Subversion Repositories Kolibri OS

Rev

Rev 4560 | Rev 5097 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2327 Serge 1
/*
2
 * Copyright © 2006-2007 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21
 * DEALINGS IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *  Eric Anholt 
25
 */
26
 
3746 Serge 27
//#include 
2327 Serge 28
#include 
29
//#include 
30
#include 
31
#include 
2330 Serge 32
#include 
3746 Serge 33
#include 
2342 Serge 34
#include 
3031 serge 35
#include 
2327 Serge 36
#include "intel_drv.h"
3031 serge 37
#include 
2327 Serge 38
#include "i915_drv.h"
2351 Serge 39
#include "i915_trace.h"
3031 serge 40
#include 
41
#include 
5060 serge 42
#include 
43
#include 
44
#include 
2327 Serge 45
 
5060 serge 46
static inline void ndelay(unsigned long x)
47
{
48
    udelay(DIV_ROUND_UP(x, 1000));
49
}
50
 
51
/* Primary plane formats supported by all gen */
52
#define COMMON_PRIMARY_FORMATS \
53
	DRM_FORMAT_C8, \
54
	DRM_FORMAT_RGB565, \
55
	DRM_FORMAT_XRGB8888, \
56
	DRM_FORMAT_ARGB8888
57
 
58
/* Primary plane formats for gen <= 3 */
59
static const uint32_t intel_primary_formats_gen2[] = {
60
	COMMON_PRIMARY_FORMATS,
61
	DRM_FORMAT_XRGB1555,
62
	DRM_FORMAT_ARGB1555,
63
};
64
 
65
/* Primary plane formats for gen >= 4 */
66
static const uint32_t intel_primary_formats_gen4[] = {
67
	COMMON_PRIMARY_FORMATS, \
68
	DRM_FORMAT_XBGR8888,
69
	DRM_FORMAT_ABGR8888,
70
	DRM_FORMAT_XRGB2101010,
71
	DRM_FORMAT_ARGB2101010,
72
	DRM_FORMAT_XBGR2101010,
73
	DRM_FORMAT_ABGR2101010,
74
};
75
 
76
/* Cursor formats */
77
static const uint32_t intel_cursor_formats[] = {
78
	DRM_FORMAT_ARGB8888,
79
};
80
 
81
#define DIV_ROUND_CLOSEST_ULL(ll, d)	\
82
({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
83
 
4104 Serge 84
#define MAX_ERRNO       4095
2327 Serge 85
phys_addr_t get_bus_addr(void);
86
 
4560 Serge 87
static inline void outb(u8 v, u16 port)
88
{
89
    asm volatile("outb %0,%1" : : "a" (v), "dN" (port));
90
}
91
static inline u8 inb(u16 port)
92
{
93
    u8 v;
94
    asm volatile("inb %1,%0" : "=a" (v) : "dN" (port));
95
    return v;
96
}
97
 
5060 serge 98
static void intel_increase_pllclock(struct drm_device *dev,
99
				    enum pipe pipe);
100
void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
2327 Serge 101
 
4104 Serge 102
static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
103
				struct intel_crtc_config *pipe_config);
4560 Serge 104
static void ironlake_pch_clock_get(struct intel_crtc *crtc,
4104 Serge 105
				    struct intel_crtc_config *pipe_config);
2327 Serge 106
 
4104 Serge 107
static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
108
			  int x, int y, struct drm_framebuffer *old_fb);
5060 serge 109
static int intel_framebuffer_init(struct drm_device *dev,
110
				  struct intel_framebuffer *ifb,
111
				  struct drm_mode_fb_cmd2 *mode_cmd,
112
				  struct drm_i915_gem_object *obj);
113
static void intel_dp_set_m_n(struct intel_crtc *crtc);
114
static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
115
static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
116
static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
117
					 struct intel_link_m_n *m_n);
118
static void ironlake_set_pipeconf(struct drm_crtc *crtc);
119
static void haswell_set_pipeconf(struct drm_crtc *crtc);
120
static void intel_set_pipe_csc(struct drm_crtc *crtc);
121
static void vlv_prepare_pll(struct intel_crtc *crtc);
4104 Serge 122
 
5060 serge 123
static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
124
{
125
	if (!connector->mst_port)
126
		return connector->encoder;
127
	else
128
		return &connector->mst_port->mst_encoders[pipe]->base;
129
}
4104 Serge 130
 
2327 Serge 131
typedef struct {
132
    int min, max;
133
} intel_range_t;
134
 
135
typedef struct {
136
    int dot_limit;
137
    int p2_slow, p2_fast;
138
} intel_p2_t;
139
 
140
typedef struct intel_limit intel_limit_t;
141
struct intel_limit {
142
    intel_range_t   dot, vco, n, m, m1, m2, p, p1;
143
    intel_p2_t      p2;
144
};
145
 
3243 Serge 146
int
147
intel_pch_rawclk(struct drm_device *dev)
148
{
149
	struct drm_i915_private *dev_priv = dev->dev_private;
150
 
151
	WARN_ON(!HAS_PCH_SPLIT(dev));
152
 
153
	return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
154
}
155
 
2327 Serge 156
static inline u32 /* units of 100MHz */
157
intel_fdi_link_freq(struct drm_device *dev)
158
{
159
	if (IS_GEN5(dev)) {
160
		struct drm_i915_private *dev_priv = dev->dev_private;
161
		return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
162
	} else
163
		return 27;
164
}
165
 
4104 Serge 166
static const intel_limit_t intel_limits_i8xx_dac = {
167
	.dot = { .min = 25000, .max = 350000 },
4560 Serge 168
	.vco = { .min = 908000, .max = 1512000 },
169
	.n = { .min = 2, .max = 16 },
4104 Serge 170
	.m = { .min = 96, .max = 140 },
171
	.m1 = { .min = 18, .max = 26 },
172
	.m2 = { .min = 6, .max = 16 },
173
	.p = { .min = 4, .max = 128 },
174
	.p1 = { .min = 2, .max = 33 },
175
	.p2 = { .dot_limit = 165000,
176
		.p2_slow = 4, .p2_fast = 2 },
177
};
178
 
2327 Serge 179
static const intel_limit_t intel_limits_i8xx_dvo = {
180
        .dot = { .min = 25000, .max = 350000 },
4560 Serge 181
	.vco = { .min = 908000, .max = 1512000 },
182
	.n = { .min = 2, .max = 16 },
2327 Serge 183
        .m = { .min = 96, .max = 140 },
184
        .m1 = { .min = 18, .max = 26 },
185
        .m2 = { .min = 6, .max = 16 },
186
        .p = { .min = 4, .max = 128 },
187
        .p1 = { .min = 2, .max = 33 },
188
	.p2 = { .dot_limit = 165000,
4104 Serge 189
		.p2_slow = 4, .p2_fast = 4 },
2327 Serge 190
};
191
 
192
static const intel_limit_t intel_limits_i8xx_lvds = {
193
        .dot = { .min = 25000, .max = 350000 },
4560 Serge 194
	.vco = { .min = 908000, .max = 1512000 },
195
	.n = { .min = 2, .max = 16 },
2327 Serge 196
        .m = { .min = 96, .max = 140 },
197
        .m1 = { .min = 18, .max = 26 },
198
        .m2 = { .min = 6, .max = 16 },
199
        .p = { .min = 4, .max = 128 },
200
        .p1 = { .min = 1, .max = 6 },
201
	.p2 = { .dot_limit = 165000,
202
		.p2_slow = 14, .p2_fast = 7 },
203
};
204
 
205
static const intel_limit_t intel_limits_i9xx_sdvo = {
206
        .dot = { .min = 20000, .max = 400000 },
207
        .vco = { .min = 1400000, .max = 2800000 },
208
        .n = { .min = 1, .max = 6 },
209
        .m = { .min = 70, .max = 120 },
3480 Serge 210
	.m1 = { .min = 8, .max = 18 },
211
	.m2 = { .min = 3, .max = 7 },
2327 Serge 212
        .p = { .min = 5, .max = 80 },
213
        .p1 = { .min = 1, .max = 8 },
214
	.p2 = { .dot_limit = 200000,
215
		.p2_slow = 10, .p2_fast = 5 },
216
};
217
 
218
static const intel_limit_t intel_limits_i9xx_lvds = {
219
        .dot = { .min = 20000, .max = 400000 },
220
        .vco = { .min = 1400000, .max = 2800000 },
221
        .n = { .min = 1, .max = 6 },
222
        .m = { .min = 70, .max = 120 },
3480 Serge 223
	.m1 = { .min = 8, .max = 18 },
224
	.m2 = { .min = 3, .max = 7 },
2327 Serge 225
        .p = { .min = 7, .max = 98 },
226
        .p1 = { .min = 1, .max = 8 },
227
	.p2 = { .dot_limit = 112000,
228
		.p2_slow = 14, .p2_fast = 7 },
229
};
230
 
231
 
232
static const intel_limit_t intel_limits_g4x_sdvo = {
233
	.dot = { .min = 25000, .max = 270000 },
234
	.vco = { .min = 1750000, .max = 3500000},
235
	.n = { .min = 1, .max = 4 },
236
	.m = { .min = 104, .max = 138 },
237
	.m1 = { .min = 17, .max = 23 },
238
	.m2 = { .min = 5, .max = 11 },
239
	.p = { .min = 10, .max = 30 },
240
	.p1 = { .min = 1, .max = 3},
241
	.p2 = { .dot_limit = 270000,
242
		.p2_slow = 10,
243
		.p2_fast = 10
244
	},
245
};
246
 
247
static const intel_limit_t intel_limits_g4x_hdmi = {
248
	.dot = { .min = 22000, .max = 400000 },
249
	.vco = { .min = 1750000, .max = 3500000},
250
	.n = { .min = 1, .max = 4 },
251
	.m = { .min = 104, .max = 138 },
252
	.m1 = { .min = 16, .max = 23 },
253
	.m2 = { .min = 5, .max = 11 },
254
	.p = { .min = 5, .max = 80 },
255
	.p1 = { .min = 1, .max = 8},
256
	.p2 = { .dot_limit = 165000,
257
		.p2_slow = 10, .p2_fast = 5 },
258
};
259
 
260
static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
261
	.dot = { .min = 20000, .max = 115000 },
262
	.vco = { .min = 1750000, .max = 3500000 },
263
	.n = { .min = 1, .max = 3 },
264
	.m = { .min = 104, .max = 138 },
265
	.m1 = { .min = 17, .max = 23 },
266
	.m2 = { .min = 5, .max = 11 },
267
	.p = { .min = 28, .max = 112 },
268
	.p1 = { .min = 2, .max = 8 },
269
	.p2 = { .dot_limit = 0,
270
		.p2_slow = 14, .p2_fast = 14
271
	},
272
};
273
 
274
static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
275
	.dot = { .min = 80000, .max = 224000 },
276
	.vco = { .min = 1750000, .max = 3500000 },
277
	.n = { .min = 1, .max = 3 },
278
	.m = { .min = 104, .max = 138 },
279
	.m1 = { .min = 17, .max = 23 },
280
	.m2 = { .min = 5, .max = 11 },
281
	.p = { .min = 14, .max = 42 },
282
	.p1 = { .min = 2, .max = 6 },
283
	.p2 = { .dot_limit = 0,
284
		.p2_slow = 7, .p2_fast = 7
285
	},
286
};
287
 
288
static const intel_limit_t intel_limits_pineview_sdvo = {
289
        .dot = { .min = 20000, .max = 400000},
290
        .vco = { .min = 1700000, .max = 3500000 },
291
	/* Pineview's Ncounter is a ring counter */
292
        .n = { .min = 3, .max = 6 },
293
        .m = { .min = 2, .max = 256 },
294
	/* Pineview only has one combined m divider, which we treat as m2. */
295
        .m1 = { .min = 0, .max = 0 },
296
        .m2 = { .min = 0, .max = 254 },
297
        .p = { .min = 5, .max = 80 },
298
        .p1 = { .min = 1, .max = 8 },
299
	.p2 = { .dot_limit = 200000,
300
		.p2_slow = 10, .p2_fast = 5 },
301
};
302
 
303
static const intel_limit_t intel_limits_pineview_lvds = {
304
        .dot = { .min = 20000, .max = 400000 },
305
        .vco = { .min = 1700000, .max = 3500000 },
306
        .n = { .min = 3, .max = 6 },
307
        .m = { .min = 2, .max = 256 },
308
        .m1 = { .min = 0, .max = 0 },
309
        .m2 = { .min = 0, .max = 254 },
310
        .p = { .min = 7, .max = 112 },
311
        .p1 = { .min = 1, .max = 8 },
312
	.p2 = { .dot_limit = 112000,
313
		.p2_slow = 14, .p2_fast = 14 },
314
};
315
 
316
/* Ironlake / Sandybridge
317
 *
318
 * We calculate clock using (register_value + 2) for N/M1/M2, so here
319
 * the range value for them is (actual_value - 2).
320
 */
321
static const intel_limit_t intel_limits_ironlake_dac = {
322
	.dot = { .min = 25000, .max = 350000 },
323
	.vco = { .min = 1760000, .max = 3510000 },
324
	.n = { .min = 1, .max = 5 },
325
	.m = { .min = 79, .max = 127 },
326
	.m1 = { .min = 12, .max = 22 },
327
	.m2 = { .min = 5, .max = 9 },
328
	.p = { .min = 5, .max = 80 },
329
	.p1 = { .min = 1, .max = 8 },
330
	.p2 = { .dot_limit = 225000,
331
		.p2_slow = 10, .p2_fast = 5 },
332
};
333
 
334
static const intel_limit_t intel_limits_ironlake_single_lvds = {
335
	.dot = { .min = 25000, .max = 350000 },
336
	.vco = { .min = 1760000, .max = 3510000 },
337
	.n = { .min = 1, .max = 3 },
338
	.m = { .min = 79, .max = 118 },
339
	.m1 = { .min = 12, .max = 22 },
340
	.m2 = { .min = 5, .max = 9 },
341
	.p = { .min = 28, .max = 112 },
342
	.p1 = { .min = 2, .max = 8 },
343
	.p2 = { .dot_limit = 225000,
344
		.p2_slow = 14, .p2_fast = 14 },
345
};
346
 
347
static const intel_limit_t intel_limits_ironlake_dual_lvds = {
348
	.dot = { .min = 25000, .max = 350000 },
349
	.vco = { .min = 1760000, .max = 3510000 },
350
	.n = { .min = 1, .max = 3 },
351
	.m = { .min = 79, .max = 127 },
352
	.m1 = { .min = 12, .max = 22 },
353
	.m2 = { .min = 5, .max = 9 },
354
	.p = { .min = 14, .max = 56 },
355
	.p1 = { .min = 2, .max = 8 },
356
	.p2 = { .dot_limit = 225000,
357
		.p2_slow = 7, .p2_fast = 7 },
358
};
359
 
360
/* LVDS 100mhz refclk limits. */
361
static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
362
	.dot = { .min = 25000, .max = 350000 },
363
	.vco = { .min = 1760000, .max = 3510000 },
364
	.n = { .min = 1, .max = 2 },
365
	.m = { .min = 79, .max = 126 },
366
	.m1 = { .min = 12, .max = 22 },
367
	.m2 = { .min = 5, .max = 9 },
368
	.p = { .min = 28, .max = 112 },
2342 Serge 369
	.p1 = { .min = 2, .max = 8 },
2327 Serge 370
	.p2 = { .dot_limit = 225000,
371
		.p2_slow = 14, .p2_fast = 14 },
372
};
373
 
374
static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
375
	.dot = { .min = 25000, .max = 350000 },
376
	.vco = { .min = 1760000, .max = 3510000 },
377
	.n = { .min = 1, .max = 3 },
378
	.m = { .min = 79, .max = 126 },
379
	.m1 = { .min = 12, .max = 22 },
380
	.m2 = { .min = 5, .max = 9 },
381
	.p = { .min = 14, .max = 42 },
2342 Serge 382
	.p1 = { .min = 2, .max = 6 },
2327 Serge 383
	.p2 = { .dot_limit = 225000,
384
		.p2_slow = 7, .p2_fast = 7 },
385
};
386
 
4560 Serge 387
static const intel_limit_t intel_limits_vlv = {
388
	 /*
389
	  * These are the data rate limits (measured in fast clocks)
390
	  * since those are the strictest limits we have. The fast
391
	  * clock and actual rate limits are more relaxed, so checking
392
	  * them would make no difference.
393
	  */
394
	.dot = { .min = 25000 * 5, .max = 270000 * 5 },
3031 serge 395
	.vco = { .min = 4000000, .max = 6000000 },
396
	.n = { .min = 1, .max = 7 },
397
	.m1 = { .min = 2, .max = 3 },
398
	.m2 = { .min = 11, .max = 156 },
399
	.p1 = { .min = 2, .max = 3 },
4560 Serge 400
	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
3031 serge 401
};
402
 
5060 serge 403
static const intel_limit_t intel_limits_chv = {
404
	/*
405
	 * These are the data rate limits (measured in fast clocks)
406
	 * since those are the strictest limits we have.  The fast
407
	 * clock and actual rate limits are more relaxed, so checking
408
	 * them would make no difference.
409
	 */
410
	.dot = { .min = 25000 * 5, .max = 540000 * 5},
411
	.vco = { .min = 4860000, .max = 6700000 },
412
	.n = { .min = 1, .max = 1 },
413
	.m1 = { .min = 2, .max = 2 },
414
	.m2 = { .min = 24 << 22, .max = 175 << 22 },
415
	.p1 = { .min = 2, .max = 4 },
416
	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
417
};
418
 
4560 Serge 419
static void vlv_clock(int refclk, intel_clock_t *clock)
420
{
421
	clock->m = clock->m1 * clock->m2;
422
	clock->p = clock->p1 * clock->p2;
423
	if (WARN_ON(clock->n == 0 || clock->p == 0))
424
		return;
425
	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
426
	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
427
}
3031 serge 428
 
4560 Serge 429
/**
430
 * Returns whether any output on the specified pipe is of the specified type
431
 */
432
static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
433
{
434
	struct drm_device *dev = crtc->dev;
435
	struct intel_encoder *encoder;
436
 
437
	for_each_encoder_on_crtc(dev, crtc, encoder)
438
		if (encoder->type == type)
439
			return true;
440
 
441
	return false;
442
}
443
 
2327 Serge 444
static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
445
						int refclk)
446
{
447
	struct drm_device *dev = crtc->dev;
448
	const intel_limit_t *limit;
449
 
450
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3480 Serge 451
		if (intel_is_dual_link_lvds(dev)) {
2327 Serge 452
			if (refclk == 100000)
453
				limit = &intel_limits_ironlake_dual_lvds_100m;
454
			else
455
				limit = &intel_limits_ironlake_dual_lvds;
456
		} else {
457
			if (refclk == 100000)
458
				limit = &intel_limits_ironlake_single_lvds_100m;
459
			else
460
				limit = &intel_limits_ironlake_single_lvds;
461
		}
4104 Serge 462
	} else
2327 Serge 463
		limit = &intel_limits_ironlake_dac;
464
 
465
	return limit;
466
}
467
 
468
static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
469
{
470
	struct drm_device *dev = crtc->dev;
471
	const intel_limit_t *limit;
472
 
473
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3480 Serge 474
		if (intel_is_dual_link_lvds(dev))
2327 Serge 475
			limit = &intel_limits_g4x_dual_channel_lvds;
476
		else
477
			limit = &intel_limits_g4x_single_channel_lvds;
478
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
479
		   intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
480
		limit = &intel_limits_g4x_hdmi;
481
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
482
		limit = &intel_limits_g4x_sdvo;
483
	} else /* The option is for other outputs */
484
		limit = &intel_limits_i9xx_sdvo;
485
 
486
	return limit;
487
}
488
 
489
static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
490
{
491
	struct drm_device *dev = crtc->dev;
492
	const intel_limit_t *limit;
493
 
494
	if (HAS_PCH_SPLIT(dev))
495
		limit = intel_ironlake_limit(crtc, refclk);
496
	else if (IS_G4X(dev)) {
497
		limit = intel_g4x_limit(crtc);
498
	} else if (IS_PINEVIEW(dev)) {
499
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
500
			limit = &intel_limits_pineview_lvds;
501
		else
502
			limit = &intel_limits_pineview_sdvo;
5060 serge 503
	} else if (IS_CHERRYVIEW(dev)) {
504
		limit = &intel_limits_chv;
3031 serge 505
	} else if (IS_VALLEYVIEW(dev)) {
4560 Serge 506
		limit = &intel_limits_vlv;
2327 Serge 507
	} else if (!IS_GEN2(dev)) {
508
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
509
			limit = &intel_limits_i9xx_lvds;
510
		else
511
			limit = &intel_limits_i9xx_sdvo;
512
	} else {
513
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
514
			limit = &intel_limits_i8xx_lvds;
4104 Serge 515
		else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
516
			limit = &intel_limits_i8xx_dvo;
2327 Serge 517
		else
4104 Serge 518
			limit = &intel_limits_i8xx_dac;
2327 Serge 519
	}
520
	return limit;
521
}
522
 
523
/* m1 is reserved as 0 in Pineview, n is a ring counter */
524
static void pineview_clock(int refclk, intel_clock_t *clock)
525
{
526
	clock->m = clock->m2 + 2;
527
	clock->p = clock->p1 * clock->p2;
4560 Serge 528
	if (WARN_ON(clock->n == 0 || clock->p == 0))
529
		return;
530
	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
531
	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2327 Serge 532
}
533
 
4104 Serge 534
static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
2327 Serge 535
{
4104 Serge 536
	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
537
}
538
 
539
static void i9xx_clock(int refclk, intel_clock_t *clock)
540
{
541
	clock->m = i9xx_dpll_compute_m(clock);
2327 Serge 542
	clock->p = clock->p1 * clock->p2;
4560 Serge 543
	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
544
		return;
545
	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
546
	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2327 Serge 547
}
548
 
5060 serge 549
static void chv_clock(int refclk, intel_clock_t *clock)
550
{
551
	clock->m = clock->m1 * clock->m2;
552
	clock->p = clock->p1 * clock->p2;
553
	if (WARN_ON(clock->n == 0 || clock->p == 0))
554
		return;
555
	clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
556
			clock->n << 22);
557
	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
558
}
559
 
2327 Serge 560
#define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
561
/**
562
 * Returns whether the given set of divisors are valid for a given refclk with
563
 * the given connectors.
564
 */
565
 
566
static bool intel_PLL_is_valid(struct drm_device *dev,
567
			       const intel_limit_t *limit,
568
			       const intel_clock_t *clock)
569
{
4560 Serge 570
	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
571
		INTELPllInvalid("n out of range\n");
2327 Serge 572
	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
2342 Serge 573
		INTELPllInvalid("p1 out of range\n");
2327 Serge 574
	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
2342 Serge 575
		INTELPllInvalid("m2 out of range\n");
2327 Serge 576
	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
2342 Serge 577
		INTELPllInvalid("m1 out of range\n");
4560 Serge 578
 
579
	if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
580
		if (clock->m1 <= clock->m2)
2342 Serge 581
		INTELPllInvalid("m1 <= m2\n");
4560 Serge 582
 
583
	if (!IS_VALLEYVIEW(dev)) {
584
		if (clock->p < limit->p.min || limit->p.max < clock->p)
585
			INTELPllInvalid("p out of range\n");
2327 Serge 586
	if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
2342 Serge 587
		INTELPllInvalid("m out of range\n");
4560 Serge 588
	}
589
 
2327 Serge 590
	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
2342 Serge 591
		INTELPllInvalid("vco out of range\n");
2327 Serge 592
	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
593
	 * connector, etc., rather than just a single range.
594
	 */
595
	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
2342 Serge 596
		INTELPllInvalid("dot out of range\n");
2327 Serge 597
 
598
	return true;
599
}
600
 
601
static bool
4104 Serge 602
i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
3031 serge 603
		    int target, int refclk, intel_clock_t *match_clock,
604
		    intel_clock_t *best_clock)
2327 Serge 605
{
606
	struct drm_device *dev = crtc->dev;
607
	intel_clock_t clock;
608
	int err = target;
609
 
3480 Serge 610
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2327 Serge 611
		/*
3480 Serge 612
		 * For LVDS just rely on its current settings for dual-channel.
613
		 * We haven't figured out how to reliably set up different
614
		 * single/dual channel state, if we even can.
2327 Serge 615
		 */
3480 Serge 616
		if (intel_is_dual_link_lvds(dev))
2327 Serge 617
			clock.p2 = limit->p2.p2_fast;
618
		else
619
			clock.p2 = limit->p2.p2_slow;
620
	} else {
621
		if (target < limit->p2.dot_limit)
622
			clock.p2 = limit->p2.p2_slow;
623
		else
624
			clock.p2 = limit->p2.p2_fast;
625
	}
626
 
2342 Serge 627
	memset(best_clock, 0, sizeof(*best_clock));
2327 Serge 628
 
629
	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
630
	     clock.m1++) {
631
		for (clock.m2 = limit->m2.min;
632
		     clock.m2 <= limit->m2.max; clock.m2++) {
4104 Serge 633
			if (clock.m2 >= clock.m1)
2327 Serge 634
				break;
635
			for (clock.n = limit->n.min;
636
			     clock.n <= limit->n.max; clock.n++) {
637
				for (clock.p1 = limit->p1.min;
638
					clock.p1 <= limit->p1.max; clock.p1++) {
639
					int this_err;
640
 
4104 Serge 641
					i9xx_clock(refclk, &clock);
2327 Serge 642
					if (!intel_PLL_is_valid(dev, limit,
643
								&clock))
644
						continue;
3031 serge 645
					if (match_clock &&
646
					    clock.p != match_clock->p)
647
						continue;
2327 Serge 648
 
649
					this_err = abs(clock.dot - target);
650
					if (this_err < err) {
651
						*best_clock = clock;
652
						err = this_err;
653
					}
654
				}
655
			}
656
		}
657
	}
658
 
659
	return (err != target);
660
}
661
 
662
static bool
4104 Serge 663
pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
664
		   int target, int refclk, intel_clock_t *match_clock,
665
		   intel_clock_t *best_clock)
666
{
667
	struct drm_device *dev = crtc->dev;
668
	intel_clock_t clock;
669
	int err = target;
670
 
671
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
672
		/*
673
		 * For LVDS just rely on its current settings for dual-channel.
674
		 * We haven't figured out how to reliably set up different
675
		 * single/dual channel state, if we even can.
676
		 */
677
		if (intel_is_dual_link_lvds(dev))
678
			clock.p2 = limit->p2.p2_fast;
679
		else
680
			clock.p2 = limit->p2.p2_slow;
681
	} else {
682
		if (target < limit->p2.dot_limit)
683
			clock.p2 = limit->p2.p2_slow;
684
		else
685
			clock.p2 = limit->p2.p2_fast;
686
	}
687
 
688
	memset(best_clock, 0, sizeof(*best_clock));
689
 
690
	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
691
	     clock.m1++) {
692
		for (clock.m2 = limit->m2.min;
693
		     clock.m2 <= limit->m2.max; clock.m2++) {
694
			for (clock.n = limit->n.min;
695
			     clock.n <= limit->n.max; clock.n++) {
696
				for (clock.p1 = limit->p1.min;
697
					clock.p1 <= limit->p1.max; clock.p1++) {
698
					int this_err;
699
 
700
					pineview_clock(refclk, &clock);
701
					if (!intel_PLL_is_valid(dev, limit,
702
								&clock))
703
						continue;
704
					if (match_clock &&
705
					    clock.p != match_clock->p)
706
						continue;
707
 
708
					this_err = abs(clock.dot - target);
709
					if (this_err < err) {
710
						*best_clock = clock;
711
						err = this_err;
712
					}
713
				}
714
			}
715
		}
716
	}
717
 
718
	return (err != target);
719
}
720
 
721
static bool
722
g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
3031 serge 723
			int target, int refclk, intel_clock_t *match_clock,
724
			intel_clock_t *best_clock)
2327 Serge 725
{
726
	struct drm_device *dev = crtc->dev;
727
	intel_clock_t clock;
728
	int max_n;
729
	bool found;
730
	/* approximately equals target * 0.00585 */
731
	int err_most = (target >> 8) + (target >> 9);
732
	found = false;
733
 
734
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3480 Serge 735
		if (intel_is_dual_link_lvds(dev))
2327 Serge 736
			clock.p2 = limit->p2.p2_fast;
737
		else
738
			clock.p2 = limit->p2.p2_slow;
739
	} else {
740
		if (target < limit->p2.dot_limit)
741
			clock.p2 = limit->p2.p2_slow;
742
		else
743
			clock.p2 = limit->p2.p2_fast;
744
	}
745
 
746
	memset(best_clock, 0, sizeof(*best_clock));
747
	max_n = limit->n.max;
748
	/* based on hardware requirement, prefer smaller n to precision */
749
	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
750
		/* based on hardware requirement, prefere larger m1,m2 */
751
		for (clock.m1 = limit->m1.max;
752
		     clock.m1 >= limit->m1.min; clock.m1--) {
753
			for (clock.m2 = limit->m2.max;
754
			     clock.m2 >= limit->m2.min; clock.m2--) {
755
				for (clock.p1 = limit->p1.max;
756
				     clock.p1 >= limit->p1.min; clock.p1--) {
757
					int this_err;
758
 
4104 Serge 759
					i9xx_clock(refclk, &clock);
2327 Serge 760
					if (!intel_PLL_is_valid(dev, limit,
761
								&clock))
762
						continue;
763
 
764
					this_err = abs(clock.dot - target);
765
					if (this_err < err_most) {
766
						*best_clock = clock;
767
						err_most = this_err;
768
						max_n = clock.n;
769
						found = true;
770
					}
771
				}
772
			}
773
		}
774
	}
775
	return found;
776
}
777
 
778
static bool
4104 Serge 779
vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
3031 serge 780
			int target, int refclk, intel_clock_t *match_clock,
781
			intel_clock_t *best_clock)
782
{
4560 Serge 783
	struct drm_device *dev = crtc->dev;
784
	intel_clock_t clock;
785
	unsigned int bestppm = 1000000;
786
	/* min update 19.2 MHz */
787
	int max_n = min(limit->n.max, refclk / 19200);
788
	bool found = false;
2327 Serge 789
 
4560 Serge 790
	target *= 5; /* fast clock */
3031 serge 791
 
4560 Serge 792
	memset(best_clock, 0, sizeof(*best_clock));
793
 
3031 serge 794
	/* based on hardware requirement, prefer smaller n to precision */
4560 Serge 795
	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
796
		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
797
			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
798
			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
799
				clock.p = clock.p1 * clock.p2;
3031 serge 800
				/* based on hardware requirement, prefer bigger m1,m2 values */
4560 Serge 801
				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
802
					unsigned int ppm, diff;
803
 
804
					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
805
								     refclk * clock.m1);
806
 
807
					vlv_clock(refclk, &clock);
808
 
809
					if (!intel_PLL_is_valid(dev, limit,
810
								&clock))
811
						continue;
812
 
813
					diff = abs(clock.dot - target);
814
					ppm = div_u64(1000000ULL * diff, target);
815
 
816
					if (ppm < 100 && clock.p > best_clock->p) {
3031 serge 817
							bestppm = 0;
4560 Serge 818
						*best_clock = clock;
819
						found = true;
3031 serge 820
						}
4560 Serge 821
 
822
					if (bestppm >= 10 && ppm < bestppm - 10) {
823
						bestppm = ppm;
824
						*best_clock = clock;
825
						found = true;
3031 serge 826
						}
827
						}
828
					}
829
				}
830
			}
831
 
4560 Serge 832
	return found;
3031 serge 833
}
834
 
5060 serge 835
static bool
836
chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
837
		   int target, int refclk, intel_clock_t *match_clock,
838
		   intel_clock_t *best_clock)
839
{
840
	struct drm_device *dev = crtc->dev;
841
	intel_clock_t clock;
842
	uint64_t m2;
843
	int found = false;
844
 
845
	memset(best_clock, 0, sizeof(*best_clock));
846
 
847
	/*
848
	 * Based on hardware doc, the n always set to 1, and m1 always
849
	 * set to 2.  If requires to support 200Mhz refclk, we need to
850
	 * revisit this because n may not 1 anymore.
851
	 */
852
	clock.n = 1, clock.m1 = 2;
853
	target *= 5;	/* fast clock */
854
 
855
	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
856
		for (clock.p2 = limit->p2.p2_fast;
857
				clock.p2 >= limit->p2.p2_slow;
858
				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
859
 
860
			clock.p = clock.p1 * clock.p2;
861
 
862
			m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
863
					clock.n) << 22, refclk * clock.m1);
864
 
865
			if (m2 > INT_MAX/clock.m1)
866
				continue;
867
 
868
			clock.m2 = m2;
869
 
870
			chv_clock(refclk, &clock);
871
 
872
			if (!intel_PLL_is_valid(dev, limit, &clock))
873
				continue;
874
 
875
			/* based on hardware requirement, prefer bigger p
876
			 */
877
			if (clock.p > best_clock->p) {
878
				*best_clock = clock;
879
				found = true;
880
			}
881
		}
882
	}
883
 
884
	return found;
885
}
886
 
4560 Serge 887
bool intel_crtc_active(struct drm_crtc *crtc)
888
{
889
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890
 
891
	/* Be paranoid as we can arrive here with only partial
892
	 * state retrieved from the hardware during setup.
893
	 *
894
	 * We can ditch the adjusted_mode.crtc_clock check as soon
895
	 * as Haswell has gained clock readout/fastboot support.
896
	 *
5060 serge 897
	 * We can ditch the crtc->primary->fb check as soon as we can
4560 Serge 898
	 * properly reconstruct framebuffers.
899
	 */
5060 serge 900
	return intel_crtc->active && crtc->primary->fb &&
4560 Serge 901
		intel_crtc->config.adjusted_mode.crtc_clock;
902
}
903
 
3243 Serge 904
enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
905
					     enum pipe pipe)
906
{
907
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
908
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
909
 
3746 Serge 910
	return intel_crtc->config.cpu_transcoder;
3243 Serge 911
}
912
 
4560 Serge 913
static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
3031 serge 914
{
915
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 916
	u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
3031 serge 917
 
918
	frame = I915_READ(frame_reg);
919
 
920
	if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
5060 serge 921
		WARN(1, "vblank wait timed out\n");
3031 serge 922
}
923
 
2327 Serge 924
/**
925
 * intel_wait_for_vblank - wait for vblank on a given pipe
926
 * @dev: drm device
927
 * @pipe: pipe to wait for
928
 *
929
 * Wait for vblank to occur on a given pipe.  Needed for various bits of
930
 * mode setting code.
931
 */
932
void intel_wait_for_vblank(struct drm_device *dev, int pipe)
933
{
934
	struct drm_i915_private *dev_priv = dev->dev_private;
935
	int pipestat_reg = PIPESTAT(pipe);
936
 
4560 Serge 937
	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
938
		g4x_wait_for_vblank(dev, pipe);
3031 serge 939
		return;
940
	}
941
 
2327 Serge 942
	/* Clear existing vblank status. Note this will clear any other
943
	 * sticky status fields as well.
944
	 *
945
	 * This races with i915_driver_irq_handler() with the result
946
	 * that either function could miss a vblank event.  Here it is not
947
	 * fatal, as we will either wait upon the next vblank interrupt or
948
	 * timeout.  Generally speaking intel_wait_for_vblank() is only
949
	 * called during modeset at which time the GPU should be idle and
950
	 * should *not* be performing page flips and thus not waiting on
951
	 * vblanks...
952
	 * Currently, the result of us stealing a vblank from the irq
953
	 * handler is that a single frame will be skipped during swapbuffers.
954
	 */
955
	I915_WRITE(pipestat_reg,
956
		   I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
957
 
958
	/* Wait for vblank interrupt bit to set */
959
	if (wait_for(I915_READ(pipestat_reg) &
960
		     PIPE_VBLANK_INTERRUPT_STATUS,
961
		     50))
962
		DRM_DEBUG_KMS("vblank wait timed out\n");
963
}
964
 
4560 Serge 965
static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
966
{
967
	struct drm_i915_private *dev_priv = dev->dev_private;
968
	u32 reg = PIPEDSL(pipe);
969
	u32 line1, line2;
970
	u32 line_mask;
971
 
972
	if (IS_GEN2(dev))
973
		line_mask = DSL_LINEMASK_GEN2;
974
	else
975
		line_mask = DSL_LINEMASK_GEN3;
976
 
977
	line1 = I915_READ(reg) & line_mask;
978
	mdelay(5);
979
	line2 = I915_READ(reg) & line_mask;
980
 
981
	return line1 == line2;
982
}
983
 
2327 Serge 984
/*
985
 * intel_wait_for_pipe_off - wait for pipe to turn off
986
 * @dev: drm device
987
 * @pipe: pipe to wait for
988
 *
989
 * After disabling a pipe, we can't wait for vblank in the usual way,
990
 * spinning on the vblank interrupt status bit, since we won't actually
991
 * see an interrupt when the pipe is disabled.
992
 *
993
 * On Gen4 and above:
994
 *   wait for the pipe register state bit to turn off
995
 *
996
 * Otherwise:
997
 *   wait for the display line value to settle (it usually
998
 *   ends up stopping at the start of the next frame).
999
 *
1000
 */
1001
void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1002
{
1003
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 1004
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1005
								      pipe);
2327 Serge 1006
 
1007
	if (INTEL_INFO(dev)->gen >= 4) {
3243 Serge 1008
		int reg = PIPECONF(cpu_transcoder);
2327 Serge 1009
 
1010
		/* Wait for the Pipe State to go off */
1011
		if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1012
			     100))
3031 serge 1013
			WARN(1, "pipe_off wait timed out\n");
2327 Serge 1014
	} else {
1015
		/* Wait for the display line to settle */
4560 Serge 1016
		if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
3031 serge 1017
			WARN(1, "pipe_off wait timed out\n");
2327 Serge 1018
	}
1019
}
1020
 
3480 Serge 1021
/*
1022
 * ibx_digital_port_connected - is the specified port connected?
1023
 * @dev_priv: i915 private structure
1024
 * @port: the port to test
1025
 *
1026
 * Returns true if @port is connected, false otherwise.
1027
 */
1028
bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1029
				struct intel_digital_port *port)
1030
{
1031
	u32 bit;
1032
 
1033
	if (HAS_PCH_IBX(dev_priv->dev)) {
5060 serge 1034
		switch (port->port) {
3480 Serge 1035
		case PORT_B:
1036
			bit = SDE_PORTB_HOTPLUG;
1037
			break;
1038
		case PORT_C:
1039
			bit = SDE_PORTC_HOTPLUG;
1040
			break;
1041
		case PORT_D:
1042
			bit = SDE_PORTD_HOTPLUG;
1043
			break;
1044
		default:
1045
			return true;
1046
		}
1047
	} else {
5060 serge 1048
		switch (port->port) {
3480 Serge 1049
		case PORT_B:
1050
			bit = SDE_PORTB_HOTPLUG_CPT;
1051
			break;
1052
		case PORT_C:
1053
			bit = SDE_PORTC_HOTPLUG_CPT;
1054
			break;
1055
		case PORT_D:
1056
			bit = SDE_PORTD_HOTPLUG_CPT;
1057
			break;
1058
		default:
1059
			return true;
1060
		}
1061
	}
1062
 
1063
	return I915_READ(SDEISR) & bit;
1064
}
1065
 
2327 Serge 1066
static const char *state_string(bool enabled)
1067
{
1068
	return enabled ? "on" : "off";
1069
}
1070
 
1071
/* Only for pre-ILK configs */
4104 Serge 1072
void assert_pll(struct drm_i915_private *dev_priv,
2327 Serge 1073
		       enum pipe pipe, bool state)
1074
{
1075
	int reg;
1076
	u32 val;
1077
	bool cur_state;
1078
 
1079
	reg = DPLL(pipe);
1080
	val = I915_READ(reg);
1081
	cur_state = !!(val & DPLL_VCO_ENABLE);
1082
	WARN(cur_state != state,
1083
	     "PLL state assertion failure (expected %s, current %s)\n",
1084
	     state_string(state), state_string(cur_state));
1085
}
1086
 
4560 Serge 1087
/* XXX: the dsi pll is shared between MIPI DSI ports */
1088
static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1089
{
1090
	u32 val;
1091
	bool cur_state;
1092
 
1093
	mutex_lock(&dev_priv->dpio_lock);
1094
	val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1095
	mutex_unlock(&dev_priv->dpio_lock);
1096
 
1097
	cur_state = val & DSI_PLL_VCO_EN;
1098
	WARN(cur_state != state,
1099
	     "DSI PLL state assertion failure (expected %s, current %s)\n",
1100
	     state_string(state), state_string(cur_state));
1101
}
1102
#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1103
#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1104
 
4104 Serge 1105
struct intel_shared_dpll *
1106
intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1107
{
1108
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1109
 
1110
	if (crtc->config.shared_dpll < 0)
1111
		return NULL;
1112
 
1113
	return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1114
}
1115
 
2327 Serge 1116
/* For ILK+ */
4104 Serge 1117
void assert_shared_dpll(struct drm_i915_private *dev_priv,
1118
			       struct intel_shared_dpll *pll,
3031 serge 1119
			   bool state)
2327 Serge 1120
{
1121
	bool cur_state;
4104 Serge 1122
	struct intel_dpll_hw_state hw_state;
2327 Serge 1123
 
3031 serge 1124
	if (WARN (!pll,
4104 Serge 1125
		  "asserting DPLL %s with no DPLL\n", state_string(state)))
3031 serge 1126
		return;
2342 Serge 1127
 
4104 Serge 1128
	cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
3031 serge 1129
	WARN(cur_state != state,
4104 Serge 1130
	     "%s assertion failure (expected %s, current %s)\n",
1131
	     pll->name, state_string(state), state_string(cur_state));
2327 Serge 1132
}
1133
 
1134
static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1135
			  enum pipe pipe, bool state)
1136
{
1137
	int reg;
1138
	u32 val;
1139
	bool cur_state;
3243 Serge 1140
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1141
								      pipe);
2327 Serge 1142
 
3480 Serge 1143
	if (HAS_DDI(dev_priv->dev)) {
1144
		/* DDI does not have a specific FDI_TX register */
3243 Serge 1145
		reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
3031 serge 1146
		val = I915_READ(reg);
3243 Serge 1147
		cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
3031 serge 1148
	} else {
2327 Serge 1149
	reg = FDI_TX_CTL(pipe);
1150
	val = I915_READ(reg);
1151
	cur_state = !!(val & FDI_TX_ENABLE);
3031 serge 1152
	}
2327 Serge 1153
	WARN(cur_state != state,
1154
	     "FDI TX state assertion failure (expected %s, current %s)\n",
1155
	     state_string(state), state_string(cur_state));
1156
}
1157
#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1158
#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1159
 
1160
static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1161
			  enum pipe pipe, bool state)
1162
{
1163
	int reg;
1164
	u32 val;
1165
	bool cur_state;
1166
 
1167
	reg = FDI_RX_CTL(pipe);
1168
	val = I915_READ(reg);
1169
	cur_state = !!(val & FDI_RX_ENABLE);
1170
	WARN(cur_state != state,
1171
	     "FDI RX state assertion failure (expected %s, current %s)\n",
1172
	     state_string(state), state_string(cur_state));
1173
}
1174
#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1175
#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1176
 
1177
static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1178
				      enum pipe pipe)
1179
{
1180
	int reg;
1181
	u32 val;
1182
 
1183
	/* ILK FDI PLL is always enabled */
5060 serge 1184
	if (INTEL_INFO(dev_priv->dev)->gen == 5)
2327 Serge 1185
		return;
1186
 
3031 serge 1187
	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
3480 Serge 1188
	if (HAS_DDI(dev_priv->dev))
3031 serge 1189
		return;
1190
 
2327 Serge 1191
	reg = FDI_TX_CTL(pipe);
1192
	val = I915_READ(reg);
1193
	WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1194
}
1195
 
4104 Serge 1196
void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1197
		       enum pipe pipe, bool state)
2327 Serge 1198
{
1199
	int reg;
1200
	u32 val;
4104 Serge 1201
	bool cur_state;
2327 Serge 1202
 
1203
	reg = FDI_RX_CTL(pipe);
1204
	val = I915_READ(reg);
4104 Serge 1205
	cur_state = !!(val & FDI_RX_PLL_ENABLE);
1206
	WARN(cur_state != state,
1207
	     "FDI RX PLL assertion failure (expected %s, current %s)\n",
1208
	     state_string(state), state_string(cur_state));
2327 Serge 1209
}
1210
 
1211
static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1212
				  enum pipe pipe)
1213
{
1214
	int pp_reg, lvds_reg;
1215
	u32 val;
1216
	enum pipe panel_pipe = PIPE_A;
1217
	bool locked = true;
1218
 
1219
	if (HAS_PCH_SPLIT(dev_priv->dev)) {
1220
		pp_reg = PCH_PP_CONTROL;
1221
		lvds_reg = PCH_LVDS;
1222
	} else {
1223
		pp_reg = PP_CONTROL;
1224
		lvds_reg = LVDS;
1225
	}
1226
 
1227
	val = I915_READ(pp_reg);
1228
	if (!(val & PANEL_POWER_ON) ||
1229
	    ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1230
		locked = false;
1231
 
1232
	if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1233
		panel_pipe = PIPE_B;
1234
 
1235
	WARN(panel_pipe == pipe && locked,
1236
	     "panel assertion failure, pipe %c regs locked\n",
1237
	     pipe_name(pipe));
1238
}
1239
 
4560 Serge 1240
static void assert_cursor(struct drm_i915_private *dev_priv,
1241
			  enum pipe pipe, bool state)
1242
{
1243
	struct drm_device *dev = dev_priv->dev;
1244
	bool cur_state;
1245
 
5060 serge 1246
	if (IS_845G(dev) || IS_I865G(dev))
4560 Serge 1247
		cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1248
	else
1249
		cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1250
 
1251
	WARN(cur_state != state,
1252
	     "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1253
	     pipe_name(pipe), state_string(state), state_string(cur_state));
1254
}
1255
#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1256
#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1257
 
2342 Serge 1258
void assert_pipe(struct drm_i915_private *dev_priv,
2327 Serge 1259
			enum pipe pipe, bool state)
1260
{
1261
	int reg;
1262
	u32 val;
1263
	bool cur_state;
3243 Serge 1264
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1265
								      pipe);
2327 Serge 1266
 
3031 serge 1267
	/* if we need the pipe A quirk it must be always on */
1268
	if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1269
		state = true;
1270
 
5060 serge 1271
	if (!intel_display_power_enabled(dev_priv,
4104 Serge 1272
				POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
3480 Serge 1273
		cur_state = false;
1274
	} else {
3243 Serge 1275
	reg = PIPECONF(cpu_transcoder);
2327 Serge 1276
	val = I915_READ(reg);
1277
	cur_state = !!(val & PIPECONF_ENABLE);
3480 Serge 1278
	}
1279
 
2327 Serge 1280
	WARN(cur_state != state,
1281
	     "pipe %c assertion failure (expected %s, current %s)\n",
1282
	     pipe_name(pipe), state_string(state), state_string(cur_state));
1283
}
1284
 
3031 serge 1285
static void assert_plane(struct drm_i915_private *dev_priv,
1286
			 enum plane plane, bool state)
2327 Serge 1287
{
1288
	int reg;
1289
	u32 val;
3031 serge 1290
	bool cur_state;
2327 Serge 1291
 
1292
	reg = DSPCNTR(plane);
1293
	val = I915_READ(reg);
3031 serge 1294
	cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1295
	WARN(cur_state != state,
1296
	     "plane %c assertion failure (expected %s, current %s)\n",
1297
	     plane_name(plane), state_string(state), state_string(cur_state));
2327 Serge 1298
}
1299
 
3031 serge 1300
#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1301
#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1302
 
2327 Serge 1303
static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1304
				   enum pipe pipe)
1305
{
4104 Serge 1306
	struct drm_device *dev = dev_priv->dev;
2327 Serge 1307
	int reg, i;
1308
	u32 val;
1309
	int cur_pipe;
1310
 
4104 Serge 1311
	/* Primary planes are fixed to pipes on gen4+ */
1312
	if (INTEL_INFO(dev)->gen >= 4) {
3031 serge 1313
		reg = DSPCNTR(pipe);
1314
		val = I915_READ(reg);
5060 serge 1315
		WARN(val & DISPLAY_PLANE_ENABLE,
3031 serge 1316
		     "plane %c assertion failure, should be disabled but not\n",
1317
		     plane_name(pipe));
2327 Serge 1318
		return;
3031 serge 1319
	}
2327 Serge 1320
 
1321
	/* Need to check both planes against the pipe */
4104 Serge 1322
	for_each_pipe(i) {
2327 Serge 1323
		reg = DSPCNTR(i);
1324
		val = I915_READ(reg);
1325
		cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1326
			DISPPLANE_SEL_PIPE_SHIFT;
1327
		WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1328
		     "plane %c assertion failure, should be off on pipe %c but is still active\n",
1329
		     plane_name(i), pipe_name(pipe));
1330
	}
1331
}
1332
 
3746 Serge 1333
static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1334
				    enum pipe pipe)
1335
{
4104 Serge 1336
	struct drm_device *dev = dev_priv->dev;
5060 serge 1337
	int reg, sprite;
3746 Serge 1338
	u32 val;
1339
 
4104 Serge 1340
	if (IS_VALLEYVIEW(dev)) {
5060 serge 1341
		for_each_sprite(pipe, sprite) {
1342
			reg = SPCNTR(pipe, sprite);
3746 Serge 1343
		val = I915_READ(reg);
5060 serge 1344
			WARN(val & SP_ENABLE,
4104 Serge 1345
			     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
5060 serge 1346
			     sprite_name(pipe, sprite), pipe_name(pipe));
4104 Serge 1347
		}
1348
	} else if (INTEL_INFO(dev)->gen >= 7) {
1349
		reg = SPRCTL(pipe);
1350
		val = I915_READ(reg);
5060 serge 1351
		WARN(val & SPRITE_ENABLE,
4104 Serge 1352
		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1353
		     plane_name(pipe), pipe_name(pipe));
1354
	} else if (INTEL_INFO(dev)->gen >= 5) {
1355
		reg = DVSCNTR(pipe);
1356
		val = I915_READ(reg);
5060 serge 1357
		WARN(val & DVS_ENABLE,
4104 Serge 1358
		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1359
		     plane_name(pipe), pipe_name(pipe));
3746 Serge 1360
	}
1361
}
1362
 
4560 Serge 1363
static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
2327 Serge 1364
{
1365
	u32 val;
1366
	bool enabled;
1367
 
4560 Serge 1368
	WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
3031 serge 1369
 
2327 Serge 1370
	val = I915_READ(PCH_DREF_CONTROL);
1371
	enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1372
			    DREF_SUPERSPREAD_SOURCE_MASK));
1373
	WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1374
}
1375
 
4104 Serge 1376
static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
2327 Serge 1377
				       enum pipe pipe)
1378
{
1379
	int reg;
1380
	u32 val;
1381
	bool enabled;
1382
 
4104 Serge 1383
	reg = PCH_TRANSCONF(pipe);
2327 Serge 1384
	val = I915_READ(reg);
1385
	enabled = !!(val & TRANS_ENABLE);
1386
	WARN(enabled,
1387
	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
1388
	     pipe_name(pipe));
1389
}
1390
 
1391
static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1392
			    enum pipe pipe, u32 port_sel, u32 val)
1393
{
1394
	if ((val & DP_PORT_EN) == 0)
1395
		return false;
1396
 
1397
	if (HAS_PCH_CPT(dev_priv->dev)) {
1398
		u32	trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1399
		u32	trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1400
		if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1401
			return false;
5060 serge 1402
	} else if (IS_CHERRYVIEW(dev_priv->dev)) {
1403
		if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1404
			return false;
2327 Serge 1405
	} else {
1406
		if ((val & DP_PIPE_MASK) != (pipe << 30))
1407
			return false;
1408
	}
1409
	return true;
1410
}
1411
 
1412
static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1413
			      enum pipe pipe, u32 val)
1414
{
3746 Serge 1415
	if ((val & SDVO_ENABLE) == 0)
2327 Serge 1416
		return false;
1417
 
1418
	if (HAS_PCH_CPT(dev_priv->dev)) {
3746 Serge 1419
		if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
2327 Serge 1420
			return false;
5060 serge 1421
	} else if (IS_CHERRYVIEW(dev_priv->dev)) {
1422
		if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1423
			return false;
2327 Serge 1424
	} else {
3746 Serge 1425
		if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
2327 Serge 1426
			return false;
1427
	}
1428
	return true;
1429
}
1430
 
1431
static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1432
			      enum pipe pipe, u32 val)
1433
{
1434
	if ((val & LVDS_PORT_EN) == 0)
1435
		return false;
1436
 
1437
	if (HAS_PCH_CPT(dev_priv->dev)) {
1438
		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1439
			return false;
1440
	} else {
1441
		if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1442
			return false;
1443
	}
1444
	return true;
1445
}
1446
 
1447
static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1448
			      enum pipe pipe, u32 val)
1449
{
1450
	if ((val & ADPA_DAC_ENABLE) == 0)
1451
		return false;
1452
	if (HAS_PCH_CPT(dev_priv->dev)) {
1453
		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1454
			return false;
1455
	} else {
1456
		if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1457
			return false;
1458
	}
1459
	return true;
1460
}
1461
 
1462
static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1463
				   enum pipe pipe, int reg, u32 port_sel)
1464
{
1465
	u32 val = I915_READ(reg);
1466
	WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1467
	     "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1468
	     reg, pipe_name(pipe));
3031 serge 1469
 
1470
	WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1471
	     && (val & DP_PIPEB_SELECT),
1472
	     "IBX PCH dp port still using transcoder B\n");
2327 Serge 1473
}
1474
 
1475
static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1476
				     enum pipe pipe, int reg)
1477
{
1478
	u32 val = I915_READ(reg);
3031 serge 1479
	WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1480
	     "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
2327 Serge 1481
	     reg, pipe_name(pipe));
3031 serge 1482
 
3746 Serge 1483
	WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
3031 serge 1484
	     && (val & SDVO_PIPE_B_SELECT),
1485
	     "IBX PCH hdmi port still using transcoder B\n");
2327 Serge 1486
}
1487
 
1488
static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1489
				      enum pipe pipe)
1490
{
1491
	int reg;
1492
	u32 val;
1493
 
1494
	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1495
	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1496
	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1497
 
1498
	reg = PCH_ADPA;
1499
	val = I915_READ(reg);
3031 serge 1500
	WARN(adpa_pipe_enabled(dev_priv, pipe, val),
2327 Serge 1501
	     "PCH VGA enabled on transcoder %c, should be disabled\n",
1502
	     pipe_name(pipe));
1503
 
1504
	reg = PCH_LVDS;
1505
	val = I915_READ(reg);
3031 serge 1506
	WARN(lvds_pipe_enabled(dev_priv, pipe, val),
2327 Serge 1507
	     "PCH LVDS enabled on transcoder %c, should be disabled\n",
1508
	     pipe_name(pipe));
1509
 
3746 Serge 1510
	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1511
	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1512
	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
2327 Serge 1513
}
1514
 
4560 Serge 1515
static void intel_init_dpio(struct drm_device *dev)
1516
{
1517
	struct drm_i915_private *dev_priv = dev->dev_private;
1518
 
1519
	if (!IS_VALLEYVIEW(dev))
1520
		return;
1521
 
5060 serge 1522
	/*
1523
	 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1524
	 * CHV x1 PHY (DP/HDMI D)
1525
	 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1526
	 */
1527
	if (IS_CHERRYVIEW(dev)) {
1528
		DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1529
		DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1530
	} else {
4560 Serge 1531
	DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
5060 serge 1532
	}
4560 Serge 1533
}
1534
 
1535
static void intel_reset_dpio(struct drm_device *dev)
1536
{
1537
	struct drm_i915_private *dev_priv = dev->dev_private;
1538
 
5060 serge 1539
	if (IS_CHERRYVIEW(dev)) {
1540
		enum dpio_phy phy;
1541
		u32 val;
4560 Serge 1542
 
5060 serge 1543
		for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1544
			/* Poll for phypwrgood signal */
1545
			if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1546
						PHY_POWERGOOD(phy), 1))
1547
				DRM_ERROR("Display PHY %d is not power up\n", phy);
4560 Serge 1548
 
1549
	/*
5060 serge 1550
			 * Deassert common lane reset for PHY.
1551
			 *
1552
			 * This should only be done on init and resume from S3
1553
			 * with both PLLs disabled, or we risk losing DPIO and
1554
			 * PLL synchronization.
1555
			 */
1556
			val = I915_READ(DISPLAY_PHY_CONTROL);
1557
			I915_WRITE(DISPLAY_PHY_CONTROL,
1558
				PHY_COM_LANE_RESET_DEASSERT(phy, val));
1559
		}
1560
	}
4560 Serge 1561
}
1562
 
4104 Serge 1563
static void vlv_enable_pll(struct intel_crtc *crtc)
2327 Serge 1564
{
4104 Serge 1565
	struct drm_device *dev = crtc->base.dev;
1566
	struct drm_i915_private *dev_priv = dev->dev_private;
1567
	int reg = DPLL(crtc->pipe);
1568
	u32 dpll = crtc->config.dpll_hw_state.dpll;
2327 Serge 1569
 
4104 Serge 1570
	assert_pipe_disabled(dev_priv, crtc->pipe);
1571
 
2327 Serge 1572
    /* No really, not for ILK+ */
4104 Serge 1573
	BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
2327 Serge 1574
 
1575
    /* PLL is protected by panel, make sure we can write it */
1576
    if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
4104 Serge 1577
		assert_panel_unlocked(dev_priv, crtc->pipe);
2327 Serge 1578
 
4104 Serge 1579
	I915_WRITE(reg, dpll);
1580
	POSTING_READ(reg);
1581
	udelay(150);
2327 Serge 1582
 
4104 Serge 1583
	if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1584
		DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1585
 
1586
	I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1587
	POSTING_READ(DPLL_MD(crtc->pipe));
1588
 
1589
	/* We do this three times for luck */
1590
	I915_WRITE(reg, dpll);
1591
	POSTING_READ(reg);
1592
	udelay(150); /* wait for warmup */
1593
	I915_WRITE(reg, dpll);
1594
	POSTING_READ(reg);
1595
	udelay(150); /* wait for warmup */
1596
	I915_WRITE(reg, dpll);
1597
	POSTING_READ(reg);
1598
	udelay(150); /* wait for warmup */
1599
}
1600
 
5060 serge 1601
static void chv_enable_pll(struct intel_crtc *crtc)
1602
{
1603
	struct drm_device *dev = crtc->base.dev;
1604
	struct drm_i915_private *dev_priv = dev->dev_private;
1605
	int pipe = crtc->pipe;
1606
	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1607
	u32 tmp;
1608
 
1609
	assert_pipe_disabled(dev_priv, crtc->pipe);
1610
 
1611
	BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1612
 
1613
	mutex_lock(&dev_priv->dpio_lock);
1614
 
1615
	/* Enable back the 10bit clock to display controller */
1616
	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1617
	tmp |= DPIO_DCLKP_EN;
1618
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1619
 
1620
	/*
1621
	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1622
	 */
1623
	udelay(1);
1624
 
1625
	/* Enable PLL */
1626
	I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
1627
 
1628
	/* Check PLL is locked */
1629
	if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1630
		DRM_ERROR("PLL %d failed to lock\n", pipe);
1631
 
1632
	/* not sure when this should be written */
1633
	I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1634
	POSTING_READ(DPLL_MD(pipe));
1635
 
1636
	mutex_unlock(&dev_priv->dpio_lock);
1637
}
1638
 
4104 Serge 1639
static void i9xx_enable_pll(struct intel_crtc *crtc)
1640
{
1641
	struct drm_device *dev = crtc->base.dev;
1642
	struct drm_i915_private *dev_priv = dev->dev_private;
1643
	int reg = DPLL(crtc->pipe);
1644
	u32 dpll = crtc->config.dpll_hw_state.dpll;
1645
 
1646
	assert_pipe_disabled(dev_priv, crtc->pipe);
1647
 
1648
	/* No really, not for ILK+ */
5060 serge 1649
	BUG_ON(INTEL_INFO(dev)->gen >= 5);
4104 Serge 1650
 
1651
	/* PLL is protected by panel, make sure we can write it */
1652
	if (IS_MOBILE(dev) && !IS_I830(dev))
1653
		assert_panel_unlocked(dev_priv, crtc->pipe);
1654
 
1655
	I915_WRITE(reg, dpll);
1656
 
1657
	/* Wait for the clocks to stabilize. */
1658
	POSTING_READ(reg);
1659
	udelay(150);
1660
 
1661
	if (INTEL_INFO(dev)->gen >= 4) {
1662
		I915_WRITE(DPLL_MD(crtc->pipe),
1663
			   crtc->config.dpll_hw_state.dpll_md);
1664
	} else {
1665
		/* The pixel multiplier can only be updated once the
1666
		 * DPLL is enabled and the clocks are stable.
1667
		 *
1668
		 * So write it again.
1669
		 */
1670
		I915_WRITE(reg, dpll);
1671
	}
1672
 
2327 Serge 1673
    /* We do this three times for luck */
4104 Serge 1674
	I915_WRITE(reg, dpll);
2327 Serge 1675
    POSTING_READ(reg);
1676
    udelay(150); /* wait for warmup */
4104 Serge 1677
	I915_WRITE(reg, dpll);
2327 Serge 1678
    POSTING_READ(reg);
1679
    udelay(150); /* wait for warmup */
4104 Serge 1680
	I915_WRITE(reg, dpll);
2327 Serge 1681
    POSTING_READ(reg);
1682
    udelay(150); /* wait for warmup */
1683
}
1684
 
1685
/**
4104 Serge 1686
 * i9xx_disable_pll - disable a PLL
2327 Serge 1687
 * @dev_priv: i915 private structure
1688
 * @pipe: pipe PLL to disable
1689
 *
1690
 * Disable the PLL for @pipe, making sure the pipe is off first.
1691
 *
1692
 * Note!  This is for pre-ILK only.
1693
 */
4104 Serge 1694
static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2327 Serge 1695
{
1696
	/* Don't disable pipe A or pipe A PLLs if needed */
1697
	if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1698
		return;
1699
 
1700
	/* Make sure the pipe isn't still relying on us */
1701
	assert_pipe_disabled(dev_priv, pipe);
1702
 
4104 Serge 1703
	I915_WRITE(DPLL(pipe), 0);
1704
	POSTING_READ(DPLL(pipe));
2327 Serge 1705
}
1706
 
4539 Serge 1707
static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1708
{
1709
	u32 val = 0;
1710
 
1711
	/* Make sure the pipe isn't still relying on us */
1712
	assert_pipe_disabled(dev_priv, pipe);
1713
 
4560 Serge 1714
	/*
1715
	 * Leave integrated clock source and reference clock enabled for pipe B.
1716
	 * The latter is needed for VGA hotplug / manual detection.
1717
	 */
4539 Serge 1718
	if (pipe == PIPE_B)
4560 Serge 1719
		val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
4539 Serge 1720
	I915_WRITE(DPLL(pipe), val);
1721
	POSTING_READ(DPLL(pipe));
5060 serge 1722
 
4539 Serge 1723
}
1724
 
5060 serge 1725
static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1726
{
1727
	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1728
	u32 val;
1729
 
1730
	/* Make sure the pipe isn't still relying on us */
1731
	assert_pipe_disabled(dev_priv, pipe);
1732
 
1733
	/* Set PLL en = 0 */
1734
	val = DPLL_SSC_REF_CLOCK_CHV;
1735
	if (pipe != PIPE_A)
1736
		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1737
	I915_WRITE(DPLL(pipe), val);
1738
	POSTING_READ(DPLL(pipe));
1739
 
1740
	mutex_lock(&dev_priv->dpio_lock);
1741
 
1742
	/* Disable 10bit clock to display controller */
1743
	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1744
	val &= ~DPIO_DCLKP_EN;
1745
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1746
 
1747
	/* disable left/right clock distribution */
1748
	if (pipe != PIPE_B) {
1749
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1750
		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1751
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1752
	} else {
1753
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1754
		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1755
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1756
	}
1757
 
1758
	mutex_unlock(&dev_priv->dpio_lock);
1759
}
1760
 
4560 Serge 1761
void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1762
		struct intel_digital_port *dport)
3031 serge 1763
{
4104 Serge 1764
	u32 port_mask;
5060 serge 1765
	int dpll_reg;
3031 serge 1766
 
4560 Serge 1767
	switch (dport->port) {
1768
	case PORT_B:
4104 Serge 1769
		port_mask = DPLL_PORTB_READY_MASK;
5060 serge 1770
		dpll_reg = DPLL(0);
4560 Serge 1771
		break;
1772
	case PORT_C:
4104 Serge 1773
		port_mask = DPLL_PORTC_READY_MASK;
5060 serge 1774
		dpll_reg = DPLL(0);
4560 Serge 1775
		break;
5060 serge 1776
	case PORT_D:
1777
		port_mask = DPLL_PORTD_READY_MASK;
1778
		dpll_reg = DPIO_PHY_STATUS;
1779
		break;
4560 Serge 1780
	default:
1781
		BUG();
1782
	}
3243 Serge 1783
 
5060 serge 1784
	if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
4104 Serge 1785
		WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
5060 serge 1786
		     port_name(dport->port), I915_READ(dpll_reg));
3031 serge 1787
}
1788
 
5060 serge 1789
static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1790
{
1791
	struct drm_device *dev = crtc->base.dev;
1792
	struct drm_i915_private *dev_priv = dev->dev_private;
1793
	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1794
 
1795
	if (WARN_ON(pll == NULL))
1796
		return;
1797
 
1798
	WARN_ON(!pll->refcount);
1799
	if (pll->active == 0) {
1800
		DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1801
		WARN_ON(pll->on);
1802
		assert_shared_dpll_disabled(dev_priv, pll);
1803
 
1804
		pll->mode_set(dev_priv, pll);
1805
	}
1806
}
1807
 
2327 Serge 1808
/**
5060 serge 1809
 * intel_enable_shared_dpll - enable PCH PLL
2327 Serge 1810
 * @dev_priv: i915 private structure
1811
 * @pipe: pipe PLL to enable
1812
 *
1813
 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1814
 * drives the transcoder clock.
1815
 */
5060 serge 1816
static void intel_enable_shared_dpll(struct intel_crtc *crtc)
2327 Serge 1817
{
5060 serge 1818
	struct drm_device *dev = crtc->base.dev;
1819
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 1820
	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
2327 Serge 1821
 
4104 Serge 1822
	if (WARN_ON(pll == NULL))
2342 Serge 1823
		return;
1824
 
3031 serge 1825
	if (WARN_ON(pll->refcount == 0))
1826
		return;
2327 Serge 1827
 
4104 Serge 1828
	DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1829
		      pll->name, pll->active, pll->on,
1830
		      crtc->base.base.id);
3031 serge 1831
 
4104 Serge 1832
	if (pll->active++) {
1833
		WARN_ON(!pll->on);
1834
		assert_shared_dpll_enabled(dev_priv, pll);
3031 serge 1835
		return;
1836
	}
4104 Serge 1837
	WARN_ON(pll->on);
3031 serge 1838
 
5060 serge 1839
	intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1840
 
4104 Serge 1841
	DRM_DEBUG_KMS("enabling %s\n", pll->name);
1842
	pll->enable(dev_priv, pll);
3031 serge 1843
	pll->on = true;
2327 Serge 1844
}
1845
 
5060 serge 1846
void intel_disable_shared_dpll(struct intel_crtc *crtc)
2327 Serge 1847
{
5060 serge 1848
	struct drm_device *dev = crtc->base.dev;
1849
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 1850
	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
2327 Serge 1851
 
1852
	/* PCH only available on ILK+ */
5060 serge 1853
	BUG_ON(INTEL_INFO(dev)->gen < 5);
4104 Serge 1854
	if (WARN_ON(pll == NULL))
3031 serge 1855
	       return;
2327 Serge 1856
 
3031 serge 1857
	if (WARN_ON(pll->refcount == 0))
1858
		return;
2327 Serge 1859
 
4104 Serge 1860
	DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1861
		      pll->name, pll->active, pll->on,
1862
		      crtc->base.base.id);
2342 Serge 1863
 
3031 serge 1864
	if (WARN_ON(pll->active == 0)) {
4104 Serge 1865
		assert_shared_dpll_disabled(dev_priv, pll);
3031 serge 1866
		return;
1867
	}
2342 Serge 1868
 
4104 Serge 1869
	assert_shared_dpll_enabled(dev_priv, pll);
1870
	WARN_ON(!pll->on);
1871
	if (--pll->active)
2342 Serge 1872
		return;
1873
 
4104 Serge 1874
	DRM_DEBUG_KMS("disabling %s\n", pll->name);
1875
	pll->disable(dev_priv, pll);
3031 serge 1876
	pll->on = false;
5060 serge 1877
 
1878
	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
2327 Serge 1879
}
1880
 
3243 Serge 1881
static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2327 Serge 1882
				    enum pipe pipe)
1883
{
3243 Serge 1884
	struct drm_device *dev = dev_priv->dev;
3031 serge 1885
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4104 Serge 1886
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3243 Serge 1887
	uint32_t reg, val, pipeconf_val;
2327 Serge 1888
 
1889
	/* PCH only available on ILK+ */
5060 serge 1890
	BUG_ON(INTEL_INFO(dev)->gen < 5);
2327 Serge 1891
 
1892
	/* Make sure PCH DPLL is enabled */
4104 Serge 1893
	assert_shared_dpll_enabled(dev_priv,
1894
				   intel_crtc_to_shared_dpll(intel_crtc));
2327 Serge 1895
 
1896
	/* FDI must be feeding us bits for PCH ports */
1897
	assert_fdi_tx_enabled(dev_priv, pipe);
1898
	assert_fdi_rx_enabled(dev_priv, pipe);
1899
 
3243 Serge 1900
	if (HAS_PCH_CPT(dev)) {
1901
		/* Workaround: Set the timing override bit before enabling the
1902
		 * pch transcoder. */
1903
		reg = TRANS_CHICKEN2(pipe);
1904
		val = I915_READ(reg);
1905
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1906
		I915_WRITE(reg, val);
3031 serge 1907
	}
3243 Serge 1908
 
4104 Serge 1909
	reg = PCH_TRANSCONF(pipe);
2327 Serge 1910
	val = I915_READ(reg);
3031 serge 1911
	pipeconf_val = I915_READ(PIPECONF(pipe));
2327 Serge 1912
 
1913
	if (HAS_PCH_IBX(dev_priv->dev)) {
1914
		/*
1915
		 * make the BPC in transcoder be consistent with
1916
		 * that in pipeconf reg.
1917
		 */
3480 Serge 1918
		val &= ~PIPECONF_BPC_MASK;
1919
		val |= pipeconf_val & PIPECONF_BPC_MASK;
2327 Serge 1920
	}
3031 serge 1921
 
1922
	val &= ~TRANS_INTERLACE_MASK;
1923
	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1924
		if (HAS_PCH_IBX(dev_priv->dev) &&
1925
		    intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1926
			val |= TRANS_LEGACY_INTERLACED_ILK;
1927
		else
1928
			val |= TRANS_INTERLACED;
1929
	else
1930
		val |= TRANS_PROGRESSIVE;
1931
 
2327 Serge 1932
	I915_WRITE(reg, val | TRANS_ENABLE);
1933
	if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4104 Serge 1934
		DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2327 Serge 1935
}
1936
 
3243 Serge 1937
static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1938
				      enum transcoder cpu_transcoder)
1939
{
1940
	u32 val, pipeconf_val;
1941
 
1942
	/* PCH only available on ILK+ */
5060 serge 1943
	BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
3243 Serge 1944
 
1945
	/* FDI must be feeding us bits for PCH ports */
3480 Serge 1946
	assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
3243 Serge 1947
	assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1948
 
1949
	/* Workaround: set timing override bit. */
1950
	val = I915_READ(_TRANSA_CHICKEN2);
1951
	val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1952
	I915_WRITE(_TRANSA_CHICKEN2, val);
1953
 
1954
	val = TRANS_ENABLE;
1955
	pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1956
 
1957
	if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1958
	    PIPECONF_INTERLACED_ILK)
1959
		val |= TRANS_INTERLACED;
1960
	else
1961
		val |= TRANS_PROGRESSIVE;
1962
 
4104 Serge 1963
	I915_WRITE(LPT_TRANSCONF, val);
1964
	if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
3243 Serge 1965
		DRM_ERROR("Failed to enable PCH transcoder\n");
1966
}
1967
 
1968
static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2327 Serge 1969
				     enum pipe pipe)
1970
{
3243 Serge 1971
	struct drm_device *dev = dev_priv->dev;
1972
	uint32_t reg, val;
2327 Serge 1973
 
1974
	/* FDI relies on the transcoder */
1975
	assert_fdi_tx_disabled(dev_priv, pipe);
1976
	assert_fdi_rx_disabled(dev_priv, pipe);
1977
 
1978
	/* Ports must be off as well */
1979
	assert_pch_ports_disabled(dev_priv, pipe);
1980
 
4104 Serge 1981
	reg = PCH_TRANSCONF(pipe);
2327 Serge 1982
	val = I915_READ(reg);
1983
	val &= ~TRANS_ENABLE;
1984
	I915_WRITE(reg, val);
1985
	/* wait for PCH transcoder off, transcoder state */
1986
	if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4104 Serge 1987
		DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
3243 Serge 1988
 
1989
	if (!HAS_PCH_IBX(dev)) {
1990
		/* Workaround: Clear the timing override chicken bit again. */
1991
		reg = TRANS_CHICKEN2(pipe);
1992
		val = I915_READ(reg);
1993
		val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1994
		I915_WRITE(reg, val);
1995
	}
2327 Serge 1996
}
1997
 
3243 Serge 1998
static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1999
{
2000
	u32 val;
2001
 
4104 Serge 2002
	val = I915_READ(LPT_TRANSCONF);
3243 Serge 2003
	val &= ~TRANS_ENABLE;
4104 Serge 2004
	I915_WRITE(LPT_TRANSCONF, val);
3243 Serge 2005
	/* wait for PCH transcoder off, transcoder state */
4104 Serge 2006
	if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
3243 Serge 2007
		DRM_ERROR("Failed to disable PCH transcoder\n");
2008
 
2009
	/* Workaround: clear timing override bit. */
2010
	val = I915_READ(_TRANSA_CHICKEN2);
2011
	val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2012
	I915_WRITE(_TRANSA_CHICKEN2, val);
2013
}
2014
 
2327 Serge 2015
/**
2016
 * intel_enable_pipe - enable a pipe, asserting requirements
5060 serge 2017
 * @crtc: crtc responsible for the pipe
2327 Serge 2018
 *
5060 serge 2019
 * Enable @crtc's pipe, making sure that various hardware specific requirements
2327 Serge 2020
 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2021
 */
5060 serge 2022
static void intel_enable_pipe(struct intel_crtc *crtc)
2327 Serge 2023
{
5060 serge 2024
	struct drm_device *dev = crtc->base.dev;
2025
	struct drm_i915_private *dev_priv = dev->dev_private;
2026
	enum pipe pipe = crtc->pipe;
3243 Serge 2027
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2028
								      pipe);
3480 Serge 2029
	enum pipe pch_transcoder;
2327 Serge 2030
	int reg;
2031
	u32 val;
2032
 
4104 Serge 2033
	assert_planes_disabled(dev_priv, pipe);
4560 Serge 2034
	assert_cursor_disabled(dev_priv, pipe);
4104 Serge 2035
	assert_sprites_disabled(dev_priv, pipe);
2036
 
3480 Serge 2037
	if (HAS_PCH_LPT(dev_priv->dev))
3243 Serge 2038
		pch_transcoder = TRANSCODER_A;
2039
	else
2040
		pch_transcoder = pipe;
2041
 
2327 Serge 2042
	/*
2043
	 * A pipe without a PLL won't actually be able to drive bits from
2044
	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2045
	 * need the check.
2046
	 */
2047
	if (!HAS_PCH_SPLIT(dev_priv->dev))
5060 serge 2048
		if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
4560 Serge 2049
			assert_dsi_pll_enabled(dev_priv);
2050
		else
2327 Serge 2051
		assert_pll_enabled(dev_priv, pipe);
2052
	else {
5060 serge 2053
		if (crtc->config.has_pch_encoder) {
2327 Serge 2054
			/* if driving the PCH, we need FDI enabled */
3243 Serge 2055
			assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
3480 Serge 2056
			assert_fdi_tx_pll_enabled(dev_priv,
2057
						  (enum pipe) cpu_transcoder);
2327 Serge 2058
		}
2059
		/* FIXME: assert CPU port conditions for SNB+ */
2060
	}
2061
 
3243 Serge 2062
	reg = PIPECONF(cpu_transcoder);
2327 Serge 2063
	val = I915_READ(reg);
5060 serge 2064
	if (val & PIPECONF_ENABLE) {
2065
		WARN_ON(!(pipe == PIPE_A &&
2066
			  dev_priv->quirks & QUIRK_PIPEA_FORCE));
2327 Serge 2067
		return;
5060 serge 2068
	}
2327 Serge 2069
 
2070
	I915_WRITE(reg, val | PIPECONF_ENABLE);
5060 serge 2071
	POSTING_READ(reg);
2327 Serge 2072
}
2073
 
2074
/**
2075
 * intel_disable_pipe - disable a pipe, asserting requirements
2076
 * @dev_priv: i915 private structure
2077
 * @pipe: pipe to disable
2078
 *
2079
 * Disable @pipe, making sure that various hardware specific requirements
2080
 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2081
 *
2082
 * @pipe should be %PIPE_A or %PIPE_B.
2083
 *
2084
 * Will wait until the pipe has shut down before returning.
2085
 */
2086
static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2087
			       enum pipe pipe)
2088
{
3243 Serge 2089
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2090
								      pipe);
2327 Serge 2091
	int reg;
2092
	u32 val;
2093
 
3031 serge 2094
    /*
2327 Serge 2095
	 * Make sure planes won't keep trying to pump pixels to us,
2096
	 * or we might hang the display.
2097
	 */
2098
	assert_planes_disabled(dev_priv, pipe);
4560 Serge 2099
	assert_cursor_disabled(dev_priv, pipe);
3746 Serge 2100
	assert_sprites_disabled(dev_priv, pipe);
2327 Serge 2101
 
2102
	/* Don't disable pipe A or pipe A PLLs if needed */
2103
	if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2104
		return;
2105
 
3243 Serge 2106
	reg = PIPECONF(cpu_transcoder);
2327 Serge 2107
	val = I915_READ(reg);
2108
	if ((val & PIPECONF_ENABLE) == 0)
2109
		return;
2110
 
2111
	I915_WRITE(reg, val & ~PIPECONF_ENABLE);
2112
	intel_wait_for_pipe_off(dev_priv->dev, pipe);
2113
}
2114
 
2115
/*
2116
 * Plane regs are double buffered, going from enabled->disabled needs a
2117
 * trigger in order to latch.  The display address reg provides this.
2118
 */
4560 Serge 2119
void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2327 Serge 2120
				      enum plane plane)
2121
{
5060 serge 2122
	struct drm_device *dev = dev_priv->dev;
2123
	u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
4560 Serge 2124
 
2125
	I915_WRITE(reg, I915_READ(reg));
2126
	POSTING_READ(reg);
2327 Serge 2127
}
2128
 
2129
/**
5060 serge 2130
 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2327 Serge 2131
 * @dev_priv: i915 private structure
2132
 * @plane: plane to enable
2133
 * @pipe: pipe being fed
2134
 *
2135
 * Enable @plane on @pipe, making sure that @pipe is running first.
2136
 */
5060 serge 2137
static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2327 Serge 2138
			       enum plane plane, enum pipe pipe)
2139
{
5060 serge 2140
	struct drm_device *dev = dev_priv->dev;
4560 Serge 2141
	struct intel_crtc *intel_crtc =
2142
		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2327 Serge 2143
	int reg;
2144
	u32 val;
2145
 
2146
	/* If the pipe isn't enabled, we can't pump pixels and may hang */
2147
	assert_pipe_enabled(dev_priv, pipe);
2148
 
5060 serge 2149
	if (intel_crtc->primary_enabled)
2150
		return;
4560 Serge 2151
 
2152
	intel_crtc->primary_enabled = true;
2153
 
2327 Serge 2154
	reg = DSPCNTR(plane);
2155
	val = I915_READ(reg);
5060 serge 2156
	WARN_ON(val & DISPLAY_PLANE_ENABLE);
2327 Serge 2157
 
2158
	I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
4560 Serge 2159
	intel_flush_primary_plane(dev_priv, plane);
2327 Serge 2160
}
2161
 
2162
/**
5060 serge 2163
 * intel_disable_primary_hw_plane - disable the primary hardware plane
2327 Serge 2164
 * @dev_priv: i915 private structure
2165
 * @plane: plane to disable
2166
 * @pipe: pipe consuming the data
2167
 *
2168
 * Disable @plane; should be an independent operation.
2169
 */
5060 serge 2170
static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2327 Serge 2171
				enum plane plane, enum pipe pipe)
2172
{
4560 Serge 2173
	struct intel_crtc *intel_crtc =
2174
		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2327 Serge 2175
	int reg;
2176
	u32 val;
2177
 
5060 serge 2178
	if (!intel_crtc->primary_enabled)
2179
		return;
4560 Serge 2180
 
2181
	intel_crtc->primary_enabled = false;
2182
 
2327 Serge 2183
	reg = DSPCNTR(plane);
2184
	val = I915_READ(reg);
5060 serge 2185
	WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
2327 Serge 2186
 
2187
	I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
4560 Serge 2188
	intel_flush_primary_plane(dev_priv, plane);
2327 Serge 2189
}
2190
 
3746 Serge 2191
static bool need_vtd_wa(struct drm_device *dev)
2192
{
2193
#ifdef CONFIG_INTEL_IOMMU
2194
	if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2195
		return true;
2196
#endif
2197
	return false;
2198
}
2199
 
5060 serge 2200
static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2201
{
2202
	int tile_height;
2203
 
2204
	tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2205
	return ALIGN(height, tile_height);
2206
}
2207
 
2335 Serge 2208
int
2209
intel_pin_and_fence_fb_obj(struct drm_device *dev,
2210
			   struct drm_i915_gem_object *obj,
5060 serge 2211
			   struct intel_engine_cs *pipelined)
2335 Serge 2212
{
2213
	struct drm_i915_private *dev_priv = dev->dev_private;
2214
	u32 alignment;
2215
	int ret;
2327 Serge 2216
 
5060 serge 2217
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2218
 
2335 Serge 2219
	switch (obj->tiling_mode) {
2220
	case I915_TILING_NONE:
2221
		if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2222
			alignment = 128 * 1024;
2223
		else if (INTEL_INFO(dev)->gen >= 4)
2224
			alignment = 4 * 1024;
2225
		else
2226
			alignment = 64 * 1024;
2227
		break;
2228
	case I915_TILING_X:
2229
		/* pin() will align the object as required by fence */
2230
		alignment = 0;
2231
		break;
2232
	case I915_TILING_Y:
4560 Serge 2233
		WARN(1, "Y tiled bo slipped through, driver bug!\n");
2335 Serge 2234
		return -EINVAL;
2235
	default:
2236
		BUG();
2237
	}
2327 Serge 2238
 
3746 Serge 2239
	/* Note that the w/a also requires 64 PTE of padding following the
2240
	 * bo. We currently fill all unused PTE with the shadow page and so
2241
	 * we should always have valid PTE following the scanout preventing
2242
	 * the VT-d warning.
2243
	 */
2244
	if (need_vtd_wa(dev) && alignment < 256 * 1024)
2245
		alignment = 256 * 1024;
2246
 
2335 Serge 2247
	dev_priv->mm.interruptible = false;
2248
	ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2249
	if (ret)
2250
		goto err_interruptible;
2327 Serge 2251
 
2335 Serge 2252
	/* Install a fence for tiled scan-out. Pre-i965 always needs a
2253
	 * fence, whereas 965+ only requires a fence if using
2254
	 * framebuffer compression.  For simplicity, we always install
2255
	 * a fence as the cost is not that onerous.
2256
	 */
3480 Serge 2257
	ret = i915_gem_object_get_fence(obj);
2258
	if (ret)
2259
		goto err_unpin;
2327 Serge 2260
 
3480 Serge 2261
	i915_gem_object_pin_fence(obj);
2262
 
2335 Serge 2263
	dev_priv->mm.interruptible = true;
2264
	return 0;
2327 Serge 2265
 
2335 Serge 2266
err_unpin:
4104 Serge 2267
	i915_gem_object_unpin_from_display_plane(obj);
2335 Serge 2268
err_interruptible:
2269
	dev_priv->mm.interruptible = true;
2270
	return ret;
2271
}
2327 Serge 2272
 
3031 serge 2273
void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2274
{
5060 serge 2275
	WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2276
 
2277
	i915_gem_object_unpin_fence(obj);
2278
//	i915_gem_object_unpin_from_display_plane(obj);
3031 serge 2279
}
2280
 
2281
/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2282
 * is assumed to be a power-of-two. */
3480 Serge 2283
unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2284
					     unsigned int tiling_mode,
2285
					     unsigned int cpp,
3031 serge 2286
							unsigned int pitch)
2287
{
3480 Serge 2288
	if (tiling_mode != I915_TILING_NONE) {
2289
		unsigned int tile_rows, tiles;
3031 serge 2290
 
2291
	tile_rows = *y / 8;
2292
	*y %= 8;
2293
 
3480 Serge 2294
		tiles = *x / (512/cpp);
2295
		*x %= 512/cpp;
2296
 
3031 serge 2297
	return tile_rows * pitch * 8 + tiles * 4096;
3480 Serge 2298
	} else {
2299
		unsigned int offset;
2300
 
2301
		offset = *y * pitch + *x * cpp;
2302
		*y = 0;
2303
		*x = (offset & 4095) / cpp;
2304
		return offset & -4096;
2305
	}
3031 serge 2306
}
2307
 
5060 serge 2308
int intel_format_to_fourcc(int format)
2327 Serge 2309
{
5060 serge 2310
	switch (format) {
2311
	case DISPPLANE_8BPP:
2312
		return DRM_FORMAT_C8;
2313
	case DISPPLANE_BGRX555:
2314
		return DRM_FORMAT_XRGB1555;
2315
	case DISPPLANE_BGRX565:
2316
		return DRM_FORMAT_RGB565;
2317
	default:
2318
	case DISPPLANE_BGRX888:
2319
		return DRM_FORMAT_XRGB8888;
2320
	case DISPPLANE_RGBX888:
2321
		return DRM_FORMAT_XBGR8888;
2322
	case DISPPLANE_BGRX101010:
2323
		return DRM_FORMAT_XRGB2101010;
2324
	case DISPPLANE_RGBX101010:
2325
		return DRM_FORMAT_XBGR2101010;
2326
	}
2327
}
2328
 
2329
static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2330
				  struct intel_plane_config *plane_config)
2331
{
2332
	struct drm_device *dev = crtc->base.dev;
2333
	struct drm_i915_gem_object *obj = NULL;
2334
	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2335
	u32 base = plane_config->base;
2336
 
2337
	if (plane_config->size == 0)
2338
		return false;
2339
 
2340
	obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2341
							     plane_config->size);
2342
	if (!obj)
2343
		return false;
2344
 
2345
    main_fb_obj = obj;
2346
 
2347
	if (plane_config->tiled) {
2348
		obj->tiling_mode = I915_TILING_X;
2349
		obj->stride = crtc->base.primary->fb->pitches[0];
2350
	}
2351
 
2352
	mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2353
	mode_cmd.width = crtc->base.primary->fb->width;
2354
	mode_cmd.height = crtc->base.primary->fb->height;
2355
	mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2356
 
2357
	mutex_lock(&dev->struct_mutex);
2358
 
2359
	if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2360
				   &mode_cmd, obj)) {
2361
		DRM_DEBUG_KMS("intel fb init failed\n");
2362
		goto out_unref_obj;
2363
	}
2364
 
2365
	obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2366
	mutex_unlock(&dev->struct_mutex);
2367
 
2368
	DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2369
	return true;
2370
 
2371
out_unref_obj:
2372
	drm_gem_object_unreference(&obj->base);
2373
	mutex_unlock(&dev->struct_mutex);
2374
	return false;
2375
}
2376
 
2377
static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2378
				 struct intel_plane_config *plane_config)
2379
{
2380
	struct drm_device *dev = intel_crtc->base.dev;
2381
	struct drm_crtc *c;
2382
	struct intel_crtc *i;
2383
	struct drm_i915_gem_object *obj;
2384
 
2385
	if (!intel_crtc->base.primary->fb)
2386
		return;
2387
 
2388
	if (intel_alloc_plane_obj(intel_crtc, plane_config))
2389
		return;
2390
 
2391
	kfree(intel_crtc->base.primary->fb);
2392
	intel_crtc->base.primary->fb = NULL;
2393
 
2394
	/*
2395
	 * Failed to alloc the obj, check to see if we should share
2396
	 * an fb with another CRTC instead
2397
	 */
2398
	for_each_crtc(dev, c) {
2399
		i = to_intel_crtc(c);
2400
 
2401
		if (c == &intel_crtc->base)
2402
			continue;
2403
 
2404
		if (!i->active)
2405
			continue;
2406
 
2407
		obj = intel_fb_obj(c->primary->fb);
2408
		if (obj == NULL)
2409
			continue;
2410
 
2411
		if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2412
			drm_framebuffer_reference(c->primary->fb);
2413
			intel_crtc->base.primary->fb = c->primary->fb;
2414
			obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2415
			break;
2416
		}
2417
	}
2418
}
2419
 
2420
static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2421
				     struct drm_framebuffer *fb,
2422
				     int x, int y)
2423
{
2327 Serge 2424
    struct drm_device *dev = crtc->dev;
2425
    struct drm_i915_private *dev_priv = dev->dev_private;
2426
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5060 serge 2427
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2327 Serge 2428
    int plane = intel_crtc->plane;
3031 serge 2429
	unsigned long linear_offset;
2327 Serge 2430
    u32 dspcntr;
2431
    u32 reg;
2432
 
2433
    reg = DSPCNTR(plane);
2434
    dspcntr = I915_READ(reg);
2435
    /* Mask out pixel format bits in case we change it */
2436
    dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
3243 Serge 2437
	switch (fb->pixel_format) {
2438
	case DRM_FORMAT_C8:
2327 Serge 2439
        dspcntr |= DISPPLANE_8BPP;
2440
        break;
3243 Serge 2441
	case DRM_FORMAT_XRGB1555:
2442
	case DRM_FORMAT_ARGB1555:
2443
		dspcntr |= DISPPLANE_BGRX555;
2444
		break;
2445
	case DRM_FORMAT_RGB565:
2446
		dspcntr |= DISPPLANE_BGRX565;
2447
		break;
2448
	case DRM_FORMAT_XRGB8888:
2449
	case DRM_FORMAT_ARGB8888:
2450
		dspcntr |= DISPPLANE_BGRX888;
2451
		break;
2452
	case DRM_FORMAT_XBGR8888:
2453
	case DRM_FORMAT_ABGR8888:
2454
		dspcntr |= DISPPLANE_RGBX888;
2455
		break;
2456
	case DRM_FORMAT_XRGB2101010:
2457
	case DRM_FORMAT_ARGB2101010:
2458
		dspcntr |= DISPPLANE_BGRX101010;
2327 Serge 2459
        break;
3243 Serge 2460
	case DRM_FORMAT_XBGR2101010:
2461
	case DRM_FORMAT_ABGR2101010:
2462
		dspcntr |= DISPPLANE_RGBX101010;
2327 Serge 2463
        break;
2464
    default:
3746 Serge 2465
		BUG();
2327 Serge 2466
    }
3243 Serge 2467
 
2327 Serge 2468
    if (INTEL_INFO(dev)->gen >= 4) {
2469
        if (obj->tiling_mode != I915_TILING_NONE)
2470
            dspcntr |= DISPPLANE_TILED;
2471
        else
2472
            dspcntr &= ~DISPPLANE_TILED;
2473
    }
2474
 
4104 Serge 2475
	if (IS_G4X(dev))
2476
		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2477
 
2327 Serge 2478
    I915_WRITE(reg, dspcntr);
2479
 
3031 serge 2480
	linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2327 Serge 2481
 
3031 serge 2482
	if (INTEL_INFO(dev)->gen >= 4) {
2483
		intel_crtc->dspaddr_offset =
3480 Serge 2484
			intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
3031 serge 2485
							   fb->bits_per_pixel / 8,
2486
							   fb->pitches[0]);
2487
		linear_offset -= intel_crtc->dspaddr_offset;
2488
	} else {
2489
		intel_crtc->dspaddr_offset = linear_offset;
2490
	}
2491
 
4104 Serge 2492
	DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2493
		      i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2494
		      fb->pitches[0]);
2342 Serge 2495
	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2327 Serge 2496
    if (INTEL_INFO(dev)->gen >= 4) {
4560 Serge 2497
		I915_WRITE(DSPSURF(plane),
4104 Serge 2498
				     i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2327 Serge 2499
        I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3031 serge 2500
		I915_WRITE(DSPLINOFF(plane), linear_offset);
2327 Serge 2501
    } else
4104 Serge 2502
		I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2327 Serge 2503
    POSTING_READ(reg);
2504
}
2505
 
5060 serge 2506
static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2507
					 struct drm_framebuffer *fb,
2508
					 int x, int y)
2327 Serge 2509
{
2510
    struct drm_device *dev = crtc->dev;
2511
    struct drm_i915_private *dev_priv = dev->dev_private;
2512
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5060 serge 2513
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2327 Serge 2514
    int plane = intel_crtc->plane;
3031 serge 2515
	unsigned long linear_offset;
2327 Serge 2516
    u32 dspcntr;
2517
    u32 reg;
2518
 
2519
    reg = DSPCNTR(plane);
2520
    dspcntr = I915_READ(reg);
2521
    /* Mask out pixel format bits in case we change it */
2522
    dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
3243 Serge 2523
	switch (fb->pixel_format) {
2524
	case DRM_FORMAT_C8:
2327 Serge 2525
        dspcntr |= DISPPLANE_8BPP;
2526
        break;
3243 Serge 2527
	case DRM_FORMAT_RGB565:
2528
		dspcntr |= DISPPLANE_BGRX565;
2327 Serge 2529
        break;
3243 Serge 2530
	case DRM_FORMAT_XRGB8888:
2531
	case DRM_FORMAT_ARGB8888:
2532
		dspcntr |= DISPPLANE_BGRX888;
2533
		break;
2534
	case DRM_FORMAT_XBGR8888:
2535
	case DRM_FORMAT_ABGR8888:
2536
		dspcntr |= DISPPLANE_RGBX888;
2537
		break;
2538
	case DRM_FORMAT_XRGB2101010:
2539
	case DRM_FORMAT_ARGB2101010:
2540
		dspcntr |= DISPPLANE_BGRX101010;
2541
		break;
2542
	case DRM_FORMAT_XBGR2101010:
2543
	case DRM_FORMAT_ABGR2101010:
2544
		dspcntr |= DISPPLANE_RGBX101010;
2327 Serge 2545
        break;
2546
    default:
3746 Serge 2547
		BUG();
2327 Serge 2548
    }
2549
 
3480 Serge 2550
	if (obj->tiling_mode != I915_TILING_NONE)
2551
		dspcntr |= DISPPLANE_TILED;
2552
	else
2327 Serge 2553
        dspcntr &= ~DISPPLANE_TILED;
2554
 
4560 Serge 2555
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4104 Serge 2556
		dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2557
	else
2327 Serge 2558
    dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2559
 
2560
    I915_WRITE(reg, dspcntr);
2561
 
3031 serge 2562
	linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2563
	intel_crtc->dspaddr_offset =
3480 Serge 2564
		intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
3031 serge 2565
						   fb->bits_per_pixel / 8,
2566
						   fb->pitches[0]);
2567
	linear_offset -= intel_crtc->dspaddr_offset;
2327 Serge 2568
 
4104 Serge 2569
	DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2570
		      i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2571
		      fb->pitches[0]);
2342 Serge 2572
	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
4560 Serge 2573
	I915_WRITE(DSPSURF(plane),
4104 Serge 2574
			     i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
4560 Serge 2575
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3243 Serge 2576
		I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2577
	} else {
2330 Serge 2578
	I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3031 serge 2579
	I915_WRITE(DSPLINOFF(plane), linear_offset);
3243 Serge 2580
	}
2330 Serge 2581
	POSTING_READ(reg);
2327 Serge 2582
}
2583
 
2584
/* Assume fb object is pinned & idle & fenced and just update base pointers */
2585
static int
2586
intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2587
			   int x, int y, enum mode_set_atomic state)
2588
{
2589
	struct drm_device *dev = crtc->dev;
2590
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2591
 
2592
	if (dev_priv->display.disable_fbc)
2593
		dev_priv->display.disable_fbc(dev);
5060 serge 2594
	intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
3031 serge 2595
 
5060 serge 2596
	dev_priv->display.update_primary_plane(crtc, fb, x, y);
2597
 
2598
	return 0;
3031 serge 2599
}
2600
 
2601
#if 0
4104 Serge 2602
void intel_display_handle_reset(struct drm_device *dev)
2603
{
2604
	struct drm_i915_private *dev_priv = dev->dev_private;
2605
	struct drm_crtc *crtc;
2606
 
2607
	/*
2608
	 * Flips in the rings have been nuked by the reset,
2609
	 * so complete all pending flips so that user space
2610
	 * will get its events and not get stuck.
2611
	 *
2612
	 * Also update the base address of all primary
2613
	 * planes to the the last fb to make sure we're
2614
	 * showing the correct fb after a reset.
2615
	 *
2616
	 * Need to make two loops over the crtcs so that we
2617
	 * don't try to grab a crtc mutex before the
2618
	 * pending_flip_queue really got woken up.
2619
	 */
2620
 
5060 serge 2621
	for_each_crtc(dev, crtc) {
4104 Serge 2622
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2623
		enum plane plane = intel_crtc->plane;
2624
 
2625
		intel_prepare_page_flip(dev, plane);
2626
		intel_finish_page_flip_plane(dev, plane);
2627
	}
2628
 
5060 serge 2629
	for_each_crtc(dev, crtc) {
4104 Serge 2630
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2631
 
5060 serge 2632
		drm_modeset_lock(&crtc->mutex, NULL);
4560 Serge 2633
		/*
2634
		 * FIXME: Once we have proper support for primary planes (and
2635
		 * disabling them without disabling the entire crtc) allow again
5060 serge 2636
		 * a NULL crtc->primary->fb.
4560 Serge 2637
		 */
5060 serge 2638
		if (intel_crtc->active && crtc->primary->fb)
2639
			dev_priv->display.update_primary_plane(crtc,
2640
							       crtc->primary->fb,
2641
							       crtc->x,
2642
							       crtc->y);
2643
		drm_modeset_unlock(&crtc->mutex);
4104 Serge 2644
	}
2645
}
2646
 
3031 serge 2647
static int
2648
intel_finish_fb(struct drm_framebuffer *old_fb)
2649
{
5060 serge 2650
	struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3031 serge 2651
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2652
	bool was_interruptible = dev_priv->mm.interruptible;
2327 Serge 2653
	int ret;
2654
 
3031 serge 2655
	/* Big Hammer, we also need to ensure that any pending
2656
	 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2657
	 * current scanout is retired before unpinning the old
2658
	 * framebuffer.
2659
	 *
2660
	 * This should only fail upon a hung GPU, in which case we
2661
	 * can safely continue.
2662
	 */
2663
	dev_priv->mm.interruptible = false;
2664
	ret = i915_gem_object_finish_gpu(obj);
2665
	dev_priv->mm.interruptible = was_interruptible;
2327 Serge 2666
 
3031 serge 2667
	return ret;
2327 Serge 2668
}
4104 Serge 2669
 
5060 serge 2670
static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
4104 Serge 2671
{
2672
	struct drm_device *dev = crtc->dev;
5060 serge 2673
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 2674
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5060 serge 2675
	unsigned long flags;
2676
	bool pending;
4104 Serge 2677
 
5060 serge 2678
	if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2679
	    intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2680
		return false;
4104 Serge 2681
 
5060 serge 2682
	spin_lock_irqsave(&dev->event_lock, flags);
2683
	pending = to_intel_crtc(crtc)->unpin_work != NULL;
2684
	spin_unlock_irqrestore(&dev->event_lock, flags);
4104 Serge 2685
 
5060 serge 2686
	return pending;
4104 Serge 2687
}
3031 serge 2688
#endif
2327 Serge 2689
 
2690
static int
2691
intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
3031 serge 2692
		    struct drm_framebuffer *fb)
2327 Serge 2693
{
2694
	struct drm_device *dev = crtc->dev;
3031 serge 2695
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 2696
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5060 serge 2697
	enum pipe pipe = intel_crtc->pipe;
2698
	struct drm_framebuffer *old_fb = crtc->primary->fb;
2699
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2700
	struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2342 Serge 2701
	int ret;
2327 Serge 2702
 
5060 serge 2703
 
2327 Serge 2704
	/* no fb bound */
3031 serge 2705
	if (!fb) {
2327 Serge 2706
		DRM_ERROR("No FB bound\n");
2707
		return 0;
2708
	}
2709
 
3746 Serge 2710
	if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
4104 Serge 2711
		DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2712
			  plane_name(intel_crtc->plane),
3746 Serge 2713
				INTEL_INFO(dev)->num_pipes);
2327 Serge 2714
		return -EINVAL;
2715
	}
2716
 
2717
	mutex_lock(&dev->struct_mutex);
5060 serge 2718
	ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2719
	if (ret == 0)
2720
		i915_gem_track_fb(old_obj, obj,
2721
				  INTEL_FRONTBUFFER_PRIMARY(pipe));
2722
	mutex_unlock(&dev->struct_mutex);
4280 Serge 2723
    if (ret != 0) {
2724
       DRM_ERROR("pin & fence failed\n");
2725
       return ret;
2726
    }
2327 Serge 2727
 
4560 Serge 2728
	/*
2729
	 * Update pipe size and adjust fitter if needed: the reason for this is
2730
	 * that in compute_mode_changes we check the native mode (not the pfit
2731
	 * mode) to see if we can flip rather than do a full mode set. In the
2732
	 * fastboot case, we'll flip, but if we don't update the pipesrc and
2733
	 * pfit state, we'll end up with a big fb scanned out into the wrong
2734
	 * sized surface.
2735
	 *
2736
	 * To fix this properly, we need to hoist the checks up into
2737
	 * compute_mode_changes (or above), check the actual pfit state and
2738
	 * whether the platform allows pfit disable with pipe active, and only
2739
	 * then update the pipesrc and pfit state, even on the flip path.
2740
	 */
5060 serge 2741
	if (i915.fastboot) {
4560 Serge 2742
		const struct drm_display_mode *adjusted_mode =
2743
			&intel_crtc->config.adjusted_mode;
2744
 
4280 Serge 2745
		I915_WRITE(PIPESRC(intel_crtc->pipe),
4560 Serge 2746
			   ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2747
			   (adjusted_mode->crtc_vdisplay - 1));
4280 Serge 2748
		if (!intel_crtc->config.pch_pfit.enabled &&
2749
		    (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2750
		     intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2751
			I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2752
			I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2753
			I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2754
		}
4560 Serge 2755
		intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2756
		intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
4280 Serge 2757
	}
3031 serge 2758
 
5060 serge 2759
	dev_priv->display.update_primary_plane(crtc, fb, x, y);
2327 Serge 2760
 
5060 serge 2761
	if (intel_crtc->active)
2762
		intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2763
 
2764
	crtc->primary->fb = fb;
3031 serge 2765
	crtc->x = x;
2766
	crtc->y = y;
2767
 
2768
	if (old_fb) {
4104 Serge 2769
		if (intel_crtc->active && old_fb != fb)
3031 serge 2770
		intel_wait_for_vblank(dev, intel_crtc->pipe);
5060 serge 2771
		mutex_lock(&dev->struct_mutex);
2772
		intel_unpin_fb_obj(old_obj);
2773
		mutex_unlock(&dev->struct_mutex);
3031 serge 2774
	}
2775
 
5060 serge 2776
	mutex_lock(&dev->struct_mutex);
3031 serge 2777
	intel_update_fbc(dev);
2336 Serge 2778
	mutex_unlock(&dev->struct_mutex);
2327 Serge 2779
 
2336 Serge 2780
    return 0;
2327 Serge 2781
}
2782
 
2783
static void intel_fdi_normal_train(struct drm_crtc *crtc)
2784
{
2785
	struct drm_device *dev = crtc->dev;
2786
	struct drm_i915_private *dev_priv = dev->dev_private;
2787
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2788
	int pipe = intel_crtc->pipe;
2789
	u32 reg, temp;
2790
 
2791
	/* enable normal train */
2792
	reg = FDI_TX_CTL(pipe);
2793
	temp = I915_READ(reg);
2794
	if (IS_IVYBRIDGE(dev)) {
2795
		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2796
		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2797
	} else {
2798
		temp &= ~FDI_LINK_TRAIN_NONE;
2799
		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2800
	}
2801
	I915_WRITE(reg, temp);
2802
 
2803
	reg = FDI_RX_CTL(pipe);
2804
	temp = I915_READ(reg);
2805
	if (HAS_PCH_CPT(dev)) {
2806
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2807
		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2808
	} else {
2809
		temp &= ~FDI_LINK_TRAIN_NONE;
2810
		temp |= FDI_LINK_TRAIN_NONE;
2811
	}
2812
	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2813
 
2814
	/* wait one idle pattern time */
2815
	POSTING_READ(reg);
2816
	udelay(1000);
2817
 
2818
	/* IVB wants error correction enabled */
2819
	if (IS_IVYBRIDGE(dev))
2820
		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2821
			   FDI_FE_ERRC_ENABLE);
2822
}
2823
 
4280 Serge 2824
static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
4104 Serge 2825
{
4280 Serge 2826
	return crtc->base.enabled && crtc->active &&
2827
		crtc->config.has_pch_encoder;
4104 Serge 2828
}
2829
 
3243 Serge 2830
static void ivb_modeset_global_resources(struct drm_device *dev)
2327 Serge 2831
{
2832
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 2833
	struct intel_crtc *pipe_B_crtc =
2834
		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2835
	struct intel_crtc *pipe_C_crtc =
2836
		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2837
	uint32_t temp;
2327 Serge 2838
 
4104 Serge 2839
	/*
2840
	 * When everything is off disable fdi C so that we could enable fdi B
2841
	 * with all lanes. Note that we don't care about enabled pipes without
2842
	 * an enabled pch encoder.
2843
	 */
2844
	if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2845
	    !pipe_has_enabled_pch(pipe_C_crtc)) {
3243 Serge 2846
		WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2847
		WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2848
 
2849
		temp = I915_READ(SOUTH_CHICKEN1);
2850
		temp &= ~FDI_BC_BIFURCATION_SELECT;
2851
		DRM_DEBUG_KMS("disabling fdi C rx\n");
2852
		I915_WRITE(SOUTH_CHICKEN1, temp);
2853
	}
2327 Serge 2854
}
2855
 
2856
/* The FDI link training functions for ILK/Ibexpeak. */
2857
static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2858
{
2859
    struct drm_device *dev = crtc->dev;
2860
    struct drm_i915_private *dev_priv = dev->dev_private;
2861
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2862
    int pipe = intel_crtc->pipe;
2863
    u32 reg, temp, tries;
2864
 
5060 serge 2865
	/* FDI needs bits from pipe first */
2327 Serge 2866
    assert_pipe_enabled(dev_priv, pipe);
2867
 
2868
    /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2869
       for train result */
2870
    reg = FDI_RX_IMR(pipe);
2871
    temp = I915_READ(reg);
2872
    temp &= ~FDI_RX_SYMBOL_LOCK;
2873
    temp &= ~FDI_RX_BIT_LOCK;
2874
    I915_WRITE(reg, temp);
2875
    I915_READ(reg);
2876
    udelay(150);
2877
 
2878
    /* enable CPU FDI TX and PCH FDI RX */
2879
    reg = FDI_TX_CTL(pipe);
2880
    temp = I915_READ(reg);
4104 Serge 2881
	temp &= ~FDI_DP_PORT_WIDTH_MASK;
2882
	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2327 Serge 2883
    temp &= ~FDI_LINK_TRAIN_NONE;
2884
    temp |= FDI_LINK_TRAIN_PATTERN_1;
2885
    I915_WRITE(reg, temp | FDI_TX_ENABLE);
2886
 
2887
    reg = FDI_RX_CTL(pipe);
2888
    temp = I915_READ(reg);
2889
    temp &= ~FDI_LINK_TRAIN_NONE;
2890
    temp |= FDI_LINK_TRAIN_PATTERN_1;
2891
    I915_WRITE(reg, temp | FDI_RX_ENABLE);
2892
 
2893
    POSTING_READ(reg);
2894
    udelay(150);
2895
 
2896
    /* Ironlake workaround, enable clock pointer after FDI enable*/
2897
        I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2898
        I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2899
               FDI_RX_PHASE_SYNC_POINTER_EN);
2900
 
2901
    reg = FDI_RX_IIR(pipe);
2902
    for (tries = 0; tries < 5; tries++) {
2903
        temp = I915_READ(reg);
2904
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2905
 
2906
        if ((temp & FDI_RX_BIT_LOCK)) {
2907
            DRM_DEBUG_KMS("FDI train 1 done.\n");
2908
            I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2909
            break;
2910
        }
2911
    }
2912
    if (tries == 5)
2913
        DRM_ERROR("FDI train 1 fail!\n");
2914
 
2915
    /* Train 2 */
2916
    reg = FDI_TX_CTL(pipe);
2917
    temp = I915_READ(reg);
2918
    temp &= ~FDI_LINK_TRAIN_NONE;
2919
    temp |= FDI_LINK_TRAIN_PATTERN_2;
2920
    I915_WRITE(reg, temp);
2921
 
2922
    reg = FDI_RX_CTL(pipe);
2923
    temp = I915_READ(reg);
2924
    temp &= ~FDI_LINK_TRAIN_NONE;
2925
    temp |= FDI_LINK_TRAIN_PATTERN_2;
2926
    I915_WRITE(reg, temp);
2927
 
2928
    POSTING_READ(reg);
2929
    udelay(150);
2930
 
2931
    reg = FDI_RX_IIR(pipe);
2932
    for (tries = 0; tries < 5; tries++) {
2933
        temp = I915_READ(reg);
2934
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2935
 
2936
        if (temp & FDI_RX_SYMBOL_LOCK) {
2937
            I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2938
            DRM_DEBUG_KMS("FDI train 2 done.\n");
2939
            break;
2940
        }
2941
    }
2942
    if (tries == 5)
2943
        DRM_ERROR("FDI train 2 fail!\n");
2944
 
2945
    DRM_DEBUG_KMS("FDI train done\n");
2946
 
2947
}
2948
 
2342 Serge 2949
static const int snb_b_fdi_train_param[] = {
2327 Serge 2950
    FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2951
    FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2952
    FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2953
    FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2954
};
2955
 
2956
/* The FDI link training functions for SNB/Cougarpoint. */
2957
static void gen6_fdi_link_train(struct drm_crtc *crtc)
2958
{
2959
    struct drm_device *dev = crtc->dev;
2960
    struct drm_i915_private *dev_priv = dev->dev_private;
2961
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2962
    int pipe = intel_crtc->pipe;
3031 serge 2963
	u32 reg, temp, i, retry;
2327 Serge 2964
 
2965
    /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2966
       for train result */
2967
    reg = FDI_RX_IMR(pipe);
2968
    temp = I915_READ(reg);
2969
    temp &= ~FDI_RX_SYMBOL_LOCK;
2970
    temp &= ~FDI_RX_BIT_LOCK;
2971
    I915_WRITE(reg, temp);
2972
 
2973
    POSTING_READ(reg);
2974
    udelay(150);
2975
 
2976
    /* enable CPU FDI TX and PCH FDI RX */
2977
    reg = FDI_TX_CTL(pipe);
2978
    temp = I915_READ(reg);
4104 Serge 2979
	temp &= ~FDI_DP_PORT_WIDTH_MASK;
2980
	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2327 Serge 2981
    temp &= ~FDI_LINK_TRAIN_NONE;
2982
    temp |= FDI_LINK_TRAIN_PATTERN_1;
2983
    temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2984
    /* SNB-B */
2985
    temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2986
    I915_WRITE(reg, temp | FDI_TX_ENABLE);
2987
 
3243 Serge 2988
	I915_WRITE(FDI_RX_MISC(pipe),
2989
		   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2990
 
2327 Serge 2991
    reg = FDI_RX_CTL(pipe);
2992
    temp = I915_READ(reg);
2993
    if (HAS_PCH_CPT(dev)) {
2994
        temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2995
        temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2996
    } else {
2997
        temp &= ~FDI_LINK_TRAIN_NONE;
2998
        temp |= FDI_LINK_TRAIN_PATTERN_1;
2999
    }
3000
    I915_WRITE(reg, temp | FDI_RX_ENABLE);
3001
 
3002
    POSTING_READ(reg);
3003
    udelay(150);
3004
 
2342 Serge 3005
	for (i = 0; i < 4; i++) {
2327 Serge 3006
        reg = FDI_TX_CTL(pipe);
3007
        temp = I915_READ(reg);
3008
        temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3009
        temp |= snb_b_fdi_train_param[i];
3010
        I915_WRITE(reg, temp);
3011
 
3012
        POSTING_READ(reg);
3013
        udelay(500);
3014
 
3031 serge 3015
		for (retry = 0; retry < 5; retry++) {
2327 Serge 3016
        reg = FDI_RX_IIR(pipe);
3017
        temp = I915_READ(reg);
3018
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3019
        if (temp & FDI_RX_BIT_LOCK) {
3020
            I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3021
            DRM_DEBUG_KMS("FDI train 1 done.\n");
3022
            break;
3023
        }
3031 serge 3024
			udelay(50);
3025
		}
3026
		if (retry < 5)
3027
			break;
2327 Serge 3028
    }
3029
    if (i == 4)
3030
        DRM_ERROR("FDI train 1 fail!\n");
3031
 
3032
    /* Train 2 */
3033
    reg = FDI_TX_CTL(pipe);
3034
    temp = I915_READ(reg);
3035
    temp &= ~FDI_LINK_TRAIN_NONE;
3036
    temp |= FDI_LINK_TRAIN_PATTERN_2;
3037
    if (IS_GEN6(dev)) {
3038
        temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3039
        /* SNB-B */
3040
        temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3041
    }
3042
    I915_WRITE(reg, temp);
3043
 
3044
    reg = FDI_RX_CTL(pipe);
3045
    temp = I915_READ(reg);
3046
    if (HAS_PCH_CPT(dev)) {
3047
        temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3048
        temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3049
    } else {
3050
        temp &= ~FDI_LINK_TRAIN_NONE;
3051
        temp |= FDI_LINK_TRAIN_PATTERN_2;
3052
    }
3053
    I915_WRITE(reg, temp);
3054
 
3055
    POSTING_READ(reg);
3056
    udelay(150);
3057
 
2342 Serge 3058
	for (i = 0; i < 4; i++) {
2327 Serge 3059
        reg = FDI_TX_CTL(pipe);
3060
        temp = I915_READ(reg);
3061
        temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3062
        temp |= snb_b_fdi_train_param[i];
3063
        I915_WRITE(reg, temp);
3064
 
3065
        POSTING_READ(reg);
3066
        udelay(500);
3067
 
3031 serge 3068
		for (retry = 0; retry < 5; retry++) {
2327 Serge 3069
        reg = FDI_RX_IIR(pipe);
3070
        temp = I915_READ(reg);
3071
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3072
        if (temp & FDI_RX_SYMBOL_LOCK) {
3073
            I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3074
            DRM_DEBUG_KMS("FDI train 2 done.\n");
3075
            break;
3076
        }
3031 serge 3077
			udelay(50);
3078
		}
3079
		if (retry < 5)
3080
			break;
2327 Serge 3081
    }
3082
    if (i == 4)
3083
        DRM_ERROR("FDI train 2 fail!\n");
3084
 
3085
    DRM_DEBUG_KMS("FDI train done.\n");
3086
}
3087
 
3088
/* Manual link training for Ivy Bridge A0 parts */
3089
static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3090
{
3091
    struct drm_device *dev = crtc->dev;
3092
    struct drm_i915_private *dev_priv = dev->dev_private;
3093
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3094
    int pipe = intel_crtc->pipe;
4104 Serge 3095
	u32 reg, temp, i, j;
2327 Serge 3096
 
3097
    /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3098
       for train result */
3099
    reg = FDI_RX_IMR(pipe);
3100
    temp = I915_READ(reg);
3101
    temp &= ~FDI_RX_SYMBOL_LOCK;
3102
    temp &= ~FDI_RX_BIT_LOCK;
3103
    I915_WRITE(reg, temp);
3104
 
3105
    POSTING_READ(reg);
3106
    udelay(150);
3107
 
3243 Serge 3108
	DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3109
		      I915_READ(FDI_RX_IIR(pipe)));
3110
 
4104 Serge 3111
	/* Try each vswing and preemphasis setting twice before moving on */
3112
	for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3113
		/* disable first in case we need to retry */
3114
		reg = FDI_TX_CTL(pipe);
3115
		temp = I915_READ(reg);
3116
		temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3117
		temp &= ~FDI_TX_ENABLE;
3118
		I915_WRITE(reg, temp);
3119
 
3120
		reg = FDI_RX_CTL(pipe);
3121
		temp = I915_READ(reg);
3122
		temp &= ~FDI_LINK_TRAIN_AUTO;
3123
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3124
		temp &= ~FDI_RX_ENABLE;
3125
		I915_WRITE(reg, temp);
3126
 
2327 Serge 3127
    /* enable CPU FDI TX and PCH FDI RX */
3128
    reg = FDI_TX_CTL(pipe);
3129
    temp = I915_READ(reg);
4104 Serge 3130
	temp &= ~FDI_DP_PORT_WIDTH_MASK;
3131
	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2327 Serge 3132
    temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3133
    temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4104 Serge 3134
		temp |= snb_b_fdi_train_param[j/2];
2342 Serge 3135
	temp |= FDI_COMPOSITE_SYNC;
2327 Serge 3136
    I915_WRITE(reg, temp | FDI_TX_ENABLE);
3137
 
3243 Serge 3138
	I915_WRITE(FDI_RX_MISC(pipe),
3139
		   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3140
 
2327 Serge 3141
    reg = FDI_RX_CTL(pipe);
3142
    temp = I915_READ(reg);
3143
    temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2342 Serge 3144
	temp |= FDI_COMPOSITE_SYNC;
2327 Serge 3145
    I915_WRITE(reg, temp | FDI_RX_ENABLE);
3146
 
3147
    POSTING_READ(reg);
4104 Serge 3148
		udelay(1); /* should be 0.5us */
2327 Serge 3149
 
2342 Serge 3150
	for (i = 0; i < 4; i++) {
2327 Serge 3151
        reg = FDI_RX_IIR(pipe);
3152
        temp = I915_READ(reg);
3153
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3154
 
3155
        if (temp & FDI_RX_BIT_LOCK ||
3156
            (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3157
            I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4104 Serge 3158
				DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3159
					      i);
2327 Serge 3160
            break;
3161
        }
4104 Serge 3162
			udelay(1); /* should be 0.5us */
3163
		}
3164
		if (i == 4) {
3165
			DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3166
			continue;
2327 Serge 3167
    }
3168
 
3169
    /* Train 2 */
3170
    reg = FDI_TX_CTL(pipe);
3171
    temp = I915_READ(reg);
3172
    temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3173
    temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3174
    I915_WRITE(reg, temp);
3175
 
3176
    reg = FDI_RX_CTL(pipe);
3177
    temp = I915_READ(reg);
3178
    temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3179
    temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3180
    I915_WRITE(reg, temp);
3181
 
3182
    POSTING_READ(reg);
4104 Serge 3183
		udelay(2); /* should be 1.5us */
2327 Serge 3184
 
2342 Serge 3185
	for (i = 0; i < 4; i++) {
2327 Serge 3186
        reg = FDI_RX_IIR(pipe);
3187
        temp = I915_READ(reg);
3188
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3189
 
4104 Serge 3190
			if (temp & FDI_RX_SYMBOL_LOCK ||
3191
			    (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2327 Serge 3192
            I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4104 Serge 3193
				DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3194
					      i);
3195
				goto train_done;
2327 Serge 3196
        }
4104 Serge 3197
			udelay(2); /* should be 1.5us */
2327 Serge 3198
    }
3199
    if (i == 4)
4104 Serge 3200
			DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3201
	}
2327 Serge 3202
 
4104 Serge 3203
train_done:
2327 Serge 3204
    DRM_DEBUG_KMS("FDI train done.\n");
3205
}
3206
 
3031 serge 3207
static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2327 Serge 3208
{
3031 serge 3209
	struct drm_device *dev = intel_crtc->base.dev;
2327 Serge 3210
	struct drm_i915_private *dev_priv = dev->dev_private;
3211
	int pipe = intel_crtc->pipe;
3212
	u32 reg, temp;
3213
 
3214
 
3215
	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3216
	reg = FDI_RX_CTL(pipe);
3217
	temp = I915_READ(reg);
4104 Serge 3218
	temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3219
	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3480 Serge 3220
	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2327 Serge 3221
	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3222
 
3223
	POSTING_READ(reg);
3224
	udelay(200);
3225
 
3226
	/* Switch from Rawclk to PCDclk */
3227
	temp = I915_READ(reg);
3228
	I915_WRITE(reg, temp | FDI_PCDCLK);
3229
 
3230
	POSTING_READ(reg);
3231
	udelay(200);
3232
 
3233
	/* Enable CPU FDI TX PLL, always on for Ironlake */
3234
	reg = FDI_TX_CTL(pipe);
3235
	temp = I915_READ(reg);
3236
	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3237
		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3238
 
3239
		POSTING_READ(reg);
3240
		udelay(100);
3241
	}
3242
}
3243
 
3031 serge 3244
static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3245
{
3246
	struct drm_device *dev = intel_crtc->base.dev;
3247
	struct drm_i915_private *dev_priv = dev->dev_private;
3248
	int pipe = intel_crtc->pipe;
3249
	u32 reg, temp;
3250
 
3251
	/* Switch from PCDclk to Rawclk */
3252
	reg = FDI_RX_CTL(pipe);
3253
	temp = I915_READ(reg);
3254
	I915_WRITE(reg, temp & ~FDI_PCDCLK);
3255
 
3256
	/* Disable CPU FDI TX PLL */
3257
	reg = FDI_TX_CTL(pipe);
3258
	temp = I915_READ(reg);
3259
	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3260
 
3261
	POSTING_READ(reg);
3262
	udelay(100);
3263
 
3264
	reg = FDI_RX_CTL(pipe);
3265
	temp = I915_READ(reg);
3266
	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3267
 
3268
	/* Wait for the clocks to turn off. */
3269
	POSTING_READ(reg);
3270
	udelay(100);
3271
}
3272
 
2327 Serge 3273
static void ironlake_fdi_disable(struct drm_crtc *crtc)
3274
{
3275
	struct drm_device *dev = crtc->dev;
3276
	struct drm_i915_private *dev_priv = dev->dev_private;
3277
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3278
	int pipe = intel_crtc->pipe;
3279
	u32 reg, temp;
3280
 
3281
	/* disable CPU FDI tx and PCH FDI rx */
3282
	reg = FDI_TX_CTL(pipe);
3283
	temp = I915_READ(reg);
3284
	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3285
	POSTING_READ(reg);
3286
 
3287
	reg = FDI_RX_CTL(pipe);
3288
	temp = I915_READ(reg);
3289
	temp &= ~(0x7 << 16);
3480 Serge 3290
	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2327 Serge 3291
	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3292
 
3293
	POSTING_READ(reg);
3294
	udelay(100);
3295
 
3296
	/* Ironlake workaround, disable clock pointer after downing FDI */
5060 serge 3297
	if (HAS_PCH_IBX(dev))
2327 Serge 3298
		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3299
 
3300
	/* still set train pattern 1 */
3301
	reg = FDI_TX_CTL(pipe);
3302
	temp = I915_READ(reg);
3303
	temp &= ~FDI_LINK_TRAIN_NONE;
3304
	temp |= FDI_LINK_TRAIN_PATTERN_1;
3305
	I915_WRITE(reg, temp);
3306
 
3307
	reg = FDI_RX_CTL(pipe);
3308
	temp = I915_READ(reg);
3309
	if (HAS_PCH_CPT(dev)) {
3310
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3311
		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3312
	} else {
3313
		temp &= ~FDI_LINK_TRAIN_NONE;
3314
		temp |= FDI_LINK_TRAIN_PATTERN_1;
3315
	}
3316
	/* BPC in FDI rx is consistent with that in PIPECONF */
3317
	temp &= ~(0x07 << 16);
3480 Serge 3318
	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2327 Serge 3319
	I915_WRITE(reg, temp);
3320
 
3321
	POSTING_READ(reg);
3322
	udelay(100);
3323
}
3324
 
5060 serge 3325
bool intel_has_pending_fb_unpin(struct drm_device *dev)
2327 Serge 3326
{
5060 serge 3327
	struct intel_crtc *crtc;
2327 Serge 3328
 
5060 serge 3329
	/* Note that we don't need to be called with mode_config.lock here
3330
	 * as our list of CRTC objects is static for the lifetime of the
3331
	 * device and so cannot disappear as we iterate. Similarly, we can
3332
	 * happily treat the predicates as racy, atomic checks as userspace
3333
	 * cannot claim and pin a new fb without at least acquring the
3334
	 * struct_mutex and so serialising with us.
3335
	 */
3336
	for_each_intel_crtc(dev, crtc) {
3337
		if (atomic_read(&crtc->unpin_work_count) == 0)
3338
			continue;
2327 Serge 3339
 
5060 serge 3340
		if (crtc->unpin_work)
3341
			intel_wait_for_vblank(dev, crtc->pipe);
3031 serge 3342
 
5060 serge 3343
		return true;
3344
	}
3345
 
3346
	return false;
2327 Serge 3347
}
3348
 
3031 serge 3349
#if 0
5060 serge 3350
void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2327 Serge 3351
{
3031 serge 3352
	struct drm_device *dev = crtc->dev;
3353
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 3354
 
5060 serge 3355
	if (crtc->primary->fb == NULL)
2327 Serge 3356
		return;
3357
 
3480 Serge 3358
	WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3359
 
5060 serge 3360
	WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3361
				   !intel_crtc_has_pending_flip(crtc),
3362
				   60*HZ) == 0);
3031 serge 3363
 
3364
	mutex_lock(&dev->struct_mutex);
5060 serge 3365
	intel_finish_fb(crtc->primary->fb);
3031 serge 3366
	mutex_unlock(&dev->struct_mutex);
2327 Serge 3367
}
3031 serge 3368
#endif
2327 Serge 3369
 
3031 serge 3370
/* Program iCLKIP clock to the desired frequency */
3371
static void lpt_program_iclkip(struct drm_crtc *crtc)
3372
{
3373
	struct drm_device *dev = crtc->dev;
3374
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 3375
	int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3031 serge 3376
	u32 divsel, phaseinc, auxdiv, phasedir = 0;
3377
	u32 temp;
3378
 
3480 Serge 3379
	mutex_lock(&dev_priv->dpio_lock);
3380
 
3031 serge 3381
	/* It is necessary to ungate the pixclk gate prior to programming
3382
	 * the divisors, and gate it back when it is done.
3383
	 */
3384
	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3385
 
3386
	/* Disable SSCCTL */
3387
	intel_sbi_write(dev_priv, SBI_SSCCTL6,
3243 Serge 3388
			intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3389
				SBI_SSCCTL_DISABLE,
3390
			SBI_ICLK);
3031 serge 3391
 
3392
	/* 20MHz is a corner case which is out of range for the 7-bit divisor */
4560 Serge 3393
	if (clock == 20000) {
3031 serge 3394
		auxdiv = 1;
3395
		divsel = 0x41;
3396
		phaseinc = 0x20;
3397
	} else {
3398
		/* The iCLK virtual clock root frequency is in MHz,
4560 Serge 3399
		 * but the adjusted_mode->crtc_clock in in KHz. To get the
3400
		 * divisors, it is necessary to divide one by another, so we
3031 serge 3401
		 * convert the virtual clock precision to KHz here for higher
3402
		 * precision.
3403
		 */
3404
		u32 iclk_virtual_root_freq = 172800 * 1000;
3405
		u32 iclk_pi_range = 64;
3406
		u32 desired_divisor, msb_divisor_value, pi_value;
3407
 
4560 Serge 3408
		desired_divisor = (iclk_virtual_root_freq / clock);
3031 serge 3409
		msb_divisor_value = desired_divisor / iclk_pi_range;
3410
		pi_value = desired_divisor % iclk_pi_range;
3411
 
3412
		auxdiv = 0;
3413
		divsel = msb_divisor_value - 2;
3414
		phaseinc = pi_value;
3415
	}
3416
 
3417
	/* This should not happen with any sane values */
3418
	WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3419
		~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3420
	WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3421
		~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3422
 
3423
	DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4560 Serge 3424
			clock,
3031 serge 3425
			auxdiv,
3426
			divsel,
3427
			phasedir,
3428
			phaseinc);
3429
 
3430
	/* Program SSCDIVINTPHASE6 */
3243 Serge 3431
	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3031 serge 3432
	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3433
	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3434
	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3435
	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3436
	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3437
	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3243 Serge 3438
	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3031 serge 3439
 
3440
	/* Program SSCAUXDIV */
3243 Serge 3441
	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3031 serge 3442
	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3443
	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3243 Serge 3444
	intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3031 serge 3445
 
3446
	/* Enable modulator and associated divider */
3243 Serge 3447
	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3031 serge 3448
	temp &= ~SBI_SSCCTL_DISABLE;
3243 Serge 3449
	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3031 serge 3450
 
3451
	/* Wait for initialization time */
3452
	udelay(24);
3453
 
3454
	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3480 Serge 3455
 
3456
	mutex_unlock(&dev_priv->dpio_lock);
3031 serge 3457
}
3458
 
4104 Serge 3459
static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3460
						enum pipe pch_transcoder)
3461
{
3462
	struct drm_device *dev = crtc->base.dev;
3463
	struct drm_i915_private *dev_priv = dev->dev_private;
3464
	enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3465
 
3466
	I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3467
		   I915_READ(HTOTAL(cpu_transcoder)));
3468
	I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3469
		   I915_READ(HBLANK(cpu_transcoder)));
3470
	I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3471
		   I915_READ(HSYNC(cpu_transcoder)));
3472
 
3473
	I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3474
		   I915_READ(VTOTAL(cpu_transcoder)));
3475
	I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3476
		   I915_READ(VBLANK(cpu_transcoder)));
3477
	I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3478
		   I915_READ(VSYNC(cpu_transcoder)));
3479
	I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3480
		   I915_READ(VSYNCSHIFT(cpu_transcoder)));
3481
}
3482
 
4280 Serge 3483
static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3484
{
3485
	struct drm_i915_private *dev_priv = dev->dev_private;
3486
	uint32_t temp;
3487
 
3488
	temp = I915_READ(SOUTH_CHICKEN1);
3489
	if (temp & FDI_BC_BIFURCATION_SELECT)
3490
		return;
3491
 
3492
	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3493
	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3494
 
3495
	temp |= FDI_BC_BIFURCATION_SELECT;
3496
	DRM_DEBUG_KMS("enabling fdi C rx\n");
3497
	I915_WRITE(SOUTH_CHICKEN1, temp);
3498
	POSTING_READ(SOUTH_CHICKEN1);
3499
}
3500
 
3501
static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3502
{
3503
	struct drm_device *dev = intel_crtc->base.dev;
3504
	struct drm_i915_private *dev_priv = dev->dev_private;
3505
 
3506
	switch (intel_crtc->pipe) {
3507
	case PIPE_A:
3508
		break;
3509
	case PIPE_B:
3510
		if (intel_crtc->config.fdi_lanes > 2)
3511
			WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3512
		else
3513
			cpt_enable_fdi_bc_bifurcation(dev);
3514
 
3515
		break;
3516
	case PIPE_C:
3517
		cpt_enable_fdi_bc_bifurcation(dev);
3518
 
3519
		break;
3520
	default:
3521
		BUG();
3522
	}
3523
}
3524
 
2327 Serge 3525
/*
3526
 * Enable PCH resources required for PCH ports:
3527
 *   - PCH PLLs
3528
 *   - FDI training & RX/TX
3529
 *   - update transcoder timings
3530
 *   - DP transcoding bits
3531
 *   - transcoder
3532
 */
3533
static void ironlake_pch_enable(struct drm_crtc *crtc)
3534
{
3535
	struct drm_device *dev = crtc->dev;
3536
	struct drm_i915_private *dev_priv = dev->dev_private;
3537
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3538
	int pipe = intel_crtc->pipe;
3031 serge 3539
	u32 reg, temp;
2327 Serge 3540
 
4104 Serge 3541
	assert_pch_transcoder_disabled(dev_priv, pipe);
3031 serge 3542
 
4280 Serge 3543
	if (IS_IVYBRIDGE(dev))
3544
		ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3545
 
3243 Serge 3546
	/* Write the TU size bits before fdi link training, so that error
3547
	 * detection works. */
3548
	I915_WRITE(FDI_RX_TUSIZE1(pipe),
3549
		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3550
 
2327 Serge 3551
	/* For PCH output, training FDI link */
3552
	dev_priv->display.fdi_link_train(crtc);
3553
 
4104 Serge 3554
	/* We need to program the right clock selection before writing the pixel
3555
	 * mutliplier into the DPLL. */
3243 Serge 3556
	if (HAS_PCH_CPT(dev)) {
3031 serge 3557
		u32 sel;
2342 Serge 3558
 
2327 Serge 3559
		temp = I915_READ(PCH_DPLL_SEL);
4104 Serge 3560
		temp |= TRANS_DPLL_ENABLE(pipe);
3561
		sel = TRANS_DPLLB_SEL(pipe);
3562
		if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3031 serge 3563
			temp |= sel;
3564
		else
3565
			temp &= ~sel;
2327 Serge 3566
		I915_WRITE(PCH_DPLL_SEL, temp);
3567
	}
3568
 
4104 Serge 3569
	/* XXX: pch pll's can be enabled any time before we enable the PCH
3570
	 * transcoder, and we actually should do this to not upset any PCH
3571
	 * transcoder that already use the clock when we share it.
3572
	 *
3573
	 * Note that enable_shared_dpll tries to do the right thing, but
3574
	 * get_shared_dpll unconditionally resets the pll - we need that to have
3575
	 * the right LVDS enable sequence. */
5060 serge 3576
	intel_enable_shared_dpll(intel_crtc);
4104 Serge 3577
 
2327 Serge 3578
	/* set transcoder timing, panel must allow it */
3579
	assert_panel_unlocked(dev_priv, pipe);
4104 Serge 3580
	ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
2327 Serge 3581
 
3582
	intel_fdi_normal_train(crtc);
3583
 
3584
	/* For PCH DP, enable TRANS_DP_CTL */
3585
	if (HAS_PCH_CPT(dev) &&
2342 Serge 3586
	    (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3587
	     intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3480 Serge 3588
		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
2327 Serge 3589
		reg = TRANS_DP_CTL(pipe);
3590
		temp = I915_READ(reg);
3591
		temp &= ~(TRANS_DP_PORT_SEL_MASK |
3592
			  TRANS_DP_SYNC_MASK |
3593
			  TRANS_DP_BPC_MASK);
3594
		temp |= (TRANS_DP_OUTPUT_ENABLE |
3595
			 TRANS_DP_ENH_FRAMING);
3596
		temp |= bpc << 9; /* same format but at 11:9 */
3597
 
3598
		if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3599
			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3600
		if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3601
			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3602
 
3603
		switch (intel_trans_dp_port_sel(crtc)) {
3604
		case PCH_DP_B:
3605
			temp |= TRANS_DP_PORT_SEL_B;
3606
			break;
3607
		case PCH_DP_C:
3608
			temp |= TRANS_DP_PORT_SEL_C;
3609
			break;
3610
		case PCH_DP_D:
3611
			temp |= TRANS_DP_PORT_SEL_D;
3612
			break;
3613
		default:
3243 Serge 3614
			BUG();
2327 Serge 3615
		}
3616
 
3617
		I915_WRITE(reg, temp);
3618
	}
3619
 
3243 Serge 3620
	ironlake_enable_pch_transcoder(dev_priv, pipe);
2327 Serge 3621
}
3622
 
3243 Serge 3623
static void lpt_pch_enable(struct drm_crtc *crtc)
3624
{
3625
	struct drm_device *dev = crtc->dev;
3626
	struct drm_i915_private *dev_priv = dev->dev_private;
3627
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3746 Serge 3628
	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3243 Serge 3629
 
4104 Serge 3630
	assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3243 Serge 3631
 
3632
	lpt_program_iclkip(crtc);
3633
 
3634
	/* Set transcoder timing. */
4104 Serge 3635
	ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3243 Serge 3636
 
3637
	lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3638
}
3639
 
5060 serge 3640
void intel_put_shared_dpll(struct intel_crtc *crtc)
3031 serge 3641
{
4104 Serge 3642
	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3031 serge 3643
 
3644
	if (pll == NULL)
3645
		return;
3646
 
3647
	if (pll->refcount == 0) {
4104 Serge 3648
		WARN(1, "bad %s refcount\n", pll->name);
3031 serge 3649
		return;
3650
	}
3651
 
4104 Serge 3652
	if (--pll->refcount == 0) {
3653
		WARN_ON(pll->on);
3654
		WARN_ON(pll->active);
3655
	}
3656
 
3657
	crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3031 serge 3658
}
3659
 
5060 serge 3660
struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3031 serge 3661
{
4104 Serge 3662
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3663
	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3664
	enum intel_dpll_id i;
3031 serge 3665
 
3666
	if (pll) {
4104 Serge 3667
		DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3668
			      crtc->base.base.id, pll->name);
3669
		intel_put_shared_dpll(crtc);
3031 serge 3670
	}
3671
 
3672
	if (HAS_PCH_IBX(dev_priv->dev)) {
3673
		/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4104 Serge 3674
		i = (enum intel_dpll_id) crtc->pipe;
3675
		pll = &dev_priv->shared_dplls[i];
3031 serge 3676
 
4104 Serge 3677
		DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3678
			      crtc->base.base.id, pll->name);
3031 serge 3679
 
5060 serge 3680
		WARN_ON(pll->refcount);
3681
 
3031 serge 3682
		goto found;
3683
	}
3684
 
4104 Serge 3685
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3686
		pll = &dev_priv->shared_dplls[i];
3031 serge 3687
 
3688
		/* Only want to check enabled timings first */
3689
		if (pll->refcount == 0)
3690
			continue;
3691
 
4104 Serge 3692
		if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3693
			   sizeof(pll->hw_state)) == 0) {
3694
			DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3695
				      crtc->base.base.id,
3696
				      pll->name, pll->refcount, pll->active);
3031 serge 3697
 
3698
			goto found;
3699
		}
3700
	}
3701
 
3702
	/* Ok no matching timings, maybe there's a free one? */
4104 Serge 3703
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3704
		pll = &dev_priv->shared_dplls[i];
3031 serge 3705
		if (pll->refcount == 0) {
4104 Serge 3706
			DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3707
				      crtc->base.base.id, pll->name);
3031 serge 3708
			goto found;
3709
		}
3710
	}
3711
 
3712
	return NULL;
3713
 
3714
found:
5060 serge 3715
	if (pll->refcount == 0)
3716
		pll->hw_state = crtc->config.dpll_hw_state;
3717
 
4104 Serge 3718
	crtc->config.shared_dpll = i;
3719
	DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3720
			 pipe_name(crtc->pipe));
3721
 
3031 serge 3722
	pll->refcount++;
3723
 
3724
	return pll;
3725
}
3726
 
4104 Serge 3727
static void cpt_verify_modeset(struct drm_device *dev, int pipe)
2342 Serge 3728
{
3729
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 3730
	int dslreg = PIPEDSL(pipe);
2342 Serge 3731
	u32 temp;
3732
 
3733
	temp = I915_READ(dslreg);
3734
	udelay(500);
3735
	if (wait_for(I915_READ(dslreg) != temp, 5)) {
3736
		if (wait_for(I915_READ(dslreg) != temp, 5))
4104 Serge 3737
			DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
2342 Serge 3738
	}
3739
}
3740
 
4104 Serge 3741
static void ironlake_pfit_enable(struct intel_crtc *crtc)
3742
{
3743
	struct drm_device *dev = crtc->base.dev;
3744
	struct drm_i915_private *dev_priv = dev->dev_private;
3745
	int pipe = crtc->pipe;
3746
 
3747
	if (crtc->config.pch_pfit.enabled) {
3748
		/* Force use of hard-coded filter coefficients
3749
		 * as some pre-programmed values are broken,
3750
		 * e.g. x201.
3751
		 */
3752
		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3753
			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3754
						 PF_PIPE_SEL_IVB(pipe));
3755
		else
3756
			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3757
		I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3758
		I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3759
	}
3760
}
3761
 
3762
static void intel_enable_planes(struct drm_crtc *crtc)
3763
{
3764
	struct drm_device *dev = crtc->dev;
3765
	enum pipe pipe = to_intel_crtc(crtc)->pipe;
5060 serge 3766
	struct drm_plane *plane;
4104 Serge 3767
	struct intel_plane *intel_plane;
3768
 
5060 serge 3769
	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3770
		intel_plane = to_intel_plane(plane);
4104 Serge 3771
		if (intel_plane->pipe == pipe)
3772
			intel_plane_restore(&intel_plane->base);
5060 serge 3773
	}
4104 Serge 3774
}
3775
 
3776
static void intel_disable_planes(struct drm_crtc *crtc)
3777
{
3778
	struct drm_device *dev = crtc->dev;
3779
	enum pipe pipe = to_intel_crtc(crtc)->pipe;
5060 serge 3780
	struct drm_plane *plane;
4104 Serge 3781
	struct intel_plane *intel_plane;
3782
 
5060 serge 3783
	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3784
		intel_plane = to_intel_plane(plane);
4104 Serge 3785
		if (intel_plane->pipe == pipe)
3786
			intel_plane_disable(&intel_plane->base);
5060 serge 3787
	}
4104 Serge 3788
}
3789
 
4560 Serge 3790
void hsw_enable_ips(struct intel_crtc *crtc)
3791
{
5060 serge 3792
	struct drm_device *dev = crtc->base.dev;
3793
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 3794
 
3795
	if (!crtc->config.ips_enabled)
3796
		return;
3797
 
5060 serge 3798
	/* We can only enable IPS after we enable a plane and wait for a vblank */
3799
	intel_wait_for_vblank(dev, crtc->pipe);
3800
 
4560 Serge 3801
	assert_plane_enabled(dev_priv, crtc->plane);
5060 serge 3802
	if (IS_BROADWELL(dev)) {
4560 Serge 3803
		mutex_lock(&dev_priv->rps.hw_lock);
3804
		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3805
		mutex_unlock(&dev_priv->rps.hw_lock);
3806
		/* Quoting Art Runyan: "its not safe to expect any particular
3807
		 * value in IPS_CTL bit 31 after enabling IPS through the
3808
		 * mailbox." Moreover, the mailbox may return a bogus state,
3809
		 * so we need to just enable it and continue on.
3810
		 */
3811
	} else {
3812
		I915_WRITE(IPS_CTL, IPS_ENABLE);
3813
		/* The bit only becomes 1 in the next vblank, so this wait here
3814
		 * is essentially intel_wait_for_vblank. If we don't have this
3815
		 * and don't wait for vblanks until the end of crtc_enable, then
3816
		 * the HW state readout code will complain that the expected
3817
		 * IPS_CTL value is not the one we read. */
3818
		if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3819
			DRM_ERROR("Timed out waiting for IPS enable\n");
3820
	}
3821
}
3822
 
3823
void hsw_disable_ips(struct intel_crtc *crtc)
3824
{
3825
	struct drm_device *dev = crtc->base.dev;
3826
	struct drm_i915_private *dev_priv = dev->dev_private;
3827
 
3828
	if (!crtc->config.ips_enabled)
3829
		return;
3830
 
3831
	assert_plane_enabled(dev_priv, crtc->plane);
5060 serge 3832
	if (IS_BROADWELL(dev)) {
4560 Serge 3833
		mutex_lock(&dev_priv->rps.hw_lock);
3834
		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3835
		mutex_unlock(&dev_priv->rps.hw_lock);
5060 serge 3836
		/* wait for pcode to finish disabling IPS, which may take up to 42ms */
3837
		if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3838
			DRM_ERROR("Timed out waiting for IPS disable\n");
4560 Serge 3839
	} else {
3840
		I915_WRITE(IPS_CTL, 0);
3841
		POSTING_READ(IPS_CTL);
3842
	}
3843
 
3844
	/* We need to wait for a vblank before we can disable the plane. */
3845
	intel_wait_for_vblank(dev, crtc->pipe);
3846
}
3847
 
3848
/** Loads the palette/gamma unit for the CRTC with the prepared values */
3849
static void intel_crtc_load_lut(struct drm_crtc *crtc)
3850
{
3851
	struct drm_device *dev = crtc->dev;
3852
	struct drm_i915_private *dev_priv = dev->dev_private;
3853
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3854
	enum pipe pipe = intel_crtc->pipe;
3855
	int palreg = PALETTE(pipe);
3856
	int i;
3857
	bool reenable_ips = false;
3858
 
3859
	/* The clocks have to be on to load the palette. */
3860
	if (!crtc->enabled || !intel_crtc->active)
3861
		return;
3862
 
3863
	if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3864
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3865
			assert_dsi_pll_enabled(dev_priv);
3866
		else
3867
			assert_pll_enabled(dev_priv, pipe);
3868
	}
3869
 
3870
	/* use legacy palette for Ironlake */
5060 serge 3871
	if (!HAS_GMCH_DISPLAY(dev))
4560 Serge 3872
		palreg = LGC_PALETTE(pipe);
3873
 
3874
	/* Workaround : Do not read or write the pipe palette/gamma data while
3875
	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3876
	 */
3877
	if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3878
	    ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3879
	     GAMMA_MODE_MODE_SPLIT)) {
3880
		hsw_disable_ips(intel_crtc);
3881
		reenable_ips = true;
3882
	}
3883
 
3884
	for (i = 0; i < 256; i++) {
3885
		I915_WRITE(palreg + 4 * i,
3886
			   (intel_crtc->lut_r[i] << 16) |
3887
			   (intel_crtc->lut_g[i] << 8) |
3888
			   intel_crtc->lut_b[i]);
3889
	}
3890
 
3891
	if (reenable_ips)
3892
		hsw_enable_ips(intel_crtc);
3893
}
3894
 
5060 serge 3895
static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3896
{
3897
	if (!enable && intel_crtc->overlay) {
3898
		struct drm_device *dev = intel_crtc->base.dev;
3899
		struct drm_i915_private *dev_priv = dev->dev_private;
3900
 
3901
		mutex_lock(&dev->struct_mutex);
3902
		dev_priv->mm.interruptible = false;
3903
        dev_priv->mm.interruptible = true;
3904
		mutex_unlock(&dev->struct_mutex);
3905
	}
3906
 
3907
	/* Let userspace switch the overlay on again. In most cases userspace
3908
	 * has to recompute where to put it anyway.
3909
	 */
3910
}
3911
 
3912
static void intel_crtc_enable_planes(struct drm_crtc *crtc)
3913
{
3914
	struct drm_device *dev = crtc->dev;
3915
	struct drm_i915_private *dev_priv = dev->dev_private;
3916
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3917
	int pipe = intel_crtc->pipe;
3918
	int plane = intel_crtc->plane;
3919
 
3920
	drm_vblank_on(dev, pipe);
3921
 
3922
	intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3923
	intel_enable_planes(crtc);
3924
	intel_crtc_update_cursor(crtc, true);
3925
	intel_crtc_dpms_overlay(intel_crtc, true);
3926
 
3927
	hsw_enable_ips(intel_crtc);
3928
 
3929
	mutex_lock(&dev->struct_mutex);
3930
	intel_update_fbc(dev);
3931
	mutex_unlock(&dev->struct_mutex);
3932
}
3933
 
3934
static void intel_crtc_disable_planes(struct drm_crtc *crtc)
3935
{
3936
	struct drm_device *dev = crtc->dev;
3937
	struct drm_i915_private *dev_priv = dev->dev_private;
3938
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3939
	int pipe = intel_crtc->pipe;
3940
	int plane = intel_crtc->plane;
3941
 
3942
 
3943
	if (dev_priv->fbc.plane == plane)
3944
		intel_disable_fbc(dev);
3945
 
3946
	hsw_disable_ips(intel_crtc);
3947
 
3948
	intel_crtc_dpms_overlay(intel_crtc, false);
3949
	intel_crtc_update_cursor(crtc, false);
3950
	intel_disable_planes(crtc);
3951
	intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3952
	drm_vblank_off(dev, pipe);
3953
}
3954
 
2327 Serge 3955
static void ironlake_crtc_enable(struct drm_crtc *crtc)
3956
{
3957
    struct drm_device *dev = crtc->dev;
3958
    struct drm_i915_private *dev_priv = dev->dev_private;
3959
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 3960
	struct intel_encoder *encoder;
2327 Serge 3961
    int pipe = intel_crtc->pipe;
5060 serge 3962
	enum plane plane = intel_crtc->plane;
2327 Serge 3963
 
3031 serge 3964
	WARN_ON(!crtc->enabled);
3965
 
2327 Serge 3966
    if (intel_crtc->active)
3967
        return;
3968
 
5060 serge 3969
	if (intel_crtc->config.has_pch_encoder)
3970
		intel_prepare_shared_dpll(intel_crtc);
3971
 
3972
	if (intel_crtc->config.has_dp_encoder)
3973
		intel_dp_set_m_n(intel_crtc);
3974
 
3975
	intel_set_pipe_timings(intel_crtc);
3976
 
3977
	if (intel_crtc->config.has_pch_encoder) {
3978
		intel_cpu_transcoder_set_m_n(intel_crtc,
3979
					     &intel_crtc->config.fdi_m_n);
3980
	}
3981
 
3982
	ironlake_set_pipeconf(crtc);
3983
 
3984
	/* Set up the display plane register */
3985
	I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
3986
	POSTING_READ(DSPCNTR(plane));
3987
 
3988
	dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
3989
					       crtc->x, crtc->y);
3990
 
2327 Serge 3991
    intel_crtc->active = true;
4104 Serge 3992
 
3993
	intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3994
	intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3995
 
3996
	for_each_encoder_on_crtc(dev, crtc, encoder)
3997
		if (encoder->pre_enable)
3998
			encoder->pre_enable(encoder);
2327 Serge 3999
 
3746 Serge 4000
	if (intel_crtc->config.has_pch_encoder) {
3243 Serge 4001
		/* Note: FDI PLL enabling _must_ be done before we enable the
4002
		 * cpu pipes, hence this is separate from all the other fdi/pch
4003
		 * enabling. */
3031 serge 4004
		ironlake_fdi_pll_enable(intel_crtc);
4005
	} else {
4006
		assert_fdi_tx_disabled(dev_priv, pipe);
4007
		assert_fdi_rx_disabled(dev_priv, pipe);
4008
	}
2327 Serge 4009
 
4104 Serge 4010
	ironlake_pfit_enable(intel_crtc);
3031 serge 4011
 
2327 Serge 4012
    /*
4013
     * On ILK+ LUT must be loaded before the pipe is running but with
4014
     * clocks enabled
4015
     */
4016
    intel_crtc_load_lut(crtc);
4017
 
4560 Serge 4018
	intel_update_watermarks(crtc);
5060 serge 4019
	intel_enable_pipe(intel_crtc);
2327 Serge 4020
 
3746 Serge 4021
	if (intel_crtc->config.has_pch_encoder)
2327 Serge 4022
        ironlake_pch_enable(crtc);
4023
 
3031 serge 4024
	for_each_encoder_on_crtc(dev, crtc, encoder)
4025
		encoder->enable(encoder);
4026
 
4027
	if (HAS_PCH_CPT(dev))
4104 Serge 4028
		cpt_verify_modeset(dev, intel_crtc->pipe);
3031 serge 4029
 
5060 serge 4030
	intel_crtc_enable_planes(crtc);
2327 Serge 4031
}
4032
 
4104 Serge 4033
/* IPS only exists on ULT machines and is tied to pipe A. */
4034
static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4035
{
4036
	return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4037
}
4038
 
4560 Serge 4039
/*
4040
 * This implements the workaround described in the "notes" section of the mode
4041
 * set sequence documentation. When going from no pipes or single pipe to
4042
 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4043
 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4044
 */
4045
static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4046
{
4047
	struct drm_device *dev = crtc->base.dev;
4048
	struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4049
 
4050
	/* We want to get the other_active_crtc only if there's only 1 other
4051
	 * active crtc. */
5060 serge 4052
	for_each_intel_crtc(dev, crtc_it) {
4560 Serge 4053
		if (!crtc_it->active || crtc_it == crtc)
4054
			continue;
4055
 
4056
		if (other_active_crtc)
4104 Serge 4057
		return;
4058
 
4560 Serge 4059
		other_active_crtc = crtc_it;
4060
	}
4061
	if (!other_active_crtc)
4062
		return;
4104 Serge 4063
 
4560 Serge 4064
	intel_wait_for_vblank(dev, other_active_crtc->pipe);
4065
	intel_wait_for_vblank(dev, other_active_crtc->pipe);
4104 Serge 4066
}
4067
 
3243 Serge 4068
static void haswell_crtc_enable(struct drm_crtc *crtc)
4069
{
4070
	struct drm_device *dev = crtc->dev;
4071
	struct drm_i915_private *dev_priv = dev->dev_private;
4072
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4073
	struct intel_encoder *encoder;
4074
	int pipe = intel_crtc->pipe;
5060 serge 4075
	enum plane plane = intel_crtc->plane;
3243 Serge 4076
 
4077
	WARN_ON(!crtc->enabled);
4078
 
4079
	if (intel_crtc->active)
4080
		return;
4081
 
5060 serge 4082
	if (intel_crtc_to_shared_dpll(intel_crtc))
4083
		intel_enable_shared_dpll(intel_crtc);
4084
 
4085
	if (intel_crtc->config.has_dp_encoder)
4086
		intel_dp_set_m_n(intel_crtc);
4087
 
4088
	intel_set_pipe_timings(intel_crtc);
4089
 
4090
	if (intel_crtc->config.has_pch_encoder) {
4091
		intel_cpu_transcoder_set_m_n(intel_crtc,
4092
					     &intel_crtc->config.fdi_m_n);
4093
	}
4094
 
4095
	haswell_set_pipeconf(crtc);
4096
 
4097
	intel_set_pipe_csc(crtc);
4098
 
4099
	/* Set up the display plane register */
4100
	I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4101
	POSTING_READ(DSPCNTR(plane));
4102
 
4103
	dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4104
					       crtc->x, crtc->y);
4105
 
3243 Serge 4106
	intel_crtc->active = true;
4104 Serge 4107
 
4108
	intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3243 Serge 4109
	for_each_encoder_on_crtc(dev, crtc, encoder)
4110
		if (encoder->pre_enable)
4111
			encoder->pre_enable(encoder);
4112
 
5060 serge 4113
	if (intel_crtc->config.has_pch_encoder) {
4114
		intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4115
		dev_priv->display.fdi_link_train(crtc);
4116
	}
4117
 
3243 Serge 4118
	intel_ddi_enable_pipe_clock(intel_crtc);
4119
 
4104 Serge 4120
	ironlake_pfit_enable(intel_crtc);
3243 Serge 4121
 
4122
	/*
4123
	 * On ILK+ LUT must be loaded before the pipe is running but with
4124
	 * clocks enabled
4125
	 */
4126
	intel_crtc_load_lut(crtc);
4127
 
4128
	intel_ddi_set_pipe_settings(crtc);
3746 Serge 4129
	intel_ddi_enable_transcoder_func(crtc);
3243 Serge 4130
 
4560 Serge 4131
	intel_update_watermarks(crtc);
5060 serge 4132
	intel_enable_pipe(intel_crtc);
3243 Serge 4133
 
3746 Serge 4134
	if (intel_crtc->config.has_pch_encoder)
3243 Serge 4135
		lpt_pch_enable(crtc);
4136
 
5060 serge 4137
	if (intel_crtc->config.dp_encoder_is_mst)
4138
		intel_ddi_set_vc_payload_alloc(crtc, true);
4139
 
4560 Serge 4140
	for_each_encoder_on_crtc(dev, crtc, encoder) {
3243 Serge 4141
		encoder->enable(encoder);
4560 Serge 4142
		intel_opregion_notify_encoder(encoder, true);
4143
	}
3243 Serge 4144
 
4560 Serge 4145
	/* If we change the relative order between pipe/planes enabling, we need
4146
	 * to change the workaround. */
4147
	haswell_mode_set_planes_workaround(intel_crtc);
5060 serge 4148
	intel_crtc_enable_planes(crtc);
3243 Serge 4149
}
4150
 
4104 Serge 4151
static void ironlake_pfit_disable(struct intel_crtc *crtc)
4152
{
4153
	struct drm_device *dev = crtc->base.dev;
4154
	struct drm_i915_private *dev_priv = dev->dev_private;
4155
	int pipe = crtc->pipe;
4156
 
4157
	/* To avoid upsetting the power well on haswell only disable the pfit if
4158
	 * it's in use. The hw state code will make sure we get this right. */
4159
	if (crtc->config.pch_pfit.enabled) {
4160
		I915_WRITE(PF_CTL(pipe), 0);
4161
		I915_WRITE(PF_WIN_POS(pipe), 0);
4162
		I915_WRITE(PF_WIN_SZ(pipe), 0);
4163
	}
4164
}
4165
 
2327 Serge 4166
static void ironlake_crtc_disable(struct drm_crtc *crtc)
4167
{
4168
    struct drm_device *dev = crtc->dev;
4169
    struct drm_i915_private *dev_priv = dev->dev_private;
4170
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 4171
	struct intel_encoder *encoder;
2327 Serge 4172
    int pipe = intel_crtc->pipe;
4173
    u32 reg, temp;
4174
 
4175
    if (!intel_crtc->active)
4176
        return;
4177
 
5060 serge 4178
	intel_crtc_disable_planes(crtc);
4179
 
3031 serge 4180
	for_each_encoder_on_crtc(dev, crtc, encoder)
4181
		encoder->disable(encoder);
2336 Serge 4182
 
4104 Serge 4183
	if (intel_crtc->config.has_pch_encoder)
4184
		intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
2327 Serge 4185
 
4186
    intel_disable_pipe(dev_priv, pipe);
4187
 
5060 serge 4188
	if (intel_crtc->config.dp_encoder_is_mst)
4189
		intel_ddi_set_vc_payload_alloc(crtc, false);
4190
 
4104 Serge 4191
	ironlake_pfit_disable(intel_crtc);
2327 Serge 4192
 
3031 serge 4193
	for_each_encoder_on_crtc(dev, crtc, encoder)
4194
		if (encoder->post_disable)
4195
			encoder->post_disable(encoder);
4196
 
4104 Serge 4197
	if (intel_crtc->config.has_pch_encoder) {
2327 Serge 4198
    ironlake_fdi_disable(crtc);
4199
 
3243 Serge 4200
	ironlake_disable_pch_transcoder(dev_priv, pipe);
4104 Serge 4201
		intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
2327 Serge 4202
 
4203
    if (HAS_PCH_CPT(dev)) {
4204
        /* disable TRANS_DP_CTL */
4205
        reg = TRANS_DP_CTL(pipe);
4206
        temp = I915_READ(reg);
4104 Serge 4207
			temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4208
				  TRANS_DP_PORT_SEL_MASK);
2327 Serge 4209
        temp |= TRANS_DP_PORT_SEL_NONE;
4210
        I915_WRITE(reg, temp);
4211
 
4212
        /* disable DPLL_SEL */
4213
        temp = I915_READ(PCH_DPLL_SEL);
4104 Serge 4214
			temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
2327 Serge 4215
        I915_WRITE(PCH_DPLL_SEL, temp);
4216
    }
4217
 
4218
    /* disable PCH DPLL */
4104 Serge 4219
		intel_disable_shared_dpll(intel_crtc);
2327 Serge 4220
 
3031 serge 4221
	ironlake_fdi_pll_disable(intel_crtc);
4104 Serge 4222
	}
2327 Serge 4223
 
4224
    intel_crtc->active = false;
4560 Serge 4225
	intel_update_watermarks(crtc);
2327 Serge 4226
 
4227
    mutex_lock(&dev->struct_mutex);
4228
    intel_update_fbc(dev);
4229
    mutex_unlock(&dev->struct_mutex);
4230
}
4231
 
3243 Serge 4232
static void haswell_crtc_disable(struct drm_crtc *crtc)
4233
{
4234
	struct drm_device *dev = crtc->dev;
4235
	struct drm_i915_private *dev_priv = dev->dev_private;
4236
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4237
	struct intel_encoder *encoder;
4238
	int pipe = intel_crtc->pipe;
3746 Serge 4239
	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3243 Serge 4240
 
4241
	if (!intel_crtc->active)
4242
		return;
4243
 
5060 serge 4244
	intel_crtc_disable_planes(crtc);
4560 Serge 4245
 
4246
	for_each_encoder_on_crtc(dev, crtc, encoder) {
4247
		intel_opregion_notify_encoder(encoder, false);
3243 Serge 4248
		encoder->disable(encoder);
4560 Serge 4249
	}
3243 Serge 4250
 
4104 Serge 4251
	if (intel_crtc->config.has_pch_encoder)
4252
		intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3243 Serge 4253
	intel_disable_pipe(dev_priv, pipe);
4254
 
4255
	intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4256
 
4104 Serge 4257
	ironlake_pfit_disable(intel_crtc);
3243 Serge 4258
 
4259
	intel_ddi_disable_pipe_clock(intel_crtc);
4260
 
3746 Serge 4261
	if (intel_crtc->config.has_pch_encoder) {
3243 Serge 4262
		lpt_disable_pch_transcoder(dev_priv);
4104 Serge 4263
		intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3243 Serge 4264
		intel_ddi_fdi_disable(crtc);
4265
	}
4266
 
5060 serge 4267
	for_each_encoder_on_crtc(dev, crtc, encoder)
4268
		if (encoder->post_disable)
4269
			encoder->post_disable(encoder);
4270
 
3243 Serge 4271
	intel_crtc->active = false;
4560 Serge 4272
	intel_update_watermarks(crtc);
3243 Serge 4273
 
4274
	mutex_lock(&dev->struct_mutex);
4275
	intel_update_fbc(dev);
4276
	mutex_unlock(&dev->struct_mutex);
5060 serge 4277
 
4278
	if (intel_crtc_to_shared_dpll(intel_crtc))
4279
		intel_disable_shared_dpll(intel_crtc);
3243 Serge 4280
}
4281
 
3031 serge 4282
static void ironlake_crtc_off(struct drm_crtc *crtc)
2327 Serge 4283
{
4284
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4104 Serge 4285
	intel_put_shared_dpll(intel_crtc);
2327 Serge 4286
}
4287
 
3243 Serge 4288
 
4104 Serge 4289
static void i9xx_pfit_enable(struct intel_crtc *crtc)
4290
{
4291
	struct drm_device *dev = crtc->base.dev;
4292
	struct drm_i915_private *dev_priv = dev->dev_private;
4293
	struct intel_crtc_config *pipe_config = &crtc->config;
4294
 
4295
	if (!crtc->config.gmch_pfit.control)
4296
		return;
4297
 
4298
	/*
4299
	 * The panel fitter should only be adjusted whilst the pipe is disabled,
4300
	 * according to register description and PRM.
4301
	 */
4302
	WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4303
	assert_pipe_disabled(dev_priv, crtc->pipe);
4304
 
4305
	I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4306
	I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4307
 
4308
	/* Border color in case we don't scale up to the full screen. Black by
4309
	 * default, change to something else for debugging. */
4310
	I915_WRITE(BCLRPAT(crtc->pipe), 0);
4311
}
4312
 
5060 serge 4313
static enum intel_display_power_domain port_to_power_domain(enum port port)
4560 Serge 4314
{
5060 serge 4315
	switch (port) {
4316
	case PORT_A:
4317
		return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4318
	case PORT_B:
4319
		return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4320
	case PORT_C:
4321
		return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4322
	case PORT_D:
4323
		return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4324
	default:
4325
		WARN_ON_ONCE(1);
4326
		return POWER_DOMAIN_PORT_OTHER;
4327
	}
4328
}
4329
 
4330
#define for_each_power_domain(domain, mask)				\
4331
	for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)	\
4332
		if ((1 << (domain)) & (mask))
4333
 
4334
enum intel_display_power_domain
4335
intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4336
{
4337
	struct drm_device *dev = intel_encoder->base.dev;
4338
	struct intel_digital_port *intel_dig_port;
4339
 
4340
	switch (intel_encoder->type) {
4341
	case INTEL_OUTPUT_UNKNOWN:
4342
		/* Only DDI platforms should ever use this output type */
4343
		WARN_ON_ONCE(!HAS_DDI(dev));
4344
	case INTEL_OUTPUT_DISPLAYPORT:
4345
	case INTEL_OUTPUT_HDMI:
4346
	case INTEL_OUTPUT_EDP:
4347
		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4348
		return port_to_power_domain(intel_dig_port->port);
4349
	case INTEL_OUTPUT_DP_MST:
4350
		intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4351
		return port_to_power_domain(intel_dig_port->port);
4352
	case INTEL_OUTPUT_ANALOG:
4353
		return POWER_DOMAIN_PORT_CRT;
4354
	case INTEL_OUTPUT_DSI:
4355
		return POWER_DOMAIN_PORT_DSI;
4356
	default:
4357
		return POWER_DOMAIN_PORT_OTHER;
4358
	}
4359
}
4360
 
4361
static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4362
{
4363
	struct drm_device *dev = crtc->dev;
4364
	struct intel_encoder *intel_encoder;
4365
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4366
	enum pipe pipe = intel_crtc->pipe;
4367
	unsigned long mask;
4368
	enum transcoder transcoder;
4369
 
4370
	transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4371
 
4372
	mask = BIT(POWER_DOMAIN_PIPE(pipe));
4373
	mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4374
	if (intel_crtc->config.pch_pfit.enabled ||
4375
	    intel_crtc->config.pch_pfit.force_thru)
4376
		mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4377
 
4378
	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4379
		mask |= BIT(intel_display_port_power_domain(intel_encoder));
4380
 
4381
	return mask;
4382
}
4383
 
4384
void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4385
				  bool enable)
4386
{
4387
	if (dev_priv->power_domains.init_power_on == enable)
4388
		return;
4389
 
4390
	if (enable)
4391
		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4392
	else
4393
		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4394
 
4395
	dev_priv->power_domains.init_power_on = enable;
4396
}
4397
 
4398
static void modeset_update_crtc_power_domains(struct drm_device *dev)
4399
{
4400
	struct drm_i915_private *dev_priv = dev->dev_private;
4401
	unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4402
	struct intel_crtc *crtc;
4403
 
4404
	/*
4405
	 * First get all needed power domains, then put all unneeded, to avoid
4406
	 * any unnecessary toggling of the power wells.
4407
	 */
4408
	for_each_intel_crtc(dev, crtc) {
4409
		enum intel_display_power_domain domain;
4410
 
4411
		if (!crtc->base.enabled)
4412
			continue;
4413
 
4414
		pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4415
 
4416
		for_each_power_domain(domain, pipe_domains[crtc->pipe])
4417
			intel_display_power_get(dev_priv, domain);
4418
	}
4419
 
4420
	for_each_intel_crtc(dev, crtc) {
4421
		enum intel_display_power_domain domain;
4422
 
4423
		for_each_power_domain(domain, crtc->enabled_power_domains)
4424
			intel_display_power_put(dev_priv, domain);
4425
 
4426
		crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4427
	}
4428
 
4429
	intel_display_set_init_power(dev_priv, false);
4430
}
4431
 
4432
/* returns HPLL frequency in kHz */
4433
static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4434
{
4560 Serge 4435
	int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4436
 
4437
	/* Obtain SKU information */
4438
	mutex_lock(&dev_priv->dpio_lock);
4439
	hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4440
		CCK_FUSE_HPLL_FREQ_MASK;
4441
	mutex_unlock(&dev_priv->dpio_lock);
4442
 
5060 serge 4443
	return vco_freq[hpll_freq] * 1000;
4560 Serge 4444
}
4445
 
5060 serge 4446
static void vlv_update_cdclk(struct drm_device *dev)
4447
{
4448
	struct drm_i915_private *dev_priv = dev->dev_private;
4449
 
4450
	dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4451
	DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4452
			 dev_priv->vlv_cdclk_freq);
4453
 
4454
	/*
4455
	 * Program the gmbus_freq based on the cdclk frequency.
4456
	 * BSpec erroneously claims we should aim for 4MHz, but
4457
	 * in fact 1MHz is the correct frequency.
4458
	 */
4459
	I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4460
}
4461
 
4560 Serge 4462
/* Adjust CDclk dividers to allow high res or save power if possible */
4463
static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4464
{
4465
	struct drm_i915_private *dev_priv = dev->dev_private;
4466
	u32 val, cmd;
4467
 
5060 serge 4468
	WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4469
 
4470
	if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4560 Serge 4471
		cmd = 2;
5060 serge 4472
	else if (cdclk == 266667)
4560 Serge 4473
		cmd = 1;
4474
	else
4475
		cmd = 0;
4476
 
4477
	mutex_lock(&dev_priv->rps.hw_lock);
4478
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4479
	val &= ~DSPFREQGUAR_MASK;
4480
	val |= (cmd << DSPFREQGUAR_SHIFT);
4481
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4482
	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4483
		      DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4484
		     50)) {
4485
		DRM_ERROR("timed out waiting for CDclk change\n");
4486
	}
4487
	mutex_unlock(&dev_priv->rps.hw_lock);
4488
 
5060 serge 4489
	if (cdclk == 400000) {
4560 Serge 4490
		u32 divider, vco;
4491
 
4492
		vco = valleyview_get_vco(dev_priv);
5060 serge 4493
		divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
4560 Serge 4494
 
4495
		mutex_lock(&dev_priv->dpio_lock);
4496
		/* adjust cdclk divider */
4497
		val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5060 serge 4498
		val &= ~DISPLAY_FREQUENCY_VALUES;
4560 Serge 4499
		val |= divider;
4500
		vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5060 serge 4501
 
4502
		if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4503
			      DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4504
			     50))
4505
			DRM_ERROR("timed out waiting for CDclk change\n");
4560 Serge 4506
		mutex_unlock(&dev_priv->dpio_lock);
4507
	}
4508
 
4509
	mutex_lock(&dev_priv->dpio_lock);
4510
	/* adjust self-refresh exit latency value */
4511
	val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4512
	val &= ~0x7f;
4513
 
4514
	/*
4515
	 * For high bandwidth configs, we set a higher latency in the bunit
4516
	 * so that the core display fetch happens in time to avoid underruns.
4517
	 */
5060 serge 4518
	if (cdclk == 400000)
4560 Serge 4519
		val |= 4500 / 250; /* 4.5 usec */
4520
	else
4521
		val |= 3000 / 250; /* 3.0 usec */
4522
	vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4523
	mutex_unlock(&dev_priv->dpio_lock);
4524
 
5060 serge 4525
	vlv_update_cdclk(dev);
4560 Serge 4526
}
4527
 
4528
static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4529
				 int max_pixclk)
4530
{
5060 serge 4531
	int vco = valleyview_get_vco(dev_priv);
4532
	int freq_320 = (vco <<  1) % 320000 != 0 ? 333333 : 320000;
4560 Serge 4533
 
4534
	/*
4535
	 * Really only a few cases to deal with, as only 4 CDclks are supported:
4536
	 *   200MHz
4537
	 *   267MHz
5060 serge 4538
	 *   320/333MHz (depends on HPLL freq)
4560 Serge 4539
	 *   400MHz
4540
	 * So we check to see whether we're above 90% of the lower bin and
4541
	 * adjust if needed.
5060 serge 4542
	 *
4543
	 * We seem to get an unstable or solid color picture at 200MHz.
4544
	 * Not sure what's wrong. For now use 200MHz only when all pipes
4545
	 * are off.
4560 Serge 4546
	 */
5060 serge 4547
	if (max_pixclk > freq_320*9/10)
4548
		return 400000;
4549
	else if (max_pixclk > 266667*9/10)
4550
		return freq_320;
4551
	else if (max_pixclk > 0)
4552
		return 266667;
4553
	else
4554
		return 200000;
4560 Serge 4555
}
4556
 
5060 serge 4557
/* compute the max pixel clock for new configuration */
4558
static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4560 Serge 4559
{
4560
	struct drm_device *dev = dev_priv->dev;
4561
	struct intel_crtc *intel_crtc;
4562
	int max_pixclk = 0;
4563
 
5060 serge 4564
	for_each_intel_crtc(dev, intel_crtc) {
4565
		if (intel_crtc->new_enabled)
4560 Serge 4566
			max_pixclk = max(max_pixclk,
5060 serge 4567
					 intel_crtc->new_config->adjusted_mode.crtc_clock);
4560 Serge 4568
	}
4569
 
4570
	return max_pixclk;
4571
}
4572
 
4573
static void valleyview_modeset_global_pipes(struct drm_device *dev,
5060 serge 4574
					    unsigned *prepare_pipes)
4560 Serge 4575
{
4576
	struct drm_i915_private *dev_priv = dev->dev_private;
4577
	struct intel_crtc *intel_crtc;
5060 serge 4578
	int max_pixclk = intel_mode_max_pixclk(dev_priv);
4560 Serge 4579
 
5060 serge 4580
	if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4581
	    dev_priv->vlv_cdclk_freq)
4560 Serge 4582
		return;
4583
 
5060 serge 4584
	/* disable/enable all currently active pipes while we change cdclk */
4585
	for_each_intel_crtc(dev, intel_crtc)
4560 Serge 4586
		if (intel_crtc->base.enabled)
4587
			*prepare_pipes |= (1 << intel_crtc->pipe);
4588
}
4589
 
4590
static void valleyview_modeset_global_resources(struct drm_device *dev)
4591
{
4592
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 4593
	int max_pixclk = intel_mode_max_pixclk(dev_priv);
4560 Serge 4594
	int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4595
 
5060 serge 4596
	if (req_cdclk != dev_priv->vlv_cdclk_freq)
4560 Serge 4597
		valleyview_set_cdclk(dev, req_cdclk);
5060 serge 4598
	modeset_update_crtc_power_domains(dev);
4560 Serge 4599
}
4600
 
4104 Serge 4601
static void valleyview_crtc_enable(struct drm_crtc *crtc)
4602
{
4603
	struct drm_device *dev = crtc->dev;
4604
	struct drm_i915_private *dev_priv = dev->dev_private;
4605
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4606
	struct intel_encoder *encoder;
4607
	int pipe = intel_crtc->pipe;
4608
	int plane = intel_crtc->plane;
4560 Serge 4609
	bool is_dsi;
5060 serge 4610
	u32 dspcntr;
4104 Serge 4611
 
4612
	WARN_ON(!crtc->enabled);
4613
 
4614
	if (intel_crtc->active)
4615
		return;
4616
 
5060 serge 4617
	is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4618
 
4619
	if (!is_dsi && !IS_CHERRYVIEW(dev))
4620
	vlv_prepare_pll(intel_crtc);
4621
 
4622
	/* Set up the display plane register */
4623
	dspcntr = DISPPLANE_GAMMA_ENABLE;
4624
 
4625
	if (intel_crtc->config.has_dp_encoder)
4626
		intel_dp_set_m_n(intel_crtc);
4627
 
4628
	intel_set_pipe_timings(intel_crtc);
4629
 
4630
	/* pipesrc and dspsize control the size that is scaled from,
4631
	 * which should always be the user's requested size.
4632
	 */
4633
	I915_WRITE(DSPSIZE(plane),
4634
		   ((intel_crtc->config.pipe_src_h - 1) << 16) |
4635
		   (intel_crtc->config.pipe_src_w - 1));
4636
	I915_WRITE(DSPPOS(plane), 0);
4637
 
4638
	i9xx_set_pipeconf(intel_crtc);
4639
 
4640
	I915_WRITE(DSPCNTR(plane), dspcntr);
4641
	POSTING_READ(DSPCNTR(plane));
4642
 
4643
	dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4644
					       crtc->x, crtc->y);
4645
 
4104 Serge 4646
	intel_crtc->active = true;
4647
 
5060 serge 4648
	intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4649
 
4104 Serge 4650
	for_each_encoder_on_crtc(dev, crtc, encoder)
4651
		if (encoder->pre_pll_enable)
4652
			encoder->pre_pll_enable(encoder);
4653
 
5060 serge 4654
	if (!is_dsi) {
4655
		if (IS_CHERRYVIEW(dev))
4656
			chv_enable_pll(intel_crtc);
4657
		else
4104 Serge 4658
	vlv_enable_pll(intel_crtc);
5060 serge 4659
	}
4104 Serge 4660
 
4661
	for_each_encoder_on_crtc(dev, crtc, encoder)
4662
		if (encoder->pre_enable)
4663
			encoder->pre_enable(encoder);
4664
 
4665
	i9xx_pfit_enable(intel_crtc);
4666
 
4667
	intel_crtc_load_lut(crtc);
4668
 
4560 Serge 4669
	intel_update_watermarks(crtc);
5060 serge 4670
	intel_enable_pipe(intel_crtc);
4104 Serge 4671
 
4672
	for_each_encoder_on_crtc(dev, crtc, encoder)
4673
		encoder->enable(encoder);
5060 serge 4674
 
4675
	intel_crtc_enable_planes(crtc);
4676
 
4677
	/* Underruns don't raise interrupts, so check manually. */
4678
	i9xx_check_fifo_underruns(dev);
4104 Serge 4679
}
4680
 
5060 serge 4681
static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4682
{
4683
	struct drm_device *dev = crtc->base.dev;
4684
	struct drm_i915_private *dev_priv = dev->dev_private;
4685
 
4686
	I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4687
	I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4688
}
4689
 
2327 Serge 4690
static void i9xx_crtc_enable(struct drm_crtc *crtc)
4691
{
4692
    struct drm_device *dev = crtc->dev;
4693
    struct drm_i915_private *dev_priv = dev->dev_private;
4694
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 4695
	struct intel_encoder *encoder;
2327 Serge 4696
    int pipe = intel_crtc->pipe;
4697
    int plane = intel_crtc->plane;
5060 serge 4698
	u32 dspcntr;
2327 Serge 4699
 
3031 serge 4700
	WARN_ON(!crtc->enabled);
4701
 
2327 Serge 4702
    if (intel_crtc->active)
4703
        return;
4704
 
5060 serge 4705
	i9xx_set_pll_dividers(intel_crtc);
4706
 
4707
	/* Set up the display plane register */
4708
	dspcntr = DISPPLANE_GAMMA_ENABLE;
4709
 
4710
	if (pipe == 0)
4711
		dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4712
	else
4713
		dspcntr |= DISPPLANE_SEL_PIPE_B;
4714
 
4715
	if (intel_crtc->config.has_dp_encoder)
4716
		intel_dp_set_m_n(intel_crtc);
4717
 
4718
	intel_set_pipe_timings(intel_crtc);
4719
 
4720
	/* pipesrc and dspsize control the size that is scaled from,
4721
	 * which should always be the user's requested size.
4722
	 */
4723
	I915_WRITE(DSPSIZE(plane),
4724
		   ((intel_crtc->config.pipe_src_h - 1) << 16) |
4725
		   (intel_crtc->config.pipe_src_w - 1));
4726
	I915_WRITE(DSPPOS(plane), 0);
4727
 
4728
	i9xx_set_pipeconf(intel_crtc);
4729
 
4730
	I915_WRITE(DSPCNTR(plane), dspcntr);
4731
	POSTING_READ(DSPCNTR(plane));
4732
 
4733
	dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4734
					       crtc->x, crtc->y);
4735
 
2327 Serge 4736
    intel_crtc->active = true;
4737
 
5060 serge 4738
	if (!IS_GEN2(dev))
4739
		intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4740
 
3480 Serge 4741
	for_each_encoder_on_crtc(dev, crtc, encoder)
4742
		if (encoder->pre_enable)
4743
			encoder->pre_enable(encoder);
4744
 
4104 Serge 4745
	i9xx_enable_pll(intel_crtc);
4746
 
4747
	i9xx_pfit_enable(intel_crtc);
4748
 
4749
	intel_crtc_load_lut(crtc);
4750
 
4560 Serge 4751
	intel_update_watermarks(crtc);
5060 serge 4752
	intel_enable_pipe(intel_crtc);
2327 Serge 4753
 
5060 serge 4754
	for_each_encoder_on_crtc(dev, crtc, encoder)
4755
		encoder->enable(encoder);
3031 serge 4756
 
5060 serge 4757
	intel_crtc_enable_planes(crtc);
4104 Serge 4758
 
5060 serge 4759
	/*
4760
	 * Gen2 reports pipe underruns whenever all planes are disabled.
4761
	 * So don't enable underrun reporting before at least some planes
4762
	 * are enabled.
4763
	 * FIXME: Need to fix the logic to work when we turn off all planes
4764
	 * but leave the pipe running.
4765
	 */
4766
	if (IS_GEN2(dev))
4767
	intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4768
 
4769
	/* Underruns don't raise interrupts, so check manually. */
4770
	i9xx_check_fifo_underruns(dev);
2327 Serge 4771
}
4772
 
3746 Serge 4773
static void i9xx_pfit_disable(struct intel_crtc *crtc)
4774
{
4775
	struct drm_device *dev = crtc->base.dev;
4776
	struct drm_i915_private *dev_priv = dev->dev_private;
4777
 
4104 Serge 4778
	if (!crtc->config.gmch_pfit.control)
4779
		return;
4780
 
3746 Serge 4781
	assert_pipe_disabled(dev_priv, crtc->pipe);
4782
 
4104 Serge 4783
	DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4784
			 I915_READ(PFIT_CONTROL));
3746 Serge 4785
		I915_WRITE(PFIT_CONTROL, 0);
4786
}
4787
 
2327 Serge 4788
static void i9xx_crtc_disable(struct drm_crtc *crtc)
4789
{
4790
    struct drm_device *dev = crtc->dev;
4791
    struct drm_i915_private *dev_priv = dev->dev_private;
4792
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 4793
	struct intel_encoder *encoder;
2327 Serge 4794
    int pipe = intel_crtc->pipe;
4795
 
4796
    if (!intel_crtc->active)
4797
        return;
4798
 
5060 serge 4799
	/*
4800
	 * Gen2 reports pipe underruns whenever all planes are disabled.
4801
	 * So diasble underrun reporting before all the planes get disabled.
4802
	 * FIXME: Need to fix the logic to work when we turn off all planes
4803
	 * but leave the pipe running.
4804
	 */
4805
	if (IS_GEN2(dev))
4806
		intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4807
 
4808
	/*
4809
	 * Vblank time updates from the shadow to live plane control register
4810
	 * are blocked if the memory self-refresh mode is active at that
4811
	 * moment. So to make sure the plane gets truly disabled, disable
4812
	 * first the self-refresh mode. The self-refresh enable bit in turn
4813
	 * will be checked/applied by the HW only at the next frame start
4814
	 * event which is after the vblank start event, so we need to have a
4815
	 * wait-for-vblank between disabling the plane and the pipe.
4816
	 */
4817
	intel_set_memory_cxsr(dev_priv, false);
4818
	intel_crtc_disable_planes(crtc);
4819
 
3031 serge 4820
	for_each_encoder_on_crtc(dev, crtc, encoder)
4821
		encoder->disable(encoder);
4822
 
5060 serge 4823
	/*
4824
	 * On gen2 planes are double buffered but the pipe isn't, so we must
4825
	 * wait for planes to fully turn off before disabling the pipe.
4826
	 * We also need to wait on all gmch platforms because of the
4827
	 * self-refresh mode constraint explained above.
4828
	 */
4829
		intel_wait_for_vblank(dev, pipe);
2327 Serge 4830
 
4831
    intel_disable_pipe(dev_priv, pipe);
3480 Serge 4832
 
3746 Serge 4833
	i9xx_pfit_disable(intel_crtc);
3480 Serge 4834
 
4104 Serge 4835
	for_each_encoder_on_crtc(dev, crtc, encoder)
4836
		if (encoder->post_disable)
4837
			encoder->post_disable(encoder);
2327 Serge 4838
 
5060 serge 4839
	if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4840
		if (IS_CHERRYVIEW(dev))
4841
			chv_disable_pll(dev_priv, pipe);
4842
		else if (IS_VALLEYVIEW(dev))
4557 Serge 4843
		vlv_disable_pll(dev_priv, pipe);
5060 serge 4844
		else
4104 Serge 4845
	i9xx_disable_pll(dev_priv, pipe);
5060 serge 4846
	}
4104 Serge 4847
 
5060 serge 4848
	if (!IS_GEN2(dev))
4849
		intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4850
 
2327 Serge 4851
    intel_crtc->active = false;
4560 Serge 4852
	intel_update_watermarks(crtc);
4853
 
5060 serge 4854
	mutex_lock(&dev->struct_mutex);
2327 Serge 4855
    intel_update_fbc(dev);
5060 serge 4856
	mutex_unlock(&dev->struct_mutex);
2327 Serge 4857
}
4858
 
3031 serge 4859
static void i9xx_crtc_off(struct drm_crtc *crtc)
2327 Serge 4860
{
4861
}
4862
 
3031 serge 4863
static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4864
				    bool enabled)
2330 Serge 4865
{
4866
	struct drm_device *dev = crtc->dev;
4867
	struct drm_i915_master_private *master_priv;
4868
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4869
	int pipe = intel_crtc->pipe;
2327 Serge 4870
 
4871
 
2340 Serge 4872
#if 0
2330 Serge 4873
	if (!dev->primary->master)
4874
		return;
2327 Serge 4875
 
2330 Serge 4876
	master_priv = dev->primary->master->driver_priv;
4877
	if (!master_priv->sarea_priv)
4878
		return;
2327 Serge 4879
 
2330 Serge 4880
	switch (pipe) {
4881
	case 0:
4882
		master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4883
		master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4884
		break;
4885
	case 1:
4886
		master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4887
		master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4888
		break;
4889
	default:
4890
		DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4891
		break;
4892
	}
2340 Serge 4893
#endif
5060 serge 4894
}
2340 Serge 4895
 
5060 serge 4896
/* Master function to enable/disable CRTC and corresponding power wells */
4897
void intel_crtc_control(struct drm_crtc *crtc, bool enable)
4898
{
4899
	struct drm_device *dev = crtc->dev;
4900
	struct drm_i915_private *dev_priv = dev->dev_private;
4901
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4902
	enum intel_display_power_domain domain;
4903
	unsigned long domains;
4904
 
4905
	if (enable) {
4906
		if (!intel_crtc->active) {
4907
			domains = get_crtc_power_domains(crtc);
4908
			for_each_power_domain(domain, domains)
4909
				intel_display_power_get(dev_priv, domain);
4910
			intel_crtc->enabled_power_domains = domains;
4911
 
4912
			dev_priv->display.crtc_enable(crtc);
4913
		}
4914
	} else {
4915
		if (intel_crtc->active) {
4916
			dev_priv->display.crtc_disable(crtc);
4917
 
4918
			domains = intel_crtc->enabled_power_domains;
4919
			for_each_power_domain(domain, domains)
4920
				intel_display_power_put(dev_priv, domain);
4921
			intel_crtc->enabled_power_domains = 0;
4922
		}
4923
	}
2330 Serge 4924
}
2327 Serge 4925
 
3031 serge 4926
/**
4927
 * Sets the power management mode of the pipe and plane.
4928
 */
4929
void intel_crtc_update_dpms(struct drm_crtc *crtc)
4930
{
4931
	struct drm_device *dev = crtc->dev;
4932
	struct intel_encoder *intel_encoder;
4933
	bool enable = false;
4934
 
4935
	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4936
		enable |= intel_encoder->connectors_active;
4937
 
5060 serge 4938
	intel_crtc_control(crtc, enable);
3031 serge 4939
 
4940
	intel_crtc_update_sarea(crtc, enable);
4941
}
4942
 
2330 Serge 4943
static void intel_crtc_disable(struct drm_crtc *crtc)
4944
{
4945
	struct drm_device *dev = crtc->dev;
3031 serge 4946
	struct drm_connector *connector;
4947
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 4948
	struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
4949
	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2327 Serge 4950
 
3031 serge 4951
	/* crtc should still be enabled when we disable it. */
4952
	WARN_ON(!crtc->enabled);
2327 Serge 4953
 
4104 Serge 4954
	dev_priv->display.crtc_disable(crtc);
3031 serge 4955
	intel_crtc_update_sarea(crtc, false);
4956
	dev_priv->display.off(crtc);
4957
 
5060 serge 4958
	if (crtc->primary->fb) {
4280 Serge 4959
		mutex_lock(&dev->struct_mutex);
5060 serge 4960
		intel_unpin_fb_obj(old_obj);
4961
		i915_gem_track_fb(old_obj, NULL,
4962
				  INTEL_FRONTBUFFER_PRIMARY(pipe));
4280 Serge 4963
		mutex_unlock(&dev->struct_mutex);
5060 serge 4964
		crtc->primary->fb = NULL;
4280 Serge 4965
	}
3031 serge 4966
 
4967
	/* Update computed state. */
4968
	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4969
		if (!connector->encoder || !connector->encoder->crtc)
4970
			continue;
4971
 
4972
		if (connector->encoder->crtc != crtc)
4973
			continue;
4974
 
4975
		connector->dpms = DRM_MODE_DPMS_OFF;
4976
		to_intel_encoder(connector->encoder)->connectors_active = false;
2330 Serge 4977
	}
4978
}
2327 Serge 4979
 
3031 serge 4980
void intel_encoder_destroy(struct drm_encoder *encoder)
2330 Serge 4981
{
3031 serge 4982
	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4983
 
4984
	drm_encoder_cleanup(encoder);
4985
	kfree(intel_encoder);
2330 Serge 4986
}
2327 Serge 4987
 
4104 Serge 4988
/* Simple dpms helper for encoders with just one connector, no cloning and only
3031 serge 4989
 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4990
 * state of the entire output pipe. */
4104 Serge 4991
static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
2330 Serge 4992
{
3031 serge 4993
	if (mode == DRM_MODE_DPMS_ON) {
4994
		encoder->connectors_active = true;
4995
 
4996
		intel_crtc_update_dpms(encoder->base.crtc);
4997
	} else {
4998
		encoder->connectors_active = false;
4999
 
5000
		intel_crtc_update_dpms(encoder->base.crtc);
5001
	}
2330 Serge 5002
}
2327 Serge 5003
 
3031 serge 5004
/* Cross check the actual hw state with our own modeset state tracking (and it's
5005
 * internal consistency). */
5006
static void intel_connector_check_state(struct intel_connector *connector)
2330 Serge 5007
{
3031 serge 5008
	if (connector->get_hw_state(connector)) {
5009
		struct intel_encoder *encoder = connector->encoder;
5010
		struct drm_crtc *crtc;
5011
		bool encoder_enabled;
5012
		enum pipe pipe;
5013
 
5014
		DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5015
			      connector->base.base.id,
5060 serge 5016
			      connector->base.name);
3031 serge 5017
 
5060 serge 5018
		/* there is no real hw state for MST connectors */
5019
		if (connector->mst_port)
5020
			return;
5021
 
3031 serge 5022
		WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5023
		     "wrong connector dpms state\n");
5024
		WARN(connector->base.encoder != &encoder->base,
5025
		     "active connector not linked to encoder\n");
5060 serge 5026
 
5027
		if (encoder) {
3031 serge 5028
		WARN(!encoder->connectors_active,
5029
		     "encoder->connectors_active not set\n");
5030
 
5031
		encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5032
		WARN(!encoder_enabled, "encoder not enabled\n");
5033
		if (WARN_ON(!encoder->base.crtc))
5034
			return;
5035
 
5036
		crtc = encoder->base.crtc;
5037
 
5038
		WARN(!crtc->enabled, "crtc not enabled\n");
5039
		WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5040
		WARN(pipe != to_intel_crtc(crtc)->pipe,
5041
		     "encoder active on the wrong pipe\n");
5042
	}
5060 serge 5043
	}
2330 Serge 5044
}
2327 Serge 5045
 
3031 serge 5046
/* Even simpler default implementation, if there's really no special case to
5047
 * consider. */
5048
void intel_connector_dpms(struct drm_connector *connector, int mode)
2330 Serge 5049
{
3031 serge 5050
	/* All the simple cases only support two dpms states. */
5051
	if (mode != DRM_MODE_DPMS_ON)
5052
		mode = DRM_MODE_DPMS_OFF;
2342 Serge 5053
 
3031 serge 5054
	if (mode == connector->dpms)
5055
		return;
5056
 
5057
	connector->dpms = mode;
5058
 
5059
	/* Only need to change hw state when actually enabled */
4104 Serge 5060
	if (connector->encoder)
5061
		intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
3031 serge 5062
 
5063
	intel_modeset_check_state(connector->dev);
2330 Serge 5064
}
2327 Serge 5065
 
3031 serge 5066
/* Simple connector->get_hw_state implementation for encoders that support only
5067
 * one connector and no cloning and hence the encoder state determines the state
5068
 * of the connector. */
5069
bool intel_connector_get_hw_state(struct intel_connector *connector)
2330 Serge 5070
{
3031 serge 5071
	enum pipe pipe = 0;
5072
	struct intel_encoder *encoder = connector->encoder;
2330 Serge 5073
 
3031 serge 5074
	return encoder->get_hw_state(encoder, &pipe);
2330 Serge 5075
}
5076
 
4104 Serge 5077
static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5078
				     struct intel_crtc_config *pipe_config)
5079
{
5080
	struct drm_i915_private *dev_priv = dev->dev_private;
5081
	struct intel_crtc *pipe_B_crtc =
5082
		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5083
 
5084
	DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5085
		      pipe_name(pipe), pipe_config->fdi_lanes);
5086
	if (pipe_config->fdi_lanes > 4) {
5087
		DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5088
			      pipe_name(pipe), pipe_config->fdi_lanes);
5089
		return false;
5090
	}
5091
 
4560 Serge 5092
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4104 Serge 5093
		if (pipe_config->fdi_lanes > 2) {
5094
			DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5095
				      pipe_config->fdi_lanes);
5096
			return false;
5097
		} else {
5098
			return true;
5099
		}
5100
	}
5101
 
5102
	if (INTEL_INFO(dev)->num_pipes == 2)
5103
		return true;
5104
 
5105
	/* Ivybridge 3 pipe is really complicated */
5106
	switch (pipe) {
5107
	case PIPE_A:
5108
		return true;
5109
	case PIPE_B:
5110
		if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5111
		    pipe_config->fdi_lanes > 2) {
5112
			DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5113
				      pipe_name(pipe), pipe_config->fdi_lanes);
5114
			return false;
5115
		}
5116
		return true;
5117
	case PIPE_C:
5118
		if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5119
		    pipe_B_crtc->config.fdi_lanes <= 2) {
5120
			if (pipe_config->fdi_lanes > 2) {
5121
				DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5122
					      pipe_name(pipe), pipe_config->fdi_lanes);
5123
				return false;
5124
			}
5125
		} else {
5126
			DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5127
			return false;
5128
		}
5129
		return true;
5130
	default:
5131
		BUG();
5132
	}
5133
}
5134
 
5135
#define RETRY 1
5136
static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
3746 Serge 5137
				      struct intel_crtc_config *pipe_config)
2330 Serge 5138
{
4104 Serge 5139
	struct drm_device *dev = intel_crtc->base.dev;
3746 Serge 5140
	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4104 Serge 5141
	int lane, link_bw, fdi_dotclock;
5142
	bool setup_ok, needs_recompute = false;
2330 Serge 5143
 
4104 Serge 5144
retry:
5145
	/* FDI is a binary signal running at ~2.7GHz, encoding
5146
	 * each output octet as 10 bits. The actual frequency
5147
	 * is stored as a divider into a 100MHz clock, and the
5148
	 * mode pixel clock is stored in units of 1KHz.
5149
	 * Hence the bw of each lane in terms of the mode signal
5150
	 * is:
5151
	 */
5152
	link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5153
 
4560 Serge 5154
	fdi_dotclock = adjusted_mode->crtc_clock;
4104 Serge 5155
 
5156
	lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5157
					   pipe_config->pipe_bpp);
5158
 
5159
	pipe_config->fdi_lanes = lane;
5160
 
5161
	intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5162
			       link_bw, &pipe_config->fdi_m_n);
5163
 
5164
	setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5165
					    intel_crtc->pipe, pipe_config);
5166
	if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5167
		pipe_config->pipe_bpp -= 2*3;
5168
		DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5169
			      pipe_config->pipe_bpp);
5170
		needs_recompute = true;
5171
		pipe_config->bw_constrained = true;
5172
 
5173
		goto retry;
5174
	}
5175
 
5176
	if (needs_recompute)
5177
		return RETRY;
5178
 
5179
	return setup_ok ? 0 : -EINVAL;
5180
}
5181
 
5182
static void hsw_compute_ips_config(struct intel_crtc *crtc,
5183
				   struct intel_crtc_config *pipe_config)
5184
{
5060 serge 5185
	pipe_config->ips_enabled = i915.enable_ips &&
4104 Serge 5186
				   hsw_crtc_supports_ips(crtc) &&
5187
				   pipe_config->pipe_bpp <= 24;
5188
}
5189
 
5190
static int intel_crtc_compute_config(struct intel_crtc *crtc,
5191
				     struct intel_crtc_config *pipe_config)
5192
{
5193
	struct drm_device *dev = crtc->base.dev;
5194
	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5195
 
4560 Serge 5196
	/* FIXME should check pixel clock limits on all platforms */
5197
	if (INTEL_INFO(dev)->gen < 4) {
5198
		struct drm_i915_private *dev_priv = dev->dev_private;
5199
		int clock_limit =
5200
			dev_priv->display.get_display_clock_speed(dev);
5201
 
5202
		/*
5203
		 * Enable pixel doubling when the dot clock
5204
		 * is > 90% of the (display) core speed.
5205
		 *
5206
		 * GDG double wide on either pipe,
5207
		 * otherwise pipe A only.
5208
		 */
5209
		if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5210
		    adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5211
			clock_limit *= 2;
5212
			pipe_config->double_wide = true;
5213
		}
5214
 
5215
		if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4104 Serge 5216
			return -EINVAL;
2330 Serge 5217
	}
5218
 
4560 Serge 5219
	/*
5220
	 * Pipe horizontal size must be even in:
5221
	 * - DVO ganged mode
5222
	 * - LVDS dual channel mode
5223
	 * - Double wide pipe
5224
	 */
5225
	if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5226
	     intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5227
		pipe_config->pipe_src_w &= ~1;
5228
 
4104 Serge 5229
	/* Cantiga+ cannot handle modes with a hsync front porch of 0.
5230
	 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
3031 serge 5231
	 */
5232
	if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5233
		adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4104 Serge 5234
		return -EINVAL;
3031 serge 5235
 
3746 Serge 5236
	if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5237
		pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5238
	} else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5239
		/* only a 8bpc pipe, with 6bpc dither through the panel fitter
5240
		 * for lvds. */
5241
		pipe_config->pipe_bpp = 8*3;
5242
	}
5243
 
4104 Serge 5244
	if (HAS_IPS(dev))
5245
		hsw_compute_ips_config(crtc, pipe_config);
5246
 
5060 serge 5247
	/*
5248
	 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5249
	 * old clock survives for now.
5250
	 */
5251
	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
4104 Serge 5252
		pipe_config->shared_dpll = crtc->config.shared_dpll;
5253
 
5254
	if (pipe_config->has_pch_encoder)
5255
		return ironlake_fdi_compute_config(crtc, pipe_config);
5256
 
5257
	return 0;
2330 Serge 5258
}
5259
 
3031 serge 5260
static int valleyview_get_display_clock_speed(struct drm_device *dev)
5261
{
5060 serge 5262
	struct drm_i915_private *dev_priv = dev->dev_private;
5263
	int vco = valleyview_get_vco(dev_priv);
5264
	u32 val;
5265
	int divider;
5266
 
5267
	mutex_lock(&dev_priv->dpio_lock);
5268
	val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5269
	mutex_unlock(&dev_priv->dpio_lock);
5270
 
5271
	divider = val & DISPLAY_FREQUENCY_VALUES;
5272
 
5273
	WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5274
	     (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5275
	     "cdclk change in progress\n");
5276
 
5277
	return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
3031 serge 5278
}
5279
 
2327 Serge 5280
static int i945_get_display_clock_speed(struct drm_device *dev)
5281
{
5282
	return 400000;
5283
}
5284
 
5285
static int i915_get_display_clock_speed(struct drm_device *dev)
5286
{
5287
	return 333000;
5288
}
5289
 
5290
static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5291
{
5292
	return 200000;
5293
}
5294
 
4104 Serge 5295
static int pnv_get_display_clock_speed(struct drm_device *dev)
5296
{
5297
	u16 gcfgc = 0;
5298
 
5299
	pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5300
 
5301
	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5302
	case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5303
		return 267000;
5304
	case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5305
		return 333000;
5306
	case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5307
		return 444000;
5308
	case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5309
		return 200000;
5310
	default:
5311
		DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5312
	case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5313
		return 133000;
5314
	case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5315
		return 167000;
5316
	}
5317
}
5318
 
2327 Serge 5319
static int i915gm_get_display_clock_speed(struct drm_device *dev)
5320
{
5321
	u16 gcfgc = 0;
5322
 
5323
	pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5324
 
5325
	if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5326
		return 133000;
5327
	else {
5328
		switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5329
		case GC_DISPLAY_CLOCK_333_MHZ:
5330
			return 333000;
5331
		default:
5332
		case GC_DISPLAY_CLOCK_190_200_MHZ:
5333
			return 190000;
5334
		}
5335
	}
5336
}
5337
 
5338
static int i865_get_display_clock_speed(struct drm_device *dev)
5339
{
5340
	return 266000;
5341
}
5342
 
5343
static int i855_get_display_clock_speed(struct drm_device *dev)
5344
{
5345
	u16 hpllcc = 0;
5346
	/* Assume that the hardware is in the high speed state.  This
5347
	 * should be the default.
5348
	 */
5349
	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5350
	case GC_CLOCK_133_200:
5351
	case GC_CLOCK_100_200:
5352
		return 200000;
5353
	case GC_CLOCK_166_250:
5354
		return 250000;
5355
	case GC_CLOCK_100_133:
5356
		return 133000;
5357
	}
5358
 
5359
	/* Shouldn't happen */
5360
	return 0;
5361
}
5362
 
5363
static int i830_get_display_clock_speed(struct drm_device *dev)
5364
{
5365
	return 133000;
5366
}
5367
 
5368
static void
3746 Serge 5369
intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2327 Serge 5370
{
3746 Serge 5371
	while (*num > DATA_LINK_M_N_MASK ||
5372
	       *den > DATA_LINK_M_N_MASK) {
2327 Serge 5373
		*num >>= 1;
5374
		*den >>= 1;
5375
	}
5376
}
5377
 
3746 Serge 5378
static void compute_m_n(unsigned int m, unsigned int n,
5379
			uint32_t *ret_m, uint32_t *ret_n)
5380
{
5381
	*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5382
	*ret_m = div_u64((uint64_t) m * *ret_n, n);
5383
	intel_reduce_m_n_ratio(ret_m, ret_n);
5384
}
5385
 
3480 Serge 5386
void
5387
intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5388
		       int pixel_clock, int link_clock,
5389
		       struct intel_link_m_n *m_n)
2327 Serge 5390
{
3480 Serge 5391
	m_n->tu = 64;
3746 Serge 5392
 
5393
	compute_m_n(bits_per_pixel * pixel_clock,
5394
		    link_clock * nlanes * 8,
5395
		    &m_n->gmch_m, &m_n->gmch_n);
5396
 
5397
	compute_m_n(pixel_clock, link_clock,
5398
		    &m_n->link_m, &m_n->link_n);
2327 Serge 5399
}
5400
 
5401
static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5402
{
5060 serge 5403
	if (i915.panel_use_ssc >= 0)
5404
		return i915.panel_use_ssc != 0;
4104 Serge 5405
	return dev_priv->vbt.lvds_use_ssc
2327 Serge 5406
		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5407
}
5408
 
3031 serge 5409
static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5410
{
5411
	struct drm_device *dev = crtc->dev;
5412
	struct drm_i915_private *dev_priv = dev->dev_private;
5413
	int refclk;
2327 Serge 5414
 
3031 serge 5415
	if (IS_VALLEYVIEW(dev)) {
4560 Serge 5416
		refclk = 100000;
3031 serge 5417
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5418
	    intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4560 Serge 5419
		refclk = dev_priv->vbt.lvds_ssc_freq;
5420
		DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
3031 serge 5421
	} else if (!IS_GEN2(dev)) {
5422
		refclk = 96000;
5423
	} else {
5424
		refclk = 48000;
5425
	}
2327 Serge 5426
 
3031 serge 5427
	return refclk;
5428
}
2327 Serge 5429
 
4104 Serge 5430
static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
3031 serge 5431
{
4104 Serge 5432
	return (1 << dpll->n) << 16 | dpll->m2;
5433
}
3746 Serge 5434
 
4104 Serge 5435
static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5436
{
5437
	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
3031 serge 5438
}
2327 Serge 5439
 
3746 Serge 5440
static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
3031 serge 5441
				     intel_clock_t *reduced_clock)
5442
{
3746 Serge 5443
	struct drm_device *dev = crtc->base.dev;
3031 serge 5444
	u32 fp, fp2 = 0;
2327 Serge 5445
 
3031 serge 5446
	if (IS_PINEVIEW(dev)) {
4104 Serge 5447
		fp = pnv_dpll_compute_fp(&crtc->config.dpll);
3031 serge 5448
		if (reduced_clock)
4104 Serge 5449
			fp2 = pnv_dpll_compute_fp(reduced_clock);
3031 serge 5450
	} else {
4104 Serge 5451
		fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
3031 serge 5452
		if (reduced_clock)
4104 Serge 5453
			fp2 = i9xx_dpll_compute_fp(reduced_clock);
3031 serge 5454
	}
2327 Serge 5455
 
4104 Serge 5456
	crtc->config.dpll_hw_state.fp0 = fp;
2327 Serge 5457
 
3746 Serge 5458
	crtc->lowfreq_avail = false;
5459
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5060 serge 5460
	    reduced_clock && i915.powersave) {
4104 Serge 5461
		crtc->config.dpll_hw_state.fp1 = fp2;
3746 Serge 5462
		crtc->lowfreq_avail = true;
3031 serge 5463
	} else {
4104 Serge 5464
		crtc->config.dpll_hw_state.fp1 = fp;
3031 serge 5465
	}
5466
}
2327 Serge 5467
 
4560 Serge 5468
static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5469
		pipe)
4104 Serge 5470
{
5471
	u32 reg_val;
5472
 
5473
	/*
5474
	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5475
	 * and set it to a reasonable value instead.
5476
	 */
4560 Serge 5477
	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
4104 Serge 5478
	reg_val &= 0xffffff00;
5479
	reg_val |= 0x00000030;
4560 Serge 5480
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
4104 Serge 5481
 
4560 Serge 5482
	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
4104 Serge 5483
	reg_val &= 0x8cffffff;
5484
	reg_val = 0x8c000000;
4560 Serge 5485
	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
4104 Serge 5486
 
4560 Serge 5487
	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
4104 Serge 5488
	reg_val &= 0xffffff00;
4560 Serge 5489
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
4104 Serge 5490
 
4560 Serge 5491
	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
4104 Serge 5492
	reg_val &= 0x00ffffff;
5493
	reg_val |= 0xb0000000;
4560 Serge 5494
	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
4104 Serge 5495
}
5496
 
5497
static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5498
					 struct intel_link_m_n *m_n)
5499
{
5500
	struct drm_device *dev = crtc->base.dev;
5501
	struct drm_i915_private *dev_priv = dev->dev_private;
5502
	int pipe = crtc->pipe;
5503
 
5504
	I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5505
	I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5506
	I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5507
	I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5508
}
5509
 
5510
static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5511
					 struct intel_link_m_n *m_n)
5512
{
5513
	struct drm_device *dev = crtc->base.dev;
5514
	struct drm_i915_private *dev_priv = dev->dev_private;
5515
	int pipe = crtc->pipe;
5516
	enum transcoder transcoder = crtc->config.cpu_transcoder;
5517
 
5518
	if (INTEL_INFO(dev)->gen >= 5) {
5519
		I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5520
		I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5521
		I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5522
		I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5523
	} else {
5524
		I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5525
		I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5526
		I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5527
		I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5528
	}
5529
}
5530
 
3746 Serge 5531
static void intel_dp_set_m_n(struct intel_crtc *crtc)
3031 serge 5532
{
3746 Serge 5533
	if (crtc->config.has_pch_encoder)
5534
		intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5535
	else
5536
		intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5537
}
5538
 
5539
static void vlv_update_pll(struct intel_crtc *crtc)
5540
{
5060 serge 5541
	u32 dpll, dpll_md;
5542
 
5543
	/*
5544
	 * Enable DPIO clock input. We should never disable the reference
5545
	 * clock for pipe B, since VGA hotplug / manual detection depends
5546
	 * on it.
5547
	 */
5548
	dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5549
		DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5550
	/* We should never disable this, set it here for state tracking */
5551
	if (crtc->pipe == PIPE_B)
5552
		dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5553
	dpll |= DPLL_VCO_ENABLE;
5554
	crtc->config.dpll_hw_state.dpll = dpll;
5555
 
5556
	dpll_md = (crtc->config.pixel_multiplier - 1)
5557
		<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
5558
	crtc->config.dpll_hw_state.dpll_md = dpll_md;
5559
}
5560
 
5561
static void vlv_prepare_pll(struct intel_crtc *crtc)
5562
{
3746 Serge 5563
	struct drm_device *dev = crtc->base.dev;
3031 serge 5564
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 5565
	int pipe = crtc->pipe;
5060 serge 5566
	u32 mdiv;
3031 serge 5567
	u32 bestn, bestm1, bestm2, bestp1, bestp2;
5060 serge 5568
	u32 coreclk, reg_val;
2327 Serge 5569
 
3480 Serge 5570
	mutex_lock(&dev_priv->dpio_lock);
5571
 
3746 Serge 5572
	bestn = crtc->config.dpll.n;
5573
	bestm1 = crtc->config.dpll.m1;
5574
	bestm2 = crtc->config.dpll.m2;
5575
	bestp1 = crtc->config.dpll.p1;
5576
	bestp2 = crtc->config.dpll.p2;
3031 serge 5577
 
4104 Serge 5578
	/* See eDP HDMI DPIO driver vbios notes doc */
5579
 
5580
	/* PLL B needs special handling */
5060 serge 5581
	if (pipe == PIPE_B)
4560 Serge 5582
		vlv_pllb_recal_opamp(dev_priv, pipe);
4104 Serge 5583
 
5584
	/* Set up Tx target for periodic Rcomp update */
4560 Serge 5585
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
4104 Serge 5586
 
5587
	/* Disable target IRef on PLL */
4560 Serge 5588
	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
4104 Serge 5589
	reg_val &= 0x00ffffff;
4560 Serge 5590
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
4104 Serge 5591
 
5592
	/* Disable fast lock */
4560 Serge 5593
	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
4104 Serge 5594
 
5595
	/* Set idtafcrecal before PLL is enabled */
3031 serge 5596
	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5597
	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5598
	mdiv |= ((bestn << DPIO_N_SHIFT));
5599
	mdiv |= (1 << DPIO_K_SHIFT);
4104 Serge 5600
 
5601
	/*
5602
	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5603
	 * but we don't support that).
5604
	 * Note: don't use the DAC post divider as it seems unstable.
5605
	 */
5606
	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4560 Serge 5607
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
4104 Serge 5608
 
3031 serge 5609
	mdiv |= DPIO_ENABLE_CALIBRATION;
4560 Serge 5610
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
3031 serge 5611
 
4104 Serge 5612
	/* Set HBR and RBR LPF coefficients */
5613
	if (crtc->config.port_clock == 162000 ||
5614
	    intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5615
	    intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4560 Serge 5616
		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
4104 Serge 5617
				 0x009f0003);
5618
	else
4560 Serge 5619
		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
4104 Serge 5620
				 0x00d0000f);
3031 serge 5621
 
4104 Serge 5622
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5623
	    intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5624
		/* Use SSC source */
5060 serge 5625
		if (pipe == PIPE_A)
4560 Serge 5626
			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4104 Serge 5627
					 0x0df40000);
5628
		else
4560 Serge 5629
			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4104 Serge 5630
					 0x0df70000);
5631
	} else { /* HDMI or VGA */
5632
		/* Use bend source */
5060 serge 5633
		if (pipe == PIPE_A)
4560 Serge 5634
			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4104 Serge 5635
					 0x0df70000);
5636
		else
4560 Serge 5637
			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4104 Serge 5638
					 0x0df40000);
5639
	}
3031 serge 5640
 
4560 Serge 5641
	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
4104 Serge 5642
	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5643
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5644
	    intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5645
		coreclk |= 0x01000000;
4560 Serge 5646
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
3031 serge 5647
 
4560 Serge 5648
	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5060 serge 5649
	mutex_unlock(&dev_priv->dpio_lock);
5650
}
4104 Serge 5651
 
5060 serge 5652
static void chv_update_pll(struct intel_crtc *crtc)
5653
{
5654
	struct drm_device *dev = crtc->base.dev;
5655
	struct drm_i915_private *dev_priv = dev->dev_private;
5656
	int pipe = crtc->pipe;
5657
	int dpll_reg = DPLL(crtc->pipe);
5658
	enum dpio_channel port = vlv_pipe_to_channel(pipe);
5659
	u32 loopfilter, intcoeff;
5660
	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5661
	int refclk;
5662
 
5663
	crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5664
		DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5665
		DPLL_VCO_ENABLE;
5666
	if (pipe != PIPE_A)
5667
		crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5668
 
5669
	crtc->config.dpll_hw_state.dpll_md =
5670
		(crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5671
 
5672
	bestn = crtc->config.dpll.n;
5673
	bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5674
	bestm1 = crtc->config.dpll.m1;
5675
	bestm2 = crtc->config.dpll.m2 >> 22;
5676
	bestp1 = crtc->config.dpll.p1;
5677
	bestp2 = crtc->config.dpll.p2;
5678
 
4560 Serge 5679
	/*
5060 serge 5680
	 * Enable Refclk and SSC
4560 Serge 5681
	 */
5060 serge 5682
	I915_WRITE(dpll_reg,
5683
		   crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
3031 serge 5684
 
5060 serge 5685
	mutex_lock(&dev_priv->dpio_lock);
3031 serge 5686
 
5060 serge 5687
	/* p1 and p2 divider */
5688
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5689
			5 << DPIO_CHV_S1_DIV_SHIFT |
5690
			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5691
			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5692
			1 << DPIO_CHV_K_DIV_SHIFT);
3243 Serge 5693
 
5060 serge 5694
	/* Feedback post-divider - m2 */
5695
	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5696
 
5697
	/* Feedback refclk divider - n and m1 */
5698
	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5699
			DPIO_CHV_M1_DIV_BY_2 |
5700
			1 << DPIO_CHV_N_DIV_SHIFT);
5701
 
5702
	/* M2 fraction division */
5703
	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5704
 
5705
	/* M2 fraction division enable */
5706
	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5707
		       DPIO_CHV_FRAC_DIV_EN |
5708
		       (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5709
 
5710
	/* Loop filter */
5711
	refclk = i9xx_get_refclk(&crtc->base, 0);
5712
	loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5713
		2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5714
	if (refclk == 100000)
5715
		intcoeff = 11;
5716
	else if (refclk == 38400)
5717
		intcoeff = 10;
5718
	else
5719
		intcoeff = 9;
5720
	loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5721
	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5722
 
5723
	/* AFC Recal */
5724
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5725
			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5726
			DPIO_AFC_RECAL);
5727
 
3480 Serge 5728
	mutex_unlock(&dev_priv->dpio_lock);
3031 serge 5729
}
5730
 
3746 Serge 5731
static void i9xx_update_pll(struct intel_crtc *crtc,
5732
			    intel_clock_t *reduced_clock,
3031 serge 5733
			    int num_connectors)
5734
{
3746 Serge 5735
	struct drm_device *dev = crtc->base.dev;
3031 serge 5736
	struct drm_i915_private *dev_priv = dev->dev_private;
5737
	u32 dpll;
5738
	bool is_sdvo;
3746 Serge 5739
	struct dpll *clock = &crtc->config.dpll;
3031 serge 5740
 
3746 Serge 5741
	i9xx_update_pll_dividers(crtc, reduced_clock);
3243 Serge 5742
 
3746 Serge 5743
	is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5744
		intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
3031 serge 5745
 
5746
	dpll = DPLL_VGA_MODE_DIS;
5747
 
3746 Serge 5748
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
3031 serge 5749
		dpll |= DPLLB_MODE_LVDS;
5750
	else
5751
		dpll |= DPLLB_MODE_DAC_SERIAL;
3746 Serge 5752
 
4104 Serge 5753
	if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
3746 Serge 5754
			dpll |= (crtc->config.pixel_multiplier - 1)
5755
				<< SDVO_MULTIPLIER_SHIFT_HIRES;
2342 Serge 5756
		}
4104 Serge 5757
 
5758
	if (is_sdvo)
5759
		dpll |= DPLL_SDVO_HIGH_SPEED;
5760
 
3746 Serge 5761
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4104 Serge 5762
		dpll |= DPLL_SDVO_HIGH_SPEED;
2342 Serge 5763
 
3031 serge 5764
	/* compute bitmask from p1 value */
5765
	if (IS_PINEVIEW(dev))
5766
		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5767
	else {
5768
		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5769
		if (IS_G4X(dev) && reduced_clock)
5770
			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5771
	}
5772
	switch (clock->p2) {
5773
	case 5:
5774
		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5775
		break;
5776
	case 7:
5777
		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5778
		break;
5779
	case 10:
5780
		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5781
		break;
5782
	case 14:
5783
		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5784
		break;
5785
	}
5786
	if (INTEL_INFO(dev)->gen >= 4)
5787
		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
2327 Serge 5788
 
4104 Serge 5789
	if (crtc->config.sdvo_tv_clock)
3031 serge 5790
		dpll |= PLL_REF_INPUT_TVCLKINBC;
3746 Serge 5791
	else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
3031 serge 5792
		 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5793
		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5794
	else
5795
		dpll |= PLL_REF_INPUT_DREFCLK;
2327 Serge 5796
 
3031 serge 5797
	dpll |= DPLL_VCO_ENABLE;
4104 Serge 5798
	crtc->config.dpll_hw_state.dpll = dpll;
2327 Serge 5799
 
4104 Serge 5800
	if (INTEL_INFO(dev)->gen >= 4) {
5801
		u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5802
					<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
5803
		crtc->config.dpll_hw_state.dpll_md = dpll_md;
5804
	}
3031 serge 5805
}
2327 Serge 5806
 
3746 Serge 5807
static void i8xx_update_pll(struct intel_crtc *crtc,
5808
			    intel_clock_t *reduced_clock,
3031 serge 5809
			    int num_connectors)
5810
{
3746 Serge 5811
	struct drm_device *dev = crtc->base.dev;
3031 serge 5812
	struct drm_i915_private *dev_priv = dev->dev_private;
5813
	u32 dpll;
3746 Serge 5814
	struct dpll *clock = &crtc->config.dpll;
2327 Serge 5815
 
3746 Serge 5816
	i9xx_update_pll_dividers(crtc, reduced_clock);
3243 Serge 5817
 
3031 serge 5818
	dpll = DPLL_VGA_MODE_DIS;
2327 Serge 5819
 
3746 Serge 5820
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
3031 serge 5821
		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5822
	} else {
5823
		if (clock->p1 == 2)
5824
			dpll |= PLL_P1_DIVIDE_BY_TWO;
5825
		else
5826
			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5827
		if (clock->p2 == 4)
5828
			dpll |= PLL_P2_DIVIDE_BY_4;
5829
	}
2327 Serge 5830
 
4104 Serge 5831
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5832
		dpll |= DPLL_DVO_2X_MODE;
5833
 
3746 Serge 5834
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
3031 serge 5835
		 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5836
		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5837
	else
5838
		dpll |= PLL_REF_INPUT_DREFCLK;
5839
 
5840
	dpll |= DPLL_VCO_ENABLE;
4104 Serge 5841
	crtc->config.dpll_hw_state.dpll = dpll;
3031 serge 5842
}
5843
 
4104 Serge 5844
static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
3243 Serge 5845
{
5846
	struct drm_device *dev = intel_crtc->base.dev;
5847
	struct drm_i915_private *dev_priv = dev->dev_private;
5848
	enum pipe pipe = intel_crtc->pipe;
3746 Serge 5849
	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4104 Serge 5850
	struct drm_display_mode *adjusted_mode =
5851
		&intel_crtc->config.adjusted_mode;
5060 serge 5852
	uint32_t crtc_vtotal, crtc_vblank_end;
5853
	int vsyncshift = 0;
3243 Serge 5854
 
4104 Serge 5855
	/* We need to be careful not to changed the adjusted mode, for otherwise
5856
	 * the hw state checker will get angry at the mismatch. */
5857
	crtc_vtotal = adjusted_mode->crtc_vtotal;
5858
	crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5859
 
5060 serge 5860
	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
3243 Serge 5861
		/* the chip adds 2 halflines automatically */
4104 Serge 5862
		crtc_vtotal -= 1;
5863
		crtc_vblank_end -= 1;
5060 serge 5864
 
5865
		if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5866
			vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5867
		else
5868
			vsyncshift = adjusted_mode->crtc_hsync_start -
5869
				adjusted_mode->crtc_htotal / 2;
5870
		if (vsyncshift < 0)
5871
			vsyncshift += adjusted_mode->crtc_htotal;
3243 Serge 5872
	}
5873
 
5874
	if (INTEL_INFO(dev)->gen > 3)
5875
		I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5876
 
5877
	I915_WRITE(HTOTAL(cpu_transcoder),
5878
		   (adjusted_mode->crtc_hdisplay - 1) |
5879
		   ((adjusted_mode->crtc_htotal - 1) << 16));
5880
	I915_WRITE(HBLANK(cpu_transcoder),
5881
		   (adjusted_mode->crtc_hblank_start - 1) |
5882
		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
5883
	I915_WRITE(HSYNC(cpu_transcoder),
5884
		   (adjusted_mode->crtc_hsync_start - 1) |
5885
		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
5886
 
5887
	I915_WRITE(VTOTAL(cpu_transcoder),
5888
		   (adjusted_mode->crtc_vdisplay - 1) |
4104 Serge 5889
		   ((crtc_vtotal - 1) << 16));
3243 Serge 5890
	I915_WRITE(VBLANK(cpu_transcoder),
5891
		   (adjusted_mode->crtc_vblank_start - 1) |
4104 Serge 5892
		   ((crtc_vblank_end - 1) << 16));
3243 Serge 5893
	I915_WRITE(VSYNC(cpu_transcoder),
5894
		   (adjusted_mode->crtc_vsync_start - 1) |
5895
		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
5896
 
5897
	/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5898
	 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5899
	 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5900
	 * bits. */
5901
	if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5902
	    (pipe == PIPE_B || pipe == PIPE_C))
5903
		I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5904
 
5905
	/* pipesrc controls the size that is scaled from, which should
5906
	 * always be the user's requested size.
5907
	 */
5908
	I915_WRITE(PIPESRC(pipe),
4560 Serge 5909
		   ((intel_crtc->config.pipe_src_w - 1) << 16) |
5910
		   (intel_crtc->config.pipe_src_h - 1));
3243 Serge 5911
}
5912
 
4104 Serge 5913
static void intel_get_pipe_timings(struct intel_crtc *crtc,
5914
				   struct intel_crtc_config *pipe_config)
5915
{
5916
	struct drm_device *dev = crtc->base.dev;
5917
	struct drm_i915_private *dev_priv = dev->dev_private;
5918
	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5919
	uint32_t tmp;
5920
 
5921
	tmp = I915_READ(HTOTAL(cpu_transcoder));
5922
	pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5923
	pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5924
	tmp = I915_READ(HBLANK(cpu_transcoder));
5925
	pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5926
	pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5927
	tmp = I915_READ(HSYNC(cpu_transcoder));
5928
	pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5929
	pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5930
 
5931
	tmp = I915_READ(VTOTAL(cpu_transcoder));
5932
	pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5933
	pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5934
	tmp = I915_READ(VBLANK(cpu_transcoder));
5935
	pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5936
	pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5937
	tmp = I915_READ(VSYNC(cpu_transcoder));
5938
	pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5939
	pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5940
 
5941
	if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5942
		pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5943
		pipe_config->adjusted_mode.crtc_vtotal += 1;
5944
		pipe_config->adjusted_mode.crtc_vblank_end += 1;
5945
	}
5946
 
5947
	tmp = I915_READ(PIPESRC(crtc->pipe));
4560 Serge 5948
	pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5949
	pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5950
 
5951
	pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5952
	pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
4104 Serge 5953
}
5954
 
5060 serge 5955
void intel_mode_from_pipe_config(struct drm_display_mode *mode,
4104 Serge 5956
					     struct intel_crtc_config *pipe_config)
5957
{
5060 serge 5958
	mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5959
	mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5960
	mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5961
	mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4104 Serge 5962
 
5060 serge 5963
	mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5964
	mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5965
	mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5966
	mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4104 Serge 5967
 
5060 serge 5968
	mode->flags = pipe_config->adjusted_mode.flags;
4104 Serge 5969
 
5060 serge 5970
	mode->clock = pipe_config->adjusted_mode.crtc_clock;
5971
	mode->flags |= pipe_config->adjusted_mode.flags;
4104 Serge 5972
}
5973
 
3746 Serge 5974
static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5975
{
5976
	struct drm_device *dev = intel_crtc->base.dev;
5977
	struct drm_i915_private *dev_priv = dev->dev_private;
5978
	uint32_t pipeconf;
5979
 
4104 Serge 5980
	pipeconf = 0;
3746 Serge 5981
 
4104 Serge 5982
	if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5983
	    I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5984
		pipeconf |= PIPECONF_ENABLE;
5985
 
4560 Serge 5986
	if (intel_crtc->config.double_wide)
3746 Serge 5987
			pipeconf |= PIPECONF_DOUBLE_WIDE;
5988
 
4104 Serge 5989
	/* only g4x and later have fancy bpc/dither controls */
5990
	if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5991
		/* Bspec claims that we can't use dithering for 30bpp pipes. */
5992
		if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5993
			pipeconf |= PIPECONF_DITHER_EN |
3746 Serge 5994
				    PIPECONF_DITHER_TYPE_SP;
5995
 
4104 Serge 5996
		switch (intel_crtc->config.pipe_bpp) {
5997
		case 18:
5998
			pipeconf |= PIPECONF_6BPC;
5999
			break;
6000
		case 24:
6001
			pipeconf |= PIPECONF_8BPC;
6002
			break;
6003
		case 30:
6004
			pipeconf |= PIPECONF_10BPC;
6005
			break;
6006
		default:
6007
			/* Case prevented by intel_choose_pipe_bpp_dither. */
6008
			BUG();
3746 Serge 6009
		}
6010
	}
6011
 
6012
	if (HAS_PIPE_CXSR(dev)) {
6013
		if (intel_crtc->lowfreq_avail) {
6014
			DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6015
			pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6016
		} else {
6017
			DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6018
		}
6019
	}
6020
 
5060 serge 6021
	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6022
		if (INTEL_INFO(dev)->gen < 4 ||
6023
		    intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
3746 Serge 6024
		pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6025
	else
5060 serge 6026
			pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6027
	} else
3746 Serge 6028
		pipeconf |= PIPECONF_PROGRESSIVE;
6029
 
4104 Serge 6030
	if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
3746 Serge 6031
			pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6032
 
6033
	I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6034
	POSTING_READ(PIPECONF(intel_crtc->pipe));
6035
}
6036
 
3031 serge 6037
static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
6038
			      int x, int y,
6039
			      struct drm_framebuffer *fb)
6040
{
6041
	struct drm_device *dev = crtc->dev;
6042
	struct drm_i915_private *dev_priv = dev->dev_private;
6043
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6044
	int refclk, num_connectors = 0;
6045
	intel_clock_t clock, reduced_clock;
4104 Serge 6046
	bool ok, has_reduced_clock = false;
4560 Serge 6047
	bool is_lvds = false, is_dsi = false;
3031 serge 6048
	struct intel_encoder *encoder;
6049
	const intel_limit_t *limit;
6050
 
6051
	for_each_encoder_on_crtc(dev, crtc, encoder) {
6052
		switch (encoder->type) {
6053
		case INTEL_OUTPUT_LVDS:
6054
			is_lvds = true;
6055
			break;
4560 Serge 6056
		case INTEL_OUTPUT_DSI:
6057
			is_dsi = true;
6058
			break;
3031 serge 6059
		}
6060
 
6061
		num_connectors++;
6062
	}
6063
 
4560 Serge 6064
	if (is_dsi)
5060 serge 6065
		return 0;
4560 Serge 6066
 
6067
	if (!intel_crtc->config.clock_set) {
3031 serge 6068
	refclk = i9xx_get_refclk(crtc, num_connectors);
6069
 
6070
	/*
4560 Serge 6071
		 * Returns a set of divisors for the desired target clock with
6072
		 * the given refclk, or FALSE.  The returned values represent
6073
		 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6074
		 * 2) / p1 / p2.
3031 serge 6075
	 */
6076
	limit = intel_limit(crtc, refclk);
4104 Serge 6077
	ok = dev_priv->display.find_dpll(limit, crtc,
6078
					 intel_crtc->config.port_clock,
6079
					 refclk, NULL, &clock);
4560 Serge 6080
		if (!ok) {
3031 serge 6081
		DRM_ERROR("Couldn't find PLL settings for mode!\n");
6082
		return -EINVAL;
6083
	}
6084
 
6085
	if (is_lvds && dev_priv->lvds_downclock_avail) {
6086
		/*
4560 Serge 6087
			 * Ensure we match the reduced clock's P to the target
6088
			 * clock.  If the clocks don't match, we can't switch
6089
			 * the display clock by using the FP0/FP1. In such case
6090
			 * we will disable the LVDS downclock feature.
3031 serge 6091
		*/
4104 Serge 6092
		has_reduced_clock =
6093
			dev_priv->display.find_dpll(limit, crtc,
3031 serge 6094
						    dev_priv->lvds_downclock,
4104 Serge 6095
						    refclk, &clock,
3031 serge 6096
						    &reduced_clock);
6097
	}
3746 Serge 6098
	/* Compat-code for transition, will disappear. */
6099
		intel_crtc->config.dpll.n = clock.n;
6100
		intel_crtc->config.dpll.m1 = clock.m1;
6101
		intel_crtc->config.dpll.m2 = clock.m2;
6102
		intel_crtc->config.dpll.p1 = clock.p1;
6103
		intel_crtc->config.dpll.p2 = clock.p2;
6104
	}
3031 serge 6105
 
4560 Serge 6106
	if (IS_GEN2(dev)) {
4104 Serge 6107
		i8xx_update_pll(intel_crtc,
3243 Serge 6108
				has_reduced_clock ? &reduced_clock : NULL,
6109
				num_connectors);
5060 serge 6110
	} else if (IS_CHERRYVIEW(dev)) {
6111
		chv_update_pll(intel_crtc);
4560 Serge 6112
	} else if (IS_VALLEYVIEW(dev)) {
3746 Serge 6113
		vlv_update_pll(intel_crtc);
4560 Serge 6114
	} else {
3746 Serge 6115
		i9xx_update_pll(intel_crtc,
3031 serge 6116
				has_reduced_clock ? &reduced_clock : NULL,
6117
				num_connectors);
4560 Serge 6118
	}
3031 serge 6119
 
5060 serge 6120
	return 0;
2327 Serge 6121
}
6122
 
4104 Serge 6123
static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6124
				 struct intel_crtc_config *pipe_config)
6125
{
6126
	struct drm_device *dev = crtc->base.dev;
6127
	struct drm_i915_private *dev_priv = dev->dev_private;
6128
	uint32_t tmp;
6129
 
4560 Serge 6130
	if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6131
		return;
6132
 
4104 Serge 6133
	tmp = I915_READ(PFIT_CONTROL);
6134
	if (!(tmp & PFIT_ENABLE))
6135
		return;
6136
 
6137
	/* Check whether the pfit is attached to our pipe. */
6138
	if (INTEL_INFO(dev)->gen < 4) {
6139
		if (crtc->pipe != PIPE_B)
6140
			return;
6141
	} else {
6142
		if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6143
			return;
6144
	}
6145
 
6146
	pipe_config->gmch_pfit.control = tmp;
6147
	pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6148
	if (INTEL_INFO(dev)->gen < 5)
6149
		pipe_config->gmch_pfit.lvds_border_bits =
6150
			I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6151
}
6152
 
4398 Serge 6153
static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6154
			       struct intel_crtc_config *pipe_config)
6155
{
6156
	struct drm_device *dev = crtc->base.dev;
6157
	struct drm_i915_private *dev_priv = dev->dev_private;
6158
	int pipe = pipe_config->cpu_transcoder;
6159
	intel_clock_t clock;
6160
	u32 mdiv;
6161
	int refclk = 100000;
6162
 
5060 serge 6163
	/* In case of MIPI DPLL will not even be used */
6164
	if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6165
		return;
6166
 
4398 Serge 6167
	mutex_lock(&dev_priv->dpio_lock);
4560 Serge 6168
	mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
4398 Serge 6169
	mutex_unlock(&dev_priv->dpio_lock);
6170
 
6171
	clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6172
	clock.m2 = mdiv & DPIO_M2DIV_MASK;
6173
	clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6174
	clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6175
	clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6176
 
4560 Serge 6177
	vlv_clock(refclk, &clock);
4398 Serge 6178
 
4560 Serge 6179
	/* clock.dot is the fast clock */
6180
	pipe_config->port_clock = clock.dot / 5;
4398 Serge 6181
}
6182
 
5060 serge 6183
static void i9xx_get_plane_config(struct intel_crtc *crtc,
6184
				  struct intel_plane_config *plane_config)
6185
{
6186
	struct drm_device *dev = crtc->base.dev;
6187
	struct drm_i915_private *dev_priv = dev->dev_private;
6188
	u32 val, base, offset;
6189
	int pipe = crtc->pipe, plane = crtc->plane;
6190
	int fourcc, pixel_format;
6191
	int aligned_height;
6192
 
6193
	crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6194
	if (!crtc->base.primary->fb) {
6195
		DRM_DEBUG_KMS("failed to alloc fb\n");
6196
		return;
6197
	}
6198
 
6199
	val = I915_READ(DSPCNTR(plane));
6200
 
6201
	if (INTEL_INFO(dev)->gen >= 4)
6202
		if (val & DISPPLANE_TILED)
6203
			plane_config->tiled = true;
6204
 
6205
	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6206
	fourcc = intel_format_to_fourcc(pixel_format);
6207
	crtc->base.primary->fb->pixel_format = fourcc;
6208
	crtc->base.primary->fb->bits_per_pixel =
6209
		drm_format_plane_cpp(fourcc, 0) * 8;
6210
 
6211
	if (INTEL_INFO(dev)->gen >= 4) {
6212
		if (plane_config->tiled)
6213
			offset = I915_READ(DSPTILEOFF(plane));
6214
		else
6215
			offset = I915_READ(DSPLINOFF(plane));
6216
		base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6217
	} else {
6218
		base = I915_READ(DSPADDR(plane));
6219
	}
6220
	plane_config->base = base;
6221
 
6222
	val = I915_READ(PIPESRC(pipe));
6223
	crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6224
	crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6225
 
6226
	val = I915_READ(DSPSTRIDE(pipe));
6227
	crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
6228
 
6229
	aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6230
					    plane_config->tiled);
6231
 
6232
	plane_config->size = 16*1024*1024;
6233
 
6234
 
6235
	DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6236
		      pipe, plane, crtc->base.primary->fb->width,
6237
		      crtc->base.primary->fb->height,
6238
		      crtc->base.primary->fb->bits_per_pixel, base,
6239
		      crtc->base.primary->fb->pitches[0],
6240
		      plane_config->size);
6241
 
6242
}
6243
 
6244
static void chv_crtc_clock_get(struct intel_crtc *crtc,
6245
			       struct intel_crtc_config *pipe_config)
6246
{
6247
	struct drm_device *dev = crtc->base.dev;
6248
	struct drm_i915_private *dev_priv = dev->dev_private;
6249
	int pipe = pipe_config->cpu_transcoder;
6250
	enum dpio_channel port = vlv_pipe_to_channel(pipe);
6251
	intel_clock_t clock;
6252
	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6253
	int refclk = 100000;
6254
 
6255
	mutex_lock(&dev_priv->dpio_lock);
6256
	cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6257
	pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6258
	pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6259
	pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6260
	mutex_unlock(&dev_priv->dpio_lock);
6261
 
6262
	clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6263
	clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6264
	clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6265
	clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6266
	clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6267
 
6268
	chv_clock(refclk, &clock);
6269
 
6270
	/* clock.dot is the fast clock */
6271
	pipe_config->port_clock = clock.dot / 5;
6272
}
6273
 
3746 Serge 6274
static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6275
				 struct intel_crtc_config *pipe_config)
6276
{
6277
	struct drm_device *dev = crtc->base.dev;
6278
	struct drm_i915_private *dev_priv = dev->dev_private;
6279
	uint32_t tmp;
6280
 
5060 serge 6281
	if (!intel_display_power_enabled(dev_priv,
6282
					 POWER_DOMAIN_PIPE(crtc->pipe)))
6283
		return false;
6284
 
4104 Serge 6285
	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6286
	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6287
 
3746 Serge 6288
	tmp = I915_READ(PIPECONF(crtc->pipe));
6289
	if (!(tmp & PIPECONF_ENABLE))
6290
		return false;
6291
 
4280 Serge 6292
	if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6293
		switch (tmp & PIPECONF_BPC_MASK) {
6294
		case PIPECONF_6BPC:
6295
			pipe_config->pipe_bpp = 18;
6296
			break;
6297
		case PIPECONF_8BPC:
6298
			pipe_config->pipe_bpp = 24;
6299
			break;
6300
		case PIPECONF_10BPC:
6301
			pipe_config->pipe_bpp = 30;
6302
			break;
6303
		default:
6304
			break;
6305
		}
6306
	}
6307
 
5060 serge 6308
	if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6309
		pipe_config->limited_color_range = true;
6310
 
4560 Serge 6311
	if (INTEL_INFO(dev)->gen < 4)
6312
		pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6313
 
4104 Serge 6314
	intel_get_pipe_timings(crtc, pipe_config);
6315
 
6316
	i9xx_get_pfit_config(crtc, pipe_config);
6317
 
6318
	if (INTEL_INFO(dev)->gen >= 4) {
6319
		tmp = I915_READ(DPLL_MD(crtc->pipe));
6320
		pipe_config->pixel_multiplier =
6321
			((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6322
			 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6323
		pipe_config->dpll_hw_state.dpll_md = tmp;
6324
	} else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6325
		tmp = I915_READ(DPLL(crtc->pipe));
6326
		pipe_config->pixel_multiplier =
6327
			((tmp & SDVO_MULTIPLIER_MASK)
6328
			 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6329
	} else {
6330
		/* Note that on i915G/GM the pixel multiplier is in the sdvo
6331
		 * port and will be fixed up in the encoder->get_config
6332
		 * function. */
6333
		pipe_config->pixel_multiplier = 1;
6334
	}
6335
	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6336
	if (!IS_VALLEYVIEW(dev)) {
6337
		pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6338
		pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6339
	} else {
6340
		/* Mask out read-only status bits. */
6341
		pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6342
						     DPLL_PORTC_READY_MASK |
6343
						     DPLL_PORTB_READY_MASK);
6344
	}
6345
 
5060 serge 6346
	if (IS_CHERRYVIEW(dev))
6347
		chv_crtc_clock_get(crtc, pipe_config);
6348
	else if (IS_VALLEYVIEW(dev))
4560 Serge 6349
		vlv_crtc_clock_get(crtc, pipe_config);
6350
	else
6351
		i9xx_crtc_clock_get(crtc, pipe_config);
6352
 
3746 Serge 6353
	return true;
6354
}
6355
 
3243 Serge 6356
static void ironlake_init_pch_refclk(struct drm_device *dev)
2327 Serge 6357
{
6358
	struct drm_i915_private *dev_priv = dev->dev_private;
6359
	struct drm_mode_config *mode_config = &dev->mode_config;
6360
	struct intel_encoder *encoder;
3746 Serge 6361
	u32 val, final;
2327 Serge 6362
	bool has_lvds = false;
2342 Serge 6363
	bool has_cpu_edp = false;
6364
	bool has_panel = false;
6365
	bool has_ck505 = false;
6366
	bool can_ssc = false;
2327 Serge 6367
 
6368
	/* We need to take the global config into account */
6369
		list_for_each_entry(encoder, &mode_config->encoder_list,
6370
				    base.head) {
6371
			switch (encoder->type) {
6372
			case INTEL_OUTPUT_LVDS:
2342 Serge 6373
			has_panel = true;
2327 Serge 6374
				has_lvds = true;
2342 Serge 6375
			break;
2327 Serge 6376
			case INTEL_OUTPUT_EDP:
2342 Serge 6377
			has_panel = true;
4104 Serge 6378
			if (enc_to_dig_port(&encoder->base)->port == PORT_A)
2342 Serge 6379
				has_cpu_edp = true;
2327 Serge 6380
				break;
6381
			}
6382
		}
2342 Serge 6383
 
6384
	if (HAS_PCH_IBX(dev)) {
4104 Serge 6385
		has_ck505 = dev_priv->vbt.display_clock_mode;
2342 Serge 6386
		can_ssc = has_ck505;
6387
	} else {
6388
		has_ck505 = false;
6389
		can_ssc = true;
2327 Serge 6390
	}
6391
 
4104 Serge 6392
	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6393
		      has_panel, has_lvds, has_ck505);
2342 Serge 6394
 
2327 Serge 6395
	/* Ironlake: try to setup display ref clock before DPLL
6396
	 * enabling. This is only under driver's control after
6397
	 * PCH B stepping, previous chipset stepping should be
6398
	 * ignoring this setting.
6399
	 */
3746 Serge 6400
	val = I915_READ(PCH_DREF_CONTROL);
6401
 
6402
	/* As we must carefully and slowly disable/enable each source in turn,
6403
	 * compute the final state we want first and check if we need to
6404
	 * make any changes at all.
6405
	 */
6406
	final = val;
6407
	final &= ~DREF_NONSPREAD_SOURCE_MASK;
6408
	if (has_ck505)
6409
		final |= DREF_NONSPREAD_CK505_ENABLE;
6410
	else
6411
		final |= DREF_NONSPREAD_SOURCE_ENABLE;
6412
 
6413
	final &= ~DREF_SSC_SOURCE_MASK;
6414
	final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6415
	final &= ~DREF_SSC1_ENABLE;
6416
 
6417
	if (has_panel) {
6418
		final |= DREF_SSC_SOURCE_ENABLE;
6419
 
6420
		if (intel_panel_use_ssc(dev_priv) && can_ssc)
6421
			final |= DREF_SSC1_ENABLE;
6422
 
6423
		if (has_cpu_edp) {
6424
			if (intel_panel_use_ssc(dev_priv) && can_ssc)
6425
				final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6426
			else
6427
				final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6428
		} else
6429
			final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6430
	} else {
6431
		final |= DREF_SSC_SOURCE_DISABLE;
6432
		final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6433
	}
6434
 
6435
	if (final == val)
6436
		return;
6437
 
2327 Serge 6438
	/* Always enable nonspread source */
3746 Serge 6439
	val &= ~DREF_NONSPREAD_SOURCE_MASK;
2342 Serge 6440
 
6441
	if (has_ck505)
3746 Serge 6442
		val |= DREF_NONSPREAD_CK505_ENABLE;
2342 Serge 6443
	else
3746 Serge 6444
		val |= DREF_NONSPREAD_SOURCE_ENABLE;
2342 Serge 6445
 
6446
	if (has_panel) {
3746 Serge 6447
		val &= ~DREF_SSC_SOURCE_MASK;
6448
		val |= DREF_SSC_SOURCE_ENABLE;
2327 Serge 6449
 
2342 Serge 6450
		/* SSC must be turned on before enabling the CPU output  */
6451
		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6452
			DRM_DEBUG_KMS("Using SSC on panel\n");
3746 Serge 6453
			val |= DREF_SSC1_ENABLE;
3031 serge 6454
		} else
3746 Serge 6455
			val &= ~DREF_SSC1_ENABLE;
2327 Serge 6456
 
2342 Serge 6457
		/* Get SSC going before enabling the outputs */
3746 Serge 6458
		I915_WRITE(PCH_DREF_CONTROL, val);
2327 Serge 6459
			POSTING_READ(PCH_DREF_CONTROL);
6460
			udelay(200);
2342 Serge 6461
 
3746 Serge 6462
		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
2327 Serge 6463
 
6464
		/* Enable CPU source on CPU attached eDP */
2342 Serge 6465
		if (has_cpu_edp) {
6466
			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6467
				DRM_DEBUG_KMS("Using SSC on eDP\n");
3746 Serge 6468
				val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5060 serge 6469
			} else
3746 Serge 6470
				val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
2342 Serge 6471
		} else
3746 Serge 6472
			val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
2342 Serge 6473
 
3746 Serge 6474
		I915_WRITE(PCH_DREF_CONTROL, val);
2342 Serge 6475
		POSTING_READ(PCH_DREF_CONTROL);
6476
		udelay(200);
2327 Serge 6477
		} else {
2342 Serge 6478
		DRM_DEBUG_KMS("Disabling SSC entirely\n");
6479
 
3746 Serge 6480
		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
2342 Serge 6481
 
6482
		/* Turn off CPU output */
3746 Serge 6483
		val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
2342 Serge 6484
 
3746 Serge 6485
		I915_WRITE(PCH_DREF_CONTROL, val);
2327 Serge 6486
		POSTING_READ(PCH_DREF_CONTROL);
6487
		udelay(200);
2342 Serge 6488
 
6489
		/* Turn off the SSC source */
3746 Serge 6490
		val &= ~DREF_SSC_SOURCE_MASK;
6491
		val |= DREF_SSC_SOURCE_DISABLE;
2342 Serge 6492
 
6493
		/* Turn off SSC1 */
3746 Serge 6494
		val &= ~DREF_SSC1_ENABLE;
2342 Serge 6495
 
3746 Serge 6496
		I915_WRITE(PCH_DREF_CONTROL, val);
2342 Serge 6497
		POSTING_READ(PCH_DREF_CONTROL);
6498
		udelay(200);
2327 Serge 6499
	}
3746 Serge 6500
 
6501
	BUG_ON(val != final);
2327 Serge 6502
}
6503
 
4104 Serge 6504
static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
3243 Serge 6505
{
4104 Serge 6506
	uint32_t tmp;
3243 Serge 6507
 
6508
		tmp = I915_READ(SOUTH_CHICKEN2);
6509
		tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6510
		I915_WRITE(SOUTH_CHICKEN2, tmp);
6511
 
6512
		if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6513
				       FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6514
			DRM_ERROR("FDI mPHY reset assert timeout\n");
6515
 
6516
		tmp = I915_READ(SOUTH_CHICKEN2);
6517
		tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6518
		I915_WRITE(SOUTH_CHICKEN2, tmp);
6519
 
6520
		if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
4104 Serge 6521
				FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
3243 Serge 6522
			DRM_ERROR("FDI mPHY reset de-assert timeout\n");
4539 Serge 6523
}
3243 Serge 6524
 
4104 Serge 6525
/* WaMPhyProgramming:hsw */
6526
static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6527
{
6528
	uint32_t tmp;
6529
 
3243 Serge 6530
	tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6531
	tmp &= ~(0xFF << 24);
6532
	tmp |= (0x12 << 24);
6533
	intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6534
 
6535
	tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6536
	tmp |= (1 << 11);
6537
	intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6538
 
6539
	tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6540
	tmp |= (1 << 11);
6541
	intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6542
 
6543
	tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6544
	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6545
	intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6546
 
6547
	tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6548
	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6549
	intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6550
 
6551
		tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6552
		tmp &= ~(7 << 13);
6553
		tmp |= (5 << 13);
6554
		intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6555
 
6556
		tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6557
		tmp &= ~(7 << 13);
6558
		tmp |= (5 << 13);
6559
		intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6560
 
6561
	tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6562
	tmp &= ~0xFF;
6563
	tmp |= 0x1C;
6564
	intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6565
 
6566
	tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6567
	tmp &= ~0xFF;
6568
	tmp |= 0x1C;
6569
	intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6570
 
6571
	tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6572
	tmp &= ~(0xFF << 16);
6573
	tmp |= (0x1C << 16);
6574
	intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6575
 
6576
	tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6577
	tmp &= ~(0xFF << 16);
6578
	tmp |= (0x1C << 16);
6579
	intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6580
 
6581
		tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6582
		tmp |= (1 << 27);
6583
		intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6584
 
6585
		tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6586
		tmp |= (1 << 27);
6587
		intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6588
 
6589
		tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6590
		tmp &= ~(0xF << 28);
6591
		tmp |= (4 << 28);
6592
		intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6593
 
6594
		tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6595
		tmp &= ~(0xF << 28);
6596
		tmp |= (4 << 28);
6597
		intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
4539 Serge 6598
}
3243 Serge 6599
 
4104 Serge 6600
/* Implements 3 different sequences from BSpec chapter "Display iCLK
6601
 * Programming" based on the parameters passed:
6602
 * - Sequence to enable CLKOUT_DP
6603
 * - Sequence to enable CLKOUT_DP without spread
6604
 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6605
 */
6606
static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6607
				 bool with_fdi)
6608
{
6609
	struct drm_i915_private *dev_priv = dev->dev_private;
6610
	uint32_t reg, tmp;
3480 Serge 6611
 
4104 Serge 6612
	if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6613
		with_spread = true;
6614
	if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6615
		 with_fdi, "LP PCH doesn't have FDI\n"))
6616
		with_fdi = false;
6617
 
6618
	mutex_lock(&dev_priv->dpio_lock);
6619
 
6620
	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6621
	tmp &= ~SBI_SSCCTL_DISABLE;
6622
	tmp |= SBI_SSCCTL_PATHALT;
6623
	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6624
 
6625
	udelay(24);
6626
 
6627
	if (with_spread) {
6628
		tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6629
		tmp &= ~SBI_SSCCTL_PATHALT;
6630
		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6631
 
6632
		if (with_fdi) {
6633
			lpt_reset_fdi_mphy(dev_priv);
6634
			lpt_program_fdi_mphy(dev_priv);
6635
		}
6636
	}
6637
 
6638
	reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6639
	       SBI_GEN0 : SBI_DBUFF0;
6640
	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6641
	tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6642
	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6643
 
3480 Serge 6644
	mutex_unlock(&dev_priv->dpio_lock);
3243 Serge 6645
}
6646
 
4104 Serge 6647
/* Sequence to disable CLKOUT_DP */
6648
static void lpt_disable_clkout_dp(struct drm_device *dev)
6649
{
6650
	struct drm_i915_private *dev_priv = dev->dev_private;
6651
	uint32_t reg, tmp;
6652
 
6653
	mutex_lock(&dev_priv->dpio_lock);
6654
 
6655
	reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6656
	       SBI_GEN0 : SBI_DBUFF0;
6657
	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6658
	tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6659
	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6660
 
6661
	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6662
	if (!(tmp & SBI_SSCCTL_DISABLE)) {
6663
		if (!(tmp & SBI_SSCCTL_PATHALT)) {
6664
			tmp |= SBI_SSCCTL_PATHALT;
6665
			intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6666
			udelay(32);
6667
		}
6668
		tmp |= SBI_SSCCTL_DISABLE;
6669
		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6670
	}
6671
 
6672
	mutex_unlock(&dev_priv->dpio_lock);
6673
}
6674
 
6675
static void lpt_init_pch_refclk(struct drm_device *dev)
6676
{
6677
	struct drm_mode_config *mode_config = &dev->mode_config;
6678
	struct intel_encoder *encoder;
6679
	bool has_vga = false;
6680
 
6681
	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6682
		switch (encoder->type) {
6683
		case INTEL_OUTPUT_ANALOG:
6684
			has_vga = true;
6685
			break;
6686
		}
6687
	}
6688
 
6689
	if (has_vga)
6690
		lpt_enable_clkout_dp(dev, true, true);
6691
	else
6692
		lpt_disable_clkout_dp(dev);
6693
}
6694
 
3243 Serge 6695
/*
6696
 * Initialize reference clocks when the driver loads
6697
 */
6698
void intel_init_pch_refclk(struct drm_device *dev)
6699
{
6700
	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6701
		ironlake_init_pch_refclk(dev);
6702
	else if (HAS_PCH_LPT(dev))
6703
		lpt_init_pch_refclk(dev);
6704
}
6705
 
2342 Serge 6706
static int ironlake_get_refclk(struct drm_crtc *crtc)
6707
{
6708
	struct drm_device *dev = crtc->dev;
6709
	struct drm_i915_private *dev_priv = dev->dev_private;
6710
	struct intel_encoder *encoder;
6711
	int num_connectors = 0;
6712
	bool is_lvds = false;
6713
 
3031 serge 6714
	for_each_encoder_on_crtc(dev, crtc, encoder) {
2342 Serge 6715
		switch (encoder->type) {
6716
		case INTEL_OUTPUT_LVDS:
6717
			is_lvds = true;
6718
			break;
6719
		}
6720
		num_connectors++;
6721
	}
6722
 
6723
	if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4560 Serge 6724
		DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
4104 Serge 6725
			      dev_priv->vbt.lvds_ssc_freq);
4560 Serge 6726
		return dev_priv->vbt.lvds_ssc_freq;
2342 Serge 6727
	}
6728
 
6729
	return 120000;
6730
}
6731
 
4104 Serge 6732
static void ironlake_set_pipeconf(struct drm_crtc *crtc)
3031 serge 6733
{
6734
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6735
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6736
	int pipe = intel_crtc->pipe;
6737
	uint32_t val;
6738
 
4104 Serge 6739
	val = 0;
3031 serge 6740
 
3746 Serge 6741
	switch (intel_crtc->config.pipe_bpp) {
3031 serge 6742
	case 18:
3480 Serge 6743
		val |= PIPECONF_6BPC;
3031 serge 6744
		break;
6745
	case 24:
3480 Serge 6746
		val |= PIPECONF_8BPC;
3031 serge 6747
		break;
6748
	case 30:
3480 Serge 6749
		val |= PIPECONF_10BPC;
3031 serge 6750
		break;
6751
	case 36:
3480 Serge 6752
		val |= PIPECONF_12BPC;
3031 serge 6753
		break;
6754
	default:
3243 Serge 6755
		/* Case prevented by intel_choose_pipe_bpp_dither. */
6756
		BUG();
3031 serge 6757
	}
6758
 
4104 Serge 6759
	if (intel_crtc->config.dither)
3031 serge 6760
		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6761
 
4104 Serge 6762
	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3031 serge 6763
		val |= PIPECONF_INTERLACED_ILK;
6764
	else
6765
		val |= PIPECONF_PROGRESSIVE;
6766
 
3746 Serge 6767
	if (intel_crtc->config.limited_color_range)
3480 Serge 6768
		val |= PIPECONF_COLOR_RANGE_SELECT;
6769
 
3031 serge 6770
	I915_WRITE(PIPECONF(pipe), val);
6771
	POSTING_READ(PIPECONF(pipe));
6772
}
6773
 
3480 Serge 6774
/*
6775
 * Set up the pipe CSC unit.
6776
 *
6777
 * Currently only full range RGB to limited range RGB conversion
6778
 * is supported, but eventually this should handle various
6779
 * RGB<->YCbCr scenarios as well.
6780
 */
3746 Serge 6781
static void intel_set_pipe_csc(struct drm_crtc *crtc)
3480 Serge 6782
{
6783
	struct drm_device *dev = crtc->dev;
6784
	struct drm_i915_private *dev_priv = dev->dev_private;
6785
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6786
	int pipe = intel_crtc->pipe;
6787
	uint16_t coeff = 0x7800; /* 1.0 */
6788
 
6789
	/*
6790
	 * TODO: Check what kind of values actually come out of the pipe
6791
	 * with these coeff/postoff values and adjust to get the best
6792
	 * accuracy. Perhaps we even need to take the bpc value into
6793
	 * consideration.
6794
	 */
6795
 
3746 Serge 6796
	if (intel_crtc->config.limited_color_range)
3480 Serge 6797
		coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6798
 
6799
	/*
6800
	 * GY/GU and RY/RU should be the other way around according
6801
	 * to BSpec, but reality doesn't agree. Just set them up in
6802
	 * a way that results in the correct picture.
6803
	 */
6804
	I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6805
	I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6806
 
6807
	I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6808
	I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6809
 
6810
	I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6811
	I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6812
 
6813
	I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6814
	I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6815
	I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6816
 
6817
	if (INTEL_INFO(dev)->gen > 6) {
6818
		uint16_t postoff = 0;
6819
 
3746 Serge 6820
		if (intel_crtc->config.limited_color_range)
4398 Serge 6821
			postoff = (16 * (1 << 12) / 255) & 0x1fff;
3480 Serge 6822
 
6823
		I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6824
		I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6825
		I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6826
 
6827
		I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6828
	} else {
6829
		uint32_t mode = CSC_MODE_YUV_TO_RGB;
6830
 
3746 Serge 6831
		if (intel_crtc->config.limited_color_range)
3480 Serge 6832
			mode |= CSC_BLACK_SCREEN_OFFSET;
6833
 
6834
		I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6835
	}
6836
}
6837
 
4104 Serge 6838
static void haswell_set_pipeconf(struct drm_crtc *crtc)
3243 Serge 6839
{
4560 Serge 6840
	struct drm_device *dev = crtc->dev;
6841
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 6842
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4560 Serge 6843
	enum pipe pipe = intel_crtc->pipe;
3746 Serge 6844
	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3243 Serge 6845
	uint32_t val;
6846
 
4104 Serge 6847
	val = 0;
3243 Serge 6848
 
4560 Serge 6849
	if (IS_HASWELL(dev) && intel_crtc->config.dither)
3243 Serge 6850
		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6851
 
4104 Serge 6852
	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3243 Serge 6853
		val |= PIPECONF_INTERLACED_ILK;
6854
	else
6855
		val |= PIPECONF_PROGRESSIVE;
6856
 
6857
	I915_WRITE(PIPECONF(cpu_transcoder), val);
6858
	POSTING_READ(PIPECONF(cpu_transcoder));
4104 Serge 6859
 
6860
	I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6861
	POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
4560 Serge 6862
 
6863
	if (IS_BROADWELL(dev)) {
6864
		val = 0;
6865
 
6866
		switch (intel_crtc->config.pipe_bpp) {
6867
		case 18:
6868
			val |= PIPEMISC_DITHER_6_BPC;
6869
			break;
6870
		case 24:
6871
			val |= PIPEMISC_DITHER_8_BPC;
6872
			break;
6873
		case 30:
6874
			val |= PIPEMISC_DITHER_10_BPC;
6875
			break;
6876
		case 36:
6877
			val |= PIPEMISC_DITHER_12_BPC;
6878
			break;
6879
		default:
6880
			/* Case prevented by pipe_config_set_bpp. */
6881
			BUG();
6882
		}
6883
 
6884
		if (intel_crtc->config.dither)
6885
			val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6886
 
6887
		I915_WRITE(PIPEMISC(pipe), val);
6888
	}
3243 Serge 6889
}
6890
 
3031 serge 6891
static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6892
				    intel_clock_t *clock,
6893
				    bool *has_reduced_clock,
6894
				    intel_clock_t *reduced_clock)
6895
{
6896
	struct drm_device *dev = crtc->dev;
6897
	struct drm_i915_private *dev_priv = dev->dev_private;
6898
	struct intel_encoder *intel_encoder;
6899
	int refclk;
6900
	const intel_limit_t *limit;
4104 Serge 6901
	bool ret, is_lvds = false;
3031 serge 6902
 
6903
	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6904
		switch (intel_encoder->type) {
6905
		case INTEL_OUTPUT_LVDS:
6906
			is_lvds = true;
6907
			break;
6908
		}
6909
	}
6910
 
6911
	refclk = ironlake_get_refclk(crtc);
6912
 
6913
	/*
6914
	 * Returns a set of divisors for the desired target clock with the given
6915
	 * refclk, or FALSE.  The returned values represent the clock equation:
6916
	 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6917
	 */
6918
	limit = intel_limit(crtc, refclk);
4104 Serge 6919
	ret = dev_priv->display.find_dpll(limit, crtc,
6920
					  to_intel_crtc(crtc)->config.port_clock,
6921
					  refclk, NULL, clock);
3031 serge 6922
	if (!ret)
6923
		return false;
6924
 
6925
	if (is_lvds && dev_priv->lvds_downclock_avail) {
6926
		/*
6927
		 * Ensure we match the reduced clock's P to the target clock.
6928
		 * If the clocks don't match, we can't switch the display clock
6929
		 * by using the FP0/FP1. In such case we will disable the LVDS
6930
		 * downclock feature.
6931
		*/
4104 Serge 6932
		*has_reduced_clock =
6933
			dev_priv->display.find_dpll(limit, crtc,
3031 serge 6934
						     dev_priv->lvds_downclock,
4104 Serge 6935
						    refclk, clock,
3031 serge 6936
						     reduced_clock);
6937
	}
6938
 
6939
	return true;
6940
}
6941
 
3243 Serge 6942
int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6943
{
6944
	/*
6945
	 * Account for spread spectrum to avoid
6946
	 * oversubscribing the link. Max center spread
6947
	 * is 2.5%; use 5% for safety's sake.
6948
	 */
6949
	u32 bps = target_clock * bpp * 21 / 20;
5060 serge 6950
	return DIV_ROUND_UP(bps, link_bw * 8);
3243 Serge 6951
}
6952
 
4104 Serge 6953
static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
2327 Serge 6954
{
4104 Serge 6955
	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
3746 Serge 6956
}
6957
 
3243 Serge 6958
static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
4104 Serge 6959
				      u32 *fp,
3746 Serge 6960
				      intel_clock_t *reduced_clock, u32 *fp2)
3243 Serge 6961
{
6962
	struct drm_crtc *crtc = &intel_crtc->base;
6963
	struct drm_device *dev = crtc->dev;
6964
	struct drm_i915_private *dev_priv = dev->dev_private;
6965
	struct intel_encoder *intel_encoder;
6966
	uint32_t dpll;
3746 Serge 6967
	int factor, num_connectors = 0;
4104 Serge 6968
	bool is_lvds = false, is_sdvo = false;
3243 Serge 6969
 
6970
	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6971
		switch (intel_encoder->type) {
6972
		case INTEL_OUTPUT_LVDS:
6973
			is_lvds = true;
6974
			break;
6975
		case INTEL_OUTPUT_SDVO:
6976
		case INTEL_OUTPUT_HDMI:
6977
			is_sdvo = true;
6978
			break;
6979
		}
6980
 
6981
		num_connectors++;
6982
	}
6983
 
2327 Serge 6984
    /* Enable autotuning of the PLL clock (if permissible) */
6985
    factor = 21;
6986
    if (is_lvds) {
6987
        if ((intel_panel_use_ssc(dev_priv) &&
4560 Serge 6988
		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
3746 Serge 6989
		    (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
2327 Serge 6990
            factor = 25;
4104 Serge 6991
	} else if (intel_crtc->config.sdvo_tv_clock)
2327 Serge 6992
        factor = 20;
6993
 
4104 Serge 6994
	if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
3746 Serge 6995
		*fp |= FP_CB_TUNE;
2327 Serge 6996
 
3746 Serge 6997
	if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6998
		*fp2 |= FP_CB_TUNE;
6999
 
2327 Serge 7000
    dpll = 0;
7001
 
7002
    if (is_lvds)
7003
        dpll |= DPLLB_MODE_LVDS;
7004
    else
7005
        dpll |= DPLLB_MODE_DAC_SERIAL;
4104 Serge 7006
 
3746 Serge 7007
			dpll |= (intel_crtc->config.pixel_multiplier - 1)
7008
				<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
2327 Serge 7009
 
4104 Serge 7010
	if (is_sdvo)
7011
		dpll |= DPLL_SDVO_HIGH_SPEED;
7012
	if (intel_crtc->config.has_dp_encoder)
7013
		dpll |= DPLL_SDVO_HIGH_SPEED;
7014
 
2327 Serge 7015
    /* compute bitmask from p1 value */
4104 Serge 7016
	dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2327 Serge 7017
    /* also FPA1 */
4104 Serge 7018
	dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2327 Serge 7019
 
4104 Serge 7020
	switch (intel_crtc->config.dpll.p2) {
2327 Serge 7021
    case 5:
7022
        dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7023
        break;
7024
    case 7:
7025
        dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7026
        break;
7027
    case 10:
7028
        dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7029
        break;
7030
    case 14:
7031
        dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7032
        break;
7033
    }
7034
 
4104 Serge 7035
	if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
2327 Serge 7036
        dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7037
    else
7038
        dpll |= PLL_REF_INPUT_DREFCLK;
7039
 
4104 Serge 7040
	return dpll | DPLL_VCO_ENABLE;
3243 Serge 7041
}
7042
 
7043
static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
7044
				  int x, int y,
7045
				  struct drm_framebuffer *fb)
7046
{
7047
	struct drm_device *dev = crtc->dev;
7048
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7049
	int num_connectors = 0;
7050
	intel_clock_t clock, reduced_clock;
4104 Serge 7051
	u32 dpll = 0, fp = 0, fp2 = 0;
3243 Serge 7052
	bool ok, has_reduced_clock = false;
3746 Serge 7053
	bool is_lvds = false;
3243 Serge 7054
	struct intel_encoder *encoder;
4104 Serge 7055
	struct intel_shared_dpll *pll;
3243 Serge 7056
 
7057
	for_each_encoder_on_crtc(dev, crtc, encoder) {
7058
		switch (encoder->type) {
7059
		case INTEL_OUTPUT_LVDS:
7060
			is_lvds = true;
7061
			break;
7062
		}
7063
 
7064
		num_connectors++;
7065
	}
7066
 
7067
	WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7068
	     "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7069
 
4104 Serge 7070
	ok = ironlake_compute_clocks(crtc, &clock,
3243 Serge 7071
				     &has_reduced_clock, &reduced_clock);
4104 Serge 7072
	if (!ok && !intel_crtc->config.clock_set) {
3243 Serge 7073
		DRM_ERROR("Couldn't find PLL settings for mode!\n");
7074
		return -EINVAL;
7075
	}
3746 Serge 7076
	/* Compat-code for transition, will disappear. */
7077
	if (!intel_crtc->config.clock_set) {
7078
		intel_crtc->config.dpll.n = clock.n;
7079
		intel_crtc->config.dpll.m1 = clock.m1;
7080
		intel_crtc->config.dpll.m2 = clock.m2;
7081
		intel_crtc->config.dpll.p1 = clock.p1;
7082
		intel_crtc->config.dpll.p2 = clock.p2;
7083
	}
3243 Serge 7084
 
4104 Serge 7085
	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7086
	if (intel_crtc->config.has_pch_encoder) {
7087
		fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
3243 Serge 7088
	if (has_reduced_clock)
4104 Serge 7089
			fp2 = i9xx_dpll_compute_fp(&reduced_clock);
3243 Serge 7090
 
4104 Serge 7091
		dpll = ironlake_compute_dpll(intel_crtc,
7092
					     &fp, &reduced_clock,
5060 serge 7093
					     has_reduced_clock ? &fp2 : NULL);
3243 Serge 7094
 
4104 Serge 7095
		intel_crtc->config.dpll_hw_state.dpll = dpll;
7096
		intel_crtc->config.dpll_hw_state.fp0 = fp;
7097
		if (has_reduced_clock)
7098
			intel_crtc->config.dpll_hw_state.fp1 = fp2;
7099
		else
7100
			intel_crtc->config.dpll_hw_state.fp1 = fp;
2327 Serge 7101
 
4104 Serge 7102
		pll = intel_get_shared_dpll(intel_crtc);
3031 serge 7103
		if (pll == NULL) {
4104 Serge 7104
			DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5060 serge 7105
					 pipe_name(intel_crtc->pipe));
2342 Serge 7106
			return -EINVAL;
2327 Serge 7107
        }
3031 serge 7108
	} else
4104 Serge 7109
		intel_put_shared_dpll(intel_crtc);
2327 Serge 7110
 
5060 serge 7111
	if (is_lvds && has_reduced_clock && i915.powersave)
4104 Serge 7112
		intel_crtc->lowfreq_avail = true;
7113
	else
7114
		intel_crtc->lowfreq_avail = false;
2327 Serge 7115
 
5060 serge 7116
	return 0;
4104 Serge 7117
}
3243 Serge 7118
 
4560 Serge 7119
static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7120
					 struct intel_link_m_n *m_n)
4104 Serge 7121
{
7122
	struct drm_device *dev = crtc->base.dev;
7123
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 7124
	enum pipe pipe = crtc->pipe;
4104 Serge 7125
 
4560 Serge 7126
	m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7127
	m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7128
	m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7129
		& ~TU_SIZE_MASK;
7130
	m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7131
	m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7132
		    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7133
}
7134
 
7135
static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7136
					 enum transcoder transcoder,
7137
					 struct intel_link_m_n *m_n)
7138
{
7139
	struct drm_device *dev = crtc->base.dev;
7140
	struct drm_i915_private *dev_priv = dev->dev_private;
7141
	enum pipe pipe = crtc->pipe;
7142
 
7143
	if (INTEL_INFO(dev)->gen >= 5) {
7144
		m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7145
		m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7146
		m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
4104 Serge 7147
					& ~TU_SIZE_MASK;
4560 Serge 7148
		m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7149
		m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
4104 Serge 7150
				   & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
4560 Serge 7151
	} else {
7152
		m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7153
		m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7154
		m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7155
			& ~TU_SIZE_MASK;
7156
		m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7157
		m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7158
			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7159
	}
3243 Serge 7160
}
7161
 
4560 Serge 7162
void intel_dp_get_m_n(struct intel_crtc *crtc,
7163
		      struct intel_crtc_config *pipe_config)
7164
{
7165
	if (crtc->config.has_pch_encoder)
7166
		intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7167
	else
7168
		intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7169
					     &pipe_config->dp_m_n);
7170
}
7171
 
7172
static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7173
					struct intel_crtc_config *pipe_config)
7174
{
7175
	intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7176
				     &pipe_config->fdi_m_n);
7177
}
7178
 
4104 Serge 7179
static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7180
				     struct intel_crtc_config *pipe_config)
7181
{
7182
	struct drm_device *dev = crtc->base.dev;
7183
	struct drm_i915_private *dev_priv = dev->dev_private;
7184
	uint32_t tmp;
7185
 
7186
	tmp = I915_READ(PF_CTL(crtc->pipe));
7187
 
7188
	if (tmp & PF_ENABLE) {
7189
		pipe_config->pch_pfit.enabled = true;
7190
		pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7191
		pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7192
 
7193
		/* We currently do not free assignements of panel fitters on
7194
		 * ivb/hsw (since we don't use the higher upscaling modes which
7195
		 * differentiates them) so just WARN about this case for now. */
7196
		if (IS_GEN7(dev)) {
7197
			WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7198
				PF_PIPE_SEL_IVB(crtc->pipe));
7199
		}
7200
	}
7201
}
7202
 
5060 serge 7203
static void ironlake_get_plane_config(struct intel_crtc *crtc,
7204
				      struct intel_plane_config *plane_config)
7205
{
7206
	struct drm_device *dev = crtc->base.dev;
7207
	struct drm_i915_private *dev_priv = dev->dev_private;
7208
	u32 val, base, offset;
7209
	int pipe = crtc->pipe, plane = crtc->plane;
7210
	int fourcc, pixel_format;
7211
	int aligned_height;
7212
 
7213
	crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7214
	if (!crtc->base.primary->fb) {
7215
		DRM_DEBUG_KMS("failed to alloc fb\n");
7216
		return;
7217
	}
7218
 
7219
	val = I915_READ(DSPCNTR(plane));
7220
 
7221
	if (INTEL_INFO(dev)->gen >= 4)
7222
		if (val & DISPPLANE_TILED)
7223
			plane_config->tiled = true;
7224
 
7225
	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7226
	fourcc = intel_format_to_fourcc(pixel_format);
7227
	crtc->base.primary->fb->pixel_format = fourcc;
7228
	crtc->base.primary->fb->bits_per_pixel =
7229
		drm_format_plane_cpp(fourcc, 0) * 8;
7230
 
7231
	base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7232
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7233
		offset = I915_READ(DSPOFFSET(plane));
7234
	} else {
7235
		if (plane_config->tiled)
7236
			offset = I915_READ(DSPTILEOFF(plane));
7237
		else
7238
			offset = I915_READ(DSPLINOFF(plane));
7239
	}
7240
	plane_config->base = base;
7241
 
7242
	val = I915_READ(PIPESRC(pipe));
7243
	crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7244
	crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7245
 
7246
	val = I915_READ(DSPSTRIDE(pipe));
7247
	crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
7248
 
7249
	aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7250
					    plane_config->tiled);
7251
 
7252
	plane_config->size = 16*1024*1024;
7253
 
7254
	DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7255
		      pipe, plane, crtc->base.primary->fb->width,
7256
		      crtc->base.primary->fb->height,
7257
		      crtc->base.primary->fb->bits_per_pixel, base,
7258
		      crtc->base.primary->fb->pitches[0],
7259
		      plane_config->size);
7260
}
7261
 
3746 Serge 7262
static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7263
				     struct intel_crtc_config *pipe_config)
7264
{
7265
	struct drm_device *dev = crtc->base.dev;
7266
	struct drm_i915_private *dev_priv = dev->dev_private;
7267
	uint32_t tmp;
7268
 
5060 serge 7269
	if (!intel_display_power_enabled(dev_priv,
7270
					 POWER_DOMAIN_PIPE(crtc->pipe)))
7271
		return false;
7272
 
4104 Serge 7273
	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7274
	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7275
 
3746 Serge 7276
	tmp = I915_READ(PIPECONF(crtc->pipe));
7277
	if (!(tmp & PIPECONF_ENABLE))
7278
		return false;
7279
 
4280 Serge 7280
	switch (tmp & PIPECONF_BPC_MASK) {
7281
	case PIPECONF_6BPC:
7282
		pipe_config->pipe_bpp = 18;
7283
		break;
7284
	case PIPECONF_8BPC:
7285
		pipe_config->pipe_bpp = 24;
7286
		break;
7287
	case PIPECONF_10BPC:
7288
		pipe_config->pipe_bpp = 30;
7289
		break;
7290
	case PIPECONF_12BPC:
7291
		pipe_config->pipe_bpp = 36;
7292
		break;
7293
	default:
7294
		break;
7295
	}
7296
 
5060 serge 7297
	if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7298
		pipe_config->limited_color_range = true;
7299
 
4104 Serge 7300
	if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7301
		struct intel_shared_dpll *pll;
7302
 
3746 Serge 7303
		pipe_config->has_pch_encoder = true;
7304
 
4104 Serge 7305
		tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7306
		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7307
					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
7308
 
7309
		ironlake_get_fdi_m_n_config(crtc, pipe_config);
7310
 
7311
		if (HAS_PCH_IBX(dev_priv->dev)) {
7312
			pipe_config->shared_dpll =
7313
				(enum intel_dpll_id) crtc->pipe;
7314
		} else {
7315
			tmp = I915_READ(PCH_DPLL_SEL);
7316
			if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7317
				pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7318
			else
7319
				pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7320
		}
7321
 
7322
		pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7323
 
7324
		WARN_ON(!pll->get_hw_state(dev_priv, pll,
7325
					   &pipe_config->dpll_hw_state));
7326
 
7327
		tmp = pipe_config->dpll_hw_state.dpll;
7328
		pipe_config->pixel_multiplier =
7329
			((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7330
			 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
4560 Serge 7331
 
7332
		ironlake_pch_clock_get(crtc, pipe_config);
4104 Serge 7333
	} else {
7334
		pipe_config->pixel_multiplier = 1;
7335
	}
7336
 
7337
	intel_get_pipe_timings(crtc, pipe_config);
7338
 
7339
	ironlake_get_pfit_config(crtc, pipe_config);
7340
 
3746 Serge 7341
	return true;
7342
}
7343
 
4104 Serge 7344
static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7345
{
7346
	struct drm_device *dev = dev_priv->dev;
7347
	struct intel_crtc *crtc;
7348
 
5060 serge 7349
	for_each_intel_crtc(dev, crtc)
4539 Serge 7350
		WARN(crtc->active, "CRTC for pipe %c enabled\n",
4104 Serge 7351
		     pipe_name(crtc->pipe));
7352
 
7353
	WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
5060 serge 7354
	WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7355
	WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7356
	WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
4104 Serge 7357
	WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7358
	WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7359
	     "CPU PWM1 enabled\n");
5060 serge 7360
	if (IS_HASWELL(dev))
4104 Serge 7361
	WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7362
	     "CPU PWM2 enabled\n");
7363
	WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7364
	     "PCH PWM1 enabled\n");
7365
	WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7366
	     "Utility pin enabled\n");
7367
	WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7368
 
5060 serge 7369
	/*
7370
	 * In theory we can still leave IRQs enabled, as long as only the HPD
7371
	 * interrupts remain enabled. We used to check for that, but since it's
7372
	 * gen-specific and since we only disable LCPLL after we fully disable
7373
	 * the interrupts, the check below should be enough.
7374
	 */
7375
	WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
4104 Serge 7376
}
7377
 
5060 serge 7378
static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7379
{
7380
	struct drm_device *dev = dev_priv->dev;
7381
 
7382
	if (IS_HASWELL(dev))
7383
		return I915_READ(D_COMP_HSW);
7384
	else
7385
		return I915_READ(D_COMP_BDW);
7386
}
7387
 
7388
static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7389
{
7390
	struct drm_device *dev = dev_priv->dev;
7391
 
7392
	if (IS_HASWELL(dev)) {
7393
		mutex_lock(&dev_priv->rps.hw_lock);
7394
		if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7395
					    val))
7396
			DRM_ERROR("Failed to write to D_COMP\n");
7397
		mutex_unlock(&dev_priv->rps.hw_lock);
7398
	} else {
7399
		I915_WRITE(D_COMP_BDW, val);
7400
		POSTING_READ(D_COMP_BDW);
7401
	}
7402
}
7403
 
4104 Serge 7404
/*
7405
 * This function implements pieces of two sequences from BSpec:
7406
 * - Sequence for display software to disable LCPLL
7407
 * - Sequence for display software to allow package C8+
7408
 * The steps implemented here are just the steps that actually touch the LCPLL
7409
 * register. Callers should take care of disabling all the display engine
7410
 * functions, doing the mode unset, fixing interrupts, etc.
7411
 */
4560 Serge 7412
static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
4104 Serge 7413
		       bool switch_to_fclk, bool allow_power_down)
7414
{
7415
	uint32_t val;
7416
 
7417
	assert_can_disable_lcpll(dev_priv);
7418
 
7419
	val = I915_READ(LCPLL_CTL);
7420
 
7421
	if (switch_to_fclk) {
7422
		val |= LCPLL_CD_SOURCE_FCLK;
7423
		I915_WRITE(LCPLL_CTL, val);
7424
 
7425
		if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7426
				       LCPLL_CD_SOURCE_FCLK_DONE, 1))
7427
			DRM_ERROR("Switching to FCLK failed\n");
7428
 
7429
		val = I915_READ(LCPLL_CTL);
7430
	}
7431
 
7432
	val |= LCPLL_PLL_DISABLE;
7433
	I915_WRITE(LCPLL_CTL, val);
7434
	POSTING_READ(LCPLL_CTL);
7435
 
7436
	if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7437
		DRM_ERROR("LCPLL still locked\n");
7438
 
5060 serge 7439
	val = hsw_read_dcomp(dev_priv);
4104 Serge 7440
	val |= D_COMP_COMP_DISABLE;
5060 serge 7441
	hsw_write_dcomp(dev_priv, val);
7442
	ndelay(100);
4104 Serge 7443
 
5060 serge 7444
	if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7445
		     1))
4104 Serge 7446
		DRM_ERROR("D_COMP RCOMP still in progress\n");
7447
 
7448
	if (allow_power_down) {
7449
		val = I915_READ(LCPLL_CTL);
7450
		val |= LCPLL_POWER_DOWN_ALLOW;
7451
		I915_WRITE(LCPLL_CTL, val);
7452
		POSTING_READ(LCPLL_CTL);
7453
	}
7454
}
7455
 
7456
/*
7457
 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7458
 * source.
7459
 */
4560 Serge 7460
static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
4104 Serge 7461
{
7462
	uint32_t val;
5060 serge 7463
	unsigned long irqflags;
4104 Serge 7464
 
7465
	val = I915_READ(LCPLL_CTL);
7466
 
7467
	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7468
		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7469
		return;
7470
 
5060 serge 7471
	/*
7472
	 * Make sure we're not on PC8 state before disabling PC8, otherwise
7473
	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7474
	 *
7475
	 * The other problem is that hsw_restore_lcpll() is called as part of
7476
	 * the runtime PM resume sequence, so we can't just call
7477
	 * gen6_gt_force_wake_get() because that function calls
7478
	 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7479
	 * while we are on the resume sequence. So to solve this problem we have
7480
	 * to call special forcewake code that doesn't touch runtime PM and
7481
	 * doesn't enable the forcewake delayed work.
7482
	 */
7483
	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7484
	if (dev_priv->uncore.forcewake_count++ == 0)
7485
		dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7486
	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4104 Serge 7487
 
7488
	if (val & LCPLL_POWER_DOWN_ALLOW) {
7489
		val &= ~LCPLL_POWER_DOWN_ALLOW;
7490
		I915_WRITE(LCPLL_CTL, val);
7491
		POSTING_READ(LCPLL_CTL);
7492
	}
7493
 
5060 serge 7494
	val = hsw_read_dcomp(dev_priv);
4104 Serge 7495
	val |= D_COMP_COMP_FORCE;
7496
	val &= ~D_COMP_COMP_DISABLE;
5060 serge 7497
	hsw_write_dcomp(dev_priv, val);
4104 Serge 7498
 
7499
	val = I915_READ(LCPLL_CTL);
7500
	val &= ~LCPLL_PLL_DISABLE;
7501
	I915_WRITE(LCPLL_CTL, val);
7502
 
7503
	if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7504
		DRM_ERROR("LCPLL not locked yet\n");
7505
 
7506
	if (val & LCPLL_CD_SOURCE_FCLK) {
7507
		val = I915_READ(LCPLL_CTL);
7508
		val &= ~LCPLL_CD_SOURCE_FCLK;
7509
		I915_WRITE(LCPLL_CTL, val);
7510
 
7511
		if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7512
					LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7513
			DRM_ERROR("Switching back to LCPLL failed\n");
7514
	}
7515
 
5060 serge 7516
	/* See the big comment above. */
7517
	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7518
	if (--dev_priv->uncore.forcewake_count == 0)
7519
		dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7520
	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4104 Serge 7521
}
7522
 
5060 serge 7523
/*
7524
 * Package states C8 and deeper are really deep PC states that can only be
7525
 * reached when all the devices on the system allow it, so even if the graphics
7526
 * device allows PC8+, it doesn't mean the system will actually get to these
7527
 * states. Our driver only allows PC8+ when going into runtime PM.
7528
 *
7529
 * The requirements for PC8+ are that all the outputs are disabled, the power
7530
 * well is disabled and most interrupts are disabled, and these are also
7531
 * requirements for runtime PM. When these conditions are met, we manually do
7532
 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7533
 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7534
 * hang the machine.
7535
 *
7536
 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7537
 * the state of some registers, so when we come back from PC8+ we need to
7538
 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7539
 * need to take care of the registers kept by RC6. Notice that this happens even
7540
 * if we don't put the device in PCI D3 state (which is what currently happens
7541
 * because of the runtime PM support).
7542
 *
7543
 * For more, read "Display Sequences for Package C8" on the hardware
7544
 * documentation.
7545
 */
7546
void hsw_enable_pc8(struct drm_i915_private *dev_priv)
4104 Serge 7547
{
7548
	struct drm_device *dev = dev_priv->dev;
7549
	uint32_t val;
7550
 
7551
	DRM_DEBUG_KMS("Enabling package C8+\n");
7552
 
7553
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7554
		val = I915_READ(SOUTH_DSPCLK_GATE_D);
7555
		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7556
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7557
	}
7558
 
7559
	lpt_disable_clkout_dp(dev);
7560
	hsw_disable_lcpll(dev_priv, true, true);
7561
}
7562
 
5060 serge 7563
void hsw_disable_pc8(struct drm_i915_private *dev_priv)
4104 Serge 7564
{
7565
	struct drm_device *dev = dev_priv->dev;
7566
	uint32_t val;
7567
 
7568
	DRM_DEBUG_KMS("Disabling package C8+\n");
7569
 
7570
	hsw_restore_lcpll(dev_priv);
7571
	lpt_init_pch_refclk(dev);
7572
 
7573
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7574
		val = I915_READ(SOUTH_DSPCLK_GATE_D);
7575
		val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7576
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7577
	}
7578
 
7579
	intel_prepare_ddi(dev);
7580
}
7581
 
5060 serge 7582
static void snb_modeset_global_resources(struct drm_device *dev)
4104 Serge 7583
{
5060 serge 7584
	modeset_update_crtc_power_domains(dev);
4104 Serge 7585
}
7586
 
5060 serge 7587
static void haswell_modeset_global_resources(struct drm_device *dev)
4104 Serge 7588
{
5060 serge 7589
	modeset_update_crtc_power_domains(dev);
4104 Serge 7590
}
7591
 
5060 serge 7592
static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7593
				 int x, int y,
7594
				 struct drm_framebuffer *fb)
4104 Serge 7595
{
5060 serge 7596
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4104 Serge 7597
 
5060 serge 7598
	if (!intel_ddi_pll_select(intel_crtc))
7599
		return -EINVAL;
4104 Serge 7600
 
5060 serge 7601
	intel_crtc->lowfreq_avail = false;
4104 Serge 7602
 
5060 serge 7603
	return 0;
4104 Serge 7604
}
7605
 
5060 serge 7606
static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7607
				       struct intel_crtc_config *pipe_config)
4104 Serge 7608
{
5060 serge 7609
	struct drm_device *dev = crtc->base.dev;
4104 Serge 7610
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 7611
	struct intel_shared_dpll *pll;
7612
	enum port port;
7613
	uint32_t tmp;
4104 Serge 7614
 
5060 serge 7615
	tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
4560 Serge 7616
 
5060 serge 7617
	port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
4104 Serge 7618
 
5060 serge 7619
	pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
4104 Serge 7620
 
5060 serge 7621
	switch (pipe_config->ddi_pll_sel) {
7622
	case PORT_CLK_SEL_WRPLL1:
7623
		pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7624
		break;
7625
	case PORT_CLK_SEL_WRPLL2:
7626
		pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7627
		break;
4104 Serge 7628
	}
7629
 
5060 serge 7630
	if (pipe_config->shared_dpll >= 0) {
7631
		pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
4560 Serge 7632
 
5060 serge 7633
		WARN_ON(!pll->get_hw_state(dev_priv, pll,
7634
					   &pipe_config->dpll_hw_state));
4104 Serge 7635
	}
7636
 
4560 Serge 7637
	/*
5060 serge 7638
	 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7639
	 * DDI E. So just check whether this pipe is wired to DDI E and whether
7640
	 * the PCH transcoder is on.
4560 Serge 7641
	 */
5060 serge 7642
	if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7643
		pipe_config->has_pch_encoder = true;
4560 Serge 7644
 
5060 serge 7645
		tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7646
		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7647
					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
3480 Serge 7648
 
5060 serge 7649
		ironlake_get_fdi_m_n_config(crtc, pipe_config);
3480 Serge 7650
	}
4560 Serge 7651
}
7652
 
3746 Serge 7653
static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7654
				    struct intel_crtc_config *pipe_config)
7655
{
7656
	struct drm_device *dev = crtc->base.dev;
7657
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 7658
	enum intel_display_power_domain pfit_domain;
3746 Serge 7659
	uint32_t tmp;
7660
 
5060 serge 7661
	if (!intel_display_power_enabled(dev_priv,
7662
					 POWER_DOMAIN_PIPE(crtc->pipe)))
7663
		return false;
7664
 
4104 Serge 7665
	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7666
	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7667
 
7668
	tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7669
	if (tmp & TRANS_DDI_FUNC_ENABLE) {
7670
		enum pipe trans_edp_pipe;
7671
		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7672
		default:
7673
			WARN(1, "unknown pipe linked to edp transcoder\n");
7674
		case TRANS_DDI_EDP_INPUT_A_ONOFF:
7675
		case TRANS_DDI_EDP_INPUT_A_ON:
7676
			trans_edp_pipe = PIPE_A;
7677
			break;
7678
		case TRANS_DDI_EDP_INPUT_B_ONOFF:
7679
			trans_edp_pipe = PIPE_B;
7680
			break;
7681
		case TRANS_DDI_EDP_INPUT_C_ONOFF:
7682
			trans_edp_pipe = PIPE_C;
7683
			break;
7684
		}
7685
 
7686
		if (trans_edp_pipe == crtc->pipe)
7687
			pipe_config->cpu_transcoder = TRANSCODER_EDP;
7688
	}
7689
 
5060 serge 7690
	if (!intel_display_power_enabled(dev_priv,
4104 Serge 7691
			POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7692
		return false;
7693
 
7694
	tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
3746 Serge 7695
	if (!(tmp & PIPECONF_ENABLE))
7696
		return false;
7697
 
5060 serge 7698
	haswell_get_ddi_port_state(crtc, pipe_config);
3746 Serge 7699
 
4104 Serge 7700
	intel_get_pipe_timings(crtc, pipe_config);
7701
 
7702
	pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
5060 serge 7703
	if (intel_display_power_enabled(dev_priv, pfit_domain))
4104 Serge 7704
		ironlake_get_pfit_config(crtc, pipe_config);
7705
 
4560 Serge 7706
	if (IS_HASWELL(dev))
4104 Serge 7707
	pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7708
				   (I915_READ(IPS_CTL) & IPS_ENABLE);
7709
 
7710
	pipe_config->pixel_multiplier = 1;
7711
 
3746 Serge 7712
	return true;
7713
}
7714
 
4560 Serge 7715
static struct {
7716
	int clock;
7717
	u32 config;
7718
} hdmi_audio_clock[] = {
7719
	{ DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7720
	{ 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7721
	{ 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7722
	{ 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7723
	{ 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7724
	{ 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7725
	{ DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7726
	{ 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7727
	{ DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7728
	{ 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7729
};
7730
 
7731
/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7732
static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7733
{
7734
	int i;
7735
 
7736
	for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7737
		if (mode->clock == hdmi_audio_clock[i].clock)
7738
			break;
7739
	}
7740
 
7741
	if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7742
		DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7743
		i = 1;
7744
	}
7745
 
7746
	DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7747
		      hdmi_audio_clock[i].clock,
7748
		      hdmi_audio_clock[i].config);
7749
 
7750
	return hdmi_audio_clock[i].config;
7751
}
7752
 
2342 Serge 7753
static bool intel_eld_uptodate(struct drm_connector *connector,
7754
			       int reg_eldv, uint32_t bits_eldv,
7755
			       int reg_elda, uint32_t bits_elda,
7756
			       int reg_edid)
7757
{
7758
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
7759
	uint8_t *eld = connector->eld;
7760
	uint32_t i;
7761
 
7762
	i = I915_READ(reg_eldv);
7763
	i &= bits_eldv;
7764
 
7765
	if (!eld[0])
7766
		return !i;
7767
 
7768
	if (!i)
7769
		return false;
7770
 
7771
	i = I915_READ(reg_elda);
7772
	i &= ~bits_elda;
7773
	I915_WRITE(reg_elda, i);
7774
 
7775
	for (i = 0; i < eld[2]; i++)
7776
		if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7777
			return false;
7778
 
7779
	return true;
7780
}
7781
 
7782
static void g4x_write_eld(struct drm_connector *connector,
4560 Serge 7783
			  struct drm_crtc *crtc,
7784
			  struct drm_display_mode *mode)
2342 Serge 7785
{
7786
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
7787
	uint8_t *eld = connector->eld;
7788
	uint32_t eldv;
7789
	uint32_t len;
7790
	uint32_t i;
7791
 
7792
	i = I915_READ(G4X_AUD_VID_DID);
7793
 
7794
	if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7795
		eldv = G4X_ELDV_DEVCL_DEVBLC;
7796
	else
7797
		eldv = G4X_ELDV_DEVCTG;
7798
 
7799
	if (intel_eld_uptodate(connector,
7800
			       G4X_AUD_CNTL_ST, eldv,
7801
			       G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7802
			       G4X_HDMIW_HDMIEDID))
7803
		return;
7804
 
7805
	i = I915_READ(G4X_AUD_CNTL_ST);
7806
	i &= ~(eldv | G4X_ELD_ADDR);
7807
	len = (i >> 9) & 0x1f;		/* ELD buffer size */
7808
	I915_WRITE(G4X_AUD_CNTL_ST, i);
7809
 
7810
	if (!eld[0])
7811
		return;
7812
 
7813
	len = min_t(uint8_t, eld[2], len);
7814
	DRM_DEBUG_DRIVER("ELD size %d\n", len);
7815
	for (i = 0; i < len; i++)
7816
		I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7817
 
7818
	i = I915_READ(G4X_AUD_CNTL_ST);
7819
	i |= eldv;
7820
	I915_WRITE(G4X_AUD_CNTL_ST, i);
7821
}
7822
 
3031 serge 7823
static void haswell_write_eld(struct drm_connector *connector,
4560 Serge 7824
			      struct drm_crtc *crtc,
7825
			      struct drm_display_mode *mode)
3031 serge 7826
{
7827
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
7828
	uint8_t *eld = connector->eld;
7829
	uint32_t eldv;
7830
	uint32_t i;
7831
	int len;
7832
	int pipe = to_intel_crtc(crtc)->pipe;
7833
	int tmp;
7834
 
7835
	int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7836
	int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7837
	int aud_config = HSW_AUD_CFG(pipe);
7838
	int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7839
 
7840
	/* Audio output enable */
7841
	DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7842
	tmp = I915_READ(aud_cntrl_st2);
7843
	tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7844
	I915_WRITE(aud_cntrl_st2, tmp);
5060 serge 7845
	POSTING_READ(aud_cntrl_st2);
3031 serge 7846
 
5060 serge 7847
	assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
3031 serge 7848
 
7849
	/* Set ELD valid state */
7850
	tmp = I915_READ(aud_cntrl_st2);
4104 Serge 7851
	DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
3031 serge 7852
	tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7853
	I915_WRITE(aud_cntrl_st2, tmp);
7854
	tmp = I915_READ(aud_cntrl_st2);
4104 Serge 7855
	DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
3031 serge 7856
 
7857
	/* Enable HDMI mode */
7858
	tmp = I915_READ(aud_config);
4104 Serge 7859
	DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
3031 serge 7860
	/* clear N_programing_enable and N_value_index */
7861
	tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7862
	I915_WRITE(aud_config, tmp);
7863
 
7864
	DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7865
 
7866
	eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7867
 
7868
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7869
		DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7870
		eld[5] |= (1 << 2);	/* Conn_Type, 0x1 = DisplayPort */
7871
		I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
4560 Serge 7872
	} else {
7873
		I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7874
	}
3031 serge 7875
 
7876
	if (intel_eld_uptodate(connector,
7877
			       aud_cntrl_st2, eldv,
7878
			       aud_cntl_st, IBX_ELD_ADDRESS,
7879
			       hdmiw_hdmiedid))
7880
		return;
7881
 
7882
	i = I915_READ(aud_cntrl_st2);
7883
	i &= ~eldv;
7884
	I915_WRITE(aud_cntrl_st2, i);
7885
 
7886
	if (!eld[0])
7887
		return;
7888
 
7889
	i = I915_READ(aud_cntl_st);
7890
	i &= ~IBX_ELD_ADDRESS;
7891
	I915_WRITE(aud_cntl_st, i);
7892
	i = (i >> 29) & DIP_PORT_SEL_MASK;		/* DIP_Port_Select, 0x1 = PortB */
7893
	DRM_DEBUG_DRIVER("port num:%d\n", i);
7894
 
7895
	len = min_t(uint8_t, eld[2], 21);	/* 84 bytes of hw ELD buffer */
7896
	DRM_DEBUG_DRIVER("ELD size %d\n", len);
7897
	for (i = 0; i < len; i++)
7898
		I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7899
 
7900
	i = I915_READ(aud_cntrl_st2);
7901
	i |= eldv;
7902
	I915_WRITE(aud_cntrl_st2, i);
7903
 
7904
}
7905
 
2342 Serge 7906
static void ironlake_write_eld(struct drm_connector *connector,
4560 Serge 7907
			       struct drm_crtc *crtc,
7908
			       struct drm_display_mode *mode)
2342 Serge 7909
{
7910
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
7911
	uint8_t *eld = connector->eld;
7912
	uint32_t eldv;
7913
	uint32_t i;
7914
	int len;
7915
	int hdmiw_hdmiedid;
3031 serge 7916
	int aud_config;
2342 Serge 7917
	int aud_cntl_st;
7918
	int aud_cntrl_st2;
3031 serge 7919
	int pipe = to_intel_crtc(crtc)->pipe;
2342 Serge 7920
 
7921
	if (HAS_PCH_IBX(connector->dev)) {
3031 serge 7922
		hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7923
		aud_config = IBX_AUD_CFG(pipe);
7924
		aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
2342 Serge 7925
		aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
4560 Serge 7926
	} else if (IS_VALLEYVIEW(connector->dev)) {
7927
		hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7928
		aud_config = VLV_AUD_CFG(pipe);
7929
		aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7930
		aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
2342 Serge 7931
	} else {
3031 serge 7932
		hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7933
		aud_config = CPT_AUD_CFG(pipe);
7934
		aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
2342 Serge 7935
		aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7936
	}
7937
 
3031 serge 7938
	DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
2342 Serge 7939
 
4560 Serge 7940
	if (IS_VALLEYVIEW(connector->dev))  {
7941
		struct intel_encoder *intel_encoder;
7942
		struct intel_digital_port *intel_dig_port;
7943
 
7944
		intel_encoder = intel_attached_encoder(connector);
7945
		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7946
		i = intel_dig_port->port;
7947
	} else {
2342 Serge 7948
	i = I915_READ(aud_cntl_st);
4560 Serge 7949
		i = (i >> 29) & DIP_PORT_SEL_MASK;
7950
		/* DIP_Port_Select, 0x1 = PortB */
7951
	}
7952
 
2342 Serge 7953
	if (!i) {
7954
		DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7955
		/* operate blindly on all ports */
7956
		eldv = IBX_ELD_VALIDB;
7957
		eldv |= IBX_ELD_VALIDB << 4;
7958
		eldv |= IBX_ELD_VALIDB << 8;
7959
	} else {
4104 Serge 7960
		DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
2342 Serge 7961
		eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7962
	}
7963
 
7964
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7965
		DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7966
		eld[5] |= (1 << 2);	/* Conn_Type, 0x1 = DisplayPort */
3031 serge 7967
		I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
4560 Serge 7968
	} else {
7969
		I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7970
	}
2342 Serge 7971
 
7972
	if (intel_eld_uptodate(connector,
7973
			       aud_cntrl_st2, eldv,
7974
			       aud_cntl_st, IBX_ELD_ADDRESS,
7975
			       hdmiw_hdmiedid))
7976
		return;
7977
 
7978
	i = I915_READ(aud_cntrl_st2);
7979
	i &= ~eldv;
7980
	I915_WRITE(aud_cntrl_st2, i);
7981
 
7982
	if (!eld[0])
7983
		return;
7984
 
7985
	i = I915_READ(aud_cntl_st);
7986
	i &= ~IBX_ELD_ADDRESS;
7987
	I915_WRITE(aud_cntl_st, i);
7988
 
7989
	len = min_t(uint8_t, eld[2], 21);	/* 84 bytes of hw ELD buffer */
7990
	DRM_DEBUG_DRIVER("ELD size %d\n", len);
7991
	for (i = 0; i < len; i++)
7992
		I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7993
 
7994
	i = I915_READ(aud_cntrl_st2);
7995
	i |= eldv;
7996
	I915_WRITE(aud_cntrl_st2, i);
7997
}
7998
 
7999
void intel_write_eld(struct drm_encoder *encoder,
8000
		     struct drm_display_mode *mode)
8001
{
8002
	struct drm_crtc *crtc = encoder->crtc;
8003
	struct drm_connector *connector;
8004
	struct drm_device *dev = encoder->dev;
8005
	struct drm_i915_private *dev_priv = dev->dev_private;
8006
 
8007
	connector = drm_select_eld(encoder, mode);
8008
	if (!connector)
8009
		return;
8010
 
8011
	DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8012
			 connector->base.id,
5060 serge 8013
			 connector->name,
2342 Serge 8014
			 connector->encoder->base.id,
5060 serge 8015
			 connector->encoder->name);
2342 Serge 8016
 
8017
	connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8018
 
8019
	if (dev_priv->display.write_eld)
4560 Serge 8020
		dev_priv->display.write_eld(connector, crtc, mode);
2342 Serge 8021
}
8022
 
3031 serge 8023
static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8024
{
8025
	struct drm_device *dev = crtc->dev;
8026
	struct drm_i915_private *dev_priv = dev->dev_private;
8027
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5060 serge 8028
	uint32_t cntl;
2327 Serge 8029
 
5060 serge 8030
	if (base != intel_crtc->cursor_base) {
3031 serge 8031
		/* On these chipsets we can only modify the base whilst
8032
		 * the cursor is disabled.
8033
		 */
5060 serge 8034
		if (intel_crtc->cursor_cntl) {
8035
			I915_WRITE(_CURACNTR, 0);
8036
			POSTING_READ(_CURACNTR);
8037
			intel_crtc->cursor_cntl = 0;
8038
		}
8039
 
3031 serge 8040
		I915_WRITE(_CURABASE, base);
5060 serge 8041
		POSTING_READ(_CURABASE);
8042
	}
2327 Serge 8043
 
3031 serge 8044
		/* XXX width must be 64, stride 256 => 0x00 << 28 */
5060 serge 8045
	cntl = 0;
8046
	if (base)
8047
		cntl = (CURSOR_ENABLE |
3031 serge 8048
			CURSOR_GAMMA_ENABLE |
5060 serge 8049
			CURSOR_FORMAT_ARGB);
8050
	if (intel_crtc->cursor_cntl != cntl) {
3031 serge 8051
	I915_WRITE(_CURACNTR, cntl);
5060 serge 8052
		POSTING_READ(_CURACNTR);
8053
		intel_crtc->cursor_cntl = cntl;
8054
	}
3031 serge 8055
}
2327 Serge 8056
 
3031 serge 8057
static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8058
{
8059
	struct drm_device *dev = crtc->dev;
8060
	struct drm_i915_private *dev_priv = dev->dev_private;
8061
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8062
	int pipe = intel_crtc->pipe;
5060 serge 8063
	uint32_t cntl;
2327 Serge 8064
 
5060 serge 8065
	cntl = 0;
3031 serge 8066
		if (base) {
5060 serge 8067
		cntl = MCURSOR_GAMMA_ENABLE;
8068
		switch (intel_crtc->cursor_width) {
8069
			case 64:
8070
				cntl |= CURSOR_MODE_64_ARGB_AX;
8071
				break;
8072
			case 128:
8073
				cntl |= CURSOR_MODE_128_ARGB_AX;
8074
				break;
8075
			case 256:
8076
				cntl |= CURSOR_MODE_256_ARGB_AX;
8077
				break;
8078
			default:
8079
				WARN_ON(1);
8080
				return;
8081
			}
3031 serge 8082
			cntl |= pipe << 28; /* Connect to correct pipe */
8083
		}
5060 serge 8084
	if (intel_crtc->cursor_cntl != cntl) {
3031 serge 8085
		I915_WRITE(CURCNTR(pipe), cntl);
5060 serge 8086
		POSTING_READ(CURCNTR(pipe));
8087
		intel_crtc->cursor_cntl = cntl;
8088
	}
2327 Serge 8089
 
3031 serge 8090
	/* and commit changes on next vblank */
8091
	I915_WRITE(CURBASE(pipe), base);
4371 Serge 8092
	POSTING_READ(CURBASE(pipe));
3031 serge 8093
}
2327 Serge 8094
 
3031 serge 8095
static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
8096
{
8097
	struct drm_device *dev = crtc->dev;
8098
	struct drm_i915_private *dev_priv = dev->dev_private;
8099
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8100
	int pipe = intel_crtc->pipe;
5060 serge 8101
	uint32_t cntl;
2327 Serge 8102
 
5060 serge 8103
	cntl = 0;
3031 serge 8104
		if (base) {
5060 serge 8105
		cntl = MCURSOR_GAMMA_ENABLE;
8106
		switch (intel_crtc->cursor_width) {
8107
			case 64:
8108
				cntl |= CURSOR_MODE_64_ARGB_AX;
8109
				break;
8110
			case 128:
8111
				cntl |= CURSOR_MODE_128_ARGB_AX;
8112
				break;
8113
			case 256:
8114
				cntl |= CURSOR_MODE_256_ARGB_AX;
8115
				break;
8116
			default:
8117
				WARN_ON(1);
8118
				return;
8119
			}
3031 serge 8120
		}
5060 serge 8121
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3480 Serge 8122
			cntl |= CURSOR_PIPE_CSC_ENABLE;
5060 serge 8123
 
8124
	if (intel_crtc->cursor_cntl != cntl) {
8125
		I915_WRITE(CURCNTR(pipe), cntl);
8126
		POSTING_READ(CURCNTR(pipe));
8127
		intel_crtc->cursor_cntl = cntl;
4104 Serge 8128
		}
2327 Serge 8129
 
3031 serge 8130
	/* and commit changes on next vblank */
5060 serge 8131
	I915_WRITE(CURBASE(pipe), base);
8132
	POSTING_READ(CURBASE(pipe));
3031 serge 8133
}
2327 Serge 8134
 
3031 serge 8135
/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5060 serge 8136
void intel_crtc_update_cursor(struct drm_crtc *crtc,
3031 serge 8137
				     bool on)
8138
{
8139
	struct drm_device *dev = crtc->dev;
8140
	struct drm_i915_private *dev_priv = dev->dev_private;
8141
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8142
	int pipe = intel_crtc->pipe;
5060 serge 8143
	int x = crtc->cursor_x;
8144
	int y = crtc->cursor_y;
4560 Serge 8145
	u32 base = 0, pos = 0;
2327 Serge 8146
 
4560 Serge 8147
	if (on)
8148
		base = intel_crtc->cursor_addr;
2327 Serge 8149
 
4560 Serge 8150
	if (x >= intel_crtc->config.pipe_src_w)
3031 serge 8151
			base = 0;
2327 Serge 8152
 
4560 Serge 8153
	if (y >= intel_crtc->config.pipe_src_h)
3031 serge 8154
		base = 0;
2327 Serge 8155
 
3031 serge 8156
	if (x < 0) {
4560 Serge 8157
		if (x + intel_crtc->cursor_width <= 0)
3031 serge 8158
			base = 0;
2327 Serge 8159
 
3031 serge 8160
		pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8161
		x = -x;
8162
	}
8163
	pos |= x << CURSOR_X_SHIFT;
2327 Serge 8164
 
3031 serge 8165
	if (y < 0) {
4560 Serge 8166
		if (y + intel_crtc->cursor_height <= 0)
3031 serge 8167
			base = 0;
2327 Serge 8168
 
3031 serge 8169
		pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8170
		y = -y;
8171
	}
8172
	pos |= y << CURSOR_Y_SHIFT;
2327 Serge 8173
 
5060 serge 8174
	if (base == 0 && intel_crtc->cursor_base == 0)
3031 serge 8175
		return;
2327 Serge 8176
 
5060 serge 8177
	I915_WRITE(CURPOS(pipe), pos);
8178
 
8179
	if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
3031 serge 8180
		ivb_update_cursor(crtc, base);
5060 serge 8181
	else if (IS_845G(dev) || IS_I865G(dev))
8182
		i845_update_cursor(crtc, base);
8183
	else
4560 Serge 8184
		i9xx_update_cursor(crtc, base);
5060 serge 8185
	intel_crtc->cursor_base = base;
3031 serge 8186
}
2327 Serge 8187
 
5060 serge 8188
/*
8189
 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8190
 *
8191
 * Note that the object's reference will be consumed if the update fails.  If
8192
 * the update succeeds, the reference of the old object (if any) will be
8193
 * consumed.
8194
 */
8195
static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8196
				     struct drm_i915_gem_object *obj,
3031 serge 8197
				 uint32_t width, uint32_t height)
8198
{
8199
	struct drm_device *dev = crtc->dev;
8200
	struct drm_i915_private *dev_priv = dev->dev_private;
8201
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5060 serge 8202
	enum pipe pipe = intel_crtc->pipe;
8203
	unsigned old_width;
3031 serge 8204
	uint32_t addr;
8205
	int ret;
2327 Serge 8206
 
3031 serge 8207
	/* if we want to turn off the cursor ignore width and height */
5060 serge 8208
	if (!obj) {
3031 serge 8209
		DRM_DEBUG_KMS("cursor off\n");
8210
		addr = 0;
8211
		obj = NULL;
8212
		mutex_lock(&dev->struct_mutex);
8213
		goto finish;
8214
	}
2327 Serge 8215
 
5060 serge 8216
	/* Check for which cursor types we support */
8217
	if (!((width == 64 && height == 64) ||
8218
			(width == 128 && height == 128 && !IS_GEN2(dev)) ||
8219
			(width == 256 && height == 256 && !IS_GEN2(dev)))) {
8220
		DRM_DEBUG("Cursor dimension not supported\n");
3031 serge 8221
		return -EINVAL;
8222
	}
2327 Serge 8223
 
3031 serge 8224
	if (obj->base.size < width * height * 4) {
5060 serge 8225
		DRM_DEBUG_KMS("buffer is too small\n");
3031 serge 8226
		ret = -ENOMEM;
8227
		goto fail;
8228
	}
2327 Serge 8229
 
3031 serge 8230
	/* we only need to pin inside GTT if cursor is non-phy */
8231
	mutex_lock(&dev->struct_mutex);
5060 serge 8232
	if (!INTEL_INFO(dev)->cursor_needs_physical) {
3746 Serge 8233
		unsigned alignment;
8234
 
3031 serge 8235
		if (obj->tiling_mode) {
5060 serge 8236
			DRM_DEBUG_KMS("cursor cannot be tiled\n");
3031 serge 8237
			ret = -EINVAL;
8238
			goto fail_locked;
8239
		}
2327 Serge 8240
 
3746 Serge 8241
		/* Note that the w/a also requires 2 PTE of padding following
8242
		 * the bo. We currently fill all unused PTE with the shadow
8243
		 * page and so we should always have valid PTE following the
8244
		 * cursor preventing the VT-d warning.
8245
		 */
8246
		alignment = 0;
8247
		if (need_vtd_wa(dev))
8248
			alignment = 64*1024;
8249
 
8250
		ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
3031 serge 8251
		if (ret) {
5060 serge 8252
			DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
3031 serge 8253
			goto fail_locked;
8254
		}
2327 Serge 8255
 
3031 serge 8256
		ret = i915_gem_object_put_fence(obj);
8257
		if (ret) {
5060 serge 8258
			DRM_DEBUG_KMS("failed to release fence for cursor");
3031 serge 8259
			goto fail_unpin;
8260
		}
2327 Serge 8261
 
4104 Serge 8262
		addr = i915_gem_obj_ggtt_offset(obj);
3031 serge 8263
	} else {
8264
		int align = IS_I830(dev) ? 16 * 1024 : 256;
5060 serge 8265
//		ret = i915_gem_object_attach_phys(obj, align);
8266
//		if (ret) {
8267
//			DRM_DEBUG_KMS("failed to attach phys object\n");
8268
//			goto fail_locked;
8269
//		}
8270
//		addr = obj->phys_handle->busaddr;
3031 serge 8271
	}
2327 Serge 8272
 
3031 serge 8273
	if (IS_GEN2(dev))
8274
		I915_WRITE(CURSIZE, (height << 12) | width);
2327 Serge 8275
 
3031 serge 8276
 finish:
8277
	if (intel_crtc->cursor_bo) {
5060 serge 8278
		if (!INTEL_INFO(dev)->cursor_needs_physical)
4104 Serge 8279
			i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3031 serge 8280
	}
2327 Serge 8281
 
5060 serge 8282
	i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8283
			  INTEL_FRONTBUFFER_CURSOR(pipe));
3031 serge 8284
	mutex_unlock(&dev->struct_mutex);
2327 Serge 8285
 
5060 serge 8286
	old_width = intel_crtc->cursor_width;
8287
 
3031 serge 8288
	intel_crtc->cursor_addr = addr;
8289
	intel_crtc->cursor_bo = obj;
8290
	intel_crtc->cursor_width = width;
8291
	intel_crtc->cursor_height = height;
2327 Serge 8292
 
5060 serge 8293
	if (intel_crtc->active) {
8294
		if (old_width != width)
8295
			intel_update_watermarks(crtc);
4104 Serge 8296
		intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
5060 serge 8297
	}
2327 Serge 8298
 
3031 serge 8299
	return 0;
8300
fail_unpin:
4104 Serge 8301
	i915_gem_object_unpin_from_display_plane(obj);
3031 serge 8302
fail_locked:
8303
	mutex_unlock(&dev->struct_mutex);
8304
fail:
8305
	drm_gem_object_unreference_unlocked(&obj->base);
8306
	return ret;
8307
}
2327 Serge 8308
 
2330 Serge 8309
static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8310
				 u16 *blue, uint32_t start, uint32_t size)
8311
{
8312
	int end = (start + size > 256) ? 256 : start + size, i;
8313
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 Serge 8314
 
2330 Serge 8315
	for (i = start; i < end; i++) {
8316
		intel_crtc->lut_r[i] = red[i] >> 8;
8317
		intel_crtc->lut_g[i] = green[i] >> 8;
8318
		intel_crtc->lut_b[i] = blue[i] >> 8;
8319
	}
2327 Serge 8320
 
2330 Serge 8321
	intel_crtc_load_lut(crtc);
8322
}
2327 Serge 8323
 
2330 Serge 8324
/* VESA 640x480x72Hz mode to set on the pipe */
8325
static struct drm_display_mode load_detect_mode = {
8326
	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8327
		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8328
};
2327 Serge 8329
 
4560 Serge 8330
struct drm_framebuffer *
5060 serge 8331
__intel_framebuffer_create(struct drm_device *dev,
3031 serge 8332
			 struct drm_mode_fb_cmd2 *mode_cmd,
8333
			 struct drm_i915_gem_object *obj)
8334
{
8335
	struct intel_framebuffer *intel_fb;
8336
	int ret;
2327 Serge 8337
 
3031 serge 8338
	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8339
	if (!intel_fb) {
8340
		drm_gem_object_unreference_unlocked(&obj->base);
8341
		return ERR_PTR(-ENOMEM);
8342
	}
2327 Serge 8343
 
3031 serge 8344
	ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
4560 Serge 8345
	if (ret)
8346
		goto err;
8347
 
8348
	return &intel_fb->base;
8349
err:
3031 serge 8350
		drm_gem_object_unreference_unlocked(&obj->base);
8351
		kfree(intel_fb);
4560 Serge 8352
 
3031 serge 8353
		return ERR_PTR(ret);
8354
}
2327 Serge 8355
 
5060 serge 8356
static struct drm_framebuffer *
8357
intel_framebuffer_create(struct drm_device *dev,
8358
			 struct drm_mode_fb_cmd2 *mode_cmd,
8359
			 struct drm_i915_gem_object *obj)
8360
{
8361
	struct drm_framebuffer *fb;
8362
	int ret;
8363
 
8364
	ret = i915_mutex_lock_interruptible(dev);
8365
	if (ret)
8366
		return ERR_PTR(ret);
8367
	fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8368
	mutex_unlock(&dev->struct_mutex);
8369
 
8370
	return fb;
8371
}
8372
 
2330 Serge 8373
static u32
8374
intel_framebuffer_pitch_for_width(int width, int bpp)
8375
{
8376
	u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8377
	return ALIGN(pitch, 64);
8378
}
2327 Serge 8379
 
2330 Serge 8380
static u32
8381
intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8382
{
8383
	u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5060 serge 8384
	return PAGE_ALIGN(pitch * mode->vdisplay);
2330 Serge 8385
}
2327 Serge 8386
 
2330 Serge 8387
static struct drm_framebuffer *
8388
intel_framebuffer_create_for_mode(struct drm_device *dev,
8389
				  struct drm_display_mode *mode,
8390
				  int depth, int bpp)
8391
{
8392
	struct drm_i915_gem_object *obj;
3243 Serge 8393
	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2327 Serge 8394
 
5060 serge 8395
	obj = i915_gem_alloc_object(dev,
8396
				    intel_framebuffer_size_for_mode(mode, bpp));
8397
	if (obj == NULL)
8398
		return ERR_PTR(-ENOMEM);
8399
 
8400
	mode_cmd.width = mode->hdisplay;
8401
	mode_cmd.height = mode->vdisplay;
8402
	mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8403
								bpp);
8404
	mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8405
 
8406
	return intel_framebuffer_create(dev, &mode_cmd, obj);
2330 Serge 8407
}
2327 Serge 8408
 
2330 Serge 8409
static struct drm_framebuffer *
8410
mode_fits_in_fbdev(struct drm_device *dev,
8411
		   struct drm_display_mode *mode)
8412
{
4560 Serge 8413
#ifdef CONFIG_DRM_I915_FBDEV
2330 Serge 8414
	struct drm_i915_private *dev_priv = dev->dev_private;
8415
	struct drm_i915_gem_object *obj;
8416
	struct drm_framebuffer *fb;
2327 Serge 8417
 
5060 serge 8418
	if (!dev_priv->fbdev)
4280 Serge 8419
		return NULL;
2327 Serge 8420
 
5060 serge 8421
	if (!dev_priv->fbdev->fb)
2330 Serge 8422
		return NULL;
2327 Serge 8423
 
5060 serge 8424
	obj = dev_priv->fbdev->fb->obj;
8425
	BUG_ON(!obj);
8426
 
8427
	fb = &dev_priv->fbdev->fb->base;
3031 serge 8428
	if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8429
							       fb->bits_per_pixel))
4280 Serge 8430
		return NULL;
2327 Serge 8431
 
3031 serge 8432
	if (obj->base.size < mode->vdisplay * fb->pitches[0])
8433
		return NULL;
8434
 
4280 Serge 8435
	return fb;
4560 Serge 8436
#else
8437
	return NULL;
8438
#endif
2330 Serge 8439
}
2327 Serge 8440
 
3031 serge 8441
bool intel_get_load_detect_pipe(struct drm_connector *connector,
2330 Serge 8442
				struct drm_display_mode *mode,
5060 serge 8443
				struct intel_load_detect_pipe *old,
8444
				struct drm_modeset_acquire_ctx *ctx)
2330 Serge 8445
{
8446
	struct intel_crtc *intel_crtc;
3031 serge 8447
	struct intel_encoder *intel_encoder =
8448
		intel_attached_encoder(connector);
2330 Serge 8449
	struct drm_crtc *possible_crtc;
8450
	struct drm_encoder *encoder = &intel_encoder->base;
8451
	struct drm_crtc *crtc = NULL;
8452
	struct drm_device *dev = encoder->dev;
3031 serge 8453
	struct drm_framebuffer *fb;
5060 serge 8454
	struct drm_mode_config *config = &dev->mode_config;
8455
	int ret, i = -1;
2327 Serge 8456
 
2330 Serge 8457
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5060 serge 8458
		      connector->base.id, connector->name,
8459
		      encoder->base.id, encoder->name);
2327 Serge 8460
 
5060 serge 8461
retry:
8462
	ret = drm_modeset_lock(&config->connection_mutex, ctx);
8463
	if (ret)
8464
		goto fail_unlock;
8465
 
2330 Serge 8466
	/*
8467
	 * Algorithm gets a little messy:
8468
	 *
8469
	 *   - if the connector already has an assigned crtc, use it (but make
8470
	 *     sure it's on first)
8471
	 *
8472
	 *   - try to find the first unused crtc that can drive this connector,
8473
	 *     and use that if we find one
8474
	 */
2327 Serge 8475
 
2330 Serge 8476
	/* See if we already have a CRTC for this connector */
8477
	if (encoder->crtc) {
8478
		crtc = encoder->crtc;
2327 Serge 8479
 
5060 serge 8480
		ret = drm_modeset_lock(&crtc->mutex, ctx);
8481
		if (ret)
8482
			goto fail_unlock;
3480 Serge 8483
 
3031 serge 8484
		old->dpms_mode = connector->dpms;
2330 Serge 8485
		old->load_detect_temp = false;
2327 Serge 8486
 
2330 Serge 8487
		/* Make sure the crtc and connector are running */
3031 serge 8488
		if (connector->dpms != DRM_MODE_DPMS_ON)
8489
			connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
2327 Serge 8490
 
2330 Serge 8491
		return true;
8492
	}
2327 Serge 8493
 
2330 Serge 8494
	/* Find an unused one (if possible) */
5060 serge 8495
	for_each_crtc(dev, possible_crtc) {
2330 Serge 8496
		i++;
8497
		if (!(encoder->possible_crtcs & (1 << i)))
8498
			continue;
5060 serge 8499
		if (possible_crtc->enabled)
8500
			continue;
8501
		/* This can occur when applying the pipe A quirk on resume. */
8502
		if (to_intel_crtc(possible_crtc)->new_enabled)
8503
			continue;
8504
 
2330 Serge 8505
			crtc = possible_crtc;
8506
			break;
8507
		}
2327 Serge 8508
 
2330 Serge 8509
	/*
8510
	 * If we didn't find an unused CRTC, don't use any.
8511
	 */
8512
	if (!crtc) {
8513
		DRM_DEBUG_KMS("no pipe available for load-detect\n");
5060 serge 8514
		goto fail_unlock;
2330 Serge 8515
	}
2327 Serge 8516
 
5060 serge 8517
	ret = drm_modeset_lock(&crtc->mutex, ctx);
8518
	if (ret)
8519
		goto fail_unlock;
3031 serge 8520
	intel_encoder->new_crtc = to_intel_crtc(crtc);
8521
	to_intel_connector(connector)->new_encoder = intel_encoder;
2327 Serge 8522
 
2330 Serge 8523
	intel_crtc = to_intel_crtc(crtc);
5060 serge 8524
	intel_crtc->new_enabled = true;
8525
	intel_crtc->new_config = &intel_crtc->config;
3031 serge 8526
	old->dpms_mode = connector->dpms;
2330 Serge 8527
	old->load_detect_temp = true;
8528
	old->release_fb = NULL;
2327 Serge 8529
 
2330 Serge 8530
	if (!mode)
8531
		mode = &load_detect_mode;
2327 Serge 8532
 
2330 Serge 8533
	/* We need a framebuffer large enough to accommodate all accesses
8534
	 * that the plane may generate whilst we perform load detection.
8535
	 * We can not rely on the fbcon either being present (we get called
8536
	 * during its initialisation to detect all boot displays, or it may
8537
	 * not even exist) or that it is large enough to satisfy the
8538
	 * requested mode.
8539
	 */
3031 serge 8540
	fb = mode_fits_in_fbdev(dev, mode);
8541
	if (fb == NULL) {
2330 Serge 8542
		DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
3031 serge 8543
		fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8544
		old->release_fb = fb;
2330 Serge 8545
	} else
8546
		DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
3031 serge 8547
	if (IS_ERR(fb)) {
2330 Serge 8548
		DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5060 serge 8549
		goto fail;
2330 Serge 8550
	}
2327 Serge 8551
 
3480 Serge 8552
	if (intel_set_mode(crtc, mode, 0, 0, fb)) {
2330 Serge 8553
		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8554
		if (old->release_fb)
8555
			old->release_fb->funcs->destroy(old->release_fb);
5060 serge 8556
		goto fail;
2330 Serge 8557
	}
2327 Serge 8558
 
2330 Serge 8559
	/* let the connector get through one full cycle before testing */
8560
	intel_wait_for_vblank(dev, intel_crtc->pipe);
8561
	return true;
5060 serge 8562
 
8563
 fail:
8564
	intel_crtc->new_enabled = crtc->enabled;
8565
	if (intel_crtc->new_enabled)
8566
		intel_crtc->new_config = &intel_crtc->config;
8567
	else
8568
		intel_crtc->new_config = NULL;
8569
fail_unlock:
8570
	if (ret == -EDEADLK) {
8571
		drm_modeset_backoff(ctx);
8572
		goto retry;
8573
	}
8574
 
8575
	return false;
2330 Serge 8576
}
2327 Serge 8577
 
3031 serge 8578
void intel_release_load_detect_pipe(struct drm_connector *connector,
2330 Serge 8579
				    struct intel_load_detect_pipe *old)
8580
{
3031 serge 8581
	struct intel_encoder *intel_encoder =
8582
		intel_attached_encoder(connector);
2330 Serge 8583
	struct drm_encoder *encoder = &intel_encoder->base;
3480 Serge 8584
	struct drm_crtc *crtc = encoder->crtc;
5060 serge 8585
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 Serge 8586
 
2330 Serge 8587
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5060 serge 8588
		      connector->base.id, connector->name,
8589
		      encoder->base.id, encoder->name);
2327 Serge 8590
 
2330 Serge 8591
	if (old->load_detect_temp) {
3031 serge 8592
		to_intel_connector(connector)->new_encoder = NULL;
8593
		intel_encoder->new_crtc = NULL;
5060 serge 8594
		intel_crtc->new_enabled = false;
8595
		intel_crtc->new_config = NULL;
3031 serge 8596
		intel_set_mode(crtc, NULL, 0, 0, NULL);
8597
 
3480 Serge 8598
		if (old->release_fb) {
8599
			drm_framebuffer_unregister_private(old->release_fb);
8600
			drm_framebuffer_unreference(old->release_fb);
8601
		}
2327 Serge 8602
 
2330 Serge 8603
		return;
8604
	}
2327 Serge 8605
 
2330 Serge 8606
	/* Switch crtc and encoder back off if necessary */
3031 serge 8607
	if (old->dpms_mode != DRM_MODE_DPMS_ON)
8608
		connector->funcs->dpms(connector, old->dpms_mode);
2330 Serge 8609
}
2327 Serge 8610
 
4560 Serge 8611
static int i9xx_pll_refclk(struct drm_device *dev,
8612
			   const struct intel_crtc_config *pipe_config)
8613
{
8614
	struct drm_i915_private *dev_priv = dev->dev_private;
8615
	u32 dpll = pipe_config->dpll_hw_state.dpll;
8616
 
8617
	if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8618
		return dev_priv->vbt.lvds_ssc_freq;
8619
	else if (HAS_PCH_SPLIT(dev))
8620
		return 120000;
8621
	else if (!IS_GEN2(dev))
8622
		return 96000;
8623
	else
8624
		return 48000;
8625
}
8626
 
2330 Serge 8627
/* Returns the clock of the currently programmed mode of the given pipe. */
4104 Serge 8628
static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8629
				struct intel_crtc_config *pipe_config)
2330 Serge 8630
{
4104 Serge 8631
	struct drm_device *dev = crtc->base.dev;
2330 Serge 8632
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 8633
	int pipe = pipe_config->cpu_transcoder;
4560 Serge 8634
	u32 dpll = pipe_config->dpll_hw_state.dpll;
2330 Serge 8635
	u32 fp;
8636
	intel_clock_t clock;
4560 Serge 8637
	int refclk = i9xx_pll_refclk(dev, pipe_config);
2327 Serge 8638
 
2330 Serge 8639
	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4560 Serge 8640
		fp = pipe_config->dpll_hw_state.fp0;
2330 Serge 8641
	else
4560 Serge 8642
		fp = pipe_config->dpll_hw_state.fp1;
2327 Serge 8643
 
2330 Serge 8644
	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8645
	if (IS_PINEVIEW(dev)) {
8646
		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8647
		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8648
	} else {
8649
		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8650
		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8651
	}
2327 Serge 8652
 
2330 Serge 8653
	if (!IS_GEN2(dev)) {
8654
		if (IS_PINEVIEW(dev))
8655
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8656
				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8657
		else
8658
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8659
			       DPLL_FPA01_P1_POST_DIV_SHIFT);
2327 Serge 8660
 
2330 Serge 8661
		switch (dpll & DPLL_MODE_MASK) {
8662
		case DPLLB_MODE_DAC_SERIAL:
8663
			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8664
				5 : 10;
8665
			break;
8666
		case DPLLB_MODE_LVDS:
8667
			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8668
				7 : 14;
8669
			break;
8670
		default:
8671
			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8672
				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
4104 Serge 8673
			return;
2330 Serge 8674
		}
2327 Serge 8675
 
4104 Serge 8676
		if (IS_PINEVIEW(dev))
4560 Serge 8677
			pineview_clock(refclk, &clock);
4104 Serge 8678
		else
4560 Serge 8679
			i9xx_clock(refclk, &clock);
2330 Serge 8680
	} else {
4560 Serge 8681
		u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8682
		bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
2327 Serge 8683
 
2330 Serge 8684
		if (is_lvds) {
8685
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8686
				       DPLL_FPA01_P1_POST_DIV_SHIFT);
4560 Serge 8687
 
8688
			if (lvds & LVDS_CLKB_POWER_UP)
8689
				clock.p2 = 7;
8690
			else
2330 Serge 8691
			clock.p2 = 14;
8692
		} else {
8693
			if (dpll & PLL_P1_DIVIDE_BY_TWO)
8694
				clock.p1 = 2;
8695
			else {
8696
				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8697
					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8698
			}
8699
			if (dpll & PLL_P2_DIVIDE_BY_4)
8700
				clock.p2 = 4;
8701
			else
8702
				clock.p2 = 2;
4560 Serge 8703
		}
2327 Serge 8704
 
4560 Serge 8705
		i9xx_clock(refclk, &clock);
2330 Serge 8706
	}
2327 Serge 8707
 
4560 Serge 8708
	/*
8709
	 * This value includes pixel_multiplier. We will use
8710
	 * port_clock to compute adjusted_mode.crtc_clock in the
8711
	 * encoder's get_config() function.
8712
	 */
8713
	pipe_config->port_clock = clock.dot;
4104 Serge 8714
}
8715
 
4560 Serge 8716
int intel_dotclock_calculate(int link_freq,
8717
			     const struct intel_link_m_n *m_n)
4104 Serge 8718
{
8719
	/*
8720
	 * The calculation for the data clock is:
4560 Serge 8721
	 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
4104 Serge 8722
	 * But we want to avoid losing precison if possible, so:
4560 Serge 8723
	 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
4104 Serge 8724
	 *
8725
	 * and the link clock is simpler:
4560 Serge 8726
	 * link_clock = (m * link_clock) / n
2330 Serge 8727
	 */
2327 Serge 8728
 
4560 Serge 8729
	if (!m_n->link_n)
8730
		return 0;
4104 Serge 8731
 
4560 Serge 8732
	return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8733
}
4104 Serge 8734
 
4560 Serge 8735
static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8736
				   struct intel_crtc_config *pipe_config)
8737
{
8738
	struct drm_device *dev = crtc->base.dev;
4104 Serge 8739
 
4560 Serge 8740
	/* read out port_clock from the DPLL */
8741
	i9xx_crtc_clock_get(crtc, pipe_config);
4104 Serge 8742
 
4560 Serge 8743
	/*
8744
	 * This value does not include pixel_multiplier.
8745
	 * We will check that port_clock and adjusted_mode.crtc_clock
8746
	 * agree once we know their relationship in the encoder's
8747
	 * get_config() function.
8748
	 */
8749
	pipe_config->adjusted_mode.crtc_clock =
8750
		intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8751
					 &pipe_config->fdi_m_n);
2330 Serge 8752
}
2327 Serge 8753
 
2330 Serge 8754
/** Returns the currently programmed mode of the given pipe. */
8755
struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8756
					     struct drm_crtc *crtc)
8757
{
8758
	struct drm_i915_private *dev_priv = dev->dev_private;
8759
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3746 Serge 8760
	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
2330 Serge 8761
	struct drm_display_mode *mode;
4104 Serge 8762
	struct intel_crtc_config pipe_config;
3243 Serge 8763
	int htot = I915_READ(HTOTAL(cpu_transcoder));
8764
	int hsync = I915_READ(HSYNC(cpu_transcoder));
8765
	int vtot = I915_READ(VTOTAL(cpu_transcoder));
8766
	int vsync = I915_READ(VSYNC(cpu_transcoder));
4560 Serge 8767
	enum pipe pipe = intel_crtc->pipe;
2327 Serge 8768
 
2330 Serge 8769
	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8770
	if (!mode)
8771
		return NULL;
8772
 
4104 Serge 8773
	/*
8774
	 * Construct a pipe_config sufficient for getting the clock info
8775
	 * back out of crtc_clock_get.
8776
	 *
8777
	 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8778
	 * to use a real value here instead.
8779
	 */
4560 Serge 8780
	pipe_config.cpu_transcoder = (enum transcoder) pipe;
4104 Serge 8781
	pipe_config.pixel_multiplier = 1;
4560 Serge 8782
	pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8783
	pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8784
	pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
4104 Serge 8785
	i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8786
 
4560 Serge 8787
	mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
2330 Serge 8788
	mode->hdisplay = (htot & 0xffff) + 1;
8789
	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8790
	mode->hsync_start = (hsync & 0xffff) + 1;
8791
	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8792
	mode->vdisplay = (vtot & 0xffff) + 1;
8793
	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8794
	mode->vsync_start = (vsync & 0xffff) + 1;
8795
	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8796
 
8797
	drm_mode_set_name(mode);
8798
 
8799
	return mode;
8800
}
8801
 
5060 serge 8802
static void intel_increase_pllclock(struct drm_device *dev,
8803
				    enum pipe pipe)
2327 Serge 8804
{
5060 serge 8805
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 8806
	int dpll_reg = DPLL(pipe);
8807
	int dpll;
8808
 
5060 serge 8809
	if (!HAS_GMCH_DISPLAY(dev))
2327 Serge 8810
		return;
8811
 
8812
	if (!dev_priv->lvds_downclock_avail)
8813
		return;
8814
 
8815
	dpll = I915_READ(dpll_reg);
8816
	if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8817
		DRM_DEBUG_DRIVER("upclocking LVDS\n");
8818
 
3031 serge 8819
		assert_panel_unlocked(dev_priv, pipe);
2327 Serge 8820
 
8821
		dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8822
		I915_WRITE(dpll_reg, dpll);
8823
		intel_wait_for_vblank(dev, pipe);
8824
 
8825
		dpll = I915_READ(dpll_reg);
8826
		if (dpll & DISPLAY_RATE_SELECT_FPA1)
8827
			DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8828
	}
8829
}
8830
 
3031 serge 8831
static void intel_decrease_pllclock(struct drm_crtc *crtc)
8832
{
8833
	struct drm_device *dev = crtc->dev;
5060 serge 8834
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 8835
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 Serge 8836
 
5060 serge 8837
	if (!HAS_GMCH_DISPLAY(dev))
3031 serge 8838
		return;
2327 Serge 8839
 
3031 serge 8840
	if (!dev_priv->lvds_downclock_avail)
8841
		return;
2327 Serge 8842
 
3031 serge 8843
	/*
8844
	 * Since this is called by a timer, we should never get here in
8845
	 * the manual case.
8846
	 */
8847
	if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8848
		int pipe = intel_crtc->pipe;
8849
		int dpll_reg = DPLL(pipe);
8850
		int dpll;
2327 Serge 8851
 
3031 serge 8852
		DRM_DEBUG_DRIVER("downclocking LVDS\n");
2327 Serge 8853
 
3031 serge 8854
		assert_panel_unlocked(dev_priv, pipe);
2327 Serge 8855
 
3031 serge 8856
		dpll = I915_READ(dpll_reg);
8857
		dpll |= DISPLAY_RATE_SELECT_FPA1;
8858
		I915_WRITE(dpll_reg, dpll);
8859
		intel_wait_for_vblank(dev, pipe);
8860
		dpll = I915_READ(dpll_reg);
8861
		if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8862
			DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8863
	}
2327 Serge 8864
 
3031 serge 8865
}
2327 Serge 8866
 
3031 serge 8867
void intel_mark_busy(struct drm_device *dev)
8868
{
4104 Serge 8869
	struct drm_i915_private *dev_priv = dev->dev_private;
8870
 
5060 serge 8871
	if (dev_priv->mm.busy)
8872
		return;
8873
 
8874
	intel_runtime_pm_get(dev_priv);
4104 Serge 8875
	i915_update_gfx_val(dev_priv);
5060 serge 8876
	dev_priv->mm.busy = true;
3031 serge 8877
}
2327 Serge 8878
 
3031 serge 8879
void intel_mark_idle(struct drm_device *dev)
8880
{
4104 Serge 8881
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 8882
	struct drm_crtc *crtc;
2327 Serge 8883
 
5060 serge 8884
	if (!dev_priv->mm.busy)
3031 serge 8885
		return;
2327 Serge 8886
 
5060 serge 8887
	dev_priv->mm.busy = false;
8888
 
8889
	if (!i915.powersave)
8890
		goto out;
8891
 
8892
	for_each_crtc(dev, crtc) {
8893
		if (!crtc->primary->fb)
3031 serge 8894
			continue;
2327 Serge 8895
 
3480 Serge 8896
		intel_decrease_pllclock(crtc);
3031 serge 8897
	}
4560 Serge 8898
 
5060 serge 8899
	if (INTEL_INFO(dev)->gen >= 6)
4560 Serge 8900
		gen6_rps_idle(dev->dev_private);
5060 serge 8901
 
8902
out:
8903
	intel_runtime_pm_put(dev_priv);
3031 serge 8904
}
2327 Serge 8905
 
5060 serge 8906
 
8907
/**
8908
 * intel_mark_fb_busy - mark given planes as busy
8909
 * @dev: DRM device
8910
 * @frontbuffer_bits: bits for the affected planes
8911
 * @ring: optional ring for asynchronous commands
8912
 *
8913
 * This function gets called every time the screen contents change. It can be
8914
 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8915
 */
8916
static void intel_mark_fb_busy(struct drm_device *dev,
8917
			       unsigned frontbuffer_bits,
8918
			struct intel_engine_cs *ring)
3031 serge 8919
{
5060 serge 8920
	enum pipe pipe;
2327 Serge 8921
 
5060 serge 8922
	if (!i915.powersave)
3031 serge 8923
		return;
2327 Serge 8924
 
5060 serge 8925
	for_each_pipe(pipe) {
8926
		if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
3031 serge 8927
			continue;
2327 Serge 8928
 
5060 serge 8929
		intel_increase_pllclock(dev, pipe);
4104 Serge 8930
		if (ring && intel_fbc_enabled(dev))
8931
			ring->fbc_dirty = true;
3031 serge 8932
	}
8933
}
2327 Serge 8934
 
5060 serge 8935
/**
8936
 * intel_fb_obj_invalidate - invalidate frontbuffer object
8937
 * @obj: GEM object to invalidate
8938
 * @ring: set for asynchronous rendering
8939
 *
8940
 * This function gets called every time rendering on the given object starts and
8941
 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
8942
 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
8943
 * until the rendering completes or a flip on this frontbuffer plane is
8944
 * scheduled.
8945
 */
8946
void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
8947
			     struct intel_engine_cs *ring)
8948
{
8949
	struct drm_device *dev = obj->base.dev;
8950
	struct drm_i915_private *dev_priv = dev->dev_private;
8951
 
8952
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8953
 
8954
	if (!obj->frontbuffer_bits)
8955
		return;
8956
 
8957
	if (ring) {
8958
		mutex_lock(&dev_priv->fb_tracking.lock);
8959
		dev_priv->fb_tracking.busy_bits
8960
			|= obj->frontbuffer_bits;
8961
		dev_priv->fb_tracking.flip_bits
8962
			&= ~obj->frontbuffer_bits;
8963
		mutex_unlock(&dev_priv->fb_tracking.lock);
8964
	}
8965
 
8966
	intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
8967
 
8968
	intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
8969
}
8970
 
8971
/**
8972
 * intel_frontbuffer_flush - flush frontbuffer
8973
 * @dev: DRM device
8974
 * @frontbuffer_bits: frontbuffer plane tracking bits
8975
 *
8976
 * This function gets called every time rendering on the given planes has
8977
 * completed and frontbuffer caching can be started again. Flushes will get
8978
 * delayed if they're blocked by some oustanding asynchronous rendering.
8979
 *
8980
 * Can be called without any locks held.
8981
 */
8982
void intel_frontbuffer_flush(struct drm_device *dev,
8983
			     unsigned frontbuffer_bits)
8984
{
8985
	struct drm_i915_private *dev_priv = dev->dev_private;
8986
 
8987
	/* Delay flushing when rings are still busy.*/
8988
	mutex_lock(&dev_priv->fb_tracking.lock);
8989
	frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
8990
	mutex_unlock(&dev_priv->fb_tracking.lock);
8991
 
8992
	intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
8993
 
8994
	intel_edp_psr_flush(dev, frontbuffer_bits);
8995
}
2330 Serge 8996
static void intel_crtc_destroy(struct drm_crtc *crtc)
8997
{
8998
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8999
	struct drm_device *dev = crtc->dev;
9000
	struct intel_unpin_work *work;
9001
	unsigned long flags;
2327 Serge 9002
 
2330 Serge 9003
	spin_lock_irqsave(&dev->event_lock, flags);
9004
	work = intel_crtc->unpin_work;
9005
	intel_crtc->unpin_work = NULL;
9006
	spin_unlock_irqrestore(&dev->event_lock, flags);
2327 Serge 9007
 
2330 Serge 9008
	if (work) {
4293 Serge 9009
		cancel_work_sync(&work->work);
2330 Serge 9010
		kfree(work);
9011
	}
2327 Serge 9012
 
2330 Serge 9013
	drm_crtc_cleanup(crtc);
2327 Serge 9014
 
2330 Serge 9015
	kfree(intel_crtc);
9016
}
2327 Serge 9017
 
3031 serge 9018
#if 0
9019
static void intel_unpin_work_fn(struct work_struct *__work)
9020
{
9021
	struct intel_unpin_work *work =
9022
		container_of(__work, struct intel_unpin_work, work);
3243 Serge 9023
	struct drm_device *dev = work->crtc->dev;
5060 serge 9024
	enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
2327 Serge 9025
 
3243 Serge 9026
	mutex_lock(&dev->struct_mutex);
3031 serge 9027
	intel_unpin_fb_obj(work->old_fb_obj);
9028
	drm_gem_object_unreference(&work->pending_flip_obj->base);
9029
	drm_gem_object_unreference(&work->old_fb_obj->base);
2327 Serge 9030
 
3243 Serge 9031
	intel_update_fbc(dev);
9032
	mutex_unlock(&dev->struct_mutex);
9033
 
9034
	BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9035
	atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9036
 
3031 serge 9037
	kfree(work);
9038
}
2327 Serge 9039
 
3031 serge 9040
static void do_intel_finish_page_flip(struct drm_device *dev,
9041
				      struct drm_crtc *crtc)
9042
{
5060 serge 9043
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 9044
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9045
	struct intel_unpin_work *work;
9046
	unsigned long flags;
2327 Serge 9047
 
3031 serge 9048
	/* Ignore early vblank irqs */
9049
	if (intel_crtc == NULL)
9050
		return;
2327 Serge 9051
 
3031 serge 9052
	spin_lock_irqsave(&dev->event_lock, flags);
9053
	work = intel_crtc->unpin_work;
3243 Serge 9054
 
9055
	/* Ensure we don't miss a work->pending update ... */
9056
	smp_rmb();
9057
 
9058
	if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
3031 serge 9059
		spin_unlock_irqrestore(&dev->event_lock, flags);
9060
		return;
9061
	}
2327 Serge 9062
 
3243 Serge 9063
	/* and that the unpin work is consistent wrt ->pending. */
9064
	smp_rmb();
9065
 
3031 serge 9066
	intel_crtc->unpin_work = NULL;
2327 Serge 9067
 
3243 Serge 9068
	if (work->event)
9069
		drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
2327 Serge 9070
 
5060 serge 9071
	drm_crtc_vblank_put(crtc);
2327 Serge 9072
 
3031 serge 9073
	spin_unlock_irqrestore(&dev->event_lock, flags);
2327 Serge 9074
 
3480 Serge 9075
	wake_up_all(&dev_priv->pending_flip_queue);
2327 Serge 9076
 
3243 Serge 9077
	queue_work(dev_priv->wq, &work->work);
9078
 
3031 serge 9079
	trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
9080
}
2327 Serge 9081
 
3031 serge 9082
void intel_finish_page_flip(struct drm_device *dev, int pipe)
9083
{
5060 serge 9084
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 9085
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2327 Serge 9086
 
3031 serge 9087
	do_intel_finish_page_flip(dev, crtc);
9088
}
2327 Serge 9089
 
3031 serge 9090
void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9091
{
5060 serge 9092
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 9093
	struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
2327 Serge 9094
 
3031 serge 9095
	do_intel_finish_page_flip(dev, crtc);
9096
}
2327 Serge 9097
 
5060 serge 9098
/* Is 'a' after or equal to 'b'? */
9099
static bool g4x_flip_count_after_eq(u32 a, u32 b)
9100
{
9101
	return !((a - b) & 0x80000000);
9102
}
9103
 
9104
static bool page_flip_finished(struct intel_crtc *crtc)
9105
{
9106
	struct drm_device *dev = crtc->base.dev;
9107
	struct drm_i915_private *dev_priv = dev->dev_private;
9108
 
9109
	/*
9110
	 * The relevant registers doen't exist on pre-ctg.
9111
	 * As the flip done interrupt doesn't trigger for mmio
9112
	 * flips on gmch platforms, a flip count check isn't
9113
	 * really needed there. But since ctg has the registers,
9114
	 * include it in the check anyway.
9115
	 */
9116
	if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9117
		return true;
9118
 
9119
	/*
9120
	 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9121
	 * used the same base address. In that case the mmio flip might
9122
	 * have completed, but the CS hasn't even executed the flip yet.
9123
	 *
9124
	 * A flip count check isn't enough as the CS might have updated
9125
	 * the base address just after start of vblank, but before we
9126
	 * managed to process the interrupt. This means we'd complete the
9127
	 * CS flip too soon.
9128
	 *
9129
	 * Combining both checks should get us a good enough result. It may
9130
	 * still happen that the CS flip has been executed, but has not
9131
	 * yet actually completed. But in case the base address is the same
9132
	 * anyway, we don't really care.
9133
	 */
9134
	return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9135
		crtc->unpin_work->gtt_offset &&
9136
		g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9137
				    crtc->unpin_work->flip_count);
9138
}
9139
 
3031 serge 9140
void intel_prepare_page_flip(struct drm_device *dev, int plane)
9141
{
5060 serge 9142
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 9143
	struct intel_crtc *intel_crtc =
9144
		to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9145
	unsigned long flags;
2327 Serge 9146
 
3243 Serge 9147
	/* NB: An MMIO update of the plane base pointer will also
9148
	 * generate a page-flip completion irq, i.e. every modeset
9149
	 * is also accompanied by a spurious intel_prepare_page_flip().
9150
	 */
3031 serge 9151
	spin_lock_irqsave(&dev->event_lock, flags);
5060 serge 9152
	if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
3243 Serge 9153
		atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
3031 serge 9154
	spin_unlock_irqrestore(&dev->event_lock, flags);
9155
}
2327 Serge 9156
 
5060 serge 9157
static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
3243 Serge 9158
{
9159
	/* Ensure that the work item is consistent when activating it ... */
9160
	smp_wmb();
9161
	atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9162
	/* and that it is marked active as soon as the irq could fire. */
9163
	smp_wmb();
9164
}
9165
 
3031 serge 9166
static int intel_gen2_queue_flip(struct drm_device *dev,
9167
				 struct drm_crtc *crtc,
9168
				 struct drm_framebuffer *fb,
4104 Serge 9169
				 struct drm_i915_gem_object *obj,
5060 serge 9170
				 struct intel_engine_cs *ring,
4104 Serge 9171
				 uint32_t flags)
3031 serge 9172
{
9173
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9174
	u32 flip_mask;
9175
	int ret;
2327 Serge 9176
 
3031 serge 9177
	ret = intel_ring_begin(ring, 6);
9178
	if (ret)
5060 serge 9179
		return ret;
2327 Serge 9180
 
3031 serge 9181
	/* Can't queue multiple flips, so wait for the previous
9182
	 * one to finish before executing the next.
9183
	 */
9184
	if (intel_crtc->plane)
9185
		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9186
	else
9187
		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9188
	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9189
	intel_ring_emit(ring, MI_NOOP);
9190
	intel_ring_emit(ring, MI_DISPLAY_FLIP |
9191
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9192
	intel_ring_emit(ring, fb->pitches[0]);
5060 serge 9193
	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
3031 serge 9194
	intel_ring_emit(ring, 0); /* aux display base address, unused */
3243 Serge 9195
 
9196
	intel_mark_page_flip_active(intel_crtc);
4560 Serge 9197
	__intel_ring_advance(ring);
3031 serge 9198
	return 0;
9199
}
2327 Serge 9200
 
3031 serge 9201
static int intel_gen3_queue_flip(struct drm_device *dev,
9202
				 struct drm_crtc *crtc,
9203
				 struct drm_framebuffer *fb,
4104 Serge 9204
				 struct drm_i915_gem_object *obj,
5060 serge 9205
				 struct intel_engine_cs *ring,
4104 Serge 9206
				 uint32_t flags)
3031 serge 9207
{
9208
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9209
	u32 flip_mask;
9210
	int ret;
2327 Serge 9211
 
3031 serge 9212
	ret = intel_ring_begin(ring, 6);
9213
	if (ret)
5060 serge 9214
		return ret;
2327 Serge 9215
 
3031 serge 9216
	if (intel_crtc->plane)
9217
		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9218
	else
9219
		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9220
	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9221
	intel_ring_emit(ring, MI_NOOP);
9222
	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9223
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9224
	intel_ring_emit(ring, fb->pitches[0]);
5060 serge 9225
	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
3031 serge 9226
	intel_ring_emit(ring, MI_NOOP);
2327 Serge 9227
 
3243 Serge 9228
	intel_mark_page_flip_active(intel_crtc);
4560 Serge 9229
	__intel_ring_advance(ring);
3031 serge 9230
	return 0;
9231
}
2327 Serge 9232
 
3031 serge 9233
static int intel_gen4_queue_flip(struct drm_device *dev,
9234
				 struct drm_crtc *crtc,
9235
				 struct drm_framebuffer *fb,
4104 Serge 9236
				 struct drm_i915_gem_object *obj,
5060 serge 9237
				 struct intel_engine_cs *ring,
4104 Serge 9238
				 uint32_t flags)
3031 serge 9239
{
9240
	struct drm_i915_private *dev_priv = dev->dev_private;
9241
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9242
	uint32_t pf, pipesrc;
9243
	int ret;
2327 Serge 9244
 
3031 serge 9245
	ret = intel_ring_begin(ring, 4);
9246
	if (ret)
5060 serge 9247
		return ret;
2327 Serge 9248
 
3031 serge 9249
	/* i965+ uses the linear or tiled offsets from the
9250
	 * Display Registers (which do not change across a page-flip)
9251
	 * so we need only reprogram the base address.
9252
	 */
9253
	intel_ring_emit(ring, MI_DISPLAY_FLIP |
9254
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9255
	intel_ring_emit(ring, fb->pitches[0]);
5060 serge 9256
	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
3031 serge 9257
			obj->tiling_mode);
2327 Serge 9258
 
3031 serge 9259
	/* XXX Enabling the panel-fitter across page-flip is so far
9260
	 * untested on non-native modes, so ignore it for now.
9261
	 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9262
	 */
9263
	pf = 0;
9264
	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9265
	intel_ring_emit(ring, pf | pipesrc);
3243 Serge 9266
 
9267
	intel_mark_page_flip_active(intel_crtc);
4560 Serge 9268
	__intel_ring_advance(ring);
3031 serge 9269
	return 0;
9270
}
2327 Serge 9271
 
3031 serge 9272
static int intel_gen6_queue_flip(struct drm_device *dev,
9273
				 struct drm_crtc *crtc,
9274
				 struct drm_framebuffer *fb,
4104 Serge 9275
				 struct drm_i915_gem_object *obj,
5060 serge 9276
				 struct intel_engine_cs *ring,
4104 Serge 9277
				 uint32_t flags)
3031 serge 9278
{
9279
	struct drm_i915_private *dev_priv = dev->dev_private;
9280
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9281
	uint32_t pf, pipesrc;
9282
	int ret;
2327 Serge 9283
 
3031 serge 9284
	ret = intel_ring_begin(ring, 4);
9285
	if (ret)
5060 serge 9286
		return ret;
2327 Serge 9287
 
3031 serge 9288
	intel_ring_emit(ring, MI_DISPLAY_FLIP |
9289
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9290
	intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
5060 serge 9291
	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
2327 Serge 9292
 
3031 serge 9293
	/* Contrary to the suggestions in the documentation,
9294
	 * "Enable Panel Fitter" does not seem to be required when page
9295
	 * flipping with a non-native mode, and worse causes a normal
9296
	 * modeset to fail.
9297
	 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9298
	 */
9299
	pf = 0;
9300
	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9301
	intel_ring_emit(ring, pf | pipesrc);
3243 Serge 9302
 
9303
	intel_mark_page_flip_active(intel_crtc);
4560 Serge 9304
	__intel_ring_advance(ring);
3031 serge 9305
	return 0;
9306
}
2327 Serge 9307
 
3031 serge 9308
static int intel_gen7_queue_flip(struct drm_device *dev,
9309
				 struct drm_crtc *crtc,
9310
				 struct drm_framebuffer *fb,
4104 Serge 9311
				 struct drm_i915_gem_object *obj,
5060 serge 9312
				 struct intel_engine_cs *ring,
4104 Serge 9313
				 uint32_t flags)
3031 serge 9314
{
9315
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9316
	uint32_t plane_bit = 0;
4104 Serge 9317
	int len, ret;
2327 Serge 9318
 
5060 serge 9319
	switch (intel_crtc->plane) {
3031 serge 9320
	case PLANE_A:
9321
		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9322
		break;
9323
	case PLANE_B:
9324
		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9325
		break;
9326
	case PLANE_C:
9327
		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9328
		break;
9329
	default:
9330
		WARN_ONCE(1, "unknown plane in flip command\n");
5060 serge 9331
		return -ENODEV;
3031 serge 9332
	}
2327 Serge 9333
 
4104 Serge 9334
	len = 4;
5060 serge 9335
	if (ring->id == RCS) {
4104 Serge 9336
		len += 6;
5060 serge 9337
		/*
9338
		 * On Gen 8, SRM is now taking an extra dword to accommodate
9339
		 * 48bits addresses, and we need a NOOP for the batch size to
9340
		 * stay even.
9341
		 */
9342
		if (IS_GEN8(dev))
9343
			len += 2;
9344
	}
4104 Serge 9345
 
5060 serge 9346
	/*
9347
	 * BSpec MI_DISPLAY_FLIP for IVB:
9348
	 * "The full packet must be contained within the same cache line."
9349
	 *
9350
	 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9351
	 * cacheline, if we ever start emitting more commands before
9352
	 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9353
	 * then do the cacheline alignment, and finally emit the
9354
	 * MI_DISPLAY_FLIP.
9355
	 */
9356
	ret = intel_ring_cacheline_align(ring);
9357
	if (ret)
9358
		return ret;
9359
 
4104 Serge 9360
	ret = intel_ring_begin(ring, len);
3031 serge 9361
	if (ret)
5060 serge 9362
		return ret;
2327 Serge 9363
 
4104 Serge 9364
	/* Unmask the flip-done completion message. Note that the bspec says that
9365
	 * we should do this for both the BCS and RCS, and that we must not unmask
9366
	 * more than one flip event at any time (or ensure that one flip message
9367
	 * can be sent by waiting for flip-done prior to queueing new flips).
9368
	 * Experimentation says that BCS works despite DERRMR masking all
9369
	 * flip-done completion events and that unmasking all planes at once
9370
	 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9371
	 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9372
	 */
9373
	if (ring->id == RCS) {
9374
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9375
		intel_ring_emit(ring, DERRMR);
9376
		intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9377
					DERRMR_PIPEB_PRI_FLIP_DONE |
9378
					DERRMR_PIPEC_PRI_FLIP_DONE));
5060 serge 9379
		if (IS_GEN8(dev))
9380
			intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9381
					      MI_SRM_LRM_GLOBAL_GTT);
9382
		else
4560 Serge 9383
		intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9384
				MI_SRM_LRM_GLOBAL_GTT);
4104 Serge 9385
		intel_ring_emit(ring, DERRMR);
9386
		intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
5060 serge 9387
		if (IS_GEN8(dev)) {
9388
			intel_ring_emit(ring, 0);
9389
			intel_ring_emit(ring, MI_NOOP);
9390
		}
4104 Serge 9391
	}
9392
 
3031 serge 9393
	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9394
	intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
5060 serge 9395
	intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
3031 serge 9396
	intel_ring_emit(ring, (MI_NOOP));
3243 Serge 9397
 
9398
	intel_mark_page_flip_active(intel_crtc);
4560 Serge 9399
	__intel_ring_advance(ring);
3031 serge 9400
	return 0;
9401
}
2327 Serge 9402
 
3031 serge 9403
static int intel_default_queue_flip(struct drm_device *dev,
9404
				    struct drm_crtc *crtc,
9405
				    struct drm_framebuffer *fb,
4104 Serge 9406
				    struct drm_i915_gem_object *obj,
5060 serge 9407
				    struct intel_engine_cs *ring,
4104 Serge 9408
				    uint32_t flags)
3031 serge 9409
{
9410
	return -ENODEV;
9411
}
2327 Serge 9412
 
3031 serge 9413
static int intel_crtc_page_flip(struct drm_crtc *crtc,
9414
				struct drm_framebuffer *fb,
4104 Serge 9415
				struct drm_pending_vblank_event *event,
9416
				uint32_t page_flip_flags)
3031 serge 9417
{
9418
	struct drm_device *dev = crtc->dev;
9419
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 9420
	struct drm_framebuffer *old_fb = crtc->primary->fb;
9421
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3031 serge 9422
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5060 serge 9423
	enum pipe pipe = intel_crtc->pipe;
3031 serge 9424
	struct intel_unpin_work *work;
5060 serge 9425
	struct intel_engine_cs *ring;
3031 serge 9426
	unsigned long flags;
9427
	int ret;
2327 Serge 9428
 
5060 serge 9429
	/*
9430
	 * drm_mode_page_flip_ioctl() should already catch this, but double
9431
	 * check to be safe.  In the future we may enable pageflipping from
9432
	 * a disabled primary plane.
9433
	 */
9434
	if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9435
		return -EBUSY;
9436
 
3031 serge 9437
	/* Can't change pixel format via MI display flips. */
5060 serge 9438
	if (fb->pixel_format != crtc->primary->fb->pixel_format)
3031 serge 9439
		return -EINVAL;
2327 Serge 9440
 
3031 serge 9441
	/*
9442
	 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9443
	 * Note that pitch changes could also affect these register.
9444
	 */
9445
	if (INTEL_INFO(dev)->gen > 3 &&
5060 serge 9446
	    (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9447
	     fb->pitches[0] != crtc->primary->fb->pitches[0]))
3031 serge 9448
		return -EINVAL;
2327 Serge 9449
 
4560 Serge 9450
	work = kzalloc(sizeof(*work), GFP_KERNEL);
3031 serge 9451
	if (work == NULL)
9452
		return -ENOMEM;
2327 Serge 9453
 
3031 serge 9454
	work->event = event;
3243 Serge 9455
	work->crtc = crtc;
5060 serge 9456
	work->old_fb_obj = intel_fb_obj(old_fb);
3031 serge 9457
	INIT_WORK(&work->work, intel_unpin_work_fn);
2327 Serge 9458
 
5060 serge 9459
	ret = drm_crtc_vblank_get(crtc);
3031 serge 9460
	if (ret)
9461
		goto free_work;
2327 Serge 9462
 
3031 serge 9463
	/* We borrow the event spin lock for protecting unpin_work */
9464
	spin_lock_irqsave(&dev->event_lock, flags);
9465
	if (intel_crtc->unpin_work) {
9466
		spin_unlock_irqrestore(&dev->event_lock, flags);
9467
		kfree(work);
5060 serge 9468
		drm_crtc_vblank_put(crtc);
2327 Serge 9469
 
3031 serge 9470
		DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9471
		return -EBUSY;
9472
	}
9473
	intel_crtc->unpin_work = work;
9474
	spin_unlock_irqrestore(&dev->event_lock, flags);
2327 Serge 9475
 
3243 Serge 9476
	if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9477
		flush_workqueue(dev_priv->wq);
9478
 
3031 serge 9479
	ret = i915_mutex_lock_interruptible(dev);
9480
	if (ret)
9481
		goto cleanup;
2327 Serge 9482
 
3031 serge 9483
	/* Reference the objects for the scheduled work. */
9484
	drm_gem_object_reference(&work->old_fb_obj->base);
9485
	drm_gem_object_reference(&obj->base);
2327 Serge 9486
 
5060 serge 9487
	crtc->primary->fb = fb;
2327 Serge 9488
 
3031 serge 9489
	work->pending_flip_obj = obj;
2327 Serge 9490
 
3031 serge 9491
	work->enable_stall_check = true;
9492
 
3243 Serge 9493
	atomic_inc(&intel_crtc->unpin_work_count);
3480 Serge 9494
	intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3031 serge 9495
 
5060 serge 9496
	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9497
		work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9498
 
9499
	if (IS_VALLEYVIEW(dev)) {
9500
		ring = &dev_priv->ring[BCS];
9501
		if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9502
			/* vlv: DISPLAY_FLIP fails to change tiling */
9503
			ring = NULL;
9504
	} else if (IS_IVYBRIDGE(dev)) {
9505
		ring = &dev_priv->ring[BCS];
9506
	} else if (INTEL_INFO(dev)->gen >= 7) {
9507
		ring = obj->ring;
9508
		if (ring == NULL || ring->id != RCS)
9509
			ring = &dev_priv->ring[BCS];
9510
	} else {
9511
		ring = &dev_priv->ring[RCS];
9512
	}
9513
 
9514
	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
3031 serge 9515
	if (ret)
9516
		goto cleanup_pending;
9517
 
5060 serge 9518
	work->gtt_offset =
9519
		i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9520
 
9521
	if (use_mmio_flip(ring, obj))
9522
		ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9523
					    page_flip_flags);
9524
	else
9525
		ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9526
				page_flip_flags);
9527
	if (ret)
9528
		goto cleanup_unpin;
9529
 
9530
	i915_gem_track_fb(work->old_fb_obj, obj,
9531
			  INTEL_FRONTBUFFER_PRIMARY(pipe));
9532
 
3031 serge 9533
	intel_disable_fbc(dev);
5060 serge 9534
	intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
3031 serge 9535
	mutex_unlock(&dev->struct_mutex);
9536
 
9537
	trace_i915_flip_request(intel_crtc->plane, obj);
9538
 
9539
	return 0;
9540
 
5060 serge 9541
cleanup_unpin:
9542
	intel_unpin_fb_obj(obj);
3031 serge 9543
cleanup_pending:
3243 Serge 9544
	atomic_dec(&intel_crtc->unpin_work_count);
5060 serge 9545
	crtc->primary->fb = old_fb;
3031 serge 9546
	drm_gem_object_unreference(&work->old_fb_obj->base);
9547
	drm_gem_object_unreference(&obj->base);
9548
	mutex_unlock(&dev->struct_mutex);
9549
 
9550
cleanup:
9551
	spin_lock_irqsave(&dev->event_lock, flags);
9552
	intel_crtc->unpin_work = NULL;
9553
	spin_unlock_irqrestore(&dev->event_lock, flags);
9554
 
5060 serge 9555
	drm_crtc_vblank_put(crtc);
3031 serge 9556
free_work:
9557
	kfree(work);
9558
 
5060 serge 9559
	if (ret == -EIO) {
9560
out_hang:
9561
		intel_crtc_wait_for_pending_flips(crtc);
9562
		ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9563
		if (ret == 0 && event)
9564
			drm_send_vblank_event(dev, pipe, event);
9565
	}
3031 serge 9566
	return ret;
9567
}
9568
#endif
9569
 
9570
static struct drm_crtc_helper_funcs intel_helper_funcs = {
9571
	.mode_set_base_atomic = intel_pipe_set_base_atomic,
9572
	.load_lut = intel_crtc_load_lut,
9573
};
9574
 
9575
/**
9576
 * intel_modeset_update_staged_output_state
9577
 *
9578
 * Updates the staged output configuration state, e.g. after we've read out the
9579
 * current hw state.
9580
 */
9581
static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9582
{
5060 serge 9583
	struct intel_crtc *crtc;
3031 serge 9584
	struct intel_encoder *encoder;
9585
	struct intel_connector *connector;
9586
 
9587
	list_for_each_entry(connector, &dev->mode_config.connector_list,
9588
			    base.head) {
9589
		connector->new_encoder =
9590
			to_intel_encoder(connector->base.encoder);
9591
	}
9592
 
9593
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9594
			    base.head) {
9595
		encoder->new_crtc =
9596
			to_intel_crtc(encoder->base.crtc);
9597
	}
5060 serge 9598
 
9599
	for_each_intel_crtc(dev, crtc) {
9600
		crtc->new_enabled = crtc->base.enabled;
9601
 
9602
		if (crtc->new_enabled)
9603
			crtc->new_config = &crtc->config;
9604
		else
9605
			crtc->new_config = NULL;
9606
	}
3031 serge 9607
}
9608
 
9609
/**
9610
 * intel_modeset_commit_output_state
9611
 *
9612
 * This function copies the stage display pipe configuration to the real one.
9613
 */
9614
static void intel_modeset_commit_output_state(struct drm_device *dev)
9615
{
5060 serge 9616
	struct intel_crtc *crtc;
3031 serge 9617
	struct intel_encoder *encoder;
9618
	struct intel_connector *connector;
9619
 
9620
	list_for_each_entry(connector, &dev->mode_config.connector_list,
9621
			    base.head) {
9622
		connector->base.encoder = &connector->new_encoder->base;
9623
	}
9624
 
9625
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9626
			    base.head) {
9627
		encoder->base.crtc = &encoder->new_crtc->base;
9628
	}
5060 serge 9629
 
9630
	for_each_intel_crtc(dev, crtc) {
9631
		crtc->base.enabled = crtc->new_enabled;
9632
	}
3031 serge 9633
}
9634
 
4104 Serge 9635
static void
5060 serge 9636
connected_sink_compute_bpp(struct intel_connector *connector,
4104 Serge 9637
			   struct intel_crtc_config *pipe_config)
9638
{
9639
	int bpp = pipe_config->pipe_bpp;
9640
 
9641
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9642
		connector->base.base.id,
5060 serge 9643
		connector->base.name);
4104 Serge 9644
 
9645
	/* Don't use an invalid EDID bpc value */
9646
	if (connector->base.display_info.bpc &&
9647
	    connector->base.display_info.bpc * 3 < bpp) {
9648
		DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9649
			      bpp, connector->base.display_info.bpc*3);
9650
		pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9651
	}
9652
 
9653
	/* Clamp bpp to 8 on screens without EDID 1.4 */
9654
	if (connector->base.display_info.bpc == 0 && bpp > 24) {
9655
		DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9656
			      bpp);
9657
		pipe_config->pipe_bpp = 24;
9658
	}
9659
}
9660
 
3746 Serge 9661
static int
4104 Serge 9662
compute_baseline_pipe_bpp(struct intel_crtc *crtc,
3746 Serge 9663
		    struct drm_framebuffer *fb,
9664
		    struct intel_crtc_config *pipe_config)
9665
{
4104 Serge 9666
	struct drm_device *dev = crtc->base.dev;
9667
	struct intel_connector *connector;
3746 Serge 9668
	int bpp;
9669
 
9670
	switch (fb->pixel_format) {
9671
	case DRM_FORMAT_C8:
9672
		bpp = 8*3; /* since we go through a colormap */
9673
		break;
9674
	case DRM_FORMAT_XRGB1555:
9675
	case DRM_FORMAT_ARGB1555:
9676
		/* checked in intel_framebuffer_init already */
9677
		if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9678
			return -EINVAL;
9679
	case DRM_FORMAT_RGB565:
9680
		bpp = 6*3; /* min is 18bpp */
9681
		break;
9682
	case DRM_FORMAT_XBGR8888:
9683
	case DRM_FORMAT_ABGR8888:
9684
		/* checked in intel_framebuffer_init already */
9685
		if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9686
			return -EINVAL;
9687
	case DRM_FORMAT_XRGB8888:
9688
	case DRM_FORMAT_ARGB8888:
9689
		bpp = 8*3;
9690
		break;
9691
	case DRM_FORMAT_XRGB2101010:
9692
	case DRM_FORMAT_ARGB2101010:
9693
	case DRM_FORMAT_XBGR2101010:
9694
	case DRM_FORMAT_ABGR2101010:
9695
		/* checked in intel_framebuffer_init already */
9696
		if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9697
			return -EINVAL;
9698
		bpp = 10*3;
9699
		break;
9700
	/* TODO: gen4+ supports 16 bpc floating point, too. */
9701
	default:
9702
		DRM_DEBUG_KMS("unsupported depth\n");
9703
		return -EINVAL;
9704
	}
9705
 
9706
	pipe_config->pipe_bpp = bpp;
9707
 
9708
	/* Clamp display bpp to EDID value */
9709
	list_for_each_entry(connector, &dev->mode_config.connector_list,
4104 Serge 9710
			    base.head) {
9711
		if (!connector->new_encoder ||
9712
		    connector->new_encoder->new_crtc != crtc)
3746 Serge 9713
			continue;
9714
 
4104 Serge 9715
		connected_sink_compute_bpp(connector, pipe_config);
3746 Serge 9716
	}
9717
 
9718
	return bpp;
9719
}
9720
 
4560 Serge 9721
static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9722
{
9723
	DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9724
			"type: 0x%x flags: 0x%x\n",
9725
		mode->crtc_clock,
9726
		mode->crtc_hdisplay, mode->crtc_hsync_start,
9727
		mode->crtc_hsync_end, mode->crtc_htotal,
9728
		mode->crtc_vdisplay, mode->crtc_vsync_start,
9729
		mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9730
}
9731
 
4104 Serge 9732
static void intel_dump_pipe_config(struct intel_crtc *crtc,
9733
				   struct intel_crtc_config *pipe_config,
9734
				   const char *context)
9735
{
9736
	DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9737
		      context, pipe_name(crtc->pipe));
9738
 
9739
	DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9740
	DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9741
		      pipe_config->pipe_bpp, pipe_config->dither);
9742
	DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9743
		      pipe_config->has_pch_encoder,
9744
		      pipe_config->fdi_lanes,
9745
		      pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9746
		      pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9747
		      pipe_config->fdi_m_n.tu);
4560 Serge 9748
	DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9749
		      pipe_config->has_dp_encoder,
9750
		      pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9751
		      pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9752
		      pipe_config->dp_m_n.tu);
4104 Serge 9753
	DRM_DEBUG_KMS("requested mode:\n");
9754
	drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9755
	DRM_DEBUG_KMS("adjusted mode:\n");
9756
	drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
4560 Serge 9757
	intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9758
	DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9759
	DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9760
		      pipe_config->pipe_src_w, pipe_config->pipe_src_h);
4104 Serge 9761
	DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9762
		      pipe_config->gmch_pfit.control,
9763
		      pipe_config->gmch_pfit.pgm_ratios,
9764
		      pipe_config->gmch_pfit.lvds_border_bits);
9765
	DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9766
		      pipe_config->pch_pfit.pos,
9767
		      pipe_config->pch_pfit.size,
9768
		      pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9769
	DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
4560 Serge 9770
	DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
4104 Serge 9771
}
9772
 
5060 serge 9773
static bool encoders_cloneable(const struct intel_encoder *a,
9774
			       const struct intel_encoder *b)
4104 Serge 9775
{
5060 serge 9776
	/* masks could be asymmetric, so check both ways */
9777
	return a == b || (a->cloneable & (1 << b->type) &&
9778
			  b->cloneable & (1 << a->type));
9779
}
9780
 
9781
static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9782
					 struct intel_encoder *encoder)
9783
{
9784
	struct drm_device *dev = crtc->base.dev;
9785
	struct intel_encoder *source_encoder;
9786
 
9787
	list_for_each_entry(source_encoder,
9788
			    &dev->mode_config.encoder_list, base.head) {
9789
		if (source_encoder->new_crtc != crtc)
9790
			continue;
9791
 
9792
		if (!encoders_cloneable(encoder, source_encoder))
9793
			return false;
9794
	}
9795
 
9796
	return true;
9797
}
9798
 
9799
static bool check_encoder_cloning(struct intel_crtc *crtc)
9800
{
9801
	struct drm_device *dev = crtc->base.dev;
4104 Serge 9802
	struct intel_encoder *encoder;
9803
 
5060 serge 9804
	list_for_each_entry(encoder,
9805
			    &dev->mode_config.encoder_list, base.head) {
9806
		if (encoder->new_crtc != crtc)
4104 Serge 9807
			continue;
9808
 
5060 serge 9809
		if (!check_single_encoder_cloning(crtc, encoder))
9810
			return false;
4104 Serge 9811
	}
9812
 
5060 serge 9813
	return true;
4104 Serge 9814
}
9815
 
3746 Serge 9816
static struct intel_crtc_config *
9817
intel_modeset_pipe_config(struct drm_crtc *crtc,
9818
			  struct drm_framebuffer *fb,
3031 serge 9819
			    struct drm_display_mode *mode)
9820
{
9821
	struct drm_device *dev = crtc->dev;
9822
	struct intel_encoder *encoder;
3746 Serge 9823
	struct intel_crtc_config *pipe_config;
4104 Serge 9824
	int plane_bpp, ret = -EINVAL;
9825
	bool retry = true;
3031 serge 9826
 
5060 serge 9827
	if (!check_encoder_cloning(to_intel_crtc(crtc))) {
4104 Serge 9828
		DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9829
		return ERR_PTR(-EINVAL);
9830
	}
9831
 
3746 Serge 9832
	pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9833
	if (!pipe_config)
3031 serge 9834
		return ERR_PTR(-ENOMEM);
9835
 
3746 Serge 9836
	drm_mode_copy(&pipe_config->adjusted_mode, mode);
9837
	drm_mode_copy(&pipe_config->requested_mode, mode);
4560 Serge 9838
 
4104 Serge 9839
	pipe_config->cpu_transcoder =
9840
		(enum transcoder) to_intel_crtc(crtc)->pipe;
9841
	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
3746 Serge 9842
 
4104 Serge 9843
	/*
9844
	 * Sanitize sync polarity flags based on requested ones. If neither
9845
	 * positive or negative polarity is requested, treat this as meaning
9846
	 * negative polarity.
9847
	 */
9848
	if (!(pipe_config->adjusted_mode.flags &
9849
	      (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
9850
		pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
9851
 
9852
	if (!(pipe_config->adjusted_mode.flags &
9853
	      (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
9854
		pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
9855
 
9856
	/* Compute a starting value for pipe_config->pipe_bpp taking the source
9857
	 * plane pixel format and any sink constraints into account. Returns the
9858
	 * source plane bpp so that dithering can be selected on mismatches
9859
	 * after encoders and crtc also have had their say. */
9860
	plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
9861
					      fb, pipe_config);
3746 Serge 9862
	if (plane_bpp < 0)
9863
		goto fail;
9864
 
4560 Serge 9865
	/*
9866
	 * Determine the real pipe dimensions. Note that stereo modes can
9867
	 * increase the actual pipe size due to the frame doubling and
9868
	 * insertion of additional space for blanks between the frame. This
9869
	 * is stored in the crtc timings. We use the requested mode to do this
9870
	 * computation to clearly distinguish it from the adjusted mode, which
9871
	 * can be changed by the connectors in the below retry loop.
9872
	 */
9873
	drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
9874
	pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
9875
	pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
9876
 
4104 Serge 9877
encoder_retry:
9878
	/* Ensure the port clock defaults are reset when retrying. */
9879
	pipe_config->port_clock = 0;
9880
	pipe_config->pixel_multiplier = 1;
9881
 
9882
	/* Fill in default crtc timings, allow encoders to overwrite them. */
4560 Serge 9883
	drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
4104 Serge 9884
 
3031 serge 9885
	/* Pass our mode to the connectors and the CRTC to give them a chance to
9886
	 * adjust it according to limitations or connector properties, and also
9887
	 * a chance to reject the mode entirely.
2330 Serge 9888
	 */
3031 serge 9889
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9890
			    base.head) {
2327 Serge 9891
 
3031 serge 9892
		if (&encoder->new_crtc->base != crtc)
9893
			continue;
3746 Serge 9894
 
9895
			if (!(encoder->compute_config(encoder, pipe_config))) {
9896
				DRM_DEBUG_KMS("Encoder config failure\n");
9897
				goto fail;
9898
			}
9899
		}
9900
 
4104 Serge 9901
	/* Set default port clock if not overwritten by the encoder. Needs to be
9902
	 * done afterwards in case the encoder adjusts the mode. */
9903
	if (!pipe_config->port_clock)
4560 Serge 9904
		pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
9905
			* pipe_config->pixel_multiplier;
2327 Serge 9906
 
4104 Serge 9907
	ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
9908
	if (ret < 0) {
3031 serge 9909
		DRM_DEBUG_KMS("CRTC fixup failed\n");
9910
		goto fail;
9911
	}
2327 Serge 9912
 
4104 Serge 9913
	if (ret == RETRY) {
9914
		if (WARN(!retry, "loop in pipe configuration computation\n")) {
9915
			ret = -EINVAL;
9916
			goto fail;
9917
		}
9918
 
9919
		DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
9920
		retry = false;
9921
		goto encoder_retry;
9922
	}
9923
 
3746 Serge 9924
	pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
9925
	DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
9926
		      plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
9927
 
9928
	return pipe_config;
3031 serge 9929
fail:
3746 Serge 9930
	kfree(pipe_config);
4104 Serge 9931
	return ERR_PTR(ret);
3031 serge 9932
}
2327 Serge 9933
 
3031 serge 9934
/* Computes which crtcs are affected and sets the relevant bits in the mask. For
9935
 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
9936
static void
9937
intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
9938
			     unsigned *prepare_pipes, unsigned *disable_pipes)
9939
{
9940
	struct intel_crtc *intel_crtc;
9941
	struct drm_device *dev = crtc->dev;
9942
	struct intel_encoder *encoder;
9943
	struct intel_connector *connector;
9944
	struct drm_crtc *tmp_crtc;
9945
 
9946
	*disable_pipes = *modeset_pipes = *prepare_pipes = 0;
9947
 
9948
	/* Check which crtcs have changed outputs connected to them, these need
9949
	 * to be part of the prepare_pipes mask. We don't (yet) support global
9950
	 * modeset across multiple crtcs, so modeset_pipes will only have one
9951
	 * bit set at most. */
9952
	list_for_each_entry(connector, &dev->mode_config.connector_list,
9953
			    base.head) {
9954
		if (connector->base.encoder == &connector->new_encoder->base)
9955
			continue;
9956
 
9957
		if (connector->base.encoder) {
9958
			tmp_crtc = connector->base.encoder->crtc;
9959
 
9960
			*prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9961
		}
9962
 
9963
		if (connector->new_encoder)
9964
			*prepare_pipes |=
9965
				1 << connector->new_encoder->new_crtc->pipe;
9966
	}
9967
 
9968
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9969
			    base.head) {
9970
		if (encoder->base.crtc == &encoder->new_crtc->base)
9971
			continue;
9972
 
9973
		if (encoder->base.crtc) {
9974
			tmp_crtc = encoder->base.crtc;
9975
 
9976
			*prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9977
		}
9978
 
9979
		if (encoder->new_crtc)
9980
			*prepare_pipes |= 1 << encoder->new_crtc->pipe;
9981
	}
9982
 
5060 serge 9983
	/* Check for pipes that will be enabled/disabled ... */
9984
	for_each_intel_crtc(dev, intel_crtc) {
9985
		if (intel_crtc->base.enabled == intel_crtc->new_enabled)
3031 serge 9986
			continue;
9987
 
5060 serge 9988
		if (!intel_crtc->new_enabled)
3031 serge 9989
			*disable_pipes |= 1 << intel_crtc->pipe;
5060 serge 9990
		else
9991
			*prepare_pipes |= 1 << intel_crtc->pipe;
3031 serge 9992
	}
9993
 
9994
 
9995
	/* set_mode is also used to update properties on life display pipes. */
9996
	intel_crtc = to_intel_crtc(crtc);
5060 serge 9997
	if (intel_crtc->new_enabled)
3031 serge 9998
		*prepare_pipes |= 1 << intel_crtc->pipe;
9999
 
3746 Serge 10000
	/*
10001
	 * For simplicity do a full modeset on any pipe where the output routing
10002
	 * changed. We could be more clever, but that would require us to be
10003
	 * more careful with calling the relevant encoder->mode_set functions.
10004
	 */
3031 serge 10005
	if (*prepare_pipes)
10006
		*modeset_pipes = *prepare_pipes;
10007
 
10008
	/* ... and mask these out. */
10009
	*modeset_pipes &= ~(*disable_pipes);
10010
	*prepare_pipes &= ~(*disable_pipes);
3746 Serge 10011
 
10012
	/*
10013
	 * HACK: We don't (yet) fully support global modesets. intel_set_config
10014
	 * obies this rule, but the modeset restore mode of
10015
	 * intel_modeset_setup_hw_state does not.
10016
	 */
10017
	*modeset_pipes &= 1 << intel_crtc->pipe;
10018
	*prepare_pipes &= 1 << intel_crtc->pipe;
4104 Serge 10019
 
10020
	DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10021
		      *modeset_pipes, *prepare_pipes, *disable_pipes);
2330 Serge 10022
}
2327 Serge 10023
 
3031 serge 10024
static bool intel_crtc_in_use(struct drm_crtc *crtc)
2330 Serge 10025
{
3031 serge 10026
	struct drm_encoder *encoder;
2330 Serge 10027
	struct drm_device *dev = crtc->dev;
2327 Serge 10028
 
3031 serge 10029
	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10030
		if (encoder->crtc == crtc)
10031
			return true;
10032
 
10033
	return false;
10034
}
10035
 
10036
static void
10037
intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10038
{
10039
	struct intel_encoder *intel_encoder;
10040
	struct intel_crtc *intel_crtc;
10041
	struct drm_connector *connector;
10042
 
10043
	list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
10044
			    base.head) {
10045
		if (!intel_encoder->base.crtc)
10046
			continue;
10047
 
10048
		intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10049
 
10050
		if (prepare_pipes & (1 << intel_crtc->pipe))
10051
			intel_encoder->connectors_active = false;
10052
	}
10053
 
10054
	intel_modeset_commit_output_state(dev);
10055
 
5060 serge 10056
	/* Double check state. */
10057
	for_each_intel_crtc(dev, intel_crtc) {
10058
		WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10059
		WARN_ON(intel_crtc->new_config &&
10060
			intel_crtc->new_config != &intel_crtc->config);
10061
		WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
3031 serge 10062
	}
10063
 
10064
	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10065
		if (!connector->encoder || !connector->encoder->crtc)
10066
			continue;
10067
 
10068
		intel_crtc = to_intel_crtc(connector->encoder->crtc);
10069
 
10070
		if (prepare_pipes & (1 << intel_crtc->pipe)) {
10071
			struct drm_property *dpms_property =
10072
				dev->mode_config.dpms_property;
10073
 
10074
			connector->dpms = DRM_MODE_DPMS_ON;
3243 Serge 10075
			drm_object_property_set_value(&connector->base,
3031 serge 10076
							 dpms_property,
10077
							 DRM_MODE_DPMS_ON);
10078
 
10079
			intel_encoder = to_intel_encoder(connector->encoder);
10080
			intel_encoder->connectors_active = true;
10081
		}
10082
	}
10083
 
10084
}
10085
 
4560 Serge 10086
static bool intel_fuzzy_clock_check(int clock1, int clock2)
4104 Serge 10087
{
4560 Serge 10088
	int diff;
4104 Serge 10089
 
10090
	if (clock1 == clock2)
10091
		return true;
10092
 
10093
	if (!clock1 || !clock2)
10094
		return false;
10095
 
10096
	diff = abs(clock1 - clock2);
10097
 
10098
	if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10099
		return true;
10100
 
10101
	return false;
10102
}
10103
 
3031 serge 10104
#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10105
	list_for_each_entry((intel_crtc), \
10106
			    &(dev)->mode_config.crtc_list, \
10107
			    base.head) \
4104 Serge 10108
		if (mask & (1 <<(intel_crtc)->pipe))
3031 serge 10109
 
3746 Serge 10110
static bool
4104 Serge 10111
intel_pipe_config_compare(struct drm_device *dev,
10112
			  struct intel_crtc_config *current_config,
3746 Serge 10113
			  struct intel_crtc_config *pipe_config)
10114
{
4104 Serge 10115
#define PIPE_CONF_CHECK_X(name)	\
10116
	if (current_config->name != pipe_config->name) { \
10117
		DRM_ERROR("mismatch in " #name " " \
10118
			  "(expected 0x%08x, found 0x%08x)\n", \
10119
			  current_config->name, \
10120
			  pipe_config->name); \
10121
		return false; \
3746 Serge 10122
	}
10123
 
4104 Serge 10124
#define PIPE_CONF_CHECK_I(name)	\
10125
	if (current_config->name != pipe_config->name) { \
10126
		DRM_ERROR("mismatch in " #name " " \
10127
			  "(expected %i, found %i)\n", \
10128
			  current_config->name, \
10129
			  pipe_config->name); \
10130
		return false; \
10131
	}
10132
 
10133
#define PIPE_CONF_CHECK_FLAGS(name, mask)	\
10134
	if ((current_config->name ^ pipe_config->name) & (mask)) { \
10135
		DRM_ERROR("mismatch in " #name "(" #mask ") "	   \
10136
			  "(expected %i, found %i)\n", \
10137
			  current_config->name & (mask), \
10138
			  pipe_config->name & (mask)); \
10139
		return false; \
10140
	}
10141
 
4560 Serge 10142
#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10143
	if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10144
		DRM_ERROR("mismatch in " #name " " \
10145
			  "(expected %i, found %i)\n", \
10146
			  current_config->name, \
10147
			  pipe_config->name); \
10148
		return false; \
10149
	}
10150
 
4104 Serge 10151
#define PIPE_CONF_QUIRK(quirk)	\
10152
	((current_config->quirks | pipe_config->quirks) & (quirk))
10153
 
10154
	PIPE_CONF_CHECK_I(cpu_transcoder);
10155
 
10156
	PIPE_CONF_CHECK_I(has_pch_encoder);
10157
	PIPE_CONF_CHECK_I(fdi_lanes);
10158
	PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10159
	PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10160
	PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10161
	PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10162
	PIPE_CONF_CHECK_I(fdi_m_n.tu);
10163
 
4560 Serge 10164
	PIPE_CONF_CHECK_I(has_dp_encoder);
10165
	PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10166
	PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10167
	PIPE_CONF_CHECK_I(dp_m_n.link_m);
10168
	PIPE_CONF_CHECK_I(dp_m_n.link_n);
10169
	PIPE_CONF_CHECK_I(dp_m_n.tu);
10170
 
4104 Serge 10171
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10172
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10173
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10174
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10175
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10176
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10177
 
10178
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10179
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10180
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10181
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10182
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10183
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10184
 
10185
		PIPE_CONF_CHECK_I(pixel_multiplier);
5060 serge 10186
	PIPE_CONF_CHECK_I(has_hdmi_sink);
10187
	if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10188
	    IS_VALLEYVIEW(dev))
10189
		PIPE_CONF_CHECK_I(limited_color_range);
4104 Serge 10190
 
5060 serge 10191
	PIPE_CONF_CHECK_I(has_audio);
10192
 
4104 Serge 10193
	PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10194
			      DRM_MODE_FLAG_INTERLACE);
10195
 
10196
	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10197
		PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10198
				      DRM_MODE_FLAG_PHSYNC);
10199
		PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10200
				      DRM_MODE_FLAG_NHSYNC);
10201
		PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10202
				      DRM_MODE_FLAG_PVSYNC);
10203
		PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10204
				      DRM_MODE_FLAG_NVSYNC);
10205
	}
10206
 
4560 Serge 10207
	PIPE_CONF_CHECK_I(pipe_src_w);
10208
	PIPE_CONF_CHECK_I(pipe_src_h);
4104 Serge 10209
 
5060 serge 10210
	/*
10211
	 * FIXME: BIOS likes to set up a cloned config with lvds+external
10212
	 * screen. Since we don't yet re-compute the pipe config when moving
10213
	 * just the lvds port away to another pipe the sw tracking won't match.
10214
	 *
10215
	 * Proper atomic modesets with recomputed global state will fix this.
10216
	 * Until then just don't check gmch state for inherited modes.
10217
	 */
10218
	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
4104 Serge 10219
	PIPE_CONF_CHECK_I(gmch_pfit.control);
10220
	/* pfit ratios are autocomputed by the hw on gen4+ */
10221
	if (INTEL_INFO(dev)->gen < 4)
10222
		PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10223
	PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
5060 serge 10224
	}
10225
 
4104 Serge 10226
	PIPE_CONF_CHECK_I(pch_pfit.enabled);
10227
	if (current_config->pch_pfit.enabled) {
10228
	PIPE_CONF_CHECK_I(pch_pfit.pos);
10229
	PIPE_CONF_CHECK_I(pch_pfit.size);
10230
	}
10231
 
4560 Serge 10232
	/* BDW+ don't expose a synchronous way to read the state */
10233
	if (IS_HASWELL(dev))
4104 Serge 10234
	PIPE_CONF_CHECK_I(ips_enabled);
10235
 
4560 Serge 10236
	PIPE_CONF_CHECK_I(double_wide);
10237
 
5060 serge 10238
	PIPE_CONF_CHECK_X(ddi_pll_sel);
10239
 
4104 Serge 10240
	PIPE_CONF_CHECK_I(shared_dpll);
10241
	PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10242
	PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10243
	PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10244
	PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
5060 serge 10245
	PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
4104 Serge 10246
 
4280 Serge 10247
	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10248
		PIPE_CONF_CHECK_I(pipe_bpp);
10249
 
4560 Serge 10250
		PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10251
		PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10252
 
4104 Serge 10253
#undef PIPE_CONF_CHECK_X
10254
#undef PIPE_CONF_CHECK_I
10255
#undef PIPE_CONF_CHECK_FLAGS
4560 Serge 10256
#undef PIPE_CONF_CHECK_CLOCK_FUZZY
4104 Serge 10257
#undef PIPE_CONF_QUIRK
10258
 
3746 Serge 10259
	return true;
10260
}
10261
 
4104 Serge 10262
static void
10263
check_connector_state(struct drm_device *dev)
3031 serge 10264
{
10265
	struct intel_connector *connector;
10266
 
10267
	list_for_each_entry(connector, &dev->mode_config.connector_list,
10268
			    base.head) {
10269
		/* This also checks the encoder/connector hw state with the
10270
		 * ->get_hw_state callbacks. */
10271
		intel_connector_check_state(connector);
10272
 
10273
		WARN(&connector->new_encoder->base != connector->base.encoder,
10274
		     "connector's staged encoder doesn't match current encoder\n");
10275
	}
4104 Serge 10276
}
3031 serge 10277
 
4104 Serge 10278
static void
10279
check_encoder_state(struct drm_device *dev)
10280
{
10281
	struct intel_encoder *encoder;
10282
	struct intel_connector *connector;
10283
 
3031 serge 10284
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10285
			    base.head) {
10286
		bool enabled = false;
10287
		bool active = false;
10288
		enum pipe pipe, tracked_pipe;
10289
 
10290
		DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10291
			      encoder->base.base.id,
5060 serge 10292
			      encoder->base.name);
3031 serge 10293
 
10294
		WARN(&encoder->new_crtc->base != encoder->base.crtc,
10295
		     "encoder's stage crtc doesn't match current crtc\n");
10296
		WARN(encoder->connectors_active && !encoder->base.crtc,
10297
		     "encoder's active_connectors set, but no crtc\n");
10298
 
10299
		list_for_each_entry(connector, &dev->mode_config.connector_list,
10300
				    base.head) {
10301
			if (connector->base.encoder != &encoder->base)
10302
				continue;
10303
			enabled = true;
10304
			if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10305
				active = true;
10306
		}
5060 serge 10307
		/*
10308
		 * for MST connectors if we unplug the connector is gone
10309
		 * away but the encoder is still connected to a crtc
10310
		 * until a modeset happens in response to the hotplug.
10311
		 */
10312
		if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10313
			continue;
10314
 
3031 serge 10315
		WARN(!!encoder->base.crtc != enabled,
10316
		     "encoder's enabled state mismatch "
10317
		     "(expected %i, found %i)\n",
10318
		     !!encoder->base.crtc, enabled);
10319
		WARN(active && !encoder->base.crtc,
10320
		     "active encoder with no crtc\n");
10321
 
10322
		WARN(encoder->connectors_active != active,
10323
		     "encoder's computed active state doesn't match tracked active state "
10324
		     "(expected %i, found %i)\n", active, encoder->connectors_active);
10325
 
10326
		active = encoder->get_hw_state(encoder, &pipe);
10327
		WARN(active != encoder->connectors_active,
10328
		     "encoder's hw state doesn't match sw tracking "
10329
		     "(expected %i, found %i)\n",
10330
		     encoder->connectors_active, active);
10331
 
10332
		if (!encoder->base.crtc)
10333
			continue;
10334
 
10335
		tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10336
		WARN(active && pipe != tracked_pipe,
10337
		     "active encoder's pipe doesn't match"
10338
		     "(expected %i, found %i)\n",
10339
		     tracked_pipe, pipe);
10340
 
10341
	}
4104 Serge 10342
}
3031 serge 10343
 
4104 Serge 10344
static void
10345
check_crtc_state(struct drm_device *dev)
10346
{
5060 serge 10347
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 10348
	struct intel_crtc *crtc;
10349
	struct intel_encoder *encoder;
10350
	struct intel_crtc_config pipe_config;
10351
 
5060 serge 10352
	for_each_intel_crtc(dev, crtc) {
3031 serge 10353
		bool enabled = false;
10354
		bool active = false;
10355
 
4104 Serge 10356
		memset(&pipe_config, 0, sizeof(pipe_config));
10357
 
3031 serge 10358
		DRM_DEBUG_KMS("[CRTC:%d]\n",
10359
			      crtc->base.base.id);
10360
 
10361
		WARN(crtc->active && !crtc->base.enabled,
10362
		     "active crtc, but not enabled in sw tracking\n");
10363
 
10364
		list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10365
				    base.head) {
10366
			if (encoder->base.crtc != &crtc->base)
10367
				continue;
10368
			enabled = true;
10369
			if (encoder->connectors_active)
10370
				active = true;
10371
		}
4104 Serge 10372
 
3031 serge 10373
		WARN(active != crtc->active,
10374
		     "crtc's computed active state doesn't match tracked active state "
10375
		     "(expected %i, found %i)\n", active, crtc->active);
10376
		WARN(enabled != crtc->base.enabled,
10377
		     "crtc's computed enabled state doesn't match tracked enabled state "
10378
		     "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10379
 
3746 Serge 10380
		active = dev_priv->display.get_pipe_config(crtc,
10381
							   &pipe_config);
10382
 
10383
		/* hw state is inconsistent with the pipe A quirk */
10384
		if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10385
			active = crtc->active;
10386
 
4104 Serge 10387
		list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10388
				    base.head) {
10389
			enum pipe pipe;
10390
			if (encoder->base.crtc != &crtc->base)
10391
				continue;
4560 Serge 10392
			if (encoder->get_hw_state(encoder, &pipe))
4104 Serge 10393
				encoder->get_config(encoder, &pipe_config);
10394
		}
10395
 
3746 Serge 10396
		WARN(crtc->active != active,
10397
		     "crtc active state doesn't match with hw state "
10398
		     "(expected %i, found %i)\n", crtc->active, active);
10399
 
4104 Serge 10400
		if (active &&
10401
		    !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10402
			WARN(1, "pipe state doesn't match!\n");
10403
			intel_dump_pipe_config(crtc, &pipe_config,
10404
					       "[hw state]");
10405
			intel_dump_pipe_config(crtc, &crtc->config,
10406
					       "[sw state]");
10407
		}
3031 serge 10408
	}
10409
}
10410
 
4104 Serge 10411
static void
10412
check_shared_dpll_state(struct drm_device *dev)
10413
{
5060 serge 10414
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 10415
	struct intel_crtc *crtc;
10416
	struct intel_dpll_hw_state dpll_hw_state;
10417
	int i;
10418
 
10419
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10420
		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10421
		int enabled_crtcs = 0, active_crtcs = 0;
10422
		bool active;
10423
 
10424
		memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10425
 
10426
		DRM_DEBUG_KMS("%s\n", pll->name);
10427
 
10428
		active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10429
 
10430
		WARN(pll->active > pll->refcount,
10431
		     "more active pll users than references: %i vs %i\n",
10432
		     pll->active, pll->refcount);
10433
		WARN(pll->active && !pll->on,
10434
		     "pll in active use but not on in sw tracking\n");
10435
		WARN(pll->on && !pll->active,
10436
		     "pll in on but not on in use in sw tracking\n");
10437
		WARN(pll->on != active,
10438
		     "pll on state mismatch (expected %i, found %i)\n",
10439
		     pll->on, active);
10440
 
5060 serge 10441
		for_each_intel_crtc(dev, crtc) {
4104 Serge 10442
			if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10443
				enabled_crtcs++;
10444
			if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10445
				active_crtcs++;
10446
		}
10447
		WARN(pll->active != active_crtcs,
10448
		     "pll active crtcs mismatch (expected %i, found %i)\n",
10449
		     pll->active, active_crtcs);
10450
		WARN(pll->refcount != enabled_crtcs,
10451
		     "pll enabled crtcs mismatch (expected %i, found %i)\n",
10452
		     pll->refcount, enabled_crtcs);
10453
 
10454
		WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10455
				       sizeof(dpll_hw_state)),
10456
		     "pll hw state mismatch\n");
10457
	}
10458
}
10459
 
10460
void
10461
intel_modeset_check_state(struct drm_device *dev)
10462
{
10463
	check_connector_state(dev);
10464
	check_encoder_state(dev);
10465
	check_crtc_state(dev);
10466
	check_shared_dpll_state(dev);
10467
}
10468
 
4560 Serge 10469
void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10470
				     int dotclock)
10471
{
10472
	/*
10473
	 * FDI already provided one idea for the dotclock.
10474
	 * Yell if the encoder disagrees.
10475
	 */
10476
	WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10477
	     "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10478
	     pipe_config->adjusted_mode.crtc_clock, dotclock);
10479
}
10480
 
5060 serge 10481
static void update_scanline_offset(struct intel_crtc *crtc)
10482
{
10483
	struct drm_device *dev = crtc->base.dev;
10484
 
10485
	/*
10486
	 * The scanline counter increments at the leading edge of hsync.
10487
	 *
10488
	 * On most platforms it starts counting from vtotal-1 on the
10489
	 * first active line. That means the scanline counter value is
10490
	 * always one less than what we would expect. Ie. just after
10491
	 * start of vblank, which also occurs at start of hsync (on the
10492
	 * last active line), the scanline counter will read vblank_start-1.
10493
	 *
10494
	 * On gen2 the scanline counter starts counting from 1 instead
10495
	 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10496
	 * to keep the value positive), instead of adding one.
10497
	 *
10498
	 * On HSW+ the behaviour of the scanline counter depends on the output
10499
	 * type. For DP ports it behaves like most other platforms, but on HDMI
10500
	 * there's an extra 1 line difference. So we need to add two instead of
10501
	 * one to the value.
10502
	 */
10503
	if (IS_GEN2(dev)) {
10504
		const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10505
		int vtotal;
10506
 
10507
		vtotal = mode->crtc_vtotal;
10508
		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10509
			vtotal /= 2;
10510
 
10511
		crtc->scanline_offset = vtotal - 1;
10512
	} else if (HAS_DDI(dev) &&
10513
		   intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10514
		crtc->scanline_offset = 2;
10515
	} else
10516
		crtc->scanline_offset = 1;
10517
}
10518
 
3746 Serge 10519
static int __intel_set_mode(struct drm_crtc *crtc,
3031 serge 10520
		    struct drm_display_mode *mode,
10521
		    int x, int y, struct drm_framebuffer *fb)
10522
{
10523
	struct drm_device *dev = crtc->dev;
5060 serge 10524
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 10525
	struct drm_display_mode *saved_mode;
3746 Serge 10526
	struct intel_crtc_config *pipe_config = NULL;
3031 serge 10527
	struct intel_crtc *intel_crtc;
10528
	unsigned disable_pipes, prepare_pipes, modeset_pipes;
3480 Serge 10529
	int ret = 0;
3031 serge 10530
 
4560 Serge 10531
	saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
3480 Serge 10532
	if (!saved_mode)
10533
		return -ENOMEM;
10534
 
3031 serge 10535
	intel_modeset_affected_pipes(crtc, &modeset_pipes,
10536
				     &prepare_pipes, &disable_pipes);
10537
 
3480 Serge 10538
	*saved_mode = crtc->mode;
3031 serge 10539
 
10540
	/* Hack: Because we don't (yet) support global modeset on multiple
10541
	 * crtcs, we don't keep track of the new mode for more than one crtc.
10542
	 * Hence simply check whether any bit is set in modeset_pipes in all the
10543
	 * pieces of code that are not yet converted to deal with mutliple crtcs
10544
	 * changing their mode at the same time. */
10545
	if (modeset_pipes) {
3746 Serge 10546
		pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10547
		if (IS_ERR(pipe_config)) {
10548
			ret = PTR_ERR(pipe_config);
10549
			pipe_config = NULL;
10550
 
3480 Serge 10551
			goto out;
3031 serge 10552
		}
4104 Serge 10553
		intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10554
				       "[modeset]");
5060 serge 10555
		to_intel_crtc(crtc)->new_config = pipe_config;
3031 serge 10556
	}
10557
 
4560 Serge 10558
	/*
10559
	 * See if the config requires any additional preparation, e.g.
10560
	 * to adjust global state with pipes off.  We need to do this
10561
	 * here so we can get the modeset_pipe updated config for the new
10562
	 * mode set on this crtc.  For other crtcs we need to use the
10563
	 * adjusted_mode bits in the crtc directly.
10564
	 */
10565
	if (IS_VALLEYVIEW(dev)) {
5060 serge 10566
		valleyview_modeset_global_pipes(dev, &prepare_pipes);
4560 Serge 10567
 
10568
		/* may have added more to prepare_pipes than we should */
10569
		prepare_pipes &= ~disable_pipes;
10570
	}
10571
 
3746 Serge 10572
	for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10573
		intel_crtc_disable(&intel_crtc->base);
10574
 
3031 serge 10575
	for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10576
		if (intel_crtc->base.enabled)
10577
			dev_priv->display.crtc_disable(&intel_crtc->base);
10578
	}
10579
 
10580
	/* crtc->mode is already used by the ->mode_set callbacks, hence we need
10581
	 * to set it here already despite that we pass it down the callchain.
2330 Serge 10582
	 */
3746 Serge 10583
	if (modeset_pipes) {
3031 serge 10584
		crtc->mode = *mode;
3746 Serge 10585
		/* mode_set/enable/disable functions rely on a correct pipe
10586
		 * config. */
10587
		to_intel_crtc(crtc)->config = *pipe_config;
5060 serge 10588
		to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
4560 Serge 10589
 
10590
		/*
10591
		 * Calculate and store various constants which
10592
		 * are later needed by vblank and swap-completion
10593
		 * timestamping. They are derived from true hwmode.
10594
		 */
10595
		drm_calc_timestamping_constants(crtc,
10596
						&pipe_config->adjusted_mode);
3746 Serge 10597
	}
2327 Serge 10598
 
3031 serge 10599
	/* Only after disabling all output pipelines that will be changed can we
10600
	 * update the the output configuration. */
10601
	intel_modeset_update_state(dev, prepare_pipes);
10602
 
3243 Serge 10603
	if (dev_priv->display.modeset_global_resources)
10604
		dev_priv->display.modeset_global_resources(dev);
10605
 
3031 serge 10606
	/* Set up the DPLL and any encoders state that needs to adjust or depend
10607
	 * on the DPLL.
2330 Serge 10608
	 */
3031 serge 10609
	for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
5060 serge 10610
		struct drm_framebuffer *old_fb = crtc->primary->fb;
10611
		struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10612
		struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10613
 
10614
		mutex_lock(&dev->struct_mutex);
10615
		ret = intel_pin_and_fence_fb_obj(dev,
10616
						 obj,
10617
						 NULL);
10618
		if (ret != 0) {
10619
			DRM_ERROR("pin & fence failed\n");
10620
			mutex_unlock(&dev->struct_mutex);
10621
			goto done;
10622
		}
10623
		if (old_fb)
10624
			intel_unpin_fb_obj(old_obj);
10625
		i915_gem_track_fb(old_obj, obj,
10626
				  INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
10627
		mutex_unlock(&dev->struct_mutex);
10628
 
10629
		crtc->primary->fb = fb;
10630
		crtc->x = x;
10631
		crtc->y = y;
10632
 
10633
		ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
3031 serge 10634
					   x, y, fb);
3480 Serge 10635
		if (ret)
3031 serge 10636
		    goto done;
10637
	}
10638
 
10639
	/* Now enable the clocks, plane, pipe, and connectors that we set up. */
5060 serge 10640
	for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10641
		update_scanline_offset(intel_crtc);
10642
 
3031 serge 10643
		dev_priv->display.crtc_enable(&intel_crtc->base);
5060 serge 10644
	}
3031 serge 10645
 
10646
	/* FIXME: add subpixel order */
10647
done:
4560 Serge 10648
	if (ret && crtc->enabled)
3480 Serge 10649
		crtc->mode = *saved_mode;
3031 serge 10650
 
3480 Serge 10651
out:
3746 Serge 10652
	kfree(pipe_config);
3480 Serge 10653
	kfree(saved_mode);
3031 serge 10654
	return ret;
2330 Serge 10655
}
2327 Serge 10656
 
4104 Serge 10657
static int intel_set_mode(struct drm_crtc *crtc,
3746 Serge 10658
		     struct drm_display_mode *mode,
10659
		     int x, int y, struct drm_framebuffer *fb)
10660
{
10661
	int ret;
10662
 
10663
	ret = __intel_set_mode(crtc, mode, x, y, fb);
10664
 
10665
	if (ret == 0)
10666
		intel_modeset_check_state(crtc->dev);
10667
 
10668
	return ret;
10669
}
10670
 
3480 Serge 10671
void intel_crtc_restore_mode(struct drm_crtc *crtc)
10672
{
5060 serge 10673
	intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
3480 Serge 10674
}
10675
 
3031 serge 10676
#undef for_each_intel_crtc_masked
2327 Serge 10677
 
3031 serge 10678
static void intel_set_config_free(struct intel_set_config *config)
10679
{
10680
	if (!config)
10681
		return;
10682
 
10683
	kfree(config->save_connector_encoders);
10684
	kfree(config->save_encoder_crtcs);
5060 serge 10685
	kfree(config->save_crtc_enabled);
3031 serge 10686
	kfree(config);
10687
}
10688
 
10689
static int intel_set_config_save_state(struct drm_device *dev,
10690
				       struct intel_set_config *config)
10691
{
5060 serge 10692
	struct drm_crtc *crtc;
3031 serge 10693
	struct drm_encoder *encoder;
10694
	struct drm_connector *connector;
10695
	int count;
10696
 
5060 serge 10697
	config->save_crtc_enabled =
10698
		kcalloc(dev->mode_config.num_crtc,
10699
			sizeof(bool), GFP_KERNEL);
10700
	if (!config->save_crtc_enabled)
10701
		return -ENOMEM;
10702
 
3031 serge 10703
	config->save_encoder_crtcs =
10704
		kcalloc(dev->mode_config.num_encoder,
10705
			sizeof(struct drm_crtc *), GFP_KERNEL);
10706
	if (!config->save_encoder_crtcs)
10707
		return -ENOMEM;
10708
 
10709
	config->save_connector_encoders =
10710
		kcalloc(dev->mode_config.num_connector,
10711
			sizeof(struct drm_encoder *), GFP_KERNEL);
10712
	if (!config->save_connector_encoders)
10713
		return -ENOMEM;
10714
 
10715
	/* Copy data. Note that driver private data is not affected.
10716
	 * Should anything bad happen only the expected state is
10717
	 * restored, not the drivers personal bookkeeping.
10718
	 */
10719
	count = 0;
5060 serge 10720
	for_each_crtc(dev, crtc) {
10721
		config->save_crtc_enabled[count++] = crtc->enabled;
10722
	}
10723
 
10724
	count = 0;
3031 serge 10725
	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10726
		config->save_encoder_crtcs[count++] = encoder->crtc;
10727
	}
10728
 
10729
	count = 0;
10730
	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10731
		config->save_connector_encoders[count++] = connector->encoder;
10732
	}
10733
 
10734
	return 0;
10735
}
10736
 
10737
static void intel_set_config_restore_state(struct drm_device *dev,
10738
					   struct intel_set_config *config)
10739
{
5060 serge 10740
	struct intel_crtc *crtc;
3031 serge 10741
	struct intel_encoder *encoder;
10742
	struct intel_connector *connector;
10743
	int count;
10744
 
10745
	count = 0;
5060 serge 10746
	for_each_intel_crtc(dev, crtc) {
10747
		crtc->new_enabled = config->save_crtc_enabled[count++];
10748
 
10749
		if (crtc->new_enabled)
10750
			crtc->new_config = &crtc->config;
10751
		else
10752
			crtc->new_config = NULL;
10753
	}
10754
 
10755
	count = 0;
3031 serge 10756
	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10757
		encoder->new_crtc =
10758
			to_intel_crtc(config->save_encoder_crtcs[count++]);
10759
	}
10760
 
10761
	count = 0;
10762
	list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10763
		connector->new_encoder =
10764
			to_intel_encoder(config->save_connector_encoders[count++]);
10765
	}
10766
}
10767
 
3746 Serge 10768
static bool
4104 Serge 10769
is_crtc_connector_off(struct drm_mode_set *set)
3746 Serge 10770
{
10771
	int i;
10772
 
4104 Serge 10773
	if (set->num_connectors == 0)
10774
		return false;
10775
 
10776
	if (WARN_ON(set->connectors == NULL))
10777
		return false;
10778
 
10779
	for (i = 0; i < set->num_connectors; i++)
10780
		if (set->connectors[i]->encoder &&
10781
		    set->connectors[i]->encoder->crtc == set->crtc &&
10782
		    set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
3746 Serge 10783
			return true;
10784
 
10785
	return false;
10786
}
10787
 
3031 serge 10788
static void
10789
intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10790
				      struct intel_set_config *config)
10791
{
10792
 
10793
	/* We should be able to check here if the fb has the same properties
10794
	 * and then just flip_or_move it */
4104 Serge 10795
	if (is_crtc_connector_off(set)) {
3746 Serge 10796
			config->mode_changed = true;
5060 serge 10797
	} else if (set->crtc->primary->fb != set->fb) {
10798
		/*
10799
		 * If we have no fb, we can only flip as long as the crtc is
10800
		 * active, otherwise we need a full mode set.  The crtc may
10801
		 * be active if we've only disabled the primary plane, or
10802
		 * in fastboot situations.
10803
		 */
10804
		if (set->crtc->primary->fb == NULL) {
4104 Serge 10805
			struct intel_crtc *intel_crtc =
10806
				to_intel_crtc(set->crtc);
10807
 
5060 serge 10808
			if (intel_crtc->active) {
4104 Serge 10809
				DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10810
				config->fb_changed = true;
10811
			} else {
10812
				DRM_DEBUG_KMS("inactive crtc, full mode set\n");
3031 serge 10813
			config->mode_changed = true;
4104 Serge 10814
			}
3031 serge 10815
		} else if (set->fb == NULL) {
10816
			config->mode_changed = true;
3746 Serge 10817
		} else if (set->fb->pixel_format !=
5060 serge 10818
			   set->crtc->primary->fb->pixel_format) {
3031 serge 10819
			config->mode_changed = true;
3746 Serge 10820
		} else {
3031 serge 10821
			config->fb_changed = true;
10822
	}
3746 Serge 10823
	}
3031 serge 10824
 
10825
	if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
10826
		config->fb_changed = true;
10827
 
10828
	if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
10829
		DRM_DEBUG_KMS("modes are different, full mode set\n");
10830
		drm_mode_debug_printmodeline(&set->crtc->mode);
10831
		drm_mode_debug_printmodeline(set->mode);
10832
		config->mode_changed = true;
10833
	}
4104 Serge 10834
 
10835
	DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
10836
			set->crtc->base.id, config->mode_changed, config->fb_changed);
3031 serge 10837
}
10838
 
10839
static int
10840
intel_modeset_stage_output_state(struct drm_device *dev,
10841
				 struct drm_mode_set *set,
10842
				 struct intel_set_config *config)
10843
{
10844
	struct intel_connector *connector;
10845
	struct intel_encoder *encoder;
5060 serge 10846
	struct intel_crtc *crtc;
4104 Serge 10847
	int ro;
3031 serge 10848
 
3480 Serge 10849
	/* The upper layers ensure that we either disable a crtc or have a list
3031 serge 10850
	 * of connectors. For paranoia, double-check this. */
10851
	WARN_ON(!set->fb && (set->num_connectors != 0));
10852
	WARN_ON(set->fb && (set->num_connectors == 0));
10853
 
10854
	list_for_each_entry(connector, &dev->mode_config.connector_list,
10855
			    base.head) {
10856
		/* Otherwise traverse passed in connector list and get encoders
10857
		 * for them. */
10858
		for (ro = 0; ro < set->num_connectors; ro++) {
10859
			if (set->connectors[ro] == &connector->base) {
5060 serge 10860
				connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
3031 serge 10861
				break;
10862
			}
10863
		}
10864
 
10865
		/* If we disable the crtc, disable all its connectors. Also, if
10866
		 * the connector is on the changing crtc but not on the new
10867
		 * connector list, disable it. */
10868
		if ((!set->fb || ro == set->num_connectors) &&
10869
		    connector->base.encoder &&
10870
		    connector->base.encoder->crtc == set->crtc) {
10871
			connector->new_encoder = NULL;
10872
 
10873
			DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
10874
				connector->base.base.id,
5060 serge 10875
				connector->base.name);
3031 serge 10876
		}
10877
 
10878
 
10879
		if (&connector->new_encoder->base != connector->base.encoder) {
10880
			DRM_DEBUG_KMS("encoder changed, full mode switch\n");
10881
			config->mode_changed = true;
10882
		}
10883
	}
10884
	/* connector->new_encoder is now updated for all connectors. */
10885
 
10886
	/* Update crtc of enabled connectors. */
10887
	list_for_each_entry(connector, &dev->mode_config.connector_list,
10888
			    base.head) {
5060 serge 10889
		struct drm_crtc *new_crtc;
10890
 
3031 serge 10891
		if (!connector->new_encoder)
10892
			continue;
10893
 
10894
		new_crtc = connector->new_encoder->base.crtc;
10895
 
10896
		for (ro = 0; ro < set->num_connectors; ro++) {
10897
			if (set->connectors[ro] == &connector->base)
10898
				new_crtc = set->crtc;
10899
		}
10900
 
10901
		/* Make sure the new CRTC will work with the encoder */
4560 Serge 10902
		if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
3031 serge 10903
					   new_crtc)) {
10904
			return -EINVAL;
10905
		}
5060 serge 10906
		connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
3031 serge 10907
 
10908
		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
10909
			connector->base.base.id,
5060 serge 10910
			connector->base.name,
3031 serge 10911
			new_crtc->base.id);
10912
	}
10913
 
10914
	/* Check for any encoders that needs to be disabled. */
10915
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10916
			    base.head) {
4560 Serge 10917
		int num_connectors = 0;
3031 serge 10918
		list_for_each_entry(connector,
10919
				    &dev->mode_config.connector_list,
10920
				    base.head) {
10921
			if (connector->new_encoder == encoder) {
10922
				WARN_ON(!connector->new_encoder->new_crtc);
4560 Serge 10923
				num_connectors++;
3031 serge 10924
			}
10925
		}
4560 Serge 10926
 
10927
		if (num_connectors == 0)
3031 serge 10928
		encoder->new_crtc = NULL;
4560 Serge 10929
		else if (num_connectors > 1)
10930
			return -EINVAL;
10931
 
3031 serge 10932
		/* Only now check for crtc changes so we don't miss encoders
10933
		 * that will be disabled. */
10934
		if (&encoder->new_crtc->base != encoder->base.crtc) {
10935
			DRM_DEBUG_KMS("crtc changed, full mode switch\n");
10936
			config->mode_changed = true;
10937
		}
10938
	}
10939
	/* Now we've also updated encoder->new_crtc for all encoders. */
5060 serge 10940
	list_for_each_entry(connector, &dev->mode_config.connector_list,
10941
			    base.head) {
10942
		if (connector->new_encoder)
10943
			if (connector->new_encoder != connector->encoder)
10944
				connector->encoder = connector->new_encoder;
10945
	}
10946
	for_each_intel_crtc(dev, crtc) {
10947
		crtc->new_enabled = false;
3031 serge 10948
 
5060 serge 10949
		list_for_each_entry(encoder,
10950
				    &dev->mode_config.encoder_list,
10951
				    base.head) {
10952
			if (encoder->new_crtc == crtc) {
10953
				crtc->new_enabled = true;
10954
				break;
10955
			}
10956
		}
10957
 
10958
		if (crtc->new_enabled != crtc->base.enabled) {
10959
			DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
10960
				      crtc->new_enabled ? "en" : "dis");
10961
			config->mode_changed = true;
10962
		}
10963
 
10964
		if (crtc->new_enabled)
10965
			crtc->new_config = &crtc->config;
10966
		else
10967
			crtc->new_config = NULL;
10968
	}
10969
 
3031 serge 10970
	return 0;
10971
}
10972
 
5060 serge 10973
static void disable_crtc_nofb(struct intel_crtc *crtc)
10974
{
10975
	struct drm_device *dev = crtc->base.dev;
10976
	struct intel_encoder *encoder;
10977
	struct intel_connector *connector;
10978
 
10979
	DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
10980
		      pipe_name(crtc->pipe));
10981
 
10982
	list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10983
		if (connector->new_encoder &&
10984
		    connector->new_encoder->new_crtc == crtc)
10985
			connector->new_encoder = NULL;
10986
	}
10987
 
10988
	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10989
		if (encoder->new_crtc == crtc)
10990
			encoder->new_crtc = NULL;
10991
	}
10992
 
10993
	crtc->new_enabled = false;
10994
	crtc->new_config = NULL;
10995
}
10996
 
3031 serge 10997
static int intel_crtc_set_config(struct drm_mode_set *set)
10998
{
10999
	struct drm_device *dev;
11000
	struct drm_mode_set save_set;
11001
	struct intel_set_config *config;
11002
	int ret;
11003
 
11004
	BUG_ON(!set);
11005
	BUG_ON(!set->crtc);
11006
	BUG_ON(!set->crtc->helper_private);
11007
 
3480 Serge 11008
	/* Enforce sane interface api - has been abused by the fb helper. */
11009
	BUG_ON(!set->mode && set->fb);
11010
	BUG_ON(set->fb && set->num_connectors == 0);
3031 serge 11011
 
11012
	if (set->fb) {
11013
		DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11014
				set->crtc->base.id, set->fb->base.id,
11015
				(int)set->num_connectors, set->x, set->y);
11016
	} else {
11017
		DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11018
	}
11019
 
11020
	dev = set->crtc->dev;
11021
 
11022
	ret = -ENOMEM;
11023
	config = kzalloc(sizeof(*config), GFP_KERNEL);
11024
	if (!config)
11025
		goto out_config;
11026
 
11027
	ret = intel_set_config_save_state(dev, config);
11028
	if (ret)
11029
		goto out_config;
11030
 
11031
	save_set.crtc = set->crtc;
11032
	save_set.mode = &set->crtc->mode;
11033
	save_set.x = set->crtc->x;
11034
	save_set.y = set->crtc->y;
5060 serge 11035
	save_set.fb = set->crtc->primary->fb;
3031 serge 11036
 
11037
	/* Compute whether we need a full modeset, only an fb base update or no
11038
	 * change at all. In the future we might also check whether only the
11039
	 * mode changed, e.g. for LVDS where we only change the panel fitter in
11040
	 * such cases. */
11041
	intel_set_config_compute_mode_changes(set, config);
11042
 
11043
	ret = intel_modeset_stage_output_state(dev, set, config);
11044
	if (ret)
11045
		goto fail;
11046
 
11047
	if (config->mode_changed) {
3480 Serge 11048
		ret = intel_set_mode(set->crtc, set->mode,
11049
				     set->x, set->y, set->fb);
3031 serge 11050
	} else if (config->fb_changed) {
5060 serge 11051
		struct drm_i915_private *dev_priv = dev->dev_private;
11052
		struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
3746 Serge 11053
 
5060 serge 11054
 
3031 serge 11055
		ret = intel_pipe_set_base(set->crtc,
11056
					  set->x, set->y, set->fb);
5060 serge 11057
 
4560 Serge 11058
		/*
5060 serge 11059
		 * We need to make sure the primary plane is re-enabled if it
11060
		 * has previously been turned off.
11061
		 */
11062
		if (!intel_crtc->primary_enabled && ret == 0) {
11063
			WARN_ON(!intel_crtc->active);
11064
			intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11065
						      intel_crtc->pipe);
11066
		}
11067
 
11068
		/*
4560 Serge 11069
		 * In the fastboot case this may be our only check of the
11070
		 * state after boot.  It would be better to only do it on
11071
		 * the first update, but we don't have a nice way of doing that
11072
		 * (and really, set_config isn't used much for high freq page
11073
		 * flipping, so increasing its cost here shouldn't be a big
11074
		 * deal).
11075
		 */
5060 serge 11076
		if (i915.fastboot && ret == 0)
4560 Serge 11077
			intel_modeset_check_state(set->crtc->dev);
3031 serge 11078
	}
11079
 
3746 Serge 11080
	if (ret) {
4104 Serge 11081
		DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
3746 Serge 11082
			  set->crtc->base.id, ret);
3031 serge 11083
fail:
11084
	intel_set_config_restore_state(dev, config);
11085
 
5060 serge 11086
		/*
11087
		 * HACK: if the pipe was on, but we didn't have a framebuffer,
11088
		 * force the pipe off to avoid oopsing in the modeset code
11089
		 * due to fb==NULL. This should only happen during boot since
11090
		 * we don't yet reconstruct the FB from the hardware state.
11091
		 */
11092
		if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11093
			disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11094
 
3031 serge 11095
	/* Try to restore the config */
11096
	if (config->mode_changed &&
3480 Serge 11097
	    intel_set_mode(save_set.crtc, save_set.mode,
3031 serge 11098
			    save_set.x, save_set.y, save_set.fb))
11099
		DRM_ERROR("failed to restore config after modeset failure\n");
3746 Serge 11100
	}
3031 serge 11101
 
11102
out_config:
11103
	intel_set_config_free(config);
11104
	return ret;
11105
}
11106
 
2330 Serge 11107
static const struct drm_crtc_funcs intel_crtc_funcs = {
11108
	.gamma_set = intel_crtc_gamma_set,
3031 serge 11109
	.set_config = intel_crtc_set_config,
2330 Serge 11110
	.destroy = intel_crtc_destroy,
11111
//	.page_flip = intel_crtc_page_flip,
11112
};
2327 Serge 11113
 
4104 Serge 11114
static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11115
				      struct intel_shared_dpll *pll,
11116
				      struct intel_dpll_hw_state *hw_state)
3031 serge 11117
{
4104 Serge 11118
	uint32_t val;
3031 serge 11119
 
5060 serge 11120
	if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11121
		return false;
11122
 
4104 Serge 11123
	val = I915_READ(PCH_DPLL(pll->id));
11124
	hw_state->dpll = val;
11125
	hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11126
	hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11127
 
11128
	return val & DPLL_VCO_ENABLE;
11129
}
11130
 
11131
static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11132
				  struct intel_shared_dpll *pll)
11133
{
11134
	I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11135
	I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11136
}
11137
 
11138
static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11139
				struct intel_shared_dpll *pll)
11140
{
11141
	/* PCH refclock must be enabled first */
4560 Serge 11142
	ibx_assert_pch_refclk_enabled(dev_priv);
4104 Serge 11143
 
11144
	I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11145
 
11146
	/* Wait for the clocks to stabilize. */
11147
	POSTING_READ(PCH_DPLL(pll->id));
11148
	udelay(150);
11149
 
11150
	/* The pixel multiplier can only be updated once the
11151
	 * DPLL is enabled and the clocks are stable.
11152
	 *
11153
	 * So write it again.
11154
	 */
11155
	I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11156
	POSTING_READ(PCH_DPLL(pll->id));
11157
	udelay(200);
11158
}
11159
 
11160
static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11161
				 struct intel_shared_dpll *pll)
11162
{
11163
	struct drm_device *dev = dev_priv->dev;
11164
	struct intel_crtc *crtc;
11165
 
11166
	/* Make sure no transcoder isn't still depending on us. */
5060 serge 11167
	for_each_intel_crtc(dev, crtc) {
4104 Serge 11168
		if (intel_crtc_to_shared_dpll(crtc) == pll)
11169
			assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
3031 serge 11170
	}
11171
 
4104 Serge 11172
	I915_WRITE(PCH_DPLL(pll->id), 0);
11173
	POSTING_READ(PCH_DPLL(pll->id));
11174
	udelay(200);
11175
}
11176
 
11177
static char *ibx_pch_dpll_names[] = {
11178
	"PCH DPLL A",
11179
	"PCH DPLL B",
11180
};
11181
 
11182
static void ibx_pch_dpll_init(struct drm_device *dev)
11183
{
11184
	struct drm_i915_private *dev_priv = dev->dev_private;
11185
	int i;
11186
 
11187
	dev_priv->num_shared_dpll = 2;
11188
 
11189
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11190
		dev_priv->shared_dplls[i].id = i;
11191
		dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11192
		dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11193
		dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11194
		dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11195
		dev_priv->shared_dplls[i].get_hw_state =
11196
			ibx_pch_dpll_get_hw_state;
3031 serge 11197
	}
11198
}
11199
 
4104 Serge 11200
static void intel_shared_dpll_init(struct drm_device *dev)
11201
{
11202
	struct drm_i915_private *dev_priv = dev->dev_private;
11203
 
5060 serge 11204
	if (HAS_DDI(dev))
11205
		intel_ddi_pll_init(dev);
11206
	else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4104 Serge 11207
		ibx_pch_dpll_init(dev);
11208
	else
11209
		dev_priv->num_shared_dpll = 0;
11210
 
11211
	BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11212
}
11213
 
5060 serge 11214
static int
11215
intel_primary_plane_disable(struct drm_plane *plane)
11216
{
11217
	struct drm_device *dev = plane->dev;
11218
	struct drm_i915_private *dev_priv = dev->dev_private;
11219
	struct intel_plane *intel_plane = to_intel_plane(plane);
11220
	struct intel_crtc *intel_crtc;
11221
 
11222
	if (!plane->fb)
11223
		return 0;
11224
 
11225
	BUG_ON(!plane->crtc);
11226
 
11227
	intel_crtc = to_intel_crtc(plane->crtc);
11228
 
11229
	/*
11230
	 * Even though we checked plane->fb above, it's still possible that
11231
	 * the primary plane has been implicitly disabled because the crtc
11232
	 * coordinates given weren't visible, or because we detected
11233
	 * that it was 100% covered by a sprite plane.  Or, the CRTC may be
11234
	 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11235
	 * In either case, we need to unpin the FB and let the fb pointer get
11236
	 * updated, but otherwise we don't need to touch the hardware.
11237
	 */
11238
	if (!intel_crtc->primary_enabled)
11239
		goto disable_unpin;
11240
 
11241
	intel_disable_primary_hw_plane(dev_priv, intel_plane->plane,
11242
				       intel_plane->pipe);
11243
disable_unpin:
11244
	mutex_lock(&dev->struct_mutex);
11245
	i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11246
			  INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11247
	intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11248
	mutex_unlock(&dev->struct_mutex);
11249
	plane->fb = NULL;
11250
 
11251
	return 0;
11252
}
11253
 
11254
static int
11255
intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11256
			     struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11257
			     unsigned int crtc_w, unsigned int crtc_h,
11258
			     uint32_t src_x, uint32_t src_y,
11259
			     uint32_t src_w, uint32_t src_h)
11260
{
11261
	struct drm_device *dev = crtc->dev;
11262
	struct drm_i915_private *dev_priv = dev->dev_private;
11263
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11264
	struct intel_plane *intel_plane = to_intel_plane(plane);
11265
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11266
	struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11267
	struct drm_rect dest = {
11268
		/* integer pixels */
11269
		.x1 = crtc_x,
11270
		.y1 = crtc_y,
11271
		.x2 = crtc_x + crtc_w,
11272
		.y2 = crtc_y + crtc_h,
11273
	};
11274
	struct drm_rect src = {
11275
		/* 16.16 fixed point */
11276
		.x1 = src_x,
11277
		.y1 = src_y,
11278
		.x2 = src_x + src_w,
11279
		.y2 = src_y + src_h,
11280
	};
11281
	const struct drm_rect clip = {
11282
		/* integer pixels */
11283
		.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11284
		.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11285
	};
11286
	bool visible;
11287
	int ret;
11288
 
11289
	ret = drm_plane_helper_check_update(plane, crtc, fb,
11290
					    &src, &dest, &clip,
11291
					    DRM_PLANE_HELPER_NO_SCALING,
11292
					    DRM_PLANE_HELPER_NO_SCALING,
11293
					    false, true, &visible);
11294
 
11295
	if (ret)
11296
		return ret;
11297
 
11298
	/*
11299
	 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11300
	 * updating the fb pointer, and returning without touching the
11301
	 * hardware.  This allows us to later do a drmModeSetCrtc with fb=-1 to
11302
	 * turn on the display with all planes setup as desired.
11303
	 */
11304
	if (!crtc->enabled) {
11305
		mutex_lock(&dev->struct_mutex);
11306
 
11307
		/*
11308
		 * If we already called setplane while the crtc was disabled,
11309
		 * we may have an fb pinned; unpin it.
11310
		 */
11311
		if (plane->fb)
11312
			intel_unpin_fb_obj(old_obj);
11313
 
11314
		i915_gem_track_fb(old_obj, obj,
11315
				  INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11316
 
11317
		/* Pin and return without programming hardware */
11318
		ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11319
		mutex_unlock(&dev->struct_mutex);
11320
 
11321
		return ret;
11322
	}
11323
 
11324
 
11325
	/*
11326
	 * If clipping results in a non-visible primary plane, we'll disable
11327
	 * the primary plane.  Note that this is a bit different than what
11328
	 * happens if userspace explicitly disables the plane by passing fb=0
11329
	 * because plane->fb still gets set and pinned.
11330
	 */
11331
	if (!visible) {
11332
		mutex_lock(&dev->struct_mutex);
11333
 
11334
		/*
11335
		 * Try to pin the new fb first so that we can bail out if we
11336
		 * fail.
11337
		 */
11338
		if (plane->fb != fb) {
11339
			ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11340
			if (ret) {
11341
				mutex_unlock(&dev->struct_mutex);
11342
				return ret;
11343
			}
11344
		}
11345
 
11346
		i915_gem_track_fb(old_obj, obj,
11347
				  INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11348
 
11349
		if (intel_crtc->primary_enabled)
11350
			intel_disable_primary_hw_plane(dev_priv,
11351
						       intel_plane->plane,
11352
						       intel_plane->pipe);
11353
 
11354
 
11355
		if (plane->fb != fb)
11356
			if (plane->fb)
11357
				intel_unpin_fb_obj(old_obj);
11358
 
11359
		mutex_unlock(&dev->struct_mutex);
11360
 
11361
		return 0;
11362
	}
11363
 
11364
	ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11365
	if (ret)
11366
		return ret;
11367
 
11368
	if (!intel_crtc->primary_enabled)
11369
		intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11370
					      intel_crtc->pipe);
11371
 
11372
	return 0;
11373
}
11374
 
11375
/* Common destruction function for both primary and cursor planes */
11376
static void intel_plane_destroy(struct drm_plane *plane)
11377
{
11378
	struct intel_plane *intel_plane = to_intel_plane(plane);
11379
	drm_plane_cleanup(plane);
11380
	kfree(intel_plane);
11381
}
11382
 
11383
static const struct drm_plane_funcs intel_primary_plane_funcs = {
11384
	.update_plane = intel_primary_plane_setplane,
11385
	.disable_plane = intel_primary_plane_disable,
11386
	.destroy = intel_plane_destroy,
11387
};
11388
 
11389
static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11390
						    int pipe)
11391
{
11392
	struct intel_plane *primary;
11393
	const uint32_t *intel_primary_formats;
11394
	int num_formats;
11395
 
11396
	primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11397
	if (primary == NULL)
11398
		return NULL;
11399
 
11400
	primary->can_scale = false;
11401
	primary->max_downscale = 1;
11402
	primary->pipe = pipe;
11403
	primary->plane = pipe;
11404
	if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11405
		primary->plane = !pipe;
11406
 
11407
	if (INTEL_INFO(dev)->gen <= 3) {
11408
		intel_primary_formats = intel_primary_formats_gen2;
11409
		num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11410
	} else {
11411
		intel_primary_formats = intel_primary_formats_gen4;
11412
		num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11413
	}
11414
 
11415
	drm_universal_plane_init(dev, &primary->base, 0,
11416
				 &intel_primary_plane_funcs,
11417
				 intel_primary_formats, num_formats,
11418
				 DRM_PLANE_TYPE_PRIMARY);
11419
	return &primary->base;
11420
}
11421
 
11422
static int
11423
intel_cursor_plane_disable(struct drm_plane *plane)
11424
{
11425
	if (!plane->fb)
11426
		return 0;
11427
 
11428
	BUG_ON(!plane->crtc);
11429
 
11430
	return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11431
}
11432
 
11433
static int
11434
intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11435
			  struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11436
			  unsigned int crtc_w, unsigned int crtc_h,
11437
			  uint32_t src_x, uint32_t src_y,
11438
			  uint32_t src_w, uint32_t src_h)
11439
{
11440
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11441
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11442
	struct drm_i915_gem_object *obj = intel_fb->obj;
11443
	struct drm_rect dest = {
11444
		/* integer pixels */
11445
		.x1 = crtc_x,
11446
		.y1 = crtc_y,
11447
		.x2 = crtc_x + crtc_w,
11448
		.y2 = crtc_y + crtc_h,
11449
	};
11450
	struct drm_rect src = {
11451
		/* 16.16 fixed point */
11452
		.x1 = src_x,
11453
		.y1 = src_y,
11454
		.x2 = src_x + src_w,
11455
		.y2 = src_y + src_h,
11456
	};
11457
	const struct drm_rect clip = {
11458
		/* integer pixels */
11459
		.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11460
		.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11461
	};
11462
	bool visible;
11463
	int ret;
11464
 
11465
	ret = drm_plane_helper_check_update(plane, crtc, fb,
11466
					    &src, &dest, &clip,
11467
					    DRM_PLANE_HELPER_NO_SCALING,
11468
					    DRM_PLANE_HELPER_NO_SCALING,
11469
					    true, true, &visible);
11470
	if (ret)
11471
		return ret;
11472
 
11473
	crtc->cursor_x = crtc_x;
11474
	crtc->cursor_y = crtc_y;
11475
	if (fb != crtc->cursor->fb) {
11476
		return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11477
	} else {
11478
		intel_crtc_update_cursor(crtc, visible);
11479
		return 0;
11480
	}
11481
}
11482
static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11483
	.update_plane = intel_cursor_plane_update,
11484
	.disable_plane = intel_cursor_plane_disable,
11485
	.destroy = intel_plane_destroy,
11486
};
11487
 
11488
static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11489
						   int pipe)
11490
{
11491
	struct intel_plane *cursor;
11492
 
11493
	cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11494
	if (cursor == NULL)
11495
		return NULL;
11496
 
11497
	cursor->can_scale = false;
11498
	cursor->max_downscale = 1;
11499
	cursor->pipe = pipe;
11500
	cursor->plane = pipe;
11501
 
11502
	drm_universal_plane_init(dev, &cursor->base, 0,
11503
				 &intel_cursor_plane_funcs,
11504
				 intel_cursor_formats,
11505
				 ARRAY_SIZE(intel_cursor_formats),
11506
				 DRM_PLANE_TYPE_CURSOR);
11507
	return &cursor->base;
11508
}
11509
 
2330 Serge 11510
static void intel_crtc_init(struct drm_device *dev, int pipe)
11511
{
5060 serge 11512
	struct drm_i915_private *dev_priv = dev->dev_private;
2330 Serge 11513
	struct intel_crtc *intel_crtc;
5060 serge 11514
	struct drm_plane *primary = NULL;
11515
	struct drm_plane *cursor = NULL;
11516
	int i, ret;
2327 Serge 11517
 
4560 Serge 11518
	intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
2330 Serge 11519
	if (intel_crtc == NULL)
11520
		return;
2327 Serge 11521
 
5060 serge 11522
	primary = intel_primary_plane_create(dev, pipe);
11523
	if (!primary)
11524
		goto fail;
2327 Serge 11525
 
5060 serge 11526
	cursor = intel_cursor_plane_create(dev, pipe);
11527
	if (!cursor)
11528
		goto fail;
11529
 
11530
	ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
11531
					cursor, &intel_crtc_funcs);
11532
	if (ret)
11533
		goto fail;
11534
 
2330 Serge 11535
	drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
11536
	for (i = 0; i < 256; i++) {
11537
		intel_crtc->lut_r[i] = i;
11538
		intel_crtc->lut_g[i] = i;
11539
		intel_crtc->lut_b[i] = i;
11540
	}
2327 Serge 11541
 
4560 Serge 11542
	/*
11543
	 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
5060 serge 11544
	 * is hooked to pipe B. Hence we want plane A feeding pipe B.
4560 Serge 11545
	 */
2330 Serge 11546
	intel_crtc->pipe = pipe;
11547
	intel_crtc->plane = pipe;
4560 Serge 11548
	if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
2330 Serge 11549
		DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
11550
		intel_crtc->plane = !pipe;
11551
	}
2327 Serge 11552
 
5060 serge 11553
	intel_crtc->cursor_base = ~0;
11554
	intel_crtc->cursor_cntl = ~0;
11555
 
11556
	init_waitqueue_head(&intel_crtc->vbl_wait);
11557
 
2330 Serge 11558
	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11559
	       dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11560
	dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11561
	dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
2327 Serge 11562
 
2330 Serge 11563
	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5060 serge 11564
 
11565
	WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
11566
	return;
11567
 
11568
fail:
11569
	if (primary)
11570
		drm_plane_cleanup(primary);
11571
	if (cursor)
11572
		drm_plane_cleanup(cursor);
11573
	kfree(intel_crtc);
2330 Serge 11574
}
2327 Serge 11575
 
4560 Serge 11576
enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11577
{
11578
	struct drm_encoder *encoder = connector->base.encoder;
5060 serge 11579
	struct drm_device *dev = connector->base.dev;
4560 Serge 11580
 
5060 serge 11581
	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4560 Serge 11582
 
11583
	if (!encoder)
11584
		return INVALID_PIPE;
11585
 
11586
	return to_intel_crtc(encoder->crtc)->pipe;
11587
}
11588
 
3031 serge 11589
int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
11590
				struct drm_file *file)
11591
{
11592
	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5060 serge 11593
	struct drm_crtc *drmmode_crtc;
3031 serge 11594
	struct intel_crtc *crtc;
2327 Serge 11595
 
3482 Serge 11596
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
11597
		return -ENODEV;
11598
 
5060 serge 11599
	drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
2327 Serge 11600
 
5060 serge 11601
	if (!drmmode_crtc) {
3031 serge 11602
		DRM_ERROR("no such CRTC id\n");
4560 Serge 11603
		return -ENOENT;
3031 serge 11604
	}
2327 Serge 11605
 
5060 serge 11606
	crtc = to_intel_crtc(drmmode_crtc);
3031 serge 11607
	pipe_from_crtc_id->pipe = crtc->pipe;
2327 Serge 11608
 
3031 serge 11609
	return 0;
11610
}
2327 Serge 11611
 
3031 serge 11612
static int intel_encoder_clones(struct intel_encoder *encoder)
2330 Serge 11613
{
3031 serge 11614
	struct drm_device *dev = encoder->base.dev;
11615
	struct intel_encoder *source_encoder;
2330 Serge 11616
	int index_mask = 0;
11617
	int entry = 0;
2327 Serge 11618
 
3031 serge 11619
	list_for_each_entry(source_encoder,
11620
			    &dev->mode_config.encoder_list, base.head) {
5060 serge 11621
		if (encoders_cloneable(encoder, source_encoder))
2330 Serge 11622
			index_mask |= (1 << entry);
3031 serge 11623
 
2330 Serge 11624
		entry++;
11625
	}
2327 Serge 11626
 
2330 Serge 11627
	return index_mask;
11628
}
2327 Serge 11629
 
2330 Serge 11630
static bool has_edp_a(struct drm_device *dev)
11631
{
11632
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 11633
 
2330 Serge 11634
	if (!IS_MOBILE(dev))
11635
		return false;
2327 Serge 11636
 
2330 Serge 11637
	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11638
		return false;
2327 Serge 11639
 
5060 serge 11640
	if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
2330 Serge 11641
		return false;
2327 Serge 11642
 
2330 Serge 11643
	return true;
11644
}
2327 Serge 11645
 
4560 Serge 11646
const char *intel_output_name(int output)
11647
{
11648
	static const char *names[] = {
11649
		[INTEL_OUTPUT_UNUSED] = "Unused",
11650
		[INTEL_OUTPUT_ANALOG] = "Analog",
11651
		[INTEL_OUTPUT_DVO] = "DVO",
11652
		[INTEL_OUTPUT_SDVO] = "SDVO",
11653
		[INTEL_OUTPUT_LVDS] = "LVDS",
11654
		[INTEL_OUTPUT_TVOUT] = "TV",
11655
		[INTEL_OUTPUT_HDMI] = "HDMI",
11656
		[INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11657
		[INTEL_OUTPUT_EDP] = "eDP",
11658
		[INTEL_OUTPUT_DSI] = "DSI",
11659
		[INTEL_OUTPUT_UNKNOWN] = "Unknown",
11660
	};
11661
 
11662
	if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11663
		return "Invalid";
11664
 
11665
	return names[output];
11666
}
11667
 
5060 serge 11668
static bool intel_crt_present(struct drm_device *dev)
11669
{
11670
	struct drm_i915_private *dev_priv = dev->dev_private;
11671
 
11672
	if (IS_ULT(dev))
11673
		return false;
11674
 
11675
	if (IS_CHERRYVIEW(dev))
11676
		return false;
11677
 
11678
	if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
11679
		return false;
11680
 
11681
	return true;
11682
}
11683
 
2330 Serge 11684
static void intel_setup_outputs(struct drm_device *dev)
11685
{
11686
	struct drm_i915_private *dev_priv = dev->dev_private;
11687
	struct intel_encoder *encoder;
11688
	bool dpd_is_edp = false;
2327 Serge 11689
 
4104 Serge 11690
	intel_lvds_init(dev);
2327 Serge 11691
 
5060 serge 11692
	if (intel_crt_present(dev))
2330 Serge 11693
	intel_crt_init(dev);
2327 Serge 11694
 
3480 Serge 11695
	if (HAS_DDI(dev)) {
2330 Serge 11696
		int found;
2327 Serge 11697
 
3031 serge 11698
		/* Haswell uses DDI functions to detect digital outputs */
11699
		found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11700
		/* DDI A only supports eDP */
11701
		if (found)
11702
			intel_ddi_init(dev, PORT_A);
11703
 
11704
		/* DDI B, C and D detection is indicated by the SFUSE_STRAP
11705
		 * register */
11706
		found = I915_READ(SFUSE_STRAP);
11707
 
11708
		if (found & SFUSE_STRAP_DDIB_DETECTED)
11709
			intel_ddi_init(dev, PORT_B);
11710
		if (found & SFUSE_STRAP_DDIC_DETECTED)
11711
			intel_ddi_init(dev, PORT_C);
11712
		if (found & SFUSE_STRAP_DDID_DETECTED)
11713
			intel_ddi_init(dev, PORT_D);
11714
	} else if (HAS_PCH_SPLIT(dev)) {
11715
		int found;
4560 Serge 11716
		dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
3031 serge 11717
 
3243 Serge 11718
		if (has_edp_a(dev))
11719
			intel_dp_init(dev, DP_A, PORT_A);
11720
 
3746 Serge 11721
		if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
2330 Serge 11722
			/* PCH SDVOB multiplex with HDMIB */
3031 serge 11723
			found = intel_sdvo_init(dev, PCH_SDVOB, true);
2330 Serge 11724
			if (!found)
3746 Serge 11725
				intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
2330 Serge 11726
			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
3031 serge 11727
				intel_dp_init(dev, PCH_DP_B, PORT_B);
2330 Serge 11728
		}
2327 Serge 11729
 
3746 Serge 11730
		if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
11731
			intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
2327 Serge 11732
 
3746 Serge 11733
		if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
11734
			intel_hdmi_init(dev, PCH_HDMID, PORT_D);
2327 Serge 11735
 
2330 Serge 11736
		if (I915_READ(PCH_DP_C) & DP_DETECTED)
3031 serge 11737
			intel_dp_init(dev, PCH_DP_C, PORT_C);
2327 Serge 11738
 
3243 Serge 11739
		if (I915_READ(PCH_DP_D) & DP_DETECTED)
3031 serge 11740
			intel_dp_init(dev, PCH_DP_D, PORT_D);
11741
	} else if (IS_VALLEYVIEW(dev)) {
4560 Serge 11742
		if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
11743
			intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
11744
					PORT_B);
11745
			if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
11746
				intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
11747
		}
11748
 
4104 Serge 11749
		if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
11750
			intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
11751
					PORT_C);
3480 Serge 11752
		if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
4560 Serge 11753
				intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
4104 Serge 11754
		}
3243 Serge 11755
 
5060 serge 11756
		if (IS_CHERRYVIEW(dev)) {
11757
			if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
11758
				intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
11759
						PORT_D);
11760
				if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
11761
					intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
11762
			}
11763
		}
11764
 
4560 Serge 11765
		intel_dsi_init(dev);
2330 Serge 11766
	} else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
11767
		bool found = false;
2327 Serge 11768
 
3746 Serge 11769
		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
2330 Serge 11770
			DRM_DEBUG_KMS("probing SDVOB\n");
3746 Serge 11771
			found = intel_sdvo_init(dev, GEN3_SDVOB, true);
2330 Serge 11772
			if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
11773
				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
3746 Serge 11774
				intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
2330 Serge 11775
			}
2327 Serge 11776
 
4104 Serge 11777
			if (!found && SUPPORTS_INTEGRATED_DP(dev))
3031 serge 11778
				intel_dp_init(dev, DP_B, PORT_B);
2330 Serge 11779
			}
2327 Serge 11780
 
2330 Serge 11781
		/* Before G4X SDVOC doesn't have its own detect register */
2327 Serge 11782
 
3746 Serge 11783
		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
2330 Serge 11784
			DRM_DEBUG_KMS("probing SDVOC\n");
3746 Serge 11785
			found = intel_sdvo_init(dev, GEN3_SDVOC, false);
2330 Serge 11786
		}
2327 Serge 11787
 
3746 Serge 11788
		if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
2327 Serge 11789
 
2330 Serge 11790
			if (SUPPORTS_INTEGRATED_HDMI(dev)) {
11791
				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
3746 Serge 11792
				intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
2330 Serge 11793
			}
4104 Serge 11794
			if (SUPPORTS_INTEGRATED_DP(dev))
3031 serge 11795
				intel_dp_init(dev, DP_C, PORT_C);
2330 Serge 11796
			}
2327 Serge 11797
 
2330 Serge 11798
		if (SUPPORTS_INTEGRATED_DP(dev) &&
4104 Serge 11799
		    (I915_READ(DP_D) & DP_DETECTED))
3031 serge 11800
			intel_dp_init(dev, DP_D, PORT_D);
2330 Serge 11801
	} else if (IS_GEN2(dev))
11802
		intel_dvo_init(dev);
2327 Serge 11803
 
11804
 
5060 serge 11805
	intel_edp_psr_init(dev);
11806
 
2330 Serge 11807
	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11808
		encoder->base.possible_crtcs = encoder->crtc_mask;
11809
		encoder->base.possible_clones =
3031 serge 11810
			intel_encoder_clones(encoder);
2330 Serge 11811
	}
2327 Serge 11812
 
3243 Serge 11813
	intel_init_pch_refclk(dev);
11814
 
11815
	drm_helper_move_panel_connectors_to_head(dev);
2330 Serge 11816
}
11817
 
11818
 
11819
 
2335 Serge 11820
static const struct drm_framebuffer_funcs intel_fb_funcs = {
11821
//	.destroy = intel_user_framebuffer_destroy,
11822
//	.create_handle = intel_user_framebuffer_create_handle,
11823
};
2327 Serge 11824
 
5060 serge 11825
static int intel_framebuffer_init(struct drm_device *dev,
2335 Serge 11826
			   struct intel_framebuffer *intel_fb,
2342 Serge 11827
			   struct drm_mode_fb_cmd2 *mode_cmd,
2335 Serge 11828
			   struct drm_i915_gem_object *obj)
11829
{
5060 serge 11830
	int aligned_height;
4104 Serge 11831
	int pitch_limit;
2335 Serge 11832
	int ret;
2327 Serge 11833
 
4560 Serge 11834
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
11835
 
3243 Serge 11836
	if (obj->tiling_mode == I915_TILING_Y) {
11837
		DRM_DEBUG("hardware does not support tiling Y\n");
2335 Serge 11838
		return -EINVAL;
3243 Serge 11839
	}
2327 Serge 11840
 
3243 Serge 11841
	if (mode_cmd->pitches[0] & 63) {
11842
		DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
11843
			  mode_cmd->pitches[0]);
11844
		return -EINVAL;
11845
	}
11846
 
4104 Serge 11847
	if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
11848
		pitch_limit = 32*1024;
11849
	} else if (INTEL_INFO(dev)->gen >= 4) {
11850
		if (obj->tiling_mode)
11851
			pitch_limit = 16*1024;
11852
		else
11853
			pitch_limit = 32*1024;
11854
	} else if (INTEL_INFO(dev)->gen >= 3) {
11855
		if (obj->tiling_mode)
11856
			pitch_limit = 8*1024;
11857
		else
11858
			pitch_limit = 16*1024;
11859
	} else
11860
		/* XXX DSPC is limited to 4k tiled */
11861
		pitch_limit = 8*1024;
11862
 
11863
	if (mode_cmd->pitches[0] > pitch_limit) {
11864
		DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
11865
			  obj->tiling_mode ? "tiled" : "linear",
11866
			  mode_cmd->pitches[0], pitch_limit);
3243 Serge 11867
		return -EINVAL;
11868
	}
11869
 
11870
	if (obj->tiling_mode != I915_TILING_NONE &&
11871
	    mode_cmd->pitches[0] != obj->stride) {
11872
		DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
11873
			  mode_cmd->pitches[0], obj->stride);
2335 Serge 11874
			return -EINVAL;
3243 Serge 11875
	}
2327 Serge 11876
 
3243 Serge 11877
	/* Reject formats not supported by any plane early. */
2342 Serge 11878
	switch (mode_cmd->pixel_format) {
3243 Serge 11879
	case DRM_FORMAT_C8:
2342 Serge 11880
	case DRM_FORMAT_RGB565:
11881
	case DRM_FORMAT_XRGB8888:
3243 Serge 11882
	case DRM_FORMAT_ARGB8888:
11883
		break;
11884
	case DRM_FORMAT_XRGB1555:
11885
	case DRM_FORMAT_ARGB1555:
11886
		if (INTEL_INFO(dev)->gen > 3) {
4104 Serge 11887
			DRM_DEBUG("unsupported pixel format: %s\n",
11888
				  drm_get_format_name(mode_cmd->pixel_format));
3243 Serge 11889
			return -EINVAL;
11890
		}
11891
		break;
3031 serge 11892
	case DRM_FORMAT_XBGR8888:
3243 Serge 11893
	case DRM_FORMAT_ABGR8888:
2342 Serge 11894
	case DRM_FORMAT_XRGB2101010:
11895
	case DRM_FORMAT_ARGB2101010:
3243 Serge 11896
	case DRM_FORMAT_XBGR2101010:
11897
	case DRM_FORMAT_ABGR2101010:
11898
		if (INTEL_INFO(dev)->gen < 4) {
4104 Serge 11899
			DRM_DEBUG("unsupported pixel format: %s\n",
11900
				  drm_get_format_name(mode_cmd->pixel_format));
3243 Serge 11901
			return -EINVAL;
11902
		}
2335 Serge 11903
		break;
2342 Serge 11904
	case DRM_FORMAT_YUYV:
11905
	case DRM_FORMAT_UYVY:
11906
	case DRM_FORMAT_YVYU:
11907
	case DRM_FORMAT_VYUY:
3243 Serge 11908
		if (INTEL_INFO(dev)->gen < 5) {
4104 Serge 11909
			DRM_DEBUG("unsupported pixel format: %s\n",
11910
				  drm_get_format_name(mode_cmd->pixel_format));
3243 Serge 11911
			return -EINVAL;
11912
		}
2342 Serge 11913
		break;
2335 Serge 11914
	default:
4104 Serge 11915
		DRM_DEBUG("unsupported pixel format: %s\n",
11916
			  drm_get_format_name(mode_cmd->pixel_format));
2335 Serge 11917
		return -EINVAL;
11918
	}
2327 Serge 11919
 
3243 Serge 11920
	/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
11921
	if (mode_cmd->offsets[0] != 0)
11922
		return -EINVAL;
11923
 
5060 serge 11924
	aligned_height = intel_align_height(dev, mode_cmd->height,
11925
					    obj->tiling_mode);
4560 Serge 11926
	/* FIXME drm helper for size checks (especially planar formats)? */
11927
	if (obj->base.size < aligned_height * mode_cmd->pitches[0])
11928
		return -EINVAL;
11929
 
3480 Serge 11930
	drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
11931
	intel_fb->obj = obj;
4560 Serge 11932
	intel_fb->obj->framebuffer_references++;
3480 Serge 11933
 
2335 Serge 11934
	ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
11935
	if (ret) {
11936
		DRM_ERROR("framebuffer init failed %d\n", ret);
11937
		return ret;
11938
	}
2327 Serge 11939
 
2335 Serge 11940
	return 0;
11941
}
2327 Serge 11942
 
4560 Serge 11943
#ifndef CONFIG_DRM_I915_FBDEV
11944
static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
11945
{
11946
}
11947
#endif
2327 Serge 11948
 
2360 Serge 11949
static const struct drm_mode_config_funcs intel_mode_funcs = {
4560 Serge 11950
	.fb_create = NULL,
11951
	.output_poll_changed = intel_fbdev_output_poll_changed,
2360 Serge 11952
};
2327 Serge 11953
 
3031 serge 11954
/* Set up chip specific display functions */
11955
static void intel_init_display(struct drm_device *dev)
11956
{
11957
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 11958
 
4104 Serge 11959
	if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
11960
		dev_priv->display.find_dpll = g4x_find_best_dpll;
5060 serge 11961
	else if (IS_CHERRYVIEW(dev))
11962
		dev_priv->display.find_dpll = chv_find_best_dpll;
4104 Serge 11963
	else if (IS_VALLEYVIEW(dev))
11964
		dev_priv->display.find_dpll = vlv_find_best_dpll;
11965
	else if (IS_PINEVIEW(dev))
11966
		dev_priv->display.find_dpll = pnv_find_best_dpll;
11967
	else
11968
		dev_priv->display.find_dpll = i9xx_find_best_dpll;
11969
 
3480 Serge 11970
	if (HAS_DDI(dev)) {
3746 Serge 11971
		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5060 serge 11972
		dev_priv->display.get_plane_config = ironlake_get_plane_config;
3243 Serge 11973
		dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
11974
		dev_priv->display.crtc_enable = haswell_crtc_enable;
11975
		dev_priv->display.crtc_disable = haswell_crtc_disable;
5060 serge 11976
		dev_priv->display.off = ironlake_crtc_off;
11977
		dev_priv->display.update_primary_plane =
11978
			ironlake_update_primary_plane;
3243 Serge 11979
	} else if (HAS_PCH_SPLIT(dev)) {
3746 Serge 11980
		dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5060 serge 11981
		dev_priv->display.get_plane_config = ironlake_get_plane_config;
3031 serge 11982
		dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
11983
		dev_priv->display.crtc_enable = ironlake_crtc_enable;
11984
		dev_priv->display.crtc_disable = ironlake_crtc_disable;
11985
		dev_priv->display.off = ironlake_crtc_off;
5060 serge 11986
		dev_priv->display.update_primary_plane =
11987
			ironlake_update_primary_plane;
4104 Serge 11988
	} else if (IS_VALLEYVIEW(dev)) {
11989
		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5060 serge 11990
		dev_priv->display.get_plane_config = i9xx_get_plane_config;
4104 Serge 11991
		dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11992
		dev_priv->display.crtc_enable = valleyview_crtc_enable;
11993
		dev_priv->display.crtc_disable = i9xx_crtc_disable;
11994
		dev_priv->display.off = i9xx_crtc_off;
5060 serge 11995
		dev_priv->display.update_primary_plane =
11996
			i9xx_update_primary_plane;
3031 serge 11997
	} else {
3746 Serge 11998
		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5060 serge 11999
		dev_priv->display.get_plane_config = i9xx_get_plane_config;
3031 serge 12000
		dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12001
		dev_priv->display.crtc_enable = i9xx_crtc_enable;
12002
		dev_priv->display.crtc_disable = i9xx_crtc_disable;
12003
		dev_priv->display.off = i9xx_crtc_off;
5060 serge 12004
		dev_priv->display.update_primary_plane =
12005
			i9xx_update_primary_plane;
3031 serge 12006
	}
2327 Serge 12007
 
3031 serge 12008
	/* Returns the core display clock speed */
12009
	if (IS_VALLEYVIEW(dev))
12010
		dev_priv->display.get_display_clock_speed =
12011
			valleyview_get_display_clock_speed;
12012
	else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12013
		dev_priv->display.get_display_clock_speed =
12014
			i945_get_display_clock_speed;
12015
	else if (IS_I915G(dev))
12016
		dev_priv->display.get_display_clock_speed =
12017
			i915_get_display_clock_speed;
4104 Serge 12018
	else if (IS_I945GM(dev) || IS_845G(dev))
3031 serge 12019
		dev_priv->display.get_display_clock_speed =
12020
			i9xx_misc_get_display_clock_speed;
4104 Serge 12021
	else if (IS_PINEVIEW(dev))
12022
		dev_priv->display.get_display_clock_speed =
12023
			pnv_get_display_clock_speed;
3031 serge 12024
	else if (IS_I915GM(dev))
12025
		dev_priv->display.get_display_clock_speed =
12026
			i915gm_get_display_clock_speed;
12027
	else if (IS_I865G(dev))
12028
		dev_priv->display.get_display_clock_speed =
12029
			i865_get_display_clock_speed;
12030
	else if (IS_I85X(dev))
12031
		dev_priv->display.get_display_clock_speed =
12032
			i855_get_display_clock_speed;
12033
	else /* 852, 830 */
12034
		dev_priv->display.get_display_clock_speed =
12035
			i830_get_display_clock_speed;
2327 Serge 12036
 
3031 serge 12037
	if (HAS_PCH_SPLIT(dev)) {
12038
		if (IS_GEN5(dev)) {
12039
			dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12040
			dev_priv->display.write_eld = ironlake_write_eld;
12041
		} else if (IS_GEN6(dev)) {
12042
			dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12043
			dev_priv->display.write_eld = ironlake_write_eld;
5060 serge 12044
			dev_priv->display.modeset_global_resources =
12045
				snb_modeset_global_resources;
3031 serge 12046
		} else if (IS_IVYBRIDGE(dev)) {
12047
			/* FIXME: detect B0+ stepping and use auto training */
12048
			dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12049
			dev_priv->display.write_eld = ironlake_write_eld;
3243 Serge 12050
			dev_priv->display.modeset_global_resources =
12051
				ivb_modeset_global_resources;
4560 Serge 12052
		} else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
3031 serge 12053
			dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12054
			dev_priv->display.write_eld = haswell_write_eld;
3480 Serge 12055
			dev_priv->display.modeset_global_resources =
12056
				haswell_modeset_global_resources;
12057
		}
3031 serge 12058
	} else if (IS_G4X(dev)) {
12059
		dev_priv->display.write_eld = g4x_write_eld;
4560 Serge 12060
	} else if (IS_VALLEYVIEW(dev)) {
12061
		dev_priv->display.modeset_global_resources =
12062
			valleyview_modeset_global_resources;
12063
		dev_priv->display.write_eld = ironlake_write_eld;
3031 serge 12064
	}
2327 Serge 12065
 
3031 serge 12066
	/* Default just returns -ENODEV to indicate unsupported */
12067
//	dev_priv->display.queue_flip = intel_default_queue_flip;
2327 Serge 12068
 
12069
 
12070
 
12071
 
4560 Serge 12072
	intel_panel_init_backlight_funcs(dev);
3031 serge 12073
}
12074
 
12075
/*
12076
 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12077
 * resume, or other times.  This quirk makes sure that's the case for
12078
 * affected systems.
12079
 */
12080
static void quirk_pipea_force(struct drm_device *dev)
2330 Serge 12081
{
12082
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 12083
 
3031 serge 12084
	dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12085
	DRM_INFO("applying pipe a force quirk\n");
12086
}
2327 Serge 12087
 
3031 serge 12088
/*
12089
 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12090
 */
12091
static void quirk_ssc_force_disable(struct drm_device *dev)
12092
{
12093
	struct drm_i915_private *dev_priv = dev->dev_private;
12094
	dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12095
	DRM_INFO("applying lvds SSC disable quirk\n");
2330 Serge 12096
}
2327 Serge 12097
 
3031 serge 12098
/*
12099
 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12100
 * brightness value
12101
 */
12102
static void quirk_invert_brightness(struct drm_device *dev)
2330 Serge 12103
{
12104
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 12105
	dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12106
	DRM_INFO("applying inverted panel brightness quirk\n");
12107
}
2327 Serge 12108
 
5060 serge 12109
/* Some VBT's incorrectly indicate no backlight is present */
12110
static void quirk_backlight_present(struct drm_device *dev)
12111
{
12112
	struct drm_i915_private *dev_priv = dev->dev_private;
12113
	dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12114
	DRM_INFO("applying backlight present quirk\n");
12115
}
12116
 
3031 serge 12117
struct intel_quirk {
12118
	int device;
12119
	int subsystem_vendor;
12120
	int subsystem_device;
12121
	void (*hook)(struct drm_device *dev);
12122
};
2327 Serge 12123
 
3031 serge 12124
/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12125
struct intel_dmi_quirk {
12126
	void (*hook)(struct drm_device *dev);
12127
	const struct dmi_system_id (*dmi_id_list)[];
12128
};
2327 Serge 12129
 
3031 serge 12130
static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12131
{
12132
	DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12133
	return 1;
2330 Serge 12134
}
2327 Serge 12135
 
3031 serge 12136
static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12137
	{
12138
		.dmi_id_list = &(const struct dmi_system_id[]) {
12139
			{
12140
				.callback = intel_dmi_reverse_brightness,
12141
				.ident = "NCR Corporation",
12142
				.matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12143
					    DMI_MATCH(DMI_PRODUCT_NAME, ""),
12144
				},
12145
			},
12146
			{ }  /* terminating entry */
12147
		},
12148
		.hook = quirk_invert_brightness,
12149
	},
12150
};
2327 Serge 12151
 
3031 serge 12152
static struct intel_quirk intel_quirks[] = {
12153
	/* HP Mini needs pipe A force quirk (LP: #322104) */
12154
	{ 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
2327 Serge 12155
 
3031 serge 12156
	/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12157
	{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
2327 Serge 12158
 
3031 serge 12159
	/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12160
	{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
2327 Serge 12161
 
3031 serge 12162
	/* Lenovo U160 cannot use SSC on LVDS */
12163
	{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
2327 Serge 12164
 
3031 serge 12165
	/* Sony Vaio Y cannot use SSC on LVDS */
12166
	{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
2327 Serge 12167
 
3031 serge 12168
	/* Acer Aspire 5734Z must invert backlight brightness */
12169
	{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
3480 Serge 12170
 
12171
	/* Acer/eMachines G725 */
12172
	{ 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12173
 
12174
	/* Acer/eMachines e725 */
12175
	{ 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12176
 
12177
	/* Acer/Packard Bell NCL20 */
12178
	{ 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12179
 
12180
	/* Acer Aspire 4736Z */
12181
	{ 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
5060 serge 12182
 
12183
	/* Acer Aspire 5336 */
12184
	{ 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12185
 
12186
	/* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12187
	{ 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12188
 
12189
	/* Toshiba CB35 Chromebook (Celeron 2955U) */
12190
	{ 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12191
 
12192
	/* HP Chromebook 14 (Celeron 2955U) */
12193
	{ 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
3031 serge 12194
};
2327 Serge 12195
 
3031 serge 12196
static void intel_init_quirks(struct drm_device *dev)
2330 Serge 12197
{
3031 serge 12198
	struct pci_dev *d = dev->pdev;
12199
	int i;
2327 Serge 12200
 
3031 serge 12201
	for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12202
		struct intel_quirk *q = &intel_quirks[i];
2327 Serge 12203
 
3031 serge 12204
		if (d->device == q->device &&
12205
		    (d->subsystem_vendor == q->subsystem_vendor ||
12206
		     q->subsystem_vendor == PCI_ANY_ID) &&
12207
		    (d->subsystem_device == q->subsystem_device ||
12208
		     q->subsystem_device == PCI_ANY_ID))
12209
			q->hook(dev);
12210
	}
2330 Serge 12211
}
2327 Serge 12212
 
3031 serge 12213
/* Disable the VGA plane that we never use */
12214
static void i915_disable_vga(struct drm_device *dev)
2330 Serge 12215
{
12216
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 12217
	u8 sr1;
3480 Serge 12218
	u32 vga_reg = i915_vgacntrl_reg(dev);
2327 Serge 12219
 
4560 Serge 12220
//	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12221
	outb(SR01, VGA_SR_INDEX);
12222
	sr1 = inb(VGA_SR_DATA);
12223
	outb(sr1 | 1<<5, VGA_SR_DATA);
12224
//	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
3031 serge 12225
	udelay(300);
2327 Serge 12226
 
3031 serge 12227
	I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12228
	POSTING_READ(vga_reg);
2330 Serge 12229
}
12230
 
3031 serge 12231
void intel_modeset_init_hw(struct drm_device *dev)
2342 Serge 12232
{
3031 serge 12233
	intel_prepare_ddi(dev);
2342 Serge 12234
 
5060 serge 12235
	if (IS_VALLEYVIEW(dev))
12236
		vlv_update_cdclk(dev);
12237
 
3031 serge 12238
	intel_init_clock_gating(dev);
12239
 
4560 Serge 12240
	intel_reset_dpio(dev);
4398 Serge 12241
 
3482 Serge 12242
    intel_enable_gt_powersave(dev);
2342 Serge 12243
}
12244
 
4398 Serge 12245
void intel_modeset_suspend_hw(struct drm_device *dev)
12246
{
12247
	intel_suspend_hw(dev);
12248
}
12249
 
3031 serge 12250
void intel_modeset_init(struct drm_device *dev)
2330 Serge 12251
{
3031 serge 12252
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 12253
	int sprite, ret;
12254
	enum pipe pipe;
12255
	struct intel_crtc *crtc;
2330 Serge 12256
 
3031 serge 12257
	drm_mode_config_init(dev);
2330 Serge 12258
 
3031 serge 12259
	dev->mode_config.min_width = 0;
12260
	dev->mode_config.min_height = 0;
2330 Serge 12261
 
3031 serge 12262
	dev->mode_config.preferred_depth = 24;
12263
	dev->mode_config.prefer_shadow = 1;
2330 Serge 12264
 
3031 serge 12265
	dev->mode_config.funcs = &intel_mode_funcs;
2330 Serge 12266
 
3031 serge 12267
	intel_init_quirks(dev);
2330 Serge 12268
 
3031 serge 12269
	intel_init_pm(dev);
2330 Serge 12270
 
3746 Serge 12271
	if (INTEL_INFO(dev)->num_pipes == 0)
12272
		return;
12273
 
3031 serge 12274
	intel_init_display(dev);
2330 Serge 12275
 
3031 serge 12276
	if (IS_GEN2(dev)) {
12277
		dev->mode_config.max_width = 2048;
12278
		dev->mode_config.max_height = 2048;
12279
	} else if (IS_GEN3(dev)) {
12280
		dev->mode_config.max_width = 4096;
12281
		dev->mode_config.max_height = 4096;
12282
	} else {
12283
		dev->mode_config.max_width = 8192;
12284
		dev->mode_config.max_height = 8192;
12285
	}
5060 serge 12286
 
12287
	if (IS_GEN2(dev)) {
12288
		dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12289
		dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12290
	} else {
12291
		dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12292
		dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12293
	}
12294
 
3480 Serge 12295
	dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
2330 Serge 12296
 
3031 serge 12297
	DRM_DEBUG_KMS("%d display pipe%s available.\n",
3746 Serge 12298
		      INTEL_INFO(dev)->num_pipes,
12299
		      INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
2330 Serge 12300
 
5060 serge 12301
	for_each_pipe(pipe) {
12302
		intel_crtc_init(dev, pipe);
12303
		for_each_sprite(pipe, sprite) {
12304
			ret = intel_plane_init(dev, pipe, sprite);
3031 serge 12305
		if (ret)
4104 Serge 12306
				DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
5060 serge 12307
					      pipe_name(pipe), sprite_name(pipe, sprite), ret);
3746 Serge 12308
		}
2330 Serge 12309
	}
12310
 
4560 Serge 12311
	intel_init_dpio(dev);
12312
	intel_reset_dpio(dev);
12313
 
4104 Serge 12314
	intel_shared_dpll_init(dev);
2330 Serge 12315
 
3031 serge 12316
	/* Just disable it once at startup */
12317
	i915_disable_vga(dev);
12318
	intel_setup_outputs(dev);
3480 Serge 12319
 
12320
	/* Just in case the BIOS is doing something questionable. */
12321
	intel_disable_fbc(dev);
2330 Serge 12322
 
5060 serge 12323
	drm_modeset_lock_all(dev);
12324
	intel_modeset_setup_hw_state(dev, false);
12325
	drm_modeset_unlock_all(dev);
12326
 
12327
	for_each_intel_crtc(dev, crtc) {
12328
		if (!crtc->active)
12329
			continue;
12330
 
12331
		/*
12332
		 * Note that reserving the BIOS fb up front prevents us
12333
		 * from stuffing other stolen allocations like the ring
12334
		 * on top.  This prevents some ugliness at boot time, and
12335
		 * can even allow for smooth boot transitions if the BIOS
12336
		 * fb is large enough for the active pipe configuration.
12337
		 */
12338
		if (dev_priv->display.get_plane_config) {
12339
			dev_priv->display.get_plane_config(crtc,
12340
							   &crtc->plane_config);
12341
			/*
12342
			 * If the fb is shared between multiple heads, we'll
12343
			 * just get the first one.
12344
			 */
12345
			intel_find_plane_obj(crtc, &crtc->plane_config);
12346
		}
12347
	}
2330 Serge 12348
}
12349
 
3031 serge 12350
static void intel_enable_pipe_a(struct drm_device *dev)
2330 Serge 12351
{
3031 serge 12352
	struct intel_connector *connector;
12353
	struct drm_connector *crt = NULL;
12354
	struct intel_load_detect_pipe load_detect_temp;
5060 serge 12355
	struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
2330 Serge 12356
 
3031 serge 12357
	/* We can't just switch on the pipe A, we need to set things up with a
12358
	 * proper mode and output configuration. As a gross hack, enable pipe A
12359
	 * by enabling the load detect pipe once. */
12360
	list_for_each_entry(connector,
12361
			    &dev->mode_config.connector_list,
12362
			    base.head) {
12363
		if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12364
			crt = &connector->base;
12365
			break;
2330 Serge 12366
		}
12367
	}
12368
 
3031 serge 12369
	if (!crt)
12370
		return;
2330 Serge 12371
 
5060 serge 12372
	if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
3031 serge 12373
		intel_release_load_detect_pipe(crt, &load_detect_temp);
2327 Serge 12374
}
12375
 
3031 serge 12376
static bool
12377
intel_check_plane_mapping(struct intel_crtc *crtc)
2327 Serge 12378
{
3746 Serge 12379
	struct drm_device *dev = crtc->base.dev;
12380
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 12381
	u32 reg, val;
2327 Serge 12382
 
3746 Serge 12383
	if (INTEL_INFO(dev)->num_pipes == 1)
3031 serge 12384
		return true;
2327 Serge 12385
 
3031 serge 12386
	reg = DSPCNTR(!crtc->plane);
12387
	val = I915_READ(reg);
2327 Serge 12388
 
3031 serge 12389
	if ((val & DISPLAY_PLANE_ENABLE) &&
12390
	    (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12391
		return false;
2327 Serge 12392
 
3031 serge 12393
	return true;
2327 Serge 12394
}
12395
 
3031 serge 12396
static void intel_sanitize_crtc(struct intel_crtc *crtc)
2327 Serge 12397
{
3031 serge 12398
	struct drm_device *dev = crtc->base.dev;
2327 Serge 12399
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 12400
	u32 reg;
2327 Serge 12401
 
3031 serge 12402
	/* Clear any frame start delays used for debugging left by the BIOS */
3746 Serge 12403
	reg = PIPECONF(crtc->config.cpu_transcoder);
3031 serge 12404
	I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
2327 Serge 12405
 
5060 serge 12406
	/* restore vblank interrupts to correct state */
12407
	if (crtc->active)
12408
		drm_vblank_on(dev, crtc->pipe);
12409
	else
12410
		drm_vblank_off(dev, crtc->pipe);
12411
 
3031 serge 12412
	/* We need to sanitize the plane -> pipe mapping first because this will
12413
	 * disable the crtc (and hence change the state) if it is wrong. Note
12414
	 * that gen4+ has a fixed plane -> pipe mapping.  */
12415
	if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
12416
		struct intel_connector *connector;
12417
		bool plane;
2327 Serge 12418
 
3031 serge 12419
		DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12420
			      crtc->base.base.id);
2327 Serge 12421
 
3031 serge 12422
		/* Pipe has the wrong plane attached and the plane is active.
12423
		 * Temporarily change the plane mapping and disable everything
12424
		 * ...  */
12425
		plane = crtc->plane;
12426
		crtc->plane = !plane;
5060 serge 12427
		crtc->primary_enabled = true;
3031 serge 12428
		dev_priv->display.crtc_disable(&crtc->base);
12429
		crtc->plane = plane;
2342 Serge 12430
 
3031 serge 12431
		/* ... and break all links. */
12432
		list_for_each_entry(connector, &dev->mode_config.connector_list,
12433
				    base.head) {
12434
			if (connector->encoder->base.crtc != &crtc->base)
12435
				continue;
2327 Serge 12436
 
5060 serge 12437
			connector->base.dpms = DRM_MODE_DPMS_OFF;
12438
			connector->base.encoder = NULL;
3031 serge 12439
		}
5060 serge 12440
		/* multiple connectors may have the same encoder:
12441
		 *  handle them and break crtc link separately */
12442
		list_for_each_entry(connector, &dev->mode_config.connector_list,
12443
				    base.head)
12444
			if (connector->encoder->base.crtc == &crtc->base) {
12445
				connector->encoder->base.crtc = NULL;
12446
				connector->encoder->connectors_active = false;
12447
		}
2327 Serge 12448
 
3031 serge 12449
		WARN_ON(crtc->active);
12450
		crtc->base.enabled = false;
12451
	}
2327 Serge 12452
 
3031 serge 12453
	if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12454
	    crtc->pipe == PIPE_A && !crtc->active) {
12455
		/* BIOS forgot to enable pipe A, this mostly happens after
12456
		 * resume. Force-enable the pipe to fix this, the update_dpms
12457
		 * call below we restore the pipe to the right state, but leave
12458
		 * the required bits on. */
12459
		intel_enable_pipe_a(dev);
12460
	}
2327 Serge 12461
 
3031 serge 12462
	/* Adjust the state of the output pipe according to whether we
12463
	 * have active connectors/encoders. */
12464
	intel_crtc_update_dpms(&crtc->base);
2327 Serge 12465
 
3031 serge 12466
	if (crtc->active != crtc->base.enabled) {
12467
		struct intel_encoder *encoder;
2327 Serge 12468
 
3031 serge 12469
		/* This can happen either due to bugs in the get_hw_state
12470
		 * functions or because the pipe is force-enabled due to the
12471
		 * pipe A quirk. */
12472
		DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12473
			      crtc->base.base.id,
12474
			      crtc->base.enabled ? "enabled" : "disabled",
12475
			      crtc->active ? "enabled" : "disabled");
2327 Serge 12476
 
3031 serge 12477
		crtc->base.enabled = crtc->active;
2327 Serge 12478
 
3031 serge 12479
		/* Because we only establish the connector -> encoder ->
12480
		 * crtc links if something is active, this means the
12481
		 * crtc is now deactivated. Break the links. connector
12482
		 * -> encoder links are only establish when things are
12483
		 *  actually up, hence no need to break them. */
12484
		WARN_ON(crtc->active);
2327 Serge 12485
 
3031 serge 12486
		for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12487
			WARN_ON(encoder->connectors_active);
12488
			encoder->base.crtc = NULL;
12489
		}
12490
	}
5060 serge 12491
 
12492
	if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
12493
		/*
12494
		 * We start out with underrun reporting disabled to avoid races.
12495
		 * For correct bookkeeping mark this on active crtcs.
12496
		 *
12497
		 * Also on gmch platforms we dont have any hardware bits to
12498
		 * disable the underrun reporting. Which means we need to start
12499
		 * out with underrun reporting disabled also on inactive pipes,
12500
		 * since otherwise we'll complain about the garbage we read when
12501
		 * e.g. coming up after runtime pm.
12502
		 *
12503
		 * No protection against concurrent access is required - at
12504
		 * worst a fifo underrun happens which also sets this to false.
12505
		 */
12506
		crtc->cpu_fifo_underrun_disabled = true;
12507
		crtc->pch_fifo_underrun_disabled = true;
12508
 
12509
		update_scanline_offset(crtc);
12510
	}
2327 Serge 12511
}
12512
 
3031 serge 12513
static void intel_sanitize_encoder(struct intel_encoder *encoder)
2327 Serge 12514
{
3031 serge 12515
	struct intel_connector *connector;
12516
	struct drm_device *dev = encoder->base.dev;
2327 Serge 12517
 
3031 serge 12518
	/* We need to check both for a crtc link (meaning that the
12519
	 * encoder is active and trying to read from a pipe) and the
12520
	 * pipe itself being active. */
12521
	bool has_active_crtc = encoder->base.crtc &&
12522
		to_intel_crtc(encoder->base.crtc)->active;
2327 Serge 12523
 
3031 serge 12524
	if (encoder->connectors_active && !has_active_crtc) {
12525
		DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12526
			      encoder->base.base.id,
5060 serge 12527
			      encoder->base.name);
2327 Serge 12528
 
3031 serge 12529
		/* Connector is active, but has no active pipe. This is
12530
		 * fallout from our resume register restoring. Disable
12531
		 * the encoder manually again. */
12532
		if (encoder->base.crtc) {
12533
			DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12534
				      encoder->base.base.id,
5060 serge 12535
				      encoder->base.name);
3031 serge 12536
			encoder->disable(encoder);
5060 serge 12537
			if (encoder->post_disable)
12538
				encoder->post_disable(encoder);
3031 serge 12539
		}
5060 serge 12540
		encoder->base.crtc = NULL;
12541
		encoder->connectors_active = false;
2327 Serge 12542
 
3031 serge 12543
		/* Inconsistent output/port/pipe state happens presumably due to
12544
		 * a bug in one of the get_hw_state functions. Or someplace else
12545
		 * in our code, like the register restore mess on resume. Clamp
12546
		 * things to off as a safer default. */
12547
		list_for_each_entry(connector,
12548
				    &dev->mode_config.connector_list,
12549
				    base.head) {
12550
			if (connector->encoder != encoder)
12551
				continue;
5060 serge 12552
			connector->base.dpms = DRM_MODE_DPMS_OFF;
12553
			connector->base.encoder = NULL;
3031 serge 12554
		}
12555
	}
12556
	/* Enabled encoders without active connectors will be fixed in
12557
	 * the crtc fixup. */
2327 Serge 12558
}
12559
 
5060 serge 12560
void i915_redisable_vga_power_on(struct drm_device *dev)
3746 Serge 12561
{
12562
	struct drm_i915_private *dev_priv = dev->dev_private;
12563
	u32 vga_reg = i915_vgacntrl_reg(dev);
12564
 
5060 serge 12565
	if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12566
		DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12567
		i915_disable_vga(dev);
12568
	}
12569
}
12570
 
12571
void i915_redisable_vga(struct drm_device *dev)
12572
{
12573
	struct drm_i915_private *dev_priv = dev->dev_private;
12574
 
4104 Serge 12575
	/* This function can be called both from intel_modeset_setup_hw_state or
12576
	 * at a very early point in our resume sequence, where the power well
12577
	 * structures are not yet restored. Since this function is at a very
12578
	 * paranoid "someone might have enabled VGA while we were not looking"
12579
	 * level, just check if the power well is enabled instead of trying to
12580
	 * follow the "don't touch the power well if we don't need it" policy
12581
	 * the rest of the driver uses. */
5060 serge 12582
	if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
4104 Serge 12583
		return;
12584
 
5060 serge 12585
	i915_redisable_vga_power_on(dev);
3746 Serge 12586
}
12587
 
5060 serge 12588
static bool primary_get_hw_state(struct intel_crtc *crtc)
12589
{
12590
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12591
 
12592
	if (!crtc->active)
12593
		return false;
12594
 
12595
	return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12596
}
12597
 
4104 Serge 12598
static void intel_modeset_readout_hw_state(struct drm_device *dev)
2332 Serge 12599
{
12600
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 12601
	enum pipe pipe;
12602
	struct intel_crtc *crtc;
12603
	struct intel_encoder *encoder;
12604
	struct intel_connector *connector;
4104 Serge 12605
	int i;
2327 Serge 12606
 
5060 serge 12607
	for_each_intel_crtc(dev, crtc) {
3746 Serge 12608
		memset(&crtc->config, 0, sizeof(crtc->config));
2327 Serge 12609
 
5060 serge 12610
		crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12611
 
3746 Serge 12612
		crtc->active = dev_priv->display.get_pipe_config(crtc,
12613
								 &crtc->config);
2327 Serge 12614
 
3031 serge 12615
		crtc->base.enabled = crtc->active;
5060 serge 12616
		crtc->primary_enabled = primary_get_hw_state(crtc);
2330 Serge 12617
 
3031 serge 12618
		DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12619
			      crtc->base.base.id,
12620
			      crtc->active ? "enabled" : "disabled");
2339 Serge 12621
	}
2332 Serge 12622
 
4104 Serge 12623
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12624
		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12625
 
12626
		pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12627
		pll->active = 0;
5060 serge 12628
		for_each_intel_crtc(dev, crtc) {
4104 Serge 12629
			if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12630
				pll->active++;
12631
		}
12632
		pll->refcount = pll->active;
12633
 
12634
		DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12635
			      pll->name, pll->refcount, pll->on);
5060 serge 12636
 
12637
		if (pll->refcount)
12638
			intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
4104 Serge 12639
	}
12640
 
3031 serge 12641
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12642
			    base.head) {
12643
		pipe = 0;
2332 Serge 12644
 
3031 serge 12645
		if (encoder->get_hw_state(encoder, &pipe)) {
4104 Serge 12646
			crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12647
			encoder->base.crtc = &crtc->base;
12648
				encoder->get_config(encoder, &crtc->config);
3031 serge 12649
		} else {
12650
			encoder->base.crtc = NULL;
12651
		}
2332 Serge 12652
 
3031 serge 12653
		encoder->connectors_active = false;
4560 Serge 12654
		DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
3031 serge 12655
			      encoder->base.base.id,
5060 serge 12656
			      encoder->base.name,
3031 serge 12657
			      encoder->base.crtc ? "enabled" : "disabled",
4560 Serge 12658
			      pipe_name(pipe));
3031 serge 12659
	}
2332 Serge 12660
 
3031 serge 12661
	list_for_each_entry(connector, &dev->mode_config.connector_list,
12662
			    base.head) {
12663
		if (connector->get_hw_state(connector)) {
12664
			connector->base.dpms = DRM_MODE_DPMS_ON;
12665
			connector->encoder->connectors_active = true;
12666
			connector->base.encoder = &connector->encoder->base;
12667
		} else {
12668
			connector->base.dpms = DRM_MODE_DPMS_OFF;
12669
			connector->base.encoder = NULL;
12670
		}
12671
		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
12672
			      connector->base.base.id,
5060 serge 12673
			      connector->base.name,
3031 serge 12674
			      connector->base.encoder ? "enabled" : "disabled");
2332 Serge 12675
	}
4104 Serge 12676
}
2332 Serge 12677
 
4104 Serge 12678
/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
12679
 * and i915 state tracking structures. */
12680
void intel_modeset_setup_hw_state(struct drm_device *dev,
12681
				  bool force_restore)
12682
{
12683
	struct drm_i915_private *dev_priv = dev->dev_private;
12684
	enum pipe pipe;
12685
	struct intel_crtc *crtc;
12686
	struct intel_encoder *encoder;
12687
	int i;
12688
 
12689
	intel_modeset_readout_hw_state(dev);
12690
 
12691
	/*
12692
	 * Now that we have the config, copy it to each CRTC struct
12693
	 * Note that this could go away if we move to using crtc_config
12694
	 * checking everywhere.
12695
	 */
5060 serge 12696
	for_each_intel_crtc(dev, crtc) {
12697
		if (crtc->active && i915.fastboot) {
12698
			intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
4104 Serge 12699
			DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
12700
				      crtc->base.base.id);
12701
			drm_mode_debug_printmodeline(&crtc->base.mode);
12702
		}
12703
	}
12704
 
3031 serge 12705
	/* HW state is read out, now we need to sanitize this mess. */
12706
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12707
			    base.head) {
12708
		intel_sanitize_encoder(encoder);
2332 Serge 12709
	}
12710
 
3031 serge 12711
	for_each_pipe(pipe) {
12712
		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12713
		intel_sanitize_crtc(crtc);
4104 Serge 12714
		intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
2332 Serge 12715
	}
12716
 
4104 Serge 12717
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12718
		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12719
 
12720
		if (!pll->on || pll->active)
12721
			continue;
12722
 
12723
		DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
12724
 
12725
		pll->disable(dev_priv, pll);
12726
		pll->on = false;
12727
	}
12728
 
4560 Serge 12729
	if (HAS_PCH_SPLIT(dev))
12730
		ilk_wm_get_hw_state(dev);
12731
 
3243 Serge 12732
	if (force_restore) {
4560 Serge 12733
		i915_redisable_vga(dev);
12734
 
3746 Serge 12735
		/*
12736
		 * We need to use raw interfaces for restoring state to avoid
12737
		 * checking (bogus) intermediate states.
12738
		 */
3243 Serge 12739
		for_each_pipe(pipe) {
3746 Serge 12740
			struct drm_crtc *crtc =
12741
				dev_priv->pipe_to_crtc_mapping[pipe];
12742
 
12743
			__intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
5060 serge 12744
					 crtc->primary->fb);
3243 Serge 12745
		}
12746
	} else {
3031 serge 12747
	intel_modeset_update_staged_output_state(dev);
3243 Serge 12748
	}
2332 Serge 12749
 
3031 serge 12750
	intel_modeset_check_state(dev);
2332 Serge 12751
}
12752
 
3031 serge 12753
void intel_modeset_gem_init(struct drm_device *dev)
2330 Serge 12754
{
5060 serge 12755
	struct drm_crtc *c;
12756
	struct drm_i915_gem_object *obj;
12757
 
12758
	mutex_lock(&dev->struct_mutex);
12759
	intel_init_gt_powersave(dev);
12760
	mutex_unlock(&dev->struct_mutex);
12761
 
3031 serge 12762
	intel_modeset_init_hw(dev);
2330 Serge 12763
 
3031 serge 12764
//   intel_setup_overlay(dev);
2330 Serge 12765
 
5060 serge 12766
	/*
12767
	 * Make sure any fbs we allocated at startup are properly
12768
	 * pinned & fenced.  When we do the allocation it's too early
12769
	 * for this.
12770
	 */
12771
	mutex_lock(&dev->struct_mutex);
12772
	for_each_crtc(dev, c) {
12773
		obj = intel_fb_obj(c->primary->fb);
12774
		if (obj == NULL)
12775
			continue;
12776
 
12777
		if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
12778
			DRM_ERROR("failed to pin boot fb on pipe %d\n",
12779
				  to_intel_crtc(c)->pipe);
12780
			drm_framebuffer_unreference(c->primary->fb);
12781
			c->primary->fb = NULL;
12782
		}
12783
	}
12784
	mutex_unlock(&dev->struct_mutex);
2330 Serge 12785
}
12786
 
5060 serge 12787
void intel_connector_unregister(struct intel_connector *intel_connector)
12788
{
12789
	struct drm_connector *connector = &intel_connector->base;
12790
 
12791
	intel_panel_destroy_backlight(connector);
12792
	drm_connector_unregister(connector);
12793
}
12794
 
3031 serge 12795
void intel_modeset_cleanup(struct drm_device *dev)
2327 Serge 12796
{
3031 serge 12797
#if 0
12798
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 12799
	struct drm_connector *connector;
2327 Serge 12800
 
4104 Serge 12801
	/*
12802
	 * Interrupts and polling as the first thing to avoid creating havoc.
12803
	 * Too much stuff here (turning of rps, connectors, ...) would
12804
	 * experience fancy races otherwise.
12805
	 */
12806
	drm_irq_uninstall(dev);
5060 serge 12807
	intel_hpd_cancel_work(dev_priv);
12808
	dev_priv->pm._irqs_disabled = true;
12809
 
4104 Serge 12810
	/*
12811
	 * Due to the hpd irq storm handling the hotplug work can re-arm the
12812
	 * poll handlers. Hence disable polling after hpd handling is shut down.
12813
	 */
4560 Serge 12814
	drm_kms_helper_poll_fini(dev);
4104 Serge 12815
 
3031 serge 12816
	mutex_lock(&dev->struct_mutex);
2327 Serge 12817
 
4560 Serge 12818
	intel_unregister_dsm_handler();
2327 Serge 12819
 
3031 serge 12820
	intel_disable_fbc(dev);
2342 Serge 12821
 
3031 serge 12822
	intel_disable_gt_powersave(dev);
2342 Serge 12823
 
3031 serge 12824
	ironlake_teardown_rc6(dev);
2327 Serge 12825
 
3031 serge 12826
	mutex_unlock(&dev->struct_mutex);
2327 Serge 12827
 
4104 Serge 12828
	/* flush any delayed tasks or pending work */
12829
	flush_scheduled_work();
2327 Serge 12830
 
4560 Serge 12831
	/* destroy the backlight and sysfs files before encoders/connectors */
12832
	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5060 serge 12833
		struct intel_connector *intel_connector;
12834
 
12835
		intel_connector = to_intel_connector(connector);
12836
		intel_connector->unregister(intel_connector);
4560 Serge 12837
	}
2327 Serge 12838
 
3031 serge 12839
	drm_mode_config_cleanup(dev);
5060 serge 12840
 
12841
	intel_cleanup_overlay(dev);
12842
 
12843
	mutex_lock(&dev->struct_mutex);
12844
	intel_cleanup_gt_powersave(dev);
12845
	mutex_unlock(&dev->struct_mutex);
2327 Serge 12846
#endif
12847
}
12848
 
12849
/*
3031 serge 12850
 * Return which encoder is currently attached for connector.
2327 Serge 12851
 */
3031 serge 12852
struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
2327 Serge 12853
{
3031 serge 12854
	return &intel_attached_encoder(connector)->base;
12855
}
2327 Serge 12856
 
3031 serge 12857
void intel_connector_attach_encoder(struct intel_connector *connector,
12858
				    struct intel_encoder *encoder)
12859
{
12860
	connector->encoder = encoder;
12861
	drm_mode_connector_attach_encoder(&connector->base,
12862
					  &encoder->base);
2327 Serge 12863
}
12864
 
12865
/*
3031 serge 12866
 * set vga decode state - true == enable VGA decode
2327 Serge 12867
 */
3031 serge 12868
int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
2327 Serge 12869
{
2330 Serge 12870
	struct drm_i915_private *dev_priv = dev->dev_private;
4539 Serge 12871
	unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
3031 serge 12872
	u16 gmch_ctrl;
2327 Serge 12873
 
5060 serge 12874
	if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
12875
		DRM_ERROR("failed to read control word\n");
12876
		return -EIO;
12877
	}
12878
 
12879
	if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
12880
		return 0;
12881
 
3031 serge 12882
	if (state)
12883
		gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
2330 Serge 12884
	else
3031 serge 12885
		gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
5060 serge 12886
 
12887
	if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
12888
		DRM_ERROR("failed to write control word\n");
12889
		return -EIO;
12890
	}
12891
 
3031 serge 12892
	return 0;
2330 Serge 12893
}
12894
 
3031 serge 12895
#ifdef CONFIG_DEBUG_FS
2327 Serge 12896
 
3031 serge 12897
struct intel_display_error_state {
4104 Serge 12898
 
12899
	u32 power_well_driver;
12900
 
12901
	int num_transcoders;
12902
 
3031 serge 12903
	struct intel_cursor_error_state {
12904
		u32 control;
12905
		u32 position;
12906
		u32 base;
12907
		u32 size;
12908
	} cursor[I915_MAX_PIPES];
2327 Serge 12909
 
3031 serge 12910
	struct intel_pipe_error_state {
4560 Serge 12911
		bool power_domain_on;
3031 serge 12912
		u32 source;
5060 serge 12913
		u32 stat;
3031 serge 12914
	} pipe[I915_MAX_PIPES];
2327 Serge 12915
 
3031 serge 12916
	struct intel_plane_error_state {
12917
		u32 control;
12918
		u32 stride;
12919
		u32 size;
12920
		u32 pos;
12921
		u32 addr;
12922
		u32 surface;
12923
		u32 tile_offset;
12924
	} plane[I915_MAX_PIPES];
4104 Serge 12925
 
12926
	struct intel_transcoder_error_state {
4560 Serge 12927
		bool power_domain_on;
4104 Serge 12928
		enum transcoder cpu_transcoder;
12929
 
12930
		u32 conf;
12931
 
12932
		u32 htotal;
12933
		u32 hblank;
12934
		u32 hsync;
12935
		u32 vtotal;
12936
		u32 vblank;
12937
		u32 vsync;
12938
	} transcoder[4];
3031 serge 12939
};
2327 Serge 12940
 
3031 serge 12941
struct intel_display_error_state *
12942
intel_display_capture_error_state(struct drm_device *dev)
12943
{
5060 serge 12944
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 12945
	struct intel_display_error_state *error;
4104 Serge 12946
	int transcoders[] = {
12947
		TRANSCODER_A,
12948
		TRANSCODER_B,
12949
		TRANSCODER_C,
12950
		TRANSCODER_EDP,
12951
	};
3031 serge 12952
	int i;
2327 Serge 12953
 
4104 Serge 12954
	if (INTEL_INFO(dev)->num_pipes == 0)
12955
		return NULL;
12956
 
4560 Serge 12957
	error = kzalloc(sizeof(*error), GFP_ATOMIC);
3031 serge 12958
	if (error == NULL)
12959
		return NULL;
2327 Serge 12960
 
4560 Serge 12961
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4104 Serge 12962
		error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
12963
 
3031 serge 12964
	for_each_pipe(i) {
4560 Serge 12965
		error->pipe[i].power_domain_on =
5060 serge 12966
			intel_display_power_enabled_unlocked(dev_priv,
12967
						       POWER_DOMAIN_PIPE(i));
4560 Serge 12968
		if (!error->pipe[i].power_domain_on)
12969
			continue;
12970
 
3031 serge 12971
		error->cursor[i].control = I915_READ(CURCNTR(i));
12972
		error->cursor[i].position = I915_READ(CURPOS(i));
12973
		error->cursor[i].base = I915_READ(CURBASE(i));
2327 Serge 12974
 
3031 serge 12975
		error->plane[i].control = I915_READ(DSPCNTR(i));
12976
		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
3746 Serge 12977
		if (INTEL_INFO(dev)->gen <= 3) {
3031 serge 12978
		error->plane[i].size = I915_READ(DSPSIZE(i));
12979
		error->plane[i].pos = I915_READ(DSPPOS(i));
3746 Serge 12980
		}
12981
		if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3031 serge 12982
		error->plane[i].addr = I915_READ(DSPADDR(i));
12983
		if (INTEL_INFO(dev)->gen >= 4) {
12984
			error->plane[i].surface = I915_READ(DSPSURF(i));
12985
			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
12986
		}
2327 Serge 12987
 
3031 serge 12988
		error->pipe[i].source = I915_READ(PIPESRC(i));
5060 serge 12989
 
12990
		if (HAS_GMCH_DISPLAY(dev))
12991
			error->pipe[i].stat = I915_READ(PIPESTAT(i));
3031 serge 12992
	}
2327 Serge 12993
 
4104 Serge 12994
	error->num_transcoders = INTEL_INFO(dev)->num_pipes;
12995
	if (HAS_DDI(dev_priv->dev))
12996
		error->num_transcoders++; /* Account for eDP. */
12997
 
12998
	for (i = 0; i < error->num_transcoders; i++) {
12999
		enum transcoder cpu_transcoder = transcoders[i];
13000
 
4560 Serge 13001
		error->transcoder[i].power_domain_on =
5060 serge 13002
			intel_display_power_enabled_unlocked(dev_priv,
4560 Serge 13003
				POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13004
		if (!error->transcoder[i].power_domain_on)
13005
			continue;
13006
 
4104 Serge 13007
		error->transcoder[i].cpu_transcoder = cpu_transcoder;
13008
 
13009
		error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13010
		error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13011
		error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13012
		error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13013
		error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13014
		error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13015
		error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13016
	}
13017
 
3031 serge 13018
	return error;
2330 Serge 13019
}
2327 Serge 13020
 
4104 Serge 13021
#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13022
 
3031 serge 13023
void
4104 Serge 13024
intel_display_print_error_state(struct drm_i915_error_state_buf *m,
3031 serge 13025
				struct drm_device *dev,
13026
				struct intel_display_error_state *error)
2332 Serge 13027
{
3031 serge 13028
	int i;
2330 Serge 13029
 
4104 Serge 13030
	if (!error)
13031
		return;
13032
 
13033
	err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
4560 Serge 13034
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4104 Serge 13035
		err_printf(m, "PWR_WELL_CTL2: %08x\n",
13036
			   error->power_well_driver);
3031 serge 13037
	for_each_pipe(i) {
4104 Serge 13038
		err_printf(m, "Pipe [%d]:\n", i);
4560 Serge 13039
		err_printf(m, "  Power: %s\n",
13040
			   error->pipe[i].power_domain_on ? "on" : "off");
4104 Serge 13041
		err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
5060 serge 13042
		err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
2332 Serge 13043
 
4104 Serge 13044
		err_printf(m, "Plane [%d]:\n", i);
13045
		err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
13046
		err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
3746 Serge 13047
		if (INTEL_INFO(dev)->gen <= 3) {
4104 Serge 13048
			err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
13049
			err_printf(m, "  POS: %08x\n", error->plane[i].pos);
3746 Serge 13050
		}
13051
		if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
4104 Serge 13052
			err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
3031 serge 13053
		if (INTEL_INFO(dev)->gen >= 4) {
4104 Serge 13054
			err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
13055
			err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
3031 serge 13056
		}
2332 Serge 13057
 
4104 Serge 13058
		err_printf(m, "Cursor [%d]:\n", i);
13059
		err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
13060
		err_printf(m, "  POS: %08x\n", error->cursor[i].position);
13061
		err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
3031 serge 13062
	}
4104 Serge 13063
 
13064
	for (i = 0; i < error->num_transcoders; i++) {
4560 Serge 13065
		err_printf(m, "CPU transcoder: %c\n",
4104 Serge 13066
			   transcoder_name(error->transcoder[i].cpu_transcoder));
4560 Serge 13067
		err_printf(m, "  Power: %s\n",
13068
			   error->transcoder[i].power_domain_on ? "on" : "off");
4104 Serge 13069
		err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
13070
		err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
13071
		err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
13072
		err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
13073
		err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
13074
		err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
13075
		err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
13076
	}
2327 Serge 13077
}
3031 serge 13078
#endif