge 13440
	mutex_lock(&dev->struct_mutex);
5060 serge 13441
 
6084 serge 13442
	if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13443
	    INTEL_INFO(dev)->cursor_needs_physical) {
13444
		int align = IS_I830(dev) ? 16 * 1024 : 256;
13445
        ret = 1;
13446
		if (ret)
13447
			DRM_DEBUG_KMS("failed to attach phys object\n");
13448
	} else {
13449
		ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13450
	}
5060 serge 13451
 
6084 serge 13452
	if (ret == 0)
13453
		i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
5060 serge 13454
 
13455
	mutex_unlock(&dev->struct_mutex);
13456
 
6084 serge 13457
	return ret;
5060 serge 13458
}
13459
 
6084 serge 13460
/**
13461
 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13462
 * @plane: drm plane to clean up for
13463
 * @fb: old framebuffer that was on plane
13464
 *
13465
 * Cleans up a framebuffer that has just been removed from a plane.
13466
 */
13467
void
13468
intel_cleanup_plane_fb(struct drm_plane *plane,
13469
		       const struct drm_plane_state *old_state)
5060 serge 13470
{
6084 serge 13471
	struct drm_device *dev = plane->dev;
13472
	struct drm_i915_gem_object *obj = intel_fb_obj(old_state->fb);
5354 serge 13473
 
6084 serge 13474
	if (!obj)
13475
		return;
13476
 
13477
	if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13478
	    !INTEL_INFO(dev)->cursor_needs_physical) {
13479
		mutex_lock(&dev->struct_mutex);
13480
		intel_unpin_fb_obj(old_state->fb, old_state);
13481
		mutex_unlock(&dev->struct_mutex);
13482
	}
5354 serge 13483
}
13484
 
6084 serge 13485
int
13486
skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
5354 serge 13487
{
6084 serge 13488
	int max_scale;
13489
	struct drm_device *dev;
13490
	struct drm_i915_private *dev_priv;
13491
	int crtc_clock, cdclk;
5060 serge 13492
 
6084 serge 13493
	if (!intel_crtc || !crtc_state)
13494
		return DRM_PLANE_HELPER_NO_SCALING;
5060 serge 13495
 
6084 serge 13496
	dev = intel_crtc->base.dev;
13497
	dev_priv = dev->dev_private;
13498
	crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13499
	cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
5060 serge 13500
 
6084 serge 13501
	if (!crtc_clock || !cdclk)
13502
		return DRM_PLANE_HELPER_NO_SCALING;
13503
 
13504
	/*
13505
	 * skl max scale is lower of:
13506
	 *    close to 3 but not 3, -1 is for that purpose
13507
	 *            or
13508
	 *    cdclk/crtc_clock
13509
	 */
13510
	max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13511
 
13512
	return max_scale;
13513
}
13514
 
13515
static int
13516
intel_check_primary_plane(struct drm_plane *plane,
13517
			  struct intel_crtc_state *crtc_state,
13518
			  struct intel_plane_state *state)
13519
{
13520
	struct drm_crtc *crtc = state->base.crtc;
13521
	struct drm_framebuffer *fb = state->base.fb;
13522
	int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13523
	int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13524
	bool can_position = false;
13525
 
13526
	/* use scaler when colorkey is not required */
13527
	if (INTEL_INFO(plane->dev)->gen >= 9 &&
13528
	    state->ckey.flags == I915_SET_COLORKEY_NONE) {
13529
		min_scale = 1;
13530
		max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13531
		can_position = true;
5354 serge 13532
	}
5060 serge 13533
 
6084 serge 13534
	return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13535
					     &state->dst, &state->clip,
13536
					     min_scale, max_scale,
13537
					     can_position, true,
13538
					     &state->visible);
5354 serge 13539
}
13540
 
13541
static void
13542
intel_commit_primary_plane(struct drm_plane *plane,
13543
			   struct intel_plane_state *state)
13544
{
6084 serge 13545
	struct drm_crtc *crtc = state->base.crtc;
13546
	struct drm_framebuffer *fb = state->base.fb;
13547
	struct drm_device *dev = plane->dev;
5354 serge 13548
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 13549
	struct intel_crtc *intel_crtc;
5354 serge 13550
	struct drm_rect *src = &state->src;
13551
 
6084 serge 13552
	crtc = crtc ? crtc : plane->crtc;
13553
	intel_crtc = to_intel_crtc(crtc);
13554
 
13555
	plane->fb = fb;
5354 serge 13556
	crtc->x = src->x1 >> 16;
13557
	crtc->y = src->y1 >> 16;
13558
 
6084 serge 13559
	if (!crtc->state->active)
13560
		return;
5354 serge 13561
 
6084 serge 13562
	dev_priv->display.update_primary_plane(crtc, fb,
13563
					       state->src.x1 >> 16,
13564
					       state->src.y1 >> 16);
13565
}
5060 serge 13566
 
6084 serge 13567
static void
13568
intel_disable_primary_plane(struct drm_plane *plane,
13569
			    struct drm_crtc *crtc)
13570
{
13571
	struct drm_device *dev = plane->dev;
13572
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 13573
 
6084 serge 13574
	dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13575
}
5060 serge 13576
 
6084 serge 13577
static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13578
				    struct drm_crtc_state *old_crtc_state)
13579
{
13580
	struct drm_device *dev = crtc->dev;
13581
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13582
	struct intel_crtc_state *old_intel_state =
13583
		to_intel_crtc_state(old_crtc_state);
13584
	bool modeset = needs_modeset(crtc->state);
5060 serge 13585
 
6084 serge 13586
	if (intel_crtc->atomic.update_wm_pre)
13587
		intel_update_watermarks(crtc);
5060 serge 13588
 
6084 serge 13589
	/* Perform vblank evasion around commit operation */
13590
	if (crtc->state->active)
13591
		intel_pipe_update_start(intel_crtc);
5354 serge 13592
 
6084 serge 13593
	if (modeset)
13594
		return;
5354 serge 13595
 
6084 serge 13596
	if (to_intel_crtc_state(crtc->state)->update_pipe)
13597
		intel_update_pipe_config(intel_crtc, old_intel_state);
13598
	else if (INTEL_INFO(dev)->gen >= 9)
13599
		skl_detach_scalers(intel_crtc);
5354 serge 13600
}
5060 serge 13601
 
6084 serge 13602
static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13603
				     struct drm_crtc_state *old_crtc_state)
5354 serge 13604
{
13605
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5060 serge 13606
 
6084 serge 13607
	if (crtc->state->active)
13608
		intel_pipe_update_end(intel_crtc);
5060 serge 13609
}
13610
 
6084 serge 13611
/**
13612
 * intel_plane_destroy - destroy a plane
13613
 * @plane: plane to destroy
13614
 *
13615
 * Common destruction function for all types of planes (primary, cursor,
13616
 * sprite).
13617
 */
13618
void intel_plane_destroy(struct drm_plane *plane)
5060 serge 13619
{
13620
	struct intel_plane *intel_plane = to_intel_plane(plane);
13621
	drm_plane_cleanup(plane);
13622
	kfree(intel_plane);
13623
}
13624
 
6084 serge 13625
const struct drm_plane_funcs intel_plane_funcs = {
13626
	.update_plane = drm_atomic_helper_update_plane,
13627
	.disable_plane = drm_atomic_helper_disable_plane,
5060 serge 13628
	.destroy = intel_plane_destroy,
6084 serge 13629
	.set_property = drm_atomic_helper_plane_set_property,
13630
	.atomic_get_property = intel_plane_atomic_get_property,
13631
	.atomic_set_property = intel_plane_atomic_set_property,
13632
	.atomic_duplicate_state = intel_plane_duplicate_state,
13633
	.atomic_destroy_state = intel_plane_destroy_state,
13634
 
5060 serge 13635
};
13636
 
13637
static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13638
						    int pipe)
13639
{
13640
	struct intel_plane *primary;
6084 serge 13641
	struct intel_plane_state *state;
5060 serge 13642
	const uint32_t *intel_primary_formats;
6084 serge 13643
	unsigned int num_formats;
5060 serge 13644
 
13645
	primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13646
	if (primary == NULL)
13647
		return NULL;
13648
 
6084 serge 13649
	state = intel_create_plane_state(&primary->base);
13650
	if (!state) {
13651
		kfree(primary);
13652
		return NULL;
13653
	}
13654
	primary->base.state = &state->base;
13655
 
5060 serge 13656
	primary->can_scale = false;
13657
	primary->max_downscale = 1;
6084 serge 13658
	if (INTEL_INFO(dev)->gen >= 9) {
13659
		primary->can_scale = true;
13660
		state->scaler_id = -1;
13661
	}
5060 serge 13662
	primary->pipe = pipe;
13663
	primary->plane = pipe;
6084 serge 13664
	primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13665
	primary->check_plane = intel_check_primary_plane;
13666
	primary->commit_plane = intel_commit_primary_plane;
13667
	primary->disable_plane = intel_disable_primary_plane;
5060 serge 13668
	if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13669
		primary->plane = !pipe;
13670
 
6084 serge 13671
	if (INTEL_INFO(dev)->gen >= 9) {
13672
		intel_primary_formats = skl_primary_formats;
13673
		num_formats = ARRAY_SIZE(skl_primary_formats);
13674
	} else if (INTEL_INFO(dev)->gen >= 4) {
13675
		intel_primary_formats = i965_primary_formats;
13676
		num_formats = ARRAY_SIZE(i965_primary_formats);
5060 serge 13677
	} else {
6084 serge 13678
		intel_primary_formats = i8xx_primary_formats;
13679
		num_formats = ARRAY_SIZE(i8xx_primary_formats);
5060 serge 13680
	}
13681
 
13682
	drm_universal_plane_init(dev, &primary->base, 0,
6084 serge 13683
				 &intel_plane_funcs,
5060 serge 13684
				 intel_primary_formats, num_formats,
13685
				 DRM_PLANE_TYPE_PRIMARY);
5354 serge 13686
 
6084 serge 13687
	if (INTEL_INFO(dev)->gen >= 4)
13688
		intel_create_rotation_property(dev, primary);
5354 serge 13689
 
6084 serge 13690
	drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13691
 
5060 serge 13692
	return &primary->base;
13693
}
13694
 
6084 serge 13695
void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
5060 serge 13696
{
6084 serge 13697
	if (!dev->mode_config.rotation_property) {
13698
		unsigned long flags = BIT(DRM_ROTATE_0) |
13699
			BIT(DRM_ROTATE_180);
5060 serge 13700
 
6084 serge 13701
		if (INTEL_INFO(dev)->gen >= 9)
13702
			flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
5060 serge 13703
 
6084 serge 13704
		dev->mode_config.rotation_property =
13705
			drm_mode_create_rotation_property(dev, flags);
13706
	}
13707
	if (dev->mode_config.rotation_property)
13708
		drm_object_attach_property(&plane->base.base,
13709
				dev->mode_config.rotation_property,
13710
				plane->base.state->rotation);
5060 serge 13711
}
13712
 
13713
static int
5354 serge 13714
intel_check_cursor_plane(struct drm_plane *plane,
6084 serge 13715
			 struct intel_crtc_state *crtc_state,
5354 serge 13716
			 struct intel_plane_state *state)
5060 serge 13717
{
6084 serge 13718
	struct drm_crtc *crtc = crtc_state->base.crtc;
13719
	struct drm_framebuffer *fb = state->base.fb;
5354 serge 13720
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6084 serge 13721
	enum pipe pipe = to_intel_plane(plane)->pipe;
5354 serge 13722
	unsigned stride;
5060 serge 13723
	int ret;
13724
 
6084 serge 13725
	ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13726
					    &state->dst, &state->clip,
5060 serge 13727
					    DRM_PLANE_HELPER_NO_SCALING,
13728
					    DRM_PLANE_HELPER_NO_SCALING,
5354 serge 13729
					    true, true, &state->visible);
5060 serge 13730
	if (ret)
13731
		return ret;
13732
 
5354 serge 13733
	/* if we want to turn off the cursor ignore width and height */
13734
	if (!obj)
13735
		return 0;
13736
 
13737
	/* Check for which cursor types we support */
6084 serge 13738
	if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13739
		DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13740
			  state->base.crtc_w, state->base.crtc_h);
5354 serge 13741
		return -EINVAL;
13742
	}
13743
 
6084 serge 13744
	stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13745
	if (obj->base.size < stride * state->base.crtc_h) {
5354 serge 13746
		DRM_DEBUG_KMS("buffer is too small\n");
13747
		return -ENOMEM;
13748
	}
13749
 
6084 serge 13750
	if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
5354 serge 13751
		DRM_DEBUG_KMS("cursor cannot be tiled\n");
6084 serge 13752
		return -EINVAL;
5354 serge 13753
	}
13754
 
6084 serge 13755
	/*
13756
	 * There's something wrong with the cursor on CHV pipe C.
13757
	 * If it straddles the left edge of the screen then
13758
	 * moving it away from the edge or disabling it often
13759
	 * results in a pipe underrun, and often that can lead to
13760
	 * dead pipe (constant underrun reported, and it scans
13761
	 * out just a solid color). To recover from that, the
13762
	 * display power well must be turned off and on again.
13763
	 * Refuse the put the cursor into that compromised position.
13764
	 */
13765
	if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
13766
	    state->visible && state->base.crtc_x < 0) {
13767
		DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
13768
		return -EINVAL;
13769
	}
13770
 
13771
	return 0;
5354 serge 13772
}
13773
 
6084 serge 13774
static void
13775
intel_disable_cursor_plane(struct drm_plane *plane,
13776
			   struct drm_crtc *crtc)
5354 serge 13777
{
6084 serge 13778
	intel_crtc_update_cursor(crtc, false);
5060 serge 13779
}
5354 serge 13780
 
6084 serge 13781
static void
13782
intel_commit_cursor_plane(struct drm_plane *plane,
13783
			  struct intel_plane_state *state)
5354 serge 13784
{
6084 serge 13785
	struct drm_crtc *crtc = state->base.crtc;
13786
	struct drm_device *dev = plane->dev;
13787
	struct intel_crtc *intel_crtc;
13788
	struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13789
	uint32_t addr;
5354 serge 13790
 
6084 serge 13791
	crtc = crtc ? crtc : plane->crtc;
13792
	intel_crtc = to_intel_crtc(crtc);
5354 serge 13793
 
6084 serge 13794
	if (!obj)
13795
		addr = 0;
13796
	else if (!INTEL_INFO(dev)->cursor_needs_physical)
13797
		addr = i915_gem_obj_ggtt_offset(obj);
13798
	else
13799
		addr = obj->phys_handle->busaddr;
5354 serge 13800
 
6084 serge 13801
	intel_crtc->cursor_addr = addr;
5354 serge 13802
 
6084 serge 13803
	if (crtc->state->active)
13804
		intel_crtc_update_cursor(crtc, state->visible);
5354 serge 13805
}
13806
 
5060 serge 13807
static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13808
						   int pipe)
13809
{
13810
	struct intel_plane *cursor;
6084 serge 13811
	struct intel_plane_state *state;
5060 serge 13812
 
13813
	cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13814
	if (cursor == NULL)
13815
		return NULL;
13816
 
6084 serge 13817
	state = intel_create_plane_state(&cursor->base);
13818
	if (!state) {
13819
		kfree(cursor);
13820
		return NULL;
13821
	}
13822
	cursor->base.state = &state->base;
13823
 
5060 serge 13824
	cursor->can_scale = false;
13825
	cursor->max_downscale = 1;
13826
	cursor->pipe = pipe;
13827
	cursor->plane = pipe;
6084 serge 13828
	cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13829
	cursor->check_plane = intel_check_cursor_plane;
13830
	cursor->commit_plane = intel_commit_cursor_plane;
13831
	cursor->disable_plane = intel_disable_cursor_plane;
5060 serge 13832
 
13833
	drm_universal_plane_init(dev, &cursor->base, 0,
6084 serge 13834
				 &intel_plane_funcs,
5060 serge 13835
				 intel_cursor_formats,
13836
				 ARRAY_SIZE(intel_cursor_formats),
13837
				 DRM_PLANE_TYPE_CURSOR);
5354 serge 13838
 
13839
	if (INTEL_INFO(dev)->gen >= 4) {
13840
		if (!dev->mode_config.rotation_property)
13841
			dev->mode_config.rotation_property =
13842
				drm_mode_create_rotation_property(dev,
13843
							BIT(DRM_ROTATE_0) |
13844
							BIT(DRM_ROTATE_180));
13845
		if (dev->mode_config.rotation_property)
13846
			drm_object_attach_property(&cursor->base.base,
13847
				dev->mode_config.rotation_property,
6084 serge 13848
				state->base.rotation);
5354 serge 13849
	}
13850
 
6084 serge 13851
	if (INTEL_INFO(dev)->gen >=9)
13852
		state->scaler_id = -1;
13853
 
13854
	drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13855
 
5060 serge 13856
	return &cursor->base;
13857
}
13858
 
6084 serge 13859
static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13860
	struct intel_crtc_state *crtc_state)
13861
{
13862
	int i;
13863
	struct intel_scaler *intel_scaler;
13864
	struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13865
 
13866
	for (i = 0; i < intel_crtc->num_scalers; i++) {
13867
		intel_scaler = &scaler_state->scalers[i];
13868
		intel_scaler->in_use = 0;
13869
		intel_scaler->mode = PS_SCALER_MODE_DYN;
13870
	}
13871
 
13872
	scaler_state->scaler_id = -1;
13873
}
13874
 
2330 Serge 13875
static void intel_crtc_init(struct drm_device *dev, int pipe)
13876
{
5060 serge 13877
	struct drm_i915_private *dev_priv = dev->dev_private;
2330 Serge 13878
	struct intel_crtc *intel_crtc;
6084 serge 13879
	struct intel_crtc_state *crtc_state = NULL;
5060 serge 13880
	struct drm_plane *primary = NULL;
13881
	struct drm_plane *cursor = NULL;
13882
	int i, ret;
2327 Serge 13883
 
4560 Serge 13884
	intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
2330 Serge 13885
	if (intel_crtc == NULL)
13886
		return;
2327 Serge 13887
 
6084 serge 13888
	crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13889
	if (!crtc_state)
13890
		goto fail;
13891
	intel_crtc->config = crtc_state;
13892
	intel_crtc->base.state = &crtc_state->base;
13893
	crtc_state->base.crtc = &intel_crtc->base;
13894
 
13895
	/* initialize shared scalers */
13896
	if (INTEL_INFO(dev)->gen >= 9) {
13897
		if (pipe == PIPE_C)
13898
			intel_crtc->num_scalers = 1;
13899
		else
13900
			intel_crtc->num_scalers = SKL_NUM_SCALERS;
13901
 
13902
		skl_init_scalers(dev, intel_crtc, crtc_state);
13903
	}
13904
 
5060 serge 13905
	primary = intel_primary_plane_create(dev, pipe);
13906
	if (!primary)
13907
		goto fail;
2327 Serge 13908
 
5060 serge 13909
	cursor = intel_cursor_plane_create(dev, pipe);
13910
	if (!cursor)
13911
		goto fail;
13912
 
13913
	ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13914
					cursor, &intel_crtc_funcs);
13915
	if (ret)
13916
		goto fail;
13917
 
2330 Serge 13918
	drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13919
	for (i = 0; i < 256; i++) {
13920
		intel_crtc->lut_r[i] = i;
13921
		intel_crtc->lut_g[i] = i;
13922
		intel_crtc->lut_b[i] = i;
13923
	}
2327 Serge 13924
 
4560 Serge 13925
	/*
13926
	 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
5060 serge 13927
	 * is hooked to pipe B. Hence we want plane A feeding pipe B.
4560 Serge 13928
	 */
2330 Serge 13929
	intel_crtc->pipe = pipe;
13930
	intel_crtc->plane = pipe;
4560 Serge 13931
	if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
2330 Serge 13932
		DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13933
		intel_crtc->plane = !pipe;
13934
	}
2327 Serge 13935
 
5060 serge 13936
	intel_crtc->cursor_base = ~0;
13937
	intel_crtc->cursor_cntl = ~0;
5354 serge 13938
	intel_crtc->cursor_size = ~0;
5060 serge 13939
 
6084 serge 13940
	intel_crtc->wm.cxsr_allowed = true;
13941
 
2330 Serge 13942
	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13943
	       dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13944
	dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13945
	dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
2327 Serge 13946
 
2330 Serge 13947
	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5060 serge 13948
 
13949
	WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13950
	return;
13951
 
13952
fail:
13953
	if (primary)
13954
		drm_plane_cleanup(primary);
13955
	if (cursor)
13956
		drm_plane_cleanup(cursor);
6084 serge 13957
	kfree(crtc_state);
5060 serge 13958
	kfree(intel_crtc);
2330 Serge 13959
}
2327 Serge 13960
 
4560 Serge 13961
enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13962
{
13963
	struct drm_encoder *encoder = connector->base.encoder;
5060 serge 13964
	struct drm_device *dev = connector->base.dev;
4560 Serge 13965
 
5060 serge 13966
	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4560 Serge 13967
 
5354 serge 13968
	if (!encoder || WARN_ON(!encoder->crtc))
4560 Serge 13969
		return INVALID_PIPE;
13970
 
13971
	return to_intel_crtc(encoder->crtc)->pipe;
13972
}
13973
 
3031 serge 13974
int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13975
				struct drm_file *file)
13976
{
13977
	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5060 serge 13978
	struct drm_crtc *drmmode_crtc;
3031 serge 13979
	struct intel_crtc *crtc;
2327 Serge 13980
 
5060 serge 13981
	drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
2327 Serge 13982
 
5060 serge 13983
	if (!drmmode_crtc) {
3031 serge 13984
		DRM_ERROR("no such CRTC id\n");
4560 Serge 13985
		return -ENOENT;
3031 serge 13986
	}
2327 Serge 13987
 
5060 serge 13988
	crtc = to_intel_crtc(drmmode_crtc);
3031 serge 13989
	pipe_from_crtc_id->pipe = crtc->pipe;
2327 Serge 13990
 
3031 serge 13991
	return 0;
13992
}
2327 Serge 13993
 
3031 serge 13994
static int intel_encoder_clones(struct intel_encoder *encoder)
2330 Serge 13995
{
3031 serge 13996
	struct drm_device *dev = encoder->base.dev;
13997
	struct intel_encoder *source_encoder;
2330 Serge 13998
	int index_mask = 0;
13999
	int entry = 0;
2327 Serge 14000
 
5354 serge 14001
	for_each_intel_encoder(dev, source_encoder) {
5060 serge 14002
		if (encoders_cloneable(encoder, source_encoder))
2330 Serge 14003
			index_mask |= (1 << entry);
3031 serge 14004
 
2330 Serge 14005
		entry++;
14006
	}
2327 Serge 14007
 
2330 Serge 14008
	return index_mask;
14009
}
2327 Serge 14010
 
2330 Serge 14011
static bool has_edp_a(struct drm_device *dev)
14012
{
14013
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 14014
 
2330 Serge 14015
	if (!IS_MOBILE(dev))
14016
		return false;
2327 Serge 14017
 
2330 Serge 14018
	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14019
		return false;
2327 Serge 14020
 
5060 serge 14021
	if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
2330 Serge 14022
		return false;
2327 Serge 14023
 
2330 Serge 14024
	return true;
14025
}
2327 Serge 14026
 
5060 serge 14027
static bool intel_crt_present(struct drm_device *dev)
14028
{
14029
	struct drm_i915_private *dev_priv = dev->dev_private;
14030
 
5354 serge 14031
	if (INTEL_INFO(dev)->gen >= 9)
5060 serge 14032
		return false;
14033
 
5354 serge 14034
	if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14035
		return false;
14036
 
5060 serge 14037
	if (IS_CHERRYVIEW(dev))
14038
		return false;
14039
 
14040
	if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
14041
		return false;
14042
 
14043
	return true;
14044
}
14045
 
2330 Serge 14046
static void intel_setup_outputs(struct drm_device *dev)
14047
{
14048
	struct drm_i915_private *dev_priv = dev->dev_private;
14049
	struct intel_encoder *encoder;
14050
	bool dpd_is_edp = false;
2327 Serge 14051
 
4104 Serge 14052
	intel_lvds_init(dev);
2327 Serge 14053
 
5060 serge 14054
	if (intel_crt_present(dev))
6084 serge 14055
		intel_crt_init(dev);
2327 Serge 14056
 
6084 serge 14057
	if (IS_BROXTON(dev)) {
14058
		/*
14059
		 * FIXME: Broxton doesn't support port detection via the
14060
		 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14061
		 * detect the ports.
14062
		 */
14063
		intel_ddi_init(dev, PORT_A);
14064
		intel_ddi_init(dev, PORT_B);
14065
		intel_ddi_init(dev, PORT_C);
14066
	} else if (HAS_DDI(dev)) {
2330 Serge 14067
		int found;
2327 Serge 14068
 
6084 serge 14069
		/*
14070
		 * Haswell uses DDI functions to detect digital outputs.
14071
		 * On SKL pre-D0 the strap isn't connected, so we assume
14072
		 * it's there.
14073
		 */
14074
		found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14075
		/* WaIgnoreDDIAStrap: skl */
14076
		if (found || IS_SKYLAKE(dev))
3031 serge 14077
			intel_ddi_init(dev, PORT_A);
14078
 
14079
		/* DDI B, C and D detection is indicated by the SFUSE_STRAP
14080
		 * register */
14081
		found = I915_READ(SFUSE_STRAP);
14082
 
14083
		if (found & SFUSE_STRAP_DDIB_DETECTED)
14084
			intel_ddi_init(dev, PORT_B);
14085
		if (found & SFUSE_STRAP_DDIC_DETECTED)
14086
			intel_ddi_init(dev, PORT_C);
14087
		if (found & SFUSE_STRAP_DDID_DETECTED)
14088
			intel_ddi_init(dev, PORT_D);
6084 serge 14089
		/*
14090
		 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14091
		 */
14092
		if (IS_SKYLAKE(dev) &&
14093
		    (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14094
		     dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14095
		     dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14096
			intel_ddi_init(dev, PORT_E);
14097
 
3031 serge 14098
	} else if (HAS_PCH_SPLIT(dev)) {
14099
		int found;
4560 Serge 14100
		dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
3031 serge 14101
 
3243 Serge 14102
		if (has_edp_a(dev))
14103
			intel_dp_init(dev, DP_A, PORT_A);
14104
 
3746 Serge 14105
		if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
2330 Serge 14106
			/* PCH SDVOB multiplex with HDMIB */
3031 serge 14107
			found = intel_sdvo_init(dev, PCH_SDVOB, true);
2330 Serge 14108
			if (!found)
3746 Serge 14109
				intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
2330 Serge 14110
			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
3031 serge 14111
				intel_dp_init(dev, PCH_DP_B, PORT_B);
2330 Serge 14112
		}
2327 Serge 14113
 
3746 Serge 14114
		if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14115
			intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
2327 Serge 14116
 
3746 Serge 14117
		if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14118
			intel_hdmi_init(dev, PCH_HDMID, PORT_D);
2327 Serge 14119
 
2330 Serge 14120
		if (I915_READ(PCH_DP_C) & DP_DETECTED)
3031 serge 14121
			intel_dp_init(dev, PCH_DP_C, PORT_C);
2327 Serge 14122
 
3243 Serge 14123
		if (I915_READ(PCH_DP_D) & DP_DETECTED)
3031 serge 14124
			intel_dp_init(dev, PCH_DP_D, PORT_D);
14125
	} else if (IS_VALLEYVIEW(dev)) {
5354 serge 14126
		/*
14127
		 * The DP_DETECTED bit is the latched state of the DDC
14128
		 * SDA pin at boot. However since eDP doesn't require DDC
14129
		 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14130
		 * eDP ports may have been muxed to an alternate function.
14131
		 * Thus we can't rely on the DP_DETECTED bit alone to detect
14132
		 * eDP ports. Consult the VBT as well as DP_DETECTED to
14133
		 * detect eDP ports.
14134
		 */
6084 serge 14135
		if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14136
		    !intel_dp_is_edp(dev, PORT_B))
14137
			intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14138
		if (I915_READ(VLV_DP_B) & DP_DETECTED ||
5354 serge 14139
		    intel_dp_is_edp(dev, PORT_B))
6084 serge 14140
			intel_dp_init(dev, VLV_DP_B, PORT_B);
4560 Serge 14141
 
6084 serge 14142
		if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14143
		    !intel_dp_is_edp(dev, PORT_C))
14144
			intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14145
		if (I915_READ(VLV_DP_C) & DP_DETECTED ||
5354 serge 14146
		    intel_dp_is_edp(dev, PORT_C))
6084 serge 14147
			intel_dp_init(dev, VLV_DP_C, PORT_C);
3243 Serge 14148
 
5060 serge 14149
		if (IS_CHERRYVIEW(dev)) {
5354 serge 14150
			/* eDP not supported on port D, so don't check VBT */
6084 serge 14151
			if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14152
				intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14153
			if (I915_READ(CHV_DP_D) & DP_DETECTED)
14154
				intel_dp_init(dev, CHV_DP_D, PORT_D);
14155
		}
5060 serge 14156
 
4560 Serge 14157
		intel_dsi_init(dev);
6084 serge 14158
	} else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
2330 Serge 14159
		bool found = false;
2327 Serge 14160
 
3746 Serge 14161
		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
2330 Serge 14162
			DRM_DEBUG_KMS("probing SDVOB\n");
3746 Serge 14163
			found = intel_sdvo_init(dev, GEN3_SDVOB, true);
6084 serge 14164
			if (!found && IS_G4X(dev)) {
2330 Serge 14165
				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
3746 Serge 14166
				intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
2330 Serge 14167
			}
2327 Serge 14168
 
6084 serge 14169
			if (!found && IS_G4X(dev))
3031 serge 14170
				intel_dp_init(dev, DP_B, PORT_B);
6084 serge 14171
		}
2327 Serge 14172
 
2330 Serge 14173
		/* Before G4X SDVOC doesn't have its own detect register */
2327 Serge 14174
 
3746 Serge 14175
		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
2330 Serge 14176
			DRM_DEBUG_KMS("probing SDVOC\n");
3746 Serge 14177
			found = intel_sdvo_init(dev, GEN3_SDVOC, false);
2330 Serge 14178
		}
2327 Serge 14179
 
3746 Serge 14180
		if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
2327 Serge 14181
 
6084 serge 14182
			if (IS_G4X(dev)) {
2330 Serge 14183
				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
3746 Serge 14184
				intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
2330 Serge 14185
			}
6084 serge 14186
			if (IS_G4X(dev))
3031 serge 14187
				intel_dp_init(dev, DP_C, PORT_C);
6084 serge 14188
		}
2327 Serge 14189
 
6084 serge 14190
		if (IS_G4X(dev) &&
4104 Serge 14191
		    (I915_READ(DP_D) & DP_DETECTED))
3031 serge 14192
			intel_dp_init(dev, DP_D, PORT_D);
2330 Serge 14193
	} else if (IS_GEN2(dev))
14194
		intel_dvo_init(dev);
2327 Serge 14195
 
5354 serge 14196
	intel_psr_init(dev);
5060 serge 14197
 
5354 serge 14198
	for_each_intel_encoder(dev, encoder) {
2330 Serge 14199
		encoder->base.possible_crtcs = encoder->crtc_mask;
14200
		encoder->base.possible_clones =
3031 serge 14201
			intel_encoder_clones(encoder);
2330 Serge 14202
	}
2327 Serge 14203
 
3243 Serge 14204
	intel_init_pch_refclk(dev);
14205
 
14206
	drm_helper_move_panel_connectors_to_head(dev);
2330 Serge 14207
}
14208
 
6084 serge 14209
static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14210
{
14211
	struct drm_device *dev = fb->dev;
14212
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2330 Serge 14213
 
6084 serge 14214
	drm_framebuffer_cleanup(fb);
14215
	mutex_lock(&dev->struct_mutex);
14216
	WARN_ON(!intel_fb->obj->framebuffer_references--);
14217
	drm_gem_object_unreference(&intel_fb->obj->base);
14218
	mutex_unlock(&dev->struct_mutex);
14219
	kfree(intel_fb);
14220
}
2330 Serge 14221
 
6084 serge 14222
static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14223
						struct drm_file *file,
14224
						unsigned int *handle)
14225
{
14226
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14227
	struct drm_i915_gem_object *obj = intel_fb->obj;
14228
 
14229
	if (obj->userptr.mm) {
14230
		DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14231
		return -EINVAL;
14232
	}
14233
 
14234
	return drm_gem_handle_create(file, &obj->base, handle);
14235
}
14236
 
14237
static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14238
					struct drm_file *file,
14239
					unsigned flags, unsigned color,
14240
					struct drm_clip_rect *clips,
14241
					unsigned num_clips)
14242
{
14243
	struct drm_device *dev = fb->dev;
14244
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14245
	struct drm_i915_gem_object *obj = intel_fb->obj;
14246
 
14247
	mutex_lock(&dev->struct_mutex);
14248
	intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14249
	mutex_unlock(&dev->struct_mutex);
14250
 
14251
	return 0;
14252
}
14253
 
2335 Serge 14254
static const struct drm_framebuffer_funcs intel_fb_funcs = {
6084 serge 14255
	.destroy = intel_user_framebuffer_destroy,
14256
	.create_handle = intel_user_framebuffer_create_handle,
14257
	.dirty = intel_user_framebuffer_dirty,
2335 Serge 14258
};
2327 Serge 14259
 
6084 serge 14260
static
14261
u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14262
			 uint32_t pixel_format)
14263
{
14264
	u32 gen = INTEL_INFO(dev)->gen;
14265
 
14266
	if (gen >= 9) {
14267
		/* "The stride in bytes must not exceed the of the size of 8K
14268
		 *  pixels and 32K bytes."
14269
		 */
14270
		 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14271
	} else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14272
		return 32*1024;
14273
	} else if (gen >= 4) {
14274
		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14275
			return 16*1024;
14276
		else
14277
			return 32*1024;
14278
	} else if (gen >= 3) {
14279
		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14280
			return 8*1024;
14281
		else
14282
			return 16*1024;
14283
	} else {
14284
		/* XXX DSPC is limited to 4k tiled */
14285
		return 8*1024;
14286
	}
14287
}
14288
 
5060 serge 14289
static int intel_framebuffer_init(struct drm_device *dev,
6084 serge 14290
				  struct intel_framebuffer *intel_fb,
14291
				  struct drm_mode_fb_cmd2 *mode_cmd,
14292
				  struct drm_i915_gem_object *obj)
2335 Serge 14293
{
6084 serge 14294
	unsigned int aligned_height;
2335 Serge 14295
	int ret;
6084 serge 14296
	u32 pitch_limit, stride_alignment;
2327 Serge 14297
 
4560 Serge 14298
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14299
 
6084 serge 14300
	if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14301
		/* Enforce that fb modifier and tiling mode match, but only for
14302
		 * X-tiled. This is needed for FBC. */
14303
		if (!!(obj->tiling_mode == I915_TILING_X) !=
14304
		    !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14305
			DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14306
			return -EINVAL;
14307
		}
14308
	} else {
14309
		if (obj->tiling_mode == I915_TILING_X)
14310
			mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14311
		else if (obj->tiling_mode == I915_TILING_Y) {
14312
			DRM_DEBUG("No Y tiling for legacy addfb\n");
14313
			return -EINVAL;
14314
		}
14315
	}
14316
 
14317
	/* Passed in modifier sanity checking. */
14318
	switch (mode_cmd->modifier[0]) {
14319
	case I915_FORMAT_MOD_Y_TILED:
14320
	case I915_FORMAT_MOD_Yf_TILED:
14321
		if (INTEL_INFO(dev)->gen < 9) {
14322
			DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14323
				  mode_cmd->modifier[0]);
14324
			return -EINVAL;
14325
		}
14326
	case DRM_FORMAT_MOD_NONE:
14327
	case I915_FORMAT_MOD_X_TILED:
14328
		break;
14329
	default:
14330
		DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14331
			  mode_cmd->modifier[0]);
2335 Serge 14332
		return -EINVAL;
3243 Serge 14333
	}
2327 Serge 14334
 
6084 serge 14335
	stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14336
						     mode_cmd->pixel_format);
14337
	if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14338
		DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14339
			  mode_cmd->pitches[0], stride_alignment);
3243 Serge 14340
		return -EINVAL;
14341
	}
14342
 
6084 serge 14343
	pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14344
					   mode_cmd->pixel_format);
4104 Serge 14345
	if (mode_cmd->pitches[0] > pitch_limit) {
6084 serge 14346
		DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14347
			  mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14348
			  "tiled" : "linear",
4104 Serge 14349
			  mode_cmd->pitches[0], pitch_limit);
3243 Serge 14350
		return -EINVAL;
14351
	}
14352
 
6084 serge 14353
	if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
3243 Serge 14354
	    mode_cmd->pitches[0] != obj->stride) {
14355
		DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14356
			  mode_cmd->pitches[0], obj->stride);
6084 serge 14357
		return -EINVAL;
3243 Serge 14358
	}
2327 Serge 14359
 
3243 Serge 14360
	/* Reject formats not supported by any plane early. */
2342 Serge 14361
	switch (mode_cmd->pixel_format) {
3243 Serge 14362
	case DRM_FORMAT_C8:
2342 Serge 14363
	case DRM_FORMAT_RGB565:
14364
	case DRM_FORMAT_XRGB8888:
3243 Serge 14365
	case DRM_FORMAT_ARGB8888:
14366
		break;
14367
	case DRM_FORMAT_XRGB1555:
14368
		if (INTEL_INFO(dev)->gen > 3) {
4104 Serge 14369
			DRM_DEBUG("unsupported pixel format: %s\n",
14370
				  drm_get_format_name(mode_cmd->pixel_format));
3243 Serge 14371
			return -EINVAL;
14372
		}
14373
		break;
6084 serge 14374
	case DRM_FORMAT_ABGR8888:
14375
		if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14376
			DRM_DEBUG("unsupported pixel format: %s\n",
14377
				  drm_get_format_name(mode_cmd->pixel_format));
14378
			return -EINVAL;
14379
		}
14380
		break;
3031 serge 14381
	case DRM_FORMAT_XBGR8888:
2342 Serge 14382
	case DRM_FORMAT_XRGB2101010:
3243 Serge 14383
	case DRM_FORMAT_XBGR2101010:
14384
		if (INTEL_INFO(dev)->gen < 4) {
4104 Serge 14385
			DRM_DEBUG("unsupported pixel format: %s\n",
14386
				  drm_get_format_name(mode_cmd->pixel_format));
3243 Serge 14387
			return -EINVAL;
14388
		}
2335 Serge 14389
		break;
6084 serge 14390
	case DRM_FORMAT_ABGR2101010:
14391
		if (!IS_VALLEYVIEW(dev)) {
14392
			DRM_DEBUG("unsupported pixel format: %s\n",
14393
				  drm_get_format_name(mode_cmd->pixel_format));
14394
			return -EINVAL;
14395
		}
14396
		break;
2342 Serge 14397
	case DRM_FORMAT_YUYV:
14398
	case DRM_FORMAT_UYVY:
14399
	case DRM_FORMAT_YVYU:
14400
	case DRM_FORMAT_VYUY:
3243 Serge 14401
		if (INTEL_INFO(dev)->gen < 5) {
4104 Serge 14402
			DRM_DEBUG("unsupported pixel format: %s\n",
14403
				  drm_get_format_name(mode_cmd->pixel_format));
3243 Serge 14404
			return -EINVAL;
14405
		}
2342 Serge 14406
		break;
2335 Serge 14407
	default:
4104 Serge 14408
		DRM_DEBUG("unsupported pixel format: %s\n",
14409
			  drm_get_format_name(mode_cmd->pixel_format));
2335 Serge 14410
		return -EINVAL;
14411
	}
2327 Serge 14412
 
3243 Serge 14413
	/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14414
	if (mode_cmd->offsets[0] != 0)
14415
		return -EINVAL;
14416
 
6084 serge 14417
	aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14418
					       mode_cmd->pixel_format,
14419
					       mode_cmd->modifier[0]);
4560 Serge 14420
	/* FIXME drm helper for size checks (especially planar formats)? */
14421
	if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14422
		return -EINVAL;
14423
 
3480 Serge 14424
	drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14425
	intel_fb->obj = obj;
4560 Serge 14426
	intel_fb->obj->framebuffer_references++;
3480 Serge 14427
 
2335 Serge 14428
	ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14429
	if (ret) {
14430
		DRM_ERROR("framebuffer init failed %d\n", ret);
14431
		return ret;
14432
	}
2327 Serge 14433
 
2335 Serge 14434
	return 0;
14435
}
2327 Serge 14436
 
6084 serge 14437
static struct drm_framebuffer *
14438
intel_user_framebuffer_create(struct drm_device *dev,
14439
			      struct drm_file *filp,
14440
			      struct drm_mode_fb_cmd2 *user_mode_cmd)
14441
{
14442
	struct drm_i915_gem_object *obj;
14443
	struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14444
 
14445
	obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14446
						mode_cmd.handles[0]));
14447
	if (&obj->base == NULL)
14448
		return ERR_PTR(-ENOENT);
14449
 
14450
	return intel_framebuffer_create(dev, &mode_cmd, obj);
14451
}
14452
 
14453
#ifndef CONFIG_DRM_FBDEV_EMULATION
4560 Serge 14454
static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14455
{
14456
}
14457
#endif
2327 Serge 14458
 
2360 Serge 14459
static const struct drm_mode_config_funcs intel_mode_funcs = {
6084 serge 14460
	.fb_create = intel_user_framebuffer_create,
4560 Serge 14461
	.output_poll_changed = intel_fbdev_output_poll_changed,
6084 serge 14462
	.atomic_check = intel_atomic_check,
14463
	.atomic_commit = intel_atomic_commit,
14464
	.atomic_state_alloc = intel_atomic_state_alloc,
14465
	.atomic_state_clear = intel_atomic_state_clear,
2360 Serge 14466
};
2327 Serge 14467
 
3031 serge 14468
/* Set up chip specific display functions */
14469
static void intel_init_display(struct drm_device *dev)
14470
{
14471
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 14472
 
4104 Serge 14473
	if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14474
		dev_priv->display.find_dpll = g4x_find_best_dpll;
5060 serge 14475
	else if (IS_CHERRYVIEW(dev))
14476
		dev_priv->display.find_dpll = chv_find_best_dpll;
4104 Serge 14477
	else if (IS_VALLEYVIEW(dev))
14478
		dev_priv->display.find_dpll = vlv_find_best_dpll;
14479
	else if (IS_PINEVIEW(dev))
14480
		dev_priv->display.find_dpll = pnv_find_best_dpll;
14481
	else
14482
		dev_priv->display.find_dpll = i9xx_find_best_dpll;
14483
 
6084 serge 14484
	if (INTEL_INFO(dev)->gen >= 9) {
3746 Serge 14485
		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
6084 serge 14486
		dev_priv->display.get_initial_plane_config =
14487
			skylake_get_initial_plane_config;
5354 serge 14488
		dev_priv->display.crtc_compute_clock =
14489
			haswell_crtc_compute_clock;
3243 Serge 14490
		dev_priv->display.crtc_enable = haswell_crtc_enable;
14491
		dev_priv->display.crtc_disable = haswell_crtc_disable;
5060 serge 14492
		dev_priv->display.update_primary_plane =
6084 serge 14493
			skylake_update_primary_plane;
14494
	} else if (HAS_DDI(dev)) {
14495
		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14496
		dev_priv->display.get_initial_plane_config =
14497
			ironlake_get_initial_plane_config;
14498
		dev_priv->display.crtc_compute_clock =
14499
			haswell_crtc_compute_clock;
14500
		dev_priv->display.crtc_enable = haswell_crtc_enable;
14501
		dev_priv->display.crtc_disable = haswell_crtc_disable;
14502
		dev_priv->display.update_primary_plane =
5060 serge 14503
			ironlake_update_primary_plane;
3243 Serge 14504
	} else if (HAS_PCH_SPLIT(dev)) {
3746 Serge 14505
		dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
6084 serge 14506
		dev_priv->display.get_initial_plane_config =
14507
			ironlake_get_initial_plane_config;
5354 serge 14508
		dev_priv->display.crtc_compute_clock =
14509
			ironlake_crtc_compute_clock;
3031 serge 14510
		dev_priv->display.crtc_enable = ironlake_crtc_enable;
14511
		dev_priv->display.crtc_disable = ironlake_crtc_disable;
5060 serge 14512
		dev_priv->display.update_primary_plane =
14513
			ironlake_update_primary_plane;
4104 Serge 14514
	} else if (IS_VALLEYVIEW(dev)) {
14515
		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
6084 serge 14516
		dev_priv->display.get_initial_plane_config =
14517
			i9xx_get_initial_plane_config;
5354 serge 14518
		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
4104 Serge 14519
		dev_priv->display.crtc_enable = valleyview_crtc_enable;
14520
		dev_priv->display.crtc_disable = i9xx_crtc_disable;
5060 serge 14521
		dev_priv->display.update_primary_plane =
14522
			i9xx_update_primary_plane;
3031 serge 14523
	} else {
3746 Serge 14524
		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
6084 serge 14525
		dev_priv->display.get_initial_plane_config =
14526
			i9xx_get_initial_plane_config;
5354 serge 14527
		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
3031 serge 14528
		dev_priv->display.crtc_enable = i9xx_crtc_enable;
14529
		dev_priv->display.crtc_disable = i9xx_crtc_disable;
5060 serge 14530
		dev_priv->display.update_primary_plane =
14531
			i9xx_update_primary_plane;
3031 serge 14532
	}
2327 Serge 14533
 
3031 serge 14534
	/* Returns the core display clock speed */
6084 serge 14535
	if (IS_SKYLAKE(dev))
3031 serge 14536
		dev_priv->display.get_display_clock_speed =
6084 serge 14537
			skylake_get_display_clock_speed;
14538
	else if (IS_BROXTON(dev))
14539
		dev_priv->display.get_display_clock_speed =
14540
			broxton_get_display_clock_speed;
14541
	else if (IS_BROADWELL(dev))
14542
		dev_priv->display.get_display_clock_speed =
14543
			broadwell_get_display_clock_speed;
14544
	else if (IS_HASWELL(dev))
14545
		dev_priv->display.get_display_clock_speed =
14546
			haswell_get_display_clock_speed;
14547
	else if (IS_VALLEYVIEW(dev))
14548
		dev_priv->display.get_display_clock_speed =
3031 serge 14549
			valleyview_get_display_clock_speed;
6084 serge 14550
	else if (IS_GEN5(dev))
3031 serge 14551
		dev_priv->display.get_display_clock_speed =
6084 serge 14552
			ilk_get_display_clock_speed;
14553
	else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14554
		 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14555
		dev_priv->display.get_display_clock_speed =
3031 serge 14556
			i945_get_display_clock_speed;
6084 serge 14557
	else if (IS_GM45(dev))
14558
		dev_priv->display.get_display_clock_speed =
14559
			gm45_get_display_clock_speed;
14560
	else if (IS_CRESTLINE(dev))
14561
		dev_priv->display.get_display_clock_speed =
14562
			i965gm_get_display_clock_speed;
14563
	else if (IS_PINEVIEW(dev))
14564
		dev_priv->display.get_display_clock_speed =
14565
			pnv_get_display_clock_speed;
14566
	else if (IS_G33(dev) || IS_G4X(dev))
14567
		dev_priv->display.get_display_clock_speed =
14568
			g33_get_display_clock_speed;
3031 serge 14569
	else if (IS_I915G(dev))
14570
		dev_priv->display.get_display_clock_speed =
14571
			i915_get_display_clock_speed;
4104 Serge 14572
	else if (IS_I945GM(dev) || IS_845G(dev))
3031 serge 14573
		dev_priv->display.get_display_clock_speed =
14574
			i9xx_misc_get_display_clock_speed;
4104 Serge 14575
	else if (IS_PINEVIEW(dev))
14576
		dev_priv->display.get_display_clock_speed =
14577
			pnv_get_display_clock_speed;
3031 serge 14578
	else if (IS_I915GM(dev))
14579
		dev_priv->display.get_display_clock_speed =
14580
			i915gm_get_display_clock_speed;
14581
	else if (IS_I865G(dev))
14582
		dev_priv->display.get_display_clock_speed =
14583
			i865_get_display_clock_speed;
14584
	else if (IS_I85X(dev))
14585
		dev_priv->display.get_display_clock_speed =
6084 serge 14586
			i85x_get_display_clock_speed;
14587
	else { /* 830 */
14588
		WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
3031 serge 14589
		dev_priv->display.get_display_clock_speed =
14590
			i830_get_display_clock_speed;
6084 serge 14591
	}
2327 Serge 14592
 
6084 serge 14593
	if (IS_GEN5(dev)) {
14594
		dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14595
	} else if (IS_GEN6(dev)) {
14596
		dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14597
	} else if (IS_IVYBRIDGE(dev)) {
14598
		/* FIXME: detect B0+ stepping and use auto training */
14599
		dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
5354 serge 14600
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6084 serge 14601
		dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14602
		if (IS_BROADWELL(dev)) {
14603
			dev_priv->display.modeset_commit_cdclk =
14604
				broadwell_modeset_commit_cdclk;
14605
			dev_priv->display.modeset_calc_cdclk =
14606
				broadwell_modeset_calc_cdclk;
14607
		}
4560 Serge 14608
	} else if (IS_VALLEYVIEW(dev)) {
6084 serge 14609
		dev_priv->display.modeset_commit_cdclk =
14610
			valleyview_modeset_commit_cdclk;
14611
		dev_priv->display.modeset_calc_cdclk =
14612
			valleyview_modeset_calc_cdclk;
14613
	} else if (IS_BROXTON(dev)) {
14614
		dev_priv->display.modeset_commit_cdclk =
14615
			broxton_modeset_commit_cdclk;
14616
		dev_priv->display.modeset_calc_cdclk =
14617
			broxton_modeset_calc_cdclk;
3031 serge 14618
	}
2327 Serge 14619
 
14620
 
14621
 
14622
 
14623
 
5354 serge 14624
 
14625
	mutex_init(&dev_priv->pps_mutex);
3031 serge 14626
}
14627
 
14628
/*
14629
 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14630
 * resume, or other times.  This quirk makes sure that's the case for
14631
 * affected systems.
14632
 */
14633
static void quirk_pipea_force(struct drm_device *dev)
2330 Serge 14634
{
14635
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 14636
 
3031 serge 14637
	dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14638
	DRM_INFO("applying pipe a force quirk\n");
14639
}
2327 Serge 14640
 
5354 serge 14641
static void quirk_pipeb_force(struct drm_device *dev)
14642
{
14643
	struct drm_i915_private *dev_priv = dev->dev_private;
14644
 
14645
	dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14646
	DRM_INFO("applying pipe b force quirk\n");
14647
}
14648
 
3031 serge 14649
/*
14650
 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14651
 */
14652
static void quirk_ssc_force_disable(struct drm_device *dev)
14653
{
14654
	struct drm_i915_private *dev_priv = dev->dev_private;
14655
	dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14656
	DRM_INFO("applying lvds SSC disable quirk\n");
2330 Serge 14657
}
2327 Serge 14658
 
3031 serge 14659
/*
14660
 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14661
 * brightness value
14662
 */
14663
static void quirk_invert_brightness(struct drm_device *dev)
2330 Serge 14664
{
14665
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 14666
	dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14667
	DRM_INFO("applying inverted panel brightness quirk\n");
14668
}
2327 Serge 14669
 
5060 serge 14670
/* Some VBT's incorrectly indicate no backlight is present */
14671
static void quirk_backlight_present(struct drm_device *dev)
14672
{
14673
	struct drm_i915_private *dev_priv = dev->dev_private;
14674
	dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14675
	DRM_INFO("applying backlight present quirk\n");
14676
}
14677
 
3031 serge 14678
struct intel_quirk {
14679
	int device;
14680
	int subsystem_vendor;
14681
	int subsystem_device;
14682
	void (*hook)(struct drm_device *dev);
14683
};
2327 Serge 14684
 
3031 serge 14685
/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14686
struct intel_dmi_quirk {
14687
	void (*hook)(struct drm_device *dev);
14688
	const struct dmi_system_id (*dmi_id_list)[];
14689
};
2327 Serge 14690
 
3031 serge 14691
static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14692
{
14693
	DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14694
	return 1;
2330 Serge 14695
}
2327 Serge 14696
 
3031 serge 14697
static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14698
	{
14699
		.dmi_id_list = &(const struct dmi_system_id[]) {
14700
			{
14701
				.callback = intel_dmi_reverse_brightness,
14702
				.ident = "NCR Corporation",
14703
				.matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14704
					    DMI_MATCH(DMI_PRODUCT_NAME, ""),
14705
				},
14706
			},
14707
			{ }  /* terminating entry */
14708
		},
14709
		.hook = quirk_invert_brightness,
14710
	},
14711
};
2327 Serge 14712
 
3031 serge 14713
static struct intel_quirk intel_quirks[] = {
14714
	/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14715
	{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
2327 Serge 14716
 
3031 serge 14717
	/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14718
	{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
2327 Serge 14719
 
5367 serge 14720
	/* 830 needs to leave pipe A & dpll A up */
14721
	{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14722
 
14723
	/* 830 needs to leave pipe B & dpll B up */
14724
	{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14725
 
3031 serge 14726
	/* Lenovo U160 cannot use SSC on LVDS */
14727
	{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
2327 Serge 14728
 
3031 serge 14729
	/* Sony Vaio Y cannot use SSC on LVDS */
14730
	{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
2327 Serge 14731
 
3031 serge 14732
	/* Acer Aspire 5734Z must invert backlight brightness */
14733
	{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
3480 Serge 14734
 
14735
	/* Acer/eMachines G725 */
14736
	{ 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14737
 
14738
	/* Acer/eMachines e725 */
14739
	{ 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14740
 
14741
	/* Acer/Packard Bell NCL20 */
14742
	{ 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14743
 
14744
	/* Acer Aspire 4736Z */
14745
	{ 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
5060 serge 14746
 
14747
	/* Acer Aspire 5336 */
14748
	{ 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14749
 
14750
	/* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14751
	{ 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14752
 
5097 serge 14753
	/* Acer C720 Chromebook (Core i3 4005U) */
14754
	{ 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14755
 
5354 serge 14756
	/* Apple Macbook 2,1 (Core 2 T7400) */
14757
	{ 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14758
 
6084 serge 14759
	/* Apple Macbook 4,1 */
14760
	{ 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14761
 
5060 serge 14762
	/* Toshiba CB35 Chromebook (Celeron 2955U) */
14763
	{ 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14764
 
14765
	/* HP Chromebook 14 (Celeron 2955U) */
14766
	{ 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
6084 serge 14767
 
14768
	/* Dell Chromebook 11 */
14769
	{ 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14770
 
14771
	/* Dell Chromebook 11 (2015 version) */
14772
	{ 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
3031 serge 14773
};
2327 Serge 14774
 
3031 serge 14775
static void intel_init_quirks(struct drm_device *dev)
2330 Serge 14776
{
3031 serge 14777
	struct pci_dev *d = dev->pdev;
14778
	int i;
2327 Serge 14779
 
3031 serge 14780
	for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14781
		struct intel_quirk *q = &intel_quirks[i];
2327 Serge 14782
 
3031 serge 14783
		if (d->device == q->device &&
14784
		    (d->subsystem_vendor == q->subsystem_vendor ||
14785
		     q->subsystem_vendor == PCI_ANY_ID) &&
14786
		    (d->subsystem_device == q->subsystem_device ||
14787
		     q->subsystem_device == PCI_ANY_ID))
14788
			q->hook(dev);
14789
	}
5097 serge 14790
	for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14791
		if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14792
			intel_dmi_quirks[i].hook(dev);
14793
	}
2330 Serge 14794
}
2327 Serge 14795
 
3031 serge 14796
/* Disable the VGA plane that we never use */
14797
static void i915_disable_vga(struct drm_device *dev)
2330 Serge 14798
{
14799
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 14800
	u8 sr1;
3480 Serge 14801
	u32 vga_reg = i915_vgacntrl_reg(dev);
2327 Serge 14802
 
6084 serge 14803
	/* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
4560 Serge 14804
//	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14805
	outb(SR01, VGA_SR_INDEX);
14806
	sr1 = inb(VGA_SR_DATA);
14807
	outb(sr1 | 1<<5, VGA_SR_DATA);
14808
//	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
3031 serge 14809
	udelay(300);
2327 Serge 14810
 
6084 serge 14811
	I915_WRITE(vga_reg, VGA_DISP_DISABLE);
3031 serge 14812
	POSTING_READ(vga_reg);
2330 Serge 14813
}
14814
 
3031 serge 14815
void intel_modeset_init_hw(struct drm_device *dev)
2342 Serge 14816
{
6084 serge 14817
	intel_update_cdclk(dev);
3031 serge 14818
	intel_prepare_ddi(dev);
14819
	intel_init_clock_gating(dev);
6084 serge 14820
	intel_enable_gt_powersave(dev);
2342 Serge 14821
}
14822
 
3031 serge 14823
void intel_modeset_init(struct drm_device *dev)
2330 Serge 14824
{
3031 serge 14825
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 14826
	int sprite, ret;
14827
	enum pipe pipe;
14828
	struct intel_crtc *crtc;
6084 serge 14829
ENTER();
3031 serge 14830
	drm_mode_config_init(dev);
2330 Serge 14831
 
3031 serge 14832
	dev->mode_config.min_width = 0;
14833
	dev->mode_config.min_height = 0;
2330 Serge 14834
 
3031 serge 14835
	dev->mode_config.preferred_depth = 24;
14836
	dev->mode_config.prefer_shadow = 1;
2330 Serge 14837
 
6084 serge 14838
	dev->mode_config.allow_fb_modifiers = true;
14839
 
3031 serge 14840
	dev->mode_config.funcs = &intel_mode_funcs;
2330 Serge 14841
 
3031 serge 14842
	intel_init_quirks(dev);
2330 Serge 14843
 
3031 serge 14844
	intel_init_pm(dev);
2330 Serge 14845
 
3746 Serge 14846
	if (INTEL_INFO(dev)->num_pipes == 0)
14847
		return;
14848
 
6084 serge 14849
	/*
14850
	 * There may be no VBT; and if the BIOS enabled SSC we can
14851
	 * just keep using it to avoid unnecessary flicker.  Whereas if the
14852
	 * BIOS isn't using it, don't assume it will work even if the VBT
14853
	 * indicates as much.
14854
	 */
14855
	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
14856
		bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14857
					    DREF_SSC1_ENABLE);
14858
 
14859
		if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14860
			DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14861
				     bios_lvds_use_ssc ? "en" : "dis",
14862
				     dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14863
			dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14864
		}
14865
	}
14866
 
3031 serge 14867
	intel_init_display(dev);
2330 Serge 14868
 
3031 serge 14869
	if (IS_GEN2(dev)) {
14870
		dev->mode_config.max_width = 2048;
14871
		dev->mode_config.max_height = 2048;
14872
	} else if (IS_GEN3(dev)) {
14873
		dev->mode_config.max_width = 4096;
14874
		dev->mode_config.max_height = 4096;
14875
	} else {
14876
		dev->mode_config.max_width = 8192;
14877
		dev->mode_config.max_height = 8192;
14878
	}
5060 serge 14879
 
14880
	if (IS_GEN2(dev)) {
14881
		dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14882
		dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14883
	} else {
14884
		dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14885
		dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14886
	}
14887
 
3480 Serge 14888
	dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
2330 Serge 14889
 
3031 serge 14890
	DRM_DEBUG_KMS("%d display pipe%s available.\n",
3746 Serge 14891
		      INTEL_INFO(dev)->num_pipes,
14892
		      INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
2330 Serge 14893
 
5354 serge 14894
	for_each_pipe(dev_priv, pipe) {
5060 serge 14895
		intel_crtc_init(dev, pipe);
6084 serge 14896
		for_each_sprite(dev_priv, pipe, sprite) {
5060 serge 14897
			ret = intel_plane_init(dev, pipe, sprite);
6084 serge 14898
			if (ret)
4104 Serge 14899
				DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
5060 serge 14900
					      pipe_name(pipe), sprite_name(pipe, sprite), ret);
3746 Serge 14901
		}
2330 Serge 14902
	}
14903
 
6084 serge 14904
	intel_update_czclk(dev_priv);
14905
	intel_update_cdclk(dev);
4560 Serge 14906
 
4104 Serge 14907
	intel_shared_dpll_init(dev);
2330 Serge 14908
 
3031 serge 14909
	/* Just disable it once at startup */
14910
	i915_disable_vga(dev);
14911
	intel_setup_outputs(dev);
3480 Serge 14912
 
14913
	/* Just in case the BIOS is doing something questionable. */
6084 serge 14914
	intel_fbc_disable(dev_priv);
2330 Serge 14915
 
5060 serge 14916
	drm_modeset_lock_all(dev);
6084 serge 14917
	intel_modeset_setup_hw_state(dev);
5060 serge 14918
	drm_modeset_unlock_all(dev);
14919
 
14920
	for_each_intel_crtc(dev, crtc) {
6084 serge 14921
		struct intel_initial_plane_config plane_config = {};
14922
 
5060 serge 14923
		if (!crtc->active)
14924
			continue;
14925
 
14926
		/*
14927
		 * Note that reserving the BIOS fb up front prevents us
14928
		 * from stuffing other stolen allocations like the ring
14929
		 * on top.  This prevents some ugliness at boot time, and
14930
		 * can even allow for smooth boot transitions if the BIOS
14931
		 * fb is large enough for the active pipe configuration.
14932
		 */
6084 serge 14933
		dev_priv->display.get_initial_plane_config(crtc,
14934
							   &plane_config);
14935
 
14936
		/*
14937
		 * If the fb is shared between multiple heads, we'll
14938
		 * just get the first one.
14939
		 */
14940
		intel_find_initial_plane_obj(crtc, &plane_config);
14941
		if(!main_fb_obj)
14942
		{
14943
			struct drm_framebuffer *fb;
14944
 
14945
			fb = crtc->base.primary->fb;
14946
			main_fb_obj = intel_fb_obj(fb);
14947
			main_fb_obj->map_and_fenceable=true;
14948
			DRM_DEBUG_KMS("main_fb_obj %p gtt_offset 0x%08lx\n", main_fb_obj, i915_gem_obj_ggtt_offset(main_fb_obj));
5060 serge 14949
		}
6084 serge 14950
 
5060 serge 14951
	}
6084 serge 14952
 
14953
 
14954
LEAVE();
2330 Serge 14955
}
14956
 
3031 serge 14957
static void intel_enable_pipe_a(struct drm_device *dev)
2330 Serge 14958
{
3031 serge 14959
	struct intel_connector *connector;
14960
	struct drm_connector *crt = NULL;
14961
	struct intel_load_detect_pipe load_detect_temp;
5060 serge 14962
	struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
2330 Serge 14963
 
3031 serge 14964
	/* We can't just switch on the pipe A, we need to set things up with a
14965
	 * proper mode and output configuration. As a gross hack, enable pipe A
14966
	 * by enabling the load detect pipe once. */
6084 serge 14967
	for_each_intel_connector(dev, connector) {
3031 serge 14968
		if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14969
			crt = &connector->base;
14970
			break;
2330 Serge 14971
		}
14972
	}
14973
 
3031 serge 14974
	if (!crt)
14975
		return;
2330 Serge 14976
 
5060 serge 14977
	if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
6084 serge 14978
		intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
2327 Serge 14979
}
14980
 
3031 serge 14981
static bool
14982
intel_check_plane_mapping(struct intel_crtc *crtc)
2327 Serge 14983
{
3746 Serge 14984
	struct drm_device *dev = crtc->base.dev;
14985
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 14986
	u32 val;
2327 Serge 14987
 
3746 Serge 14988
	if (INTEL_INFO(dev)->num_pipes == 1)
3031 serge 14989
		return true;
2327 Serge 14990
 
6084 serge 14991
	val = I915_READ(DSPCNTR(!crtc->plane));
2327 Serge 14992
 
3031 serge 14993
	if ((val & DISPLAY_PLANE_ENABLE) &&
14994
	    (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14995
		return false;
2327 Serge 14996
 
3031 serge 14997
	return true;
2327 Serge 14998
}
14999
 
6084 serge 15000
static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15001
{
15002
	struct drm_device *dev = crtc->base.dev;
15003
	struct intel_encoder *encoder;
15004
 
15005
	for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15006
		return true;
15007
 
15008
	return false;
15009
}
15010
 
3031 serge 15011
static void intel_sanitize_crtc(struct intel_crtc *crtc)
2327 Serge 15012
{
3031 serge 15013
	struct drm_device *dev = crtc->base.dev;
2327 Serge 15014
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 15015
	u32 reg;
2327 Serge 15016
 
3031 serge 15017
	/* Clear any frame start delays used for debugging left by the BIOS */
6084 serge 15018
	reg = PIPECONF(crtc->config->cpu_transcoder);
3031 serge 15019
	I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
2327 Serge 15020
 
5060 serge 15021
	/* restore vblank interrupts to correct state */
6084 serge 15022
	drm_crtc_vblank_reset(&crtc->base);
5354 serge 15023
	if (crtc->active) {
6084 serge 15024
		struct intel_plane *plane;
5060 serge 15025
 
6084 serge 15026
		drm_crtc_vblank_on(&crtc->base);
15027
 
15028
		/* Disable everything but the primary plane */
15029
		for_each_intel_plane_on_crtc(dev, crtc, plane) {
15030
			if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15031
				continue;
15032
 
15033
			plane->disable_plane(&plane->base, &crtc->base);
15034
		}
15035
	}
15036
 
3031 serge 15037
	/* We need to sanitize the plane -> pipe mapping first because this will
15038
	 * disable the crtc (and hence change the state) if it is wrong. Note
15039
	 * that gen4+ has a fixed plane -> pipe mapping.  */
15040
	if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15041
		bool plane;
2327 Serge 15042
 
3031 serge 15043
		DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15044
			      crtc->base.base.id);
2327 Serge 15045
 
3031 serge 15046
		/* Pipe has the wrong plane attached and the plane is active.
15047
		 * Temporarily change the plane mapping and disable everything
15048
		 * ...  */
15049
		plane = crtc->plane;
6084 serge 15050
		to_intel_plane_state(crtc->base.primary->state)->visible = true;
3031 serge 15051
		crtc->plane = !plane;
6084 serge 15052
		intel_crtc_disable_noatomic(&crtc->base);
3031 serge 15053
		crtc->plane = plane;
15054
	}
2327 Serge 15055
 
3031 serge 15056
	if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15057
	    crtc->pipe == PIPE_A && !crtc->active) {
15058
		/* BIOS forgot to enable pipe A, this mostly happens after
15059
		 * resume. Force-enable the pipe to fix this, the update_dpms
15060
		 * call below we restore the pipe to the right state, but leave
15061
		 * the required bits on. */
15062
		intel_enable_pipe_a(dev);
15063
	}
2327 Serge 15064
 
3031 serge 15065
	/* Adjust the state of the output pipe according to whether we
15066
	 * have active connectors/encoders. */
6084 serge 15067
	if (!intel_crtc_has_encoders(crtc))
15068
		intel_crtc_disable_noatomic(&crtc->base);
2327 Serge 15069
 
6084 serge 15070
	if (crtc->active != crtc->base.state->active) {
3031 serge 15071
		struct intel_encoder *encoder;
2327 Serge 15072
 
3031 serge 15073
		/* This can happen either due to bugs in the get_hw_state
6084 serge 15074
		 * functions or because of calls to intel_crtc_disable_noatomic,
15075
		 * or because the pipe is force-enabled due to the
3031 serge 15076
		 * pipe A quirk. */
15077
		DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15078
			      crtc->base.base.id,
6084 serge 15079
			      crtc->base.state->enable ? "enabled" : "disabled",
3031 serge 15080
			      crtc->active ? "enabled" : "disabled");
2327 Serge 15081
 
6084 serge 15082
		WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15083
		crtc->base.state->active = crtc->active;
3031 serge 15084
		crtc->base.enabled = crtc->active;
2327 Serge 15085
 
3031 serge 15086
		/* Because we only establish the connector -> encoder ->
15087
		 * crtc links if something is active, this means the
15088
		 * crtc is now deactivated. Break the links. connector
15089
		 * -> encoder links are only establish when things are
15090
		 *  actually up, hence no need to break them. */
15091
		WARN_ON(crtc->active);
2327 Serge 15092
 
6084 serge 15093
		for_each_encoder_on_crtc(dev, &crtc->base, encoder)
3031 serge 15094
			encoder->base.crtc = NULL;
15095
	}
5060 serge 15096
 
5354 serge 15097
	if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
5060 serge 15098
		/*
15099
		 * We start out with underrun reporting disabled to avoid races.
15100
		 * For correct bookkeeping mark this on active crtcs.
15101
		 *
15102
		 * Also on gmch platforms we dont have any hardware bits to
15103
		 * disable the underrun reporting. Which means we need to start
15104
		 * out with underrun reporting disabled also on inactive pipes,
15105
		 * since otherwise we'll complain about the garbage we read when
15106
		 * e.g. coming up after runtime pm.
15107
		 *
15108
		 * No protection against concurrent access is required - at
15109
		 * worst a fifo underrun happens which also sets this to false.
15110
		 */
15111
		crtc->cpu_fifo_underrun_disabled = true;
15112
		crtc->pch_fifo_underrun_disabled = true;
15113
	}
2327 Serge 15114
}
15115
 
3031 serge 15116
static void intel_sanitize_encoder(struct intel_encoder *encoder)
2327 Serge 15117
{
3031 serge 15118
	struct intel_connector *connector;
15119
	struct drm_device *dev = encoder->base.dev;
6084 serge 15120
	bool active = false;
2327 Serge 15121
 
3031 serge 15122
	/* We need to check both for a crtc link (meaning that the
15123
	 * encoder is active and trying to read from a pipe) and the
15124
	 * pipe itself being active. */
15125
	bool has_active_crtc = encoder->base.crtc &&
15126
		to_intel_crtc(encoder->base.crtc)->active;
2327 Serge 15127
 
6084 serge 15128
	for_each_intel_connector(dev, connector) {
15129
		if (connector->base.encoder != &encoder->base)
15130
			continue;
15131
 
15132
		active = true;
15133
		break;
15134
	}
15135
 
15136
	if (active && !has_active_crtc) {
3031 serge 15137
		DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15138
			      encoder->base.base.id,
5060 serge 15139
			      encoder->base.name);
2327 Serge 15140
 
3031 serge 15141
		/* Connector is active, but has no active pipe. This is
15142
		 * fallout from our resume register restoring. Disable
15143
		 * the encoder manually again. */
15144
		if (encoder->base.crtc) {
15145
			DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15146
				      encoder->base.base.id,
5060 serge 15147
				      encoder->base.name);
3031 serge 15148
			encoder->disable(encoder);
5060 serge 15149
			if (encoder->post_disable)
15150
				encoder->post_disable(encoder);
3031 serge 15151
		}
5060 serge 15152
		encoder->base.crtc = NULL;
2327 Serge 15153
 
3031 serge 15154
		/* Inconsistent output/port/pipe state happens presumably due to
15155
		 * a bug in one of the get_hw_state functions. Or someplace else
15156
		 * in our code, like the register restore mess on resume. Clamp
15157
		 * things to off as a safer default. */
6084 serge 15158
		for_each_intel_connector(dev, connector) {
3031 serge 15159
			if (connector->encoder != encoder)
15160
				continue;
5060 serge 15161
			connector->base.dpms = DRM_MODE_DPMS_OFF;
15162
			connector->base.encoder = NULL;
3031 serge 15163
		}
15164
	}
15165
	/* Enabled encoders without active connectors will be fixed in
15166
	 * the crtc fixup. */
2327 Serge 15167
}
15168
 
5060 serge 15169
void i915_redisable_vga_power_on(struct drm_device *dev)
3746 Serge 15170
{
15171
	struct drm_i915_private *dev_priv = dev->dev_private;
15172
	u32 vga_reg = i915_vgacntrl_reg(dev);
15173
 
5060 serge 15174
	if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15175
		DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15176
		i915_disable_vga(dev);
15177
	}
15178
}
15179
 
15180
void i915_redisable_vga(struct drm_device *dev)
15181
{
15182
	struct drm_i915_private *dev_priv = dev->dev_private;
15183
 
4104 Serge 15184
	/* This function can be called both from intel_modeset_setup_hw_state or
15185
	 * at a very early point in our resume sequence, where the power well
15186
	 * structures are not yet restored. Since this function is at a very
15187
	 * paranoid "someone might have enabled VGA while we were not looking"
15188
	 * level, just check if the power well is enabled instead of trying to
15189
	 * follow the "don't touch the power well if we don't need it" policy
15190
	 * the rest of the driver uses. */
5354 serge 15191
	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
4104 Serge 15192
		return;
15193
 
5060 serge 15194
	i915_redisable_vga_power_on(dev);
3746 Serge 15195
}
15196
 
6084 serge 15197
static bool primary_get_hw_state(struct intel_plane *plane)
5060 serge 15198
{
6084 serge 15199
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5060 serge 15200
 
6084 serge 15201
	return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15202
}
5060 serge 15203
 
6084 serge 15204
/* FIXME read out full plane state for all planes */
15205
static void readout_plane_state(struct intel_crtc *crtc)
15206
{
15207
	struct drm_plane *primary = crtc->base.primary;
15208
	struct intel_plane_state *plane_state =
15209
		to_intel_plane_state(primary->state);
15210
 
15211
	plane_state->visible =
15212
		primary_get_hw_state(to_intel_plane(primary));
15213
 
15214
	if (plane_state->visible)
15215
		crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
5060 serge 15216
}
15217
 
4104 Serge 15218
static void intel_modeset_readout_hw_state(struct drm_device *dev)
2332 Serge 15219
{
15220
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 15221
	enum pipe pipe;
15222
	struct intel_crtc *crtc;
15223
	struct intel_encoder *encoder;
15224
	struct intel_connector *connector;
4104 Serge 15225
	int i;
2327 Serge 15226
 
5060 serge 15227
	for_each_intel_crtc(dev, crtc) {
6084 serge 15228
		__drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15229
		memset(crtc->config, 0, sizeof(*crtc->config));
15230
		crtc->config->base.crtc = &crtc->base;
2327 Serge 15231
 
3746 Serge 15232
		crtc->active = dev_priv->display.get_pipe_config(crtc,
6084 serge 15233
								 crtc->config);
2327 Serge 15234
 
6084 serge 15235
		crtc->base.state->active = crtc->active;
3031 serge 15236
		crtc->base.enabled = crtc->active;
2330 Serge 15237
 
6084 serge 15238
		readout_plane_state(crtc);
15239
 
3031 serge 15240
		DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15241
			      crtc->base.base.id,
15242
			      crtc->active ? "enabled" : "disabled");
2339 Serge 15243
	}
2332 Serge 15244
 
4104 Serge 15245
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15246
		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15247
 
5354 serge 15248
		pll->on = pll->get_hw_state(dev_priv, pll,
15249
					    &pll->config.hw_state);
4104 Serge 15250
		pll->active = 0;
5354 serge 15251
		pll->config.crtc_mask = 0;
5060 serge 15252
		for_each_intel_crtc(dev, crtc) {
5354 serge 15253
			if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
4104 Serge 15254
				pll->active++;
5354 serge 15255
				pll->config.crtc_mask |= 1 << crtc->pipe;
15256
			}
4104 Serge 15257
		}
15258
 
5354 serge 15259
		DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15260
			      pll->name, pll->config.crtc_mask, pll->on);
5060 serge 15261
 
5354 serge 15262
		if (pll->config.crtc_mask)
5060 serge 15263
			intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
4104 Serge 15264
	}
15265
 
5354 serge 15266
	for_each_intel_encoder(dev, encoder) {
3031 serge 15267
		pipe = 0;
2332 Serge 15268
 
3031 serge 15269
		if (encoder->get_hw_state(encoder, &pipe)) {
4104 Serge 15270
			crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15271
			encoder->base.crtc = &crtc->base;
6084 serge 15272
			encoder->get_config(encoder, crtc->config);
3031 serge 15273
		} else {
15274
			encoder->base.crtc = NULL;
15275
		}
2332 Serge 15276
 
4560 Serge 15277
		DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
3031 serge 15278
			      encoder->base.base.id,
5060 serge 15279
			      encoder->base.name,
3031 serge 15280
			      encoder->base.crtc ? "enabled" : "disabled",
4560 Serge 15281
			      pipe_name(pipe));
3031 serge 15282
	}
2332 Serge 15283
 
6084 serge 15284
	for_each_intel_connector(dev, connector) {
3031 serge 15285
		if (connector->get_hw_state(connector)) {
15286
			connector->base.dpms = DRM_MODE_DPMS_ON;
15287
			connector->base.encoder = &connector->encoder->base;
15288
		} else {
15289
			connector->base.dpms = DRM_MODE_DPMS_OFF;
15290
			connector->base.encoder = NULL;
15291
		}
15292
		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15293
			      connector->base.base.id,
5060 serge 15294
			      connector->base.name,
3031 serge 15295
			      connector->base.encoder ? "enabled" : "disabled");
2332 Serge 15296
	}
6084 serge 15297
 
15298
	for_each_intel_crtc(dev, crtc) {
15299
		crtc->base.hwmode = crtc->config->base.adjusted_mode;
15300
 
15301
		memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15302
		if (crtc->base.state->active) {
15303
			intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15304
			intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15305
			WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15306
 
15307
			/*
15308
			 * The initial mode needs to be set in order to keep
15309
			 * the atomic core happy. It wants a valid mode if the
15310
			 * crtc's enabled, so we do the above call.
15311
			 *
15312
			 * At this point some state updated by the connectors
15313
			 * in their ->detect() callback has not run yet, so
15314
			 * no recalculation can be done yet.
15315
			 *
15316
			 * Even if we could do a recalculation and modeset
15317
			 * right now it would cause a double modeset if
15318
			 * fbdev or userspace chooses a different initial mode.
15319
			 *
15320
			 * If that happens, someone indicated they wanted a
15321
			 * mode change, which means it's safe to do a full
15322
			 * recalculation.
15323
			 */
15324
			crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15325
 
15326
			drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15327
			update_scanline_offset(crtc);
15328
		}
15329
	}
4104 Serge 15330
}
2332 Serge 15331
 
6084 serge 15332
/* Scan out the current hw modeset state,
15333
 * and sanitizes it to the current state
15334
 */
15335
static void
15336
intel_modeset_setup_hw_state(struct drm_device *dev)
4104 Serge 15337
{
15338
	struct drm_i915_private *dev_priv = dev->dev_private;
15339
	enum pipe pipe;
15340
	struct intel_crtc *crtc;
15341
	struct intel_encoder *encoder;
15342
	int i;
15343
 
15344
	intel_modeset_readout_hw_state(dev);
15345
 
3031 serge 15346
	/* HW state is read out, now we need to sanitize this mess. */
5354 serge 15347
	for_each_intel_encoder(dev, encoder) {
3031 serge 15348
		intel_sanitize_encoder(encoder);
2332 Serge 15349
	}
15350
 
5354 serge 15351
	for_each_pipe(dev_priv, pipe) {
3031 serge 15352
		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15353
		intel_sanitize_crtc(crtc);
6084 serge 15354
		intel_dump_pipe_config(crtc, crtc->config,
15355
				       "[setup_hw_state]");
2332 Serge 15356
	}
15357
 
6084 serge 15358
	intel_modeset_update_connector_atomic_state(dev);
15359
 
4104 Serge 15360
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15361
		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15362
 
15363
		if (!pll->on || pll->active)
15364
			continue;
15365
 
15366
		DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15367
 
15368
		pll->disable(dev_priv, pll);
15369
		pll->on = false;
15370
	}
15371
 
6084 serge 15372
	if (IS_VALLEYVIEW(dev))
15373
		vlv_wm_get_hw_state(dev);
15374
	else if (IS_GEN9(dev))
5354 serge 15375
		skl_wm_get_hw_state(dev);
15376
	else if (HAS_PCH_SPLIT(dev))
4560 Serge 15377
		ilk_wm_get_hw_state(dev);
15378
 
6084 serge 15379
	for_each_intel_crtc(dev, crtc) {
15380
		unsigned long put_domains;
4560 Serge 15381
 
6084 serge 15382
		put_domains = modeset_get_crtc_power_domains(&crtc->base);
15383
		if (WARN_ON(put_domains))
15384
			modeset_put_power_domains(dev_priv, put_domains);
15385
	}
15386
	intel_display_set_init_power(dev_priv, false);
15387
}
3746 Serge 15388
 
6084 serge 15389
void intel_display_resume(struct drm_device *dev)
15390
{
15391
	struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15392
	struct intel_connector *conn;
15393
	struct intel_plane *plane;
15394
	struct drm_crtc *crtc;
15395
	int ret;
15396
 
15397
	if (!state)
15398
		return;
15399
 
15400
	state->acquire_ctx = dev->mode_config.acquire_ctx;
15401
 
15402
	/* preserve complete old state, including dpll */
15403
	intel_atomic_get_shared_dpll_state(state);
15404
 
15405
	for_each_crtc(dev, crtc) {
15406
		struct drm_crtc_state *crtc_state =
15407
			drm_atomic_get_crtc_state(state, crtc);
15408
 
15409
		ret = PTR_ERR_OR_ZERO(crtc_state);
15410
		if (ret)
15411
			goto err;
15412
 
15413
		/* force a restore */
15414
		crtc_state->mode_changed = true;
3243 Serge 15415
	}
2332 Serge 15416
 
6084 serge 15417
	for_each_intel_plane(dev, plane) {
15418
		ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15419
		if (ret)
15420
			goto err;
15421
	}
15422
 
15423
	for_each_intel_connector(dev, conn) {
15424
		ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15425
		if (ret)
15426
			goto err;
15427
	}
15428
 
15429
	intel_modeset_setup_hw_state(dev);
15430
 
15431
	i915_redisable_vga(dev);
15432
	ret = drm_atomic_commit(state);
15433
	if (!ret)
15434
		return;
15435
 
15436
err:
15437
	DRM_ERROR("Restoring old state failed with %i\n", ret);
15438
	drm_atomic_state_free(state);
2332 Serge 15439
}
15440
 
3031 serge 15441
void intel_modeset_gem_init(struct drm_device *dev)
2330 Serge 15442
{
5060 serge 15443
	struct drm_crtc *c;
15444
	struct drm_i915_gem_object *obj;
6084 serge 15445
	int ret;
5060 serge 15446
 
15447
	mutex_lock(&dev->struct_mutex);
15448
	intel_init_gt_powersave(dev);
15449
	mutex_unlock(&dev->struct_mutex);
15450
 
3031 serge 15451
	intel_modeset_init_hw(dev);
2330 Serge 15452
 
3031 serge 15453
//   intel_setup_overlay(dev);
2330 Serge 15454
 
5060 serge 15455
	/*
15456
	 * Make sure any fbs we allocated at startup are properly
15457
	 * pinned & fenced.  When we do the allocation it's too early
15458
	 * for this.
15459
	 */
15460
	for_each_crtc(dev, c) {
15461
		obj = intel_fb_obj(c->primary->fb);
15462
		if (obj == NULL)
15463
			continue;
15464
 
6084 serge 15465
		mutex_lock(&dev->struct_mutex);
15466
		ret = intel_pin_and_fence_fb_obj(c->primary,
15467
						 c->primary->fb,
15468
						 c->primary->state,
15469
						 NULL, NULL);
15470
		mutex_unlock(&dev->struct_mutex);
15471
		if (ret) {
5060 serge 15472
			DRM_ERROR("failed to pin boot fb on pipe %d\n",
15473
				  to_intel_crtc(c)->pipe);
15474
			drm_framebuffer_unreference(c->primary->fb);
15475
			c->primary->fb = NULL;
6084 serge 15476
			c->primary->crtc = c->primary->state->crtc = NULL;
15477
			update_state_fb(c->primary);
15478
			c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
5060 serge 15479
		}
15480
	}
6084 serge 15481
 
15482
	intel_backlight_register(dev);
2330 Serge 15483
}
15484
 
5060 serge 15485
void intel_connector_unregister(struct intel_connector *intel_connector)
15486
{
15487
	struct drm_connector *connector = &intel_connector->base;
15488
 
15489
	intel_panel_destroy_backlight(connector);
15490
	drm_connector_unregister(connector);
15491
}
15492
 
3031 serge 15493
void intel_modeset_cleanup(struct drm_device *dev)
2327 Serge 15494
{
3031 serge 15495
#if 0
15496
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 15497
	struct drm_connector *connector;
2327 Serge 15498
 
5354 serge 15499
	intel_disable_gt_powersave(dev);
15500
 
15501
	intel_backlight_unregister(dev);
15502
 
4104 Serge 15503
	/*
15504
	 * Interrupts and polling as the first thing to avoid creating havoc.
5354 serge 15505
	 * Too much stuff here (turning of connectors, ...) would
4104 Serge 15506
	 * experience fancy races otherwise.
15507
	 */
5354 serge 15508
	intel_irq_uninstall(dev_priv);
5060 serge 15509
 
4104 Serge 15510
	/*
15511
	 * Due to the hpd irq storm handling the hotplug work can re-arm the
15512
	 * poll handlers. Hence disable polling after hpd handling is shut down.
15513
	 */
4560 Serge 15514
	drm_kms_helper_poll_fini(dev);
4104 Serge 15515
 
4560 Serge 15516
	intel_unregister_dsm_handler();
2327 Serge 15517
 
6084 serge 15518
	intel_fbc_disable(dev_priv);
2342 Serge 15519
 
4104 Serge 15520
	/* flush any delayed tasks or pending work */
15521
	flush_scheduled_work();
2327 Serge 15522
 
4560 Serge 15523
	/* destroy the backlight and sysfs files before encoders/connectors */
15524
	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5060 serge 15525
		struct intel_connector *intel_connector;
15526
 
15527
		intel_connector = to_intel_connector(connector);
15528
		intel_connector->unregister(intel_connector);
4560 Serge 15529
	}
2327 Serge 15530
 
3031 serge 15531
	drm_mode_config_cleanup(dev);
5060 serge 15532
 
15533
	intel_cleanup_overlay(dev);
15534
 
15535
	mutex_lock(&dev->struct_mutex);
15536
	intel_cleanup_gt_powersave(dev);
15537
	mutex_unlock(&dev->struct_mutex);
2327 Serge 15538
#endif
15539
}
15540
 
15541
/*
3031 serge 15542
 * Return which encoder is currently attached for connector.
2327 Serge 15543
 */
3031 serge 15544
struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
2327 Serge 15545
{
3031 serge 15546
	return &intel_attached_encoder(connector)->base;
15547
}
2327 Serge 15548
 
3031 serge 15549
void intel_connector_attach_encoder(struct intel_connector *connector,
15550
				    struct intel_encoder *encoder)
15551
{
15552
	connector->encoder = encoder;
15553
	drm_mode_connector_attach_encoder(&connector->base,
15554
					  &encoder->base);
2327 Serge 15555
}
15556
 
15557
/*
3031 serge 15558
 * set vga decode state - true == enable VGA decode
2327 Serge 15559
 */
3031 serge 15560
int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
2327 Serge 15561
{
2330 Serge 15562
	struct drm_i915_private *dev_priv = dev->dev_private;
4539 Serge 15563
	unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
3031 serge 15564
	u16 gmch_ctrl;
2327 Serge 15565
 
5060 serge 15566
	if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15567
		DRM_ERROR("failed to read control word\n");
15568
		return -EIO;
15569
	}
15570
 
15571
	if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15572
		return 0;
15573
 
3031 serge 15574
	if (state)
15575
		gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
2330 Serge 15576
	else
3031 serge 15577
		gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
5060 serge 15578
 
15579
	if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15580
		DRM_ERROR("failed to write control word\n");
15581
		return -EIO;
15582
	}
15583
 
3031 serge 15584
	return 0;
2330 Serge 15585
}
15586
 
3031 serge 15587
#ifdef CONFIG_DEBUG_FS
2327 Serge 15588
 
3031 serge 15589
struct intel_display_error_state {
4104 Serge 15590
 
15591
	u32 power_well_driver;
15592
 
15593
	int num_transcoders;
15594
 
3031 serge 15595
	struct intel_cursor_error_state {
15596
		u32 control;
15597
		u32 position;
15598
		u32 base;
15599
		u32 size;
15600
	} cursor[I915_MAX_PIPES];
2327 Serge 15601
 
3031 serge 15602
	struct intel_pipe_error_state {
4560 Serge 15603
		bool power_domain_on;
3031 serge 15604
		u32 source;
5060 serge 15605
		u32 stat;
3031 serge 15606
	} pipe[I915_MAX_PIPES];
2327 Serge 15607
 
3031 serge 15608
	struct intel_plane_error_state {
15609
		u32 control;
15610
		u32 stride;
15611
		u32 size;
15612
		u32 pos;
15613
		u32 addr;
15614
		u32 surface;
15615
		u32 tile_offset;
15616
	} plane[I915_MAX_PIPES];
4104 Serge 15617
 
15618
	struct intel_transcoder_error_state {
4560 Serge 15619
		bool power_domain_on;
4104 Serge 15620
		enum transcoder cpu_transcoder;
15621
 
15622
		u32 conf;
15623
 
15624
		u32 htotal;
15625
		u32 hblank;
15626
		u32 hsync;
15627
		u32 vtotal;
15628
		u32 vblank;
15629
		u32 vsync;
15630
	} transcoder[4];
3031 serge 15631
};
2327 Serge 15632
 
3031 serge 15633
struct intel_display_error_state *
15634
intel_display_capture_error_state(struct drm_device *dev)
15635
{
5060 serge 15636
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 15637
	struct intel_display_error_state *error;
4104 Serge 15638
	int transcoders[] = {
15639
		TRANSCODER_A,
15640
		TRANSCODER_B,
15641
		TRANSCODER_C,
15642
		TRANSCODER_EDP,
15643
	};
3031 serge 15644
	int i;
2327 Serge 15645
 
4104 Serge 15646
	if (INTEL_INFO(dev)->num_pipes == 0)
15647
		return NULL;
15648
 
4560 Serge 15649
	error = kzalloc(sizeof(*error), GFP_ATOMIC);
3031 serge 15650
	if (error == NULL)
15651
		return NULL;
2327 Serge 15652
 
4560 Serge 15653
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4104 Serge 15654
		error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15655
 
5354 serge 15656
	for_each_pipe(dev_priv, i) {
4560 Serge 15657
		error->pipe[i].power_domain_on =
5354 serge 15658
			__intel_display_power_is_enabled(dev_priv,
6084 serge 15659
							 POWER_DOMAIN_PIPE(i));
4560 Serge 15660
		if (!error->pipe[i].power_domain_on)
15661
			continue;
15662
 
3031 serge 15663
		error->cursor[i].control = I915_READ(CURCNTR(i));
15664
		error->cursor[i].position = I915_READ(CURPOS(i));
15665
		error->cursor[i].base = I915_READ(CURBASE(i));
2327 Serge 15666
 
3031 serge 15667
		error->plane[i].control = I915_READ(DSPCNTR(i));
15668
		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
3746 Serge 15669
		if (INTEL_INFO(dev)->gen <= 3) {
6084 serge 15670
			error->plane[i].size = I915_READ(DSPSIZE(i));
15671
			error->plane[i].pos = I915_READ(DSPPOS(i));
3746 Serge 15672
		}
15673
		if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
6084 serge 15674
			error->plane[i].addr = I915_READ(DSPADDR(i));
3031 serge 15675
		if (INTEL_INFO(dev)->gen >= 4) {
15676
			error->plane[i].surface = I915_READ(DSPSURF(i));
15677
			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15678
		}
2327 Serge 15679
 
3031 serge 15680
		error->pipe[i].source = I915_READ(PIPESRC(i));
5060 serge 15681
 
15682
		if (HAS_GMCH_DISPLAY(dev))
15683
			error->pipe[i].stat = I915_READ(PIPESTAT(i));
3031 serge 15684
	}
2327 Serge 15685
 
4104 Serge 15686
	error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15687
	if (HAS_DDI(dev_priv->dev))
15688
		error->num_transcoders++; /* Account for eDP. */
15689
 
15690
	for (i = 0; i < error->num_transcoders; i++) {
15691
		enum transcoder cpu_transcoder = transcoders[i];
15692
 
4560 Serge 15693
		error->transcoder[i].power_domain_on =
5354 serge 15694
			__intel_display_power_is_enabled(dev_priv,
4560 Serge 15695
				POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15696
		if (!error->transcoder[i].power_domain_on)
15697
			continue;
15698
 
4104 Serge 15699
		error->transcoder[i].cpu_transcoder = cpu_transcoder;
15700
 
15701
		error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15702
		error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15703
		error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15704
		error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15705
		error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15706
		error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15707
		error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15708
	}
15709
 
3031 serge 15710
	return error;
2330 Serge 15711
}
2327 Serge 15712
 
4104 Serge 15713
#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15714
 
3031 serge 15715
void
4104 Serge 15716
intel_display_print_error_state(struct drm_i915_error_state_buf *m,
3031 serge 15717
				struct drm_device *dev,
15718
				struct intel_display_error_state *error)
2332 Serge 15719
{
5354 serge 15720
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 15721
	int i;
2330 Serge 15722
 
4104 Serge 15723
	if (!error)
15724
		return;
15725
 
15726
	err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
4560 Serge 15727
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4104 Serge 15728
		err_printf(m, "PWR_WELL_CTL2: %08x\n",
15729
			   error->power_well_driver);
5354 serge 15730
	for_each_pipe(dev_priv, i) {
4104 Serge 15731
		err_printf(m, "Pipe [%d]:\n", i);
4560 Serge 15732
		err_printf(m, "  Power: %s\n",
15733
			   error->pipe[i].power_domain_on ? "on" : "off");
4104 Serge 15734
		err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
5060 serge 15735
		err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
2332 Serge 15736
 
4104 Serge 15737
		err_printf(m, "Plane [%d]:\n", i);
15738
		err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15739
		err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
3746 Serge 15740
		if (INTEL_INFO(dev)->gen <= 3) {
4104 Serge 15741
			err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15742
			err_printf(m, "  POS: %08x\n", error->plane[i].pos);
3746 Serge 15743
		}
15744
		if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
4104 Serge 15745
			err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
3031 serge 15746
		if (INTEL_INFO(dev)->gen >= 4) {
4104 Serge 15747
			err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15748
			err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
3031 serge 15749
		}
2332 Serge 15750
 
4104 Serge 15751
		err_printf(m, "Cursor [%d]:\n", i);
15752
		err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15753
		err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15754
		err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
3031 serge 15755
	}
4104 Serge 15756
 
15757
	for (i = 0; i < error->num_transcoders; i++) {
4560 Serge 15758
		err_printf(m, "CPU transcoder: %c\n",
4104 Serge 15759
			   transcoder_name(error->transcoder[i].cpu_transcoder));
4560 Serge 15760
		err_printf(m, "  Power: %s\n",
15761
			   error->transcoder[i].power_domain_on ? "on" : "off");
4104 Serge 15762
		err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15763
		err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15764
		err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15765
		err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15766
		err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15767
		err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15768
		err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15769
	}
2327 Serge 15770
}
3031 serge 15771
#endif
5354 serge 15772
 
15773
void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15774
{
15775
	struct intel_crtc *crtc;
15776
 
15777
	for_each_intel_crtc(dev, crtc) {
15778
		struct intel_unpin_work *work;
15779
 
15780
		spin_lock_irq(&dev->event_lock);
15781
 
15782
		work = crtc->unpin_work;
15783
 
15784
		if (work && work->event &&
15785
		    work->event->base.file_priv == file) {
15786
			kfree(work->event);
15787
			work->event = NULL;
15788
		}
15789
 
15790
		spin_unlock_irq(&dev->event_lock);
15791
	}
15792
}