Subversion Repositories Kolibri OS

Rev

Rev 3746 | Rev 4280 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2327 Serge 1
/*
2
 * Copyright © 2006-2007 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21
 * DEALINGS IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *  Eric Anholt 
25
 */
26
 
3746 Serge 27
//#include 
2327 Serge 28
#include 
29
//#include 
30
#include 
31
#include 
2330 Serge 32
#include 
3746 Serge 33
#include 
2342 Serge 34
#include 
3031 serge 35
#include 
2327 Serge 36
#include "intel_drv.h"
3031 serge 37
#include 
2327 Serge 38
#include "i915_drv.h"
2351 Serge 39
#include "i915_trace.h"
3031 serge 40
#include 
41
#include 
42
//#include 
2327 Serge 43
 
4104 Serge 44
#define MAX_ERRNO       4095
2327 Serge 45
phys_addr_t get_bus_addr(void);
46
 
2342 Serge 47
bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
2327 Serge 48
static void intel_increase_pllclock(struct drm_crtc *crtc);
3243 Serge 49
static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
2327 Serge 50
 
4104 Serge 51
static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
52
				struct intel_crtc_config *pipe_config);
53
static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
54
				    struct intel_crtc_config *pipe_config);
2327 Serge 55
 
4104 Serge 56
static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
57
			  int x, int y, struct drm_framebuffer *old_fb);
58
 
59
 
2327 Serge 60
typedef struct {
61
    int min, max;
62
} intel_range_t;
63
 
64
typedef struct {
65
    int dot_limit;
66
    int p2_slow, p2_fast;
67
} intel_p2_t;
68
 
69
typedef struct intel_limit intel_limit_t;
70
struct intel_limit {
71
    intel_range_t   dot, vco, n, m, m1, m2, p, p1;
72
    intel_p2_t      p2;
73
};
74
 
75
/* FDI */
76
#define IRONLAKE_FDI_FREQ       2700000 /* in kHz for mode->clock */
77
 
3243 Serge 78
int
79
intel_pch_rawclk(struct drm_device *dev)
80
{
81
	struct drm_i915_private *dev_priv = dev->dev_private;
82
 
83
	WARN_ON(!HAS_PCH_SPLIT(dev));
84
 
85
	return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
86
}
87
 
2327 Serge 88
static inline u32 /* units of 100MHz */
89
intel_fdi_link_freq(struct drm_device *dev)
90
{
91
	if (IS_GEN5(dev)) {
92
		struct drm_i915_private *dev_priv = dev->dev_private;
93
		return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
94
	} else
95
		return 27;
96
}
97
 
4104 Serge 98
static const intel_limit_t intel_limits_i8xx_dac = {
99
	.dot = { .min = 25000, .max = 350000 },
100
	.vco = { .min = 930000, .max = 1400000 },
101
	.n = { .min = 3, .max = 16 },
102
	.m = { .min = 96, .max = 140 },
103
	.m1 = { .min = 18, .max = 26 },
104
	.m2 = { .min = 6, .max = 16 },
105
	.p = { .min = 4, .max = 128 },
106
	.p1 = { .min = 2, .max = 33 },
107
	.p2 = { .dot_limit = 165000,
108
		.p2_slow = 4, .p2_fast = 2 },
109
};
110
 
2327 Serge 111
static const intel_limit_t intel_limits_i8xx_dvo = {
112
        .dot = { .min = 25000, .max = 350000 },
113
        .vco = { .min = 930000, .max = 1400000 },
114
        .n = { .min = 3, .max = 16 },
115
        .m = { .min = 96, .max = 140 },
116
        .m1 = { .min = 18, .max = 26 },
117
        .m2 = { .min = 6, .max = 16 },
118
        .p = { .min = 4, .max = 128 },
119
        .p1 = { .min = 2, .max = 33 },
120
	.p2 = { .dot_limit = 165000,
4104 Serge 121
		.p2_slow = 4, .p2_fast = 4 },
2327 Serge 122
};
123
 
124
static const intel_limit_t intel_limits_i8xx_lvds = {
125
        .dot = { .min = 25000, .max = 350000 },
126
        .vco = { .min = 930000, .max = 1400000 },
127
        .n = { .min = 3, .max = 16 },
128
        .m = { .min = 96, .max = 140 },
129
        .m1 = { .min = 18, .max = 26 },
130
        .m2 = { .min = 6, .max = 16 },
131
        .p = { .min = 4, .max = 128 },
132
        .p1 = { .min = 1, .max = 6 },
133
	.p2 = { .dot_limit = 165000,
134
		.p2_slow = 14, .p2_fast = 7 },
135
};
136
 
137
static const intel_limit_t intel_limits_i9xx_sdvo = {
138
        .dot = { .min = 20000, .max = 400000 },
139
        .vco = { .min = 1400000, .max = 2800000 },
140
        .n = { .min = 1, .max = 6 },
141
        .m = { .min = 70, .max = 120 },
3480 Serge 142
	.m1 = { .min = 8, .max = 18 },
143
	.m2 = { .min = 3, .max = 7 },
2327 Serge 144
        .p = { .min = 5, .max = 80 },
145
        .p1 = { .min = 1, .max = 8 },
146
	.p2 = { .dot_limit = 200000,
147
		.p2_slow = 10, .p2_fast = 5 },
148
};
149
 
150
static const intel_limit_t intel_limits_i9xx_lvds = {
151
        .dot = { .min = 20000, .max = 400000 },
152
        .vco = { .min = 1400000, .max = 2800000 },
153
        .n = { .min = 1, .max = 6 },
154
        .m = { .min = 70, .max = 120 },
3480 Serge 155
	.m1 = { .min = 8, .max = 18 },
156
	.m2 = { .min = 3, .max = 7 },
2327 Serge 157
        .p = { .min = 7, .max = 98 },
158
        .p1 = { .min = 1, .max = 8 },
159
	.p2 = { .dot_limit = 112000,
160
		.p2_slow = 14, .p2_fast = 7 },
161
};
162
 
163
 
164
static const intel_limit_t intel_limits_g4x_sdvo = {
165
	.dot = { .min = 25000, .max = 270000 },
166
	.vco = { .min = 1750000, .max = 3500000},
167
	.n = { .min = 1, .max = 4 },
168
	.m = { .min = 104, .max = 138 },
169
	.m1 = { .min = 17, .max = 23 },
170
	.m2 = { .min = 5, .max = 11 },
171
	.p = { .min = 10, .max = 30 },
172
	.p1 = { .min = 1, .max = 3},
173
	.p2 = { .dot_limit = 270000,
174
		.p2_slow = 10,
175
		.p2_fast = 10
176
	},
177
};
178
 
179
static const intel_limit_t intel_limits_g4x_hdmi = {
180
	.dot = { .min = 22000, .max = 400000 },
181
	.vco = { .min = 1750000, .max = 3500000},
182
	.n = { .min = 1, .max = 4 },
183
	.m = { .min = 104, .max = 138 },
184
	.m1 = { .min = 16, .max = 23 },
185
	.m2 = { .min = 5, .max = 11 },
186
	.p = { .min = 5, .max = 80 },
187
	.p1 = { .min = 1, .max = 8},
188
	.p2 = { .dot_limit = 165000,
189
		.p2_slow = 10, .p2_fast = 5 },
190
};
191
 
192
static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
193
	.dot = { .min = 20000, .max = 115000 },
194
	.vco = { .min = 1750000, .max = 3500000 },
195
	.n = { .min = 1, .max = 3 },
196
	.m = { .min = 104, .max = 138 },
197
	.m1 = { .min = 17, .max = 23 },
198
	.m2 = { .min = 5, .max = 11 },
199
	.p = { .min = 28, .max = 112 },
200
	.p1 = { .min = 2, .max = 8 },
201
	.p2 = { .dot_limit = 0,
202
		.p2_slow = 14, .p2_fast = 14
203
	},
204
};
205
 
206
static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
207
	.dot = { .min = 80000, .max = 224000 },
208
	.vco = { .min = 1750000, .max = 3500000 },
209
	.n = { .min = 1, .max = 3 },
210
	.m = { .min = 104, .max = 138 },
211
	.m1 = { .min = 17, .max = 23 },
212
	.m2 = { .min = 5, .max = 11 },
213
	.p = { .min = 14, .max = 42 },
214
	.p1 = { .min = 2, .max = 6 },
215
	.p2 = { .dot_limit = 0,
216
		.p2_slow = 7, .p2_fast = 7
217
	},
218
};
219
 
220
static const intel_limit_t intel_limits_pineview_sdvo = {
221
        .dot = { .min = 20000, .max = 400000},
222
        .vco = { .min = 1700000, .max = 3500000 },
223
	/* Pineview's Ncounter is a ring counter */
224
        .n = { .min = 3, .max = 6 },
225
        .m = { .min = 2, .max = 256 },
226
	/* Pineview only has one combined m divider, which we treat as m2. */
227
        .m1 = { .min = 0, .max = 0 },
228
        .m2 = { .min = 0, .max = 254 },
229
        .p = { .min = 5, .max = 80 },
230
        .p1 = { .min = 1, .max = 8 },
231
	.p2 = { .dot_limit = 200000,
232
		.p2_slow = 10, .p2_fast = 5 },
233
};
234
 
235
static const intel_limit_t intel_limits_pineview_lvds = {
236
        .dot = { .min = 20000, .max = 400000 },
237
        .vco = { .min = 1700000, .max = 3500000 },
238
        .n = { .min = 3, .max = 6 },
239
        .m = { .min = 2, .max = 256 },
240
        .m1 = { .min = 0, .max = 0 },
241
        .m2 = { .min = 0, .max = 254 },
242
        .p = { .min = 7, .max = 112 },
243
        .p1 = { .min = 1, .max = 8 },
244
	.p2 = { .dot_limit = 112000,
245
		.p2_slow = 14, .p2_fast = 14 },
246
};
247
 
248
/* Ironlake / Sandybridge
249
 *
250
 * We calculate clock using (register_value + 2) for N/M1/M2, so here
251
 * the range value for them is (actual_value - 2).
252
 */
253
static const intel_limit_t intel_limits_ironlake_dac = {
254
	.dot = { .min = 25000, .max = 350000 },
255
	.vco = { .min = 1760000, .max = 3510000 },
256
	.n = { .min = 1, .max = 5 },
257
	.m = { .min = 79, .max = 127 },
258
	.m1 = { .min = 12, .max = 22 },
259
	.m2 = { .min = 5, .max = 9 },
260
	.p = { .min = 5, .max = 80 },
261
	.p1 = { .min = 1, .max = 8 },
262
	.p2 = { .dot_limit = 225000,
263
		.p2_slow = 10, .p2_fast = 5 },
264
};
265
 
266
static const intel_limit_t intel_limits_ironlake_single_lvds = {
267
	.dot = { .min = 25000, .max = 350000 },
268
	.vco = { .min = 1760000, .max = 3510000 },
269
	.n = { .min = 1, .max = 3 },
270
	.m = { .min = 79, .max = 118 },
271
	.m1 = { .min = 12, .max = 22 },
272
	.m2 = { .min = 5, .max = 9 },
273
	.p = { .min = 28, .max = 112 },
274
	.p1 = { .min = 2, .max = 8 },
275
	.p2 = { .dot_limit = 225000,
276
		.p2_slow = 14, .p2_fast = 14 },
277
};
278
 
279
static const intel_limit_t intel_limits_ironlake_dual_lvds = {
280
	.dot = { .min = 25000, .max = 350000 },
281
	.vco = { .min = 1760000, .max = 3510000 },
282
	.n = { .min = 1, .max = 3 },
283
	.m = { .min = 79, .max = 127 },
284
	.m1 = { .min = 12, .max = 22 },
285
	.m2 = { .min = 5, .max = 9 },
286
	.p = { .min = 14, .max = 56 },
287
	.p1 = { .min = 2, .max = 8 },
288
	.p2 = { .dot_limit = 225000,
289
		.p2_slow = 7, .p2_fast = 7 },
290
};
291
 
292
/* LVDS 100mhz refclk limits. */
293
static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
294
	.dot = { .min = 25000, .max = 350000 },
295
	.vco = { .min = 1760000, .max = 3510000 },
296
	.n = { .min = 1, .max = 2 },
297
	.m = { .min = 79, .max = 126 },
298
	.m1 = { .min = 12, .max = 22 },
299
	.m2 = { .min = 5, .max = 9 },
300
	.p = { .min = 28, .max = 112 },
2342 Serge 301
	.p1 = { .min = 2, .max = 8 },
2327 Serge 302
	.p2 = { .dot_limit = 225000,
303
		.p2_slow = 14, .p2_fast = 14 },
304
};
305
 
306
static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
307
	.dot = { .min = 25000, .max = 350000 },
308
	.vco = { .min = 1760000, .max = 3510000 },
309
	.n = { .min = 1, .max = 3 },
310
	.m = { .min = 79, .max = 126 },
311
	.m1 = { .min = 12, .max = 22 },
312
	.m2 = { .min = 5, .max = 9 },
313
	.p = { .min = 14, .max = 42 },
2342 Serge 314
	.p1 = { .min = 2, .max = 6 },
2327 Serge 315
	.p2 = { .dot_limit = 225000,
316
		.p2_slow = 7, .p2_fast = 7 },
317
};
318
 
3031 serge 319
static const intel_limit_t intel_limits_vlv_dac = {
320
	.dot = { .min = 25000, .max = 270000 },
321
	.vco = { .min = 4000000, .max = 6000000 },
322
	.n = { .min = 1, .max = 7 },
323
	.m = { .min = 22, .max = 450 }, /* guess */
324
	.m1 = { .min = 2, .max = 3 },
325
	.m2 = { .min = 11, .max = 156 },
326
	.p = { .min = 10, .max = 30 },
4104 Serge 327
	.p1 = { .min = 1, .max = 3 },
3031 serge 328
	.p2 = { .dot_limit = 270000,
329
		.p2_slow = 2, .p2_fast = 20 },
330
};
331
 
332
static const intel_limit_t intel_limits_vlv_hdmi = {
4104 Serge 333
	.dot = { .min = 25000, .max = 270000 },
334
	.vco = { .min = 4000000, .max = 6000000 },
3031 serge 335
	.n = { .min = 1, .max = 7 },
336
	.m = { .min = 60, .max = 300 }, /* guess */
337
	.m1 = { .min = 2, .max = 3 },
338
	.m2 = { .min = 11, .max = 156 },
339
	.p = { .min = 10, .max = 30 },
340
	.p1 = { .min = 2, .max = 3 },
341
	.p2 = { .dot_limit = 270000,
342
		.p2_slow = 2, .p2_fast = 20 },
343
};
344
 
345
static const intel_limit_t intel_limits_vlv_dp = {
3243 Serge 346
	.dot = { .min = 25000, .max = 270000 },
347
	.vco = { .min = 4000000, .max = 6000000 },
3031 serge 348
	.n = { .min = 1, .max = 7 },
3243 Serge 349
	.m = { .min = 22, .max = 450 },
3031 serge 350
	.m1 = { .min = 2, .max = 3 },
351
	.m2 = { .min = 11, .max = 156 },
352
	.p = { .min = 10, .max = 30 },
4104 Serge 353
	.p1 = { .min = 1, .max = 3 },
3031 serge 354
	.p2 = { .dot_limit = 270000,
355
		.p2_slow = 2, .p2_fast = 20 },
356
};
357
 
2327 Serge 358
static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
359
						int refclk)
360
{
361
	struct drm_device *dev = crtc->dev;
362
	const intel_limit_t *limit;
363
 
364
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3480 Serge 365
		if (intel_is_dual_link_lvds(dev)) {
2327 Serge 366
			if (refclk == 100000)
367
				limit = &intel_limits_ironlake_dual_lvds_100m;
368
			else
369
				limit = &intel_limits_ironlake_dual_lvds;
370
		} else {
371
			if (refclk == 100000)
372
				limit = &intel_limits_ironlake_single_lvds_100m;
373
			else
374
				limit = &intel_limits_ironlake_single_lvds;
375
		}
4104 Serge 376
	} else
2327 Serge 377
		limit = &intel_limits_ironlake_dac;
378
 
379
	return limit;
380
}
381
 
382
static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
383
{
384
	struct drm_device *dev = crtc->dev;
385
	const intel_limit_t *limit;
386
 
387
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3480 Serge 388
		if (intel_is_dual_link_lvds(dev))
2327 Serge 389
			limit = &intel_limits_g4x_dual_channel_lvds;
390
		else
391
			limit = &intel_limits_g4x_single_channel_lvds;
392
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
393
		   intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
394
		limit = &intel_limits_g4x_hdmi;
395
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
396
		limit = &intel_limits_g4x_sdvo;
397
	} else /* The option is for other outputs */
398
		limit = &intel_limits_i9xx_sdvo;
399
 
400
	return limit;
401
}
402
 
403
static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
404
{
405
	struct drm_device *dev = crtc->dev;
406
	const intel_limit_t *limit;
407
 
408
	if (HAS_PCH_SPLIT(dev))
409
		limit = intel_ironlake_limit(crtc, refclk);
410
	else if (IS_G4X(dev)) {
411
		limit = intel_g4x_limit(crtc);
412
	} else if (IS_PINEVIEW(dev)) {
413
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
414
			limit = &intel_limits_pineview_lvds;
415
		else
416
			limit = &intel_limits_pineview_sdvo;
3031 serge 417
	} else if (IS_VALLEYVIEW(dev)) {
418
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
419
			limit = &intel_limits_vlv_dac;
420
		else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
421
			limit = &intel_limits_vlv_hdmi;
422
		else
423
			limit = &intel_limits_vlv_dp;
2327 Serge 424
	} else if (!IS_GEN2(dev)) {
425
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
426
			limit = &intel_limits_i9xx_lvds;
427
		else
428
			limit = &intel_limits_i9xx_sdvo;
429
	} else {
430
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
431
			limit = &intel_limits_i8xx_lvds;
4104 Serge 432
		else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
433
			limit = &intel_limits_i8xx_dvo;
2327 Serge 434
		else
4104 Serge 435
			limit = &intel_limits_i8xx_dac;
2327 Serge 436
	}
437
	return limit;
438
}
439
 
440
/* m1 is reserved as 0 in Pineview, n is a ring counter */
441
static void pineview_clock(int refclk, intel_clock_t *clock)
442
{
443
	clock->m = clock->m2 + 2;
444
	clock->p = clock->p1 * clock->p2;
445
	clock->vco = refclk * clock->m / clock->n;
446
	clock->dot = clock->vco / clock->p;
447
}
448
 
4104 Serge 449
static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
2327 Serge 450
{
4104 Serge 451
	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
452
}
453
 
454
static void i9xx_clock(int refclk, intel_clock_t *clock)
455
{
456
	clock->m = i9xx_dpll_compute_m(clock);
2327 Serge 457
	clock->p = clock->p1 * clock->p2;
458
	clock->vco = refclk * clock->m / (clock->n + 2);
459
	clock->dot = clock->vco / clock->p;
460
}
461
 
462
/**
463
 * Returns whether any output on the specified pipe is of the specified type
464
 */
465
bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
466
{
467
	struct drm_device *dev = crtc->dev;
468
	struct intel_encoder *encoder;
469
 
3031 serge 470
	for_each_encoder_on_crtc(dev, crtc, encoder)
471
		if (encoder->type == type)
2327 Serge 472
			return true;
473
 
474
	return false;
475
}
476
 
477
#define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
478
/**
479
 * Returns whether the given set of divisors are valid for a given refclk with
480
 * the given connectors.
481
 */
482
 
483
static bool intel_PLL_is_valid(struct drm_device *dev,
484
			       const intel_limit_t *limit,
485
			       const intel_clock_t *clock)
486
{
487
	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
2342 Serge 488
		INTELPllInvalid("p1 out of range\n");
2327 Serge 489
	if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
2342 Serge 490
		INTELPllInvalid("p out of range\n");
2327 Serge 491
	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
2342 Serge 492
		INTELPllInvalid("m2 out of range\n");
2327 Serge 493
	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
2342 Serge 494
		INTELPllInvalid("m1 out of range\n");
2327 Serge 495
	if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
2342 Serge 496
		INTELPllInvalid("m1 <= m2\n");
2327 Serge 497
	if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
2342 Serge 498
		INTELPllInvalid("m out of range\n");
2327 Serge 499
	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
2342 Serge 500
		INTELPllInvalid("n out of range\n");
2327 Serge 501
	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
2342 Serge 502
		INTELPllInvalid("vco out of range\n");
2327 Serge 503
	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
504
	 * connector, etc., rather than just a single range.
505
	 */
506
	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
2342 Serge 507
		INTELPllInvalid("dot out of range\n");
2327 Serge 508
 
509
	return true;
510
}
511
 
512
static bool
4104 Serge 513
i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
3031 serge 514
		    int target, int refclk, intel_clock_t *match_clock,
515
		    intel_clock_t *best_clock)
2327 Serge 516
{
517
	struct drm_device *dev = crtc->dev;
518
	intel_clock_t clock;
519
	int err = target;
520
 
3480 Serge 521
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2327 Serge 522
		/*
3480 Serge 523
		 * For LVDS just rely on its current settings for dual-channel.
524
		 * We haven't figured out how to reliably set up different
525
		 * single/dual channel state, if we even can.
2327 Serge 526
		 */
3480 Serge 527
		if (intel_is_dual_link_lvds(dev))
2327 Serge 528
			clock.p2 = limit->p2.p2_fast;
529
		else
530
			clock.p2 = limit->p2.p2_slow;
531
	} else {
532
		if (target < limit->p2.dot_limit)
533
			clock.p2 = limit->p2.p2_slow;
534
		else
535
			clock.p2 = limit->p2.p2_fast;
536
	}
537
 
2342 Serge 538
	memset(best_clock, 0, sizeof(*best_clock));
2327 Serge 539
 
540
	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
541
	     clock.m1++) {
542
		for (clock.m2 = limit->m2.min;
543
		     clock.m2 <= limit->m2.max; clock.m2++) {
4104 Serge 544
			if (clock.m2 >= clock.m1)
2327 Serge 545
				break;
546
			for (clock.n = limit->n.min;
547
			     clock.n <= limit->n.max; clock.n++) {
548
				for (clock.p1 = limit->p1.min;
549
					clock.p1 <= limit->p1.max; clock.p1++) {
550
					int this_err;
551
 
4104 Serge 552
					i9xx_clock(refclk, &clock);
2327 Serge 553
					if (!intel_PLL_is_valid(dev, limit,
554
								&clock))
555
						continue;
3031 serge 556
					if (match_clock &&
557
					    clock.p != match_clock->p)
558
						continue;
2327 Serge 559
 
560
					this_err = abs(clock.dot - target);
561
					if (this_err < err) {
562
						*best_clock = clock;
563
						err = this_err;
564
					}
565
				}
566
			}
567
		}
568
	}
569
 
570
	return (err != target);
571
}
572
 
573
static bool
4104 Serge 574
pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
575
		   int target, int refclk, intel_clock_t *match_clock,
576
		   intel_clock_t *best_clock)
577
{
578
	struct drm_device *dev = crtc->dev;
579
	intel_clock_t clock;
580
	int err = target;
581
 
582
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
583
		/*
584
		 * For LVDS just rely on its current settings for dual-channel.
585
		 * We haven't figured out how to reliably set up different
586
		 * single/dual channel state, if we even can.
587
		 */
588
		if (intel_is_dual_link_lvds(dev))
589
			clock.p2 = limit->p2.p2_fast;
590
		else
591
			clock.p2 = limit->p2.p2_slow;
592
	} else {
593
		if (target < limit->p2.dot_limit)
594
			clock.p2 = limit->p2.p2_slow;
595
		else
596
			clock.p2 = limit->p2.p2_fast;
597
	}
598
 
599
	memset(best_clock, 0, sizeof(*best_clock));
600
 
601
	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
602
	     clock.m1++) {
603
		for (clock.m2 = limit->m2.min;
604
		     clock.m2 <= limit->m2.max; clock.m2++) {
605
			for (clock.n = limit->n.min;
606
			     clock.n <= limit->n.max; clock.n++) {
607
				for (clock.p1 = limit->p1.min;
608
					clock.p1 <= limit->p1.max; clock.p1++) {
609
					int this_err;
610
 
611
					pineview_clock(refclk, &clock);
612
					if (!intel_PLL_is_valid(dev, limit,
613
								&clock))
614
						continue;
615
					if (match_clock &&
616
					    clock.p != match_clock->p)
617
						continue;
618
 
619
					this_err = abs(clock.dot - target);
620
					if (this_err < err) {
621
						*best_clock = clock;
622
						err = this_err;
623
					}
624
				}
625
			}
626
		}
627
	}
628
 
629
	return (err != target);
630
}
631
 
632
static bool
633
g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
3031 serge 634
			int target, int refclk, intel_clock_t *match_clock,
635
			intel_clock_t *best_clock)
2327 Serge 636
{
637
	struct drm_device *dev = crtc->dev;
638
	intel_clock_t clock;
639
	int max_n;
640
	bool found;
641
	/* approximately equals target * 0.00585 */
642
	int err_most = (target >> 8) + (target >> 9);
643
	found = false;
644
 
645
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3480 Serge 646
		if (intel_is_dual_link_lvds(dev))
2327 Serge 647
			clock.p2 = limit->p2.p2_fast;
648
		else
649
			clock.p2 = limit->p2.p2_slow;
650
	} else {
651
		if (target < limit->p2.dot_limit)
652
			clock.p2 = limit->p2.p2_slow;
653
		else
654
			clock.p2 = limit->p2.p2_fast;
655
	}
656
 
657
	memset(best_clock, 0, sizeof(*best_clock));
658
	max_n = limit->n.max;
659
	/* based on hardware requirement, prefer smaller n to precision */
660
	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
661
		/* based on hardware requirement, prefere larger m1,m2 */
662
		for (clock.m1 = limit->m1.max;
663
		     clock.m1 >= limit->m1.min; clock.m1--) {
664
			for (clock.m2 = limit->m2.max;
665
			     clock.m2 >= limit->m2.min; clock.m2--) {
666
				for (clock.p1 = limit->p1.max;
667
				     clock.p1 >= limit->p1.min; clock.p1--) {
668
					int this_err;
669
 
4104 Serge 670
					i9xx_clock(refclk, &clock);
2327 Serge 671
					if (!intel_PLL_is_valid(dev, limit,
672
								&clock))
673
						continue;
674
 
675
					this_err = abs(clock.dot - target);
676
					if (this_err < err_most) {
677
						*best_clock = clock;
678
						err_most = this_err;
679
						max_n = clock.n;
680
						found = true;
681
					}
682
				}
683
			}
684
		}
685
	}
686
	return found;
687
}
688
 
689
static bool
4104 Serge 690
vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
3031 serge 691
			int target, int refclk, intel_clock_t *match_clock,
692
			intel_clock_t *best_clock)
693
{
694
	u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
695
	u32 m, n, fastclk;
4104 Serge 696
	u32 updrate, minupdate, p;
3031 serge 697
	unsigned long bestppm, ppm, absppm;
698
	int dotclk, flag;
2327 Serge 699
 
3031 serge 700
	flag = 0;
701
	dotclk = target * 1000;
702
	bestppm = 1000000;
703
	ppm = absppm = 0;
704
	fastclk = dotclk / (2*100);
705
	updrate = 0;
706
	minupdate = 19200;
707
	n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
708
	bestm1 = bestm2 = bestp1 = bestp2 = 0;
709
 
710
	/* based on hardware requirement, prefer smaller n to precision */
711
	for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
712
		updrate = refclk / n;
713
		for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
714
			for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
715
				if (p2 > 10)
716
					p2 = p2 - 1;
717
				p = p1 * p2;
718
				/* based on hardware requirement, prefer bigger m1,m2 values */
719
				for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
720
					m2 = (((2*(fastclk * p * n / m1 )) +
721
					       refclk) / (2*refclk));
722
					m = m1 * m2;
723
					vco = updrate * m;
724
					if (vco >= limit->vco.min && vco < limit->vco.max) {
725
						ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
726
						absppm = (ppm > 0) ? ppm : (-ppm);
727
						if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
728
							bestppm = 0;
729
							flag = 1;
730
						}
731
						if (absppm < bestppm - 10) {
732
							bestppm = absppm;
733
							flag = 1;
734
						}
735
						if (flag) {
736
							bestn = n;
737
							bestm1 = m1;
738
							bestm2 = m2;
739
							bestp1 = p1;
740
							bestp2 = p2;
741
							flag = 0;
742
						}
743
					}
744
				}
745
			}
746
		}
747
	}
748
	best_clock->n = bestn;
749
	best_clock->m1 = bestm1;
750
	best_clock->m2 = bestm2;
751
	best_clock->p1 = bestp1;
752
	best_clock->p2 = bestp2;
753
 
754
	return true;
755
}
756
 
3243 Serge 757
enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
758
					     enum pipe pipe)
759
{
760
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
761
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
762
 
3746 Serge 763
	return intel_crtc->config.cpu_transcoder;
3243 Serge 764
}
765
 
3031 serge 766
static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
767
{
768
	struct drm_i915_private *dev_priv = dev->dev_private;
769
	u32 frame, frame_reg = PIPEFRAME(pipe);
770
 
771
	frame = I915_READ(frame_reg);
772
 
773
	if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
774
		DRM_DEBUG_KMS("vblank wait timed out\n");
775
}
776
 
2327 Serge 777
/**
778
 * intel_wait_for_vblank - wait for vblank on a given pipe
779
 * @dev: drm device
780
 * @pipe: pipe to wait for
781
 *
782
 * Wait for vblank to occur on a given pipe.  Needed for various bits of
783
 * mode setting code.
784
 */
785
void intel_wait_for_vblank(struct drm_device *dev, int pipe)
786
{
787
	struct drm_i915_private *dev_priv = dev->dev_private;
788
	int pipestat_reg = PIPESTAT(pipe);
789
 
3031 serge 790
	if (INTEL_INFO(dev)->gen >= 5) {
791
		ironlake_wait_for_vblank(dev, pipe);
792
		return;
793
	}
794
 
2327 Serge 795
	/* Clear existing vblank status. Note this will clear any other
796
	 * sticky status fields as well.
797
	 *
798
	 * This races with i915_driver_irq_handler() with the result
799
	 * that either function could miss a vblank event.  Here it is not
800
	 * fatal, as we will either wait upon the next vblank interrupt or
801
	 * timeout.  Generally speaking intel_wait_for_vblank() is only
802
	 * called during modeset at which time the GPU should be idle and
803
	 * should *not* be performing page flips and thus not waiting on
804
	 * vblanks...
805
	 * Currently, the result of us stealing a vblank from the irq
806
	 * handler is that a single frame will be skipped during swapbuffers.
807
	 */
808
	I915_WRITE(pipestat_reg,
809
		   I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
810
 
811
	/* Wait for vblank interrupt bit to set */
812
	if (wait_for(I915_READ(pipestat_reg) &
813
		     PIPE_VBLANK_INTERRUPT_STATUS,
814
		     50))
815
		DRM_DEBUG_KMS("vblank wait timed out\n");
816
}
817
 
818
/*
819
 * intel_wait_for_pipe_off - wait for pipe to turn off
820
 * @dev: drm device
821
 * @pipe: pipe to wait for
822
 *
823
 * After disabling a pipe, we can't wait for vblank in the usual way,
824
 * spinning on the vblank interrupt status bit, since we won't actually
825
 * see an interrupt when the pipe is disabled.
826
 *
827
 * On Gen4 and above:
828
 *   wait for the pipe register state bit to turn off
829
 *
830
 * Otherwise:
831
 *   wait for the display line value to settle (it usually
832
 *   ends up stopping at the start of the next frame).
833
 *
834
 */
835
void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
836
{
837
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 838
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
839
								      pipe);
2327 Serge 840
 
841
	if (INTEL_INFO(dev)->gen >= 4) {
3243 Serge 842
		int reg = PIPECONF(cpu_transcoder);
2327 Serge 843
 
844
		/* Wait for the Pipe State to go off */
845
		if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
846
			     100))
3031 serge 847
			WARN(1, "pipe_off wait timed out\n");
2327 Serge 848
	} else {
3031 serge 849
		u32 last_line, line_mask;
2327 Serge 850
		int reg = PIPEDSL(pipe);
4104 Serge 851
		unsigned long timeout = GetTimerTicks() + msecs_to_jiffies(100);
2327 Serge 852
 
3031 serge 853
		if (IS_GEN2(dev))
854
			line_mask = DSL_LINEMASK_GEN2;
855
		else
856
			line_mask = DSL_LINEMASK_GEN3;
857
 
2327 Serge 858
		/* Wait for the display line to settle */
859
		do {
3031 serge 860
			last_line = I915_READ(reg) & line_mask;
2327 Serge 861
			mdelay(5);
3031 serge 862
		} while (((I915_READ(reg) & line_mask) != last_line) &&
863
			 time_after(timeout, GetTimerTicks()));
864
		if (time_after(GetTimerTicks(), timeout))
865
			WARN(1, "pipe_off wait timed out\n");
2327 Serge 866
	}
867
}
868
 
3480 Serge 869
/*
870
 * ibx_digital_port_connected - is the specified port connected?
871
 * @dev_priv: i915 private structure
872
 * @port: the port to test
873
 *
874
 * Returns true if @port is connected, false otherwise.
875
 */
876
bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
877
				struct intel_digital_port *port)
878
{
879
	u32 bit;
880
 
881
	if (HAS_PCH_IBX(dev_priv->dev)) {
882
		switch(port->port) {
883
		case PORT_B:
884
			bit = SDE_PORTB_HOTPLUG;
885
			break;
886
		case PORT_C:
887
			bit = SDE_PORTC_HOTPLUG;
888
			break;
889
		case PORT_D:
890
			bit = SDE_PORTD_HOTPLUG;
891
			break;
892
		default:
893
			return true;
894
		}
895
	} else {
896
		switch(port->port) {
897
		case PORT_B:
898
			bit = SDE_PORTB_HOTPLUG_CPT;
899
			break;
900
		case PORT_C:
901
			bit = SDE_PORTC_HOTPLUG_CPT;
902
			break;
903
		case PORT_D:
904
			bit = SDE_PORTD_HOTPLUG_CPT;
905
			break;
906
		default:
907
			return true;
908
		}
909
	}
910
 
911
	return I915_READ(SDEISR) & bit;
912
}
913
 
2327 Serge 914
static const char *state_string(bool enabled)
915
{
916
	return enabled ? "on" : "off";
917
}
918
 
919
/* Only for pre-ILK configs */
4104 Serge 920
void assert_pll(struct drm_i915_private *dev_priv,
2327 Serge 921
		       enum pipe pipe, bool state)
922
{
923
	int reg;
924
	u32 val;
925
	bool cur_state;
926
 
927
	reg = DPLL(pipe);
928
	val = I915_READ(reg);
929
	cur_state = !!(val & DPLL_VCO_ENABLE);
930
	WARN(cur_state != state,
931
	     "PLL state assertion failure (expected %s, current %s)\n",
932
	     state_string(state), state_string(cur_state));
933
}
934
 
4104 Serge 935
struct intel_shared_dpll *
936
intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
937
{
938
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
939
 
940
	if (crtc->config.shared_dpll < 0)
941
		return NULL;
942
 
943
	return &dev_priv->shared_dplls[crtc->config.shared_dpll];
944
}
945
 
2327 Serge 946
/* For ILK+ */
4104 Serge 947
void assert_shared_dpll(struct drm_i915_private *dev_priv,
948
			       struct intel_shared_dpll *pll,
3031 serge 949
			   bool state)
2327 Serge 950
{
951
	bool cur_state;
4104 Serge 952
	struct intel_dpll_hw_state hw_state;
2327 Serge 953
 
3031 serge 954
	if (HAS_PCH_LPT(dev_priv->dev)) {
955
		DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
956
		return;
957
	}
2342 Serge 958
 
3031 serge 959
	if (WARN (!pll,
4104 Serge 960
		  "asserting DPLL %s with no DPLL\n", state_string(state)))
3031 serge 961
		return;
2342 Serge 962
 
4104 Serge 963
	cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
3031 serge 964
	WARN(cur_state != state,
4104 Serge 965
	     "%s assertion failure (expected %s, current %s)\n",
966
	     pll->name, state_string(state), state_string(cur_state));
2327 Serge 967
}
968
 
969
static void assert_fdi_tx(struct drm_i915_private *dev_priv,
970
			  enum pipe pipe, bool state)
971
{
972
	int reg;
973
	u32 val;
974
	bool cur_state;
3243 Serge 975
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
976
								      pipe);
2327 Serge 977
 
3480 Serge 978
	if (HAS_DDI(dev_priv->dev)) {
979
		/* DDI does not have a specific FDI_TX register */
3243 Serge 980
		reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
3031 serge 981
		val = I915_READ(reg);
3243 Serge 982
		cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
3031 serge 983
	} else {
2327 Serge 984
	reg = FDI_TX_CTL(pipe);
985
	val = I915_READ(reg);
986
	cur_state = !!(val & FDI_TX_ENABLE);
3031 serge 987
	}
2327 Serge 988
	WARN(cur_state != state,
989
	     "FDI TX state assertion failure (expected %s, current %s)\n",
990
	     state_string(state), state_string(cur_state));
991
}
992
#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
993
#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
994
 
995
static void assert_fdi_rx(struct drm_i915_private *dev_priv,
996
			  enum pipe pipe, bool state)
997
{
998
	int reg;
999
	u32 val;
1000
	bool cur_state;
1001
 
1002
	reg = FDI_RX_CTL(pipe);
1003
	val = I915_READ(reg);
1004
	cur_state = !!(val & FDI_RX_ENABLE);
1005
	WARN(cur_state != state,
1006
	     "FDI RX state assertion failure (expected %s, current %s)\n",
1007
	     state_string(state), state_string(cur_state));
1008
}
1009
#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1010
#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1011
 
1012
static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1013
				      enum pipe pipe)
1014
{
1015
	int reg;
1016
	u32 val;
1017
 
1018
	/* ILK FDI PLL is always enabled */
1019
	if (dev_priv->info->gen == 5)
1020
		return;
1021
 
3031 serge 1022
	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
3480 Serge 1023
	if (HAS_DDI(dev_priv->dev))
3031 serge 1024
		return;
1025
 
2327 Serge 1026
	reg = FDI_TX_CTL(pipe);
1027
	val = I915_READ(reg);
1028
	WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1029
}
1030
 
4104 Serge 1031
void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1032
		       enum pipe pipe, bool state)
2327 Serge 1033
{
1034
	int reg;
1035
	u32 val;
4104 Serge 1036
	bool cur_state;
2327 Serge 1037
 
1038
	reg = FDI_RX_CTL(pipe);
1039
	val = I915_READ(reg);
4104 Serge 1040
	cur_state = !!(val & FDI_RX_PLL_ENABLE);
1041
	WARN(cur_state != state,
1042
	     "FDI RX PLL assertion failure (expected %s, current %s)\n",
1043
	     state_string(state), state_string(cur_state));
2327 Serge 1044
}
1045
 
1046
static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1047
				  enum pipe pipe)
1048
{
1049
	int pp_reg, lvds_reg;
1050
	u32 val;
1051
	enum pipe panel_pipe = PIPE_A;
1052
	bool locked = true;
1053
 
1054
	if (HAS_PCH_SPLIT(dev_priv->dev)) {
1055
		pp_reg = PCH_PP_CONTROL;
1056
		lvds_reg = PCH_LVDS;
1057
	} else {
1058
		pp_reg = PP_CONTROL;
1059
		lvds_reg = LVDS;
1060
	}
1061
 
1062
	val = I915_READ(pp_reg);
1063
	if (!(val & PANEL_POWER_ON) ||
1064
	    ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1065
		locked = false;
1066
 
1067
	if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1068
		panel_pipe = PIPE_B;
1069
 
1070
	WARN(panel_pipe == pipe && locked,
1071
	     "panel assertion failure, pipe %c regs locked\n",
1072
	     pipe_name(pipe));
1073
}
1074
 
2342 Serge 1075
void assert_pipe(struct drm_i915_private *dev_priv,
2327 Serge 1076
			enum pipe pipe, bool state)
1077
{
1078
	int reg;
1079
	u32 val;
1080
	bool cur_state;
3243 Serge 1081
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1082
								      pipe);
2327 Serge 1083
 
3031 serge 1084
	/* if we need the pipe A quirk it must be always on */
1085
	if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1086
		state = true;
1087
 
4104 Serge 1088
	if (!intel_display_power_enabled(dev_priv->dev,
1089
				POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
3480 Serge 1090
		cur_state = false;
1091
	} else {
3243 Serge 1092
	reg = PIPECONF(cpu_transcoder);
2327 Serge 1093
	val = I915_READ(reg);
1094
	cur_state = !!(val & PIPECONF_ENABLE);
3480 Serge 1095
	}
1096
 
2327 Serge 1097
	WARN(cur_state != state,
1098
	     "pipe %c assertion failure (expected %s, current %s)\n",
1099
	     pipe_name(pipe), state_string(state), state_string(cur_state));
1100
}
1101
 
3031 serge 1102
static void assert_plane(struct drm_i915_private *dev_priv,
1103
			 enum plane plane, bool state)
2327 Serge 1104
{
1105
	int reg;
1106
	u32 val;
3031 serge 1107
	bool cur_state;
2327 Serge 1108
 
1109
	reg = DSPCNTR(plane);
1110
	val = I915_READ(reg);
3031 serge 1111
	cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1112
	WARN(cur_state != state,
1113
	     "plane %c assertion failure (expected %s, current %s)\n",
1114
	     plane_name(plane), state_string(state), state_string(cur_state));
2327 Serge 1115
}
1116
 
3031 serge 1117
#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1118
#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1119
 
2327 Serge 1120
static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1121
				   enum pipe pipe)
1122
{
4104 Serge 1123
	struct drm_device *dev = dev_priv->dev;
2327 Serge 1124
	int reg, i;
1125
	u32 val;
1126
	int cur_pipe;
1127
 
4104 Serge 1128
	/* Primary planes are fixed to pipes on gen4+ */
1129
	if (INTEL_INFO(dev)->gen >= 4) {
3031 serge 1130
		reg = DSPCNTR(pipe);
1131
		val = I915_READ(reg);
1132
		WARN((val & DISPLAY_PLANE_ENABLE),
1133
		     "plane %c assertion failure, should be disabled but not\n",
1134
		     plane_name(pipe));
2327 Serge 1135
		return;
3031 serge 1136
	}
2327 Serge 1137
 
1138
	/* Need to check both planes against the pipe */
4104 Serge 1139
	for_each_pipe(i) {
2327 Serge 1140
		reg = DSPCNTR(i);
1141
		val = I915_READ(reg);
1142
		cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1143
			DISPPLANE_SEL_PIPE_SHIFT;
1144
		WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1145
		     "plane %c assertion failure, should be off on pipe %c but is still active\n",
1146
		     plane_name(i), pipe_name(pipe));
1147
	}
1148
}
1149
 
3746 Serge 1150
static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1151
				    enum pipe pipe)
1152
{
4104 Serge 1153
	struct drm_device *dev = dev_priv->dev;
3746 Serge 1154
	int reg, i;
1155
	u32 val;
1156
 
4104 Serge 1157
	if (IS_VALLEYVIEW(dev)) {
3746 Serge 1158
	for (i = 0; i < dev_priv->num_plane; i++) {
1159
		reg = SPCNTR(pipe, i);
1160
		val = I915_READ(reg);
1161
		WARN((val & SP_ENABLE),
4104 Serge 1162
			     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1163
			     sprite_name(pipe, i), pipe_name(pipe));
1164
		}
1165
	} else if (INTEL_INFO(dev)->gen >= 7) {
1166
		reg = SPRCTL(pipe);
1167
		val = I915_READ(reg);
1168
		WARN((val & SPRITE_ENABLE),
1169
		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1170
		     plane_name(pipe), pipe_name(pipe));
1171
	} else if (INTEL_INFO(dev)->gen >= 5) {
1172
		reg = DVSCNTR(pipe);
1173
		val = I915_READ(reg);
1174
		WARN((val & DVS_ENABLE),
1175
		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1176
		     plane_name(pipe), pipe_name(pipe));
3746 Serge 1177
	}
1178
}
1179
 
2327 Serge 1180
static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1181
{
1182
	u32 val;
1183
	bool enabled;
1184
 
3031 serge 1185
	if (HAS_PCH_LPT(dev_priv->dev)) {
1186
		DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1187
		return;
1188
	}
1189
 
2327 Serge 1190
	val = I915_READ(PCH_DREF_CONTROL);
1191
	enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1192
			    DREF_SUPERSPREAD_SOURCE_MASK));
1193
	WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1194
}
1195
 
4104 Serge 1196
static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
2327 Serge 1197
				       enum pipe pipe)
1198
{
1199
	int reg;
1200
	u32 val;
1201
	bool enabled;
1202
 
4104 Serge 1203
	reg = PCH_TRANSCONF(pipe);
2327 Serge 1204
	val = I915_READ(reg);
1205
	enabled = !!(val & TRANS_ENABLE);
1206
	WARN(enabled,
1207
	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
1208
	     pipe_name(pipe));
1209
}
1210
 
1211
static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1212
			    enum pipe pipe, u32 port_sel, u32 val)
1213
{
1214
	if ((val & DP_PORT_EN) == 0)
1215
		return false;
1216
 
1217
	if (HAS_PCH_CPT(dev_priv->dev)) {
1218
		u32	trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1219
		u32	trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1220
		if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1221
			return false;
1222
	} else {
1223
		if ((val & DP_PIPE_MASK) != (pipe << 30))
1224
			return false;
1225
	}
1226
	return true;
1227
}
1228
 
1229
static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1230
			      enum pipe pipe, u32 val)
1231
{
3746 Serge 1232
	if ((val & SDVO_ENABLE) == 0)
2327 Serge 1233
		return false;
1234
 
1235
	if (HAS_PCH_CPT(dev_priv->dev)) {
3746 Serge 1236
		if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
2327 Serge 1237
			return false;
1238
	} else {
3746 Serge 1239
		if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
2327 Serge 1240
			return false;
1241
	}
1242
	return true;
1243
}
1244
 
1245
static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1246
			      enum pipe pipe, u32 val)
1247
{
1248
	if ((val & LVDS_PORT_EN) == 0)
1249
		return false;
1250
 
1251
	if (HAS_PCH_CPT(dev_priv->dev)) {
1252
		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1253
			return false;
1254
	} else {
1255
		if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1256
			return false;
1257
	}
1258
	return true;
1259
}
1260
 
1261
static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1262
			      enum pipe pipe, u32 val)
1263
{
1264
	if ((val & ADPA_DAC_ENABLE) == 0)
1265
		return false;
1266
	if (HAS_PCH_CPT(dev_priv->dev)) {
1267
		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1268
			return false;
1269
	} else {
1270
		if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1271
			return false;
1272
	}
1273
	return true;
1274
}
1275
 
1276
static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1277
				   enum pipe pipe, int reg, u32 port_sel)
1278
{
1279
	u32 val = I915_READ(reg);
1280
	WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1281
	     "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1282
	     reg, pipe_name(pipe));
3031 serge 1283
 
1284
	WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1285
	     && (val & DP_PIPEB_SELECT),
1286
	     "IBX PCH dp port still using transcoder B\n");
2327 Serge 1287
}
1288
 
1289
static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1290
				     enum pipe pipe, int reg)
1291
{
1292
	u32 val = I915_READ(reg);
3031 serge 1293
	WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1294
	     "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
2327 Serge 1295
	     reg, pipe_name(pipe));
3031 serge 1296
 
3746 Serge 1297
	WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
3031 serge 1298
	     && (val & SDVO_PIPE_B_SELECT),
1299
	     "IBX PCH hdmi port still using transcoder B\n");
2327 Serge 1300
}
1301
 
1302
static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1303
				      enum pipe pipe)
1304
{
1305
	int reg;
1306
	u32 val;
1307
 
1308
	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1309
	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1310
	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1311
 
1312
	reg = PCH_ADPA;
1313
	val = I915_READ(reg);
3031 serge 1314
	WARN(adpa_pipe_enabled(dev_priv, pipe, val),
2327 Serge 1315
	     "PCH VGA enabled on transcoder %c, should be disabled\n",
1316
	     pipe_name(pipe));
1317
 
1318
	reg = PCH_LVDS;
1319
	val = I915_READ(reg);
3031 serge 1320
	WARN(lvds_pipe_enabled(dev_priv, pipe, val),
2327 Serge 1321
	     "PCH LVDS enabled on transcoder %c, should be disabled\n",
1322
	     pipe_name(pipe));
1323
 
3746 Serge 1324
	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1325
	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1326
	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
2327 Serge 1327
}
1328
 
4104 Serge 1329
static void vlv_enable_pll(struct intel_crtc *crtc)
2327 Serge 1330
{
4104 Serge 1331
	struct drm_device *dev = crtc->base.dev;
1332
	struct drm_i915_private *dev_priv = dev->dev_private;
1333
	int reg = DPLL(crtc->pipe);
1334
	u32 dpll = crtc->config.dpll_hw_state.dpll;
2327 Serge 1335
 
4104 Serge 1336
	assert_pipe_disabled(dev_priv, crtc->pipe);
1337
 
2327 Serge 1338
    /* No really, not for ILK+ */
4104 Serge 1339
	BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
2327 Serge 1340
 
1341
    /* PLL is protected by panel, make sure we can write it */
1342
    if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
4104 Serge 1343
		assert_panel_unlocked(dev_priv, crtc->pipe);
2327 Serge 1344
 
4104 Serge 1345
	I915_WRITE(reg, dpll);
1346
	POSTING_READ(reg);
1347
	udelay(150);
2327 Serge 1348
 
4104 Serge 1349
	if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1350
		DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1351
 
1352
	I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1353
	POSTING_READ(DPLL_MD(crtc->pipe));
1354
 
1355
	/* We do this three times for luck */
1356
	I915_WRITE(reg, dpll);
1357
	POSTING_READ(reg);
1358
	udelay(150); /* wait for warmup */
1359
	I915_WRITE(reg, dpll);
1360
	POSTING_READ(reg);
1361
	udelay(150); /* wait for warmup */
1362
	I915_WRITE(reg, dpll);
1363
	POSTING_READ(reg);
1364
	udelay(150); /* wait for warmup */
1365
}
1366
 
1367
static void i9xx_enable_pll(struct intel_crtc *crtc)
1368
{
1369
	struct drm_device *dev = crtc->base.dev;
1370
	struct drm_i915_private *dev_priv = dev->dev_private;
1371
	int reg = DPLL(crtc->pipe);
1372
	u32 dpll = crtc->config.dpll_hw_state.dpll;
1373
 
1374
	assert_pipe_disabled(dev_priv, crtc->pipe);
1375
 
1376
	/* No really, not for ILK+ */
1377
	BUG_ON(dev_priv->info->gen >= 5);
1378
 
1379
	/* PLL is protected by panel, make sure we can write it */
1380
	if (IS_MOBILE(dev) && !IS_I830(dev))
1381
		assert_panel_unlocked(dev_priv, crtc->pipe);
1382
 
1383
	I915_WRITE(reg, dpll);
1384
 
1385
	/* Wait for the clocks to stabilize. */
1386
	POSTING_READ(reg);
1387
	udelay(150);
1388
 
1389
	if (INTEL_INFO(dev)->gen >= 4) {
1390
		I915_WRITE(DPLL_MD(crtc->pipe),
1391
			   crtc->config.dpll_hw_state.dpll_md);
1392
	} else {
1393
		/* The pixel multiplier can only be updated once the
1394
		 * DPLL is enabled and the clocks are stable.
1395
		 *
1396
		 * So write it again.
1397
		 */
1398
		I915_WRITE(reg, dpll);
1399
	}
1400
 
2327 Serge 1401
    /* We do this three times for luck */
4104 Serge 1402
	I915_WRITE(reg, dpll);
2327 Serge 1403
    POSTING_READ(reg);
1404
    udelay(150); /* wait for warmup */
4104 Serge 1405
	I915_WRITE(reg, dpll);
2327 Serge 1406
    POSTING_READ(reg);
1407
    udelay(150); /* wait for warmup */
4104 Serge 1408
	I915_WRITE(reg, dpll);
2327 Serge 1409
    POSTING_READ(reg);
1410
    udelay(150); /* wait for warmup */
1411
}
1412
 
1413
/**
4104 Serge 1414
 * i9xx_disable_pll - disable a PLL
2327 Serge 1415
 * @dev_priv: i915 private structure
1416
 * @pipe: pipe PLL to disable
1417
 *
1418
 * Disable the PLL for @pipe, making sure the pipe is off first.
1419
 *
1420
 * Note!  This is for pre-ILK only.
1421
 */
4104 Serge 1422
static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2327 Serge 1423
{
1424
	/* Don't disable pipe A or pipe A PLLs if needed */
1425
	if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1426
		return;
1427
 
1428
	/* Make sure the pipe isn't still relying on us */
1429
	assert_pipe_disabled(dev_priv, pipe);
1430
 
4104 Serge 1431
	I915_WRITE(DPLL(pipe), 0);
1432
	POSTING_READ(DPLL(pipe));
2327 Serge 1433
}
1434
 
4104 Serge 1435
void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
3031 serge 1436
{
4104 Serge 1437
	u32 port_mask;
3031 serge 1438
 
4104 Serge 1439
	if (!port)
1440
		port_mask = DPLL_PORTB_READY_MASK;
3243 Serge 1441
	else
4104 Serge 1442
		port_mask = DPLL_PORTC_READY_MASK;
3243 Serge 1443
 
4104 Serge 1444
	if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1445
		WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1446
		     'B' + port, I915_READ(DPLL(0)));
3031 serge 1447
}
1448
 
2327 Serge 1449
/**
4104 Serge 1450
 * ironlake_enable_shared_dpll - enable PCH PLL
2327 Serge 1451
 * @dev_priv: i915 private structure
1452
 * @pipe: pipe PLL to enable
1453
 *
1454
 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1455
 * drives the transcoder clock.
1456
 */
4104 Serge 1457
static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
2327 Serge 1458
{
4104 Serge 1459
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1460
	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
2327 Serge 1461
 
3031 serge 1462
	/* PCH PLLs only available on ILK, SNB and IVB */
1463
	BUG_ON(dev_priv->info->gen < 5);
4104 Serge 1464
	if (WARN_ON(pll == NULL))
2342 Serge 1465
		return;
1466
 
3031 serge 1467
	if (WARN_ON(pll->refcount == 0))
1468
		return;
2327 Serge 1469
 
4104 Serge 1470
	DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1471
		      pll->name, pll->active, pll->on,
1472
		      crtc->base.base.id);
3031 serge 1473
 
4104 Serge 1474
	if (pll->active++) {
1475
		WARN_ON(!pll->on);
1476
		assert_shared_dpll_enabled(dev_priv, pll);
3031 serge 1477
		return;
1478
	}
4104 Serge 1479
	WARN_ON(pll->on);
3031 serge 1480
 
4104 Serge 1481
	DRM_DEBUG_KMS("enabling %s\n", pll->name);
1482
	pll->enable(dev_priv, pll);
3031 serge 1483
	pll->on = true;
2327 Serge 1484
}
1485
 
4104 Serge 1486
static void intel_disable_shared_dpll(struct intel_crtc *crtc)
2327 Serge 1487
{
4104 Serge 1488
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1489
	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
2327 Serge 1490
 
1491
	/* PCH only available on ILK+ */
1492
	BUG_ON(dev_priv->info->gen < 5);
4104 Serge 1493
	if (WARN_ON(pll == NULL))
3031 serge 1494
	       return;
2327 Serge 1495
 
3031 serge 1496
	if (WARN_ON(pll->refcount == 0))
1497
		return;
2327 Serge 1498
 
4104 Serge 1499
	DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1500
		      pll->name, pll->active, pll->on,
1501
		      crtc->base.base.id);
2342 Serge 1502
 
3031 serge 1503
	if (WARN_ON(pll->active == 0)) {
4104 Serge 1504
		assert_shared_dpll_disabled(dev_priv, pll);
3031 serge 1505
		return;
1506
	}
2342 Serge 1507
 
4104 Serge 1508
	assert_shared_dpll_enabled(dev_priv, pll);
1509
	WARN_ON(!pll->on);
1510
	if (--pll->active)
2342 Serge 1511
		return;
1512
 
4104 Serge 1513
	DRM_DEBUG_KMS("disabling %s\n", pll->name);
1514
	pll->disable(dev_priv, pll);
3031 serge 1515
	pll->on = false;
2327 Serge 1516
}
1517
 
3243 Serge 1518
static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2327 Serge 1519
				    enum pipe pipe)
1520
{
3243 Serge 1521
	struct drm_device *dev = dev_priv->dev;
3031 serge 1522
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4104 Serge 1523
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3243 Serge 1524
	uint32_t reg, val, pipeconf_val;
2327 Serge 1525
 
1526
	/* PCH only available on ILK+ */
1527
	BUG_ON(dev_priv->info->gen < 5);
1528
 
1529
	/* Make sure PCH DPLL is enabled */
4104 Serge 1530
	assert_shared_dpll_enabled(dev_priv,
1531
				   intel_crtc_to_shared_dpll(intel_crtc));
2327 Serge 1532
 
1533
	/* FDI must be feeding us bits for PCH ports */
1534
	assert_fdi_tx_enabled(dev_priv, pipe);
1535
	assert_fdi_rx_enabled(dev_priv, pipe);
1536
 
3243 Serge 1537
	if (HAS_PCH_CPT(dev)) {
1538
		/* Workaround: Set the timing override bit before enabling the
1539
		 * pch transcoder. */
1540
		reg = TRANS_CHICKEN2(pipe);
1541
		val = I915_READ(reg);
1542
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1543
		I915_WRITE(reg, val);
3031 serge 1544
	}
3243 Serge 1545
 
4104 Serge 1546
	reg = PCH_TRANSCONF(pipe);
2327 Serge 1547
	val = I915_READ(reg);
3031 serge 1548
	pipeconf_val = I915_READ(PIPECONF(pipe));
2327 Serge 1549
 
1550
	if (HAS_PCH_IBX(dev_priv->dev)) {
1551
		/*
1552
		 * make the BPC in transcoder be consistent with
1553
		 * that in pipeconf reg.
1554
		 */
3480 Serge 1555
		val &= ~PIPECONF_BPC_MASK;
1556
		val |= pipeconf_val & PIPECONF_BPC_MASK;
2327 Serge 1557
	}
3031 serge 1558
 
1559
	val &= ~TRANS_INTERLACE_MASK;
1560
	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1561
		if (HAS_PCH_IBX(dev_priv->dev) &&
1562
		    intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1563
			val |= TRANS_LEGACY_INTERLACED_ILK;
1564
		else
1565
			val |= TRANS_INTERLACED;
1566
	else
1567
		val |= TRANS_PROGRESSIVE;
1568
 
2327 Serge 1569
	I915_WRITE(reg, val | TRANS_ENABLE);
1570
	if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4104 Serge 1571
		DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2327 Serge 1572
}
1573
 
3243 Serge 1574
static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1575
				      enum transcoder cpu_transcoder)
1576
{
1577
	u32 val, pipeconf_val;
1578
 
1579
	/* PCH only available on ILK+ */
1580
	BUG_ON(dev_priv->info->gen < 5);
1581
 
1582
	/* FDI must be feeding us bits for PCH ports */
3480 Serge 1583
	assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
3243 Serge 1584
	assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1585
 
1586
	/* Workaround: set timing override bit. */
1587
	val = I915_READ(_TRANSA_CHICKEN2);
1588
	val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1589
	I915_WRITE(_TRANSA_CHICKEN2, val);
1590
 
1591
	val = TRANS_ENABLE;
1592
	pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1593
 
1594
	if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1595
	    PIPECONF_INTERLACED_ILK)
1596
		val |= TRANS_INTERLACED;
1597
	else
1598
		val |= TRANS_PROGRESSIVE;
1599
 
4104 Serge 1600
	I915_WRITE(LPT_TRANSCONF, val);
1601
	if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
3243 Serge 1602
		DRM_ERROR("Failed to enable PCH transcoder\n");
1603
}
1604
 
1605
static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2327 Serge 1606
				     enum pipe pipe)
1607
{
3243 Serge 1608
	struct drm_device *dev = dev_priv->dev;
1609
	uint32_t reg, val;
2327 Serge 1610
 
1611
	/* FDI relies on the transcoder */
1612
	assert_fdi_tx_disabled(dev_priv, pipe);
1613
	assert_fdi_rx_disabled(dev_priv, pipe);
1614
 
1615
	/* Ports must be off as well */
1616
	assert_pch_ports_disabled(dev_priv, pipe);
1617
 
4104 Serge 1618
	reg = PCH_TRANSCONF(pipe);
2327 Serge 1619
	val = I915_READ(reg);
1620
	val &= ~TRANS_ENABLE;
1621
	I915_WRITE(reg, val);
1622
	/* wait for PCH transcoder off, transcoder state */
1623
	if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4104 Serge 1624
		DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
3243 Serge 1625
 
1626
	if (!HAS_PCH_IBX(dev)) {
1627
		/* Workaround: Clear the timing override chicken bit again. */
1628
		reg = TRANS_CHICKEN2(pipe);
1629
		val = I915_READ(reg);
1630
		val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1631
		I915_WRITE(reg, val);
1632
	}
2327 Serge 1633
}
1634
 
3243 Serge 1635
static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1636
{
1637
	u32 val;
1638
 
4104 Serge 1639
	val = I915_READ(LPT_TRANSCONF);
3243 Serge 1640
	val &= ~TRANS_ENABLE;
4104 Serge 1641
	I915_WRITE(LPT_TRANSCONF, val);
3243 Serge 1642
	/* wait for PCH transcoder off, transcoder state */
4104 Serge 1643
	if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
3243 Serge 1644
		DRM_ERROR("Failed to disable PCH transcoder\n");
1645
 
1646
	/* Workaround: clear timing override bit. */
1647
	val = I915_READ(_TRANSA_CHICKEN2);
1648
	val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1649
	I915_WRITE(_TRANSA_CHICKEN2, val);
1650
}
1651
 
2327 Serge 1652
/**
1653
 * intel_enable_pipe - enable a pipe, asserting requirements
1654
 * @dev_priv: i915 private structure
1655
 * @pipe: pipe to enable
1656
 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1657
 *
1658
 * Enable @pipe, making sure that various hardware specific requirements
1659
 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1660
 *
1661
 * @pipe should be %PIPE_A or %PIPE_B.
1662
 *
1663
 * Will wait until the pipe is actually running (i.e. first vblank) before
1664
 * returning.
1665
 */
1666
static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1667
			      bool pch_port)
1668
{
3243 Serge 1669
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1670
								      pipe);
3480 Serge 1671
	enum pipe pch_transcoder;
2327 Serge 1672
	int reg;
1673
	u32 val;
1674
 
4104 Serge 1675
	assert_planes_disabled(dev_priv, pipe);
1676
	assert_sprites_disabled(dev_priv, pipe);
1677
 
3480 Serge 1678
	if (HAS_PCH_LPT(dev_priv->dev))
3243 Serge 1679
		pch_transcoder = TRANSCODER_A;
1680
	else
1681
		pch_transcoder = pipe;
1682
 
2327 Serge 1683
	/*
1684
	 * A pipe without a PLL won't actually be able to drive bits from
1685
	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1686
	 * need the check.
1687
	 */
1688
	if (!HAS_PCH_SPLIT(dev_priv->dev))
1689
		assert_pll_enabled(dev_priv, pipe);
1690
	else {
1691
		if (pch_port) {
1692
			/* if driving the PCH, we need FDI enabled */
3243 Serge 1693
			assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
3480 Serge 1694
			assert_fdi_tx_pll_enabled(dev_priv,
1695
						  (enum pipe) cpu_transcoder);
2327 Serge 1696
		}
1697
		/* FIXME: assert CPU port conditions for SNB+ */
1698
	}
1699
 
3243 Serge 1700
	reg = PIPECONF(cpu_transcoder);
2327 Serge 1701
	val = I915_READ(reg);
1702
	if (val & PIPECONF_ENABLE)
1703
		return;
1704
 
1705
	I915_WRITE(reg, val | PIPECONF_ENABLE);
1706
	intel_wait_for_vblank(dev_priv->dev, pipe);
1707
}
1708
 
1709
/**
1710
 * intel_disable_pipe - disable a pipe, asserting requirements
1711
 * @dev_priv: i915 private structure
1712
 * @pipe: pipe to disable
1713
 *
1714
 * Disable @pipe, making sure that various hardware specific requirements
1715
 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1716
 *
1717
 * @pipe should be %PIPE_A or %PIPE_B.
1718
 *
1719
 * Will wait until the pipe has shut down before returning.
1720
 */
1721
static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1722
			       enum pipe pipe)
1723
{
3243 Serge 1724
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1725
								      pipe);
2327 Serge 1726
	int reg;
1727
	u32 val;
1728
 
3031 serge 1729
    /*
2327 Serge 1730
	 * Make sure planes won't keep trying to pump pixels to us,
1731
	 * or we might hang the display.
1732
	 */
1733
	assert_planes_disabled(dev_priv, pipe);
3746 Serge 1734
	assert_sprites_disabled(dev_priv, pipe);
2327 Serge 1735
 
1736
	/* Don't disable pipe A or pipe A PLLs if needed */
1737
	if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1738
		return;
1739
 
3243 Serge 1740
	reg = PIPECONF(cpu_transcoder);
2327 Serge 1741
	val = I915_READ(reg);
1742
	if ((val & PIPECONF_ENABLE) == 0)
1743
		return;
1744
 
1745
	I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1746
	intel_wait_for_pipe_off(dev_priv->dev, pipe);
1747
}
1748
 
1749
/*
1750
 * Plane regs are double buffered, going from enabled->disabled needs a
1751
 * trigger in order to latch.  The display address reg provides this.
1752
 */
3031 serge 1753
void intel_flush_display_plane(struct drm_i915_private *dev_priv,
2327 Serge 1754
				      enum plane plane)
1755
{
3243 Serge 1756
	if (dev_priv->info->gen >= 4)
1757
		I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1758
	else
2327 Serge 1759
	I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1760
}
1761
 
1762
/**
1763
 * intel_enable_plane - enable a display plane on a given pipe
1764
 * @dev_priv: i915 private structure
1765
 * @plane: plane to enable
1766
 * @pipe: pipe being fed
1767
 *
1768
 * Enable @plane on @pipe, making sure that @pipe is running first.
1769
 */
1770
static void intel_enable_plane(struct drm_i915_private *dev_priv,
1771
			       enum plane plane, enum pipe pipe)
1772
{
1773
	int reg;
1774
	u32 val;
1775
 
1776
	/* If the pipe isn't enabled, we can't pump pixels and may hang */
1777
	assert_pipe_enabled(dev_priv, pipe);
1778
 
1779
	reg = DSPCNTR(plane);
1780
	val = I915_READ(reg);
1781
	if (val & DISPLAY_PLANE_ENABLE)
1782
		return;
1783
 
1784
	I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1785
	intel_flush_display_plane(dev_priv, plane);
1786
	intel_wait_for_vblank(dev_priv->dev, pipe);
1787
}
1788
 
1789
/**
1790
 * intel_disable_plane - disable a display plane
1791
 * @dev_priv: i915 private structure
1792
 * @plane: plane to disable
1793
 * @pipe: pipe consuming the data
1794
 *
1795
 * Disable @plane; should be an independent operation.
1796
 */
1797
static void intel_disable_plane(struct drm_i915_private *dev_priv,
1798
				enum plane plane, enum pipe pipe)
1799
{
1800
	int reg;
1801
	u32 val;
1802
 
1803
	reg = DSPCNTR(plane);
1804
	val = I915_READ(reg);
1805
	if ((val & DISPLAY_PLANE_ENABLE) == 0)
1806
		return;
1807
 
1808
	I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1809
	intel_flush_display_plane(dev_priv, plane);
3031 serge 1810
    intel_wait_for_vblank(dev_priv->dev, pipe);
2327 Serge 1811
}
1812
 
3746 Serge 1813
static bool need_vtd_wa(struct drm_device *dev)
1814
{
1815
#ifdef CONFIG_INTEL_IOMMU
1816
	if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1817
		return true;
1818
#endif
1819
	return false;
1820
}
1821
 
2335 Serge 1822
int
1823
intel_pin_and_fence_fb_obj(struct drm_device *dev,
1824
			   struct drm_i915_gem_object *obj,
1825
			   struct intel_ring_buffer *pipelined)
1826
{
1827
	struct drm_i915_private *dev_priv = dev->dev_private;
1828
	u32 alignment;
1829
	int ret;
2327 Serge 1830
 
2335 Serge 1831
	switch (obj->tiling_mode) {
1832
	case I915_TILING_NONE:
1833
		if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1834
			alignment = 128 * 1024;
1835
		else if (INTEL_INFO(dev)->gen >= 4)
1836
			alignment = 4 * 1024;
1837
		else
1838
			alignment = 64 * 1024;
1839
		break;
1840
	case I915_TILING_X:
1841
		/* pin() will align the object as required by fence */
1842
		alignment = 0;
1843
		break;
1844
	case I915_TILING_Y:
3746 Serge 1845
		/* Despite that we check this in framebuffer_init userspace can
1846
		 * screw us over and change the tiling after the fact. Only
1847
		 * pinned buffers can't change their tiling. */
1848
		DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
2335 Serge 1849
		return -EINVAL;
1850
	default:
1851
		BUG();
1852
	}
2327 Serge 1853
 
3746 Serge 1854
	/* Note that the w/a also requires 64 PTE of padding following the
1855
	 * bo. We currently fill all unused PTE with the shadow page and so
1856
	 * we should always have valid PTE following the scanout preventing
1857
	 * the VT-d warning.
1858
	 */
1859
	if (need_vtd_wa(dev) && alignment < 256 * 1024)
1860
		alignment = 256 * 1024;
1861
 
2335 Serge 1862
	dev_priv->mm.interruptible = false;
1863
	ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1864
	if (ret)
1865
		goto err_interruptible;
2327 Serge 1866
 
2335 Serge 1867
	/* Install a fence for tiled scan-out. Pre-i965 always needs a
1868
	 * fence, whereas 965+ only requires a fence if using
1869
	 * framebuffer compression.  For simplicity, we always install
1870
	 * a fence as the cost is not that onerous.
1871
	 */
3480 Serge 1872
	ret = i915_gem_object_get_fence(obj);
1873
	if (ret)
1874
		goto err_unpin;
2327 Serge 1875
 
3480 Serge 1876
	i915_gem_object_pin_fence(obj);
1877
 
2335 Serge 1878
	dev_priv->mm.interruptible = true;
1879
	return 0;
2327 Serge 1880
 
2335 Serge 1881
err_unpin:
4104 Serge 1882
	i915_gem_object_unpin_from_display_plane(obj);
2335 Serge 1883
err_interruptible:
1884
	dev_priv->mm.interruptible = true;
1885
	return ret;
1886
}
2327 Serge 1887
 
3031 serge 1888
void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1889
{
1890
//	i915_gem_object_unpin_fence(obj);
1891
//	i915_gem_object_unpin(obj);
1892
}
1893
 
1894
/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1895
 * is assumed to be a power-of-two. */
3480 Serge 1896
unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1897
					     unsigned int tiling_mode,
1898
					     unsigned int cpp,
3031 serge 1899
							unsigned int pitch)
1900
{
3480 Serge 1901
	if (tiling_mode != I915_TILING_NONE) {
1902
		unsigned int tile_rows, tiles;
3031 serge 1903
 
1904
	tile_rows = *y / 8;
1905
	*y %= 8;
1906
 
3480 Serge 1907
		tiles = *x / (512/cpp);
1908
		*x %= 512/cpp;
1909
 
3031 serge 1910
	return tile_rows * pitch * 8 + tiles * 4096;
3480 Serge 1911
	} else {
1912
		unsigned int offset;
1913
 
1914
		offset = *y * pitch + *x * cpp;
1915
		*y = 0;
1916
		*x = (offset & 4095) / cpp;
1917
		return offset & -4096;
1918
	}
3031 serge 1919
}
1920
 
2327 Serge 1921
static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1922
                 int x, int y)
1923
{
1924
    struct drm_device *dev = crtc->dev;
1925
    struct drm_i915_private *dev_priv = dev->dev_private;
1926
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1927
    struct intel_framebuffer *intel_fb;
1928
    struct drm_i915_gem_object *obj;
1929
    int plane = intel_crtc->plane;
3031 serge 1930
	unsigned long linear_offset;
2327 Serge 1931
    u32 dspcntr;
1932
    u32 reg;
1933
 
1934
    switch (plane) {
1935
    case 0:
1936
    case 1:
1937
        break;
1938
    default:
4104 Serge 1939
		DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2327 Serge 1940
        return -EINVAL;
1941
    }
1942
 
1943
    intel_fb = to_intel_framebuffer(fb);
1944
    obj = intel_fb->obj;
1945
 
1946
    reg = DSPCNTR(plane);
1947
    dspcntr = I915_READ(reg);
1948
    /* Mask out pixel format bits in case we change it */
1949
    dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
3243 Serge 1950
	switch (fb->pixel_format) {
1951
	case DRM_FORMAT_C8:
2327 Serge 1952
        dspcntr |= DISPPLANE_8BPP;
1953
        break;
3243 Serge 1954
	case DRM_FORMAT_XRGB1555:
1955
	case DRM_FORMAT_ARGB1555:
1956
		dspcntr |= DISPPLANE_BGRX555;
1957
		break;
1958
	case DRM_FORMAT_RGB565:
1959
		dspcntr |= DISPPLANE_BGRX565;
1960
		break;
1961
	case DRM_FORMAT_XRGB8888:
1962
	case DRM_FORMAT_ARGB8888:
1963
		dspcntr |= DISPPLANE_BGRX888;
1964
		break;
1965
	case DRM_FORMAT_XBGR8888:
1966
	case DRM_FORMAT_ABGR8888:
1967
		dspcntr |= DISPPLANE_RGBX888;
1968
		break;
1969
	case DRM_FORMAT_XRGB2101010:
1970
	case DRM_FORMAT_ARGB2101010:
1971
		dspcntr |= DISPPLANE_BGRX101010;
2327 Serge 1972
        break;
3243 Serge 1973
	case DRM_FORMAT_XBGR2101010:
1974
	case DRM_FORMAT_ABGR2101010:
1975
		dspcntr |= DISPPLANE_RGBX101010;
2327 Serge 1976
        break;
1977
    default:
3746 Serge 1978
		BUG();
2327 Serge 1979
    }
3243 Serge 1980
 
2327 Serge 1981
    if (INTEL_INFO(dev)->gen >= 4) {
1982
        if (obj->tiling_mode != I915_TILING_NONE)
1983
            dspcntr |= DISPPLANE_TILED;
1984
        else
1985
            dspcntr &= ~DISPPLANE_TILED;
1986
    }
1987
 
4104 Serge 1988
	if (IS_G4X(dev))
1989
		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1990
 
2327 Serge 1991
    I915_WRITE(reg, dspcntr);
1992
 
3031 serge 1993
	linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2327 Serge 1994
 
3031 serge 1995
	if (INTEL_INFO(dev)->gen >= 4) {
1996
		intel_crtc->dspaddr_offset =
3480 Serge 1997
			intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
3031 serge 1998
							   fb->bits_per_pixel / 8,
1999
							   fb->pitches[0]);
2000
		linear_offset -= intel_crtc->dspaddr_offset;
2001
	} else {
2002
		intel_crtc->dspaddr_offset = linear_offset;
2003
	}
2004
 
4104 Serge 2005
	DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2006
		      i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2007
		      fb->pitches[0]);
2342 Serge 2008
	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2327 Serge 2009
    if (INTEL_INFO(dev)->gen >= 4) {
3031 serge 2010
		I915_MODIFY_DISPBASE(DSPSURF(plane),
4104 Serge 2011
				     i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2327 Serge 2012
        I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3031 serge 2013
		I915_WRITE(DSPLINOFF(plane), linear_offset);
2327 Serge 2014
    } else
4104 Serge 2015
		I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2327 Serge 2016
    POSTING_READ(reg);
2017
 
2018
    return 0;
2019
}
2020
 
2021
static int ironlake_update_plane(struct drm_crtc *crtc,
2022
                 struct drm_framebuffer *fb, int x, int y)
2023
{
2024
    struct drm_device *dev = crtc->dev;
2025
    struct drm_i915_private *dev_priv = dev->dev_private;
2026
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2027
    struct intel_framebuffer *intel_fb;
2028
    struct drm_i915_gem_object *obj;
2029
    int plane = intel_crtc->plane;
3031 serge 2030
	unsigned long linear_offset;
2327 Serge 2031
    u32 dspcntr;
2032
    u32 reg;
2033
 
2034
    switch (plane) {
2035
    case 0:
2036
    case 1:
2342 Serge 2037
	case 2:
2327 Serge 2038
        break;
2039
    default:
4104 Serge 2040
		DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2327 Serge 2041
        return -EINVAL;
2042
    }
2043
 
2044
    intel_fb = to_intel_framebuffer(fb);
2045
    obj = intel_fb->obj;
2046
 
2047
    reg = DSPCNTR(plane);
2048
    dspcntr = I915_READ(reg);
2049
    /* Mask out pixel format bits in case we change it */
2050
    dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
3243 Serge 2051
	switch (fb->pixel_format) {
2052
	case DRM_FORMAT_C8:
2327 Serge 2053
        dspcntr |= DISPPLANE_8BPP;
2054
        break;
3243 Serge 2055
	case DRM_FORMAT_RGB565:
2056
		dspcntr |= DISPPLANE_BGRX565;
2327 Serge 2057
        break;
3243 Serge 2058
	case DRM_FORMAT_XRGB8888:
2059
	case DRM_FORMAT_ARGB8888:
2060
		dspcntr |= DISPPLANE_BGRX888;
2061
		break;
2062
	case DRM_FORMAT_XBGR8888:
2063
	case DRM_FORMAT_ABGR8888:
2064
		dspcntr |= DISPPLANE_RGBX888;
2065
		break;
2066
	case DRM_FORMAT_XRGB2101010:
2067
	case DRM_FORMAT_ARGB2101010:
2068
		dspcntr |= DISPPLANE_BGRX101010;
2069
		break;
2070
	case DRM_FORMAT_XBGR2101010:
2071
	case DRM_FORMAT_ABGR2101010:
2072
		dspcntr |= DISPPLANE_RGBX101010;
2327 Serge 2073
        break;
2074
    default:
3746 Serge 2075
		BUG();
2327 Serge 2076
    }
2077
 
3480 Serge 2078
	if (obj->tiling_mode != I915_TILING_NONE)
2079
		dspcntr |= DISPPLANE_TILED;
2080
	else
2327 Serge 2081
        dspcntr &= ~DISPPLANE_TILED;
2082
 
4104 Serge 2083
	if (IS_HASWELL(dev))
2084
		dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2085
	else
2327 Serge 2086
    dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2087
 
2088
    I915_WRITE(reg, dspcntr);
2089
 
3031 serge 2090
	linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2091
	intel_crtc->dspaddr_offset =
3480 Serge 2092
		intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
3031 serge 2093
						   fb->bits_per_pixel / 8,
2094
						   fb->pitches[0]);
2095
	linear_offset -= intel_crtc->dspaddr_offset;
2327 Serge 2096
 
4104 Serge 2097
	DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2098
		      i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2099
		      fb->pitches[0]);
2342 Serge 2100
	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3031 serge 2101
	I915_MODIFY_DISPBASE(DSPSURF(plane),
4104 Serge 2102
			     i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
3243 Serge 2103
	if (IS_HASWELL(dev)) {
2104
		I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2105
	} else {
2330 Serge 2106
	I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3031 serge 2107
	I915_WRITE(DSPLINOFF(plane), linear_offset);
3243 Serge 2108
	}
2330 Serge 2109
	POSTING_READ(reg);
2327 Serge 2110
 
2111
    return 0;
2112
}
2113
 
2114
/* Assume fb object is pinned & idle & fenced and just update base pointers */
2115
static int
2116
intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2117
			   int x, int y, enum mode_set_atomic state)
2118
{
2119
	struct drm_device *dev = crtc->dev;
2120
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2121
 
2122
	if (dev_priv->display.disable_fbc)
2123
		dev_priv->display.disable_fbc(dev);
2124
	intel_increase_pllclock(crtc);
2125
 
2126
	return dev_priv->display.update_plane(crtc, fb, x, y);
2127
}
2128
 
2129
#if 0
4104 Serge 2130
void intel_display_handle_reset(struct drm_device *dev)
2131
{
2132
	struct drm_i915_private *dev_priv = dev->dev_private;
2133
	struct drm_crtc *crtc;
2134
 
2135
	/*
2136
	 * Flips in the rings have been nuked by the reset,
2137
	 * so complete all pending flips so that user space
2138
	 * will get its events and not get stuck.
2139
	 *
2140
	 * Also update the base address of all primary
2141
	 * planes to the the last fb to make sure we're
2142
	 * showing the correct fb after a reset.
2143
	 *
2144
	 * Need to make two loops over the crtcs so that we
2145
	 * don't try to grab a crtc mutex before the
2146
	 * pending_flip_queue really got woken up.
2147
	 */
2148
 
2149
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2150
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2151
		enum plane plane = intel_crtc->plane;
2152
 
2153
		intel_prepare_page_flip(dev, plane);
2154
		intel_finish_page_flip_plane(dev, plane);
2155
	}
2156
 
2157
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2158
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2159
 
2160
		mutex_lock(&crtc->mutex);
2161
		if (intel_crtc->active)
2162
			dev_priv->display.update_plane(crtc, crtc->fb,
2163
						       crtc->x, crtc->y);
2164
		mutex_unlock(&crtc->mutex);
2165
	}
2166
}
2167
 
3031 serge 2168
static int
2169
intel_finish_fb(struct drm_framebuffer *old_fb)
2170
{
2171
	struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2172
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2173
	bool was_interruptible = dev_priv->mm.interruptible;
2327 Serge 2174
	int ret;
2175
 
3031 serge 2176
	/* Big Hammer, we also need to ensure that any pending
2177
	 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2178
	 * current scanout is retired before unpinning the old
2179
	 * framebuffer.
2180
	 *
2181
	 * This should only fail upon a hung GPU, in which case we
2182
	 * can safely continue.
2183
	 */
2184
	dev_priv->mm.interruptible = false;
2185
	ret = i915_gem_object_finish_gpu(obj);
2186
	dev_priv->mm.interruptible = was_interruptible;
2327 Serge 2187
 
3031 serge 2188
	return ret;
2327 Serge 2189
}
4104 Serge 2190
 
2191
static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2192
{
2193
	struct drm_device *dev = crtc->dev;
2194
	struct drm_i915_master_private *master_priv;
2195
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2196
 
2197
	if (!dev->primary->master)
2198
		return;
2199
 
2200
	master_priv = dev->primary->master->driver_priv;
2201
	if (!master_priv->sarea_priv)
2202
		return;
2203
 
2204
	switch (intel_crtc->pipe) {
2205
	case 0:
2206
		master_priv->sarea_priv->pipeA_x = x;
2207
		master_priv->sarea_priv->pipeA_y = y;
2208
		break;
2209
	case 1:
2210
		master_priv->sarea_priv->pipeB_x = x;
2211
		master_priv->sarea_priv->pipeB_y = y;
2212
		break;
2213
	default:
2214
		break;
2215
	}
2216
}
3031 serge 2217
#endif
2327 Serge 2218
 
2219
static int
2220
intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
3031 serge 2221
		    struct drm_framebuffer *fb)
2327 Serge 2222
{
2223
	struct drm_device *dev = crtc->dev;
3031 serge 2224
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 2225
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 2226
	struct drm_framebuffer *old_fb;
2342 Serge 2227
	int ret;
2327 Serge 2228
 
2229
	/* no fb bound */
3031 serge 2230
	if (!fb) {
2327 Serge 2231
		DRM_ERROR("No FB bound\n");
2232
		return 0;
2233
	}
2234
 
3746 Serge 2235
	if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
4104 Serge 2236
		DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2237
			  plane_name(intel_crtc->plane),
3746 Serge 2238
				INTEL_INFO(dev)->num_pipes);
2327 Serge 2239
		return -EINVAL;
2240
	}
2241
 
2242
	mutex_lock(&dev->struct_mutex);
3031 serge 2243
//   ret = intel_pin_and_fence_fb_obj(dev,
2244
//                    to_intel_framebuffer(fb)->obj,
2245
//                    NULL);
2246
//   if (ret != 0) {
2247
//       mutex_unlock(&dev->struct_mutex);
2248
//       DRM_ERROR("pin & fence failed\n");
2249
//       return ret;
2250
//   }
2327 Serge 2251
 
3031 serge 2252
 
2253
	ret = dev_priv->display.update_plane(crtc, fb, x, y);
2327 Serge 2254
	if (ret) {
3031 serge 2255
		intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2327 Serge 2256
		mutex_unlock(&dev->struct_mutex);
2257
		DRM_ERROR("failed to update base address\n");
3243 Serge 2258
        return ret;
2327 Serge 2259
	}
2260
 
3031 serge 2261
	old_fb = crtc->fb;
2262
	crtc->fb = fb;
2263
	crtc->x = x;
2264
	crtc->y = y;
2265
 
2266
	if (old_fb) {
4104 Serge 2267
		if (intel_crtc->active && old_fb != fb)
3031 serge 2268
		intel_wait_for_vblank(dev, intel_crtc->pipe);
2269
		intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2270
	}
2271
 
2272
	intel_update_fbc(dev);
4104 Serge 2273
	intel_edp_psr_update(dev);
2336 Serge 2274
	mutex_unlock(&dev->struct_mutex);
2327 Serge 2275
 
2336 Serge 2276
    return 0;
2327 Serge 2277
}
2278
 
2279
static void intel_fdi_normal_train(struct drm_crtc *crtc)
2280
{
2281
	struct drm_device *dev = crtc->dev;
2282
	struct drm_i915_private *dev_priv = dev->dev_private;
2283
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2284
	int pipe = intel_crtc->pipe;
2285
	u32 reg, temp;
2286
 
2287
	/* enable normal train */
2288
	reg = FDI_TX_CTL(pipe);
2289
	temp = I915_READ(reg);
2290
	if (IS_IVYBRIDGE(dev)) {
2291
		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2292
		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2293
	} else {
2294
		temp &= ~FDI_LINK_TRAIN_NONE;
2295
		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2296
	}
2297
	I915_WRITE(reg, temp);
2298
 
2299
	reg = FDI_RX_CTL(pipe);
2300
	temp = I915_READ(reg);
2301
	if (HAS_PCH_CPT(dev)) {
2302
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2303
		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2304
	} else {
2305
		temp &= ~FDI_LINK_TRAIN_NONE;
2306
		temp |= FDI_LINK_TRAIN_NONE;
2307
	}
2308
	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2309
 
2310
	/* wait one idle pattern time */
2311
	POSTING_READ(reg);
2312
	udelay(1000);
2313
 
2314
	/* IVB wants error correction enabled */
2315
	if (IS_IVYBRIDGE(dev))
2316
		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2317
			   FDI_FE_ERRC_ENABLE);
2318
}
2319
 
4104 Serge 2320
static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2321
{
2322
	return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2323
}
2324
 
3243 Serge 2325
static void ivb_modeset_global_resources(struct drm_device *dev)
2327 Serge 2326
{
2327
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 2328
	struct intel_crtc *pipe_B_crtc =
2329
		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2330
	struct intel_crtc *pipe_C_crtc =
2331
		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2332
	uint32_t temp;
2327 Serge 2333
 
4104 Serge 2334
	/*
2335
	 * When everything is off disable fdi C so that we could enable fdi B
2336
	 * with all lanes. Note that we don't care about enabled pipes without
2337
	 * an enabled pch encoder.
2338
	 */
2339
	if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2340
	    !pipe_has_enabled_pch(pipe_C_crtc)) {
3243 Serge 2341
		WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2342
		WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2343
 
2344
		temp = I915_READ(SOUTH_CHICKEN1);
2345
		temp &= ~FDI_BC_BIFURCATION_SELECT;
2346
		DRM_DEBUG_KMS("disabling fdi C rx\n");
2347
		I915_WRITE(SOUTH_CHICKEN1, temp);
2348
	}
2327 Serge 2349
}
2350
 
2351
/* The FDI link training functions for ILK/Ibexpeak. */
2352
static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2353
{
2354
    struct drm_device *dev = crtc->dev;
2355
    struct drm_i915_private *dev_priv = dev->dev_private;
2356
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2357
    int pipe = intel_crtc->pipe;
2358
    int plane = intel_crtc->plane;
2359
    u32 reg, temp, tries;
2360
 
2361
    /* FDI needs bits from pipe & plane first */
2362
    assert_pipe_enabled(dev_priv, pipe);
2363
    assert_plane_enabled(dev_priv, plane);
2364
 
2365
    /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2366
       for train result */
2367
    reg = FDI_RX_IMR(pipe);
2368
    temp = I915_READ(reg);
2369
    temp &= ~FDI_RX_SYMBOL_LOCK;
2370
    temp &= ~FDI_RX_BIT_LOCK;
2371
    I915_WRITE(reg, temp);
2372
    I915_READ(reg);
2373
    udelay(150);
2374
 
2375
    /* enable CPU FDI TX and PCH FDI RX */
2376
    reg = FDI_TX_CTL(pipe);
2377
    temp = I915_READ(reg);
4104 Serge 2378
	temp &= ~FDI_DP_PORT_WIDTH_MASK;
2379
	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2327 Serge 2380
    temp &= ~FDI_LINK_TRAIN_NONE;
2381
    temp |= FDI_LINK_TRAIN_PATTERN_1;
2382
    I915_WRITE(reg, temp | FDI_TX_ENABLE);
2383
 
2384
    reg = FDI_RX_CTL(pipe);
2385
    temp = I915_READ(reg);
2386
    temp &= ~FDI_LINK_TRAIN_NONE;
2387
    temp |= FDI_LINK_TRAIN_PATTERN_1;
2388
    I915_WRITE(reg, temp | FDI_RX_ENABLE);
2389
 
2390
    POSTING_READ(reg);
2391
    udelay(150);
2392
 
2393
    /* Ironlake workaround, enable clock pointer after FDI enable*/
2394
        I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2395
        I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2396
               FDI_RX_PHASE_SYNC_POINTER_EN);
2397
 
2398
    reg = FDI_RX_IIR(pipe);
2399
    for (tries = 0; tries < 5; tries++) {
2400
        temp = I915_READ(reg);
2401
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2402
 
2403
        if ((temp & FDI_RX_BIT_LOCK)) {
2404
            DRM_DEBUG_KMS("FDI train 1 done.\n");
2405
            I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2406
            break;
2407
        }
2408
    }
2409
    if (tries == 5)
2410
        DRM_ERROR("FDI train 1 fail!\n");
2411
 
2412
    /* Train 2 */
2413
    reg = FDI_TX_CTL(pipe);
2414
    temp = I915_READ(reg);
2415
    temp &= ~FDI_LINK_TRAIN_NONE;
2416
    temp |= FDI_LINK_TRAIN_PATTERN_2;
2417
    I915_WRITE(reg, temp);
2418
 
2419
    reg = FDI_RX_CTL(pipe);
2420
    temp = I915_READ(reg);
2421
    temp &= ~FDI_LINK_TRAIN_NONE;
2422
    temp |= FDI_LINK_TRAIN_PATTERN_2;
2423
    I915_WRITE(reg, temp);
2424
 
2425
    POSTING_READ(reg);
2426
    udelay(150);
2427
 
2428
    reg = FDI_RX_IIR(pipe);
2429
    for (tries = 0; tries < 5; tries++) {
2430
        temp = I915_READ(reg);
2431
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2432
 
2433
        if (temp & FDI_RX_SYMBOL_LOCK) {
2434
            I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2435
            DRM_DEBUG_KMS("FDI train 2 done.\n");
2436
            break;
2437
        }
2438
    }
2439
    if (tries == 5)
2440
        DRM_ERROR("FDI train 2 fail!\n");
2441
 
2442
    DRM_DEBUG_KMS("FDI train done\n");
2443
 
2444
}
2445
 
2342 Serge 2446
static const int snb_b_fdi_train_param[] = {
2327 Serge 2447
    FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2448
    FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2449
    FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2450
    FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2451
};
2452
 
2453
/* The FDI link training functions for SNB/Cougarpoint. */
2454
static void gen6_fdi_link_train(struct drm_crtc *crtc)
2455
{
2456
    struct drm_device *dev = crtc->dev;
2457
    struct drm_i915_private *dev_priv = dev->dev_private;
2458
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2459
    int pipe = intel_crtc->pipe;
3031 serge 2460
	u32 reg, temp, i, retry;
2327 Serge 2461
 
2462
    /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2463
       for train result */
2464
    reg = FDI_RX_IMR(pipe);
2465
    temp = I915_READ(reg);
2466
    temp &= ~FDI_RX_SYMBOL_LOCK;
2467
    temp &= ~FDI_RX_BIT_LOCK;
2468
    I915_WRITE(reg, temp);
2469
 
2470
    POSTING_READ(reg);
2471
    udelay(150);
2472
 
2473
    /* enable CPU FDI TX and PCH FDI RX */
2474
    reg = FDI_TX_CTL(pipe);
2475
    temp = I915_READ(reg);
4104 Serge 2476
	temp &= ~FDI_DP_PORT_WIDTH_MASK;
2477
	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2327 Serge 2478
    temp &= ~FDI_LINK_TRAIN_NONE;
2479
    temp |= FDI_LINK_TRAIN_PATTERN_1;
2480
    temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2481
    /* SNB-B */
2482
    temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2483
    I915_WRITE(reg, temp | FDI_TX_ENABLE);
2484
 
3243 Serge 2485
	I915_WRITE(FDI_RX_MISC(pipe),
2486
		   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2487
 
2327 Serge 2488
    reg = FDI_RX_CTL(pipe);
2489
    temp = I915_READ(reg);
2490
    if (HAS_PCH_CPT(dev)) {
2491
        temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2492
        temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2493
    } else {
2494
        temp &= ~FDI_LINK_TRAIN_NONE;
2495
        temp |= FDI_LINK_TRAIN_PATTERN_1;
2496
    }
2497
    I915_WRITE(reg, temp | FDI_RX_ENABLE);
2498
 
2499
    POSTING_READ(reg);
2500
    udelay(150);
2501
 
2342 Serge 2502
	for (i = 0; i < 4; i++) {
2327 Serge 2503
        reg = FDI_TX_CTL(pipe);
2504
        temp = I915_READ(reg);
2505
        temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2506
        temp |= snb_b_fdi_train_param[i];
2507
        I915_WRITE(reg, temp);
2508
 
2509
        POSTING_READ(reg);
2510
        udelay(500);
2511
 
3031 serge 2512
		for (retry = 0; retry < 5; retry++) {
2327 Serge 2513
        reg = FDI_RX_IIR(pipe);
2514
        temp = I915_READ(reg);
2515
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2516
        if (temp & FDI_RX_BIT_LOCK) {
2517
            I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2518
            DRM_DEBUG_KMS("FDI train 1 done.\n");
2519
            break;
2520
        }
3031 serge 2521
			udelay(50);
2522
		}
2523
		if (retry < 5)
2524
			break;
2327 Serge 2525
    }
2526
    if (i == 4)
2527
        DRM_ERROR("FDI train 1 fail!\n");
2528
 
2529
    /* Train 2 */
2530
    reg = FDI_TX_CTL(pipe);
2531
    temp = I915_READ(reg);
2532
    temp &= ~FDI_LINK_TRAIN_NONE;
2533
    temp |= FDI_LINK_TRAIN_PATTERN_2;
2534
    if (IS_GEN6(dev)) {
2535
        temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2536
        /* SNB-B */
2537
        temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2538
    }
2539
    I915_WRITE(reg, temp);
2540
 
2541
    reg = FDI_RX_CTL(pipe);
2542
    temp = I915_READ(reg);
2543
    if (HAS_PCH_CPT(dev)) {
2544
        temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2545
        temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2546
    } else {
2547
        temp &= ~FDI_LINK_TRAIN_NONE;
2548
        temp |= FDI_LINK_TRAIN_PATTERN_2;
2549
    }
2550
    I915_WRITE(reg, temp);
2551
 
2552
    POSTING_READ(reg);
2553
    udelay(150);
2554
 
2342 Serge 2555
	for (i = 0; i < 4; i++) {
2327 Serge 2556
        reg = FDI_TX_CTL(pipe);
2557
        temp = I915_READ(reg);
2558
        temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2559
        temp |= snb_b_fdi_train_param[i];
2560
        I915_WRITE(reg, temp);
2561
 
2562
        POSTING_READ(reg);
2563
        udelay(500);
2564
 
3031 serge 2565
		for (retry = 0; retry < 5; retry++) {
2327 Serge 2566
        reg = FDI_RX_IIR(pipe);
2567
        temp = I915_READ(reg);
2568
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2569
        if (temp & FDI_RX_SYMBOL_LOCK) {
2570
            I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2571
            DRM_DEBUG_KMS("FDI train 2 done.\n");
2572
            break;
2573
        }
3031 serge 2574
			udelay(50);
2575
		}
2576
		if (retry < 5)
2577
			break;
2327 Serge 2578
    }
2579
    if (i == 4)
2580
        DRM_ERROR("FDI train 2 fail!\n");
2581
 
2582
    DRM_DEBUG_KMS("FDI train done.\n");
2583
}
2584
 
2585
/* Manual link training for Ivy Bridge A0 parts */
2586
static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2587
{
2588
    struct drm_device *dev = crtc->dev;
2589
    struct drm_i915_private *dev_priv = dev->dev_private;
2590
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2591
    int pipe = intel_crtc->pipe;
4104 Serge 2592
	u32 reg, temp, i, j;
2327 Serge 2593
 
2594
    /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2595
       for train result */
2596
    reg = FDI_RX_IMR(pipe);
2597
    temp = I915_READ(reg);
2598
    temp &= ~FDI_RX_SYMBOL_LOCK;
2599
    temp &= ~FDI_RX_BIT_LOCK;
2600
    I915_WRITE(reg, temp);
2601
 
2602
    POSTING_READ(reg);
2603
    udelay(150);
2604
 
3243 Serge 2605
	DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2606
		      I915_READ(FDI_RX_IIR(pipe)));
2607
 
4104 Serge 2608
	/* Try each vswing and preemphasis setting twice before moving on */
2609
	for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2610
		/* disable first in case we need to retry */
2611
		reg = FDI_TX_CTL(pipe);
2612
		temp = I915_READ(reg);
2613
		temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2614
		temp &= ~FDI_TX_ENABLE;
2615
		I915_WRITE(reg, temp);
2616
 
2617
		reg = FDI_RX_CTL(pipe);
2618
		temp = I915_READ(reg);
2619
		temp &= ~FDI_LINK_TRAIN_AUTO;
2620
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2621
		temp &= ~FDI_RX_ENABLE;
2622
		I915_WRITE(reg, temp);
2623
 
2327 Serge 2624
    /* enable CPU FDI TX and PCH FDI RX */
2625
    reg = FDI_TX_CTL(pipe);
2626
    temp = I915_READ(reg);
4104 Serge 2627
	temp &= ~FDI_DP_PORT_WIDTH_MASK;
2628
	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2327 Serge 2629
    temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2630
    temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4104 Serge 2631
		temp |= snb_b_fdi_train_param[j/2];
2342 Serge 2632
	temp |= FDI_COMPOSITE_SYNC;
2327 Serge 2633
    I915_WRITE(reg, temp | FDI_TX_ENABLE);
2634
 
3243 Serge 2635
	I915_WRITE(FDI_RX_MISC(pipe),
2636
		   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2637
 
2327 Serge 2638
    reg = FDI_RX_CTL(pipe);
2639
    temp = I915_READ(reg);
2640
    temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2342 Serge 2641
	temp |= FDI_COMPOSITE_SYNC;
2327 Serge 2642
    I915_WRITE(reg, temp | FDI_RX_ENABLE);
2643
 
2644
    POSTING_READ(reg);
4104 Serge 2645
		udelay(1); /* should be 0.5us */
2327 Serge 2646
 
2342 Serge 2647
	for (i = 0; i < 4; i++) {
2327 Serge 2648
        reg = FDI_RX_IIR(pipe);
2649
        temp = I915_READ(reg);
2650
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2651
 
2652
        if (temp & FDI_RX_BIT_LOCK ||
2653
            (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2654
            I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4104 Serge 2655
				DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2656
					      i);
2327 Serge 2657
            break;
2658
        }
4104 Serge 2659
			udelay(1); /* should be 0.5us */
2660
		}
2661
		if (i == 4) {
2662
			DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2663
			continue;
2327 Serge 2664
    }
2665
 
2666
    /* Train 2 */
2667
    reg = FDI_TX_CTL(pipe);
2668
    temp = I915_READ(reg);
2669
    temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2670
    temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2671
    I915_WRITE(reg, temp);
2672
 
2673
    reg = FDI_RX_CTL(pipe);
2674
    temp = I915_READ(reg);
2675
    temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2676
    temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2677
    I915_WRITE(reg, temp);
2678
 
2679
    POSTING_READ(reg);
4104 Serge 2680
		udelay(2); /* should be 1.5us */
2327 Serge 2681
 
2342 Serge 2682
	for (i = 0; i < 4; i++) {
2327 Serge 2683
        reg = FDI_RX_IIR(pipe);
2684
        temp = I915_READ(reg);
2685
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2686
 
4104 Serge 2687
			if (temp & FDI_RX_SYMBOL_LOCK ||
2688
			    (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2327 Serge 2689
            I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4104 Serge 2690
				DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2691
					      i);
2692
				goto train_done;
2327 Serge 2693
        }
4104 Serge 2694
			udelay(2); /* should be 1.5us */
2327 Serge 2695
    }
2696
    if (i == 4)
4104 Serge 2697
			DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2698
	}
2327 Serge 2699
 
4104 Serge 2700
train_done:
2327 Serge 2701
    DRM_DEBUG_KMS("FDI train done.\n");
2702
}
2703
 
3031 serge 2704
static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2327 Serge 2705
{
3031 serge 2706
	struct drm_device *dev = intel_crtc->base.dev;
2327 Serge 2707
	struct drm_i915_private *dev_priv = dev->dev_private;
2708
	int pipe = intel_crtc->pipe;
2709
	u32 reg, temp;
2710
 
2711
 
2712
	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2713
	reg = FDI_RX_CTL(pipe);
2714
	temp = I915_READ(reg);
4104 Serge 2715
	temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2716
	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3480 Serge 2717
	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2327 Serge 2718
	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2719
 
2720
	POSTING_READ(reg);
2721
	udelay(200);
2722
 
2723
	/* Switch from Rawclk to PCDclk */
2724
	temp = I915_READ(reg);
2725
	I915_WRITE(reg, temp | FDI_PCDCLK);
2726
 
2727
	POSTING_READ(reg);
2728
	udelay(200);
2729
 
2730
	/* Enable CPU FDI TX PLL, always on for Ironlake */
2731
	reg = FDI_TX_CTL(pipe);
2732
	temp = I915_READ(reg);
2733
	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2734
		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2735
 
2736
		POSTING_READ(reg);
2737
		udelay(100);
2738
	}
2739
}
2740
 
3031 serge 2741
static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2742
{
2743
	struct drm_device *dev = intel_crtc->base.dev;
2744
	struct drm_i915_private *dev_priv = dev->dev_private;
2745
	int pipe = intel_crtc->pipe;
2746
	u32 reg, temp;
2747
 
2748
	/* Switch from PCDclk to Rawclk */
2749
	reg = FDI_RX_CTL(pipe);
2750
	temp = I915_READ(reg);
2751
	I915_WRITE(reg, temp & ~FDI_PCDCLK);
2752
 
2753
	/* Disable CPU FDI TX PLL */
2754
	reg = FDI_TX_CTL(pipe);
2755
	temp = I915_READ(reg);
2756
	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2757
 
2758
	POSTING_READ(reg);
2759
	udelay(100);
2760
 
2761
	reg = FDI_RX_CTL(pipe);
2762
	temp = I915_READ(reg);
2763
	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2764
 
2765
	/* Wait for the clocks to turn off. */
2766
	POSTING_READ(reg);
2767
	udelay(100);
2768
}
2769
 
2327 Serge 2770
static void ironlake_fdi_disable(struct drm_crtc *crtc)
2771
{
2772
	struct drm_device *dev = crtc->dev;
2773
	struct drm_i915_private *dev_priv = dev->dev_private;
2774
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2775
	int pipe = intel_crtc->pipe;
2776
	u32 reg, temp;
2777
 
2778
	/* disable CPU FDI tx and PCH FDI rx */
2779
	reg = FDI_TX_CTL(pipe);
2780
	temp = I915_READ(reg);
2781
	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2782
	POSTING_READ(reg);
2783
 
2784
	reg = FDI_RX_CTL(pipe);
2785
	temp = I915_READ(reg);
2786
	temp &= ~(0x7 << 16);
3480 Serge 2787
	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2327 Serge 2788
	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2789
 
2790
	POSTING_READ(reg);
2791
	udelay(100);
2792
 
2793
	/* Ironlake workaround, disable clock pointer after downing FDI */
2794
	if (HAS_PCH_IBX(dev)) {
2795
		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2796
	}
2797
 
2798
	/* still set train pattern 1 */
2799
	reg = FDI_TX_CTL(pipe);
2800
	temp = I915_READ(reg);
2801
	temp &= ~FDI_LINK_TRAIN_NONE;
2802
	temp |= FDI_LINK_TRAIN_PATTERN_1;
2803
	I915_WRITE(reg, temp);
2804
 
2805
	reg = FDI_RX_CTL(pipe);
2806
	temp = I915_READ(reg);
2807
	if (HAS_PCH_CPT(dev)) {
2808
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2809
		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2810
	} else {
2811
		temp &= ~FDI_LINK_TRAIN_NONE;
2812
		temp |= FDI_LINK_TRAIN_PATTERN_1;
2813
	}
2814
	/* BPC in FDI rx is consistent with that in PIPECONF */
2815
	temp &= ~(0x07 << 16);
3480 Serge 2816
	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2327 Serge 2817
	I915_WRITE(reg, temp);
2818
 
2819
	POSTING_READ(reg);
2820
	udelay(100);
2821
}
2822
 
3031 serge 2823
static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2327 Serge 2824
{
3031 serge 2825
	struct drm_device *dev = crtc->dev;
2327 Serge 2826
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 2827
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 2828
	unsigned long flags;
2829
	bool pending;
2327 Serge 2830
 
3480 Serge 2831
	if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2832
	    intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3031 serge 2833
		return false;
2327 Serge 2834
 
3031 serge 2835
	spin_lock_irqsave(&dev->event_lock, flags);
2836
	pending = to_intel_crtc(crtc)->unpin_work != NULL;
2837
	spin_unlock_irqrestore(&dev->event_lock, flags);
2838
 
2839
	return pending;
2327 Serge 2840
}
2841
 
3031 serge 2842
#if 0
2327 Serge 2843
static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2844
{
3031 serge 2845
	struct drm_device *dev = crtc->dev;
2846
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 2847
 
2848
	if (crtc->fb == NULL)
2849
		return;
2850
 
3480 Serge 2851
	WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2852
 
2360 Serge 2853
	wait_event(dev_priv->pending_flip_queue,
3031 serge 2854
		   !intel_crtc_has_pending_flip(crtc));
2855
 
2856
	mutex_lock(&dev->struct_mutex);
2857
	intel_finish_fb(crtc->fb);
2858
	mutex_unlock(&dev->struct_mutex);
2327 Serge 2859
}
3031 serge 2860
#endif
2327 Serge 2861
 
3031 serge 2862
/* Program iCLKIP clock to the desired frequency */
2863
static void lpt_program_iclkip(struct drm_crtc *crtc)
2864
{
2865
	struct drm_device *dev = crtc->dev;
2866
	struct drm_i915_private *dev_priv = dev->dev_private;
2867
	u32 divsel, phaseinc, auxdiv, phasedir = 0;
2868
	u32 temp;
2869
 
3480 Serge 2870
	mutex_lock(&dev_priv->dpio_lock);
2871
 
3031 serge 2872
	/* It is necessary to ungate the pixclk gate prior to programming
2873
	 * the divisors, and gate it back when it is done.
2874
	 */
2875
	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2876
 
2877
	/* Disable SSCCTL */
2878
	intel_sbi_write(dev_priv, SBI_SSCCTL6,
3243 Serge 2879
			intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2880
				SBI_SSCCTL_DISABLE,
2881
			SBI_ICLK);
3031 serge 2882
 
2883
	/* 20MHz is a corner case which is out of range for the 7-bit divisor */
2884
	if (crtc->mode.clock == 20000) {
2885
		auxdiv = 1;
2886
		divsel = 0x41;
2887
		phaseinc = 0x20;
2888
	} else {
2889
		/* The iCLK virtual clock root frequency is in MHz,
2890
		 * but the crtc->mode.clock in in KHz. To get the divisors,
2891
		 * it is necessary to divide one by another, so we
2892
		 * convert the virtual clock precision to KHz here for higher
2893
		 * precision.
2894
		 */
2895
		u32 iclk_virtual_root_freq = 172800 * 1000;
2896
		u32 iclk_pi_range = 64;
2897
		u32 desired_divisor, msb_divisor_value, pi_value;
2898
 
2899
		desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2900
		msb_divisor_value = desired_divisor / iclk_pi_range;
2901
		pi_value = desired_divisor % iclk_pi_range;
2902
 
2903
		auxdiv = 0;
2904
		divsel = msb_divisor_value - 2;
2905
		phaseinc = pi_value;
2906
	}
2907
 
2908
	/* This should not happen with any sane values */
2909
	WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2910
		~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2911
	WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2912
		~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2913
 
2914
	DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2915
			crtc->mode.clock,
2916
			auxdiv,
2917
			divsel,
2918
			phasedir,
2919
			phaseinc);
2920
 
2921
	/* Program SSCDIVINTPHASE6 */
3243 Serge 2922
	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3031 serge 2923
	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2924
	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2925
	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2926
	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2927
	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2928
	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3243 Serge 2929
	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3031 serge 2930
 
2931
	/* Program SSCAUXDIV */
3243 Serge 2932
	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3031 serge 2933
	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2934
	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3243 Serge 2935
	intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3031 serge 2936
 
2937
	/* Enable modulator and associated divider */
3243 Serge 2938
	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3031 serge 2939
	temp &= ~SBI_SSCCTL_DISABLE;
3243 Serge 2940
	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3031 serge 2941
 
2942
	/* Wait for initialization time */
2943
	udelay(24);
2944
 
2945
	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3480 Serge 2946
 
2947
	mutex_unlock(&dev_priv->dpio_lock);
3031 serge 2948
}
2949
 
4104 Serge 2950
static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2951
						enum pipe pch_transcoder)
2952
{
2953
	struct drm_device *dev = crtc->base.dev;
2954
	struct drm_i915_private *dev_priv = dev->dev_private;
2955
	enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2956
 
2957
	I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
2958
		   I915_READ(HTOTAL(cpu_transcoder)));
2959
	I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
2960
		   I915_READ(HBLANK(cpu_transcoder)));
2961
	I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
2962
		   I915_READ(HSYNC(cpu_transcoder)));
2963
 
2964
	I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
2965
		   I915_READ(VTOTAL(cpu_transcoder)));
2966
	I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
2967
		   I915_READ(VBLANK(cpu_transcoder)));
2968
	I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
2969
		   I915_READ(VSYNC(cpu_transcoder)));
2970
	I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
2971
		   I915_READ(VSYNCSHIFT(cpu_transcoder)));
2972
}
2973
 
2327 Serge 2974
/*
2975
 * Enable PCH resources required for PCH ports:
2976
 *   - PCH PLLs
2977
 *   - FDI training & RX/TX
2978
 *   - update transcoder timings
2979
 *   - DP transcoding bits
2980
 *   - transcoder
2981
 */
2982
static void ironlake_pch_enable(struct drm_crtc *crtc)
2983
{
2984
	struct drm_device *dev = crtc->dev;
2985
	struct drm_i915_private *dev_priv = dev->dev_private;
2986
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2987
	int pipe = intel_crtc->pipe;
3031 serge 2988
	u32 reg, temp;
2327 Serge 2989
 
4104 Serge 2990
	assert_pch_transcoder_disabled(dev_priv, pipe);
3031 serge 2991
 
3243 Serge 2992
	/* Write the TU size bits before fdi link training, so that error
2993
	 * detection works. */
2994
	I915_WRITE(FDI_RX_TUSIZE1(pipe),
2995
		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2996
 
2327 Serge 2997
	/* For PCH output, training FDI link */
2998
	dev_priv->display.fdi_link_train(crtc);
2999
 
4104 Serge 3000
	/* We need to program the right clock selection before writing the pixel
3001
	 * mutliplier into the DPLL. */
3243 Serge 3002
	if (HAS_PCH_CPT(dev)) {
3031 serge 3003
		u32 sel;
2342 Serge 3004
 
2327 Serge 3005
		temp = I915_READ(PCH_DPLL_SEL);
4104 Serge 3006
		temp |= TRANS_DPLL_ENABLE(pipe);
3007
		sel = TRANS_DPLLB_SEL(pipe);
3008
		if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3031 serge 3009
			temp |= sel;
3010
		else
3011
			temp &= ~sel;
2327 Serge 3012
		I915_WRITE(PCH_DPLL_SEL, temp);
3013
	}
3014
 
4104 Serge 3015
	/* XXX: pch pll's can be enabled any time before we enable the PCH
3016
	 * transcoder, and we actually should do this to not upset any PCH
3017
	 * transcoder that already use the clock when we share it.
3018
	 *
3019
	 * Note that enable_shared_dpll tries to do the right thing, but
3020
	 * get_shared_dpll unconditionally resets the pll - we need that to have
3021
	 * the right LVDS enable sequence. */
3022
	ironlake_enable_shared_dpll(intel_crtc);
3023
 
2327 Serge 3024
	/* set transcoder timing, panel must allow it */
3025
	assert_panel_unlocked(dev_priv, pipe);
4104 Serge 3026
	ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
2327 Serge 3027
 
3028
	intel_fdi_normal_train(crtc);
3029
 
3030
	/* For PCH DP, enable TRANS_DP_CTL */
3031
	if (HAS_PCH_CPT(dev) &&
2342 Serge 3032
	    (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3033
	     intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3480 Serge 3034
		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
2327 Serge 3035
		reg = TRANS_DP_CTL(pipe);
3036
		temp = I915_READ(reg);
3037
		temp &= ~(TRANS_DP_PORT_SEL_MASK |
3038
			  TRANS_DP_SYNC_MASK |
3039
			  TRANS_DP_BPC_MASK);
3040
		temp |= (TRANS_DP_OUTPUT_ENABLE |
3041
			 TRANS_DP_ENH_FRAMING);
3042
		temp |= bpc << 9; /* same format but at 11:9 */
3043
 
3044
		if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3045
			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3046
		if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3047
			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3048
 
3049
		switch (intel_trans_dp_port_sel(crtc)) {
3050
		case PCH_DP_B:
3051
			temp |= TRANS_DP_PORT_SEL_B;
3052
			break;
3053
		case PCH_DP_C:
3054
			temp |= TRANS_DP_PORT_SEL_C;
3055
			break;
3056
		case PCH_DP_D:
3057
			temp |= TRANS_DP_PORT_SEL_D;
3058
			break;
3059
		default:
3243 Serge 3060
			BUG();
2327 Serge 3061
		}
3062
 
3063
		I915_WRITE(reg, temp);
3064
	}
3065
 
3243 Serge 3066
	ironlake_enable_pch_transcoder(dev_priv, pipe);
2327 Serge 3067
}
3068
 
3243 Serge 3069
static void lpt_pch_enable(struct drm_crtc *crtc)
3070
{
3071
	struct drm_device *dev = crtc->dev;
3072
	struct drm_i915_private *dev_priv = dev->dev_private;
3073
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3746 Serge 3074
	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3243 Serge 3075
 
4104 Serge 3076
	assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3243 Serge 3077
 
3078
	lpt_program_iclkip(crtc);
3079
 
3080
	/* Set transcoder timing. */
4104 Serge 3081
	ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3243 Serge 3082
 
3083
	lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3084
}
3085
 
4104 Serge 3086
static void intel_put_shared_dpll(struct intel_crtc *crtc)
3031 serge 3087
{
4104 Serge 3088
	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3031 serge 3089
 
3090
	if (pll == NULL)
3091
		return;
3092
 
3093
	if (pll->refcount == 0) {
4104 Serge 3094
		WARN(1, "bad %s refcount\n", pll->name);
3031 serge 3095
		return;
3096
	}
3097
 
4104 Serge 3098
	if (--pll->refcount == 0) {
3099
		WARN_ON(pll->on);
3100
		WARN_ON(pll->active);
3101
	}
3102
 
3103
	crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3031 serge 3104
}
3105
 
4104 Serge 3106
static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3031 serge 3107
{
4104 Serge 3108
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3109
	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3110
	enum intel_dpll_id i;
3031 serge 3111
 
3112
	if (pll) {
4104 Serge 3113
		DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3114
			      crtc->base.base.id, pll->name);
3115
		intel_put_shared_dpll(crtc);
3031 serge 3116
	}
3117
 
3118
	if (HAS_PCH_IBX(dev_priv->dev)) {
3119
		/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4104 Serge 3120
		i = (enum intel_dpll_id) crtc->pipe;
3121
		pll = &dev_priv->shared_dplls[i];
3031 serge 3122
 
4104 Serge 3123
		DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3124
			      crtc->base.base.id, pll->name);
3031 serge 3125
 
3126
		goto found;
3127
	}
3128
 
4104 Serge 3129
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3130
		pll = &dev_priv->shared_dplls[i];
3031 serge 3131
 
3132
		/* Only want to check enabled timings first */
3133
		if (pll->refcount == 0)
3134
			continue;
3135
 
4104 Serge 3136
		if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3137
			   sizeof(pll->hw_state)) == 0) {
3138
			DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3139
				      crtc->base.base.id,
3140
				      pll->name, pll->refcount, pll->active);
3031 serge 3141
 
3142
			goto found;
3143
		}
3144
	}
3145
 
3146
	/* Ok no matching timings, maybe there's a free one? */
4104 Serge 3147
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3148
		pll = &dev_priv->shared_dplls[i];
3031 serge 3149
		if (pll->refcount == 0) {
4104 Serge 3150
			DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3151
				      crtc->base.base.id, pll->name);
3031 serge 3152
			goto found;
3153
		}
3154
	}
3155
 
3156
	return NULL;
3157
 
3158
found:
4104 Serge 3159
	crtc->config.shared_dpll = i;
3160
	DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3161
			 pipe_name(crtc->pipe));
3162
 
3163
	if (pll->active == 0) {
3164
		memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3165
		       sizeof(pll->hw_state));
3166
 
3167
		DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3168
		WARN_ON(pll->on);
3169
		assert_shared_dpll_disabled(dev_priv, pll);
3170
 
3171
		pll->mode_set(dev_priv, pll);
3172
	}
3031 serge 3173
	pll->refcount++;
3174
 
3175
	return pll;
3176
}
3177
 
4104 Serge 3178
static void cpt_verify_modeset(struct drm_device *dev, int pipe)
2342 Serge 3179
{
3180
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 3181
	int dslreg = PIPEDSL(pipe);
2342 Serge 3182
	u32 temp;
3183
 
3184
	temp = I915_READ(dslreg);
3185
	udelay(500);
3186
	if (wait_for(I915_READ(dslreg) != temp, 5)) {
3187
		if (wait_for(I915_READ(dslreg) != temp, 5))
4104 Serge 3188
			DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
2342 Serge 3189
	}
3190
}
3191
 
4104 Serge 3192
static void ironlake_pfit_enable(struct intel_crtc *crtc)
3193
{
3194
	struct drm_device *dev = crtc->base.dev;
3195
	struct drm_i915_private *dev_priv = dev->dev_private;
3196
	int pipe = crtc->pipe;
3197
 
3198
	if (crtc->config.pch_pfit.enabled) {
3199
		/* Force use of hard-coded filter coefficients
3200
		 * as some pre-programmed values are broken,
3201
		 * e.g. x201.
3202
		 */
3203
		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3204
			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3205
						 PF_PIPE_SEL_IVB(pipe));
3206
		else
3207
			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3208
		I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3209
		I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3210
	}
3211
}
3212
 
3213
static void intel_enable_planes(struct drm_crtc *crtc)
3214
{
3215
	struct drm_device *dev = crtc->dev;
3216
	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3217
	struct intel_plane *intel_plane;
3218
 
3219
	list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3220
		if (intel_plane->pipe == pipe)
3221
			intel_plane_restore(&intel_plane->base);
3222
}
3223
 
3224
static void intel_disable_planes(struct drm_crtc *crtc)
3225
{
3226
	struct drm_device *dev = crtc->dev;
3227
	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3228
	struct intel_plane *intel_plane;
3229
 
3230
	list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3231
		if (intel_plane->pipe == pipe)
3232
			intel_plane_disable(&intel_plane->base);
3233
}
3234
 
2327 Serge 3235
static void ironlake_crtc_enable(struct drm_crtc *crtc)
3236
{
3237
    struct drm_device *dev = crtc->dev;
3238
    struct drm_i915_private *dev_priv = dev->dev_private;
3239
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 3240
	struct intel_encoder *encoder;
2327 Serge 3241
    int pipe = intel_crtc->pipe;
3242
    int plane = intel_crtc->plane;
3243
 
3031 serge 3244
	WARN_ON(!crtc->enabled);
3245
 
2327 Serge 3246
    if (intel_crtc->active)
3247
        return;
3248
 
3249
    intel_crtc->active = true;
4104 Serge 3250
 
3251
	intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3252
	intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3253
 
2327 Serge 3254
    intel_update_watermarks(dev);
3255
 
4104 Serge 3256
	for_each_encoder_on_crtc(dev, crtc, encoder)
3257
		if (encoder->pre_enable)
3258
			encoder->pre_enable(encoder);
2327 Serge 3259
 
3746 Serge 3260
	if (intel_crtc->config.has_pch_encoder) {
3243 Serge 3261
		/* Note: FDI PLL enabling _must_ be done before we enable the
3262
		 * cpu pipes, hence this is separate from all the other fdi/pch
3263
		 * enabling. */
3031 serge 3264
		ironlake_fdi_pll_enable(intel_crtc);
3265
	} else {
3266
		assert_fdi_tx_disabled(dev_priv, pipe);
3267
		assert_fdi_rx_disabled(dev_priv, pipe);
3268
	}
2327 Serge 3269
 
4104 Serge 3270
	ironlake_pfit_enable(intel_crtc);
3031 serge 3271
 
2327 Serge 3272
    /*
3273
     * On ILK+ LUT must be loaded before the pipe is running but with
3274
     * clocks enabled
3275
     */
3276
    intel_crtc_load_lut(crtc);
3277
 
3746 Serge 3278
	intel_enable_pipe(dev_priv, pipe,
3279
			  intel_crtc->config.has_pch_encoder);
2327 Serge 3280
    intel_enable_plane(dev_priv, plane, pipe);
4104 Serge 3281
	intel_enable_planes(crtc);
3282
//	intel_crtc_update_cursor(crtc, true);
2327 Serge 3283
 
3746 Serge 3284
	if (intel_crtc->config.has_pch_encoder)
2327 Serge 3285
        ironlake_pch_enable(crtc);
3286
 
3287
    mutex_lock(&dev->struct_mutex);
3288
    intel_update_fbc(dev);
3289
    mutex_unlock(&dev->struct_mutex);
3290
 
3031 serge 3291
	for_each_encoder_on_crtc(dev, crtc, encoder)
3292
		encoder->enable(encoder);
3293
 
3294
	if (HAS_PCH_CPT(dev))
4104 Serge 3295
		cpt_verify_modeset(dev, intel_crtc->pipe);
3031 serge 3296
 
3297
	/*
3298
	 * There seems to be a race in PCH platform hw (at least on some
3299
	 * outputs) where an enabled pipe still completes any pageflip right
3300
	 * away (as if the pipe is off) instead of waiting for vblank. As soon
3301
	 * as the first vblank happend, everything works as expected. Hence just
3302
	 * wait for one vblank before returning to avoid strange things
3303
	 * happening.
3304
	 */
3305
	intel_wait_for_vblank(dev, intel_crtc->pipe);
2327 Serge 3306
}
3307
 
4104 Serge 3308
/* IPS only exists on ULT machines and is tied to pipe A. */
3309
static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3310
{
3311
	return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3312
}
3313
 
3314
static void hsw_enable_ips(struct intel_crtc *crtc)
3315
{
3316
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3317
 
3318
	if (!crtc->config.ips_enabled)
3319
		return;
3320
 
3321
	/* We can only enable IPS after we enable a plane and wait for a vblank.
3322
	 * We guarantee that the plane is enabled by calling intel_enable_ips
3323
	 * only after intel_enable_plane. And intel_enable_plane already waits
3324
	 * for a vblank, so all we need to do here is to enable the IPS bit. */
3325
	assert_plane_enabled(dev_priv, crtc->plane);
3326
	I915_WRITE(IPS_CTL, IPS_ENABLE);
3327
}
3328
 
3329
static void hsw_disable_ips(struct intel_crtc *crtc)
3330
{
3331
	struct drm_device *dev = crtc->base.dev;
3332
	struct drm_i915_private *dev_priv = dev->dev_private;
3333
 
3334
	if (!crtc->config.ips_enabled)
3335
		return;
3336
 
3337
	assert_plane_enabled(dev_priv, crtc->plane);
3338
	I915_WRITE(IPS_CTL, 0);
3339
 
3340
	/* We need to wait for a vblank before we can disable the plane. */
3341
	intel_wait_for_vblank(dev, crtc->pipe);
3342
}
3343
 
3243 Serge 3344
static void haswell_crtc_enable(struct drm_crtc *crtc)
3345
{
3346
	struct drm_device *dev = crtc->dev;
3347
	struct drm_i915_private *dev_priv = dev->dev_private;
3348
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3349
	struct intel_encoder *encoder;
3350
	int pipe = intel_crtc->pipe;
3351
	int plane = intel_crtc->plane;
3352
 
3353
	WARN_ON(!crtc->enabled);
3354
 
3355
	if (intel_crtc->active)
3356
		return;
3357
 
3358
	intel_crtc->active = true;
4104 Serge 3359
 
3360
	intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3361
	if (intel_crtc->config.has_pch_encoder)
3362
		intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3363
 
3243 Serge 3364
	intel_update_watermarks(dev);
3365
 
3746 Serge 3366
	if (intel_crtc->config.has_pch_encoder)
3243 Serge 3367
		dev_priv->display.fdi_link_train(crtc);
3368
 
3369
	for_each_encoder_on_crtc(dev, crtc, encoder)
3370
		if (encoder->pre_enable)
3371
			encoder->pre_enable(encoder);
3372
 
3373
	intel_ddi_enable_pipe_clock(intel_crtc);
3374
 
4104 Serge 3375
	ironlake_pfit_enable(intel_crtc);
3243 Serge 3376
 
3377
	/*
3378
	 * On ILK+ LUT must be loaded before the pipe is running but with
3379
	 * clocks enabled
3380
	 */
3381
	intel_crtc_load_lut(crtc);
3382
 
3383
	intel_ddi_set_pipe_settings(crtc);
3746 Serge 3384
	intel_ddi_enable_transcoder_func(crtc);
3243 Serge 3385
 
3746 Serge 3386
	intel_enable_pipe(dev_priv, pipe,
3387
			  intel_crtc->config.has_pch_encoder);
3243 Serge 3388
	intel_enable_plane(dev_priv, plane, pipe);
4104 Serge 3389
	intel_enable_planes(crtc);
3390
//	intel_crtc_update_cursor(crtc, true);
3243 Serge 3391
 
4104 Serge 3392
	hsw_enable_ips(intel_crtc);
3393
 
3746 Serge 3394
	if (intel_crtc->config.has_pch_encoder)
3243 Serge 3395
		lpt_pch_enable(crtc);
3396
 
3397
	mutex_lock(&dev->struct_mutex);
3398
	intel_update_fbc(dev);
3399
	mutex_unlock(&dev->struct_mutex);
3400
 
3401
	for_each_encoder_on_crtc(dev, crtc, encoder)
3402
		encoder->enable(encoder);
3403
 
3404
	/*
3405
	 * There seems to be a race in PCH platform hw (at least on some
3406
	 * outputs) where an enabled pipe still completes any pageflip right
3407
	 * away (as if the pipe is off) instead of waiting for vblank. As soon
3408
	 * as the first vblank happend, everything works as expected. Hence just
3409
	 * wait for one vblank before returning to avoid strange things
3410
	 * happening.
3411
	 */
3412
	intel_wait_for_vblank(dev, intel_crtc->pipe);
3413
}
3414
 
4104 Serge 3415
static void ironlake_pfit_disable(struct intel_crtc *crtc)
3416
{
3417
	struct drm_device *dev = crtc->base.dev;
3418
	struct drm_i915_private *dev_priv = dev->dev_private;
3419
	int pipe = crtc->pipe;
3420
 
3421
	/* To avoid upsetting the power well on haswell only disable the pfit if
3422
	 * it's in use. The hw state code will make sure we get this right. */
3423
	if (crtc->config.pch_pfit.enabled) {
3424
		I915_WRITE(PF_CTL(pipe), 0);
3425
		I915_WRITE(PF_WIN_POS(pipe), 0);
3426
		I915_WRITE(PF_WIN_SZ(pipe), 0);
3427
	}
3428
}
3429
 
2327 Serge 3430
static void ironlake_crtc_disable(struct drm_crtc *crtc)
3431
{
3432
    struct drm_device *dev = crtc->dev;
3433
    struct drm_i915_private *dev_priv = dev->dev_private;
3434
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 3435
	struct intel_encoder *encoder;
2327 Serge 3436
    int pipe = intel_crtc->pipe;
3437
    int plane = intel_crtc->plane;
3438
    u32 reg, temp;
3439
 
3031 serge 3440
 
2327 Serge 3441
    if (!intel_crtc->active)
3442
        return;
3443
 
3031 serge 3444
	for_each_encoder_on_crtc(dev, crtc, encoder)
3445
		encoder->disable(encoder);
2336 Serge 3446
 
3031 serge 3447
//    intel_crtc_wait_for_pending_flips(crtc);
2327 Serge 3448
//    drm_vblank_off(dev, pipe);
3449
 
4104 Serge 3450
	if (dev_priv->fbc.plane == plane)
3451
		intel_disable_fbc(dev);
3452
 
3453
//	intel_crtc_update_cursor(crtc, false);
3454
	intel_disable_planes(crtc);
2327 Serge 3455
    intel_disable_plane(dev_priv, plane, pipe);
3456
 
4104 Serge 3457
	if (intel_crtc->config.has_pch_encoder)
3458
		intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
2327 Serge 3459
 
3460
    intel_disable_pipe(dev_priv, pipe);
3461
 
4104 Serge 3462
	ironlake_pfit_disable(intel_crtc);
2327 Serge 3463
 
3031 serge 3464
	for_each_encoder_on_crtc(dev, crtc, encoder)
3465
		if (encoder->post_disable)
3466
			encoder->post_disable(encoder);
3467
 
4104 Serge 3468
	if (intel_crtc->config.has_pch_encoder) {
2327 Serge 3469
    ironlake_fdi_disable(crtc);
3470
 
3243 Serge 3471
	ironlake_disable_pch_transcoder(dev_priv, pipe);
4104 Serge 3472
		intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
2327 Serge 3473
 
3474
    if (HAS_PCH_CPT(dev)) {
3475
        /* disable TRANS_DP_CTL */
3476
        reg = TRANS_DP_CTL(pipe);
3477
        temp = I915_READ(reg);
4104 Serge 3478
			temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3479
				  TRANS_DP_PORT_SEL_MASK);
2327 Serge 3480
        temp |= TRANS_DP_PORT_SEL_NONE;
3481
        I915_WRITE(reg, temp);
3482
 
3483
        /* disable DPLL_SEL */
3484
        temp = I915_READ(PCH_DPLL_SEL);
4104 Serge 3485
			temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
2327 Serge 3486
        I915_WRITE(PCH_DPLL_SEL, temp);
3487
    }
3488
 
3489
    /* disable PCH DPLL */
4104 Serge 3490
		intel_disable_shared_dpll(intel_crtc);
2327 Serge 3491
 
3031 serge 3492
	ironlake_fdi_pll_disable(intel_crtc);
4104 Serge 3493
	}
2327 Serge 3494
 
3495
    intel_crtc->active = false;
3496
    intel_update_watermarks(dev);
3497
 
3498
    mutex_lock(&dev->struct_mutex);
3499
    intel_update_fbc(dev);
3500
    mutex_unlock(&dev->struct_mutex);
3501
}
3502
 
3243 Serge 3503
static void haswell_crtc_disable(struct drm_crtc *crtc)
3504
{
3505
	struct drm_device *dev = crtc->dev;
3506
	struct drm_i915_private *dev_priv = dev->dev_private;
3507
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3508
	struct intel_encoder *encoder;
3509
	int pipe = intel_crtc->pipe;
3510
	int plane = intel_crtc->plane;
3746 Serge 3511
	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3243 Serge 3512
 
3513
	if (!intel_crtc->active)
3514
		return;
3515
 
3516
	for_each_encoder_on_crtc(dev, crtc, encoder)
3517
		encoder->disable(encoder);
3518
 
3519
 
4104 Serge 3520
	/* FBC must be disabled before disabling the plane on HSW. */
3521
	if (dev_priv->fbc.plane == plane)
3522
		intel_disable_fbc(dev);
3523
 
3524
	hsw_disable_ips(intel_crtc);
3525
 
3526
//	intel_crtc_update_cursor(crtc, false);
3527
	intel_disable_planes(crtc);
3243 Serge 3528
	intel_disable_plane(dev_priv, plane, pipe);
3529
 
4104 Serge 3530
	if (intel_crtc->config.has_pch_encoder)
3531
		intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3243 Serge 3532
	intel_disable_pipe(dev_priv, pipe);
3533
 
3534
	intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3535
 
4104 Serge 3536
	ironlake_pfit_disable(intel_crtc);
3243 Serge 3537
 
3538
	intel_ddi_disable_pipe_clock(intel_crtc);
3539
 
3540
	for_each_encoder_on_crtc(dev, crtc, encoder)
3541
		if (encoder->post_disable)
3542
			encoder->post_disable(encoder);
3543
 
3746 Serge 3544
	if (intel_crtc->config.has_pch_encoder) {
3243 Serge 3545
		lpt_disable_pch_transcoder(dev_priv);
4104 Serge 3546
		intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3243 Serge 3547
		intel_ddi_fdi_disable(crtc);
3548
	}
3549
 
3550
	intel_crtc->active = false;
3551
	intel_update_watermarks(dev);
3552
 
3553
	mutex_lock(&dev->struct_mutex);
3554
	intel_update_fbc(dev);
3555
	mutex_unlock(&dev->struct_mutex);
3556
}
3557
 
3031 serge 3558
static void ironlake_crtc_off(struct drm_crtc *crtc)
2327 Serge 3559
{
3560
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4104 Serge 3561
	intel_put_shared_dpll(intel_crtc);
2327 Serge 3562
}
3563
 
3243 Serge 3564
static void haswell_crtc_off(struct drm_crtc *crtc)
3565
{
3566
	intel_ddi_put_crtc_pll(crtc);
3567
}
3568
 
2327 Serge 3569
static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3570
{
3571
	if (!enable && intel_crtc->overlay) {
3572
		struct drm_device *dev = intel_crtc->base.dev;
3573
		struct drm_i915_private *dev_priv = dev->dev_private;
3574
 
3575
		mutex_lock(&dev->struct_mutex);
3576
		dev_priv->mm.interruptible = false;
3577
//       (void) intel_overlay_switch_off(intel_crtc->overlay);
3578
		dev_priv->mm.interruptible = true;
3579
		mutex_unlock(&dev->struct_mutex);
3580
	}
3581
 
3582
	/* Let userspace switch the overlay on again. In most cases userspace
3583
	 * has to recompute where to put it anyway.
3584
	 */
3585
}
3586
 
3480 Serge 3587
/**
3588
 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3589
 * cursor plane briefly if not already running after enabling the display
3590
 * plane.
3591
 * This workaround avoids occasional blank screens when self refresh is
3592
 * enabled.
3593
 */
3594
static void
3595
g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3596
{
3597
	u32 cntl = I915_READ(CURCNTR(pipe));
3598
 
3599
	if ((cntl & CURSOR_MODE) == 0) {
3600
		u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3601
 
3602
		I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3603
		I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3604
		intel_wait_for_vblank(dev_priv->dev, pipe);
3605
		I915_WRITE(CURCNTR(pipe), cntl);
3606
		I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3607
		I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3608
	}
3609
}
3610
 
4104 Serge 3611
static void i9xx_pfit_enable(struct intel_crtc *crtc)
3612
{
3613
	struct drm_device *dev = crtc->base.dev;
3614
	struct drm_i915_private *dev_priv = dev->dev_private;
3615
	struct intel_crtc_config *pipe_config = &crtc->config;
3616
 
3617
	if (!crtc->config.gmch_pfit.control)
3618
		return;
3619
 
3620
	/*
3621
	 * The panel fitter should only be adjusted whilst the pipe is disabled,
3622
	 * according to register description and PRM.
3623
	 */
3624
	WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3625
	assert_pipe_disabled(dev_priv, crtc->pipe);
3626
 
3627
	I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3628
	I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3629
 
3630
	/* Border color in case we don't scale up to the full screen. Black by
3631
	 * default, change to something else for debugging. */
3632
	I915_WRITE(BCLRPAT(crtc->pipe), 0);
3633
}
3634
 
3635
static void valleyview_crtc_enable(struct drm_crtc *crtc)
3636
{
3637
	struct drm_device *dev = crtc->dev;
3638
	struct drm_i915_private *dev_priv = dev->dev_private;
3639
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3640
	struct intel_encoder *encoder;
3641
	int pipe = intel_crtc->pipe;
3642
	int plane = intel_crtc->plane;
3643
 
3644
	WARN_ON(!crtc->enabled);
3645
 
3646
	if (intel_crtc->active)
3647
		return;
3648
 
3649
	intel_crtc->active = true;
3650
	intel_update_watermarks(dev);
3651
 
3652
	for_each_encoder_on_crtc(dev, crtc, encoder)
3653
		if (encoder->pre_pll_enable)
3654
			encoder->pre_pll_enable(encoder);
3655
 
3656
	vlv_enable_pll(intel_crtc);
3657
 
3658
	for_each_encoder_on_crtc(dev, crtc, encoder)
3659
		if (encoder->pre_enable)
3660
			encoder->pre_enable(encoder);
3661
 
3662
	i9xx_pfit_enable(intel_crtc);
3663
 
3664
	intel_crtc_load_lut(crtc);
3665
 
3666
	intel_enable_pipe(dev_priv, pipe, false);
3667
	intel_enable_plane(dev_priv, plane, pipe);
3668
	intel_enable_planes(crtc);
3669
//	intel_crtc_update_cursor(crtc, true);
3670
 
3671
	intel_update_fbc(dev);
3672
 
3673
	for_each_encoder_on_crtc(dev, crtc, encoder)
3674
		encoder->enable(encoder);
3675
}
3676
 
2327 Serge 3677
static void i9xx_crtc_enable(struct drm_crtc *crtc)
3678
{
3679
    struct drm_device *dev = crtc->dev;
3680
    struct drm_i915_private *dev_priv = dev->dev_private;
3681
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 3682
	struct intel_encoder *encoder;
2327 Serge 3683
    int pipe = intel_crtc->pipe;
3684
    int plane = intel_crtc->plane;
3685
 
3031 serge 3686
	WARN_ON(!crtc->enabled);
3687
 
2327 Serge 3688
    if (intel_crtc->active)
3689
        return;
3690
 
3691
    intel_crtc->active = true;
3692
    intel_update_watermarks(dev);
3693
 
3480 Serge 3694
	for_each_encoder_on_crtc(dev, crtc, encoder)
3695
		if (encoder->pre_enable)
3696
			encoder->pre_enable(encoder);
3697
 
4104 Serge 3698
	i9xx_enable_pll(intel_crtc);
3699
 
3700
	i9xx_pfit_enable(intel_crtc);
3701
 
3702
	intel_crtc_load_lut(crtc);
3703
 
2327 Serge 3704
    intel_enable_pipe(dev_priv, pipe, false);
3705
    intel_enable_plane(dev_priv, plane, pipe);
4104 Serge 3706
	intel_enable_planes(crtc);
3707
	/* The fixup needs to happen before cursor is enabled */
3480 Serge 3708
	if (IS_G4X(dev))
3709
		g4x_fixup_plane(dev_priv, pipe);
4104 Serge 3710
//	intel_crtc_update_cursor(crtc, true);
2327 Serge 3711
 
3712
    /* Give the overlay scaler a chance to enable if it's on this pipe */
3713
    intel_crtc_dpms_overlay(intel_crtc, true);
3031 serge 3714
 
4104 Serge 3715
	intel_update_fbc(dev);
3716
 
3031 serge 3717
	for_each_encoder_on_crtc(dev, crtc, encoder)
3718
		encoder->enable(encoder);
2327 Serge 3719
}
3720
 
3746 Serge 3721
static void i9xx_pfit_disable(struct intel_crtc *crtc)
3722
{
3723
	struct drm_device *dev = crtc->base.dev;
3724
	struct drm_i915_private *dev_priv = dev->dev_private;
3725
 
4104 Serge 3726
	if (!crtc->config.gmch_pfit.control)
3727
		return;
3728
 
3746 Serge 3729
	assert_pipe_disabled(dev_priv, crtc->pipe);
3730
 
4104 Serge 3731
	DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3732
			 I915_READ(PFIT_CONTROL));
3746 Serge 3733
		I915_WRITE(PFIT_CONTROL, 0);
3734
}
3735
 
2327 Serge 3736
static void i9xx_crtc_disable(struct drm_crtc *crtc)
3737
{
3738
    struct drm_device *dev = crtc->dev;
3739
    struct drm_i915_private *dev_priv = dev->dev_private;
3740
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 3741
	struct intel_encoder *encoder;
2327 Serge 3742
    int pipe = intel_crtc->pipe;
3743
    int plane = intel_crtc->plane;
3744
 
3745
    if (!intel_crtc->active)
3746
        return;
3747
 
3031 serge 3748
	for_each_encoder_on_crtc(dev, crtc, encoder)
3749
		encoder->disable(encoder);
3750
 
2327 Serge 3751
    /* Give the overlay scaler a chance to disable if it's on this pipe */
3031 serge 3752
//    intel_crtc_wait_for_pending_flips(crtc);
2327 Serge 3753
//    drm_vblank_off(dev, pipe);
3754
 
4104 Serge 3755
	if (dev_priv->fbc.plane == plane)
2327 Serge 3756
        intel_disable_fbc(dev);
3757
 
4104 Serge 3758
	intel_crtc_dpms_overlay(intel_crtc, false);
3759
//	intel_crtc_update_cursor(crtc, false);
3760
	intel_disable_planes(crtc);
2327 Serge 3761
    intel_disable_plane(dev_priv, plane, pipe);
4104 Serge 3762
 
2327 Serge 3763
    intel_disable_pipe(dev_priv, pipe);
3480 Serge 3764
 
3746 Serge 3765
	i9xx_pfit_disable(intel_crtc);
3480 Serge 3766
 
4104 Serge 3767
	for_each_encoder_on_crtc(dev, crtc, encoder)
3768
		if (encoder->post_disable)
3769
			encoder->post_disable(encoder);
2327 Serge 3770
 
4104 Serge 3771
	i9xx_disable_pll(dev_priv, pipe);
3772
 
2327 Serge 3773
    intel_crtc->active = false;
3774
    intel_update_fbc(dev);
3775
    intel_update_watermarks(dev);
3776
}
3777
 
3031 serge 3778
static void i9xx_crtc_off(struct drm_crtc *crtc)
2327 Serge 3779
{
3780
}
3781
 
3031 serge 3782
static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3783
				    bool enabled)
2330 Serge 3784
{
3785
	struct drm_device *dev = crtc->dev;
3786
	struct drm_i915_master_private *master_priv;
3787
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3788
	int pipe = intel_crtc->pipe;
2327 Serge 3789
 
3790
 
2340 Serge 3791
#if 0
2330 Serge 3792
	if (!dev->primary->master)
3793
		return;
2327 Serge 3794
 
2330 Serge 3795
	master_priv = dev->primary->master->driver_priv;
3796
	if (!master_priv->sarea_priv)
3797
		return;
2327 Serge 3798
 
2330 Serge 3799
	switch (pipe) {
3800
	case 0:
3801
		master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3802
		master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3803
		break;
3804
	case 1:
3805
		master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3806
		master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3807
		break;
3808
	default:
3809
		DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3810
		break;
3811
	}
2340 Serge 3812
#endif
3813
 
2330 Serge 3814
}
2327 Serge 3815
 
3031 serge 3816
/**
3817
 * Sets the power management mode of the pipe and plane.
3818
 */
3819
void intel_crtc_update_dpms(struct drm_crtc *crtc)
3820
{
3821
	struct drm_device *dev = crtc->dev;
3822
	struct drm_i915_private *dev_priv = dev->dev_private;
3823
	struct intel_encoder *intel_encoder;
3824
	bool enable = false;
3825
 
3826
	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3827
		enable |= intel_encoder->connectors_active;
3828
 
3829
	if (enable)
3830
		dev_priv->display.crtc_enable(crtc);
3831
	else
3832
		dev_priv->display.crtc_disable(crtc);
3833
 
3834
	intel_crtc_update_sarea(crtc, enable);
3835
}
3836
 
2330 Serge 3837
static void intel_crtc_disable(struct drm_crtc *crtc)
3838
{
3839
	struct drm_device *dev = crtc->dev;
3031 serge 3840
	struct drm_connector *connector;
3841
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 3842
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 Serge 3843
 
3031 serge 3844
	/* crtc should still be enabled when we disable it. */
3845
	WARN_ON(!crtc->enabled);
2327 Serge 3846
 
4104 Serge 3847
	dev_priv->display.crtc_disable(crtc);
3480 Serge 3848
	intel_crtc->eld_vld = false;
3031 serge 3849
	intel_crtc_update_sarea(crtc, false);
3850
	dev_priv->display.off(crtc);
3851
 
3852
	assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3853
	assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3854
 
3855
//	if (crtc->fb) {
3856
//		mutex_lock(&dev->struct_mutex);
3857
//		intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3858
//		mutex_unlock(&dev->struct_mutex);
3859
//		crtc->fb = NULL;
3860
//	}
3861
 
3862
	/* Update computed state. */
3863
	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3864
		if (!connector->encoder || !connector->encoder->crtc)
3865
			continue;
3866
 
3867
		if (connector->encoder->crtc != crtc)
3868
			continue;
3869
 
3870
		connector->dpms = DRM_MODE_DPMS_OFF;
3871
		to_intel_encoder(connector->encoder)->connectors_active = false;
2330 Serge 3872
	}
3873
}
2327 Serge 3874
 
3031 serge 3875
void intel_encoder_destroy(struct drm_encoder *encoder)
2330 Serge 3876
{
3031 serge 3877
	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3878
 
3879
	drm_encoder_cleanup(encoder);
3880
	kfree(intel_encoder);
2330 Serge 3881
}
2327 Serge 3882
 
4104 Serge 3883
/* Simple dpms helper for encoders with just one connector, no cloning and only
3031 serge 3884
 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3885
 * state of the entire output pipe. */
4104 Serge 3886
static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
2330 Serge 3887
{
3031 serge 3888
	if (mode == DRM_MODE_DPMS_ON) {
3889
		encoder->connectors_active = true;
3890
 
3891
		intel_crtc_update_dpms(encoder->base.crtc);
3892
	} else {
3893
		encoder->connectors_active = false;
3894
 
3895
		intel_crtc_update_dpms(encoder->base.crtc);
3896
	}
2330 Serge 3897
}
2327 Serge 3898
 
3031 serge 3899
/* Cross check the actual hw state with our own modeset state tracking (and it's
3900
 * internal consistency). */
3901
static void intel_connector_check_state(struct intel_connector *connector)
2330 Serge 3902
{
3031 serge 3903
	if (connector->get_hw_state(connector)) {
3904
		struct intel_encoder *encoder = connector->encoder;
3905
		struct drm_crtc *crtc;
3906
		bool encoder_enabled;
3907
		enum pipe pipe;
3908
 
3909
		DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3910
			      connector->base.base.id,
3911
			      drm_get_connector_name(&connector->base));
3912
 
3913
		WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3914
		     "wrong connector dpms state\n");
3915
		WARN(connector->base.encoder != &encoder->base,
3916
		     "active connector not linked to encoder\n");
3917
		WARN(!encoder->connectors_active,
3918
		     "encoder->connectors_active not set\n");
3919
 
3920
		encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3921
		WARN(!encoder_enabled, "encoder not enabled\n");
3922
		if (WARN_ON(!encoder->base.crtc))
3923
			return;
3924
 
3925
		crtc = encoder->base.crtc;
3926
 
3927
		WARN(!crtc->enabled, "crtc not enabled\n");
3928
		WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3929
		WARN(pipe != to_intel_crtc(crtc)->pipe,
3930
		     "encoder active on the wrong pipe\n");
3931
	}
2330 Serge 3932
}
2327 Serge 3933
 
3031 serge 3934
/* Even simpler default implementation, if there's really no special case to
3935
 * consider. */
3936
void intel_connector_dpms(struct drm_connector *connector, int mode)
2330 Serge 3937
{
3031 serge 3938
	/* All the simple cases only support two dpms states. */
3939
	if (mode != DRM_MODE_DPMS_ON)
3940
		mode = DRM_MODE_DPMS_OFF;
2342 Serge 3941
 
3031 serge 3942
	if (mode == connector->dpms)
3943
		return;
3944
 
3945
	connector->dpms = mode;
3946
 
3947
	/* Only need to change hw state when actually enabled */
4104 Serge 3948
	if (connector->encoder)
3949
		intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
3031 serge 3950
 
3951
	intel_modeset_check_state(connector->dev);
2330 Serge 3952
}
2327 Serge 3953
 
3031 serge 3954
/* Simple connector->get_hw_state implementation for encoders that support only
3955
 * one connector and no cloning and hence the encoder state determines the state
3956
 * of the connector. */
3957
bool intel_connector_get_hw_state(struct intel_connector *connector)
2330 Serge 3958
{
3031 serge 3959
	enum pipe pipe = 0;
3960
	struct intel_encoder *encoder = connector->encoder;
2330 Serge 3961
 
3031 serge 3962
	return encoder->get_hw_state(encoder, &pipe);
2330 Serge 3963
}
3964
 
4104 Serge 3965
static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
3966
				     struct intel_crtc_config *pipe_config)
3967
{
3968
	struct drm_i915_private *dev_priv = dev->dev_private;
3969
	struct intel_crtc *pipe_B_crtc =
3970
		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3971
 
3972
	DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
3973
		      pipe_name(pipe), pipe_config->fdi_lanes);
3974
	if (pipe_config->fdi_lanes > 4) {
3975
		DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
3976
			      pipe_name(pipe), pipe_config->fdi_lanes);
3977
		return false;
3978
	}
3979
 
3980
	if (IS_HASWELL(dev)) {
3981
		if (pipe_config->fdi_lanes > 2) {
3982
			DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
3983
				      pipe_config->fdi_lanes);
3984
			return false;
3985
		} else {
3986
			return true;
3987
		}
3988
	}
3989
 
3990
	if (INTEL_INFO(dev)->num_pipes == 2)
3991
		return true;
3992
 
3993
	/* Ivybridge 3 pipe is really complicated */
3994
	switch (pipe) {
3995
	case PIPE_A:
3996
		return true;
3997
	case PIPE_B:
3998
		if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
3999
		    pipe_config->fdi_lanes > 2) {
4000
			DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4001
				      pipe_name(pipe), pipe_config->fdi_lanes);
4002
			return false;
4003
		}
4004
		return true;
4005
	case PIPE_C:
4006
		if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4007
		    pipe_B_crtc->config.fdi_lanes <= 2) {
4008
			if (pipe_config->fdi_lanes > 2) {
4009
				DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4010
					      pipe_name(pipe), pipe_config->fdi_lanes);
4011
				return false;
4012
			}
4013
		} else {
4014
			DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4015
			return false;
4016
		}
4017
		return true;
4018
	default:
4019
		BUG();
4020
	}
4021
}
4022
 
4023
#define RETRY 1
4024
static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
3746 Serge 4025
				      struct intel_crtc_config *pipe_config)
2330 Serge 4026
{
4104 Serge 4027
	struct drm_device *dev = intel_crtc->base.dev;
3746 Serge 4028
	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4104 Serge 4029
	int lane, link_bw, fdi_dotclock;
4030
	bool setup_ok, needs_recompute = false;
2330 Serge 4031
 
4104 Serge 4032
retry:
4033
	/* FDI is a binary signal running at ~2.7GHz, encoding
4034
	 * each output octet as 10 bits. The actual frequency
4035
	 * is stored as a divider into a 100MHz clock, and the
4036
	 * mode pixel clock is stored in units of 1KHz.
4037
	 * Hence the bw of each lane in terms of the mode signal
4038
	 * is:
4039
	 */
4040
	link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4041
 
4042
	fdi_dotclock = adjusted_mode->clock;
4043
	fdi_dotclock /= pipe_config->pixel_multiplier;
4044
 
4045
	lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4046
					   pipe_config->pipe_bpp);
4047
 
4048
	pipe_config->fdi_lanes = lane;
4049
 
4050
	intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4051
			       link_bw, &pipe_config->fdi_m_n);
4052
 
4053
	setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4054
					    intel_crtc->pipe, pipe_config);
4055
	if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4056
		pipe_config->pipe_bpp -= 2*3;
4057
		DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4058
			      pipe_config->pipe_bpp);
4059
		needs_recompute = true;
4060
		pipe_config->bw_constrained = true;
4061
 
4062
		goto retry;
4063
	}
4064
 
4065
	if (needs_recompute)
4066
		return RETRY;
4067
 
4068
	return setup_ok ? 0 : -EINVAL;
4069
}
4070
 
4071
static void hsw_compute_ips_config(struct intel_crtc *crtc,
4072
				   struct intel_crtc_config *pipe_config)
4073
{
4074
	pipe_config->ips_enabled = i915_enable_ips &&
4075
				   hsw_crtc_supports_ips(crtc) &&
4076
				   pipe_config->pipe_bpp <= 24;
4077
}
4078
 
4079
static int intel_crtc_compute_config(struct intel_crtc *crtc,
4080
				     struct intel_crtc_config *pipe_config)
4081
{
4082
	struct drm_device *dev = crtc->base.dev;
4083
	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4084
 
2330 Serge 4085
	if (HAS_PCH_SPLIT(dev)) {
4086
		/* FDI link clock is fixed at 2.7G */
3746 Serge 4087
		if (pipe_config->requested_mode.clock * 3
4088
		    > IRONLAKE_FDI_FREQ * 4)
4104 Serge 4089
			return -EINVAL;
2330 Serge 4090
	}
4091
 
4104 Serge 4092
	/* Cantiga+ cannot handle modes with a hsync front porch of 0.
4093
	 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
3031 serge 4094
	 */
4095
	if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4096
		adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4104 Serge 4097
		return -EINVAL;
3031 serge 4098
 
3746 Serge 4099
	if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4100
		pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4101
	} else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4102
		/* only a 8bpc pipe, with 6bpc dither through the panel fitter
4103
		 * for lvds. */
4104
		pipe_config->pipe_bpp = 8*3;
4105
	}
4106
 
4104 Serge 4107
	if (HAS_IPS(dev))
4108
		hsw_compute_ips_config(crtc, pipe_config);
4109
 
4110
	/* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4111
	 * clock survives for now. */
4112
	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4113
		pipe_config->shared_dpll = crtc->config.shared_dpll;
4114
 
4115
	if (pipe_config->has_pch_encoder)
4116
		return ironlake_fdi_compute_config(crtc, pipe_config);
4117
 
4118
	return 0;
2330 Serge 4119
}
4120
 
3031 serge 4121
static int valleyview_get_display_clock_speed(struct drm_device *dev)
4122
{
4123
	return 400000; /* FIXME */
4124
}
4125
 
2327 Serge 4126
static int i945_get_display_clock_speed(struct drm_device *dev)
4127
{
4128
	return 400000;
4129
}
4130
 
4131
static int i915_get_display_clock_speed(struct drm_device *dev)
4132
{
4133
	return 333000;
4134
}
4135
 
4136
static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4137
{
4138
	return 200000;
4139
}
4140
 
4104 Serge 4141
static int pnv_get_display_clock_speed(struct drm_device *dev)
4142
{
4143
	u16 gcfgc = 0;
4144
 
4145
	pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4146
 
4147
	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4148
	case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4149
		return 267000;
4150
	case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4151
		return 333000;
4152
	case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4153
		return 444000;
4154
	case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4155
		return 200000;
4156
	default:
4157
		DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4158
	case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4159
		return 133000;
4160
	case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4161
		return 167000;
4162
	}
4163
}
4164
 
2327 Serge 4165
static int i915gm_get_display_clock_speed(struct drm_device *dev)
4166
{
4167
	u16 gcfgc = 0;
4168
 
4169
	pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4170
 
4171
	if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4172
		return 133000;
4173
	else {
4174
		switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4175
		case GC_DISPLAY_CLOCK_333_MHZ:
4176
			return 333000;
4177
		default:
4178
		case GC_DISPLAY_CLOCK_190_200_MHZ:
4179
			return 190000;
4180
		}
4181
	}
4182
}
4183
 
4184
static int i865_get_display_clock_speed(struct drm_device *dev)
4185
{
4186
	return 266000;
4187
}
4188
 
4189
static int i855_get_display_clock_speed(struct drm_device *dev)
4190
{
4191
	u16 hpllcc = 0;
4192
	/* Assume that the hardware is in the high speed state.  This
4193
	 * should be the default.
4194
	 */
4195
	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4196
	case GC_CLOCK_133_200:
4197
	case GC_CLOCK_100_200:
4198
		return 200000;
4199
	case GC_CLOCK_166_250:
4200
		return 250000;
4201
	case GC_CLOCK_100_133:
4202
		return 133000;
4203
	}
4204
 
4205
	/* Shouldn't happen */
4206
	return 0;
4207
}
4208
 
4209
static int i830_get_display_clock_speed(struct drm_device *dev)
4210
{
4211
	return 133000;
4212
}
4213
 
4214
static void
3746 Serge 4215
intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2327 Serge 4216
{
3746 Serge 4217
	while (*num > DATA_LINK_M_N_MASK ||
4218
	       *den > DATA_LINK_M_N_MASK) {
2327 Serge 4219
		*num >>= 1;
4220
		*den >>= 1;
4221
	}
4222
}
4223
 
3746 Serge 4224
static void compute_m_n(unsigned int m, unsigned int n,
4225
			uint32_t *ret_m, uint32_t *ret_n)
4226
{
4227
	*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4228
	*ret_m = div_u64((uint64_t) m * *ret_n, n);
4229
	intel_reduce_m_n_ratio(ret_m, ret_n);
4230
}
4231
 
3480 Serge 4232
void
4233
intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4234
		       int pixel_clock, int link_clock,
4235
		       struct intel_link_m_n *m_n)
2327 Serge 4236
{
3480 Serge 4237
	m_n->tu = 64;
3746 Serge 4238
 
4239
	compute_m_n(bits_per_pixel * pixel_clock,
4240
		    link_clock * nlanes * 8,
4241
		    &m_n->gmch_m, &m_n->gmch_n);
4242
 
4243
	compute_m_n(pixel_clock, link_clock,
4244
		    &m_n->link_m, &m_n->link_n);
2327 Serge 4245
}
4246
 
4247
static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4248
{
2342 Serge 4249
	if (i915_panel_use_ssc >= 0)
4250
		return i915_panel_use_ssc != 0;
4104 Serge 4251
	return dev_priv->vbt.lvds_use_ssc
2327 Serge 4252
		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4253
}
4254
 
3031 serge 4255
static int vlv_get_refclk(struct drm_crtc *crtc)
2327 Serge 4256
{
3031 serge 4257
	struct drm_device *dev = crtc->dev;
4258
	struct drm_i915_private *dev_priv = dev->dev_private;
4259
	int refclk = 27000; /* for DP & HDMI */
2327 Serge 4260
 
3031 serge 4261
	return 100000; /* only one validated so far */
2327 Serge 4262
 
3031 serge 4263
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4264
		refclk = 96000;
4265
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4266
		if (intel_panel_use_ssc(dev_priv))
4267
			refclk = 100000;
4268
		else
4269
			refclk = 96000;
4270
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4271
		refclk = 100000;
4272
	}
2327 Serge 4273
 
3031 serge 4274
	return refclk;
4275
}
2327 Serge 4276
 
3031 serge 4277
static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4278
{
4279
	struct drm_device *dev = crtc->dev;
4280
	struct drm_i915_private *dev_priv = dev->dev_private;
4281
	int refclk;
2327 Serge 4282
 
3031 serge 4283
	if (IS_VALLEYVIEW(dev)) {
4284
		refclk = vlv_get_refclk(crtc);
4285
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4286
	    intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4104 Serge 4287
		refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
3031 serge 4288
		DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4289
			      refclk / 1000);
4290
	} else if (!IS_GEN2(dev)) {
4291
		refclk = 96000;
4292
	} else {
4293
		refclk = 48000;
4294
	}
2327 Serge 4295
 
3031 serge 4296
	return refclk;
4297
}
2327 Serge 4298
 
4104 Serge 4299
static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
3031 serge 4300
{
4104 Serge 4301
	return (1 << dpll->n) << 16 | dpll->m2;
4302
}
3746 Serge 4303
 
4104 Serge 4304
static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4305
{
4306
	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
3031 serge 4307
}
2327 Serge 4308
 
3746 Serge 4309
static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
3031 serge 4310
				     intel_clock_t *reduced_clock)
4311
{
3746 Serge 4312
	struct drm_device *dev = crtc->base.dev;
3031 serge 4313
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 4314
	int pipe = crtc->pipe;
3031 serge 4315
	u32 fp, fp2 = 0;
2327 Serge 4316
 
3031 serge 4317
	if (IS_PINEVIEW(dev)) {
4104 Serge 4318
		fp = pnv_dpll_compute_fp(&crtc->config.dpll);
3031 serge 4319
		if (reduced_clock)
4104 Serge 4320
			fp2 = pnv_dpll_compute_fp(reduced_clock);
3031 serge 4321
	} else {
4104 Serge 4322
		fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
3031 serge 4323
		if (reduced_clock)
4104 Serge 4324
			fp2 = i9xx_dpll_compute_fp(reduced_clock);
3031 serge 4325
	}
2327 Serge 4326
 
3031 serge 4327
	I915_WRITE(FP0(pipe), fp);
4104 Serge 4328
	crtc->config.dpll_hw_state.fp0 = fp;
2327 Serge 4329
 
3746 Serge 4330
	crtc->lowfreq_avail = false;
4331
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
3031 serge 4332
	    reduced_clock && i915_powersave) {
4333
		I915_WRITE(FP1(pipe), fp2);
4104 Serge 4334
		crtc->config.dpll_hw_state.fp1 = fp2;
3746 Serge 4335
		crtc->lowfreq_avail = true;
3031 serge 4336
	} else {
4337
		I915_WRITE(FP1(pipe), fp);
4104 Serge 4338
		crtc->config.dpll_hw_state.fp1 = fp;
3031 serge 4339
	}
4340
}
2327 Serge 4341
 
4104 Serge 4342
static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4343
{
4344
	u32 reg_val;
4345
 
4346
	/*
4347
	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
4348
	 * and set it to a reasonable value instead.
4349
	 */
4350
	reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4351
	reg_val &= 0xffffff00;
4352
	reg_val |= 0x00000030;
4353
	vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4354
 
4355
	reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4356
	reg_val &= 0x8cffffff;
4357
	reg_val = 0x8c000000;
4358
	vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4359
 
4360
	reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4361
	reg_val &= 0xffffff00;
4362
	vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4363
 
4364
	reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4365
	reg_val &= 0x00ffffff;
4366
	reg_val |= 0xb0000000;
4367
	vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4368
}
4369
 
4370
static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4371
					 struct intel_link_m_n *m_n)
4372
{
4373
	struct drm_device *dev = crtc->base.dev;
4374
	struct drm_i915_private *dev_priv = dev->dev_private;
4375
	int pipe = crtc->pipe;
4376
 
4377
	I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4378
	I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4379
	I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4380
	I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4381
}
4382
 
4383
static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4384
					 struct intel_link_m_n *m_n)
4385
{
4386
	struct drm_device *dev = crtc->base.dev;
4387
	struct drm_i915_private *dev_priv = dev->dev_private;
4388
	int pipe = crtc->pipe;
4389
	enum transcoder transcoder = crtc->config.cpu_transcoder;
4390
 
4391
	if (INTEL_INFO(dev)->gen >= 5) {
4392
		I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4393
		I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4394
		I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4395
		I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4396
	} else {
4397
		I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4398
		I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4399
		I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4400
		I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4401
	}
4402
}
4403
 
3746 Serge 4404
static void intel_dp_set_m_n(struct intel_crtc *crtc)
3031 serge 4405
{
3746 Serge 4406
	if (crtc->config.has_pch_encoder)
4407
		intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4408
	else
4409
		intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4410
}
4411
 
4412
static void vlv_update_pll(struct intel_crtc *crtc)
4413
{
4414
	struct drm_device *dev = crtc->base.dev;
3031 serge 4415
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 4416
	int pipe = crtc->pipe;
4104 Serge 4417
	u32 dpll, mdiv;
3031 serge 4418
	u32 bestn, bestm1, bestm2, bestp1, bestp2;
4104 Serge 4419
	u32 coreclk, reg_val, dpll_md;
2327 Serge 4420
 
3480 Serge 4421
	mutex_lock(&dev_priv->dpio_lock);
4422
 
3746 Serge 4423
	bestn = crtc->config.dpll.n;
4424
	bestm1 = crtc->config.dpll.m1;
4425
	bestm2 = crtc->config.dpll.m2;
4426
	bestp1 = crtc->config.dpll.p1;
4427
	bestp2 = crtc->config.dpll.p2;
3031 serge 4428
 
4104 Serge 4429
	/* See eDP HDMI DPIO driver vbios notes doc */
4430
 
4431
	/* PLL B needs special handling */
4432
	if (pipe)
4433
		vlv_pllb_recal_opamp(dev_priv);
4434
 
4435
	/* Set up Tx target for periodic Rcomp update */
4436
	vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4437
 
4438
	/* Disable target IRef on PLL */
4439
	reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4440
	reg_val &= 0x00ffffff;
4441
	vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4442
 
4443
	/* Disable fast lock */
4444
	vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4445
 
4446
	/* Set idtafcrecal before PLL is enabled */
3031 serge 4447
	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4448
	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4449
	mdiv |= ((bestn << DPIO_N_SHIFT));
4450
	mdiv |= (1 << DPIO_K_SHIFT);
4104 Serge 4451
 
4452
	/*
4453
	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4454
	 * but we don't support that).
4455
	 * Note: don't use the DAC post divider as it seems unstable.
4456
	 */
4457
	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4458
	vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4459
 
3031 serge 4460
	mdiv |= DPIO_ENABLE_CALIBRATION;
4104 Serge 4461
	vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
3031 serge 4462
 
4104 Serge 4463
	/* Set HBR and RBR LPF coefficients */
4464
	if (crtc->config.port_clock == 162000 ||
4465
	    intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4466
	    intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4467
		vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4468
				 0x009f0003);
4469
	else
4470
		vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4471
				 0x00d0000f);
3031 serge 4472
 
4104 Serge 4473
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4474
	    intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4475
		/* Use SSC source */
4476
		if (!pipe)
4477
			vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4478
					 0x0df40000);
4479
		else
4480
			vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4481
					 0x0df70000);
4482
	} else { /* HDMI or VGA */
4483
		/* Use bend source */
4484
		if (!pipe)
4485
			vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4486
					 0x0df70000);
4487
		else
4488
			vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4489
					 0x0df40000);
4490
	}
3031 serge 4491
 
4104 Serge 4492
	coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4493
	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4494
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4495
	    intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4496
		coreclk |= 0x01000000;
4497
	vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
3031 serge 4498
 
4104 Serge 4499
	vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4500
 
4501
	/* Enable DPIO clock input */
4502
	dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4503
		DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4504
	if (pipe)
4505
		dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4506
 
3031 serge 4507
	dpll |= DPLL_VCO_ENABLE;
4104 Serge 4508
	crtc->config.dpll_hw_state.dpll = dpll;
3031 serge 4509
 
4104 Serge 4510
	dpll_md = (crtc->config.pixel_multiplier - 1)
4511
		<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
4512
	crtc->config.dpll_hw_state.dpll_md = dpll_md;
3031 serge 4513
 
3746 Serge 4514
	if (crtc->config.has_dp_encoder)
4515
		intel_dp_set_m_n(crtc);
3243 Serge 4516
 
3480 Serge 4517
	mutex_unlock(&dev_priv->dpio_lock);
3031 serge 4518
}
4519
 
3746 Serge 4520
static void i9xx_update_pll(struct intel_crtc *crtc,
4521
			    intel_clock_t *reduced_clock,
3031 serge 4522
			    int num_connectors)
4523
{
3746 Serge 4524
	struct drm_device *dev = crtc->base.dev;
3031 serge 4525
	struct drm_i915_private *dev_priv = dev->dev_private;
4526
	u32 dpll;
4527
	bool is_sdvo;
3746 Serge 4528
	struct dpll *clock = &crtc->config.dpll;
3031 serge 4529
 
3746 Serge 4530
	i9xx_update_pll_dividers(crtc, reduced_clock);
3243 Serge 4531
 
3746 Serge 4532
	is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4533
		intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
3031 serge 4534
 
4535
	dpll = DPLL_VGA_MODE_DIS;
4536
 
3746 Serge 4537
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
3031 serge 4538
		dpll |= DPLLB_MODE_LVDS;
4539
	else
4540
		dpll |= DPLLB_MODE_DAC_SERIAL;
3746 Serge 4541
 
4104 Serge 4542
	if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
3746 Serge 4543
			dpll |= (crtc->config.pixel_multiplier - 1)
4544
				<< SDVO_MULTIPLIER_SHIFT_HIRES;
2342 Serge 4545
		}
4104 Serge 4546
 
4547
	if (is_sdvo)
4548
		dpll |= DPLL_SDVO_HIGH_SPEED;
4549
 
3746 Serge 4550
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4104 Serge 4551
		dpll |= DPLL_SDVO_HIGH_SPEED;
2342 Serge 4552
 
3031 serge 4553
	/* compute bitmask from p1 value */
4554
	if (IS_PINEVIEW(dev))
4555
		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4556
	else {
4557
		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4558
		if (IS_G4X(dev) && reduced_clock)
4559
			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4560
	}
4561
	switch (clock->p2) {
4562
	case 5:
4563
		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4564
		break;
4565
	case 7:
4566
		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4567
		break;
4568
	case 10:
4569
		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4570
		break;
4571
	case 14:
4572
		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4573
		break;
4574
	}
4575
	if (INTEL_INFO(dev)->gen >= 4)
4576
		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
2327 Serge 4577
 
4104 Serge 4578
	if (crtc->config.sdvo_tv_clock)
3031 serge 4579
		dpll |= PLL_REF_INPUT_TVCLKINBC;
3746 Serge 4580
	else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
3031 serge 4581
		 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4582
		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4583
	else
4584
		dpll |= PLL_REF_INPUT_DREFCLK;
2327 Serge 4585
 
3031 serge 4586
	dpll |= DPLL_VCO_ENABLE;
4104 Serge 4587
	crtc->config.dpll_hw_state.dpll = dpll;
2327 Serge 4588
 
4104 Serge 4589
	if (INTEL_INFO(dev)->gen >= 4) {
4590
		u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4591
					<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
4592
		crtc->config.dpll_hw_state.dpll_md = dpll_md;
4593
	}
2327 Serge 4594
 
3746 Serge 4595
	if (crtc->config.has_dp_encoder)
4596
		intel_dp_set_m_n(crtc);
3031 serge 4597
}
2327 Serge 4598
 
3746 Serge 4599
static void i8xx_update_pll(struct intel_crtc *crtc,
4600
			    intel_clock_t *reduced_clock,
3031 serge 4601
			    int num_connectors)
4602
{
3746 Serge 4603
	struct drm_device *dev = crtc->base.dev;
3031 serge 4604
	struct drm_i915_private *dev_priv = dev->dev_private;
4605
	u32 dpll;
3746 Serge 4606
	struct dpll *clock = &crtc->config.dpll;
2327 Serge 4607
 
3746 Serge 4608
	i9xx_update_pll_dividers(crtc, reduced_clock);
3243 Serge 4609
 
3031 serge 4610
	dpll = DPLL_VGA_MODE_DIS;
2327 Serge 4611
 
3746 Serge 4612
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
3031 serge 4613
		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4614
	} else {
4615
		if (clock->p1 == 2)
4616
			dpll |= PLL_P1_DIVIDE_BY_TWO;
4617
		else
4618
			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4619
		if (clock->p2 == 4)
4620
			dpll |= PLL_P2_DIVIDE_BY_4;
4621
	}
2327 Serge 4622
 
4104 Serge 4623
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4624
		dpll |= DPLL_DVO_2X_MODE;
4625
 
3746 Serge 4626
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
3031 serge 4627
		 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4628
		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4629
	else
4630
		dpll |= PLL_REF_INPUT_DREFCLK;
4631
 
4632
	dpll |= DPLL_VCO_ENABLE;
4104 Serge 4633
	crtc->config.dpll_hw_state.dpll = dpll;
3031 serge 4634
}
4635
 
4104 Serge 4636
static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
3243 Serge 4637
{
4638
	struct drm_device *dev = intel_crtc->base.dev;
4639
	struct drm_i915_private *dev_priv = dev->dev_private;
4640
	enum pipe pipe = intel_crtc->pipe;
3746 Serge 4641
	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4104 Serge 4642
	struct drm_display_mode *adjusted_mode =
4643
		&intel_crtc->config.adjusted_mode;
4644
	struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4645
	uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
3243 Serge 4646
 
4104 Serge 4647
	/* We need to be careful not to changed the adjusted mode, for otherwise
4648
	 * the hw state checker will get angry at the mismatch. */
4649
	crtc_vtotal = adjusted_mode->crtc_vtotal;
4650
	crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4651
 
3243 Serge 4652
	if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4653
		/* the chip adds 2 halflines automatically */
4104 Serge 4654
		crtc_vtotal -= 1;
4655
		crtc_vblank_end -= 1;
3243 Serge 4656
		vsyncshift = adjusted_mode->crtc_hsync_start
4657
			     - adjusted_mode->crtc_htotal / 2;
4658
	} else {
4659
		vsyncshift = 0;
4660
	}
4661
 
4662
	if (INTEL_INFO(dev)->gen > 3)
4663
		I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4664
 
4665
	I915_WRITE(HTOTAL(cpu_transcoder),
4666
		   (adjusted_mode->crtc_hdisplay - 1) |
4667
		   ((adjusted_mode->crtc_htotal - 1) << 16));
4668
	I915_WRITE(HBLANK(cpu_transcoder),
4669
		   (adjusted_mode->crtc_hblank_start - 1) |
4670
		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
4671
	I915_WRITE(HSYNC(cpu_transcoder),
4672
		   (adjusted_mode->crtc_hsync_start - 1) |
4673
		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
4674
 
4675
	I915_WRITE(VTOTAL(cpu_transcoder),
4676
		   (adjusted_mode->crtc_vdisplay - 1) |
4104 Serge 4677
		   ((crtc_vtotal - 1) << 16));
3243 Serge 4678
	I915_WRITE(VBLANK(cpu_transcoder),
4679
		   (adjusted_mode->crtc_vblank_start - 1) |
4104 Serge 4680
		   ((crtc_vblank_end - 1) << 16));
3243 Serge 4681
	I915_WRITE(VSYNC(cpu_transcoder),
4682
		   (adjusted_mode->crtc_vsync_start - 1) |
4683
		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
4684
 
4685
	/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4686
	 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4687
	 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4688
	 * bits. */
4689
	if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4690
	    (pipe == PIPE_B || pipe == PIPE_C))
4691
		I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4692
 
4693
	/* pipesrc controls the size that is scaled from, which should
4694
	 * always be the user's requested size.
4695
	 */
4696
	I915_WRITE(PIPESRC(pipe),
4697
		   ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4698
}
4699
 
4104 Serge 4700
static void intel_get_pipe_timings(struct intel_crtc *crtc,
4701
				   struct intel_crtc_config *pipe_config)
4702
{
4703
	struct drm_device *dev = crtc->base.dev;
4704
	struct drm_i915_private *dev_priv = dev->dev_private;
4705
	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4706
	uint32_t tmp;
4707
 
4708
	tmp = I915_READ(HTOTAL(cpu_transcoder));
4709
	pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4710
	pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4711
	tmp = I915_READ(HBLANK(cpu_transcoder));
4712
	pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4713
	pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4714
	tmp = I915_READ(HSYNC(cpu_transcoder));
4715
	pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4716
	pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4717
 
4718
	tmp = I915_READ(VTOTAL(cpu_transcoder));
4719
	pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4720
	pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4721
	tmp = I915_READ(VBLANK(cpu_transcoder));
4722
	pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4723
	pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4724
	tmp = I915_READ(VSYNC(cpu_transcoder));
4725
	pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4726
	pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4727
 
4728
	if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4729
		pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4730
		pipe_config->adjusted_mode.crtc_vtotal += 1;
4731
		pipe_config->adjusted_mode.crtc_vblank_end += 1;
4732
	}
4733
 
4734
	tmp = I915_READ(PIPESRC(crtc->pipe));
4735
	pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4736
	pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4737
}
4738
 
4739
static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4740
					     struct intel_crtc_config *pipe_config)
4741
{
4742
	struct drm_crtc *crtc = &intel_crtc->base;
4743
 
4744
	crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4745
	crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4746
	crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4747
	crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4748
 
4749
	crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4750
	crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4751
	crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4752
	crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4753
 
4754
	crtc->mode.flags = pipe_config->adjusted_mode.flags;
4755
 
4756
	crtc->mode.clock = pipe_config->adjusted_mode.clock;
4757
	crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4758
}
4759
 
3746 Serge 4760
static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4761
{
4762
	struct drm_device *dev = intel_crtc->base.dev;
4763
	struct drm_i915_private *dev_priv = dev->dev_private;
4764
	uint32_t pipeconf;
4765
 
4104 Serge 4766
	pipeconf = 0;
3746 Serge 4767
 
4104 Serge 4768
	if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
4769
	    I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
4770
		pipeconf |= PIPECONF_ENABLE;
4771
 
3746 Serge 4772
	if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4773
		/* Enable pixel doubling when the dot clock is > 90% of the (display)
4774
		 * core speed.
4775
		 *
4776
		 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4777
		 * pipe == 0 check?
4778
		 */
4779
		if (intel_crtc->config.requested_mode.clock >
4780
		    dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4781
			pipeconf |= PIPECONF_DOUBLE_WIDE;
4782
	}
4783
 
4104 Serge 4784
	/* only g4x and later have fancy bpc/dither controls */
4785
	if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4786
		/* Bspec claims that we can't use dithering for 30bpp pipes. */
4787
		if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4788
			pipeconf |= PIPECONF_DITHER_EN |
3746 Serge 4789
				    PIPECONF_DITHER_TYPE_SP;
4790
 
4104 Serge 4791
		switch (intel_crtc->config.pipe_bpp) {
4792
		case 18:
4793
			pipeconf |= PIPECONF_6BPC;
4794
			break;
4795
		case 24:
4796
			pipeconf |= PIPECONF_8BPC;
4797
			break;
4798
		case 30:
4799
			pipeconf |= PIPECONF_10BPC;
4800
			break;
4801
		default:
4802
			/* Case prevented by intel_choose_pipe_bpp_dither. */
4803
			BUG();
3746 Serge 4804
		}
4805
	}
4806
 
4807
	if (HAS_PIPE_CXSR(dev)) {
4808
		if (intel_crtc->lowfreq_avail) {
4809
			DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4810
			pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4811
		} else {
4812
			DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4813
		}
4814
	}
4815
 
4816
	if (!IS_GEN2(dev) &&
4817
	    intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4818
		pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4819
	else
4820
		pipeconf |= PIPECONF_PROGRESSIVE;
4821
 
4104 Serge 4822
	if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
3746 Serge 4823
			pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4824
 
4825
	I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4826
	POSTING_READ(PIPECONF(intel_crtc->pipe));
4827
}
4828
 
3031 serge 4829
static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4830
			      int x, int y,
4831
			      struct drm_framebuffer *fb)
4832
{
4833
	struct drm_device *dev = crtc->dev;
4834
	struct drm_i915_private *dev_priv = dev->dev_private;
4835
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3746 Serge 4836
	struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
3031 serge 4837
	int pipe = intel_crtc->pipe;
4838
	int plane = intel_crtc->plane;
4839
	int refclk, num_connectors = 0;
4840
	intel_clock_t clock, reduced_clock;
3746 Serge 4841
	u32 dspcntr;
4104 Serge 4842
	bool ok, has_reduced_clock = false;
4843
	bool is_lvds = false;
3031 serge 4844
	struct intel_encoder *encoder;
4845
	const intel_limit_t *limit;
4846
	int ret;
4847
 
4848
	for_each_encoder_on_crtc(dev, crtc, encoder) {
4849
		switch (encoder->type) {
4850
		case INTEL_OUTPUT_LVDS:
4851
			is_lvds = true;
4852
			break;
4853
		}
4854
 
4855
		num_connectors++;
4856
	}
4857
 
4858
	refclk = i9xx_get_refclk(crtc, num_connectors);
4859
 
4860
	/*
4861
	 * Returns a set of divisors for the desired target clock with the given
4862
	 * refclk, or FALSE.  The returned values represent the clock equation:
4863
	 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4864
	 */
4865
	limit = intel_limit(crtc, refclk);
4104 Serge 4866
	ok = dev_priv->display.find_dpll(limit, crtc,
4867
					 intel_crtc->config.port_clock,
4868
					 refclk, NULL, &clock);
4869
	if (!ok && !intel_crtc->config.clock_set) {
3031 serge 4870
		DRM_ERROR("Couldn't find PLL settings for mode!\n");
4871
		return -EINVAL;
4872
	}
4873
 
4874
	if (is_lvds && dev_priv->lvds_downclock_avail) {
4875
		/*
4876
		 * Ensure we match the reduced clock's P to the target clock.
4877
		 * If the clocks don't match, we can't switch the display clock
4878
		 * by using the FP0/FP1. In such case we will disable the LVDS
4879
		 * downclock feature.
4880
		*/
4104 Serge 4881
		has_reduced_clock =
4882
			dev_priv->display.find_dpll(limit, crtc,
3031 serge 4883
						    dev_priv->lvds_downclock,
4104 Serge 4884
						    refclk, &clock,
3031 serge 4885
						    &reduced_clock);
4886
	}
3746 Serge 4887
	/* Compat-code for transition, will disappear. */
4888
	if (!intel_crtc->config.clock_set) {
4889
		intel_crtc->config.dpll.n = clock.n;
4890
		intel_crtc->config.dpll.m1 = clock.m1;
4891
		intel_crtc->config.dpll.m2 = clock.m2;
4892
		intel_crtc->config.dpll.p1 = clock.p1;
4893
		intel_crtc->config.dpll.p2 = clock.p2;
4894
	}
3031 serge 4895
 
4896
	if (IS_GEN2(dev))
4104 Serge 4897
		i8xx_update_pll(intel_crtc,
3243 Serge 4898
				has_reduced_clock ? &reduced_clock : NULL,
4899
				num_connectors);
3031 serge 4900
	else if (IS_VALLEYVIEW(dev))
3746 Serge 4901
		vlv_update_pll(intel_crtc);
3031 serge 4902
	else
3746 Serge 4903
		i9xx_update_pll(intel_crtc,
3031 serge 4904
				has_reduced_clock ? &reduced_clock : NULL,
4905
				num_connectors);
4906
 
4907
	/* Set up the display plane register */
4908
	dspcntr = DISPPLANE_GAMMA_ENABLE;
4909
 
3746 Serge 4910
	if (!IS_VALLEYVIEW(dev)) {
3031 serge 4911
	if (pipe == 0)
4912
		dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4913
	else
4914
		dspcntr |= DISPPLANE_SEL_PIPE_B;
3243 Serge 4915
	}
4916
 
4104 Serge 4917
	intel_set_pipe_timings(intel_crtc);
3031 serge 4918
 
4919
	/* pipesrc and dspsize control the size that is scaled from,
4920
	 * which should always be the user's requested size.
4921
	 */
4922
	I915_WRITE(DSPSIZE(plane),
4923
		   ((mode->vdisplay - 1) << 16) |
4924
		   (mode->hdisplay - 1));
4925
	I915_WRITE(DSPPOS(plane), 0);
2327 Serge 4926
 
3746 Serge 4927
	i9xx_set_pipeconf(intel_crtc);
4928
 
3031 serge 4929
	I915_WRITE(DSPCNTR(plane), dspcntr);
4930
	POSTING_READ(DSPCNTR(plane));
2327 Serge 4931
 
3031 serge 4932
	ret = intel_pipe_set_base(crtc, x, y, fb);
2327 Serge 4933
 
3031 serge 4934
	intel_update_watermarks(dev);
4935
 
2327 Serge 4936
    return ret;
4937
}
4938
 
4104 Serge 4939
static void i9xx_get_pfit_config(struct intel_crtc *crtc,
4940
				 struct intel_crtc_config *pipe_config)
4941
{
4942
	struct drm_device *dev = crtc->base.dev;
4943
	struct drm_i915_private *dev_priv = dev->dev_private;
4944
	uint32_t tmp;
4945
 
4946
	tmp = I915_READ(PFIT_CONTROL);
4947
	if (!(tmp & PFIT_ENABLE))
4948
		return;
4949
 
4950
	/* Check whether the pfit is attached to our pipe. */
4951
	if (INTEL_INFO(dev)->gen < 4) {
4952
		if (crtc->pipe != PIPE_B)
4953
			return;
4954
	} else {
4955
		if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
4956
			return;
4957
	}
4958
 
4959
	pipe_config->gmch_pfit.control = tmp;
4960
	pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
4961
	if (INTEL_INFO(dev)->gen < 5)
4962
		pipe_config->gmch_pfit.lvds_border_bits =
4963
			I915_READ(LVDS) & LVDS_BORDER_ENABLE;
4964
}
4965
 
3746 Serge 4966
static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4967
				 struct intel_crtc_config *pipe_config)
4968
{
4969
	struct drm_device *dev = crtc->base.dev;
4970
	struct drm_i915_private *dev_priv = dev->dev_private;
4971
	uint32_t tmp;
4972
 
4104 Serge 4973
	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
4974
	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
4975
 
3746 Serge 4976
	tmp = I915_READ(PIPECONF(crtc->pipe));
4977
	if (!(tmp & PIPECONF_ENABLE))
4978
		return false;
4979
 
4104 Serge 4980
	intel_get_pipe_timings(crtc, pipe_config);
4981
 
4982
	i9xx_get_pfit_config(crtc, pipe_config);
4983
 
4984
	if (INTEL_INFO(dev)->gen >= 4) {
4985
		tmp = I915_READ(DPLL_MD(crtc->pipe));
4986
		pipe_config->pixel_multiplier =
4987
			((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
4988
			 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
4989
		pipe_config->dpll_hw_state.dpll_md = tmp;
4990
	} else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4991
		tmp = I915_READ(DPLL(crtc->pipe));
4992
		pipe_config->pixel_multiplier =
4993
			((tmp & SDVO_MULTIPLIER_MASK)
4994
			 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
4995
	} else {
4996
		/* Note that on i915G/GM the pixel multiplier is in the sdvo
4997
		 * port and will be fixed up in the encoder->get_config
4998
		 * function. */
4999
		pipe_config->pixel_multiplier = 1;
5000
	}
5001
	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5002
	if (!IS_VALLEYVIEW(dev)) {
5003
		pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5004
		pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5005
	} else {
5006
		/* Mask out read-only status bits. */
5007
		pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5008
						     DPLL_PORTC_READY_MASK |
5009
						     DPLL_PORTB_READY_MASK);
5010
	}
5011
 
3746 Serge 5012
	return true;
5013
}
5014
 
3243 Serge 5015
static void ironlake_init_pch_refclk(struct drm_device *dev)
2327 Serge 5016
{
5017
	struct drm_i915_private *dev_priv = dev->dev_private;
5018
	struct drm_mode_config *mode_config = &dev->mode_config;
5019
	struct intel_encoder *encoder;
3746 Serge 5020
	u32 val, final;
2327 Serge 5021
	bool has_lvds = false;
2342 Serge 5022
	bool has_cpu_edp = false;
5023
	bool has_panel = false;
5024
	bool has_ck505 = false;
5025
	bool can_ssc = false;
2327 Serge 5026
 
5027
	/* We need to take the global config into account */
5028
		list_for_each_entry(encoder, &mode_config->encoder_list,
5029
				    base.head) {
5030
			switch (encoder->type) {
5031
			case INTEL_OUTPUT_LVDS:
2342 Serge 5032
			has_panel = true;
2327 Serge 5033
				has_lvds = true;
2342 Serge 5034
			break;
2327 Serge 5035
			case INTEL_OUTPUT_EDP:
2342 Serge 5036
			has_panel = true;
4104 Serge 5037
			if (enc_to_dig_port(&encoder->base)->port == PORT_A)
2342 Serge 5038
				has_cpu_edp = true;
2327 Serge 5039
				break;
5040
			}
5041
		}
2342 Serge 5042
 
5043
	if (HAS_PCH_IBX(dev)) {
4104 Serge 5044
		has_ck505 = dev_priv->vbt.display_clock_mode;
2342 Serge 5045
		can_ssc = has_ck505;
5046
	} else {
5047
		has_ck505 = false;
5048
		can_ssc = true;
2327 Serge 5049
	}
5050
 
4104 Serge 5051
	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5052
		      has_panel, has_lvds, has_ck505);
2342 Serge 5053
 
2327 Serge 5054
	/* Ironlake: try to setup display ref clock before DPLL
5055
	 * enabling. This is only under driver's control after
5056
	 * PCH B stepping, previous chipset stepping should be
5057
	 * ignoring this setting.
5058
	 */
3746 Serge 5059
	val = I915_READ(PCH_DREF_CONTROL);
5060
 
5061
	/* As we must carefully and slowly disable/enable each source in turn,
5062
	 * compute the final state we want first and check if we need to
5063
	 * make any changes at all.
5064
	 */
5065
	final = val;
5066
	final &= ~DREF_NONSPREAD_SOURCE_MASK;
5067
	if (has_ck505)
5068
		final |= DREF_NONSPREAD_CK505_ENABLE;
5069
	else
5070
		final |= DREF_NONSPREAD_SOURCE_ENABLE;
5071
 
5072
	final &= ~DREF_SSC_SOURCE_MASK;
5073
	final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5074
	final &= ~DREF_SSC1_ENABLE;
5075
 
5076
	if (has_panel) {
5077
		final |= DREF_SSC_SOURCE_ENABLE;
5078
 
5079
		if (intel_panel_use_ssc(dev_priv) && can_ssc)
5080
			final |= DREF_SSC1_ENABLE;
5081
 
5082
		if (has_cpu_edp) {
5083
			if (intel_panel_use_ssc(dev_priv) && can_ssc)
5084
				final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5085
			else
5086
				final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5087
		} else
5088
			final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5089
	} else {
5090
		final |= DREF_SSC_SOURCE_DISABLE;
5091
		final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5092
	}
5093
 
5094
	if (final == val)
5095
		return;
5096
 
2327 Serge 5097
	/* Always enable nonspread source */
3746 Serge 5098
	val &= ~DREF_NONSPREAD_SOURCE_MASK;
2342 Serge 5099
 
5100
	if (has_ck505)
3746 Serge 5101
		val |= DREF_NONSPREAD_CK505_ENABLE;
2342 Serge 5102
	else
3746 Serge 5103
		val |= DREF_NONSPREAD_SOURCE_ENABLE;
2342 Serge 5104
 
5105
	if (has_panel) {
3746 Serge 5106
		val &= ~DREF_SSC_SOURCE_MASK;
5107
		val |= DREF_SSC_SOURCE_ENABLE;
2327 Serge 5108
 
2342 Serge 5109
		/* SSC must be turned on before enabling the CPU output  */
5110
		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5111
			DRM_DEBUG_KMS("Using SSC on panel\n");
3746 Serge 5112
			val |= DREF_SSC1_ENABLE;
3031 serge 5113
		} else
3746 Serge 5114
			val &= ~DREF_SSC1_ENABLE;
2327 Serge 5115
 
2342 Serge 5116
		/* Get SSC going before enabling the outputs */
3746 Serge 5117
		I915_WRITE(PCH_DREF_CONTROL, val);
2327 Serge 5118
			POSTING_READ(PCH_DREF_CONTROL);
5119
			udelay(200);
2342 Serge 5120
 
3746 Serge 5121
		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
2327 Serge 5122
 
5123
		/* Enable CPU source on CPU attached eDP */
2342 Serge 5124
		if (has_cpu_edp) {
5125
			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5126
				DRM_DEBUG_KMS("Using SSC on eDP\n");
3746 Serge 5127
				val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
2342 Serge 5128
			}
2327 Serge 5129
			else
3746 Serge 5130
				val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
2342 Serge 5131
		} else
3746 Serge 5132
			val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
2342 Serge 5133
 
3746 Serge 5134
		I915_WRITE(PCH_DREF_CONTROL, val);
2342 Serge 5135
		POSTING_READ(PCH_DREF_CONTROL);
5136
		udelay(200);
2327 Serge 5137
		} else {
2342 Serge 5138
		DRM_DEBUG_KMS("Disabling SSC entirely\n");
5139
 
3746 Serge 5140
		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
2342 Serge 5141
 
5142
		/* Turn off CPU output */
3746 Serge 5143
		val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
2342 Serge 5144
 
3746 Serge 5145
		I915_WRITE(PCH_DREF_CONTROL, val);
2327 Serge 5146
		POSTING_READ(PCH_DREF_CONTROL);
5147
		udelay(200);
2342 Serge 5148
 
5149
		/* Turn off the SSC source */
3746 Serge 5150
		val &= ~DREF_SSC_SOURCE_MASK;
5151
		val |= DREF_SSC_SOURCE_DISABLE;
2342 Serge 5152
 
5153
		/* Turn off SSC1 */
3746 Serge 5154
		val &= ~DREF_SSC1_ENABLE;
2342 Serge 5155
 
3746 Serge 5156
		I915_WRITE(PCH_DREF_CONTROL, val);
2342 Serge 5157
		POSTING_READ(PCH_DREF_CONTROL);
5158
		udelay(200);
2327 Serge 5159
	}
3746 Serge 5160
 
5161
	BUG_ON(val != final);
2327 Serge 5162
}
5163
 
4104 Serge 5164
static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
3243 Serge 5165
{
4104 Serge 5166
	uint32_t tmp;
3243 Serge 5167
 
5168
		tmp = I915_READ(SOUTH_CHICKEN2);
5169
		tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5170
		I915_WRITE(SOUTH_CHICKEN2, tmp);
5171
 
5172
		if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5173
				       FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5174
			DRM_ERROR("FDI mPHY reset assert timeout\n");
5175
 
5176
		tmp = I915_READ(SOUTH_CHICKEN2);
5177
		tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5178
		I915_WRITE(SOUTH_CHICKEN2, tmp);
5179
 
5180
		if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
4104 Serge 5181
				FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
3243 Serge 5182
			DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5183
	}
5184
 
4104 Serge 5185
/* WaMPhyProgramming:hsw */
5186
static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5187
{
5188
	uint32_t tmp;
5189
 
3243 Serge 5190
	tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5191
	tmp &= ~(0xFF << 24);
5192
	tmp |= (0x12 << 24);
5193
	intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5194
 
5195
	tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5196
	tmp |= (1 << 11);
5197
	intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5198
 
5199
	tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5200
	tmp |= (1 << 11);
5201
	intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5202
 
5203
	tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5204
	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5205
	intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5206
 
5207
	tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5208
	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5209
	intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5210
 
5211
		tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5212
		tmp &= ~(7 << 13);
5213
		tmp |= (5 << 13);
5214
		intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5215
 
5216
		tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5217
		tmp &= ~(7 << 13);
5218
		tmp |= (5 << 13);
5219
		intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5220
 
5221
	tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5222
	tmp &= ~0xFF;
5223
	tmp |= 0x1C;
5224
	intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5225
 
5226
	tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5227
	tmp &= ~0xFF;
5228
	tmp |= 0x1C;
5229
	intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5230
 
5231
	tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5232
	tmp &= ~(0xFF << 16);
5233
	tmp |= (0x1C << 16);
5234
	intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5235
 
5236
	tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5237
	tmp &= ~(0xFF << 16);
5238
	tmp |= (0x1C << 16);
5239
	intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5240
 
5241
		tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5242
		tmp |= (1 << 27);
5243
		intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5244
 
5245
		tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5246
		tmp |= (1 << 27);
5247
		intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5248
 
5249
		tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5250
		tmp &= ~(0xF << 28);
5251
		tmp |= (4 << 28);
5252
		intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5253
 
5254
		tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5255
		tmp &= ~(0xF << 28);
5256
		tmp |= (4 << 28);
5257
		intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5258
	}
5259
 
4104 Serge 5260
/* Implements 3 different sequences from BSpec chapter "Display iCLK
5261
 * Programming" based on the parameters passed:
5262
 * - Sequence to enable CLKOUT_DP
5263
 * - Sequence to enable CLKOUT_DP without spread
5264
 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5265
 */
5266
static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5267
				 bool with_fdi)
5268
{
5269
	struct drm_i915_private *dev_priv = dev->dev_private;
5270
	uint32_t reg, tmp;
3480 Serge 5271
 
4104 Serge 5272
	if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5273
		with_spread = true;
5274
	if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5275
		 with_fdi, "LP PCH doesn't have FDI\n"))
5276
		with_fdi = false;
5277
 
5278
	mutex_lock(&dev_priv->dpio_lock);
5279
 
5280
	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5281
	tmp &= ~SBI_SSCCTL_DISABLE;
5282
	tmp |= SBI_SSCCTL_PATHALT;
5283
	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5284
 
5285
	udelay(24);
5286
 
5287
	if (with_spread) {
5288
		tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5289
		tmp &= ~SBI_SSCCTL_PATHALT;
5290
		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5291
 
5292
		if (with_fdi) {
5293
			lpt_reset_fdi_mphy(dev_priv);
5294
			lpt_program_fdi_mphy(dev_priv);
5295
		}
5296
	}
5297
 
5298
	reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5299
	       SBI_GEN0 : SBI_DBUFF0;
5300
	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5301
	tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5302
	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5303
 
3480 Serge 5304
	mutex_unlock(&dev_priv->dpio_lock);
3243 Serge 5305
}
5306
 
4104 Serge 5307
/* Sequence to disable CLKOUT_DP */
5308
static void lpt_disable_clkout_dp(struct drm_device *dev)
5309
{
5310
	struct drm_i915_private *dev_priv = dev->dev_private;
5311
	uint32_t reg, tmp;
5312
 
5313
	mutex_lock(&dev_priv->dpio_lock);
5314
 
5315
	reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5316
	       SBI_GEN0 : SBI_DBUFF0;
5317
	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5318
	tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5319
	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5320
 
5321
	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5322
	if (!(tmp & SBI_SSCCTL_DISABLE)) {
5323
		if (!(tmp & SBI_SSCCTL_PATHALT)) {
5324
			tmp |= SBI_SSCCTL_PATHALT;
5325
			intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5326
			udelay(32);
5327
		}
5328
		tmp |= SBI_SSCCTL_DISABLE;
5329
		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5330
	}
5331
 
5332
	mutex_unlock(&dev_priv->dpio_lock);
5333
}
5334
 
5335
static void lpt_init_pch_refclk(struct drm_device *dev)
5336
{
5337
	struct drm_mode_config *mode_config = &dev->mode_config;
5338
	struct intel_encoder *encoder;
5339
	bool has_vga = false;
5340
 
5341
	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5342
		switch (encoder->type) {
5343
		case INTEL_OUTPUT_ANALOG:
5344
			has_vga = true;
5345
			break;
5346
		}
5347
	}
5348
 
5349
	if (has_vga)
5350
		lpt_enable_clkout_dp(dev, true, true);
5351
	else
5352
		lpt_disable_clkout_dp(dev);
5353
}
5354
 
3243 Serge 5355
/*
5356
 * Initialize reference clocks when the driver loads
5357
 */
5358
void intel_init_pch_refclk(struct drm_device *dev)
5359
{
5360
	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5361
		ironlake_init_pch_refclk(dev);
5362
	else if (HAS_PCH_LPT(dev))
5363
		lpt_init_pch_refclk(dev);
5364
}
5365
 
2342 Serge 5366
static int ironlake_get_refclk(struct drm_crtc *crtc)
5367
{
5368
	struct drm_device *dev = crtc->dev;
5369
	struct drm_i915_private *dev_priv = dev->dev_private;
5370
	struct intel_encoder *encoder;
5371
	int num_connectors = 0;
5372
	bool is_lvds = false;
5373
 
3031 serge 5374
	for_each_encoder_on_crtc(dev, crtc, encoder) {
2342 Serge 5375
		switch (encoder->type) {
5376
		case INTEL_OUTPUT_LVDS:
5377
			is_lvds = true;
5378
			break;
5379
		}
5380
		num_connectors++;
5381
	}
5382
 
5383
	if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5384
		DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4104 Serge 5385
			      dev_priv->vbt.lvds_ssc_freq);
5386
		return dev_priv->vbt.lvds_ssc_freq * 1000;
2342 Serge 5387
	}
5388
 
5389
	return 120000;
5390
}
5391
 
4104 Serge 5392
static void ironlake_set_pipeconf(struct drm_crtc *crtc)
3031 serge 5393
{
5394
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5395
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5396
	int pipe = intel_crtc->pipe;
5397
	uint32_t val;
5398
 
4104 Serge 5399
	val = 0;
3031 serge 5400
 
3746 Serge 5401
	switch (intel_crtc->config.pipe_bpp) {
3031 serge 5402
	case 18:
3480 Serge 5403
		val |= PIPECONF_6BPC;
3031 serge 5404
		break;
5405
	case 24:
3480 Serge 5406
		val |= PIPECONF_8BPC;
3031 serge 5407
		break;
5408
	case 30:
3480 Serge 5409
		val |= PIPECONF_10BPC;
3031 serge 5410
		break;
5411
	case 36:
3480 Serge 5412
		val |= PIPECONF_12BPC;
3031 serge 5413
		break;
5414
	default:
3243 Serge 5415
		/* Case prevented by intel_choose_pipe_bpp_dither. */
5416
		BUG();
3031 serge 5417
	}
5418
 
4104 Serge 5419
	if (intel_crtc->config.dither)
3031 serge 5420
		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5421
 
4104 Serge 5422
	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3031 serge 5423
		val |= PIPECONF_INTERLACED_ILK;
5424
	else
5425
		val |= PIPECONF_PROGRESSIVE;
5426
 
3746 Serge 5427
	if (intel_crtc->config.limited_color_range)
3480 Serge 5428
		val |= PIPECONF_COLOR_RANGE_SELECT;
5429
 
3031 serge 5430
	I915_WRITE(PIPECONF(pipe), val);
5431
	POSTING_READ(PIPECONF(pipe));
5432
}
5433
 
3480 Serge 5434
/*
5435
 * Set up the pipe CSC unit.
5436
 *
5437
 * Currently only full range RGB to limited range RGB conversion
5438
 * is supported, but eventually this should handle various
5439
 * RGB<->YCbCr scenarios as well.
5440
 */
3746 Serge 5441
static void intel_set_pipe_csc(struct drm_crtc *crtc)
3480 Serge 5442
{
5443
	struct drm_device *dev = crtc->dev;
5444
	struct drm_i915_private *dev_priv = dev->dev_private;
5445
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5446
	int pipe = intel_crtc->pipe;
5447
	uint16_t coeff = 0x7800; /* 1.0 */
5448
 
5449
	/*
5450
	 * TODO: Check what kind of values actually come out of the pipe
5451
	 * with these coeff/postoff values and adjust to get the best
5452
	 * accuracy. Perhaps we even need to take the bpc value into
5453
	 * consideration.
5454
	 */
5455
 
3746 Serge 5456
	if (intel_crtc->config.limited_color_range)
3480 Serge 5457
		coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5458
 
5459
	/*
5460
	 * GY/GU and RY/RU should be the other way around according
5461
	 * to BSpec, but reality doesn't agree. Just set them up in
5462
	 * a way that results in the correct picture.
5463
	 */
5464
	I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5465
	I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5466
 
5467
	I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5468
	I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5469
 
5470
	I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5471
	I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5472
 
5473
	I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5474
	I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5475
	I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5476
 
5477
	if (INTEL_INFO(dev)->gen > 6) {
5478
		uint16_t postoff = 0;
5479
 
3746 Serge 5480
		if (intel_crtc->config.limited_color_range)
3480 Serge 5481
			postoff = (16 * (1 << 13) / 255) & 0x1fff;
5482
 
5483
		I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5484
		I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5485
		I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5486
 
5487
		I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5488
	} else {
5489
		uint32_t mode = CSC_MODE_YUV_TO_RGB;
5490
 
3746 Serge 5491
		if (intel_crtc->config.limited_color_range)
3480 Serge 5492
			mode |= CSC_BLACK_SCREEN_OFFSET;
5493
 
5494
		I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5495
	}
5496
}
5497
 
4104 Serge 5498
static void haswell_set_pipeconf(struct drm_crtc *crtc)
3243 Serge 5499
{
5500
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5501
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3746 Serge 5502
	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3243 Serge 5503
	uint32_t val;
5504
 
4104 Serge 5505
	val = 0;
3243 Serge 5506
 
4104 Serge 5507
	if (intel_crtc->config.dither)
3243 Serge 5508
		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5509
 
4104 Serge 5510
	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3243 Serge 5511
		val |= PIPECONF_INTERLACED_ILK;
5512
	else
5513
		val |= PIPECONF_PROGRESSIVE;
5514
 
5515
	I915_WRITE(PIPECONF(cpu_transcoder), val);
5516
	POSTING_READ(PIPECONF(cpu_transcoder));
4104 Serge 5517
 
5518
	I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5519
	POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
3243 Serge 5520
}
5521
 
3031 serge 5522
static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5523
				    intel_clock_t *clock,
5524
				    bool *has_reduced_clock,
5525
				    intel_clock_t *reduced_clock)
5526
{
5527
	struct drm_device *dev = crtc->dev;
5528
	struct drm_i915_private *dev_priv = dev->dev_private;
5529
	struct intel_encoder *intel_encoder;
5530
	int refclk;
5531
	const intel_limit_t *limit;
4104 Serge 5532
	bool ret, is_lvds = false;
3031 serge 5533
 
5534
	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5535
		switch (intel_encoder->type) {
5536
		case INTEL_OUTPUT_LVDS:
5537
			is_lvds = true;
5538
			break;
5539
		}
5540
	}
5541
 
5542
	refclk = ironlake_get_refclk(crtc);
5543
 
5544
	/*
5545
	 * Returns a set of divisors for the desired target clock with the given
5546
	 * refclk, or FALSE.  The returned values represent the clock equation:
5547
	 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5548
	 */
5549
	limit = intel_limit(crtc, refclk);
4104 Serge 5550
	ret = dev_priv->display.find_dpll(limit, crtc,
5551
					  to_intel_crtc(crtc)->config.port_clock,
5552
					  refclk, NULL, clock);
3031 serge 5553
	if (!ret)
5554
		return false;
5555
 
5556
	if (is_lvds && dev_priv->lvds_downclock_avail) {
5557
		/*
5558
		 * Ensure we match the reduced clock's P to the target clock.
5559
		 * If the clocks don't match, we can't switch the display clock
5560
		 * by using the FP0/FP1. In such case we will disable the LVDS
5561
		 * downclock feature.
5562
		*/
4104 Serge 5563
		*has_reduced_clock =
5564
			dev_priv->display.find_dpll(limit, crtc,
3031 serge 5565
						     dev_priv->lvds_downclock,
4104 Serge 5566
						    refclk, clock,
3031 serge 5567
						     reduced_clock);
5568
	}
5569
 
5570
	return true;
5571
}
5572
 
3243 Serge 5573
static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5574
{
5575
	struct drm_i915_private *dev_priv = dev->dev_private;
5576
	uint32_t temp;
5577
 
5578
	temp = I915_READ(SOUTH_CHICKEN1);
5579
	if (temp & FDI_BC_BIFURCATION_SELECT)
5580
		return;
5581
 
5582
	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5583
	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5584
 
5585
	temp |= FDI_BC_BIFURCATION_SELECT;
5586
	DRM_DEBUG_KMS("enabling fdi C rx\n");
5587
	I915_WRITE(SOUTH_CHICKEN1, temp);
5588
	POSTING_READ(SOUTH_CHICKEN1);
5589
}
5590
 
4104 Serge 5591
static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3243 Serge 5592
{
5593
	struct drm_device *dev = intel_crtc->base.dev;
5594
	struct drm_i915_private *dev_priv = dev->dev_private;
5595
 
5596
	switch (intel_crtc->pipe) {
5597
	case PIPE_A:
4104 Serge 5598
		break;
3243 Serge 5599
	case PIPE_B:
4104 Serge 5600
		if (intel_crtc->config.fdi_lanes > 2)
3243 Serge 5601
			WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5602
		else
5603
			cpt_enable_fdi_bc_bifurcation(dev);
5604
 
4104 Serge 5605
		break;
3243 Serge 5606
	case PIPE_C:
5607
		cpt_enable_fdi_bc_bifurcation(dev);
5608
 
4104 Serge 5609
		break;
3243 Serge 5610
	default:
5611
		BUG();
5612
	}
5613
}
5614
 
5615
int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5616
{
5617
	/*
5618
	 * Account for spread spectrum to avoid
5619
	 * oversubscribing the link. Max center spread
5620
	 * is 2.5%; use 5% for safety's sake.
5621
	 */
5622
	u32 bps = target_clock * bpp * 21 / 20;
5623
	return bps / (link_bw * 8) + 1;
5624
}
5625
 
4104 Serge 5626
static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
2327 Serge 5627
{
4104 Serge 5628
	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
3746 Serge 5629
}
5630
 
3243 Serge 5631
static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
4104 Serge 5632
				      u32 *fp,
3746 Serge 5633
				      intel_clock_t *reduced_clock, u32 *fp2)
3243 Serge 5634
{
5635
	struct drm_crtc *crtc = &intel_crtc->base;
5636
	struct drm_device *dev = crtc->dev;
5637
	struct drm_i915_private *dev_priv = dev->dev_private;
5638
	struct intel_encoder *intel_encoder;
5639
	uint32_t dpll;
3746 Serge 5640
	int factor, num_connectors = 0;
4104 Serge 5641
	bool is_lvds = false, is_sdvo = false;
3243 Serge 5642
 
5643
	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5644
		switch (intel_encoder->type) {
5645
		case INTEL_OUTPUT_LVDS:
5646
			is_lvds = true;
5647
			break;
5648
		case INTEL_OUTPUT_SDVO:
5649
		case INTEL_OUTPUT_HDMI:
5650
			is_sdvo = true;
5651
			break;
5652
		}
5653
 
5654
		num_connectors++;
5655
	}
5656
 
2327 Serge 5657
    /* Enable autotuning of the PLL clock (if permissible) */
5658
    factor = 21;
5659
    if (is_lvds) {
5660
        if ((intel_panel_use_ssc(dev_priv) &&
4104 Serge 5661
		     dev_priv->vbt.lvds_ssc_freq == 100) ||
3746 Serge 5662
		    (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
2327 Serge 5663
            factor = 25;
4104 Serge 5664
	} else if (intel_crtc->config.sdvo_tv_clock)
2327 Serge 5665
        factor = 20;
5666
 
4104 Serge 5667
	if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
3746 Serge 5668
		*fp |= FP_CB_TUNE;
2327 Serge 5669
 
3746 Serge 5670
	if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5671
		*fp2 |= FP_CB_TUNE;
5672
 
2327 Serge 5673
    dpll = 0;
5674
 
5675
    if (is_lvds)
5676
        dpll |= DPLLB_MODE_LVDS;
5677
    else
5678
        dpll |= DPLLB_MODE_DAC_SERIAL;
4104 Serge 5679
 
3746 Serge 5680
			dpll |= (intel_crtc->config.pixel_multiplier - 1)
5681
				<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
2327 Serge 5682
 
4104 Serge 5683
	if (is_sdvo)
5684
		dpll |= DPLL_SDVO_HIGH_SPEED;
5685
	if (intel_crtc->config.has_dp_encoder)
5686
		dpll |= DPLL_SDVO_HIGH_SPEED;
5687
 
2327 Serge 5688
    /* compute bitmask from p1 value */
4104 Serge 5689
	dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2327 Serge 5690
    /* also FPA1 */
4104 Serge 5691
	dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2327 Serge 5692
 
4104 Serge 5693
	switch (intel_crtc->config.dpll.p2) {
2327 Serge 5694
    case 5:
5695
        dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5696
        break;
5697
    case 7:
5698
        dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5699
        break;
5700
    case 10:
5701
        dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5702
        break;
5703
    case 14:
5704
        dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5705
        break;
5706
    }
5707
 
4104 Serge 5708
	if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
2327 Serge 5709
        dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5710
    else
5711
        dpll |= PLL_REF_INPUT_DREFCLK;
5712
 
4104 Serge 5713
	return dpll | DPLL_VCO_ENABLE;
3243 Serge 5714
}
5715
 
5716
static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5717
				  int x, int y,
5718
				  struct drm_framebuffer *fb)
5719
{
5720
	struct drm_device *dev = crtc->dev;
5721
	struct drm_i915_private *dev_priv = dev->dev_private;
5722
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5723
	int pipe = intel_crtc->pipe;
5724
	int plane = intel_crtc->plane;
5725
	int num_connectors = 0;
5726
	intel_clock_t clock, reduced_clock;
4104 Serge 5727
	u32 dpll = 0, fp = 0, fp2 = 0;
3243 Serge 5728
	bool ok, has_reduced_clock = false;
3746 Serge 5729
	bool is_lvds = false;
3243 Serge 5730
	struct intel_encoder *encoder;
4104 Serge 5731
	struct intel_shared_dpll *pll;
3243 Serge 5732
	int ret;
5733
 
5734
	for_each_encoder_on_crtc(dev, crtc, encoder) {
5735
		switch (encoder->type) {
5736
		case INTEL_OUTPUT_LVDS:
5737
			is_lvds = true;
5738
			break;
5739
		}
5740
 
5741
		num_connectors++;
5742
	}
5743
 
5744
	WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5745
	     "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5746
 
4104 Serge 5747
	ok = ironlake_compute_clocks(crtc, &clock,
3243 Serge 5748
				     &has_reduced_clock, &reduced_clock);
4104 Serge 5749
	if (!ok && !intel_crtc->config.clock_set) {
3243 Serge 5750
		DRM_ERROR("Couldn't find PLL settings for mode!\n");
5751
		return -EINVAL;
5752
	}
3746 Serge 5753
	/* Compat-code for transition, will disappear. */
5754
	if (!intel_crtc->config.clock_set) {
5755
		intel_crtc->config.dpll.n = clock.n;
5756
		intel_crtc->config.dpll.m1 = clock.m1;
5757
		intel_crtc->config.dpll.m2 = clock.m2;
5758
		intel_crtc->config.dpll.p1 = clock.p1;
5759
		intel_crtc->config.dpll.p2 = clock.p2;
5760
	}
3243 Serge 5761
 
4104 Serge 5762
	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5763
	if (intel_crtc->config.has_pch_encoder) {
5764
		fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
3243 Serge 5765
	if (has_reduced_clock)
4104 Serge 5766
			fp2 = i9xx_dpll_compute_fp(&reduced_clock);
3243 Serge 5767
 
4104 Serge 5768
		dpll = ironlake_compute_dpll(intel_crtc,
5769
					     &fp, &reduced_clock,
3746 Serge 5770
				     has_reduced_clock ? &fp2 : NULL);
3243 Serge 5771
 
4104 Serge 5772
		intel_crtc->config.dpll_hw_state.dpll = dpll;
5773
		intel_crtc->config.dpll_hw_state.fp0 = fp;
5774
		if (has_reduced_clock)
5775
			intel_crtc->config.dpll_hw_state.fp1 = fp2;
5776
		else
5777
			intel_crtc->config.dpll_hw_state.fp1 = fp;
2327 Serge 5778
 
4104 Serge 5779
		pll = intel_get_shared_dpll(intel_crtc);
3031 serge 5780
		if (pll == NULL) {
4104 Serge 5781
			DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5782
					 pipe_name(pipe));
2342 Serge 5783
			return -EINVAL;
2327 Serge 5784
        }
3031 serge 5785
	} else
4104 Serge 5786
		intel_put_shared_dpll(intel_crtc);
2327 Serge 5787
 
3746 Serge 5788
	if (intel_crtc->config.has_dp_encoder)
5789
		intel_dp_set_m_n(intel_crtc);
2342 Serge 5790
 
4104 Serge 5791
	if (is_lvds && has_reduced_clock && i915_powersave)
5792
		intel_crtc->lowfreq_avail = true;
5793
	else
5794
		intel_crtc->lowfreq_avail = false;
2327 Serge 5795
 
4104 Serge 5796
	if (intel_crtc->config.has_pch_encoder) {
5797
		pll = intel_crtc_to_shared_dpll(intel_crtc);
2327 Serge 5798
 
4104 Serge 5799
	}
2327 Serge 5800
 
4104 Serge 5801
	intel_set_pipe_timings(intel_crtc);
2327 Serge 5802
 
4104 Serge 5803
	if (intel_crtc->config.has_pch_encoder) {
5804
		intel_cpu_transcoder_set_m_n(intel_crtc,
5805
					     &intel_crtc->config.fdi_m_n);
2342 Serge 5806
	}
2327 Serge 5807
 
4104 Serge 5808
	if (IS_IVYBRIDGE(dev))
5809
		ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3243 Serge 5810
 
4104 Serge 5811
	ironlake_set_pipeconf(crtc);
3243 Serge 5812
 
5813
	/* Set up the display plane register */
5814
	I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5815
	POSTING_READ(DSPCNTR(plane));
5816
 
5817
	ret = intel_pipe_set_base(crtc, x, y, fb);
5818
 
5819
	intel_update_watermarks(dev);
5820
 
4104 Serge 5821
	return ret;
5822
}
3243 Serge 5823
 
4104 Serge 5824
static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5825
					struct intel_crtc_config *pipe_config)
5826
{
5827
	struct drm_device *dev = crtc->base.dev;
5828
	struct drm_i915_private *dev_priv = dev->dev_private;
5829
	enum transcoder transcoder = pipe_config->cpu_transcoder;
5830
 
5831
	pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5832
	pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5833
	pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5834
					& ~TU_SIZE_MASK;
5835
	pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5836
	pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5837
				   & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
3243 Serge 5838
}
5839
 
4104 Serge 5840
static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5841
				     struct intel_crtc_config *pipe_config)
5842
{
5843
	struct drm_device *dev = crtc->base.dev;
5844
	struct drm_i915_private *dev_priv = dev->dev_private;
5845
	uint32_t tmp;
5846
 
5847
	tmp = I915_READ(PF_CTL(crtc->pipe));
5848
 
5849
	if (tmp & PF_ENABLE) {
5850
		pipe_config->pch_pfit.enabled = true;
5851
		pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5852
		pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5853
 
5854
		/* We currently do not free assignements of panel fitters on
5855
		 * ivb/hsw (since we don't use the higher upscaling modes which
5856
		 * differentiates them) so just WARN about this case for now. */
5857
		if (IS_GEN7(dev)) {
5858
			WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5859
				PF_PIPE_SEL_IVB(crtc->pipe));
5860
		}
5861
	}
5862
}
5863
 
3746 Serge 5864
static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5865
				     struct intel_crtc_config *pipe_config)
5866
{
5867
	struct drm_device *dev = crtc->base.dev;
5868
	struct drm_i915_private *dev_priv = dev->dev_private;
5869
	uint32_t tmp;
5870
 
4104 Serge 5871
	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5872
	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5873
 
3746 Serge 5874
	tmp = I915_READ(PIPECONF(crtc->pipe));
5875
	if (!(tmp & PIPECONF_ENABLE))
5876
		return false;
5877
 
4104 Serge 5878
	if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5879
		struct intel_shared_dpll *pll;
5880
 
3746 Serge 5881
		pipe_config->has_pch_encoder = true;
5882
 
4104 Serge 5883
		tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5884
		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5885
					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
5886
 
5887
		ironlake_get_fdi_m_n_config(crtc, pipe_config);
5888
 
5889
		if (HAS_PCH_IBX(dev_priv->dev)) {
5890
			pipe_config->shared_dpll =
5891
				(enum intel_dpll_id) crtc->pipe;
5892
		} else {
5893
			tmp = I915_READ(PCH_DPLL_SEL);
5894
			if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
5895
				pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
5896
			else
5897
				pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
5898
		}
5899
 
5900
		pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
5901
 
5902
		WARN_ON(!pll->get_hw_state(dev_priv, pll,
5903
					   &pipe_config->dpll_hw_state));
5904
 
5905
		tmp = pipe_config->dpll_hw_state.dpll;
5906
		pipe_config->pixel_multiplier =
5907
			((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
5908
			 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
5909
	} else {
5910
		pipe_config->pixel_multiplier = 1;
5911
	}
5912
 
5913
	intel_get_pipe_timings(crtc, pipe_config);
5914
 
5915
	ironlake_get_pfit_config(crtc, pipe_config);
5916
 
3746 Serge 5917
	return true;
5918
}
5919
 
4104 Serge 5920
static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
5921
{
5922
	struct drm_device *dev = dev_priv->dev;
5923
	struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
5924
	struct intel_crtc *crtc;
5925
	unsigned long irqflags;
5926
	uint32_t val;
5927
 
5928
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
5929
		WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
5930
		     pipe_name(crtc->pipe));
5931
 
5932
	WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
5933
	WARN(plls->spll_refcount, "SPLL enabled\n");
5934
	WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
5935
	WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
5936
	WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
5937
	WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
5938
	     "CPU PWM1 enabled\n");
5939
	WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
5940
	     "CPU PWM2 enabled\n");
5941
	WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
5942
	     "PCH PWM1 enabled\n");
5943
	WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
5944
	     "Utility pin enabled\n");
5945
	WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
5946
 
5947
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5948
	val = I915_READ(DEIMR);
5949
	WARN((val & ~DE_PCH_EVENT_IVB) != val,
5950
	     "Unexpected DEIMR bits enabled: 0x%x\n", val);
5951
	val = I915_READ(SDEIMR);
5952
	WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
5953
	     "Unexpected SDEIMR bits enabled: 0x%x\n", val);
5954
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5955
}
5956
 
5957
/*
5958
 * This function implements pieces of two sequences from BSpec:
5959
 * - Sequence for display software to disable LCPLL
5960
 * - Sequence for display software to allow package C8+
5961
 * The steps implemented here are just the steps that actually touch the LCPLL
5962
 * register. Callers should take care of disabling all the display engine
5963
 * functions, doing the mode unset, fixing interrupts, etc.
5964
 */
5965
void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
5966
		       bool switch_to_fclk, bool allow_power_down)
5967
{
5968
	uint32_t val;
5969
 
5970
	assert_can_disable_lcpll(dev_priv);
5971
 
5972
	val = I915_READ(LCPLL_CTL);
5973
 
5974
	if (switch_to_fclk) {
5975
		val |= LCPLL_CD_SOURCE_FCLK;
5976
		I915_WRITE(LCPLL_CTL, val);
5977
 
5978
		if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
5979
				       LCPLL_CD_SOURCE_FCLK_DONE, 1))
5980
			DRM_ERROR("Switching to FCLK failed\n");
5981
 
5982
		val = I915_READ(LCPLL_CTL);
5983
	}
5984
 
5985
	val |= LCPLL_PLL_DISABLE;
5986
	I915_WRITE(LCPLL_CTL, val);
5987
	POSTING_READ(LCPLL_CTL);
5988
 
5989
	if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
5990
		DRM_ERROR("LCPLL still locked\n");
5991
 
5992
	val = I915_READ(D_COMP);
5993
	val |= D_COMP_COMP_DISABLE;
5994
	I915_WRITE(D_COMP, val);
5995
	POSTING_READ(D_COMP);
5996
    udelay(100);
5997
 
5998
	if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
5999
		DRM_ERROR("D_COMP RCOMP still in progress\n");
6000
 
6001
	if (allow_power_down) {
6002
		val = I915_READ(LCPLL_CTL);
6003
		val |= LCPLL_POWER_DOWN_ALLOW;
6004
		I915_WRITE(LCPLL_CTL, val);
6005
		POSTING_READ(LCPLL_CTL);
6006
	}
6007
}
6008
 
6009
/*
6010
 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6011
 * source.
6012
 */
6013
void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6014
{
6015
	uint32_t val;
6016
 
6017
	val = I915_READ(LCPLL_CTL);
6018
 
6019
	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6020
		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6021
		return;
6022
 
6023
	/* Make sure we're not on PC8 state before disabling PC8, otherwise
6024
	 * we'll hang the machine! */
6025
	dev_priv->uncore.funcs.force_wake_get(dev_priv);
6026
 
6027
	if (val & LCPLL_POWER_DOWN_ALLOW) {
6028
		val &= ~LCPLL_POWER_DOWN_ALLOW;
6029
		I915_WRITE(LCPLL_CTL, val);
6030
		POSTING_READ(LCPLL_CTL);
6031
	}
6032
 
6033
	val = I915_READ(D_COMP);
6034
	val |= D_COMP_COMP_FORCE;
6035
	val &= ~D_COMP_COMP_DISABLE;
6036
	I915_WRITE(D_COMP, val);
6037
	POSTING_READ(D_COMP);
6038
 
6039
	val = I915_READ(LCPLL_CTL);
6040
	val &= ~LCPLL_PLL_DISABLE;
6041
	I915_WRITE(LCPLL_CTL, val);
6042
 
6043
	if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6044
		DRM_ERROR("LCPLL not locked yet\n");
6045
 
6046
	if (val & LCPLL_CD_SOURCE_FCLK) {
6047
		val = I915_READ(LCPLL_CTL);
6048
		val &= ~LCPLL_CD_SOURCE_FCLK;
6049
		I915_WRITE(LCPLL_CTL, val);
6050
 
6051
		if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6052
					LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6053
			DRM_ERROR("Switching back to LCPLL failed\n");
6054
	}
6055
 
6056
	dev_priv->uncore.funcs.force_wake_put(dev_priv);
6057
}
6058
 
6059
void hsw_enable_pc8_work(struct work_struct *__work)
6060
{
6061
	struct drm_i915_private *dev_priv =
6062
		container_of(to_delayed_work(__work), struct drm_i915_private,
6063
			     pc8.enable_work);
6064
	struct drm_device *dev = dev_priv->dev;
6065
	uint32_t val;
6066
 
6067
	if (dev_priv->pc8.enabled)
6068
		return;
6069
 
6070
	DRM_DEBUG_KMS("Enabling package C8+\n");
6071
 
6072
	dev_priv->pc8.enabled = true;
6073
 
6074
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6075
		val = I915_READ(SOUTH_DSPCLK_GATE_D);
6076
		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6077
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6078
	}
6079
 
6080
	lpt_disable_clkout_dp(dev);
6081
	hsw_pc8_disable_interrupts(dev);
6082
	hsw_disable_lcpll(dev_priv, true, true);
6083
}
6084
 
6085
static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6086
{
6087
	WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6088
	WARN(dev_priv->pc8.disable_count < 1,
6089
	     "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6090
 
6091
	dev_priv->pc8.disable_count--;
6092
	if (dev_priv->pc8.disable_count != 0)
6093
		return;
6094
 
6095
	schedule_delayed_work(&dev_priv->pc8.enable_work,
6096
			      msecs_to_jiffies(i915_pc8_timeout));
6097
}
6098
 
6099
static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6100
{
6101
	struct drm_device *dev = dev_priv->dev;
6102
	uint32_t val;
6103
 
6104
	WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6105
	WARN(dev_priv->pc8.disable_count < 0,
6106
	     "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6107
 
6108
	dev_priv->pc8.disable_count++;
6109
	if (dev_priv->pc8.disable_count != 1)
6110
		return;
6111
 
6112
//   cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6113
	if (!dev_priv->pc8.enabled)
6114
		return;
6115
 
6116
	DRM_DEBUG_KMS("Disabling package C8+\n");
6117
 
6118
	hsw_restore_lcpll(dev_priv);
6119
	hsw_pc8_restore_interrupts(dev);
6120
	lpt_init_pch_refclk(dev);
6121
 
6122
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6123
		val = I915_READ(SOUTH_DSPCLK_GATE_D);
6124
		val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6125
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6126
	}
6127
 
6128
	intel_prepare_ddi(dev);
6129
	i915_gem_init_swizzling(dev);
6130
	mutex_lock(&dev_priv->rps.hw_lock);
6131
	gen6_update_ring_freq(dev);
6132
	mutex_unlock(&dev_priv->rps.hw_lock);
6133
	dev_priv->pc8.enabled = false;
6134
}
6135
 
6136
void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6137
{
6138
	mutex_lock(&dev_priv->pc8.lock);
6139
	__hsw_enable_package_c8(dev_priv);
6140
	mutex_unlock(&dev_priv->pc8.lock);
6141
}
6142
 
6143
void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6144
{
6145
	mutex_lock(&dev_priv->pc8.lock);
6146
	__hsw_disable_package_c8(dev_priv);
6147
	mutex_unlock(&dev_priv->pc8.lock);
6148
}
6149
 
6150
static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6151
{
6152
	struct drm_device *dev = dev_priv->dev;
6153
	struct intel_crtc *crtc;
6154
	uint32_t val;
6155
 
6156
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6157
		if (crtc->base.enabled)
6158
			return false;
6159
 
6160
	/* This case is still possible since we have the i915.disable_power_well
6161
	 * parameter and also the KVMr or something else might be requesting the
6162
	 * power well. */
6163
	val = I915_READ(HSW_PWR_WELL_DRIVER);
6164
	if (val != 0) {
6165
		DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6166
		return false;
6167
	}
6168
 
6169
	return true;
6170
}
6171
 
6172
/* Since we're called from modeset_global_resources there's no way to
6173
 * symmetrically increase and decrease the refcount, so we use
6174
 * dev_priv->pc8.requirements_met to track whether we already have the refcount
6175
 * or not.
6176
 */
6177
static void hsw_update_package_c8(struct drm_device *dev)
6178
{
6179
	struct drm_i915_private *dev_priv = dev->dev_private;
6180
	bool allow;
6181
 
6182
	if (!i915_enable_pc8)
6183
		return;
6184
 
6185
	mutex_lock(&dev_priv->pc8.lock);
6186
 
6187
	allow = hsw_can_enable_package_c8(dev_priv);
6188
 
6189
	if (allow == dev_priv->pc8.requirements_met)
6190
		goto done;
6191
 
6192
	dev_priv->pc8.requirements_met = allow;
6193
 
6194
	if (allow)
6195
		__hsw_enable_package_c8(dev_priv);
6196
	else
6197
		__hsw_disable_package_c8(dev_priv);
6198
 
6199
done:
6200
	mutex_unlock(&dev_priv->pc8.lock);
6201
}
6202
 
6203
static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6204
{
6205
	if (!dev_priv->pc8.gpu_idle) {
6206
		dev_priv->pc8.gpu_idle = true;
6207
		hsw_enable_package_c8(dev_priv);
6208
	}
6209
}
6210
 
6211
static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6212
{
6213
	if (dev_priv->pc8.gpu_idle) {
6214
		dev_priv->pc8.gpu_idle = false;
6215
		hsw_disable_package_c8(dev_priv);
6216
	}
6217
}
6218
 
3480 Serge 6219
static void haswell_modeset_global_resources(struct drm_device *dev)
6220
{
6221
	bool enable = false;
6222
	struct intel_crtc *crtc;
6223
 
6224
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
4104 Serge 6225
		if (!crtc->base.enabled)
6226
			continue;
3480 Serge 6227
 
4104 Serge 6228
		if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.enabled ||
6229
		    crtc->config.cpu_transcoder != TRANSCODER_EDP)
3480 Serge 6230
			enable = true;
6231
	}
6232
 
4104 Serge 6233
	intel_set_power_well(dev, enable);
3480 Serge 6234
 
4104 Serge 6235
	hsw_update_package_c8(dev);
3480 Serge 6236
}
6237
 
3243 Serge 6238
static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6239
				 int x, int y,
6240
				 struct drm_framebuffer *fb)
6241
{
6242
	struct drm_device *dev = crtc->dev;
6243
	struct drm_i915_private *dev_priv = dev->dev_private;
6244
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6245
	int plane = intel_crtc->plane;
6246
	int ret;
6247
 
4104 Serge 6248
	if (!intel_ddi_pll_mode_set(crtc))
3243 Serge 6249
		return -EINVAL;
6250
 
3746 Serge 6251
	if (intel_crtc->config.has_dp_encoder)
6252
		intel_dp_set_m_n(intel_crtc);
2327 Serge 6253
 
3243 Serge 6254
	intel_crtc->lowfreq_avail = false;
2327 Serge 6255
 
4104 Serge 6256
	intel_set_pipe_timings(intel_crtc);
3243 Serge 6257
 
4104 Serge 6258
	if (intel_crtc->config.has_pch_encoder) {
6259
		intel_cpu_transcoder_set_m_n(intel_crtc,
6260
					     &intel_crtc->config.fdi_m_n);
6261
	}
3243 Serge 6262
 
4104 Serge 6263
	haswell_set_pipeconf(crtc);
2327 Serge 6264
 
3746 Serge 6265
	intel_set_pipe_csc(crtc);
3480 Serge 6266
 
3031 serge 6267
	/* Set up the display plane register */
3480 Serge 6268
	I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
2327 Serge 6269
    POSTING_READ(DSPCNTR(plane));
6270
 
3031 serge 6271
	ret = intel_pipe_set_base(crtc, x, y, fb);
2327 Serge 6272
 
6273
    intel_update_watermarks(dev);
6274
 
6275
    return ret;
6276
}
6277
 
3746 Serge 6278
static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6279
				    struct intel_crtc_config *pipe_config)
6280
{
6281
	struct drm_device *dev = crtc->base.dev;
6282
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 6283
	enum intel_display_power_domain pfit_domain;
3746 Serge 6284
	uint32_t tmp;
6285
 
4104 Serge 6286
	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6287
	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6288
 
6289
	tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6290
	if (tmp & TRANS_DDI_FUNC_ENABLE) {
6291
		enum pipe trans_edp_pipe;
6292
		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6293
		default:
6294
			WARN(1, "unknown pipe linked to edp transcoder\n");
6295
		case TRANS_DDI_EDP_INPUT_A_ONOFF:
6296
		case TRANS_DDI_EDP_INPUT_A_ON:
6297
			trans_edp_pipe = PIPE_A;
6298
			break;
6299
		case TRANS_DDI_EDP_INPUT_B_ONOFF:
6300
			trans_edp_pipe = PIPE_B;
6301
			break;
6302
		case TRANS_DDI_EDP_INPUT_C_ONOFF:
6303
			trans_edp_pipe = PIPE_C;
6304
			break;
6305
		}
6306
 
6307
		if (trans_edp_pipe == crtc->pipe)
6308
			pipe_config->cpu_transcoder = TRANSCODER_EDP;
6309
	}
6310
 
6311
	if (!intel_display_power_enabled(dev,
6312
			POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6313
		return false;
6314
 
6315
	tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
3746 Serge 6316
	if (!(tmp & PIPECONF_ENABLE))
6317
		return false;
6318
 
6319
	/*
4104 Serge 6320
	 * Haswell has only FDI/PCH transcoder A. It is which is connected to
3746 Serge 6321
	 * DDI E. So just check whether this pipe is wired to DDI E and whether
6322
	 * the PCH transcoder is on.
6323
	 */
4104 Serge 6324
	tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
3746 Serge 6325
	if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
4104 Serge 6326
	    I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
3746 Serge 6327
		pipe_config->has_pch_encoder = true;
6328
 
4104 Serge 6329
		tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6330
		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6331
					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
3746 Serge 6332
 
4104 Serge 6333
		ironlake_get_fdi_m_n_config(crtc, pipe_config);
6334
	}
6335
 
6336
	intel_get_pipe_timings(crtc, pipe_config);
6337
 
6338
	pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6339
	if (intel_display_power_enabled(dev, pfit_domain))
6340
		ironlake_get_pfit_config(crtc, pipe_config);
6341
 
6342
	pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6343
				   (I915_READ(IPS_CTL) & IPS_ENABLE);
6344
 
6345
	pipe_config->pixel_multiplier = 1;
6346
 
3746 Serge 6347
	return true;
6348
}
6349
 
2330 Serge 6350
static int intel_crtc_mode_set(struct drm_crtc *crtc,
6351
			       int x, int y,
3031 serge 6352
			       struct drm_framebuffer *fb)
2330 Serge 6353
{
6354
	struct drm_device *dev = crtc->dev;
6355
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 6356
	struct intel_encoder *encoder;
2330 Serge 6357
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3746 Serge 6358
	struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
2330 Serge 6359
	int pipe = intel_crtc->pipe;
6360
	int ret;
2327 Serge 6361
 
3031 serge 6362
	drm_vblank_pre_modeset(dev, pipe);
2327 Serge 6363
 
3746 Serge 6364
	ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6365
 
3031 serge 6366
	drm_vblank_post_modeset(dev, pipe);
2327 Serge 6367
 
3243 Serge 6368
	if (ret != 0)
2330 Serge 6369
	return ret;
3243 Serge 6370
 
6371
	for_each_encoder_on_crtc(dev, crtc, encoder) {
6372
		DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6373
			encoder->base.base.id,
6374
			drm_get_encoder_name(&encoder->base),
6375
			mode->base.id, mode->name);
3746 Serge 6376
			encoder->mode_set(encoder);
3243 Serge 6377
	}
6378
 
6379
	return 0;
2330 Serge 6380
}
2327 Serge 6381
 
2342 Serge 6382
static bool intel_eld_uptodate(struct drm_connector *connector,
6383
			       int reg_eldv, uint32_t bits_eldv,
6384
			       int reg_elda, uint32_t bits_elda,
6385
			       int reg_edid)
6386
{
6387
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
6388
	uint8_t *eld = connector->eld;
6389
	uint32_t i;
6390
 
6391
	i = I915_READ(reg_eldv);
6392
	i &= bits_eldv;
6393
 
6394
	if (!eld[0])
6395
		return !i;
6396
 
6397
	if (!i)
6398
		return false;
6399
 
6400
	i = I915_READ(reg_elda);
6401
	i &= ~bits_elda;
6402
	I915_WRITE(reg_elda, i);
6403
 
6404
	for (i = 0; i < eld[2]; i++)
6405
		if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6406
			return false;
6407
 
6408
	return true;
6409
}
6410
 
6411
static void g4x_write_eld(struct drm_connector *connector,
6412
			  struct drm_crtc *crtc)
6413
{
6414
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
6415
	uint8_t *eld = connector->eld;
6416
	uint32_t eldv;
6417
	uint32_t len;
6418
	uint32_t i;
6419
 
6420
	i = I915_READ(G4X_AUD_VID_DID);
6421
 
6422
	if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6423
		eldv = G4X_ELDV_DEVCL_DEVBLC;
6424
	else
6425
		eldv = G4X_ELDV_DEVCTG;
6426
 
6427
	if (intel_eld_uptodate(connector,
6428
			       G4X_AUD_CNTL_ST, eldv,
6429
			       G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6430
			       G4X_HDMIW_HDMIEDID))
6431
		return;
6432
 
6433
	i = I915_READ(G4X_AUD_CNTL_ST);
6434
	i &= ~(eldv | G4X_ELD_ADDR);
6435
	len = (i >> 9) & 0x1f;		/* ELD buffer size */
6436
	I915_WRITE(G4X_AUD_CNTL_ST, i);
6437
 
6438
	if (!eld[0])
6439
		return;
6440
 
6441
	len = min_t(uint8_t, eld[2], len);
6442
	DRM_DEBUG_DRIVER("ELD size %d\n", len);
6443
	for (i = 0; i < len; i++)
6444
		I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6445
 
6446
	i = I915_READ(G4X_AUD_CNTL_ST);
6447
	i |= eldv;
6448
	I915_WRITE(G4X_AUD_CNTL_ST, i);
6449
}
6450
 
3031 serge 6451
static void haswell_write_eld(struct drm_connector *connector,
6452
				     struct drm_crtc *crtc)
6453
{
6454
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
6455
	uint8_t *eld = connector->eld;
6456
	struct drm_device *dev = crtc->dev;
3480 Serge 6457
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 6458
	uint32_t eldv;
6459
	uint32_t i;
6460
	int len;
6461
	int pipe = to_intel_crtc(crtc)->pipe;
6462
	int tmp;
6463
 
6464
	int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6465
	int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6466
	int aud_config = HSW_AUD_CFG(pipe);
6467
	int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6468
 
6469
 
6470
	DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6471
 
6472
	/* Audio output enable */
6473
	DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6474
	tmp = I915_READ(aud_cntrl_st2);
6475
	tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6476
	I915_WRITE(aud_cntrl_st2, tmp);
6477
 
6478
	/* Wait for 1 vertical blank */
6479
	intel_wait_for_vblank(dev, pipe);
6480
 
6481
	/* Set ELD valid state */
6482
	tmp = I915_READ(aud_cntrl_st2);
4104 Serge 6483
	DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
3031 serge 6484
	tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6485
	I915_WRITE(aud_cntrl_st2, tmp);
6486
	tmp = I915_READ(aud_cntrl_st2);
4104 Serge 6487
	DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
3031 serge 6488
 
6489
	/* Enable HDMI mode */
6490
	tmp = I915_READ(aud_config);
4104 Serge 6491
	DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
3031 serge 6492
	/* clear N_programing_enable and N_value_index */
6493
	tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6494
	I915_WRITE(aud_config, tmp);
6495
 
6496
	DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6497
 
6498
	eldv = AUDIO_ELD_VALID_A << (pipe * 4);
3480 Serge 6499
	intel_crtc->eld_vld = true;
3031 serge 6500
 
6501
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6502
		DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6503
		eld[5] |= (1 << 2);	/* Conn_Type, 0x1 = DisplayPort */
6504
		I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6505
	} else
6506
		I915_WRITE(aud_config, 0);
6507
 
6508
	if (intel_eld_uptodate(connector,
6509
			       aud_cntrl_st2, eldv,
6510
			       aud_cntl_st, IBX_ELD_ADDRESS,
6511
			       hdmiw_hdmiedid))
6512
		return;
6513
 
6514
	i = I915_READ(aud_cntrl_st2);
6515
	i &= ~eldv;
6516
	I915_WRITE(aud_cntrl_st2, i);
6517
 
6518
	if (!eld[0])
6519
		return;
6520
 
6521
	i = I915_READ(aud_cntl_st);
6522
	i &= ~IBX_ELD_ADDRESS;
6523
	I915_WRITE(aud_cntl_st, i);
6524
	i = (i >> 29) & DIP_PORT_SEL_MASK;		/* DIP_Port_Select, 0x1 = PortB */
6525
	DRM_DEBUG_DRIVER("port num:%d\n", i);
6526
 
6527
	len = min_t(uint8_t, eld[2], 21);	/* 84 bytes of hw ELD buffer */
6528
	DRM_DEBUG_DRIVER("ELD size %d\n", len);
6529
	for (i = 0; i < len; i++)
6530
		I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6531
 
6532
	i = I915_READ(aud_cntrl_st2);
6533
	i |= eldv;
6534
	I915_WRITE(aud_cntrl_st2, i);
6535
 
6536
}
6537
 
2342 Serge 6538
static void ironlake_write_eld(struct drm_connector *connector,
6539
				     struct drm_crtc *crtc)
6540
{
6541
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
6542
	uint8_t *eld = connector->eld;
6543
	uint32_t eldv;
6544
	uint32_t i;
6545
	int len;
6546
	int hdmiw_hdmiedid;
3031 serge 6547
	int aud_config;
2342 Serge 6548
	int aud_cntl_st;
6549
	int aud_cntrl_st2;
3031 serge 6550
	int pipe = to_intel_crtc(crtc)->pipe;
2342 Serge 6551
 
6552
	if (HAS_PCH_IBX(connector->dev)) {
3031 serge 6553
		hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6554
		aud_config = IBX_AUD_CFG(pipe);
6555
		aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
2342 Serge 6556
		aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6557
	} else {
3031 serge 6558
		hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6559
		aud_config = CPT_AUD_CFG(pipe);
6560
		aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
2342 Serge 6561
		aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6562
	}
6563
 
3031 serge 6564
	DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
2342 Serge 6565
 
6566
	i = I915_READ(aud_cntl_st);
3031 serge 6567
	i = (i >> 29) & DIP_PORT_SEL_MASK;		/* DIP_Port_Select, 0x1 = PortB */
2342 Serge 6568
	if (!i) {
6569
		DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6570
		/* operate blindly on all ports */
6571
		eldv = IBX_ELD_VALIDB;
6572
		eldv |= IBX_ELD_VALIDB << 4;
6573
		eldv |= IBX_ELD_VALIDB << 8;
6574
	} else {
4104 Serge 6575
		DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
2342 Serge 6576
		eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6577
	}
6578
 
6579
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6580
		DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6581
		eld[5] |= (1 << 2);	/* Conn_Type, 0x1 = DisplayPort */
3031 serge 6582
		I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6583
	} else
6584
		I915_WRITE(aud_config, 0);
2342 Serge 6585
 
6586
	if (intel_eld_uptodate(connector,
6587
			       aud_cntrl_st2, eldv,
6588
			       aud_cntl_st, IBX_ELD_ADDRESS,
6589
			       hdmiw_hdmiedid))
6590
		return;
6591
 
6592
	i = I915_READ(aud_cntrl_st2);
6593
	i &= ~eldv;
6594
	I915_WRITE(aud_cntrl_st2, i);
6595
 
6596
	if (!eld[0])
6597
		return;
6598
 
6599
	i = I915_READ(aud_cntl_st);
6600
	i &= ~IBX_ELD_ADDRESS;
6601
	I915_WRITE(aud_cntl_st, i);
6602
 
6603
	len = min_t(uint8_t, eld[2], 21);	/* 84 bytes of hw ELD buffer */
6604
	DRM_DEBUG_DRIVER("ELD size %d\n", len);
6605
	for (i = 0; i < len; i++)
6606
		I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6607
 
6608
	i = I915_READ(aud_cntrl_st2);
6609
	i |= eldv;
6610
	I915_WRITE(aud_cntrl_st2, i);
6611
}
6612
 
6613
void intel_write_eld(struct drm_encoder *encoder,
6614
		     struct drm_display_mode *mode)
6615
{
6616
	struct drm_crtc *crtc = encoder->crtc;
6617
	struct drm_connector *connector;
6618
	struct drm_device *dev = encoder->dev;
6619
	struct drm_i915_private *dev_priv = dev->dev_private;
6620
 
6621
	connector = drm_select_eld(encoder, mode);
6622
	if (!connector)
6623
		return;
6624
 
6625
	DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6626
			 connector->base.id,
6627
			 drm_get_connector_name(connector),
6628
			 connector->encoder->base.id,
6629
			 drm_get_encoder_name(connector->encoder));
6630
 
6631
	connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6632
 
6633
	if (dev_priv->display.write_eld)
6634
		dev_priv->display.write_eld(connector, crtc);
6635
}
6636
 
2327 Serge 6637
/** Loads the palette/gamma unit for the CRTC with the prepared values */
6638
void intel_crtc_load_lut(struct drm_crtc *crtc)
6639
{
6640
	struct drm_device *dev = crtc->dev;
6641
	struct drm_i915_private *dev_priv = dev->dev_private;
6642
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4104 Serge 6643
	enum pipe pipe = intel_crtc->pipe;
6644
	int palreg = PALETTE(pipe);
2327 Serge 6645
	int i;
4104 Serge 6646
	bool reenable_ips = false;
2327 Serge 6647
 
6648
	/* The clocks have to be on to load the palette. */
3031 serge 6649
	if (!crtc->enabled || !intel_crtc->active)
2327 Serge 6650
		return;
6651
 
4104 Serge 6652
	if (!HAS_PCH_SPLIT(dev_priv->dev))
6653
		assert_pll_enabled(dev_priv, pipe);
6654
 
2327 Serge 6655
	/* use legacy palette for Ironlake */
6656
	if (HAS_PCH_SPLIT(dev))
4104 Serge 6657
		palreg = LGC_PALETTE(pipe);
2327 Serge 6658
 
4104 Serge 6659
	/* Workaround : Do not read or write the pipe palette/gamma data while
6660
	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6661
	 */
6662
	if (intel_crtc->config.ips_enabled &&
6663
	    ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6664
	     GAMMA_MODE_MODE_SPLIT)) {
6665
		hsw_disable_ips(intel_crtc);
6666
		reenable_ips = true;
6667
	}
6668
 
2327 Serge 6669
	for (i = 0; i < 256; i++) {
6670
		I915_WRITE(palreg + 4 * i,
6671
			   (intel_crtc->lut_r[i] << 16) |
6672
			   (intel_crtc->lut_g[i] << 8) |
6673
			   intel_crtc->lut_b[i]);
6674
	}
4104 Serge 6675
 
6676
	if (reenable_ips)
6677
		hsw_enable_ips(intel_crtc);
2327 Serge 6678
}
6679
 
3031 serge 6680
#if 0
6681
static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6682
{
6683
	struct drm_device *dev = crtc->dev;
6684
	struct drm_i915_private *dev_priv = dev->dev_private;
6685
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6686
	bool visible = base != 0;
6687
	u32 cntl;
2327 Serge 6688
 
3031 serge 6689
	if (intel_crtc->cursor_visible == visible)
6690
		return;
2327 Serge 6691
 
3031 serge 6692
	cntl = I915_READ(_CURACNTR);
6693
	if (visible) {
6694
		/* On these chipsets we can only modify the base whilst
6695
		 * the cursor is disabled.
6696
		 */
6697
		I915_WRITE(_CURABASE, base);
2327 Serge 6698
 
3031 serge 6699
		cntl &= ~(CURSOR_FORMAT_MASK);
6700
		/* XXX width must be 64, stride 256 => 0x00 << 28 */
6701
		cntl |= CURSOR_ENABLE |
6702
			CURSOR_GAMMA_ENABLE |
6703
			CURSOR_FORMAT_ARGB;
6704
	} else
6705
		cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6706
	I915_WRITE(_CURACNTR, cntl);
2327 Serge 6707
 
3031 serge 6708
	intel_crtc->cursor_visible = visible;
6709
}
2327 Serge 6710
 
3031 serge 6711
static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6712
{
6713
	struct drm_device *dev = crtc->dev;
6714
	struct drm_i915_private *dev_priv = dev->dev_private;
6715
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6716
	int pipe = intel_crtc->pipe;
6717
	bool visible = base != 0;
2327 Serge 6718
 
3031 serge 6719
	if (intel_crtc->cursor_visible != visible) {
6720
		uint32_t cntl = I915_READ(CURCNTR(pipe));
6721
		if (base) {
6722
			cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6723
			cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6724
			cntl |= pipe << 28; /* Connect to correct pipe */
6725
		} else {
6726
			cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6727
			cntl |= CURSOR_MODE_DISABLE;
6728
		}
6729
		I915_WRITE(CURCNTR(pipe), cntl);
2327 Serge 6730
 
3031 serge 6731
		intel_crtc->cursor_visible = visible;
6732
	}
6733
	/* and commit changes on next vblank */
6734
	I915_WRITE(CURBASE(pipe), base);
6735
}
2327 Serge 6736
 
3031 serge 6737
static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6738
{
6739
	struct drm_device *dev = crtc->dev;
6740
	struct drm_i915_private *dev_priv = dev->dev_private;
6741
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6742
	int pipe = intel_crtc->pipe;
6743
	bool visible = base != 0;
2327 Serge 6744
 
3031 serge 6745
	if (intel_crtc->cursor_visible != visible) {
6746
		uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6747
		if (base) {
6748
			cntl &= ~CURSOR_MODE;
6749
			cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6750
		} else {
6751
			cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6752
			cntl |= CURSOR_MODE_DISABLE;
6753
		}
4104 Serge 6754
		if (IS_HASWELL(dev)) {
3480 Serge 6755
			cntl |= CURSOR_PIPE_CSC_ENABLE;
4104 Serge 6756
			cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
6757
		}
3031 serge 6758
		I915_WRITE(CURCNTR_IVB(pipe), cntl);
2327 Serge 6759
 
3031 serge 6760
		intel_crtc->cursor_visible = visible;
6761
	}
6762
	/* and commit changes on next vblank */
6763
	I915_WRITE(CURBASE_IVB(pipe), base);
6764
}
2327 Serge 6765
 
3031 serge 6766
/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6767
static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6768
				     bool on)
6769
{
6770
	struct drm_device *dev = crtc->dev;
6771
	struct drm_i915_private *dev_priv = dev->dev_private;
6772
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6773
	int pipe = intel_crtc->pipe;
6774
	int x = intel_crtc->cursor_x;
6775
	int y = intel_crtc->cursor_y;
6776
	u32 base, pos;
6777
	bool visible;
2327 Serge 6778
 
3031 serge 6779
	pos = 0;
2327 Serge 6780
 
3031 serge 6781
	if (on && crtc->enabled && crtc->fb) {
6782
		base = intel_crtc->cursor_addr;
6783
		if (x > (int) crtc->fb->width)
6784
			base = 0;
2327 Serge 6785
 
3031 serge 6786
		if (y > (int) crtc->fb->height)
6787
			base = 0;
6788
	} else
6789
		base = 0;
2327 Serge 6790
 
3031 serge 6791
	if (x < 0) {
6792
		if (x + intel_crtc->cursor_width < 0)
6793
			base = 0;
2327 Serge 6794
 
3031 serge 6795
		pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6796
		x = -x;
6797
	}
6798
	pos |= x << CURSOR_X_SHIFT;
2327 Serge 6799
 
3031 serge 6800
	if (y < 0) {
6801
		if (y + intel_crtc->cursor_height < 0)
6802
			base = 0;
2327 Serge 6803
 
3031 serge 6804
		pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6805
		y = -y;
6806
	}
6807
	pos |= y << CURSOR_Y_SHIFT;
2327 Serge 6808
 
3031 serge 6809
	visible = base != 0;
6810
	if (!visible && !intel_crtc->cursor_visible)
6811
		return;
2327 Serge 6812
 
3031 serge 6813
	if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6814
		I915_WRITE(CURPOS_IVB(pipe), pos);
6815
		ivb_update_cursor(crtc, base);
6816
	} else {
6817
		I915_WRITE(CURPOS(pipe), pos);
6818
		if (IS_845G(dev) || IS_I865G(dev))
6819
			i845_update_cursor(crtc, base);
6820
		else
6821
			i9xx_update_cursor(crtc, base);
6822
	}
6823
}
2327 Serge 6824
 
3031 serge 6825
static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6826
				 struct drm_file *file,
6827
				 uint32_t handle,
6828
				 uint32_t width, uint32_t height)
6829
{
6830
	struct drm_device *dev = crtc->dev;
6831
	struct drm_i915_private *dev_priv = dev->dev_private;
6832
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6833
	struct drm_i915_gem_object *obj;
6834
	uint32_t addr;
6835
	int ret;
2327 Serge 6836
 
3031 serge 6837
	/* if we want to turn off the cursor ignore width and height */
6838
	if (!handle) {
6839
		DRM_DEBUG_KMS("cursor off\n");
6840
		addr = 0;
6841
		obj = NULL;
6842
		mutex_lock(&dev->struct_mutex);
6843
		goto finish;
6844
	}
2327 Serge 6845
 
3031 serge 6846
	/* Currently we only support 64x64 cursors */
6847
	if (width != 64 || height != 64) {
6848
		DRM_ERROR("we currently only support 64x64 cursors\n");
6849
		return -EINVAL;
6850
	}
2327 Serge 6851
 
3031 serge 6852
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6853
	if (&obj->base == NULL)
6854
		return -ENOENT;
2327 Serge 6855
 
3031 serge 6856
	if (obj->base.size < width * height * 4) {
6857
		DRM_ERROR("buffer is to small\n");
6858
		ret = -ENOMEM;
6859
		goto fail;
6860
	}
2327 Serge 6861
 
3031 serge 6862
	/* we only need to pin inside GTT if cursor is non-phy */
6863
	mutex_lock(&dev->struct_mutex);
6864
	if (!dev_priv->info->cursor_needs_physical) {
3746 Serge 6865
		unsigned alignment;
6866
 
3031 serge 6867
		if (obj->tiling_mode) {
6868
			DRM_ERROR("cursor cannot be tiled\n");
6869
			ret = -EINVAL;
6870
			goto fail_locked;
6871
		}
2327 Serge 6872
 
3746 Serge 6873
		/* Note that the w/a also requires 2 PTE of padding following
6874
		 * the bo. We currently fill all unused PTE with the shadow
6875
		 * page and so we should always have valid PTE following the
6876
		 * cursor preventing the VT-d warning.
6877
		 */
6878
		alignment = 0;
6879
		if (need_vtd_wa(dev))
6880
			alignment = 64*1024;
6881
 
6882
		ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
3031 serge 6883
		if (ret) {
6884
			DRM_ERROR("failed to move cursor bo into the GTT\n");
6885
			goto fail_locked;
6886
		}
2327 Serge 6887
 
3031 serge 6888
		ret = i915_gem_object_put_fence(obj);
6889
		if (ret) {
6890
			DRM_ERROR("failed to release fence for cursor");
6891
			goto fail_unpin;
6892
		}
2327 Serge 6893
 
4104 Serge 6894
		addr = i915_gem_obj_ggtt_offset(obj);
3031 serge 6895
	} else {
6896
		int align = IS_I830(dev) ? 16 * 1024 : 256;
6897
		ret = i915_gem_attach_phys_object(dev, obj,
6898
						  (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6899
						  align);
6900
		if (ret) {
6901
			DRM_ERROR("failed to attach phys object\n");
6902
			goto fail_locked;
6903
		}
6904
		addr = obj->phys_obj->handle->busaddr;
6905
	}
2327 Serge 6906
 
3031 serge 6907
	if (IS_GEN2(dev))
6908
		I915_WRITE(CURSIZE, (height << 12) | width);
2327 Serge 6909
 
3031 serge 6910
 finish:
6911
	if (intel_crtc->cursor_bo) {
6912
		if (dev_priv->info->cursor_needs_physical) {
6913
			if (intel_crtc->cursor_bo != obj)
6914
				i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6915
		} else
4104 Serge 6916
			i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3031 serge 6917
		drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6918
	}
2327 Serge 6919
 
3031 serge 6920
	mutex_unlock(&dev->struct_mutex);
2327 Serge 6921
 
3031 serge 6922
	intel_crtc->cursor_addr = addr;
6923
	intel_crtc->cursor_bo = obj;
6924
	intel_crtc->cursor_width = width;
6925
	intel_crtc->cursor_height = height;
2327 Serge 6926
 
4104 Serge 6927
	if (intel_crtc->active)
6928
		intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
2327 Serge 6929
 
3031 serge 6930
	return 0;
6931
fail_unpin:
4104 Serge 6932
	i915_gem_object_unpin_from_display_plane(obj);
3031 serge 6933
fail_locked:
6934
	mutex_unlock(&dev->struct_mutex);
6935
fail:
6936
	drm_gem_object_unreference_unlocked(&obj->base);
6937
	return ret;
6938
}
2327 Serge 6939
 
3031 serge 6940
static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6941
{
6942
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6943
 
6944
	intel_crtc->cursor_x = x;
6945
	intel_crtc->cursor_y = y;
6946
 
4104 Serge 6947
	if (intel_crtc->active)
6948
		intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
3031 serge 6949
 
6950
	return 0;
6951
}
6952
#endif
6953
 
2332 Serge 6954
/** Sets the color ramps on behalf of RandR */
6955
void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6956
				 u16 blue, int regno)
6957
{
6958
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 Serge 6959
 
2332 Serge 6960
	intel_crtc->lut_r[regno] = red >> 8;
6961
	intel_crtc->lut_g[regno] = green >> 8;
6962
	intel_crtc->lut_b[regno] = blue >> 8;
6963
}
2327 Serge 6964
 
2332 Serge 6965
void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6966
			     u16 *blue, int regno)
6967
{
6968
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 Serge 6969
 
2332 Serge 6970
	*red = intel_crtc->lut_r[regno] << 8;
6971
	*green = intel_crtc->lut_g[regno] << 8;
6972
	*blue = intel_crtc->lut_b[regno] << 8;
6973
}
2327 Serge 6974
 
2330 Serge 6975
static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6976
				 u16 *blue, uint32_t start, uint32_t size)
6977
{
6978
	int end = (start + size > 256) ? 256 : start + size, i;
6979
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 Serge 6980
 
2330 Serge 6981
	for (i = start; i < end; i++) {
6982
		intel_crtc->lut_r[i] = red[i] >> 8;
6983
		intel_crtc->lut_g[i] = green[i] >> 8;
6984
		intel_crtc->lut_b[i] = blue[i] >> 8;
6985
	}
2327 Serge 6986
 
2330 Serge 6987
	intel_crtc_load_lut(crtc);
6988
}
2327 Serge 6989
 
2330 Serge 6990
/* VESA 640x480x72Hz mode to set on the pipe */
6991
static struct drm_display_mode load_detect_mode = {
6992
	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6993
		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6994
};
2327 Serge 6995
 
3031 serge 6996
static struct drm_framebuffer *
6997
intel_framebuffer_create(struct drm_device *dev,
6998
			 struct drm_mode_fb_cmd2 *mode_cmd,
6999
			 struct drm_i915_gem_object *obj)
7000
{
7001
	struct intel_framebuffer *intel_fb;
7002
	int ret;
2327 Serge 7003
 
3031 serge 7004
	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7005
	if (!intel_fb) {
7006
		drm_gem_object_unreference_unlocked(&obj->base);
7007
		return ERR_PTR(-ENOMEM);
7008
	}
2327 Serge 7009
 
3031 serge 7010
	ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7011
	if (ret) {
7012
		drm_gem_object_unreference_unlocked(&obj->base);
7013
		kfree(intel_fb);
7014
		return ERR_PTR(ret);
7015
	}
2327 Serge 7016
 
3031 serge 7017
	return &intel_fb->base;
7018
}
2327 Serge 7019
 
2330 Serge 7020
static u32
7021
intel_framebuffer_pitch_for_width(int width, int bpp)
7022
{
7023
	u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7024
	return ALIGN(pitch, 64);
7025
}
2327 Serge 7026
 
2330 Serge 7027
static u32
7028
intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7029
{
7030
	u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7031
	return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7032
}
2327 Serge 7033
 
2330 Serge 7034
static struct drm_framebuffer *
7035
intel_framebuffer_create_for_mode(struct drm_device *dev,
7036
				  struct drm_display_mode *mode,
7037
				  int depth, int bpp)
7038
{
7039
	struct drm_i915_gem_object *obj;
3243 Serge 7040
	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2327 Serge 7041
 
4104 Serge 7042
	return NULL;
2330 Serge 7043
}
2327 Serge 7044
 
2330 Serge 7045
static struct drm_framebuffer *
7046
mode_fits_in_fbdev(struct drm_device *dev,
7047
		   struct drm_display_mode *mode)
7048
{
7049
	struct drm_i915_private *dev_priv = dev->dev_private;
7050
	struct drm_i915_gem_object *obj;
7051
	struct drm_framebuffer *fb;
2327 Serge 7052
 
2330 Serge 7053
//	if (dev_priv->fbdev == NULL)
7054
//		return NULL;
2327 Serge 7055
 
2330 Serge 7056
//	obj = dev_priv->fbdev->ifb.obj;
7057
//	if (obj == NULL)
7058
		return NULL;
2327 Serge 7059
 
2330 Serge 7060
//	if (obj->base.size < mode->vdisplay * fb->pitch)
3031 serge 7061
	if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7062
							       fb->bits_per_pixel))
2330 Serge 7063
//		return NULL;
2327 Serge 7064
 
3031 serge 7065
	if (obj->base.size < mode->vdisplay * fb->pitches[0])
7066
		return NULL;
7067
 
2330 Serge 7068
//	return fb;
7069
}
2327 Serge 7070
 
3031 serge 7071
bool intel_get_load_detect_pipe(struct drm_connector *connector,
2330 Serge 7072
				struct drm_display_mode *mode,
7073
				struct intel_load_detect_pipe *old)
7074
{
7075
	struct intel_crtc *intel_crtc;
3031 serge 7076
	struct intel_encoder *intel_encoder =
7077
		intel_attached_encoder(connector);
2330 Serge 7078
	struct drm_crtc *possible_crtc;
7079
	struct drm_encoder *encoder = &intel_encoder->base;
7080
	struct drm_crtc *crtc = NULL;
7081
	struct drm_device *dev = encoder->dev;
3031 serge 7082
	struct drm_framebuffer *fb;
2330 Serge 7083
	int i = -1;
2327 Serge 7084
 
2330 Serge 7085
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7086
		      connector->base.id, drm_get_connector_name(connector),
7087
		      encoder->base.id, drm_get_encoder_name(encoder));
2327 Serge 7088
 
2330 Serge 7089
	/*
7090
	 * Algorithm gets a little messy:
7091
	 *
7092
	 *   - if the connector already has an assigned crtc, use it (but make
7093
	 *     sure it's on first)
7094
	 *
7095
	 *   - try to find the first unused crtc that can drive this connector,
7096
	 *     and use that if we find one
7097
	 */
2327 Serge 7098
 
2330 Serge 7099
	/* See if we already have a CRTC for this connector */
7100
	if (encoder->crtc) {
7101
		crtc = encoder->crtc;
2327 Serge 7102
 
3480 Serge 7103
		mutex_lock(&crtc->mutex);
7104
 
3031 serge 7105
		old->dpms_mode = connector->dpms;
2330 Serge 7106
		old->load_detect_temp = false;
2327 Serge 7107
 
2330 Serge 7108
		/* Make sure the crtc and connector are running */
3031 serge 7109
		if (connector->dpms != DRM_MODE_DPMS_ON)
7110
			connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
2327 Serge 7111
 
2330 Serge 7112
		return true;
7113
	}
2327 Serge 7114
 
2330 Serge 7115
	/* Find an unused one (if possible) */
7116
	list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7117
		i++;
7118
		if (!(encoder->possible_crtcs & (1 << i)))
7119
			continue;
7120
		if (!possible_crtc->enabled) {
7121
			crtc = possible_crtc;
7122
			break;
7123
		}
7124
	}
2327 Serge 7125
 
2330 Serge 7126
	/*
7127
	 * If we didn't find an unused CRTC, don't use any.
7128
	 */
7129
	if (!crtc) {
7130
		DRM_DEBUG_KMS("no pipe available for load-detect\n");
7131
		return false;
7132
	}
2327 Serge 7133
 
3480 Serge 7134
	mutex_lock(&crtc->mutex);
3031 serge 7135
	intel_encoder->new_crtc = to_intel_crtc(crtc);
7136
	to_intel_connector(connector)->new_encoder = intel_encoder;
2327 Serge 7137
 
2330 Serge 7138
	intel_crtc = to_intel_crtc(crtc);
3031 serge 7139
	old->dpms_mode = connector->dpms;
2330 Serge 7140
	old->load_detect_temp = true;
7141
	old->release_fb = NULL;
2327 Serge 7142
 
2330 Serge 7143
	if (!mode)
7144
		mode = &load_detect_mode;
2327 Serge 7145
 
2330 Serge 7146
	/* We need a framebuffer large enough to accommodate all accesses
7147
	 * that the plane may generate whilst we perform load detection.
7148
	 * We can not rely on the fbcon either being present (we get called
7149
	 * during its initialisation to detect all boot displays, or it may
7150
	 * not even exist) or that it is large enough to satisfy the
7151
	 * requested mode.
7152
	 */
3031 serge 7153
	fb = mode_fits_in_fbdev(dev, mode);
7154
	if (fb == NULL) {
2330 Serge 7155
		DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
3031 serge 7156
		fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7157
		old->release_fb = fb;
2330 Serge 7158
	} else
7159
		DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
3031 serge 7160
	if (IS_ERR(fb)) {
2330 Serge 7161
		DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
3480 Serge 7162
		mutex_unlock(&crtc->mutex);
3243 Serge 7163
		return false;
2330 Serge 7164
	}
2327 Serge 7165
 
3480 Serge 7166
	if (intel_set_mode(crtc, mode, 0, 0, fb)) {
2330 Serge 7167
		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7168
		if (old->release_fb)
7169
			old->release_fb->funcs->destroy(old->release_fb);
3480 Serge 7170
		mutex_unlock(&crtc->mutex);
3243 Serge 7171
		return false;
2330 Serge 7172
	}
2327 Serge 7173
 
2330 Serge 7174
	/* let the connector get through one full cycle before testing */
7175
	intel_wait_for_vblank(dev, intel_crtc->pipe);
7176
	return true;
7177
}
2327 Serge 7178
 
3031 serge 7179
void intel_release_load_detect_pipe(struct drm_connector *connector,
2330 Serge 7180
				    struct intel_load_detect_pipe *old)
7181
{
3031 serge 7182
	struct intel_encoder *intel_encoder =
7183
		intel_attached_encoder(connector);
2330 Serge 7184
	struct drm_encoder *encoder = &intel_encoder->base;
3480 Serge 7185
	struct drm_crtc *crtc = encoder->crtc;
2327 Serge 7186
 
2330 Serge 7187
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7188
		      connector->base.id, drm_get_connector_name(connector),
7189
		      encoder->base.id, drm_get_encoder_name(encoder));
2327 Serge 7190
 
2330 Serge 7191
	if (old->load_detect_temp) {
3031 serge 7192
		to_intel_connector(connector)->new_encoder = NULL;
7193
		intel_encoder->new_crtc = NULL;
7194
		intel_set_mode(crtc, NULL, 0, 0, NULL);
7195
 
3480 Serge 7196
		if (old->release_fb) {
7197
			drm_framebuffer_unregister_private(old->release_fb);
7198
			drm_framebuffer_unreference(old->release_fb);
7199
		}
2327 Serge 7200
 
3480 Serge 7201
		mutex_unlock(&crtc->mutex);
2330 Serge 7202
		return;
7203
	}
2327 Serge 7204
 
2330 Serge 7205
	/* Switch crtc and encoder back off if necessary */
3031 serge 7206
	if (old->dpms_mode != DRM_MODE_DPMS_ON)
7207
		connector->funcs->dpms(connector, old->dpms_mode);
3480 Serge 7208
 
7209
	mutex_unlock(&crtc->mutex);
2330 Serge 7210
}
2327 Serge 7211
 
2330 Serge 7212
/* Returns the clock of the currently programmed mode of the given pipe. */
4104 Serge 7213
static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7214
				struct intel_crtc_config *pipe_config)
2330 Serge 7215
{
4104 Serge 7216
	struct drm_device *dev = crtc->base.dev;
2330 Serge 7217
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 7218
	int pipe = pipe_config->cpu_transcoder;
2330 Serge 7219
	u32 dpll = I915_READ(DPLL(pipe));
7220
	u32 fp;
7221
	intel_clock_t clock;
2327 Serge 7222
 
2330 Serge 7223
	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7224
		fp = I915_READ(FP0(pipe));
7225
	else
7226
		fp = I915_READ(FP1(pipe));
2327 Serge 7227
 
2330 Serge 7228
	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7229
	if (IS_PINEVIEW(dev)) {
7230
		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7231
		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7232
	} else {
7233
		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7234
		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7235
	}
2327 Serge 7236
 
2330 Serge 7237
	if (!IS_GEN2(dev)) {
7238
		if (IS_PINEVIEW(dev))
7239
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7240
				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7241
		else
7242
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7243
			       DPLL_FPA01_P1_POST_DIV_SHIFT);
2327 Serge 7244
 
2330 Serge 7245
		switch (dpll & DPLL_MODE_MASK) {
7246
		case DPLLB_MODE_DAC_SERIAL:
7247
			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7248
				5 : 10;
7249
			break;
7250
		case DPLLB_MODE_LVDS:
7251
			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7252
				7 : 14;
7253
			break;
7254
		default:
7255
			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7256
				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
4104 Serge 7257
			pipe_config->adjusted_mode.clock = 0;
7258
			return;
2330 Serge 7259
		}
2327 Serge 7260
 
4104 Serge 7261
		if (IS_PINEVIEW(dev))
7262
			pineview_clock(96000, &clock);
7263
		else
7264
			i9xx_clock(96000, &clock);
2330 Serge 7265
	} else {
7266
		bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
2327 Serge 7267
 
2330 Serge 7268
		if (is_lvds) {
7269
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7270
				       DPLL_FPA01_P1_POST_DIV_SHIFT);
7271
			clock.p2 = 14;
2327 Serge 7272
 
2330 Serge 7273
			if ((dpll & PLL_REF_INPUT_MASK) ==
7274
			    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7275
				/* XXX: might not be 66MHz */
4104 Serge 7276
				i9xx_clock(66000, &clock);
2330 Serge 7277
			} else
4104 Serge 7278
				i9xx_clock(48000, &clock);
2330 Serge 7279
		} else {
7280
			if (dpll & PLL_P1_DIVIDE_BY_TWO)
7281
				clock.p1 = 2;
7282
			else {
7283
				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7284
					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7285
			}
7286
			if (dpll & PLL_P2_DIVIDE_BY_4)
7287
				clock.p2 = 4;
7288
			else
7289
				clock.p2 = 2;
2327 Serge 7290
 
4104 Serge 7291
			i9xx_clock(48000, &clock);
2330 Serge 7292
		}
7293
	}
2327 Serge 7294
 
4104 Serge 7295
	pipe_config->adjusted_mode.clock = clock.dot;
7296
}
7297
 
7298
static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
7299
				    struct intel_crtc_config *pipe_config)
7300
{
7301
	struct drm_device *dev = crtc->base.dev;
7302
	struct drm_i915_private *dev_priv = dev->dev_private;
7303
	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7304
	int link_freq, repeat;
7305
	u64 clock;
7306
	u32 link_m, link_n;
7307
 
7308
	repeat = pipe_config->pixel_multiplier;
7309
 
7310
	/*
7311
	 * The calculation for the data clock is:
7312
	 * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
7313
	 * But we want to avoid losing precison if possible, so:
7314
	 * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
7315
	 *
7316
	 * and the link clock is simpler:
7317
	 * link_clock = (m * link_clock * repeat) / n
2330 Serge 7318
	 */
2327 Serge 7319
 
4104 Serge 7320
	/*
7321
	 * We need to get the FDI or DP link clock here to derive
7322
	 * the M/N dividers.
7323
	 *
7324
	 * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
7325
	 * For DP, it's either 1.62GHz or 2.7GHz.
7326
	 * We do our calculations in 10*MHz since we don't need much precison.
7327
	 */
7328
	if (pipe_config->has_pch_encoder)
7329
		link_freq = intel_fdi_link_freq(dev) * 10000;
7330
	else
7331
		link_freq = pipe_config->port_clock;
7332
 
7333
	link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
7334
	link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
7335
 
7336
	if (!link_m || !link_n)
7337
		return;
7338
 
7339
	clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
7340
	do_div(clock, link_n);
7341
 
7342
	pipe_config->adjusted_mode.clock = clock;
2330 Serge 7343
}
2327 Serge 7344
 
2330 Serge 7345
/** Returns the currently programmed mode of the given pipe. */
7346
struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7347
					     struct drm_crtc *crtc)
7348
{
7349
	struct drm_i915_private *dev_priv = dev->dev_private;
7350
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3746 Serge 7351
	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
2330 Serge 7352
	struct drm_display_mode *mode;
4104 Serge 7353
	struct intel_crtc_config pipe_config;
3243 Serge 7354
	int htot = I915_READ(HTOTAL(cpu_transcoder));
7355
	int hsync = I915_READ(HSYNC(cpu_transcoder));
7356
	int vtot = I915_READ(VTOTAL(cpu_transcoder));
7357
	int vsync = I915_READ(VSYNC(cpu_transcoder));
2327 Serge 7358
 
2330 Serge 7359
	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7360
	if (!mode)
7361
		return NULL;
7362
 
4104 Serge 7363
	/*
7364
	 * Construct a pipe_config sufficient for getting the clock info
7365
	 * back out of crtc_clock_get.
7366
	 *
7367
	 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7368
	 * to use a real value here instead.
7369
	 */
7370
	pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
7371
	pipe_config.pixel_multiplier = 1;
7372
	i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7373
 
7374
	mode->clock = pipe_config.adjusted_mode.clock;
2330 Serge 7375
	mode->hdisplay = (htot & 0xffff) + 1;
7376
	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7377
	mode->hsync_start = (hsync & 0xffff) + 1;
7378
	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7379
	mode->vdisplay = (vtot & 0xffff) + 1;
7380
	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7381
	mode->vsync_start = (vsync & 0xffff) + 1;
7382
	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7383
 
7384
	drm_mode_set_name(mode);
7385
 
7386
	return mode;
7387
}
7388
 
2327 Serge 7389
static void intel_increase_pllclock(struct drm_crtc *crtc)
7390
{
7391
	struct drm_device *dev = crtc->dev;
7392
	drm_i915_private_t *dev_priv = dev->dev_private;
7393
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7394
	int pipe = intel_crtc->pipe;
7395
	int dpll_reg = DPLL(pipe);
7396
	int dpll;
7397
 
7398
	if (HAS_PCH_SPLIT(dev))
7399
		return;
7400
 
7401
	if (!dev_priv->lvds_downclock_avail)
7402
		return;
7403
 
7404
	dpll = I915_READ(dpll_reg);
7405
	if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7406
		DRM_DEBUG_DRIVER("upclocking LVDS\n");
7407
 
3031 serge 7408
		assert_panel_unlocked(dev_priv, pipe);
2327 Serge 7409
 
7410
		dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7411
		I915_WRITE(dpll_reg, dpll);
7412
		intel_wait_for_vblank(dev, pipe);
7413
 
7414
		dpll = I915_READ(dpll_reg);
7415
		if (dpll & DISPLAY_RATE_SELECT_FPA1)
7416
			DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7417
	}
7418
}
7419
 
3031 serge 7420
static void intel_decrease_pllclock(struct drm_crtc *crtc)
7421
{
7422
	struct drm_device *dev = crtc->dev;
7423
	drm_i915_private_t *dev_priv = dev->dev_private;
7424
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 Serge 7425
 
3031 serge 7426
	if (HAS_PCH_SPLIT(dev))
7427
		return;
2327 Serge 7428
 
3031 serge 7429
	if (!dev_priv->lvds_downclock_avail)
7430
		return;
2327 Serge 7431
 
3031 serge 7432
	/*
7433
	 * Since this is called by a timer, we should never get here in
7434
	 * the manual case.
7435
	 */
7436
	if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7437
		int pipe = intel_crtc->pipe;
7438
		int dpll_reg = DPLL(pipe);
7439
		int dpll;
2327 Serge 7440
 
3031 serge 7441
		DRM_DEBUG_DRIVER("downclocking LVDS\n");
2327 Serge 7442
 
3031 serge 7443
		assert_panel_unlocked(dev_priv, pipe);
2327 Serge 7444
 
3031 serge 7445
		dpll = I915_READ(dpll_reg);
7446
		dpll |= DISPLAY_RATE_SELECT_FPA1;
7447
		I915_WRITE(dpll_reg, dpll);
7448
		intel_wait_for_vblank(dev, pipe);
7449
		dpll = I915_READ(dpll_reg);
7450
		if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7451
			DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7452
	}
2327 Serge 7453
 
3031 serge 7454
}
2327 Serge 7455
 
3031 serge 7456
void intel_mark_busy(struct drm_device *dev)
7457
{
4104 Serge 7458
	struct drm_i915_private *dev_priv = dev->dev_private;
7459
 
7460
	hsw_package_c8_gpu_busy(dev_priv);
7461
	i915_update_gfx_val(dev_priv);
3031 serge 7462
}
2327 Serge 7463
 
3031 serge 7464
void intel_mark_idle(struct drm_device *dev)
7465
{
4104 Serge 7466
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 7467
	struct drm_crtc *crtc;
2327 Serge 7468
 
4104 Serge 7469
	hsw_package_c8_gpu_idle(dev_priv);
7470
 
3031 serge 7471
	if (!i915_powersave)
7472
		return;
2327 Serge 7473
 
3031 serge 7474
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7475
		if (!crtc->fb)
7476
			continue;
2327 Serge 7477
 
3480 Serge 7478
		intel_decrease_pllclock(crtc);
3031 serge 7479
	}
7480
}
2327 Serge 7481
 
4104 Serge 7482
void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7483
			struct intel_ring_buffer *ring)
3031 serge 7484
{
7485
	struct drm_device *dev = obj->base.dev;
7486
	struct drm_crtc *crtc;
2327 Serge 7487
 
3031 serge 7488
	if (!i915_powersave)
7489
		return;
2327 Serge 7490
 
3031 serge 7491
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7492
		if (!crtc->fb)
7493
			continue;
2327 Serge 7494
 
4104 Serge 7495
		if (to_intel_framebuffer(crtc->fb)->obj != obj)
7496
			continue;
7497
 
3480 Serge 7498
			intel_increase_pllclock(crtc);
4104 Serge 7499
		if (ring && intel_fbc_enabled(dev))
7500
			ring->fbc_dirty = true;
3031 serge 7501
	}
7502
}
2327 Serge 7503
 
2330 Serge 7504
static void intel_crtc_destroy(struct drm_crtc *crtc)
7505
{
7506
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7507
	struct drm_device *dev = crtc->dev;
7508
	struct intel_unpin_work *work;
7509
	unsigned long flags;
2327 Serge 7510
 
2330 Serge 7511
	spin_lock_irqsave(&dev->event_lock, flags);
7512
	work = intel_crtc->unpin_work;
7513
	intel_crtc->unpin_work = NULL;
7514
	spin_unlock_irqrestore(&dev->event_lock, flags);
2327 Serge 7515
 
2330 Serge 7516
	if (work) {
7517
//		cancel_work_sync(&work->work);
7518
		kfree(work);
7519
	}
2327 Serge 7520
 
2330 Serge 7521
	drm_crtc_cleanup(crtc);
2327 Serge 7522
 
2330 Serge 7523
	kfree(intel_crtc);
7524
}
2327 Serge 7525
 
3031 serge 7526
#if 0
7527
static void intel_unpin_work_fn(struct work_struct *__work)
7528
{
7529
	struct intel_unpin_work *work =
7530
		container_of(__work, struct intel_unpin_work, work);
3243 Serge 7531
	struct drm_device *dev = work->crtc->dev;
2327 Serge 7532
 
3243 Serge 7533
	mutex_lock(&dev->struct_mutex);
3031 serge 7534
	intel_unpin_fb_obj(work->old_fb_obj);
7535
	drm_gem_object_unreference(&work->pending_flip_obj->base);
7536
	drm_gem_object_unreference(&work->old_fb_obj->base);
2327 Serge 7537
 
3243 Serge 7538
	intel_update_fbc(dev);
7539
	mutex_unlock(&dev->struct_mutex);
7540
 
7541
	BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7542
	atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7543
 
3031 serge 7544
	kfree(work);
7545
}
2327 Serge 7546
 
3031 serge 7547
static void do_intel_finish_page_flip(struct drm_device *dev,
7548
				      struct drm_crtc *crtc)
7549
{
7550
	drm_i915_private_t *dev_priv = dev->dev_private;
7551
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7552
	struct intel_unpin_work *work;
7553
	unsigned long flags;
2327 Serge 7554
 
3031 serge 7555
	/* Ignore early vblank irqs */
7556
	if (intel_crtc == NULL)
7557
		return;
2327 Serge 7558
 
3031 serge 7559
	spin_lock_irqsave(&dev->event_lock, flags);
7560
	work = intel_crtc->unpin_work;
3243 Serge 7561
 
7562
	/* Ensure we don't miss a work->pending update ... */
7563
	smp_rmb();
7564
 
7565
	if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
3031 serge 7566
		spin_unlock_irqrestore(&dev->event_lock, flags);
7567
		return;
7568
	}
2327 Serge 7569
 
3243 Serge 7570
	/* and that the unpin work is consistent wrt ->pending. */
7571
	smp_rmb();
7572
 
3031 serge 7573
	intel_crtc->unpin_work = NULL;
2327 Serge 7574
 
3243 Serge 7575
	if (work->event)
7576
		drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
2327 Serge 7577
 
3031 serge 7578
	drm_vblank_put(dev, intel_crtc->pipe);
2327 Serge 7579
 
3031 serge 7580
	spin_unlock_irqrestore(&dev->event_lock, flags);
2327 Serge 7581
 
3480 Serge 7582
	wake_up_all(&dev_priv->pending_flip_queue);
2327 Serge 7583
 
3243 Serge 7584
	queue_work(dev_priv->wq, &work->work);
7585
 
3031 serge 7586
	trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7587
}
2327 Serge 7588
 
3031 serge 7589
void intel_finish_page_flip(struct drm_device *dev, int pipe)
7590
{
7591
	drm_i915_private_t *dev_priv = dev->dev_private;
7592
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2327 Serge 7593
 
3031 serge 7594
	do_intel_finish_page_flip(dev, crtc);
7595
}
2327 Serge 7596
 
3031 serge 7597
void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7598
{
7599
	drm_i915_private_t *dev_priv = dev->dev_private;
7600
	struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
2327 Serge 7601
 
3031 serge 7602
	do_intel_finish_page_flip(dev, crtc);
7603
}
2327 Serge 7604
 
3031 serge 7605
void intel_prepare_page_flip(struct drm_device *dev, int plane)
7606
{
7607
	drm_i915_private_t *dev_priv = dev->dev_private;
7608
	struct intel_crtc *intel_crtc =
7609
		to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7610
	unsigned long flags;
2327 Serge 7611
 
3243 Serge 7612
	/* NB: An MMIO update of the plane base pointer will also
7613
	 * generate a page-flip completion irq, i.e. every modeset
7614
	 * is also accompanied by a spurious intel_prepare_page_flip().
7615
	 */
3031 serge 7616
	spin_lock_irqsave(&dev->event_lock, flags);
3243 Serge 7617
	if (intel_crtc->unpin_work)
7618
		atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
3031 serge 7619
	spin_unlock_irqrestore(&dev->event_lock, flags);
7620
}
2327 Serge 7621
 
3243 Serge 7622
inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7623
{
7624
	/* Ensure that the work item is consistent when activating it ... */
7625
	smp_wmb();
7626
	atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7627
	/* and that it is marked active as soon as the irq could fire. */
7628
	smp_wmb();
7629
}
7630
 
3031 serge 7631
static int intel_gen2_queue_flip(struct drm_device *dev,
7632
				 struct drm_crtc *crtc,
7633
				 struct drm_framebuffer *fb,
4104 Serge 7634
				 struct drm_i915_gem_object *obj,
7635
				 uint32_t flags)
3031 serge 7636
{
7637
	struct drm_i915_private *dev_priv = dev->dev_private;
7638
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7639
	u32 flip_mask;
7640
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7641
	int ret;
2327 Serge 7642
 
3031 serge 7643
	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7644
	if (ret)
7645
		goto err;
2327 Serge 7646
 
3031 serge 7647
	ret = intel_ring_begin(ring, 6);
7648
	if (ret)
7649
		goto err_unpin;
2327 Serge 7650
 
3031 serge 7651
	/* Can't queue multiple flips, so wait for the previous
7652
	 * one to finish before executing the next.
7653
	 */
7654
	if (intel_crtc->plane)
7655
		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7656
	else
7657
		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7658
	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7659
	intel_ring_emit(ring, MI_NOOP);
7660
	intel_ring_emit(ring, MI_DISPLAY_FLIP |
7661
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7662
	intel_ring_emit(ring, fb->pitches[0]);
4104 Serge 7663
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
3031 serge 7664
	intel_ring_emit(ring, 0); /* aux display base address, unused */
3243 Serge 7665
 
7666
	intel_mark_page_flip_active(intel_crtc);
3031 serge 7667
	intel_ring_advance(ring);
7668
	return 0;
2327 Serge 7669
 
3031 serge 7670
err_unpin:
7671
	intel_unpin_fb_obj(obj);
7672
err:
7673
	return ret;
7674
}
2327 Serge 7675
 
3031 serge 7676
static int intel_gen3_queue_flip(struct drm_device *dev,
7677
				 struct drm_crtc *crtc,
7678
				 struct drm_framebuffer *fb,
4104 Serge 7679
				 struct drm_i915_gem_object *obj,
7680
				 uint32_t flags)
3031 serge 7681
{
7682
	struct drm_i915_private *dev_priv = dev->dev_private;
7683
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7684
	u32 flip_mask;
7685
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7686
	int ret;
2327 Serge 7687
 
3031 serge 7688
	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7689
	if (ret)
7690
		goto err;
2327 Serge 7691
 
3031 serge 7692
	ret = intel_ring_begin(ring, 6);
7693
	if (ret)
7694
		goto err_unpin;
2327 Serge 7695
 
3031 serge 7696
	if (intel_crtc->plane)
7697
		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7698
	else
7699
		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7700
	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7701
	intel_ring_emit(ring, MI_NOOP);
7702
	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7703
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7704
	intel_ring_emit(ring, fb->pitches[0]);
4104 Serge 7705
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
3031 serge 7706
	intel_ring_emit(ring, MI_NOOP);
2327 Serge 7707
 
3243 Serge 7708
	intel_mark_page_flip_active(intel_crtc);
3031 serge 7709
	intel_ring_advance(ring);
7710
	return 0;
2327 Serge 7711
 
3031 serge 7712
err_unpin:
7713
	intel_unpin_fb_obj(obj);
7714
err:
7715
	return ret;
7716
}
2327 Serge 7717
 
3031 serge 7718
static int intel_gen4_queue_flip(struct drm_device *dev,
7719
				 struct drm_crtc *crtc,
7720
				 struct drm_framebuffer *fb,
4104 Serge 7721
				 struct drm_i915_gem_object *obj,
7722
				 uint32_t flags)
3031 serge 7723
{
7724
	struct drm_i915_private *dev_priv = dev->dev_private;
7725
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7726
	uint32_t pf, pipesrc;
7727
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7728
	int ret;
2327 Serge 7729
 
3031 serge 7730
	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7731
	if (ret)
7732
		goto err;
2327 Serge 7733
 
3031 serge 7734
	ret = intel_ring_begin(ring, 4);
7735
	if (ret)
7736
		goto err_unpin;
2327 Serge 7737
 
3031 serge 7738
	/* i965+ uses the linear or tiled offsets from the
7739
	 * Display Registers (which do not change across a page-flip)
7740
	 * so we need only reprogram the base address.
7741
	 */
7742
	intel_ring_emit(ring, MI_DISPLAY_FLIP |
7743
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7744
	intel_ring_emit(ring, fb->pitches[0]);
7745
	intel_ring_emit(ring,
4104 Serge 7746
			(i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
3031 serge 7747
			obj->tiling_mode);
2327 Serge 7748
 
3031 serge 7749
	/* XXX Enabling the panel-fitter across page-flip is so far
7750
	 * untested on non-native modes, so ignore it for now.
7751
	 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7752
	 */
7753
	pf = 0;
7754
	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7755
	intel_ring_emit(ring, pf | pipesrc);
3243 Serge 7756
 
7757
	intel_mark_page_flip_active(intel_crtc);
3031 serge 7758
	intel_ring_advance(ring);
7759
	return 0;
2327 Serge 7760
 
3031 serge 7761
err_unpin:
7762
	intel_unpin_fb_obj(obj);
7763
err:
7764
	return ret;
7765
}
2327 Serge 7766
 
3031 serge 7767
static int intel_gen6_queue_flip(struct drm_device *dev,
7768
				 struct drm_crtc *crtc,
7769
				 struct drm_framebuffer *fb,
4104 Serge 7770
				 struct drm_i915_gem_object *obj,
7771
				 uint32_t flags)
3031 serge 7772
{
7773
	struct drm_i915_private *dev_priv = dev->dev_private;
7774
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7775
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7776
	uint32_t pf, pipesrc;
7777
	int ret;
2327 Serge 7778
 
3031 serge 7779
	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7780
	if (ret)
7781
		goto err;
2327 Serge 7782
 
3031 serge 7783
	ret = intel_ring_begin(ring, 4);
7784
	if (ret)
7785
		goto err_unpin;
2327 Serge 7786
 
3031 serge 7787
	intel_ring_emit(ring, MI_DISPLAY_FLIP |
7788
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7789
	intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
4104 Serge 7790
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2327 Serge 7791
 
3031 serge 7792
	/* Contrary to the suggestions in the documentation,
7793
	 * "Enable Panel Fitter" does not seem to be required when page
7794
	 * flipping with a non-native mode, and worse causes a normal
7795
	 * modeset to fail.
7796
	 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7797
	 */
7798
	pf = 0;
7799
	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7800
	intel_ring_emit(ring, pf | pipesrc);
3243 Serge 7801
 
7802
	intel_mark_page_flip_active(intel_crtc);
3031 serge 7803
	intel_ring_advance(ring);
7804
	return 0;
2327 Serge 7805
 
3031 serge 7806
err_unpin:
7807
	intel_unpin_fb_obj(obj);
7808
err:
7809
	return ret;
7810
}
2327 Serge 7811
 
3031 serge 7812
static int intel_gen7_queue_flip(struct drm_device *dev,
7813
				 struct drm_crtc *crtc,
7814
				 struct drm_framebuffer *fb,
4104 Serge 7815
				 struct drm_i915_gem_object *obj,
7816
				 uint32_t flags)
3031 serge 7817
{
7818
	struct drm_i915_private *dev_priv = dev->dev_private;
7819
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4104 Serge 7820
	struct intel_ring_buffer *ring;
3031 serge 7821
	uint32_t plane_bit = 0;
4104 Serge 7822
	int len, ret;
2327 Serge 7823
 
4104 Serge 7824
	ring = obj->ring;
7825
	if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
7826
		ring = &dev_priv->ring[BCS];
7827
 
3031 serge 7828
	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7829
	if (ret)
7830
		goto err;
2327 Serge 7831
 
3031 serge 7832
	switch(intel_crtc->plane) {
7833
	case PLANE_A:
7834
		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7835
		break;
7836
	case PLANE_B:
7837
		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7838
		break;
7839
	case PLANE_C:
7840
		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7841
		break;
7842
	default:
7843
		WARN_ONCE(1, "unknown plane in flip command\n");
7844
		ret = -ENODEV;
7845
		goto err_unpin;
7846
	}
2327 Serge 7847
 
4104 Serge 7848
	len = 4;
7849
	if (ring->id == RCS)
7850
		len += 6;
7851
 
7852
	ret = intel_ring_begin(ring, len);
3031 serge 7853
	if (ret)
7854
		goto err_unpin;
2327 Serge 7855
 
4104 Serge 7856
	/* Unmask the flip-done completion message. Note that the bspec says that
7857
	 * we should do this for both the BCS and RCS, and that we must not unmask
7858
	 * more than one flip event at any time (or ensure that one flip message
7859
	 * can be sent by waiting for flip-done prior to queueing new flips).
7860
	 * Experimentation says that BCS works despite DERRMR masking all
7861
	 * flip-done completion events and that unmasking all planes at once
7862
	 * for the RCS also doesn't appear to drop events. Setting the DERRMR
7863
	 * to zero does lead to lockups within MI_DISPLAY_FLIP.
7864
	 */
7865
	if (ring->id == RCS) {
7866
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
7867
		intel_ring_emit(ring, DERRMR);
7868
		intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
7869
					DERRMR_PIPEB_PRI_FLIP_DONE |
7870
					DERRMR_PIPEC_PRI_FLIP_DONE));
7871
		intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
7872
		intel_ring_emit(ring, DERRMR);
7873
		intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
7874
	}
7875
 
3031 serge 7876
	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7877
	intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
4104 Serge 7878
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
3031 serge 7879
	intel_ring_emit(ring, (MI_NOOP));
3243 Serge 7880
 
7881
	intel_mark_page_flip_active(intel_crtc);
3031 serge 7882
	intel_ring_advance(ring);
7883
	return 0;
2327 Serge 7884
 
3031 serge 7885
err_unpin:
7886
	intel_unpin_fb_obj(obj);
7887
err:
7888
	return ret;
7889
}
2327 Serge 7890
 
3031 serge 7891
static int intel_default_queue_flip(struct drm_device *dev,
7892
				    struct drm_crtc *crtc,
7893
				    struct drm_framebuffer *fb,
4104 Serge 7894
				    struct drm_i915_gem_object *obj,
7895
				    uint32_t flags)
3031 serge 7896
{
7897
	return -ENODEV;
7898
}
2327 Serge 7899
 
3031 serge 7900
static int intel_crtc_page_flip(struct drm_crtc *crtc,
7901
				struct drm_framebuffer *fb,
4104 Serge 7902
				struct drm_pending_vblank_event *event,
7903
				uint32_t page_flip_flags)
3031 serge 7904
{
7905
	struct drm_device *dev = crtc->dev;
7906
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 7907
	struct drm_framebuffer *old_fb = crtc->fb;
7908
	struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
3031 serge 7909
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7910
	struct intel_unpin_work *work;
7911
	unsigned long flags;
7912
	int ret;
2327 Serge 7913
 
3031 serge 7914
	/* Can't change pixel format via MI display flips. */
7915
	if (fb->pixel_format != crtc->fb->pixel_format)
7916
		return -EINVAL;
2327 Serge 7917
 
3031 serge 7918
	/*
7919
	 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7920
	 * Note that pitch changes could also affect these register.
7921
	 */
7922
	if (INTEL_INFO(dev)->gen > 3 &&
7923
	    (fb->offsets[0] != crtc->fb->offsets[0] ||
7924
	     fb->pitches[0] != crtc->fb->pitches[0]))
7925
		return -EINVAL;
2327 Serge 7926
 
3031 serge 7927
	work = kzalloc(sizeof *work, GFP_KERNEL);
7928
	if (work == NULL)
7929
		return -ENOMEM;
2327 Serge 7930
 
3031 serge 7931
	work->event = event;
3243 Serge 7932
	work->crtc = crtc;
3480 Serge 7933
	work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
3031 serge 7934
	INIT_WORK(&work->work, intel_unpin_work_fn);
2327 Serge 7935
 
3031 serge 7936
	ret = drm_vblank_get(dev, intel_crtc->pipe);
7937
	if (ret)
7938
		goto free_work;
2327 Serge 7939
 
3031 serge 7940
	/* We borrow the event spin lock for protecting unpin_work */
7941
	spin_lock_irqsave(&dev->event_lock, flags);
7942
	if (intel_crtc->unpin_work) {
7943
		spin_unlock_irqrestore(&dev->event_lock, flags);
7944
		kfree(work);
7945
		drm_vblank_put(dev, intel_crtc->pipe);
2327 Serge 7946
 
3031 serge 7947
		DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7948
		return -EBUSY;
7949
	}
7950
	intel_crtc->unpin_work = work;
7951
	spin_unlock_irqrestore(&dev->event_lock, flags);
2327 Serge 7952
 
3243 Serge 7953
	if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7954
		flush_workqueue(dev_priv->wq);
7955
 
3031 serge 7956
	ret = i915_mutex_lock_interruptible(dev);
7957
	if (ret)
7958
		goto cleanup;
2327 Serge 7959
 
3031 serge 7960
	/* Reference the objects for the scheduled work. */
7961
	drm_gem_object_reference(&work->old_fb_obj->base);
7962
	drm_gem_object_reference(&obj->base);
2327 Serge 7963
 
3031 serge 7964
	crtc->fb = fb;
2327 Serge 7965
 
3031 serge 7966
	work->pending_flip_obj = obj;
2327 Serge 7967
 
3031 serge 7968
	work->enable_stall_check = true;
7969
 
3243 Serge 7970
	atomic_inc(&intel_crtc->unpin_work_count);
3480 Serge 7971
	intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3031 serge 7972
 
4104 Serge 7973
	ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
3031 serge 7974
	if (ret)
7975
		goto cleanup_pending;
7976
 
7977
	intel_disable_fbc(dev);
4104 Serge 7978
	intel_mark_fb_busy(obj, NULL);
3031 serge 7979
	mutex_unlock(&dev->struct_mutex);
7980
 
7981
	trace_i915_flip_request(intel_crtc->plane, obj);
7982
 
7983
	return 0;
7984
 
7985
cleanup_pending:
3243 Serge 7986
	atomic_dec(&intel_crtc->unpin_work_count);
3480 Serge 7987
	crtc->fb = old_fb;
3031 serge 7988
	drm_gem_object_unreference(&work->old_fb_obj->base);
7989
	drm_gem_object_unreference(&obj->base);
7990
	mutex_unlock(&dev->struct_mutex);
7991
 
7992
cleanup:
7993
	spin_lock_irqsave(&dev->event_lock, flags);
7994
	intel_crtc->unpin_work = NULL;
7995
	spin_unlock_irqrestore(&dev->event_lock, flags);
7996
 
7997
	drm_vblank_put(dev, intel_crtc->pipe);
7998
free_work:
7999
	kfree(work);
8000
 
8001
	return ret;
8002
}
8003
#endif
8004
 
8005
static struct drm_crtc_helper_funcs intel_helper_funcs = {
8006
	.mode_set_base_atomic = intel_pipe_set_base_atomic,
8007
	.load_lut = intel_crtc_load_lut,
8008
};
8009
 
8010
static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8011
				  struct drm_crtc *crtc)
8012
{
8013
	struct drm_device *dev;
8014
	struct drm_crtc *tmp;
8015
	int crtc_mask = 1;
8016
 
8017
	WARN(!crtc, "checking null crtc?\n");
8018
 
8019
	dev = crtc->dev;
8020
 
8021
	list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8022
		if (tmp == crtc)
8023
			break;
8024
		crtc_mask <<= 1;
8025
	}
8026
 
8027
	if (encoder->possible_crtcs & crtc_mask)
8028
		return true;
8029
	return false;
8030
}
8031
 
8032
/**
8033
 * intel_modeset_update_staged_output_state
8034
 *
8035
 * Updates the staged output configuration state, e.g. after we've read out the
8036
 * current hw state.
8037
 */
8038
static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8039
{
8040
	struct intel_encoder *encoder;
8041
	struct intel_connector *connector;
8042
 
8043
	list_for_each_entry(connector, &dev->mode_config.connector_list,
8044
			    base.head) {
8045
		connector->new_encoder =
8046
			to_intel_encoder(connector->base.encoder);
8047
	}
8048
 
8049
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8050
			    base.head) {
8051
		encoder->new_crtc =
8052
			to_intel_crtc(encoder->base.crtc);
8053
	}
8054
}
8055
 
8056
/**
8057
 * intel_modeset_commit_output_state
8058
 *
8059
 * This function copies the stage display pipe configuration to the real one.
8060
 */
8061
static void intel_modeset_commit_output_state(struct drm_device *dev)
8062
{
8063
	struct intel_encoder *encoder;
8064
	struct intel_connector *connector;
8065
 
8066
	list_for_each_entry(connector, &dev->mode_config.connector_list,
8067
			    base.head) {
8068
		connector->base.encoder = &connector->new_encoder->base;
8069
	}
8070
 
8071
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8072
			    base.head) {
8073
		encoder->base.crtc = &encoder->new_crtc->base;
8074
	}
8075
}
8076
 
4104 Serge 8077
static void
8078
connected_sink_compute_bpp(struct intel_connector * connector,
8079
			   struct intel_crtc_config *pipe_config)
8080
{
8081
	int bpp = pipe_config->pipe_bpp;
8082
 
8083
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8084
		connector->base.base.id,
8085
		drm_get_connector_name(&connector->base));
8086
 
8087
	/* Don't use an invalid EDID bpc value */
8088
	if (connector->base.display_info.bpc &&
8089
	    connector->base.display_info.bpc * 3 < bpp) {
8090
		DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8091
			      bpp, connector->base.display_info.bpc*3);
8092
		pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8093
	}
8094
 
8095
	/* Clamp bpp to 8 on screens without EDID 1.4 */
8096
	if (connector->base.display_info.bpc == 0 && bpp > 24) {
8097
		DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8098
			      bpp);
8099
		pipe_config->pipe_bpp = 24;
8100
	}
8101
}
8102
 
3746 Serge 8103
static int
4104 Serge 8104
compute_baseline_pipe_bpp(struct intel_crtc *crtc,
3746 Serge 8105
		    struct drm_framebuffer *fb,
8106
		    struct intel_crtc_config *pipe_config)
8107
{
4104 Serge 8108
	struct drm_device *dev = crtc->base.dev;
8109
	struct intel_connector *connector;
3746 Serge 8110
	int bpp;
8111
 
8112
	switch (fb->pixel_format) {
8113
	case DRM_FORMAT_C8:
8114
		bpp = 8*3; /* since we go through a colormap */
8115
		break;
8116
	case DRM_FORMAT_XRGB1555:
8117
	case DRM_FORMAT_ARGB1555:
8118
		/* checked in intel_framebuffer_init already */
8119
		if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8120
			return -EINVAL;
8121
	case DRM_FORMAT_RGB565:
8122
		bpp = 6*3; /* min is 18bpp */
8123
		break;
8124
	case DRM_FORMAT_XBGR8888:
8125
	case DRM_FORMAT_ABGR8888:
8126
		/* checked in intel_framebuffer_init already */
8127
		if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8128
			return -EINVAL;
8129
	case DRM_FORMAT_XRGB8888:
8130
	case DRM_FORMAT_ARGB8888:
8131
		bpp = 8*3;
8132
		break;
8133
	case DRM_FORMAT_XRGB2101010:
8134
	case DRM_FORMAT_ARGB2101010:
8135
	case DRM_FORMAT_XBGR2101010:
8136
	case DRM_FORMAT_ABGR2101010:
8137
		/* checked in intel_framebuffer_init already */
8138
		if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8139
			return -EINVAL;
8140
		bpp = 10*3;
8141
		break;
8142
	/* TODO: gen4+ supports 16 bpc floating point, too. */
8143
	default:
8144
		DRM_DEBUG_KMS("unsupported depth\n");
8145
		return -EINVAL;
8146
	}
8147
 
8148
	pipe_config->pipe_bpp = bpp;
8149
 
8150
	/* Clamp display bpp to EDID value */
8151
	list_for_each_entry(connector, &dev->mode_config.connector_list,
4104 Serge 8152
			    base.head) {
8153
		if (!connector->new_encoder ||
8154
		    connector->new_encoder->new_crtc != crtc)
3746 Serge 8155
			continue;
8156
 
4104 Serge 8157
		connected_sink_compute_bpp(connector, pipe_config);
3746 Serge 8158
	}
8159
 
8160
	return bpp;
8161
}
8162
 
4104 Serge 8163
static void intel_dump_pipe_config(struct intel_crtc *crtc,
8164
				   struct intel_crtc_config *pipe_config,
8165
				   const char *context)
8166
{
8167
	DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8168
		      context, pipe_name(crtc->pipe));
8169
 
8170
	DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8171
	DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8172
		      pipe_config->pipe_bpp, pipe_config->dither);
8173
	DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8174
		      pipe_config->has_pch_encoder,
8175
		      pipe_config->fdi_lanes,
8176
		      pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8177
		      pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8178
		      pipe_config->fdi_m_n.tu);
8179
	DRM_DEBUG_KMS("requested mode:\n");
8180
	drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8181
	DRM_DEBUG_KMS("adjusted mode:\n");
8182
	drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8183
	DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8184
		      pipe_config->gmch_pfit.control,
8185
		      pipe_config->gmch_pfit.pgm_ratios,
8186
		      pipe_config->gmch_pfit.lvds_border_bits);
8187
	DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
8188
		      pipe_config->pch_pfit.pos,
8189
		      pipe_config->pch_pfit.size,
8190
		      pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
8191
	DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8192
}
8193
 
8194
static bool check_encoder_cloning(struct drm_crtc *crtc)
8195
{
8196
	int num_encoders = 0;
8197
	bool uncloneable_encoders = false;
8198
	struct intel_encoder *encoder;
8199
 
8200
	list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8201
			    base.head) {
8202
		if (&encoder->new_crtc->base != crtc)
8203
			continue;
8204
 
8205
		num_encoders++;
8206
		if (!encoder->cloneable)
8207
			uncloneable_encoders = true;
8208
	}
8209
 
8210
	return !(num_encoders > 1 && uncloneable_encoders);
8211
}
8212
 
3746 Serge 8213
static struct intel_crtc_config *
8214
intel_modeset_pipe_config(struct drm_crtc *crtc,
8215
			  struct drm_framebuffer *fb,
3031 serge 8216
			    struct drm_display_mode *mode)
8217
{
8218
	struct drm_device *dev = crtc->dev;
8219
	struct intel_encoder *encoder;
3746 Serge 8220
	struct intel_crtc_config *pipe_config;
4104 Serge 8221
	int plane_bpp, ret = -EINVAL;
8222
	bool retry = true;
3031 serge 8223
 
4104 Serge 8224
	if (!check_encoder_cloning(crtc)) {
8225
		DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8226
		return ERR_PTR(-EINVAL);
8227
	}
8228
 
3746 Serge 8229
	pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8230
	if (!pipe_config)
3031 serge 8231
		return ERR_PTR(-ENOMEM);
8232
 
3746 Serge 8233
	drm_mode_copy(&pipe_config->adjusted_mode, mode);
8234
	drm_mode_copy(&pipe_config->requested_mode, mode);
4104 Serge 8235
	pipe_config->cpu_transcoder =
8236
		(enum transcoder) to_intel_crtc(crtc)->pipe;
8237
	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
3746 Serge 8238
 
4104 Serge 8239
	/*
8240
	 * Sanitize sync polarity flags based on requested ones. If neither
8241
	 * positive or negative polarity is requested, treat this as meaning
8242
	 * negative polarity.
8243
	 */
8244
	if (!(pipe_config->adjusted_mode.flags &
8245
	      (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8246
		pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8247
 
8248
	if (!(pipe_config->adjusted_mode.flags &
8249
	      (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8250
		pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8251
 
8252
	/* Compute a starting value for pipe_config->pipe_bpp taking the source
8253
	 * plane pixel format and any sink constraints into account. Returns the
8254
	 * source plane bpp so that dithering can be selected on mismatches
8255
	 * after encoders and crtc also have had their say. */
8256
	plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8257
					      fb, pipe_config);
3746 Serge 8258
	if (plane_bpp < 0)
8259
		goto fail;
8260
 
4104 Serge 8261
encoder_retry:
8262
	/* Ensure the port clock defaults are reset when retrying. */
8263
	pipe_config->port_clock = 0;
8264
	pipe_config->pixel_multiplier = 1;
8265
 
8266
	/* Fill in default crtc timings, allow encoders to overwrite them. */
8267
	drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
8268
 
3031 serge 8269
	/* Pass our mode to the connectors and the CRTC to give them a chance to
8270
	 * adjust it according to limitations or connector properties, and also
8271
	 * a chance to reject the mode entirely.
2330 Serge 8272
	 */
3031 serge 8273
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8274
			    base.head) {
2327 Serge 8275
 
3031 serge 8276
		if (&encoder->new_crtc->base != crtc)
8277
			continue;
3746 Serge 8278
 
8279
			if (!(encoder->compute_config(encoder, pipe_config))) {
8280
				DRM_DEBUG_KMS("Encoder config failure\n");
8281
				goto fail;
8282
			}
8283
		}
8284
 
4104 Serge 8285
	/* Set default port clock if not overwritten by the encoder. Needs to be
8286
	 * done afterwards in case the encoder adjusts the mode. */
8287
	if (!pipe_config->port_clock)
8288
		pipe_config->port_clock = pipe_config->adjusted_mode.clock;
2327 Serge 8289
 
4104 Serge 8290
	ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8291
	if (ret < 0) {
3031 serge 8292
		DRM_DEBUG_KMS("CRTC fixup failed\n");
8293
		goto fail;
8294
	}
2327 Serge 8295
 
4104 Serge 8296
	if (ret == RETRY) {
8297
		if (WARN(!retry, "loop in pipe configuration computation\n")) {
8298
			ret = -EINVAL;
8299
			goto fail;
8300
		}
8301
 
8302
		DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8303
		retry = false;
8304
		goto encoder_retry;
8305
	}
8306
 
3746 Serge 8307
	pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8308
	DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8309
		      plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8310
 
8311
	return pipe_config;
3031 serge 8312
fail:
3746 Serge 8313
	kfree(pipe_config);
4104 Serge 8314
	return ERR_PTR(ret);
3031 serge 8315
}
2327 Serge 8316
 
3031 serge 8317
/* Computes which crtcs are affected and sets the relevant bits in the mask. For
8318
 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8319
static void
8320
intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8321
			     unsigned *prepare_pipes, unsigned *disable_pipes)
8322
{
8323
	struct intel_crtc *intel_crtc;
8324
	struct drm_device *dev = crtc->dev;
8325
	struct intel_encoder *encoder;
8326
	struct intel_connector *connector;
8327
	struct drm_crtc *tmp_crtc;
8328
 
8329
	*disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8330
 
8331
	/* Check which crtcs have changed outputs connected to them, these need
8332
	 * to be part of the prepare_pipes mask. We don't (yet) support global
8333
	 * modeset across multiple crtcs, so modeset_pipes will only have one
8334
	 * bit set at most. */
8335
	list_for_each_entry(connector, &dev->mode_config.connector_list,
8336
			    base.head) {
8337
		if (connector->base.encoder == &connector->new_encoder->base)
8338
			continue;
8339
 
8340
		if (connector->base.encoder) {
8341
			tmp_crtc = connector->base.encoder->crtc;
8342
 
8343
			*prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8344
		}
8345
 
8346
		if (connector->new_encoder)
8347
			*prepare_pipes |=
8348
				1 << connector->new_encoder->new_crtc->pipe;
8349
	}
8350
 
8351
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8352
			    base.head) {
8353
		if (encoder->base.crtc == &encoder->new_crtc->base)
8354
			continue;
8355
 
8356
		if (encoder->base.crtc) {
8357
			tmp_crtc = encoder->base.crtc;
8358
 
8359
			*prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8360
		}
8361
 
8362
		if (encoder->new_crtc)
8363
			*prepare_pipes |= 1 << encoder->new_crtc->pipe;
8364
	}
8365
 
8366
	/* Check for any pipes that will be fully disabled ... */
8367
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8368
			    base.head) {
8369
		bool used = false;
8370
 
8371
		/* Don't try to disable disabled crtcs. */
8372
		if (!intel_crtc->base.enabled)
8373
			continue;
8374
 
8375
		list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8376
				    base.head) {
8377
			if (encoder->new_crtc == intel_crtc)
8378
				used = true;
8379
		}
8380
 
8381
		if (!used)
8382
			*disable_pipes |= 1 << intel_crtc->pipe;
8383
	}
8384
 
8385
 
8386
	/* set_mode is also used to update properties on life display pipes. */
8387
	intel_crtc = to_intel_crtc(crtc);
8388
	if (crtc->enabled)
8389
		*prepare_pipes |= 1 << intel_crtc->pipe;
8390
 
3746 Serge 8391
	/*
8392
	 * For simplicity do a full modeset on any pipe where the output routing
8393
	 * changed. We could be more clever, but that would require us to be
8394
	 * more careful with calling the relevant encoder->mode_set functions.
8395
	 */
3031 serge 8396
	if (*prepare_pipes)
8397
		*modeset_pipes = *prepare_pipes;
8398
 
8399
	/* ... and mask these out. */
8400
	*modeset_pipes &= ~(*disable_pipes);
8401
	*prepare_pipes &= ~(*disable_pipes);
3746 Serge 8402
 
8403
	/*
8404
	 * HACK: We don't (yet) fully support global modesets. intel_set_config
8405
	 * obies this rule, but the modeset restore mode of
8406
	 * intel_modeset_setup_hw_state does not.
8407
	 */
8408
	*modeset_pipes &= 1 << intel_crtc->pipe;
8409
	*prepare_pipes &= 1 << intel_crtc->pipe;
4104 Serge 8410
 
8411
	DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8412
		      *modeset_pipes, *prepare_pipes, *disable_pipes);
2330 Serge 8413
}
2327 Serge 8414
 
3031 serge 8415
static bool intel_crtc_in_use(struct drm_crtc *crtc)
2330 Serge 8416
{
3031 serge 8417
	struct drm_encoder *encoder;
2330 Serge 8418
	struct drm_device *dev = crtc->dev;
2327 Serge 8419
 
3031 serge 8420
	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8421
		if (encoder->crtc == crtc)
8422
			return true;
8423
 
8424
	return false;
8425
}
8426
 
8427
static void
8428
intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8429
{
8430
	struct intel_encoder *intel_encoder;
8431
	struct intel_crtc *intel_crtc;
8432
	struct drm_connector *connector;
8433
 
8434
	list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8435
			    base.head) {
8436
		if (!intel_encoder->base.crtc)
8437
			continue;
8438
 
8439
		intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8440
 
8441
		if (prepare_pipes & (1 << intel_crtc->pipe))
8442
			intel_encoder->connectors_active = false;
8443
	}
8444
 
8445
	intel_modeset_commit_output_state(dev);
8446
 
8447
	/* Update computed state. */
8448
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8449
			    base.head) {
8450
		intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8451
	}
8452
 
8453
	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8454
		if (!connector->encoder || !connector->encoder->crtc)
8455
			continue;
8456
 
8457
		intel_crtc = to_intel_crtc(connector->encoder->crtc);
8458
 
8459
		if (prepare_pipes & (1 << intel_crtc->pipe)) {
8460
			struct drm_property *dpms_property =
8461
				dev->mode_config.dpms_property;
8462
 
8463
			connector->dpms = DRM_MODE_DPMS_ON;
3243 Serge 8464
			drm_object_property_set_value(&connector->base,
3031 serge 8465
							 dpms_property,
8466
							 DRM_MODE_DPMS_ON);
8467
 
8468
			intel_encoder = to_intel_encoder(connector->encoder);
8469
			intel_encoder->connectors_active = true;
8470
		}
8471
	}
8472
 
8473
}
8474
 
4104 Serge 8475
static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
8476
				    struct intel_crtc_config *new)
8477
{
8478
	int clock1, clock2, diff;
8479
 
8480
	clock1 = cur->adjusted_mode.clock;
8481
	clock2 = new->adjusted_mode.clock;
8482
 
8483
	if (clock1 == clock2)
8484
		return true;
8485
 
8486
	if (!clock1 || !clock2)
8487
		return false;
8488
 
8489
	diff = abs(clock1 - clock2);
8490
 
8491
	if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8492
		return true;
8493
 
8494
	return false;
8495
}
8496
 
3031 serge 8497
#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8498
	list_for_each_entry((intel_crtc), \
8499
			    &(dev)->mode_config.crtc_list, \
8500
			    base.head) \
4104 Serge 8501
		if (mask & (1 <<(intel_crtc)->pipe))
3031 serge 8502
 
3746 Serge 8503
static bool
4104 Serge 8504
intel_pipe_config_compare(struct drm_device *dev,
8505
			  struct intel_crtc_config *current_config,
3746 Serge 8506
			  struct intel_crtc_config *pipe_config)
8507
{
4104 Serge 8508
#define PIPE_CONF_CHECK_X(name)	\
8509
	if (current_config->name != pipe_config->name) { \
8510
		DRM_ERROR("mismatch in " #name " " \
8511
			  "(expected 0x%08x, found 0x%08x)\n", \
8512
			  current_config->name, \
8513
			  pipe_config->name); \
8514
		return false; \
3746 Serge 8515
	}
8516
 
4104 Serge 8517
#define PIPE_CONF_CHECK_I(name)	\
8518
	if (current_config->name != pipe_config->name) { \
8519
		DRM_ERROR("mismatch in " #name " " \
8520
			  "(expected %i, found %i)\n", \
8521
			  current_config->name, \
8522
			  pipe_config->name); \
8523
		return false; \
8524
	}
8525
 
8526
#define PIPE_CONF_CHECK_FLAGS(name, mask)	\
8527
	if ((current_config->name ^ pipe_config->name) & (mask)) { \
8528
		DRM_ERROR("mismatch in " #name "(" #mask ") "	   \
8529
			  "(expected %i, found %i)\n", \
8530
			  current_config->name & (mask), \
8531
			  pipe_config->name & (mask)); \
8532
		return false; \
8533
	}
8534
 
8535
#define PIPE_CONF_QUIRK(quirk)	\
8536
	((current_config->quirks | pipe_config->quirks) & (quirk))
8537
 
8538
	PIPE_CONF_CHECK_I(cpu_transcoder);
8539
 
8540
	PIPE_CONF_CHECK_I(has_pch_encoder);
8541
	PIPE_CONF_CHECK_I(fdi_lanes);
8542
	PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8543
	PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8544
	PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8545
	PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8546
	PIPE_CONF_CHECK_I(fdi_m_n.tu);
8547
 
8548
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8549
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8550
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8551
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8552
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8553
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8554
 
8555
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8556
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8557
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8558
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8559
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8560
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8561
 
8562
		PIPE_CONF_CHECK_I(pixel_multiplier);
8563
 
8564
	PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8565
			      DRM_MODE_FLAG_INTERLACE);
8566
 
8567
	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8568
		PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8569
				      DRM_MODE_FLAG_PHSYNC);
8570
		PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8571
				      DRM_MODE_FLAG_NHSYNC);
8572
		PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8573
				      DRM_MODE_FLAG_PVSYNC);
8574
		PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8575
				      DRM_MODE_FLAG_NVSYNC);
8576
	}
8577
 
8578
	PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8579
	PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8580
 
8581
	PIPE_CONF_CHECK_I(gmch_pfit.control);
8582
	/* pfit ratios are autocomputed by the hw on gen4+ */
8583
	if (INTEL_INFO(dev)->gen < 4)
8584
		PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8585
	PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8586
	PIPE_CONF_CHECK_I(pch_pfit.enabled);
8587
	if (current_config->pch_pfit.enabled) {
8588
	PIPE_CONF_CHECK_I(pch_pfit.pos);
8589
	PIPE_CONF_CHECK_I(pch_pfit.size);
8590
	}
8591
 
8592
	PIPE_CONF_CHECK_I(ips_enabled);
8593
 
8594
	PIPE_CONF_CHECK_I(shared_dpll);
8595
	PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8596
	PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8597
	PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8598
	PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8599
 
8600
#undef PIPE_CONF_CHECK_X
8601
#undef PIPE_CONF_CHECK_I
8602
#undef PIPE_CONF_CHECK_FLAGS
8603
#undef PIPE_CONF_QUIRK
8604
 
8605
	if (!IS_HASWELL(dev)) {
8606
		if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
8607
			DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
8608
				  current_config->adjusted_mode.clock,
8609
				  pipe_config->adjusted_mode.clock);
8610
			return false;
8611
		}
8612
	}
8613
 
3746 Serge 8614
	return true;
8615
}
8616
 
4104 Serge 8617
static void
8618
check_connector_state(struct drm_device *dev)
3031 serge 8619
{
8620
	struct intel_connector *connector;
8621
 
8622
	list_for_each_entry(connector, &dev->mode_config.connector_list,
8623
			    base.head) {
8624
		/* This also checks the encoder/connector hw state with the
8625
		 * ->get_hw_state callbacks. */
8626
		intel_connector_check_state(connector);
8627
 
8628
		WARN(&connector->new_encoder->base != connector->base.encoder,
8629
		     "connector's staged encoder doesn't match current encoder\n");
8630
	}
4104 Serge 8631
}
3031 serge 8632
 
4104 Serge 8633
static void
8634
check_encoder_state(struct drm_device *dev)
8635
{
8636
	struct intel_encoder *encoder;
8637
	struct intel_connector *connector;
8638
 
3031 serge 8639
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8640
			    base.head) {
8641
		bool enabled = false;
8642
		bool active = false;
8643
		enum pipe pipe, tracked_pipe;
8644
 
8645
		DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8646
			      encoder->base.base.id,
8647
			      drm_get_encoder_name(&encoder->base));
8648
 
8649
		WARN(&encoder->new_crtc->base != encoder->base.crtc,
8650
		     "encoder's stage crtc doesn't match current crtc\n");
8651
		WARN(encoder->connectors_active && !encoder->base.crtc,
8652
		     "encoder's active_connectors set, but no crtc\n");
8653
 
8654
		list_for_each_entry(connector, &dev->mode_config.connector_list,
8655
				    base.head) {
8656
			if (connector->base.encoder != &encoder->base)
8657
				continue;
8658
			enabled = true;
8659
			if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8660
				active = true;
8661
		}
8662
		WARN(!!encoder->base.crtc != enabled,
8663
		     "encoder's enabled state mismatch "
8664
		     "(expected %i, found %i)\n",
8665
		     !!encoder->base.crtc, enabled);
8666
		WARN(active && !encoder->base.crtc,
8667
		     "active encoder with no crtc\n");
8668
 
8669
		WARN(encoder->connectors_active != active,
8670
		     "encoder's computed active state doesn't match tracked active state "
8671
		     "(expected %i, found %i)\n", active, encoder->connectors_active);
8672
 
8673
		active = encoder->get_hw_state(encoder, &pipe);
8674
		WARN(active != encoder->connectors_active,
8675
		     "encoder's hw state doesn't match sw tracking "
8676
		     "(expected %i, found %i)\n",
8677
		     encoder->connectors_active, active);
8678
 
8679
		if (!encoder->base.crtc)
8680
			continue;
8681
 
8682
		tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8683
		WARN(active && pipe != tracked_pipe,
8684
		     "active encoder's pipe doesn't match"
8685
		     "(expected %i, found %i)\n",
8686
		     tracked_pipe, pipe);
8687
 
8688
	}
4104 Serge 8689
}
3031 serge 8690
 
4104 Serge 8691
static void
8692
check_crtc_state(struct drm_device *dev)
8693
{
8694
	drm_i915_private_t *dev_priv = dev->dev_private;
8695
	struct intel_crtc *crtc;
8696
	struct intel_encoder *encoder;
8697
	struct intel_crtc_config pipe_config;
8698
 
3031 serge 8699
	list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8700
			    base.head) {
8701
		bool enabled = false;
8702
		bool active = false;
8703
 
4104 Serge 8704
		memset(&pipe_config, 0, sizeof(pipe_config));
8705
 
3031 serge 8706
		DRM_DEBUG_KMS("[CRTC:%d]\n",
8707
			      crtc->base.base.id);
8708
 
8709
		WARN(crtc->active && !crtc->base.enabled,
8710
		     "active crtc, but not enabled in sw tracking\n");
8711
 
8712
		list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8713
				    base.head) {
8714
			if (encoder->base.crtc != &crtc->base)
8715
				continue;
8716
			enabled = true;
8717
			if (encoder->connectors_active)
8718
				active = true;
8719
		}
4104 Serge 8720
 
3031 serge 8721
		WARN(active != crtc->active,
8722
		     "crtc's computed active state doesn't match tracked active state "
8723
		     "(expected %i, found %i)\n", active, crtc->active);
8724
		WARN(enabled != crtc->base.enabled,
8725
		     "crtc's computed enabled state doesn't match tracked enabled state "
8726
		     "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8727
 
3746 Serge 8728
		active = dev_priv->display.get_pipe_config(crtc,
8729
							   &pipe_config);
8730
 
8731
		/* hw state is inconsistent with the pipe A quirk */
8732
		if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8733
			active = crtc->active;
8734
 
4104 Serge 8735
		list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8736
				    base.head) {
8737
			enum pipe pipe;
8738
			if (encoder->base.crtc != &crtc->base)
8739
				continue;
8740
			if (encoder->get_config &&
8741
			    encoder->get_hw_state(encoder, &pipe))
8742
				encoder->get_config(encoder, &pipe_config);
8743
		}
8744
 
8745
		if (dev_priv->display.get_clock)
8746
			dev_priv->display.get_clock(crtc, &pipe_config);
8747
 
3746 Serge 8748
		WARN(crtc->active != active,
8749
		     "crtc active state doesn't match with hw state "
8750
		     "(expected %i, found %i)\n", crtc->active, active);
8751
 
4104 Serge 8752
		if (active &&
8753
		    !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8754
			WARN(1, "pipe state doesn't match!\n");
8755
			intel_dump_pipe_config(crtc, &pipe_config,
8756
					       "[hw state]");
8757
			intel_dump_pipe_config(crtc, &crtc->config,
8758
					       "[sw state]");
8759
		}
3031 serge 8760
	}
8761
}
8762
 
4104 Serge 8763
static void
8764
check_shared_dpll_state(struct drm_device *dev)
8765
{
8766
	drm_i915_private_t *dev_priv = dev->dev_private;
8767
	struct intel_crtc *crtc;
8768
	struct intel_dpll_hw_state dpll_hw_state;
8769
	int i;
8770
 
8771
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8772
		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8773
		int enabled_crtcs = 0, active_crtcs = 0;
8774
		bool active;
8775
 
8776
		memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8777
 
8778
		DRM_DEBUG_KMS("%s\n", pll->name);
8779
 
8780
		active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8781
 
8782
		WARN(pll->active > pll->refcount,
8783
		     "more active pll users than references: %i vs %i\n",
8784
		     pll->active, pll->refcount);
8785
		WARN(pll->active && !pll->on,
8786
		     "pll in active use but not on in sw tracking\n");
8787
		WARN(pll->on && !pll->active,
8788
		     "pll in on but not on in use in sw tracking\n");
8789
		WARN(pll->on != active,
8790
		     "pll on state mismatch (expected %i, found %i)\n",
8791
		     pll->on, active);
8792
 
8793
		list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8794
				    base.head) {
8795
			if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8796
				enabled_crtcs++;
8797
			if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8798
				active_crtcs++;
8799
		}
8800
		WARN(pll->active != active_crtcs,
8801
		     "pll active crtcs mismatch (expected %i, found %i)\n",
8802
		     pll->active, active_crtcs);
8803
		WARN(pll->refcount != enabled_crtcs,
8804
		     "pll enabled crtcs mismatch (expected %i, found %i)\n",
8805
		     pll->refcount, enabled_crtcs);
8806
 
8807
		WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8808
				       sizeof(dpll_hw_state)),
8809
		     "pll hw state mismatch\n");
8810
	}
8811
}
8812
 
8813
void
8814
intel_modeset_check_state(struct drm_device *dev)
8815
{
8816
	check_connector_state(dev);
8817
	check_encoder_state(dev);
8818
	check_crtc_state(dev);
8819
	check_shared_dpll_state(dev);
8820
}
8821
 
3746 Serge 8822
static int __intel_set_mode(struct drm_crtc *crtc,
3031 serge 8823
		    struct drm_display_mode *mode,
8824
		    int x, int y, struct drm_framebuffer *fb)
8825
{
8826
	struct drm_device *dev = crtc->dev;
8827
	drm_i915_private_t *dev_priv = dev->dev_private;
3746 Serge 8828
	struct drm_display_mode *saved_mode, *saved_hwmode;
8829
	struct intel_crtc_config *pipe_config = NULL;
3031 serge 8830
	struct intel_crtc *intel_crtc;
8831
	unsigned disable_pipes, prepare_pipes, modeset_pipes;
3480 Serge 8832
	int ret = 0;
3031 serge 8833
 
3480 Serge 8834
	saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8835
	if (!saved_mode)
8836
		return -ENOMEM;
8837
	saved_hwmode = saved_mode + 1;
8838
 
3031 serge 8839
	intel_modeset_affected_pipes(crtc, &modeset_pipes,
8840
				     &prepare_pipes, &disable_pipes);
8841
 
3480 Serge 8842
	*saved_hwmode = crtc->hwmode;
8843
	*saved_mode = crtc->mode;
3031 serge 8844
 
8845
	/* Hack: Because we don't (yet) support global modeset on multiple
8846
	 * crtcs, we don't keep track of the new mode for more than one crtc.
8847
	 * Hence simply check whether any bit is set in modeset_pipes in all the
8848
	 * pieces of code that are not yet converted to deal with mutliple crtcs
8849
	 * changing their mode at the same time. */
8850
	if (modeset_pipes) {
3746 Serge 8851
		pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8852
		if (IS_ERR(pipe_config)) {
8853
			ret = PTR_ERR(pipe_config);
8854
			pipe_config = NULL;
8855
 
3480 Serge 8856
			goto out;
3031 serge 8857
		}
4104 Serge 8858
		intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
8859
				       "[modeset]");
3031 serge 8860
	}
8861
 
3746 Serge 8862
	for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8863
		intel_crtc_disable(&intel_crtc->base);
8864
 
3031 serge 8865
	for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8866
		if (intel_crtc->base.enabled)
8867
			dev_priv->display.crtc_disable(&intel_crtc->base);
8868
	}
8869
 
8870
	/* crtc->mode is already used by the ->mode_set callbacks, hence we need
8871
	 * to set it here already despite that we pass it down the callchain.
2330 Serge 8872
	 */
3746 Serge 8873
	if (modeset_pipes) {
3031 serge 8874
		crtc->mode = *mode;
3746 Serge 8875
		/* mode_set/enable/disable functions rely on a correct pipe
8876
		 * config. */
8877
		to_intel_crtc(crtc)->config = *pipe_config;
8878
	}
2327 Serge 8879
 
3031 serge 8880
	/* Only after disabling all output pipelines that will be changed can we
8881
	 * update the the output configuration. */
8882
	intel_modeset_update_state(dev, prepare_pipes);
8883
 
3243 Serge 8884
	if (dev_priv->display.modeset_global_resources)
8885
		dev_priv->display.modeset_global_resources(dev);
8886
 
3031 serge 8887
	/* Set up the DPLL and any encoders state that needs to adjust or depend
8888
	 * on the DPLL.
2330 Serge 8889
	 */
3031 serge 8890
	for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
3480 Serge 8891
		ret = intel_crtc_mode_set(&intel_crtc->base,
3031 serge 8892
					   x, y, fb);
3480 Serge 8893
		if (ret)
3031 serge 8894
		    goto done;
8895
	}
8896
 
8897
	/* Now enable the clocks, plane, pipe, and connectors that we set up. */
8898
	for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8899
		dev_priv->display.crtc_enable(&intel_crtc->base);
8900
 
8901
	if (modeset_pipes) {
8902
		/* Store real post-adjustment hardware mode. */
3746 Serge 8903
		crtc->hwmode = pipe_config->adjusted_mode;
3031 serge 8904
 
8905
		/* Calculate and store various constants which
8906
		 * are later needed by vblank and swap-completion
8907
		 * timestamping. They are derived from true hwmode.
8908
		 */
8909
		drm_calc_timestamping_constants(crtc);
8910
	}
8911
 
8912
	/* FIXME: add subpixel order */
8913
done:
3480 Serge 8914
	if (ret && crtc->enabled) {
8915
		crtc->hwmode = *saved_hwmode;
8916
		crtc->mode = *saved_mode;
3031 serge 8917
	}
8918
 
3480 Serge 8919
out:
3746 Serge 8920
	kfree(pipe_config);
3480 Serge 8921
	kfree(saved_mode);
3031 serge 8922
	return ret;
2330 Serge 8923
}
2327 Serge 8924
 
4104 Serge 8925
static int intel_set_mode(struct drm_crtc *crtc,
3746 Serge 8926
		     struct drm_display_mode *mode,
8927
		     int x, int y, struct drm_framebuffer *fb)
8928
{
8929
	int ret;
8930
 
8931
	ret = __intel_set_mode(crtc, mode, x, y, fb);
8932
 
8933
	if (ret == 0)
8934
		intel_modeset_check_state(crtc->dev);
8935
 
8936
	return ret;
8937
}
8938
 
3480 Serge 8939
void intel_crtc_restore_mode(struct drm_crtc *crtc)
8940
{
8941
	intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8942
}
8943
 
3031 serge 8944
#undef for_each_intel_crtc_masked
2327 Serge 8945
 
3031 serge 8946
static void intel_set_config_free(struct intel_set_config *config)
8947
{
8948
	if (!config)
8949
		return;
8950
 
8951
	kfree(config->save_connector_encoders);
8952
	kfree(config->save_encoder_crtcs);
8953
	kfree(config);
8954
}
8955
 
8956
static int intel_set_config_save_state(struct drm_device *dev,
8957
				       struct intel_set_config *config)
8958
{
8959
	struct drm_encoder *encoder;
8960
	struct drm_connector *connector;
8961
	int count;
8962
 
8963
	config->save_encoder_crtcs =
8964
		kcalloc(dev->mode_config.num_encoder,
8965
			sizeof(struct drm_crtc *), GFP_KERNEL);
8966
	if (!config->save_encoder_crtcs)
8967
		return -ENOMEM;
8968
 
8969
	config->save_connector_encoders =
8970
		kcalloc(dev->mode_config.num_connector,
8971
			sizeof(struct drm_encoder *), GFP_KERNEL);
8972
	if (!config->save_connector_encoders)
8973
		return -ENOMEM;
8974
 
8975
	/* Copy data. Note that driver private data is not affected.
8976
	 * Should anything bad happen only the expected state is
8977
	 * restored, not the drivers personal bookkeeping.
8978
	 */
8979
	count = 0;
8980
	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8981
		config->save_encoder_crtcs[count++] = encoder->crtc;
8982
	}
8983
 
8984
	count = 0;
8985
	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8986
		config->save_connector_encoders[count++] = connector->encoder;
8987
	}
8988
 
8989
	return 0;
8990
}
8991
 
8992
static void intel_set_config_restore_state(struct drm_device *dev,
8993
					   struct intel_set_config *config)
8994
{
8995
	struct intel_encoder *encoder;
8996
	struct intel_connector *connector;
8997
	int count;
8998
 
8999
	count = 0;
9000
	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9001
		encoder->new_crtc =
9002
			to_intel_crtc(config->save_encoder_crtcs[count++]);
9003
	}
9004
 
9005
	count = 0;
9006
	list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9007
		connector->new_encoder =
9008
			to_intel_encoder(config->save_connector_encoders[count++]);
9009
	}
9010
}
9011
 
3746 Serge 9012
static bool
4104 Serge 9013
is_crtc_connector_off(struct drm_mode_set *set)
3746 Serge 9014
{
9015
	int i;
9016
 
4104 Serge 9017
	if (set->num_connectors == 0)
9018
		return false;
9019
 
9020
	if (WARN_ON(set->connectors == NULL))
9021
		return false;
9022
 
9023
	for (i = 0; i < set->num_connectors; i++)
9024
		if (set->connectors[i]->encoder &&
9025
		    set->connectors[i]->encoder->crtc == set->crtc &&
9026
		    set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
3746 Serge 9027
			return true;
9028
 
9029
	return false;
9030
}
9031
 
3031 serge 9032
static void
9033
intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9034
				      struct intel_set_config *config)
9035
{
9036
 
9037
	/* We should be able to check here if the fb has the same properties
9038
	 * and then just flip_or_move it */
4104 Serge 9039
	if (is_crtc_connector_off(set)) {
3746 Serge 9040
			config->mode_changed = true;
9041
	} else if (set->crtc->fb != set->fb) {
3031 serge 9042
		/* If we have no fb then treat it as a full mode set */
9043
		if (set->crtc->fb == NULL) {
4104 Serge 9044
			struct intel_crtc *intel_crtc =
9045
				to_intel_crtc(set->crtc);
9046
 
9047
			if (intel_crtc->active && i915_fastboot) {
9048
				DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9049
				config->fb_changed = true;
9050
			} else {
9051
				DRM_DEBUG_KMS("inactive crtc, full mode set\n");
3031 serge 9052
			config->mode_changed = true;
4104 Serge 9053
			}
3031 serge 9054
		} else if (set->fb == NULL) {
9055
			config->mode_changed = true;
3746 Serge 9056
		} else if (set->fb->pixel_format !=
9057
			   set->crtc->fb->pixel_format) {
3031 serge 9058
			config->mode_changed = true;
3746 Serge 9059
		} else {
3031 serge 9060
			config->fb_changed = true;
9061
	}
3746 Serge 9062
	}
3031 serge 9063
 
9064
	if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9065
		config->fb_changed = true;
9066
 
9067
	if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9068
		DRM_DEBUG_KMS("modes are different, full mode set\n");
9069
		drm_mode_debug_printmodeline(&set->crtc->mode);
9070
		drm_mode_debug_printmodeline(set->mode);
9071
		config->mode_changed = true;
9072
	}
4104 Serge 9073
 
9074
	DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9075
			set->crtc->base.id, config->mode_changed, config->fb_changed);
3031 serge 9076
}
9077
 
9078
static int
9079
intel_modeset_stage_output_state(struct drm_device *dev,
9080
				 struct drm_mode_set *set,
9081
				 struct intel_set_config *config)
9082
{
9083
	struct drm_crtc *new_crtc;
9084
	struct intel_connector *connector;
9085
	struct intel_encoder *encoder;
4104 Serge 9086
	int ro;
3031 serge 9087
 
3480 Serge 9088
	/* The upper layers ensure that we either disable a crtc or have a list
3031 serge 9089
	 * of connectors. For paranoia, double-check this. */
9090
	WARN_ON(!set->fb && (set->num_connectors != 0));
9091
	WARN_ON(set->fb && (set->num_connectors == 0));
9092
 
9093
	list_for_each_entry(connector, &dev->mode_config.connector_list,
9094
			    base.head) {
9095
		/* Otherwise traverse passed in connector list and get encoders
9096
		 * for them. */
9097
		for (ro = 0; ro < set->num_connectors; ro++) {
9098
			if (set->connectors[ro] == &connector->base) {
9099
				connector->new_encoder = connector->encoder;
9100
				break;
9101
			}
9102
		}
9103
 
9104
		/* If we disable the crtc, disable all its connectors. Also, if
9105
		 * the connector is on the changing crtc but not on the new
9106
		 * connector list, disable it. */
9107
		if ((!set->fb || ro == set->num_connectors) &&
9108
		    connector->base.encoder &&
9109
		    connector->base.encoder->crtc == set->crtc) {
9110
			connector->new_encoder = NULL;
9111
 
9112
			DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9113
				connector->base.base.id,
9114
				drm_get_connector_name(&connector->base));
9115
		}
9116
 
9117
 
9118
		if (&connector->new_encoder->base != connector->base.encoder) {
9119
			DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9120
			config->mode_changed = true;
9121
		}
9122
	}
9123
	/* connector->new_encoder is now updated for all connectors. */
9124
 
9125
	/* Update crtc of enabled connectors. */
9126
	list_for_each_entry(connector, &dev->mode_config.connector_list,
9127
			    base.head) {
9128
		if (!connector->new_encoder)
9129
			continue;
9130
 
9131
		new_crtc = connector->new_encoder->base.crtc;
9132
 
9133
		for (ro = 0; ro < set->num_connectors; ro++) {
9134
			if (set->connectors[ro] == &connector->base)
9135
				new_crtc = set->crtc;
9136
		}
9137
 
9138
		/* Make sure the new CRTC will work with the encoder */
9139
		if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9140
					   new_crtc)) {
9141
			return -EINVAL;
9142
		}
9143
		connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9144
 
9145
		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9146
			connector->base.base.id,
9147
			drm_get_connector_name(&connector->base),
9148
			new_crtc->base.id);
9149
	}
9150
 
9151
	/* Check for any encoders that needs to be disabled. */
9152
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9153
			    base.head) {
9154
		list_for_each_entry(connector,
9155
				    &dev->mode_config.connector_list,
9156
				    base.head) {
9157
			if (connector->new_encoder == encoder) {
9158
				WARN_ON(!connector->new_encoder->new_crtc);
9159
 
9160
				goto next_encoder;
9161
			}
9162
		}
9163
		encoder->new_crtc = NULL;
9164
next_encoder:
9165
		/* Only now check for crtc changes so we don't miss encoders
9166
		 * that will be disabled. */
9167
		if (&encoder->new_crtc->base != encoder->base.crtc) {
9168
			DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9169
			config->mode_changed = true;
9170
		}
9171
	}
9172
	/* Now we've also updated encoder->new_crtc for all encoders. */
9173
 
9174
	return 0;
9175
}
9176
 
9177
static int intel_crtc_set_config(struct drm_mode_set *set)
9178
{
9179
	struct drm_device *dev;
9180
	struct drm_mode_set save_set;
9181
	struct intel_set_config *config;
9182
	int ret;
9183
 
9184
	BUG_ON(!set);
9185
	BUG_ON(!set->crtc);
9186
	BUG_ON(!set->crtc->helper_private);
9187
 
3480 Serge 9188
	/* Enforce sane interface api - has been abused by the fb helper. */
9189
	BUG_ON(!set->mode && set->fb);
9190
	BUG_ON(set->fb && set->num_connectors == 0);
3031 serge 9191
 
9192
	if (set->fb) {
9193
		DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9194
				set->crtc->base.id, set->fb->base.id,
9195
				(int)set->num_connectors, set->x, set->y);
9196
	} else {
9197
		DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9198
	}
9199
 
9200
	dev = set->crtc->dev;
9201
 
9202
	ret = -ENOMEM;
9203
	config = kzalloc(sizeof(*config), GFP_KERNEL);
9204
	if (!config)
9205
		goto out_config;
9206
 
9207
	ret = intel_set_config_save_state(dev, config);
9208
	if (ret)
9209
		goto out_config;
9210
 
9211
	save_set.crtc = set->crtc;
9212
	save_set.mode = &set->crtc->mode;
9213
	save_set.x = set->crtc->x;
9214
	save_set.y = set->crtc->y;
9215
	save_set.fb = set->crtc->fb;
9216
 
9217
	/* Compute whether we need a full modeset, only an fb base update or no
9218
	 * change at all. In the future we might also check whether only the
9219
	 * mode changed, e.g. for LVDS where we only change the panel fitter in
9220
	 * such cases. */
9221
	intel_set_config_compute_mode_changes(set, config);
9222
 
9223
	ret = intel_modeset_stage_output_state(dev, set, config);
9224
	if (ret)
9225
		goto fail;
9226
 
9227
	if (config->mode_changed) {
3480 Serge 9228
		ret = intel_set_mode(set->crtc, set->mode,
9229
				     set->x, set->y, set->fb);
3031 serge 9230
	} else if (config->fb_changed) {
3746 Serge 9231
//       intel_crtc_wait_for_pending_flips(set->crtc);
9232
 
3031 serge 9233
		ret = intel_pipe_set_base(set->crtc,
9234
					  set->x, set->y, set->fb);
9235
	}
9236
 
3746 Serge 9237
	if (ret) {
4104 Serge 9238
		DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
3746 Serge 9239
			  set->crtc->base.id, ret);
3031 serge 9240
fail:
9241
	intel_set_config_restore_state(dev, config);
9242
 
9243
	/* Try to restore the config */
9244
	if (config->mode_changed &&
3480 Serge 9245
	    intel_set_mode(save_set.crtc, save_set.mode,
3031 serge 9246
			    save_set.x, save_set.y, save_set.fb))
9247
		DRM_ERROR("failed to restore config after modeset failure\n");
3746 Serge 9248
	}
3031 serge 9249
 
9250
out_config:
9251
	intel_set_config_free(config);
9252
	return ret;
9253
}
9254
 
2330 Serge 9255
static const struct drm_crtc_funcs intel_crtc_funcs = {
9256
//	.cursor_set = intel_crtc_cursor_set,
9257
//	.cursor_move = intel_crtc_cursor_move,
9258
	.gamma_set = intel_crtc_gamma_set,
3031 serge 9259
	.set_config = intel_crtc_set_config,
2330 Serge 9260
	.destroy = intel_crtc_destroy,
9261
//	.page_flip = intel_crtc_page_flip,
9262
};
2327 Serge 9263
 
3243 Serge 9264
static void intel_cpu_pll_init(struct drm_device *dev)
9265
{
3480 Serge 9266
	if (HAS_DDI(dev))
3243 Serge 9267
		intel_ddi_pll_init(dev);
9268
}
9269
 
4104 Serge 9270
static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9271
				      struct intel_shared_dpll *pll,
9272
				      struct intel_dpll_hw_state *hw_state)
3031 serge 9273
{
4104 Serge 9274
	uint32_t val;
3031 serge 9275
 
4104 Serge 9276
	val = I915_READ(PCH_DPLL(pll->id));
9277
	hw_state->dpll = val;
9278
	hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9279
	hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9280
 
9281
	return val & DPLL_VCO_ENABLE;
9282
}
9283
 
9284
static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9285
				  struct intel_shared_dpll *pll)
9286
{
9287
	I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9288
	I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9289
}
9290
 
9291
static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9292
				struct intel_shared_dpll *pll)
9293
{
9294
	/* PCH refclock must be enabled first */
9295
	assert_pch_refclk_enabled(dev_priv);
9296
 
9297
	I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9298
 
9299
	/* Wait for the clocks to stabilize. */
9300
	POSTING_READ(PCH_DPLL(pll->id));
9301
	udelay(150);
9302
 
9303
	/* The pixel multiplier can only be updated once the
9304
	 * DPLL is enabled and the clocks are stable.
9305
	 *
9306
	 * So write it again.
9307
	 */
9308
	I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9309
	POSTING_READ(PCH_DPLL(pll->id));
9310
	udelay(200);
9311
}
9312
 
9313
static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9314
				 struct intel_shared_dpll *pll)
9315
{
9316
	struct drm_device *dev = dev_priv->dev;
9317
	struct intel_crtc *crtc;
9318
 
9319
	/* Make sure no transcoder isn't still depending on us. */
9320
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9321
		if (intel_crtc_to_shared_dpll(crtc) == pll)
9322
			assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
3031 serge 9323
	}
9324
 
4104 Serge 9325
	I915_WRITE(PCH_DPLL(pll->id), 0);
9326
	POSTING_READ(PCH_DPLL(pll->id));
9327
	udelay(200);
9328
}
9329
 
9330
static char *ibx_pch_dpll_names[] = {
9331
	"PCH DPLL A",
9332
	"PCH DPLL B",
9333
};
9334
 
9335
static void ibx_pch_dpll_init(struct drm_device *dev)
9336
{
9337
	struct drm_i915_private *dev_priv = dev->dev_private;
9338
	int i;
9339
 
9340
	dev_priv->num_shared_dpll = 2;
9341
 
9342
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9343
		dev_priv->shared_dplls[i].id = i;
9344
		dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9345
		dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9346
		dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9347
		dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9348
		dev_priv->shared_dplls[i].get_hw_state =
9349
			ibx_pch_dpll_get_hw_state;
3031 serge 9350
	}
9351
}
9352
 
4104 Serge 9353
static void intel_shared_dpll_init(struct drm_device *dev)
9354
{
9355
	struct drm_i915_private *dev_priv = dev->dev_private;
9356
 
9357
	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9358
		ibx_pch_dpll_init(dev);
9359
	else
9360
		dev_priv->num_shared_dpll = 0;
9361
 
9362
	BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9363
	DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9364
		      dev_priv->num_shared_dpll);
9365
}
9366
 
2330 Serge 9367
static void intel_crtc_init(struct drm_device *dev, int pipe)
9368
{
9369
	drm_i915_private_t *dev_priv = dev->dev_private;
9370
	struct intel_crtc *intel_crtc;
9371
	int i;
2327 Serge 9372
 
2330 Serge 9373
	intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
9374
	if (intel_crtc == NULL)
9375
		return;
2327 Serge 9376
 
2330 Serge 9377
	drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
2327 Serge 9378
 
2330 Serge 9379
	drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9380
	for (i = 0; i < 256; i++) {
9381
		intel_crtc->lut_r[i] = i;
9382
		intel_crtc->lut_g[i] = i;
9383
		intel_crtc->lut_b[i] = i;
9384
	}
2327 Serge 9385
 
2330 Serge 9386
	/* Swap pipes & planes for FBC on pre-965 */
9387
	intel_crtc->pipe = pipe;
9388
	intel_crtc->plane = pipe;
9389
	if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9390
		DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9391
		intel_crtc->plane = !pipe;
9392
	}
2327 Serge 9393
 
2330 Serge 9394
	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9395
	       dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9396
	dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9397
	dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
2327 Serge 9398
 
2330 Serge 9399
	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9400
}
2327 Serge 9401
 
3031 serge 9402
int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9403
				struct drm_file *file)
9404
{
9405
	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9406
	struct drm_mode_object *drmmode_obj;
9407
	struct intel_crtc *crtc;
2327 Serge 9408
 
3482 Serge 9409
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
9410
		return -ENODEV;
9411
 
3031 serge 9412
	drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9413
			DRM_MODE_OBJECT_CRTC);
2327 Serge 9414
 
3031 serge 9415
	if (!drmmode_obj) {
9416
		DRM_ERROR("no such CRTC id\n");
9417
		return -EINVAL;
9418
	}
2327 Serge 9419
 
3031 serge 9420
	crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9421
	pipe_from_crtc_id->pipe = crtc->pipe;
2327 Serge 9422
 
3031 serge 9423
	return 0;
9424
}
2327 Serge 9425
 
3031 serge 9426
static int intel_encoder_clones(struct intel_encoder *encoder)
2330 Serge 9427
{
3031 serge 9428
	struct drm_device *dev = encoder->base.dev;
9429
	struct intel_encoder *source_encoder;
2330 Serge 9430
	int index_mask = 0;
9431
	int entry = 0;
2327 Serge 9432
 
3031 serge 9433
	list_for_each_entry(source_encoder,
9434
			    &dev->mode_config.encoder_list, base.head) {
9435
 
9436
		if (encoder == source_encoder)
2330 Serge 9437
			index_mask |= (1 << entry);
3031 serge 9438
 
9439
		/* Intel hw has only one MUX where enocoders could be cloned. */
9440
		if (encoder->cloneable && source_encoder->cloneable)
9441
			index_mask |= (1 << entry);
9442
 
2330 Serge 9443
		entry++;
9444
	}
2327 Serge 9445
 
2330 Serge 9446
	return index_mask;
9447
}
2327 Serge 9448
 
2330 Serge 9449
static bool has_edp_a(struct drm_device *dev)
9450
{
9451
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 9452
 
2330 Serge 9453
	if (!IS_MOBILE(dev))
9454
		return false;
2327 Serge 9455
 
2330 Serge 9456
	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9457
		return false;
2327 Serge 9458
 
2330 Serge 9459
	if (IS_GEN5(dev) &&
9460
	    (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9461
		return false;
2327 Serge 9462
 
2330 Serge 9463
	return true;
9464
}
2327 Serge 9465
 
2330 Serge 9466
static void intel_setup_outputs(struct drm_device *dev)
9467
{
9468
	struct drm_i915_private *dev_priv = dev->dev_private;
9469
	struct intel_encoder *encoder;
9470
	bool dpd_is_edp = false;
2327 Serge 9471
 
4104 Serge 9472
	intel_lvds_init(dev);
2327 Serge 9473
 
3746 Serge 9474
	if (!IS_ULT(dev))
2330 Serge 9475
	intel_crt_init(dev);
2327 Serge 9476
 
3480 Serge 9477
	if (HAS_DDI(dev)) {
2330 Serge 9478
		int found;
2327 Serge 9479
 
3031 serge 9480
		/* Haswell uses DDI functions to detect digital outputs */
9481
		found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9482
		/* DDI A only supports eDP */
9483
		if (found)
9484
			intel_ddi_init(dev, PORT_A);
9485
 
9486
		/* DDI B, C and D detection is indicated by the SFUSE_STRAP
9487
		 * register */
9488
		found = I915_READ(SFUSE_STRAP);
9489
 
9490
		if (found & SFUSE_STRAP_DDIB_DETECTED)
9491
			intel_ddi_init(dev, PORT_B);
9492
		if (found & SFUSE_STRAP_DDIC_DETECTED)
9493
			intel_ddi_init(dev, PORT_C);
9494
		if (found & SFUSE_STRAP_DDID_DETECTED)
9495
			intel_ddi_init(dev, PORT_D);
9496
	} else if (HAS_PCH_SPLIT(dev)) {
9497
		int found;
3243 Serge 9498
		dpd_is_edp = intel_dpd_is_edp(dev);
3031 serge 9499
 
3243 Serge 9500
		if (has_edp_a(dev))
9501
			intel_dp_init(dev, DP_A, PORT_A);
9502
 
3746 Serge 9503
		if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
2330 Serge 9504
			/* PCH SDVOB multiplex with HDMIB */
3031 serge 9505
			found = intel_sdvo_init(dev, PCH_SDVOB, true);
2330 Serge 9506
			if (!found)
3746 Serge 9507
				intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
2330 Serge 9508
			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
3031 serge 9509
				intel_dp_init(dev, PCH_DP_B, PORT_B);
2330 Serge 9510
		}
2327 Serge 9511
 
3746 Serge 9512
		if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9513
			intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
2327 Serge 9514
 
3746 Serge 9515
		if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9516
			intel_hdmi_init(dev, PCH_HDMID, PORT_D);
2327 Serge 9517
 
2330 Serge 9518
		if (I915_READ(PCH_DP_C) & DP_DETECTED)
3031 serge 9519
			intel_dp_init(dev, PCH_DP_C, PORT_C);
2327 Serge 9520
 
3243 Serge 9521
		if (I915_READ(PCH_DP_D) & DP_DETECTED)
3031 serge 9522
			intel_dp_init(dev, PCH_DP_D, PORT_D);
9523
	} else if (IS_VALLEYVIEW(dev)) {
3243 Serge 9524
		/* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
4104 Serge 9525
		if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
9526
			intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
9527
					PORT_C);
3480 Serge 9528
		if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
4104 Serge 9529
				intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
9530
					      PORT_C);
9531
		}
3243 Serge 9532
 
3746 Serge 9533
		if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9534
			intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9535
					PORT_B);
3480 Serge 9536
			if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9537
				intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
3031 serge 9538
		}
2330 Serge 9539
	} else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9540
		bool found = false;
2327 Serge 9541
 
3746 Serge 9542
		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
2330 Serge 9543
			DRM_DEBUG_KMS("probing SDVOB\n");
3746 Serge 9544
			found = intel_sdvo_init(dev, GEN3_SDVOB, true);
2330 Serge 9545
			if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9546
				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
3746 Serge 9547
				intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
2330 Serge 9548
			}
2327 Serge 9549
 
4104 Serge 9550
			if (!found && SUPPORTS_INTEGRATED_DP(dev))
3031 serge 9551
				intel_dp_init(dev, DP_B, PORT_B);
2330 Serge 9552
			}
2327 Serge 9553
 
2330 Serge 9554
		/* Before G4X SDVOC doesn't have its own detect register */
2327 Serge 9555
 
3746 Serge 9556
		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
2330 Serge 9557
			DRM_DEBUG_KMS("probing SDVOC\n");
3746 Serge 9558
			found = intel_sdvo_init(dev, GEN3_SDVOC, false);
2330 Serge 9559
		}
2327 Serge 9560
 
3746 Serge 9561
		if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
2327 Serge 9562
 
2330 Serge 9563
			if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9564
				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
3746 Serge 9565
				intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
2330 Serge 9566
			}
4104 Serge 9567
			if (SUPPORTS_INTEGRATED_DP(dev))
3031 serge 9568
				intel_dp_init(dev, DP_C, PORT_C);
2330 Serge 9569
			}
2327 Serge 9570
 
2330 Serge 9571
		if (SUPPORTS_INTEGRATED_DP(dev) &&
4104 Serge 9572
		    (I915_READ(DP_D) & DP_DETECTED))
3031 serge 9573
			intel_dp_init(dev, DP_D, PORT_D);
2330 Serge 9574
	} else if (IS_GEN2(dev))
9575
		intel_dvo_init(dev);
2327 Serge 9576
 
2330 Serge 9577
//   if (SUPPORTS_TV(dev))
9578
//       intel_tv_init(dev);
2327 Serge 9579
 
2330 Serge 9580
	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9581
		encoder->base.possible_crtcs = encoder->crtc_mask;
9582
		encoder->base.possible_clones =
3031 serge 9583
			intel_encoder_clones(encoder);
2330 Serge 9584
	}
2327 Serge 9585
 
3243 Serge 9586
	intel_init_pch_refclk(dev);
9587
 
9588
	drm_helper_move_panel_connectors_to_head(dev);
2330 Serge 9589
}
9590
 
9591
 
9592
 
2335 Serge 9593
static const struct drm_framebuffer_funcs intel_fb_funcs = {
9594
//	.destroy = intel_user_framebuffer_destroy,
9595
//	.create_handle = intel_user_framebuffer_create_handle,
9596
};
2327 Serge 9597
 
2335 Serge 9598
int intel_framebuffer_init(struct drm_device *dev,
9599
			   struct intel_framebuffer *intel_fb,
2342 Serge 9600
			   struct drm_mode_fb_cmd2 *mode_cmd,
2335 Serge 9601
			   struct drm_i915_gem_object *obj)
9602
{
4104 Serge 9603
	int pitch_limit;
2335 Serge 9604
	int ret;
2327 Serge 9605
 
3243 Serge 9606
	if (obj->tiling_mode == I915_TILING_Y) {
9607
		DRM_DEBUG("hardware does not support tiling Y\n");
2335 Serge 9608
		return -EINVAL;
3243 Serge 9609
	}
2327 Serge 9610
 
3243 Serge 9611
	if (mode_cmd->pitches[0] & 63) {
9612
		DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9613
			  mode_cmd->pitches[0]);
9614
		return -EINVAL;
9615
	}
9616
 
4104 Serge 9617
	if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9618
		pitch_limit = 32*1024;
9619
	} else if (INTEL_INFO(dev)->gen >= 4) {
9620
		if (obj->tiling_mode)
9621
			pitch_limit = 16*1024;
9622
		else
9623
			pitch_limit = 32*1024;
9624
	} else if (INTEL_INFO(dev)->gen >= 3) {
9625
		if (obj->tiling_mode)
9626
			pitch_limit = 8*1024;
9627
		else
9628
			pitch_limit = 16*1024;
9629
	} else
9630
		/* XXX DSPC is limited to 4k tiled */
9631
		pitch_limit = 8*1024;
9632
 
9633
	if (mode_cmd->pitches[0] > pitch_limit) {
9634
		DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9635
			  obj->tiling_mode ? "tiled" : "linear",
9636
			  mode_cmd->pitches[0], pitch_limit);
3243 Serge 9637
		return -EINVAL;
9638
	}
9639
 
9640
	if (obj->tiling_mode != I915_TILING_NONE &&
9641
	    mode_cmd->pitches[0] != obj->stride) {
9642
		DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9643
			  mode_cmd->pitches[0], obj->stride);
2335 Serge 9644
			return -EINVAL;
3243 Serge 9645
	}
2327 Serge 9646
 
3243 Serge 9647
	/* Reject formats not supported by any plane early. */
2342 Serge 9648
	switch (mode_cmd->pixel_format) {
3243 Serge 9649
	case DRM_FORMAT_C8:
2342 Serge 9650
	case DRM_FORMAT_RGB565:
9651
	case DRM_FORMAT_XRGB8888:
3243 Serge 9652
	case DRM_FORMAT_ARGB8888:
9653
		break;
9654
	case DRM_FORMAT_XRGB1555:
9655
	case DRM_FORMAT_ARGB1555:
9656
		if (INTEL_INFO(dev)->gen > 3) {
4104 Serge 9657
			DRM_DEBUG("unsupported pixel format: %s\n",
9658
				  drm_get_format_name(mode_cmd->pixel_format));
3243 Serge 9659
			return -EINVAL;
9660
		}
9661
		break;
3031 serge 9662
	case DRM_FORMAT_XBGR8888:
3243 Serge 9663
	case DRM_FORMAT_ABGR8888:
2342 Serge 9664
	case DRM_FORMAT_XRGB2101010:
9665
	case DRM_FORMAT_ARGB2101010:
3243 Serge 9666
	case DRM_FORMAT_XBGR2101010:
9667
	case DRM_FORMAT_ABGR2101010:
9668
		if (INTEL_INFO(dev)->gen < 4) {
4104 Serge 9669
			DRM_DEBUG("unsupported pixel format: %s\n",
9670
				  drm_get_format_name(mode_cmd->pixel_format));
3243 Serge 9671
			return -EINVAL;
9672
		}
2335 Serge 9673
		break;
2342 Serge 9674
	case DRM_FORMAT_YUYV:
9675
	case DRM_FORMAT_UYVY:
9676
	case DRM_FORMAT_YVYU:
9677
	case DRM_FORMAT_VYUY:
3243 Serge 9678
		if (INTEL_INFO(dev)->gen < 5) {
4104 Serge 9679
			DRM_DEBUG("unsupported pixel format: %s\n",
9680
				  drm_get_format_name(mode_cmd->pixel_format));
3243 Serge 9681
			return -EINVAL;
9682
		}
2342 Serge 9683
		break;
2335 Serge 9684
	default:
4104 Serge 9685
		DRM_DEBUG("unsupported pixel format: %s\n",
9686
			  drm_get_format_name(mode_cmd->pixel_format));
2335 Serge 9687
		return -EINVAL;
9688
	}
2327 Serge 9689
 
3243 Serge 9690
	/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9691
	if (mode_cmd->offsets[0] != 0)
9692
		return -EINVAL;
9693
 
3480 Serge 9694
	drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9695
	intel_fb->obj = obj;
9696
 
2335 Serge 9697
	ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9698
	if (ret) {
9699
		DRM_ERROR("framebuffer init failed %d\n", ret);
9700
		return ret;
9701
	}
2327 Serge 9702
 
2335 Serge 9703
	return 0;
9704
}
2327 Serge 9705
 
9706
 
2360 Serge 9707
static const struct drm_mode_config_funcs intel_mode_funcs = {
9708
	.fb_create = NULL /*intel_user_framebuffer_create*/,
3480 Serge 9709
	.output_poll_changed = intel_fb_output_poll_changed,
2360 Serge 9710
};
2327 Serge 9711
 
3031 serge 9712
/* Set up chip specific display functions */
9713
static void intel_init_display(struct drm_device *dev)
9714
{
9715
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 9716
 
4104 Serge 9717
	if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9718
		dev_priv->display.find_dpll = g4x_find_best_dpll;
9719
	else if (IS_VALLEYVIEW(dev))
9720
		dev_priv->display.find_dpll = vlv_find_best_dpll;
9721
	else if (IS_PINEVIEW(dev))
9722
		dev_priv->display.find_dpll = pnv_find_best_dpll;
9723
	else
9724
		dev_priv->display.find_dpll = i9xx_find_best_dpll;
9725
 
3480 Serge 9726
	if (HAS_DDI(dev)) {
3746 Serge 9727
		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
3243 Serge 9728
		dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9729
		dev_priv->display.crtc_enable = haswell_crtc_enable;
9730
		dev_priv->display.crtc_disable = haswell_crtc_disable;
9731
		dev_priv->display.off = haswell_crtc_off;
9732
		dev_priv->display.update_plane = ironlake_update_plane;
9733
	} else if (HAS_PCH_SPLIT(dev)) {
3746 Serge 9734
		dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4104 Serge 9735
		dev_priv->display.get_clock = ironlake_crtc_clock_get;
3031 serge 9736
		dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9737
		dev_priv->display.crtc_enable = ironlake_crtc_enable;
9738
		dev_priv->display.crtc_disable = ironlake_crtc_disable;
9739
		dev_priv->display.off = ironlake_crtc_off;
9740
		dev_priv->display.update_plane = ironlake_update_plane;
4104 Serge 9741
	} else if (IS_VALLEYVIEW(dev)) {
9742
		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9743
		dev_priv->display.get_clock = i9xx_crtc_clock_get;
9744
		dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9745
		dev_priv->display.crtc_enable = valleyview_crtc_enable;
9746
		dev_priv->display.crtc_disable = i9xx_crtc_disable;
9747
		dev_priv->display.off = i9xx_crtc_off;
9748
		dev_priv->display.update_plane = i9xx_update_plane;
3031 serge 9749
	} else {
3746 Serge 9750
		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
4104 Serge 9751
		dev_priv->display.get_clock = i9xx_crtc_clock_get;
3031 serge 9752
		dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9753
		dev_priv->display.crtc_enable = i9xx_crtc_enable;
9754
		dev_priv->display.crtc_disable = i9xx_crtc_disable;
9755
		dev_priv->display.off = i9xx_crtc_off;
9756
		dev_priv->display.update_plane = i9xx_update_plane;
9757
	}
2327 Serge 9758
 
3031 serge 9759
	/* Returns the core display clock speed */
9760
	if (IS_VALLEYVIEW(dev))
9761
		dev_priv->display.get_display_clock_speed =
9762
			valleyview_get_display_clock_speed;
9763
	else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9764
		dev_priv->display.get_display_clock_speed =
9765
			i945_get_display_clock_speed;
9766
	else if (IS_I915G(dev))
9767
		dev_priv->display.get_display_clock_speed =
9768
			i915_get_display_clock_speed;
4104 Serge 9769
	else if (IS_I945GM(dev) || IS_845G(dev))
3031 serge 9770
		dev_priv->display.get_display_clock_speed =
9771
			i9xx_misc_get_display_clock_speed;
4104 Serge 9772
	else if (IS_PINEVIEW(dev))
9773
		dev_priv->display.get_display_clock_speed =
9774
			pnv_get_display_clock_speed;
3031 serge 9775
	else if (IS_I915GM(dev))
9776
		dev_priv->display.get_display_clock_speed =
9777
			i915gm_get_display_clock_speed;
9778
	else if (IS_I865G(dev))
9779
		dev_priv->display.get_display_clock_speed =
9780
			i865_get_display_clock_speed;
9781
	else if (IS_I85X(dev))
9782
		dev_priv->display.get_display_clock_speed =
9783
			i855_get_display_clock_speed;
9784
	else /* 852, 830 */
9785
		dev_priv->display.get_display_clock_speed =
9786
			i830_get_display_clock_speed;
2327 Serge 9787
 
3031 serge 9788
	if (HAS_PCH_SPLIT(dev)) {
9789
		if (IS_GEN5(dev)) {
9790
			dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9791
			dev_priv->display.write_eld = ironlake_write_eld;
9792
		} else if (IS_GEN6(dev)) {
9793
			dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9794
			dev_priv->display.write_eld = ironlake_write_eld;
9795
		} else if (IS_IVYBRIDGE(dev)) {
9796
			/* FIXME: detect B0+ stepping and use auto training */
9797
			dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9798
			dev_priv->display.write_eld = ironlake_write_eld;
3243 Serge 9799
			dev_priv->display.modeset_global_resources =
9800
				ivb_modeset_global_resources;
3031 serge 9801
		} else if (IS_HASWELL(dev)) {
9802
			dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9803
			dev_priv->display.write_eld = haswell_write_eld;
3480 Serge 9804
			dev_priv->display.modeset_global_resources =
9805
				haswell_modeset_global_resources;
9806
		}
3031 serge 9807
	} else if (IS_G4X(dev)) {
9808
		dev_priv->display.write_eld = g4x_write_eld;
9809
	}
2327 Serge 9810
 
3031 serge 9811
	/* Default just returns -ENODEV to indicate unsupported */
9812
//	dev_priv->display.queue_flip = intel_default_queue_flip;
2327 Serge 9813
 
9814
 
9815
 
9816
 
3031 serge 9817
}
9818
 
9819
/*
9820
 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9821
 * resume, or other times.  This quirk makes sure that's the case for
9822
 * affected systems.
9823
 */
9824
static void quirk_pipea_force(struct drm_device *dev)
2330 Serge 9825
{
9826
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 9827
 
3031 serge 9828
	dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9829
	DRM_INFO("applying pipe a force quirk\n");
9830
}
2327 Serge 9831
 
3031 serge 9832
/*
9833
 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9834
 */
9835
static void quirk_ssc_force_disable(struct drm_device *dev)
9836
{
9837
	struct drm_i915_private *dev_priv = dev->dev_private;
9838
	dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9839
	DRM_INFO("applying lvds SSC disable quirk\n");
2330 Serge 9840
}
2327 Serge 9841
 
3031 serge 9842
/*
9843
 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9844
 * brightness value
9845
 */
9846
static void quirk_invert_brightness(struct drm_device *dev)
2330 Serge 9847
{
9848
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 9849
	dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9850
	DRM_INFO("applying inverted panel brightness quirk\n");
9851
}
2327 Serge 9852
 
4104 Serge 9853
/*
9854
 * Some machines (Dell XPS13) suffer broken backlight controls if
9855
 * BLM_PCH_PWM_ENABLE is set.
9856
 */
9857
static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
9858
{
9859
	struct drm_i915_private *dev_priv = dev->dev_private;
9860
	dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
9861
	DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
9862
}
9863
 
3031 serge 9864
struct intel_quirk {
9865
	int device;
9866
	int subsystem_vendor;
9867
	int subsystem_device;
9868
	void (*hook)(struct drm_device *dev);
9869
};
2327 Serge 9870
 
3031 serge 9871
/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9872
struct intel_dmi_quirk {
9873
	void (*hook)(struct drm_device *dev);
9874
	const struct dmi_system_id (*dmi_id_list)[];
9875
};
2327 Serge 9876
 
3031 serge 9877
static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9878
{
9879
	DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9880
	return 1;
2330 Serge 9881
}
2327 Serge 9882
 
3031 serge 9883
static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9884
	{
9885
		.dmi_id_list = &(const struct dmi_system_id[]) {
9886
			{
9887
				.callback = intel_dmi_reverse_brightness,
9888
				.ident = "NCR Corporation",
9889
				.matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9890
					    DMI_MATCH(DMI_PRODUCT_NAME, ""),
9891
				},
9892
			},
9893
			{ }  /* terminating entry */
9894
		},
9895
		.hook = quirk_invert_brightness,
9896
	},
9897
};
2327 Serge 9898
 
3031 serge 9899
static struct intel_quirk intel_quirks[] = {
9900
	/* HP Mini needs pipe A force quirk (LP: #322104) */
9901
	{ 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
2327 Serge 9902
 
3031 serge 9903
	/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9904
	{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
2327 Serge 9905
 
3031 serge 9906
	/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9907
	{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
2327 Serge 9908
 
3031 serge 9909
	/* 830/845 need to leave pipe A & dpll A up */
9910
	{ 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9911
	{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
2327 Serge 9912
 
3031 serge 9913
	/* Lenovo U160 cannot use SSC on LVDS */
9914
	{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
2327 Serge 9915
 
3031 serge 9916
	/* Sony Vaio Y cannot use SSC on LVDS */
9917
	{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
2327 Serge 9918
 
3031 serge 9919
	/* Acer Aspire 5734Z must invert backlight brightness */
9920
	{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
3480 Serge 9921
 
9922
	/* Acer/eMachines G725 */
9923
	{ 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9924
 
9925
	/* Acer/eMachines e725 */
9926
	{ 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
9927
 
9928
	/* Acer/Packard Bell NCL20 */
9929
	{ 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
9930
 
9931
	/* Acer Aspire 4736Z */
9932
	{ 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
4104 Serge 9933
 
9934
	/* Dell XPS13 HD Sandy Bridge */
9935
	{ 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
9936
	/* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
9937
	{ 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
3031 serge 9938
};
2327 Serge 9939
 
3031 serge 9940
static void intel_init_quirks(struct drm_device *dev)
2330 Serge 9941
{
3031 serge 9942
	struct pci_dev *d = dev->pdev;
9943
	int i;
2327 Serge 9944
 
3031 serge 9945
	for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9946
		struct intel_quirk *q = &intel_quirks[i];
2327 Serge 9947
 
3031 serge 9948
		if (d->device == q->device &&
9949
		    (d->subsystem_vendor == q->subsystem_vendor ||
9950
		     q->subsystem_vendor == PCI_ANY_ID) &&
9951
		    (d->subsystem_device == q->subsystem_device ||
9952
		     q->subsystem_device == PCI_ANY_ID))
9953
			q->hook(dev);
9954
	}
9955
//	for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
9956
//		if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
9957
//			intel_dmi_quirks[i].hook(dev);
9958
//	}
2330 Serge 9959
}
2327 Serge 9960
 
3031 serge 9961
/* Disable the VGA plane that we never use */
9962
static void i915_disable_vga(struct drm_device *dev)
2330 Serge 9963
{
9964
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 9965
	u8 sr1;
3480 Serge 9966
	u32 vga_reg = i915_vgacntrl_reg(dev);
2327 Serge 9967
 
3031 serge 9968
//   vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9969
    out8(SR01, VGA_SR_INDEX);
9970
    sr1 = in8(VGA_SR_DATA);
9971
    out8(sr1 | 1<<5, VGA_SR_DATA);
9972
//   vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9973
	udelay(300);
2327 Serge 9974
 
3031 serge 9975
	I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9976
	POSTING_READ(vga_reg);
2330 Serge 9977
}
9978
 
3031 serge 9979
void intel_modeset_init_hw(struct drm_device *dev)
2342 Serge 9980
{
3480 Serge 9981
	intel_init_power_well(dev);
2342 Serge 9982
 
3031 serge 9983
	intel_prepare_ddi(dev);
2342 Serge 9984
 
3031 serge 9985
	intel_init_clock_gating(dev);
9986
 
3482 Serge 9987
    mutex_lock(&dev->struct_mutex);
9988
    intel_enable_gt_powersave(dev);
9989
    mutex_unlock(&dev->struct_mutex);
2342 Serge 9990
}
9991
 
3031 serge 9992
void intel_modeset_init(struct drm_device *dev)
2330 Serge 9993
{
3031 serge 9994
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 9995
	int i, j, ret;
2330 Serge 9996
 
3031 serge 9997
	drm_mode_config_init(dev);
2330 Serge 9998
 
3031 serge 9999
	dev->mode_config.min_width = 0;
10000
	dev->mode_config.min_height = 0;
2330 Serge 10001
 
3031 serge 10002
	dev->mode_config.preferred_depth = 24;
10003
	dev->mode_config.prefer_shadow = 1;
2330 Serge 10004
 
3031 serge 10005
	dev->mode_config.funcs = &intel_mode_funcs;
2330 Serge 10006
 
3031 serge 10007
	intel_init_quirks(dev);
2330 Serge 10008
 
3031 serge 10009
	intel_init_pm(dev);
2330 Serge 10010
 
3746 Serge 10011
	if (INTEL_INFO(dev)->num_pipes == 0)
10012
		return;
10013
 
3031 serge 10014
	intel_init_display(dev);
2330 Serge 10015
 
3031 serge 10016
	if (IS_GEN2(dev)) {
10017
		dev->mode_config.max_width = 2048;
10018
		dev->mode_config.max_height = 2048;
10019
	} else if (IS_GEN3(dev)) {
10020
		dev->mode_config.max_width = 4096;
10021
		dev->mode_config.max_height = 4096;
10022
	} else {
10023
		dev->mode_config.max_width = 8192;
10024
		dev->mode_config.max_height = 8192;
10025
	}
3480 Serge 10026
	dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
2330 Serge 10027
 
3031 serge 10028
	DRM_DEBUG_KMS("%d display pipe%s available.\n",
3746 Serge 10029
		      INTEL_INFO(dev)->num_pipes,
10030
		      INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
2330 Serge 10031
 
4104 Serge 10032
	for_each_pipe(i) {
3031 serge 10033
		intel_crtc_init(dev, i);
3746 Serge 10034
		for (j = 0; j < dev_priv->num_plane; j++) {
10035
			ret = intel_plane_init(dev, i, j);
3031 serge 10036
		if (ret)
4104 Serge 10037
				DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10038
					      pipe_name(i), sprite_name(i, j), ret);
3746 Serge 10039
		}
2330 Serge 10040
	}
10041
 
3243 Serge 10042
	intel_cpu_pll_init(dev);
4104 Serge 10043
	intel_shared_dpll_init(dev);
2330 Serge 10044
 
3031 serge 10045
	/* Just disable it once at startup */
10046
	i915_disable_vga(dev);
10047
	intel_setup_outputs(dev);
3480 Serge 10048
 
10049
	/* Just in case the BIOS is doing something questionable. */
10050
	intel_disable_fbc(dev);
3031 serge 10051
}
2330 Serge 10052
 
3031 serge 10053
static void
10054
intel_connector_break_all_links(struct intel_connector *connector)
10055
{
10056
	connector->base.dpms = DRM_MODE_DPMS_OFF;
10057
	connector->base.encoder = NULL;
10058
	connector->encoder->connectors_active = false;
10059
	connector->encoder->base.crtc = NULL;
2330 Serge 10060
}
10061
 
3031 serge 10062
static void intel_enable_pipe_a(struct drm_device *dev)
2330 Serge 10063
{
3031 serge 10064
	struct intel_connector *connector;
10065
	struct drm_connector *crt = NULL;
10066
	struct intel_load_detect_pipe load_detect_temp;
2330 Serge 10067
 
3031 serge 10068
	/* We can't just switch on the pipe A, we need to set things up with a
10069
	 * proper mode and output configuration. As a gross hack, enable pipe A
10070
	 * by enabling the load detect pipe once. */
10071
	list_for_each_entry(connector,
10072
			    &dev->mode_config.connector_list,
10073
			    base.head) {
10074
		if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10075
			crt = &connector->base;
10076
			break;
2330 Serge 10077
		}
10078
	}
10079
 
3031 serge 10080
	if (!crt)
10081
		return;
2330 Serge 10082
 
3031 serge 10083
	if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10084
		intel_release_load_detect_pipe(crt, &load_detect_temp);
2327 Serge 10085
 
10086
 
10087
}
10088
 
3031 serge 10089
static bool
10090
intel_check_plane_mapping(struct intel_crtc *crtc)
2327 Serge 10091
{
3746 Serge 10092
	struct drm_device *dev = crtc->base.dev;
10093
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 10094
	u32 reg, val;
2327 Serge 10095
 
3746 Serge 10096
	if (INTEL_INFO(dev)->num_pipes == 1)
3031 serge 10097
		return true;
2327 Serge 10098
 
3031 serge 10099
	reg = DSPCNTR(!crtc->plane);
10100
	val = I915_READ(reg);
2327 Serge 10101
 
3031 serge 10102
	if ((val & DISPLAY_PLANE_ENABLE) &&
10103
	    (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10104
		return false;
2327 Serge 10105
 
3031 serge 10106
	return true;
2327 Serge 10107
}
10108
 
3031 serge 10109
static void intel_sanitize_crtc(struct intel_crtc *crtc)
2327 Serge 10110
{
3031 serge 10111
	struct drm_device *dev = crtc->base.dev;
2327 Serge 10112
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 10113
	u32 reg;
2327 Serge 10114
 
3031 serge 10115
	/* Clear any frame start delays used for debugging left by the BIOS */
3746 Serge 10116
	reg = PIPECONF(crtc->config.cpu_transcoder);
3031 serge 10117
	I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
2327 Serge 10118
 
3031 serge 10119
	/* We need to sanitize the plane -> pipe mapping first because this will
10120
	 * disable the crtc (and hence change the state) if it is wrong. Note
10121
	 * that gen4+ has a fixed plane -> pipe mapping.  */
10122
	if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10123
		struct intel_connector *connector;
10124
		bool plane;
2327 Serge 10125
 
3031 serge 10126
		DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10127
			      crtc->base.base.id);
2327 Serge 10128
 
3031 serge 10129
		/* Pipe has the wrong plane attached and the plane is active.
10130
		 * Temporarily change the plane mapping and disable everything
10131
		 * ...  */
10132
		plane = crtc->plane;
10133
		crtc->plane = !plane;
10134
		dev_priv->display.crtc_disable(&crtc->base);
10135
		crtc->plane = plane;
2342 Serge 10136
 
3031 serge 10137
		/* ... and break all links. */
10138
		list_for_each_entry(connector, &dev->mode_config.connector_list,
10139
				    base.head) {
10140
			if (connector->encoder->base.crtc != &crtc->base)
10141
				continue;
2327 Serge 10142
 
3031 serge 10143
			intel_connector_break_all_links(connector);
10144
		}
2327 Serge 10145
 
3031 serge 10146
		WARN_ON(crtc->active);
10147
		crtc->base.enabled = false;
10148
	}
2327 Serge 10149
 
3031 serge 10150
	if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10151
	    crtc->pipe == PIPE_A && !crtc->active) {
10152
		/* BIOS forgot to enable pipe A, this mostly happens after
10153
		 * resume. Force-enable the pipe to fix this, the update_dpms
10154
		 * call below we restore the pipe to the right state, but leave
10155
		 * the required bits on. */
10156
		intel_enable_pipe_a(dev);
10157
	}
2327 Serge 10158
 
3031 serge 10159
	/* Adjust the state of the output pipe according to whether we
10160
	 * have active connectors/encoders. */
10161
	intel_crtc_update_dpms(&crtc->base);
2327 Serge 10162
 
3031 serge 10163
	if (crtc->active != crtc->base.enabled) {
10164
		struct intel_encoder *encoder;
2327 Serge 10165
 
3031 serge 10166
		/* This can happen either due to bugs in the get_hw_state
10167
		 * functions or because the pipe is force-enabled due to the
10168
		 * pipe A quirk. */
10169
		DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10170
			      crtc->base.base.id,
10171
			      crtc->base.enabled ? "enabled" : "disabled",
10172
			      crtc->active ? "enabled" : "disabled");
2327 Serge 10173
 
3031 serge 10174
		crtc->base.enabled = crtc->active;
2327 Serge 10175
 
3031 serge 10176
		/* Because we only establish the connector -> encoder ->
10177
		 * crtc links if something is active, this means the
10178
		 * crtc is now deactivated. Break the links. connector
10179
		 * -> encoder links are only establish when things are
10180
		 *  actually up, hence no need to break them. */
10181
		WARN_ON(crtc->active);
2327 Serge 10182
 
3031 serge 10183
		for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10184
			WARN_ON(encoder->connectors_active);
10185
			encoder->base.crtc = NULL;
10186
		}
10187
	}
2327 Serge 10188
}
10189
 
3031 serge 10190
static void intel_sanitize_encoder(struct intel_encoder *encoder)
2327 Serge 10191
{
3031 serge 10192
	struct intel_connector *connector;
10193
	struct drm_device *dev = encoder->base.dev;
2327 Serge 10194
 
3031 serge 10195
	/* We need to check both for a crtc link (meaning that the
10196
	 * encoder is active and trying to read from a pipe) and the
10197
	 * pipe itself being active. */
10198
	bool has_active_crtc = encoder->base.crtc &&
10199
		to_intel_crtc(encoder->base.crtc)->active;
2327 Serge 10200
 
3031 serge 10201
	if (encoder->connectors_active && !has_active_crtc) {
10202
		DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10203
			      encoder->base.base.id,
10204
			      drm_get_encoder_name(&encoder->base));
2327 Serge 10205
 
3031 serge 10206
		/* Connector is active, but has no active pipe. This is
10207
		 * fallout from our resume register restoring. Disable
10208
		 * the encoder manually again. */
10209
		if (encoder->base.crtc) {
10210
			DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10211
				      encoder->base.base.id,
10212
				      drm_get_encoder_name(&encoder->base));
10213
			encoder->disable(encoder);
10214
		}
2327 Serge 10215
 
3031 serge 10216
		/* Inconsistent output/port/pipe state happens presumably due to
10217
		 * a bug in one of the get_hw_state functions. Or someplace else
10218
		 * in our code, like the register restore mess on resume. Clamp
10219
		 * things to off as a safer default. */
10220
		list_for_each_entry(connector,
10221
				    &dev->mode_config.connector_list,
10222
				    base.head) {
10223
			if (connector->encoder != encoder)
10224
				continue;
2327 Serge 10225
 
3031 serge 10226
			intel_connector_break_all_links(connector);
10227
		}
10228
	}
10229
	/* Enabled encoders without active connectors will be fixed in
10230
	 * the crtc fixup. */
2327 Serge 10231
}
10232
 
3746 Serge 10233
void i915_redisable_vga(struct drm_device *dev)
10234
{
10235
	struct drm_i915_private *dev_priv = dev->dev_private;
10236
	u32 vga_reg = i915_vgacntrl_reg(dev);
10237
 
4104 Serge 10238
	/* This function can be called both from intel_modeset_setup_hw_state or
10239
	 * at a very early point in our resume sequence, where the power well
10240
	 * structures are not yet restored. Since this function is at a very
10241
	 * paranoid "someone might have enabled VGA while we were not looking"
10242
	 * level, just check if the power well is enabled instead of trying to
10243
	 * follow the "don't touch the power well if we don't need it" policy
10244
	 * the rest of the driver uses. */
10245
	if (HAS_POWER_WELL(dev) &&
10246
	    (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
10247
		return;
10248
 
3746 Serge 10249
	if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
10250
		DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10251
		i915_disable_vga(dev);
10252
	}
10253
}
10254
 
4104 Serge 10255
static void intel_modeset_readout_hw_state(struct drm_device *dev)
2332 Serge 10256
{
10257
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 10258
	enum pipe pipe;
10259
	struct intel_crtc *crtc;
10260
	struct intel_encoder *encoder;
10261
	struct intel_connector *connector;
4104 Serge 10262
	int i;
2327 Serge 10263
 
3746 Serge 10264
	list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10265
			    base.head) {
10266
		memset(&crtc->config, 0, sizeof(crtc->config));
2327 Serge 10267
 
3746 Serge 10268
		crtc->active = dev_priv->display.get_pipe_config(crtc,
10269
								 &crtc->config);
2327 Serge 10270
 
3031 serge 10271
		crtc->base.enabled = crtc->active;
2330 Serge 10272
 
3031 serge 10273
		DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10274
			      crtc->base.base.id,
10275
			      crtc->active ? "enabled" : "disabled");
2339 Serge 10276
	}
2332 Serge 10277
 
4104 Serge 10278
	/* FIXME: Smash this into the new shared dpll infrastructure. */
3480 Serge 10279
	if (HAS_DDI(dev))
3243 Serge 10280
		intel_ddi_setup_hw_pll_state(dev);
10281
 
4104 Serge 10282
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10283
		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10284
 
10285
		pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10286
		pll->active = 0;
10287
		list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10288
				    base.head) {
10289
			if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10290
				pll->active++;
10291
		}
10292
		pll->refcount = pll->active;
10293
 
10294
		DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10295
			      pll->name, pll->refcount, pll->on);
10296
	}
10297
 
3031 serge 10298
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10299
			    base.head) {
10300
		pipe = 0;
2332 Serge 10301
 
3031 serge 10302
		if (encoder->get_hw_state(encoder, &pipe)) {
4104 Serge 10303
			crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10304
			encoder->base.crtc = &crtc->base;
10305
			if (encoder->get_config)
10306
				encoder->get_config(encoder, &crtc->config);
3031 serge 10307
		} else {
10308
			encoder->base.crtc = NULL;
10309
		}
2332 Serge 10310
 
3031 serge 10311
		encoder->connectors_active = false;
10312
		DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
10313
			      encoder->base.base.id,
10314
			      drm_get_encoder_name(&encoder->base),
10315
			      encoder->base.crtc ? "enabled" : "disabled",
10316
			      pipe);
10317
	}
2332 Serge 10318
 
4104 Serge 10319
	list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10320
			    base.head) {
10321
		if (!crtc->active)
10322
			continue;
10323
		if (dev_priv->display.get_clock)
10324
			dev_priv->display.get_clock(crtc,
10325
						    &crtc->config);
10326
	}
10327
 
3031 serge 10328
	list_for_each_entry(connector, &dev->mode_config.connector_list,
10329
			    base.head) {
10330
		if (connector->get_hw_state(connector)) {
10331
			connector->base.dpms = DRM_MODE_DPMS_ON;
10332
			connector->encoder->connectors_active = true;
10333
			connector->base.encoder = &connector->encoder->base;
10334
		} else {
10335
			connector->base.dpms = DRM_MODE_DPMS_OFF;
10336
			connector->base.encoder = NULL;
10337
		}
10338
		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10339
			      connector->base.base.id,
10340
			      drm_get_connector_name(&connector->base),
10341
			      connector->base.encoder ? "enabled" : "disabled");
2332 Serge 10342
	}
4104 Serge 10343
}
2332 Serge 10344
 
4104 Serge 10345
/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10346
 * and i915 state tracking structures. */
10347
void intel_modeset_setup_hw_state(struct drm_device *dev,
10348
				  bool force_restore)
10349
{
10350
	struct drm_i915_private *dev_priv = dev->dev_private;
10351
	enum pipe pipe;
10352
	struct drm_plane *plane;
10353
	struct intel_crtc *crtc;
10354
	struct intel_encoder *encoder;
10355
	int i;
10356
 
10357
	intel_modeset_readout_hw_state(dev);
10358
 
10359
	/*
10360
	 * Now that we have the config, copy it to each CRTC struct
10361
	 * Note that this could go away if we move to using crtc_config
10362
	 * checking everywhere.
10363
	 */
10364
	list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10365
			    base.head) {
10366
		if (crtc->active && i915_fastboot) {
10367
			intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10368
 
10369
			DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10370
				      crtc->base.base.id);
10371
			drm_mode_debug_printmodeline(&crtc->base.mode);
10372
		}
10373
	}
10374
 
3031 serge 10375
	/* HW state is read out, now we need to sanitize this mess. */
10376
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10377
			    base.head) {
10378
		intel_sanitize_encoder(encoder);
2332 Serge 10379
	}
10380
 
3031 serge 10381
	for_each_pipe(pipe) {
10382
		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10383
		intel_sanitize_crtc(crtc);
4104 Serge 10384
		intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
2332 Serge 10385
	}
10386
 
4104 Serge 10387
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10388
		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10389
 
10390
		if (!pll->on || pll->active)
10391
			continue;
10392
 
10393
		DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10394
 
10395
		pll->disable(dev_priv, pll);
10396
		pll->on = false;
10397
	}
10398
 
3243 Serge 10399
	if (force_restore) {
3746 Serge 10400
		/*
10401
		 * We need to use raw interfaces for restoring state to avoid
10402
		 * checking (bogus) intermediate states.
10403
		 */
3243 Serge 10404
		for_each_pipe(pipe) {
3746 Serge 10405
			struct drm_crtc *crtc =
10406
				dev_priv->pipe_to_crtc_mapping[pipe];
10407
 
10408
			__intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10409
					 crtc->fb);
3243 Serge 10410
		}
3746 Serge 10411
		list_for_each_entry(plane, &dev->mode_config.plane_list, head)
10412
			intel_plane_restore(plane);
3243 Serge 10413
 
3746 Serge 10414
		i915_redisable_vga(dev);
3243 Serge 10415
	} else {
3031 serge 10416
	intel_modeset_update_staged_output_state(dev);
3243 Serge 10417
	}
2332 Serge 10418
 
3031 serge 10419
	intel_modeset_check_state(dev);
3243 Serge 10420
 
10421
	drm_mode_config_reset(dev);
2332 Serge 10422
}
10423
 
3031 serge 10424
void intel_modeset_gem_init(struct drm_device *dev)
2330 Serge 10425
{
3031 serge 10426
	intel_modeset_init_hw(dev);
2330 Serge 10427
 
3031 serge 10428
//   intel_setup_overlay(dev);
2330 Serge 10429
 
3243 Serge 10430
	intel_modeset_setup_hw_state(dev, false);
2330 Serge 10431
}
10432
 
3031 serge 10433
void intel_modeset_cleanup(struct drm_device *dev)
2327 Serge 10434
{
3031 serge 10435
#if 0
10436
	struct drm_i915_private *dev_priv = dev->dev_private;
10437
	struct drm_crtc *crtc;
2327 Serge 10438
 
4104 Serge 10439
	/*
10440
	 * Interrupts and polling as the first thing to avoid creating havoc.
10441
	 * Too much stuff here (turning of rps, connectors, ...) would
10442
	 * experience fancy races otherwise.
10443
	 */
10444
	drm_irq_uninstall(dev);
10445
	cancel_work_sync(&dev_priv->hotplug_work);
10446
	/*
10447
	 * Due to the hpd irq storm handling the hotplug work can re-arm the
10448
	 * poll handlers. Hence disable polling after hpd handling is shut down.
10449
	 */
3031 serge 10450
//   drm_kms_helper_poll_fini(dev);
4104 Serge 10451
 
3031 serge 10452
	mutex_lock(&dev->struct_mutex);
2327 Serge 10453
 
3031 serge 10454
//   intel_unregister_dsm_handler();
2327 Serge 10455
 
3031 serge 10456
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10457
		/* Skip inactive CRTCs */
10458
		if (!crtc->fb)
10459
			continue;
2342 Serge 10460
 
3031 serge 10461
		intel_increase_pllclock(crtc);
10462
	}
2342 Serge 10463
 
3031 serge 10464
	intel_disable_fbc(dev);
2342 Serge 10465
 
3031 serge 10466
	intel_disable_gt_powersave(dev);
2342 Serge 10467
 
3031 serge 10468
	ironlake_teardown_rc6(dev);
2327 Serge 10469
 
3031 serge 10470
	mutex_unlock(&dev->struct_mutex);
2327 Serge 10471
 
4104 Serge 10472
	/* flush any delayed tasks or pending work */
10473
	flush_scheduled_work();
3031 serge 10474
//   cancel_work_sync(&dev_priv->hotplug_work);
10475
//   cancel_work_sync(&dev_priv->rps.work);
2327 Serge 10476
 
3031 serge 10477
	/* flush any delayed tasks or pending work */
10478
//   flush_scheduled_work();
2327 Serge 10479
 
3031 serge 10480
	drm_mode_config_cleanup(dev);
2327 Serge 10481
#endif
10482
}
10483
 
10484
/*
3031 serge 10485
 * Return which encoder is currently attached for connector.
2327 Serge 10486
 */
3031 serge 10487
struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
2327 Serge 10488
{
3031 serge 10489
	return &intel_attached_encoder(connector)->base;
10490
}
2327 Serge 10491
 
3031 serge 10492
void intel_connector_attach_encoder(struct intel_connector *connector,
10493
				    struct intel_encoder *encoder)
10494
{
10495
	connector->encoder = encoder;
10496
	drm_mode_connector_attach_encoder(&connector->base,
10497
					  &encoder->base);
2327 Serge 10498
}
10499
 
10500
/*
3031 serge 10501
 * set vga decode state - true == enable VGA decode
2327 Serge 10502
 */
3031 serge 10503
int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
2327 Serge 10504
{
2330 Serge 10505
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 10506
	u16 gmch_ctrl;
2327 Serge 10507
 
3031 serge 10508
	pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
10509
	if (state)
10510
		gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
2330 Serge 10511
	else
3031 serge 10512
		gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
10513
	pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
10514
	return 0;
2330 Serge 10515
}
10516
 
3031 serge 10517
#ifdef CONFIG_DEBUG_FS
10518
#include 
2327 Serge 10519
 
3031 serge 10520
struct intel_display_error_state {
4104 Serge 10521
 
10522
	u32 power_well_driver;
10523
 
10524
	int num_transcoders;
10525
 
3031 serge 10526
	struct intel_cursor_error_state {
10527
		u32 control;
10528
		u32 position;
10529
		u32 base;
10530
		u32 size;
10531
	} cursor[I915_MAX_PIPES];
2327 Serge 10532
 
3031 serge 10533
	struct intel_pipe_error_state {
10534
		u32 source;
10535
	} pipe[I915_MAX_PIPES];
2327 Serge 10536
 
3031 serge 10537
	struct intel_plane_error_state {
10538
		u32 control;
10539
		u32 stride;
10540
		u32 size;
10541
		u32 pos;
10542
		u32 addr;
10543
		u32 surface;
10544
		u32 tile_offset;
10545
	} plane[I915_MAX_PIPES];
4104 Serge 10546
 
10547
	struct intel_transcoder_error_state {
10548
		enum transcoder cpu_transcoder;
10549
 
10550
		u32 conf;
10551
 
10552
		u32 htotal;
10553
		u32 hblank;
10554
		u32 hsync;
10555
		u32 vtotal;
10556
		u32 vblank;
10557
		u32 vsync;
10558
	} transcoder[4];
3031 serge 10559
};
2327 Serge 10560
 
3031 serge 10561
struct intel_display_error_state *
10562
intel_display_capture_error_state(struct drm_device *dev)
10563
{
10564
	drm_i915_private_t *dev_priv = dev->dev_private;
10565
	struct intel_display_error_state *error;
4104 Serge 10566
	int transcoders[] = {
10567
		TRANSCODER_A,
10568
		TRANSCODER_B,
10569
		TRANSCODER_C,
10570
		TRANSCODER_EDP,
10571
	};
3031 serge 10572
	int i;
2327 Serge 10573
 
4104 Serge 10574
	if (INTEL_INFO(dev)->num_pipes == 0)
10575
		return NULL;
10576
 
3031 serge 10577
	error = kmalloc(sizeof(*error), GFP_ATOMIC);
10578
	if (error == NULL)
10579
		return NULL;
2327 Serge 10580
 
4104 Serge 10581
	if (HAS_POWER_WELL(dev))
10582
		error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10583
 
3031 serge 10584
	for_each_pipe(i) {
3746 Serge 10585
		if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
3031 serge 10586
		error->cursor[i].control = I915_READ(CURCNTR(i));
10587
		error->cursor[i].position = I915_READ(CURPOS(i));
10588
		error->cursor[i].base = I915_READ(CURBASE(i));
3746 Serge 10589
		} else {
10590
			error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10591
			error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10592
			error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10593
		}
2327 Serge 10594
 
3031 serge 10595
		error->plane[i].control = I915_READ(DSPCNTR(i));
10596
		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
3746 Serge 10597
		if (INTEL_INFO(dev)->gen <= 3) {
3031 serge 10598
		error->plane[i].size = I915_READ(DSPSIZE(i));
10599
		error->plane[i].pos = I915_READ(DSPPOS(i));
3746 Serge 10600
		}
10601
		if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3031 serge 10602
		error->plane[i].addr = I915_READ(DSPADDR(i));
10603
		if (INTEL_INFO(dev)->gen >= 4) {
10604
			error->plane[i].surface = I915_READ(DSPSURF(i));
10605
			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10606
		}
2327 Serge 10607
 
3031 serge 10608
		error->pipe[i].source = I915_READ(PIPESRC(i));
10609
	}
2327 Serge 10610
 
4104 Serge 10611
	error->num_transcoders = INTEL_INFO(dev)->num_pipes;
10612
	if (HAS_DDI(dev_priv->dev))
10613
		error->num_transcoders++; /* Account for eDP. */
10614
 
10615
	for (i = 0; i < error->num_transcoders; i++) {
10616
		enum transcoder cpu_transcoder = transcoders[i];
10617
 
10618
		error->transcoder[i].cpu_transcoder = cpu_transcoder;
10619
 
10620
		error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10621
		error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10622
		error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10623
		error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10624
		error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10625
		error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10626
		error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10627
	}
10628
 
10629
	/* In the code above we read the registers without checking if the power
10630
	 * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10631
	 * prevent the next I915_WRITE from detecting it and printing an error
10632
	 * message. */
10633
	intel_uncore_clear_errors(dev);
10634
 
3031 serge 10635
	return error;
2330 Serge 10636
}
2327 Serge 10637
 
4104 Serge 10638
#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10639
 
3031 serge 10640
void
4104 Serge 10641
intel_display_print_error_state(struct drm_i915_error_state_buf *m,
3031 serge 10642
				struct drm_device *dev,
10643
				struct intel_display_error_state *error)
2332 Serge 10644
{
3031 serge 10645
	int i;
2330 Serge 10646
 
4104 Serge 10647
	if (!error)
10648
		return;
10649
 
10650
	err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10651
	if (HAS_POWER_WELL(dev))
10652
		err_printf(m, "PWR_WELL_CTL2: %08x\n",
10653
			   error->power_well_driver);
3031 serge 10654
	for_each_pipe(i) {
4104 Serge 10655
		err_printf(m, "Pipe [%d]:\n", i);
10656
		err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
2332 Serge 10657
 
4104 Serge 10658
		err_printf(m, "Plane [%d]:\n", i);
10659
		err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
10660
		err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
3746 Serge 10661
		if (INTEL_INFO(dev)->gen <= 3) {
4104 Serge 10662
			err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
10663
			err_printf(m, "  POS: %08x\n", error->plane[i].pos);
3746 Serge 10664
		}
10665
		if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
4104 Serge 10666
			err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
3031 serge 10667
		if (INTEL_INFO(dev)->gen >= 4) {
4104 Serge 10668
			err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
10669
			err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
3031 serge 10670
		}
2332 Serge 10671
 
4104 Serge 10672
		err_printf(m, "Cursor [%d]:\n", i);
10673
		err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
10674
		err_printf(m, "  POS: %08x\n", error->cursor[i].position);
10675
		err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
3031 serge 10676
	}
4104 Serge 10677
 
10678
	for (i = 0; i < error->num_transcoders; i++) {
10679
		err_printf(m, "  CPU transcoder: %c\n",
10680
			   transcoder_name(error->transcoder[i].cpu_transcoder));
10681
		err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
10682
		err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
10683
		err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
10684
		err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
10685
		err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
10686
		err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
10687
		err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
10688
	}
2327 Serge 10689
}
3031 serge 10690
#endif