Subversion Repositories Kolibri OS

Rev

Rev 3480 | Rev 3746 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2327 Serge 1
/*
2
 * Copyright © 2006-2007 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21
 * DEALINGS IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *  Eric Anholt 
25
 */
26
 
27
//#include 
28
#include 
29
//#include 
30
#include 
31
#include 
2330 Serge 32
#include 
2327 Serge 33
//#include 
2342 Serge 34
#include 
3031 serge 35
#include 
2327 Serge 36
#include "intel_drv.h"
3031 serge 37
#include 
2327 Serge 38
#include "i915_drv.h"
2351 Serge 39
#include "i915_trace.h"
3031 serge 40
#include 
41
#include 
42
//#include 
2327 Serge 43
 
44
phys_addr_t get_bus_addr(void);
45
 
46
static inline __attribute__((const))
47
bool is_power_of_2(unsigned long n)
48
{
49
    return (n != 0 && ((n & (n - 1)) == 0));
50
}
51
 
2330 Serge 52
#define MAX_ERRNO       4095
53
 
54
 
55
 
2342 Serge 56
bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
2327 Serge 57
static void intel_increase_pllclock(struct drm_crtc *crtc);
3243 Serge 58
static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
2327 Serge 59
 
60
typedef struct {
61
    /* given values */
62
    int n;
63
    int m1, m2;
64
    int p1, p2;
65
    /* derived values */
66
    int dot;
67
    int vco;
68
    int m;
69
    int p;
70
} intel_clock_t;
71
 
72
typedef struct {
73
    int min, max;
74
} intel_range_t;
75
 
76
typedef struct {
77
    int dot_limit;
78
    int p2_slow, p2_fast;
79
} intel_p2_t;
80
 
81
#define INTEL_P2_NUM              2
82
typedef struct intel_limit intel_limit_t;
83
struct intel_limit {
84
    intel_range_t   dot, vco, n, m, m1, m2, p, p1;
85
    intel_p2_t      p2;
86
    bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
3031 serge 87
			int, int, intel_clock_t *, intel_clock_t *);
2327 Serge 88
};
89
 
90
/* FDI */
91
#define IRONLAKE_FDI_FREQ       2700000 /* in kHz for mode->clock */
92
 
3243 Serge 93
int
94
intel_pch_rawclk(struct drm_device *dev)
95
{
96
	struct drm_i915_private *dev_priv = dev->dev_private;
97
 
98
	WARN_ON(!HAS_PCH_SPLIT(dev));
99
 
100
	return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
101
}
102
 
2327 Serge 103
static bool
104
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
3031 serge 105
		    int target, int refclk, intel_clock_t *match_clock,
106
		    intel_clock_t *best_clock);
2327 Serge 107
static bool
108
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
3031 serge 109
			int target, int refclk, intel_clock_t *match_clock,
110
			intel_clock_t *best_clock);
2327 Serge 111
 
112
static bool
113
intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
3031 serge 114
		      int target, int refclk, intel_clock_t *match_clock,
115
		      intel_clock_t *best_clock);
2327 Serge 116
static bool
117
intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
3031 serge 118
			   int target, int refclk, intel_clock_t *match_clock,
119
			   intel_clock_t *best_clock);
2327 Serge 120
 
3031 serge 121
static bool
122
intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
123
			int target, int refclk, intel_clock_t *match_clock,
124
			intel_clock_t *best_clock);
125
 
2327 Serge 126
static inline u32 /* units of 100MHz */
127
intel_fdi_link_freq(struct drm_device *dev)
128
{
129
	if (IS_GEN5(dev)) {
130
		struct drm_i915_private *dev_priv = dev->dev_private;
131
		return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
132
	} else
133
		return 27;
134
}
135
 
136
static const intel_limit_t intel_limits_i8xx_dvo = {
137
        .dot = { .min = 25000, .max = 350000 },
138
        .vco = { .min = 930000, .max = 1400000 },
139
        .n = { .min = 3, .max = 16 },
140
        .m = { .min = 96, .max = 140 },
141
        .m1 = { .min = 18, .max = 26 },
142
        .m2 = { .min = 6, .max = 16 },
143
        .p = { .min = 4, .max = 128 },
144
        .p1 = { .min = 2, .max = 33 },
145
	.p2 = { .dot_limit = 165000,
146
		.p2_slow = 4, .p2_fast = 2 },
147
	.find_pll = intel_find_best_PLL,
148
};
149
 
150
static const intel_limit_t intel_limits_i8xx_lvds = {
151
        .dot = { .min = 25000, .max = 350000 },
152
        .vco = { .min = 930000, .max = 1400000 },
153
        .n = { .min = 3, .max = 16 },
154
        .m = { .min = 96, .max = 140 },
155
        .m1 = { .min = 18, .max = 26 },
156
        .m2 = { .min = 6, .max = 16 },
157
        .p = { .min = 4, .max = 128 },
158
        .p1 = { .min = 1, .max = 6 },
159
	.p2 = { .dot_limit = 165000,
160
		.p2_slow = 14, .p2_fast = 7 },
161
	.find_pll = intel_find_best_PLL,
162
};
163
 
164
static const intel_limit_t intel_limits_i9xx_sdvo = {
165
        .dot = { .min = 20000, .max = 400000 },
166
        .vco = { .min = 1400000, .max = 2800000 },
167
        .n = { .min = 1, .max = 6 },
168
        .m = { .min = 70, .max = 120 },
3480 Serge 169
	.m1 = { .min = 8, .max = 18 },
170
	.m2 = { .min = 3, .max = 7 },
2327 Serge 171
        .p = { .min = 5, .max = 80 },
172
        .p1 = { .min = 1, .max = 8 },
173
	.p2 = { .dot_limit = 200000,
174
		.p2_slow = 10, .p2_fast = 5 },
175
	.find_pll = intel_find_best_PLL,
176
};
177
 
178
static const intel_limit_t intel_limits_i9xx_lvds = {
179
        .dot = { .min = 20000, .max = 400000 },
180
        .vco = { .min = 1400000, .max = 2800000 },
181
        .n = { .min = 1, .max = 6 },
182
        .m = { .min = 70, .max = 120 },
3480 Serge 183
	.m1 = { .min = 8, .max = 18 },
184
	.m2 = { .min = 3, .max = 7 },
2327 Serge 185
        .p = { .min = 7, .max = 98 },
186
        .p1 = { .min = 1, .max = 8 },
187
	.p2 = { .dot_limit = 112000,
188
		.p2_slow = 14, .p2_fast = 7 },
189
	.find_pll = intel_find_best_PLL,
190
};
191
 
192
 
193
static const intel_limit_t intel_limits_g4x_sdvo = {
194
	.dot = { .min = 25000, .max = 270000 },
195
	.vco = { .min = 1750000, .max = 3500000},
196
	.n = { .min = 1, .max = 4 },
197
	.m = { .min = 104, .max = 138 },
198
	.m1 = { .min = 17, .max = 23 },
199
	.m2 = { .min = 5, .max = 11 },
200
	.p = { .min = 10, .max = 30 },
201
	.p1 = { .min = 1, .max = 3},
202
	.p2 = { .dot_limit = 270000,
203
		.p2_slow = 10,
204
		.p2_fast = 10
205
	},
206
	.find_pll = intel_g4x_find_best_PLL,
207
};
208
 
209
static const intel_limit_t intel_limits_g4x_hdmi = {
210
	.dot = { .min = 22000, .max = 400000 },
211
	.vco = { .min = 1750000, .max = 3500000},
212
	.n = { .min = 1, .max = 4 },
213
	.m = { .min = 104, .max = 138 },
214
	.m1 = { .min = 16, .max = 23 },
215
	.m2 = { .min = 5, .max = 11 },
216
	.p = { .min = 5, .max = 80 },
217
	.p1 = { .min = 1, .max = 8},
218
	.p2 = { .dot_limit = 165000,
219
		.p2_slow = 10, .p2_fast = 5 },
220
	.find_pll = intel_g4x_find_best_PLL,
221
};
222
 
223
static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
224
	.dot = { .min = 20000, .max = 115000 },
225
	.vco = { .min = 1750000, .max = 3500000 },
226
	.n = { .min = 1, .max = 3 },
227
	.m = { .min = 104, .max = 138 },
228
	.m1 = { .min = 17, .max = 23 },
229
	.m2 = { .min = 5, .max = 11 },
230
	.p = { .min = 28, .max = 112 },
231
	.p1 = { .min = 2, .max = 8 },
232
	.p2 = { .dot_limit = 0,
233
		.p2_slow = 14, .p2_fast = 14
234
	},
235
	.find_pll = intel_g4x_find_best_PLL,
236
};
237
 
238
static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
239
	.dot = { .min = 80000, .max = 224000 },
240
	.vco = { .min = 1750000, .max = 3500000 },
241
	.n = { .min = 1, .max = 3 },
242
	.m = { .min = 104, .max = 138 },
243
	.m1 = { .min = 17, .max = 23 },
244
	.m2 = { .min = 5, .max = 11 },
245
	.p = { .min = 14, .max = 42 },
246
	.p1 = { .min = 2, .max = 6 },
247
	.p2 = { .dot_limit = 0,
248
		.p2_slow = 7, .p2_fast = 7
249
	},
250
	.find_pll = intel_g4x_find_best_PLL,
251
};
252
 
253
static const intel_limit_t intel_limits_g4x_display_port = {
254
        .dot = { .min = 161670, .max = 227000 },
255
        .vco = { .min = 1750000, .max = 3500000},
256
        .n = { .min = 1, .max = 2 },
257
        .m = { .min = 97, .max = 108 },
258
        .m1 = { .min = 0x10, .max = 0x12 },
259
        .m2 = { .min = 0x05, .max = 0x06 },
260
        .p = { .min = 10, .max = 20 },
261
        .p1 = { .min = 1, .max = 2},
262
        .p2 = { .dot_limit = 0,
263
		.p2_slow = 10, .p2_fast = 10 },
264
        .find_pll = intel_find_pll_g4x_dp,
265
};
266
 
267
static const intel_limit_t intel_limits_pineview_sdvo = {
268
        .dot = { .min = 20000, .max = 400000},
269
        .vco = { .min = 1700000, .max = 3500000 },
270
	/* Pineview's Ncounter is a ring counter */
271
        .n = { .min = 3, .max = 6 },
272
        .m = { .min = 2, .max = 256 },
273
	/* Pineview only has one combined m divider, which we treat as m2. */
274
        .m1 = { .min = 0, .max = 0 },
275
        .m2 = { .min = 0, .max = 254 },
276
        .p = { .min = 5, .max = 80 },
277
        .p1 = { .min = 1, .max = 8 },
278
	.p2 = { .dot_limit = 200000,
279
		.p2_slow = 10, .p2_fast = 5 },
280
	.find_pll = intel_find_best_PLL,
281
};
282
 
283
static const intel_limit_t intel_limits_pineview_lvds = {
284
        .dot = { .min = 20000, .max = 400000 },
285
        .vco = { .min = 1700000, .max = 3500000 },
286
        .n = { .min = 3, .max = 6 },
287
        .m = { .min = 2, .max = 256 },
288
        .m1 = { .min = 0, .max = 0 },
289
        .m2 = { .min = 0, .max = 254 },
290
        .p = { .min = 7, .max = 112 },
291
        .p1 = { .min = 1, .max = 8 },
292
	.p2 = { .dot_limit = 112000,
293
		.p2_slow = 14, .p2_fast = 14 },
294
	.find_pll = intel_find_best_PLL,
295
};
296
 
297
/* Ironlake / Sandybridge
298
 *
299
 * We calculate clock using (register_value + 2) for N/M1/M2, so here
300
 * the range value for them is (actual_value - 2).
301
 */
302
static const intel_limit_t intel_limits_ironlake_dac = {
303
	.dot = { .min = 25000, .max = 350000 },
304
	.vco = { .min = 1760000, .max = 3510000 },
305
	.n = { .min = 1, .max = 5 },
306
	.m = { .min = 79, .max = 127 },
307
	.m1 = { .min = 12, .max = 22 },
308
	.m2 = { .min = 5, .max = 9 },
309
	.p = { .min = 5, .max = 80 },
310
	.p1 = { .min = 1, .max = 8 },
311
	.p2 = { .dot_limit = 225000,
312
		.p2_slow = 10, .p2_fast = 5 },
313
	.find_pll = intel_g4x_find_best_PLL,
314
};
315
 
316
static const intel_limit_t intel_limits_ironlake_single_lvds = {
317
	.dot = { .min = 25000, .max = 350000 },
318
	.vco = { .min = 1760000, .max = 3510000 },
319
	.n = { .min = 1, .max = 3 },
320
	.m = { .min = 79, .max = 118 },
321
	.m1 = { .min = 12, .max = 22 },
322
	.m2 = { .min = 5, .max = 9 },
323
	.p = { .min = 28, .max = 112 },
324
	.p1 = { .min = 2, .max = 8 },
325
	.p2 = { .dot_limit = 225000,
326
		.p2_slow = 14, .p2_fast = 14 },
327
	.find_pll = intel_g4x_find_best_PLL,
328
};
329
 
330
static const intel_limit_t intel_limits_ironlake_dual_lvds = {
331
	.dot = { .min = 25000, .max = 350000 },
332
	.vco = { .min = 1760000, .max = 3510000 },
333
	.n = { .min = 1, .max = 3 },
334
	.m = { .min = 79, .max = 127 },
335
	.m1 = { .min = 12, .max = 22 },
336
	.m2 = { .min = 5, .max = 9 },
337
	.p = { .min = 14, .max = 56 },
338
	.p1 = { .min = 2, .max = 8 },
339
	.p2 = { .dot_limit = 225000,
340
		.p2_slow = 7, .p2_fast = 7 },
341
	.find_pll = intel_g4x_find_best_PLL,
342
};
343
 
344
/* LVDS 100mhz refclk limits. */
345
static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
346
	.dot = { .min = 25000, .max = 350000 },
347
	.vco = { .min = 1760000, .max = 3510000 },
348
	.n = { .min = 1, .max = 2 },
349
	.m = { .min = 79, .max = 126 },
350
	.m1 = { .min = 12, .max = 22 },
351
	.m2 = { .min = 5, .max = 9 },
352
	.p = { .min = 28, .max = 112 },
2342 Serge 353
	.p1 = { .min = 2, .max = 8 },
2327 Serge 354
	.p2 = { .dot_limit = 225000,
355
		.p2_slow = 14, .p2_fast = 14 },
356
	.find_pll = intel_g4x_find_best_PLL,
357
};
358
 
359
static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
360
	.dot = { .min = 25000, .max = 350000 },
361
	.vco = { .min = 1760000, .max = 3510000 },
362
	.n = { .min = 1, .max = 3 },
363
	.m = { .min = 79, .max = 126 },
364
	.m1 = { .min = 12, .max = 22 },
365
	.m2 = { .min = 5, .max = 9 },
366
	.p = { .min = 14, .max = 42 },
2342 Serge 367
	.p1 = { .min = 2, .max = 6 },
2327 Serge 368
	.p2 = { .dot_limit = 225000,
369
		.p2_slow = 7, .p2_fast = 7 },
370
	.find_pll = intel_g4x_find_best_PLL,
371
};
372
 
373
static const intel_limit_t intel_limits_ironlake_display_port = {
374
        .dot = { .min = 25000, .max = 350000 },
375
        .vco = { .min = 1760000, .max = 3510000},
376
        .n = { .min = 1, .max = 2 },
377
        .m = { .min = 81, .max = 90 },
378
        .m1 = { .min = 12, .max = 22 },
379
        .m2 = { .min = 5, .max = 9 },
380
        .p = { .min = 10, .max = 20 },
381
        .p1 = { .min = 1, .max = 2},
382
        .p2 = { .dot_limit = 0,
383
		.p2_slow = 10, .p2_fast = 10 },
384
        .find_pll = intel_find_pll_ironlake_dp,
385
};
386
 
3031 serge 387
static const intel_limit_t intel_limits_vlv_dac = {
388
	.dot = { .min = 25000, .max = 270000 },
389
	.vco = { .min = 4000000, .max = 6000000 },
390
	.n = { .min = 1, .max = 7 },
391
	.m = { .min = 22, .max = 450 }, /* guess */
392
	.m1 = { .min = 2, .max = 3 },
393
	.m2 = { .min = 11, .max = 156 },
394
	.p = { .min = 10, .max = 30 },
395
	.p1 = { .min = 2, .max = 3 },
396
	.p2 = { .dot_limit = 270000,
397
		.p2_slow = 2, .p2_fast = 20 },
398
	.find_pll = intel_vlv_find_best_pll,
399
};
400
 
401
static const intel_limit_t intel_limits_vlv_hdmi = {
402
	.dot = { .min = 20000, .max = 165000 },
3243 Serge 403
	.vco = { .min = 4000000, .max = 5994000},
3031 serge 404
	.n = { .min = 1, .max = 7 },
405
	.m = { .min = 60, .max = 300 }, /* guess */
406
	.m1 = { .min = 2, .max = 3 },
407
	.m2 = { .min = 11, .max = 156 },
408
	.p = { .min = 10, .max = 30 },
409
	.p1 = { .min = 2, .max = 3 },
410
	.p2 = { .dot_limit = 270000,
411
		.p2_slow = 2, .p2_fast = 20 },
412
	.find_pll = intel_vlv_find_best_pll,
413
};
414
 
415
static const intel_limit_t intel_limits_vlv_dp = {
3243 Serge 416
	.dot = { .min = 25000, .max = 270000 },
417
	.vco = { .min = 4000000, .max = 6000000 },
3031 serge 418
	.n = { .min = 1, .max = 7 },
3243 Serge 419
	.m = { .min = 22, .max = 450 },
3031 serge 420
	.m1 = { .min = 2, .max = 3 },
421
	.m2 = { .min = 11, .max = 156 },
422
	.p = { .min = 10, .max = 30 },
423
	.p1 = { .min = 2, .max = 3 },
424
	.p2 = { .dot_limit = 270000,
425
		.p2_slow = 2, .p2_fast = 20 },
426
	.find_pll = intel_vlv_find_best_pll,
427
};
428
 
429
u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
430
{
3480 Serge 431
	WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
3031 serge 432
 
433
	if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
434
		DRM_ERROR("DPIO idle wait timed out\n");
3480 Serge 435
		return 0;
3031 serge 436
	}
437
 
438
	I915_WRITE(DPIO_REG, reg);
439
	I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
440
		   DPIO_BYTE);
441
	if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
442
		DRM_ERROR("DPIO read wait timed out\n");
3480 Serge 443
		return 0;
3031 serge 444
	}
445
 
3480 Serge 446
	return I915_READ(DPIO_DATA);
3031 serge 447
}
448
 
449
static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
450
			     u32 val)
451
{
3480 Serge 452
	WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
3031 serge 453
 
454
	if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
455
		DRM_ERROR("DPIO idle wait timed out\n");
3480 Serge 456
		return;
3031 serge 457
	}
458
 
459
	I915_WRITE(DPIO_DATA, val);
460
	I915_WRITE(DPIO_REG, reg);
461
	I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
462
		   DPIO_BYTE);
463
	if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
464
		DRM_ERROR("DPIO write wait timed out\n");
465
}
466
 
467
static void vlv_init_dpio(struct drm_device *dev)
468
{
469
	struct drm_i915_private *dev_priv = dev->dev_private;
470
 
471
	/* Reset the DPIO config */
472
	I915_WRITE(DPIO_CTL, 0);
473
	POSTING_READ(DPIO_CTL);
474
	I915_WRITE(DPIO_CTL, 1);
475
	POSTING_READ(DPIO_CTL);
476
}
477
 
2327 Serge 478
static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
479
						int refclk)
480
{
481
	struct drm_device *dev = crtc->dev;
482
	const intel_limit_t *limit;
483
 
484
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3480 Serge 485
		if (intel_is_dual_link_lvds(dev)) {
2327 Serge 486
			/* LVDS dual channel */
487
			if (refclk == 100000)
488
				limit = &intel_limits_ironlake_dual_lvds_100m;
489
			else
490
				limit = &intel_limits_ironlake_dual_lvds;
491
		} else {
492
			if (refclk == 100000)
493
				limit = &intel_limits_ironlake_single_lvds_100m;
494
			else
495
				limit = &intel_limits_ironlake_single_lvds;
496
		}
497
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3243 Serge 498
		   intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
2327 Serge 499
		limit = &intel_limits_ironlake_display_port;
500
	else
501
		limit = &intel_limits_ironlake_dac;
502
 
503
	return limit;
504
}
505
 
506
static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
507
{
508
	struct drm_device *dev = crtc->dev;
509
	const intel_limit_t *limit;
510
 
511
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3480 Serge 512
		if (intel_is_dual_link_lvds(dev))
2327 Serge 513
			/* LVDS with dual channel */
514
			limit = &intel_limits_g4x_dual_channel_lvds;
515
		else
516
			/* LVDS with dual channel */
517
			limit = &intel_limits_g4x_single_channel_lvds;
518
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
519
		   intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
520
		limit = &intel_limits_g4x_hdmi;
521
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
522
		limit = &intel_limits_g4x_sdvo;
2342 Serge 523
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2327 Serge 524
		limit = &intel_limits_g4x_display_port;
525
	} else /* The option is for other outputs */
526
		limit = &intel_limits_i9xx_sdvo;
527
 
528
	return limit;
529
}
530
 
531
static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
532
{
533
	struct drm_device *dev = crtc->dev;
534
	const intel_limit_t *limit;
535
 
536
	if (HAS_PCH_SPLIT(dev))
537
		limit = intel_ironlake_limit(crtc, refclk);
538
	else if (IS_G4X(dev)) {
539
		limit = intel_g4x_limit(crtc);
540
	} else if (IS_PINEVIEW(dev)) {
541
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
542
			limit = &intel_limits_pineview_lvds;
543
		else
544
			limit = &intel_limits_pineview_sdvo;
3031 serge 545
	} else if (IS_VALLEYVIEW(dev)) {
546
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
547
			limit = &intel_limits_vlv_dac;
548
		else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
549
			limit = &intel_limits_vlv_hdmi;
550
		else
551
			limit = &intel_limits_vlv_dp;
2327 Serge 552
	} else if (!IS_GEN2(dev)) {
553
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
554
			limit = &intel_limits_i9xx_lvds;
555
		else
556
			limit = &intel_limits_i9xx_sdvo;
557
	} else {
558
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
559
			limit = &intel_limits_i8xx_lvds;
560
		else
561
			limit = &intel_limits_i8xx_dvo;
562
	}
563
	return limit;
564
}
565
 
566
/* m1 is reserved as 0 in Pineview, n is a ring counter */
567
static void pineview_clock(int refclk, intel_clock_t *clock)
568
{
569
	clock->m = clock->m2 + 2;
570
	clock->p = clock->p1 * clock->p2;
571
	clock->vco = refclk * clock->m / clock->n;
572
	clock->dot = clock->vco / clock->p;
573
}
574
 
575
static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
576
{
577
	if (IS_PINEVIEW(dev)) {
578
		pineview_clock(refclk, clock);
579
		return;
580
	}
581
	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
582
	clock->p = clock->p1 * clock->p2;
583
	clock->vco = refclk * clock->m / (clock->n + 2);
584
	clock->dot = clock->vco / clock->p;
585
}
586
 
587
/**
588
 * Returns whether any output on the specified pipe is of the specified type
589
 */
590
bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
591
{
592
	struct drm_device *dev = crtc->dev;
593
	struct intel_encoder *encoder;
594
 
3031 serge 595
	for_each_encoder_on_crtc(dev, crtc, encoder)
596
		if (encoder->type == type)
2327 Serge 597
			return true;
598
 
599
	return false;
600
}
601
 
602
#define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
603
/**
604
 * Returns whether the given set of divisors are valid for a given refclk with
605
 * the given connectors.
606
 */
607
 
608
static bool intel_PLL_is_valid(struct drm_device *dev,
609
			       const intel_limit_t *limit,
610
			       const intel_clock_t *clock)
611
{
612
	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
2342 Serge 613
		INTELPllInvalid("p1 out of range\n");
2327 Serge 614
	if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
2342 Serge 615
		INTELPllInvalid("p out of range\n");
2327 Serge 616
	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
2342 Serge 617
		INTELPllInvalid("m2 out of range\n");
2327 Serge 618
	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
2342 Serge 619
		INTELPllInvalid("m1 out of range\n");
2327 Serge 620
	if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
2342 Serge 621
		INTELPllInvalid("m1 <= m2\n");
2327 Serge 622
	if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
2342 Serge 623
		INTELPllInvalid("m out of range\n");
2327 Serge 624
	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
2342 Serge 625
		INTELPllInvalid("n out of range\n");
2327 Serge 626
	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
2342 Serge 627
		INTELPllInvalid("vco out of range\n");
2327 Serge 628
	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
629
	 * connector, etc., rather than just a single range.
630
	 */
631
	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
2342 Serge 632
		INTELPllInvalid("dot out of range\n");
2327 Serge 633
 
634
	return true;
635
}
636
 
637
static bool
638
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
3031 serge 639
		    int target, int refclk, intel_clock_t *match_clock,
640
		    intel_clock_t *best_clock)
2327 Serge 641
 
642
{
643
	struct drm_device *dev = crtc->dev;
644
	intel_clock_t clock;
645
	int err = target;
646
 
3480 Serge 647
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2327 Serge 648
		/*
3480 Serge 649
		 * For LVDS just rely on its current settings for dual-channel.
650
		 * We haven't figured out how to reliably set up different
651
		 * single/dual channel state, if we even can.
2327 Serge 652
		 */
3480 Serge 653
		if (intel_is_dual_link_lvds(dev))
2327 Serge 654
			clock.p2 = limit->p2.p2_fast;
655
		else
656
			clock.p2 = limit->p2.p2_slow;
657
	} else {
658
		if (target < limit->p2.dot_limit)
659
			clock.p2 = limit->p2.p2_slow;
660
		else
661
			clock.p2 = limit->p2.p2_fast;
662
	}
663
 
2342 Serge 664
	memset(best_clock, 0, sizeof(*best_clock));
2327 Serge 665
 
666
	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
667
	     clock.m1++) {
668
		for (clock.m2 = limit->m2.min;
669
		     clock.m2 <= limit->m2.max; clock.m2++) {
670
			/* m1 is always 0 in Pineview */
671
			if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
672
				break;
673
			for (clock.n = limit->n.min;
674
			     clock.n <= limit->n.max; clock.n++) {
675
				for (clock.p1 = limit->p1.min;
676
					clock.p1 <= limit->p1.max; clock.p1++) {
677
					int this_err;
678
 
679
					intel_clock(dev, refclk, &clock);
680
					if (!intel_PLL_is_valid(dev, limit,
681
								&clock))
682
						continue;
3031 serge 683
					if (match_clock &&
684
					    clock.p != match_clock->p)
685
						continue;
2327 Serge 686
 
687
					this_err = abs(clock.dot - target);
688
					if (this_err < err) {
689
						*best_clock = clock;
690
						err = this_err;
691
					}
692
				}
693
			}
694
		}
695
	}
696
 
697
	return (err != target);
698
}
699
 
700
static bool
701
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
3031 serge 702
			int target, int refclk, intel_clock_t *match_clock,
703
			intel_clock_t *best_clock)
2327 Serge 704
{
705
	struct drm_device *dev = crtc->dev;
706
	intel_clock_t clock;
707
	int max_n;
708
	bool found;
709
	/* approximately equals target * 0.00585 */
710
	int err_most = (target >> 8) + (target >> 9);
711
	found = false;
712
 
713
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
714
		int lvds_reg;
715
 
716
		if (HAS_PCH_SPLIT(dev))
717
			lvds_reg = PCH_LVDS;
718
		else
719
			lvds_reg = LVDS;
3480 Serge 720
		if (intel_is_dual_link_lvds(dev))
2327 Serge 721
			clock.p2 = limit->p2.p2_fast;
722
		else
723
			clock.p2 = limit->p2.p2_slow;
724
	} else {
725
		if (target < limit->p2.dot_limit)
726
			clock.p2 = limit->p2.p2_slow;
727
		else
728
			clock.p2 = limit->p2.p2_fast;
729
	}
730
 
731
	memset(best_clock, 0, sizeof(*best_clock));
732
	max_n = limit->n.max;
733
	/* based on hardware requirement, prefer smaller n to precision */
734
	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
735
		/* based on hardware requirement, prefere larger m1,m2 */
736
		for (clock.m1 = limit->m1.max;
737
		     clock.m1 >= limit->m1.min; clock.m1--) {
738
			for (clock.m2 = limit->m2.max;
739
			     clock.m2 >= limit->m2.min; clock.m2--) {
740
				for (clock.p1 = limit->p1.max;
741
				     clock.p1 >= limit->p1.min; clock.p1--) {
742
					int this_err;
743
 
744
					intel_clock(dev, refclk, &clock);
745
					if (!intel_PLL_is_valid(dev, limit,
746
								&clock))
747
						continue;
3031 serge 748
					if (match_clock &&
749
					    clock.p != match_clock->p)
750
						continue;
2327 Serge 751
 
752
					this_err = abs(clock.dot - target);
753
					if (this_err < err_most) {
754
						*best_clock = clock;
755
						err_most = this_err;
756
						max_n = clock.n;
757
						found = true;
758
					}
759
				}
760
			}
761
		}
762
	}
763
	return found;
764
}
765
 
766
static bool
767
intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
3031 serge 768
			   int target, int refclk, intel_clock_t *match_clock,
769
			   intel_clock_t *best_clock)
2327 Serge 770
{
771
	struct drm_device *dev = crtc->dev;
772
	intel_clock_t clock;
773
 
774
	if (target < 200000) {
775
		clock.n = 1;
776
		clock.p1 = 2;
777
		clock.p2 = 10;
778
		clock.m1 = 12;
779
		clock.m2 = 9;
780
	} else {
781
		clock.n = 2;
782
		clock.p1 = 1;
783
		clock.p2 = 10;
784
		clock.m1 = 14;
785
		clock.m2 = 8;
786
	}
787
	intel_clock(dev, refclk, &clock);
788
	memcpy(best_clock, &clock, sizeof(intel_clock_t));
789
	return true;
790
}
791
 
792
/* DisplayPort has only two frequencies, 162MHz and 270MHz */
793
static bool
794
intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
3031 serge 795
		      int target, int refclk, intel_clock_t *match_clock,
796
		      intel_clock_t *best_clock)
2327 Serge 797
{
798
	intel_clock_t clock;
799
	if (target < 200000) {
800
		clock.p1 = 2;
801
		clock.p2 = 10;
802
		clock.n = 2;
803
		clock.m1 = 23;
804
		clock.m2 = 8;
805
	} else {
806
		clock.p1 = 1;
807
		clock.p2 = 10;
808
		clock.n = 1;
809
		clock.m1 = 14;
810
		clock.m2 = 2;
811
	}
812
	clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
813
	clock.p = (clock.p1 * clock.p2);
814
	clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
815
	clock.vco = 0;
816
	memcpy(best_clock, &clock, sizeof(intel_clock_t));
817
	return true;
818
}
3031 serge 819
static bool
820
intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
821
			int target, int refclk, intel_clock_t *match_clock,
822
			intel_clock_t *best_clock)
823
{
824
	u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
825
	u32 m, n, fastclk;
826
	u32 updrate, minupdate, fracbits, p;
827
	unsigned long bestppm, ppm, absppm;
828
	int dotclk, flag;
2327 Serge 829
 
3031 serge 830
	flag = 0;
831
	dotclk = target * 1000;
832
	bestppm = 1000000;
833
	ppm = absppm = 0;
834
	fastclk = dotclk / (2*100);
835
	updrate = 0;
836
	minupdate = 19200;
837
	fracbits = 1;
838
	n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
839
	bestm1 = bestm2 = bestp1 = bestp2 = 0;
840
 
841
	/* based on hardware requirement, prefer smaller n to precision */
842
	for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
843
		updrate = refclk / n;
844
		for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
845
			for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
846
				if (p2 > 10)
847
					p2 = p2 - 1;
848
				p = p1 * p2;
849
				/* based on hardware requirement, prefer bigger m1,m2 values */
850
				for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
851
					m2 = (((2*(fastclk * p * n / m1 )) +
852
					       refclk) / (2*refclk));
853
					m = m1 * m2;
854
					vco = updrate * m;
855
					if (vco >= limit->vco.min && vco < limit->vco.max) {
856
						ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
857
						absppm = (ppm > 0) ? ppm : (-ppm);
858
						if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
859
							bestppm = 0;
860
							flag = 1;
861
						}
862
						if (absppm < bestppm - 10) {
863
							bestppm = absppm;
864
							flag = 1;
865
						}
866
						if (flag) {
867
							bestn = n;
868
							bestm1 = m1;
869
							bestm2 = m2;
870
							bestp1 = p1;
871
							bestp2 = p2;
872
							flag = 0;
873
						}
874
					}
875
				}
876
			}
877
		}
878
	}
879
	best_clock->n = bestn;
880
	best_clock->m1 = bestm1;
881
	best_clock->m2 = bestm2;
882
	best_clock->p1 = bestp1;
883
	best_clock->p2 = bestp2;
884
 
885
	return true;
886
}
887
 
3243 Serge 888
enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
889
					     enum pipe pipe)
890
{
891
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
892
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
893
 
894
	return intel_crtc->cpu_transcoder;
895
}
896
 
3031 serge 897
static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
898
{
899
	struct drm_i915_private *dev_priv = dev->dev_private;
900
	u32 frame, frame_reg = PIPEFRAME(pipe);
901
 
902
	frame = I915_READ(frame_reg);
903
 
904
	if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
905
		DRM_DEBUG_KMS("vblank wait timed out\n");
906
}
907
 
2327 Serge 908
/**
909
 * intel_wait_for_vblank - wait for vblank on a given pipe
910
 * @dev: drm device
911
 * @pipe: pipe to wait for
912
 *
913
 * Wait for vblank to occur on a given pipe.  Needed for various bits of
914
 * mode setting code.
915
 */
916
void intel_wait_for_vblank(struct drm_device *dev, int pipe)
917
{
918
	struct drm_i915_private *dev_priv = dev->dev_private;
919
	int pipestat_reg = PIPESTAT(pipe);
920
 
3031 serge 921
	if (INTEL_INFO(dev)->gen >= 5) {
922
		ironlake_wait_for_vblank(dev, pipe);
923
		return;
924
	}
925
 
2327 Serge 926
	/* Clear existing vblank status. Note this will clear any other
927
	 * sticky status fields as well.
928
	 *
929
	 * This races with i915_driver_irq_handler() with the result
930
	 * that either function could miss a vblank event.  Here it is not
931
	 * fatal, as we will either wait upon the next vblank interrupt or
932
	 * timeout.  Generally speaking intel_wait_for_vblank() is only
933
	 * called during modeset at which time the GPU should be idle and
934
	 * should *not* be performing page flips and thus not waiting on
935
	 * vblanks...
936
	 * Currently, the result of us stealing a vblank from the irq
937
	 * handler is that a single frame will be skipped during swapbuffers.
938
	 */
939
	I915_WRITE(pipestat_reg,
940
		   I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
941
 
942
	/* Wait for vblank interrupt bit to set */
943
	if (wait_for(I915_READ(pipestat_reg) &
944
		     PIPE_VBLANK_INTERRUPT_STATUS,
945
		     50))
946
		DRM_DEBUG_KMS("vblank wait timed out\n");
947
}
948
 
949
/*
950
 * intel_wait_for_pipe_off - wait for pipe to turn off
951
 * @dev: drm device
952
 * @pipe: pipe to wait for
953
 *
954
 * After disabling a pipe, we can't wait for vblank in the usual way,
955
 * spinning on the vblank interrupt status bit, since we won't actually
956
 * see an interrupt when the pipe is disabled.
957
 *
958
 * On Gen4 and above:
959
 *   wait for the pipe register state bit to turn off
960
 *
961
 * Otherwise:
962
 *   wait for the display line value to settle (it usually
963
 *   ends up stopping at the start of the next frame).
964
 *
965
 */
966
void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
967
{
968
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 969
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
970
								      pipe);
2327 Serge 971
 
972
	if (INTEL_INFO(dev)->gen >= 4) {
3243 Serge 973
		int reg = PIPECONF(cpu_transcoder);
2327 Serge 974
 
975
		/* Wait for the Pipe State to go off */
976
		if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
977
			     100))
3031 serge 978
			WARN(1, "pipe_off wait timed out\n");
2327 Serge 979
	} else {
3031 serge 980
		u32 last_line, line_mask;
2327 Serge 981
		int reg = PIPEDSL(pipe);
3031 serge 982
        unsigned long timeout = GetTimerTicks() + msecs_to_jiffies(100);
2327 Serge 983
 
3031 serge 984
		if (IS_GEN2(dev))
985
			line_mask = DSL_LINEMASK_GEN2;
986
		else
987
			line_mask = DSL_LINEMASK_GEN3;
988
 
2327 Serge 989
		/* Wait for the display line to settle */
990
		do {
3031 serge 991
			last_line = I915_READ(reg) & line_mask;
2327 Serge 992
			mdelay(5);
3031 serge 993
		} while (((I915_READ(reg) & line_mask) != last_line) &&
994
			 time_after(timeout, GetTimerTicks()));
995
		if (time_after(GetTimerTicks(), timeout))
996
			WARN(1, "pipe_off wait timed out\n");
2327 Serge 997
	}
998
}
999
 
3480 Serge 1000
/*
1001
 * ibx_digital_port_connected - is the specified port connected?
1002
 * @dev_priv: i915 private structure
1003
 * @port: the port to test
1004
 *
1005
 * Returns true if @port is connected, false otherwise.
1006
 */
1007
bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1008
				struct intel_digital_port *port)
1009
{
1010
	u32 bit;
1011
 
1012
	if (HAS_PCH_IBX(dev_priv->dev)) {
1013
		switch(port->port) {
1014
		case PORT_B:
1015
			bit = SDE_PORTB_HOTPLUG;
1016
			break;
1017
		case PORT_C:
1018
			bit = SDE_PORTC_HOTPLUG;
1019
			break;
1020
		case PORT_D:
1021
			bit = SDE_PORTD_HOTPLUG;
1022
			break;
1023
		default:
1024
			return true;
1025
		}
1026
	} else {
1027
		switch(port->port) {
1028
		case PORT_B:
1029
			bit = SDE_PORTB_HOTPLUG_CPT;
1030
			break;
1031
		case PORT_C:
1032
			bit = SDE_PORTC_HOTPLUG_CPT;
1033
			break;
1034
		case PORT_D:
1035
			bit = SDE_PORTD_HOTPLUG_CPT;
1036
			break;
1037
		default:
1038
			return true;
1039
		}
1040
	}
1041
 
1042
	return I915_READ(SDEISR) & bit;
1043
}
1044
 
2327 Serge 1045
static const char *state_string(bool enabled)
1046
{
1047
	return enabled ? "on" : "off";
1048
}
1049
 
1050
/* Only for pre-ILK configs */
1051
static void assert_pll(struct drm_i915_private *dev_priv,
1052
		       enum pipe pipe, bool state)
1053
{
1054
	int reg;
1055
	u32 val;
1056
	bool cur_state;
1057
 
1058
	reg = DPLL(pipe);
1059
	val = I915_READ(reg);
1060
	cur_state = !!(val & DPLL_VCO_ENABLE);
1061
	WARN(cur_state != state,
1062
	     "PLL state assertion failure (expected %s, current %s)\n",
1063
	     state_string(state), state_string(cur_state));
1064
}
1065
#define assert_pll_enabled(d, p) assert_pll(d, p, true)
1066
#define assert_pll_disabled(d, p) assert_pll(d, p, false)
1067
 
1068
/* For ILK+ */
1069
static void assert_pch_pll(struct drm_i915_private *dev_priv,
3031 serge 1070
			   struct intel_pch_pll *pll,
1071
			   struct intel_crtc *crtc,
1072
			   bool state)
2327 Serge 1073
{
1074
	u32 val;
1075
	bool cur_state;
1076
 
3031 serge 1077
	if (HAS_PCH_LPT(dev_priv->dev)) {
1078
		DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1079
		return;
1080
	}
2342 Serge 1081
 
3031 serge 1082
	if (WARN (!pll,
1083
		  "asserting PCH PLL %s with no PLL\n", state_string(state)))
1084
		return;
2342 Serge 1085
 
3031 serge 1086
	val = I915_READ(pll->pll_reg);
1087
	cur_state = !!(val & DPLL_VCO_ENABLE);
1088
	WARN(cur_state != state,
1089
	     "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1090
	     pll->pll_reg, state_string(state), state_string(cur_state), val);
2342 Serge 1091
 
3031 serge 1092
	/* Make sure the selected PLL is correctly attached to the transcoder */
1093
	if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1094
		u32 pch_dpll;
2342 Serge 1095
 
3031 serge 1096
		pch_dpll = I915_READ(PCH_DPLL_SEL);
1097
		cur_state = pll->pll_reg == _PCH_DPLL_B;
1098
		if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1099
			  "PLL[%d] not attached to this transcoder %d: %08x\n",
1100
			  cur_state, crtc->pipe, pch_dpll)) {
1101
			cur_state = !!(val >> (4*crtc->pipe + 3));
2327 Serge 1102
	WARN(cur_state != state,
3031 serge 1103
			     "PLL[%d] not %s on this transcoder %d: %08x\n",
1104
			     pll->pll_reg == _PCH_DPLL_B,
1105
			     state_string(state),
1106
			     crtc->pipe,
1107
			     val);
1108
		}
1109
	}
2327 Serge 1110
}
3031 serge 1111
#define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1112
#define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
2327 Serge 1113
 
1114
static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1115
			  enum pipe pipe, bool state)
1116
{
1117
	int reg;
1118
	u32 val;
1119
	bool cur_state;
3243 Serge 1120
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1121
								      pipe);
2327 Serge 1122
 
3480 Serge 1123
	if (HAS_DDI(dev_priv->dev)) {
1124
		/* DDI does not have a specific FDI_TX register */
3243 Serge 1125
		reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
3031 serge 1126
		val = I915_READ(reg);
3243 Serge 1127
		cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
3031 serge 1128
	} else {
2327 Serge 1129
	reg = FDI_TX_CTL(pipe);
1130
	val = I915_READ(reg);
1131
	cur_state = !!(val & FDI_TX_ENABLE);
3031 serge 1132
	}
2327 Serge 1133
	WARN(cur_state != state,
1134
	     "FDI TX state assertion failure (expected %s, current %s)\n",
1135
	     state_string(state), state_string(cur_state));
1136
}
1137
#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1138
#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1139
 
1140
static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1141
			  enum pipe pipe, bool state)
1142
{
1143
	int reg;
1144
	u32 val;
1145
	bool cur_state;
1146
 
1147
	reg = FDI_RX_CTL(pipe);
1148
	val = I915_READ(reg);
1149
	cur_state = !!(val & FDI_RX_ENABLE);
1150
	WARN(cur_state != state,
1151
	     "FDI RX state assertion failure (expected %s, current %s)\n",
1152
	     state_string(state), state_string(cur_state));
1153
}
1154
#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1155
#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1156
 
1157
static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1158
				      enum pipe pipe)
1159
{
1160
	int reg;
1161
	u32 val;
1162
 
1163
	/* ILK FDI PLL is always enabled */
1164
	if (dev_priv->info->gen == 5)
1165
		return;
1166
 
3031 serge 1167
	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
3480 Serge 1168
	if (HAS_DDI(dev_priv->dev))
3031 serge 1169
		return;
1170
 
2327 Serge 1171
	reg = FDI_TX_CTL(pipe);
1172
	val = I915_READ(reg);
1173
	WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1174
}
1175
 
1176
static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1177
				      enum pipe pipe)
1178
{
1179
	int reg;
1180
	u32 val;
1181
 
1182
	reg = FDI_RX_CTL(pipe);
1183
	val = I915_READ(reg);
1184
	WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1185
}
1186
 
1187
static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1188
				  enum pipe pipe)
1189
{
1190
	int pp_reg, lvds_reg;
1191
	u32 val;
1192
	enum pipe panel_pipe = PIPE_A;
1193
	bool locked = true;
1194
 
1195
	if (HAS_PCH_SPLIT(dev_priv->dev)) {
1196
		pp_reg = PCH_PP_CONTROL;
1197
		lvds_reg = PCH_LVDS;
1198
	} else {
1199
		pp_reg = PP_CONTROL;
1200
		lvds_reg = LVDS;
1201
	}
1202
 
1203
	val = I915_READ(pp_reg);
1204
	if (!(val & PANEL_POWER_ON) ||
1205
	    ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1206
		locked = false;
1207
 
1208
	if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1209
		panel_pipe = PIPE_B;
1210
 
1211
	WARN(panel_pipe == pipe && locked,
1212
	     "panel assertion failure, pipe %c regs locked\n",
1213
	     pipe_name(pipe));
1214
}
1215
 
2342 Serge 1216
void assert_pipe(struct drm_i915_private *dev_priv,
2327 Serge 1217
			enum pipe pipe, bool state)
1218
{
1219
	int reg;
1220
	u32 val;
1221
	bool cur_state;
3243 Serge 1222
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223
								      pipe);
2327 Serge 1224
 
3031 serge 1225
	/* if we need the pipe A quirk it must be always on */
1226
	if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1227
		state = true;
1228
 
3480 Serge 1229
	if (IS_HASWELL(dev_priv->dev) && cpu_transcoder != TRANSCODER_EDP &&
1230
	    !(I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_ENABLE)) {
1231
		cur_state = false;
1232
	} else {
3243 Serge 1233
	reg = PIPECONF(cpu_transcoder);
2327 Serge 1234
	val = I915_READ(reg);
1235
	cur_state = !!(val & PIPECONF_ENABLE);
3480 Serge 1236
	}
1237
 
2327 Serge 1238
	WARN(cur_state != state,
1239
	     "pipe %c assertion failure (expected %s, current %s)\n",
1240
	     pipe_name(pipe), state_string(state), state_string(cur_state));
1241
}
1242
 
3031 serge 1243
static void assert_plane(struct drm_i915_private *dev_priv,
1244
			 enum plane plane, bool state)
2327 Serge 1245
{
1246
	int reg;
1247
	u32 val;
3031 serge 1248
	bool cur_state;
2327 Serge 1249
 
1250
	reg = DSPCNTR(plane);
1251
	val = I915_READ(reg);
3031 serge 1252
	cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1253
	WARN(cur_state != state,
1254
	     "plane %c assertion failure (expected %s, current %s)\n",
1255
	     plane_name(plane), state_string(state), state_string(cur_state));
2327 Serge 1256
}
1257
 
3031 serge 1258
#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1259
#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1260
 
2327 Serge 1261
static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1262
				   enum pipe pipe)
1263
{
1264
	int reg, i;
1265
	u32 val;
1266
	int cur_pipe;
1267
 
1268
	/* Planes are fixed to pipes on ILK+ */
3031 serge 1269
	if (HAS_PCH_SPLIT(dev_priv->dev)) {
1270
		reg = DSPCNTR(pipe);
1271
		val = I915_READ(reg);
1272
		WARN((val & DISPLAY_PLANE_ENABLE),
1273
		     "plane %c assertion failure, should be disabled but not\n",
1274
		     plane_name(pipe));
2327 Serge 1275
		return;
3031 serge 1276
	}
2327 Serge 1277
 
1278
	/* Need to check both planes against the pipe */
1279
	for (i = 0; i < 2; i++) {
1280
		reg = DSPCNTR(i);
1281
		val = I915_READ(reg);
1282
		cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1283
			DISPPLANE_SEL_PIPE_SHIFT;
1284
		WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1285
		     "plane %c assertion failure, should be off on pipe %c but is still active\n",
1286
		     plane_name(i), pipe_name(pipe));
1287
	}
1288
}
1289
 
1290
static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1291
{
1292
	u32 val;
1293
	bool enabled;
1294
 
3031 serge 1295
	if (HAS_PCH_LPT(dev_priv->dev)) {
1296
		DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1297
		return;
1298
	}
1299
 
2327 Serge 1300
	val = I915_READ(PCH_DREF_CONTROL);
1301
	enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1302
			    DREF_SUPERSPREAD_SOURCE_MASK));
1303
	WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1304
}
1305
 
1306
static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1307
				       enum pipe pipe)
1308
{
1309
	int reg;
1310
	u32 val;
1311
	bool enabled;
1312
 
1313
	reg = TRANSCONF(pipe);
1314
	val = I915_READ(reg);
1315
	enabled = !!(val & TRANS_ENABLE);
1316
	WARN(enabled,
1317
	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
1318
	     pipe_name(pipe));
1319
}
1320
 
1321
static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1322
			    enum pipe pipe, u32 port_sel, u32 val)
1323
{
1324
	if ((val & DP_PORT_EN) == 0)
1325
		return false;
1326
 
1327
	if (HAS_PCH_CPT(dev_priv->dev)) {
1328
		u32	trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1329
		u32	trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1330
		if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1331
			return false;
1332
	} else {
1333
		if ((val & DP_PIPE_MASK) != (pipe << 30))
1334
			return false;
1335
	}
1336
	return true;
1337
}
1338
 
1339
static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1340
			      enum pipe pipe, u32 val)
1341
{
1342
	if ((val & PORT_ENABLE) == 0)
1343
		return false;
1344
 
1345
	if (HAS_PCH_CPT(dev_priv->dev)) {
1346
		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1347
			return false;
1348
	} else {
1349
		if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1350
			return false;
1351
	}
1352
	return true;
1353
}
1354
 
1355
static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1356
			      enum pipe pipe, u32 val)
1357
{
1358
	if ((val & LVDS_PORT_EN) == 0)
1359
		return false;
1360
 
1361
	if (HAS_PCH_CPT(dev_priv->dev)) {
1362
		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1363
			return false;
1364
	} else {
1365
		if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1366
			return false;
1367
	}
1368
	return true;
1369
}
1370
 
1371
static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1372
			      enum pipe pipe, u32 val)
1373
{
1374
	if ((val & ADPA_DAC_ENABLE) == 0)
1375
		return false;
1376
	if (HAS_PCH_CPT(dev_priv->dev)) {
1377
		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1378
			return false;
1379
	} else {
1380
		if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1381
			return false;
1382
	}
1383
	return true;
1384
}
1385
 
1386
static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1387
				   enum pipe pipe, int reg, u32 port_sel)
1388
{
1389
	u32 val = I915_READ(reg);
1390
	WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1391
	     "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1392
	     reg, pipe_name(pipe));
3031 serge 1393
 
1394
	WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1395
	     && (val & DP_PIPEB_SELECT),
1396
	     "IBX PCH dp port still using transcoder B\n");
2327 Serge 1397
}
1398
 
1399
static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1400
				     enum pipe pipe, int reg)
1401
{
1402
	u32 val = I915_READ(reg);
3031 serge 1403
	WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1404
	     "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
2327 Serge 1405
	     reg, pipe_name(pipe));
3031 serge 1406
 
1407
	WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1408
	     && (val & SDVO_PIPE_B_SELECT),
1409
	     "IBX PCH hdmi port still using transcoder B\n");
2327 Serge 1410
}
1411
 
1412
static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1413
				      enum pipe pipe)
1414
{
1415
	int reg;
1416
	u32 val;
1417
 
1418
	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1419
	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1420
	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1421
 
1422
	reg = PCH_ADPA;
1423
	val = I915_READ(reg);
3031 serge 1424
	WARN(adpa_pipe_enabled(dev_priv, pipe, val),
2327 Serge 1425
	     "PCH VGA enabled on transcoder %c, should be disabled\n",
1426
	     pipe_name(pipe));
1427
 
1428
	reg = PCH_LVDS;
1429
	val = I915_READ(reg);
3031 serge 1430
	WARN(lvds_pipe_enabled(dev_priv, pipe, val),
2327 Serge 1431
	     "PCH LVDS enabled on transcoder %c, should be disabled\n",
1432
	     pipe_name(pipe));
1433
 
1434
	assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1435
	assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1436
	assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1437
}
1438
 
1439
/**
1440
 * intel_enable_pll - enable a PLL
1441
 * @dev_priv: i915 private structure
1442
 * @pipe: pipe PLL to enable
1443
 *
1444
 * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1445
 * make sure the PLL reg is writable first though, since the panel write
1446
 * protect mechanism may be enabled.
1447
 *
1448
 * Note!  This is for pre-ILK only.
3031 serge 1449
 *
1450
 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
2327 Serge 1451
 */
1452
static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1453
{
1454
    int reg;
1455
    u32 val;
1456
 
1457
    /* No really, not for ILK+ */
3031 serge 1458
	BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
2327 Serge 1459
 
1460
    /* PLL is protected by panel, make sure we can write it */
1461
    if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1462
        assert_panel_unlocked(dev_priv, pipe);
1463
 
1464
    reg = DPLL(pipe);
1465
    val = I915_READ(reg);
1466
    val |= DPLL_VCO_ENABLE;
1467
 
1468
    /* We do this three times for luck */
1469
    I915_WRITE(reg, val);
1470
    POSTING_READ(reg);
1471
    udelay(150); /* wait for warmup */
1472
    I915_WRITE(reg, val);
1473
    POSTING_READ(reg);
1474
    udelay(150); /* wait for warmup */
1475
    I915_WRITE(reg, val);
1476
    POSTING_READ(reg);
1477
    udelay(150); /* wait for warmup */
1478
}
1479
 
1480
/**
1481
 * intel_disable_pll - disable a PLL
1482
 * @dev_priv: i915 private structure
1483
 * @pipe: pipe PLL to disable
1484
 *
1485
 * Disable the PLL for @pipe, making sure the pipe is off first.
1486
 *
1487
 * Note!  This is for pre-ILK only.
1488
 */
1489
static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1490
{
1491
	int reg;
1492
	u32 val;
1493
 
1494
	/* Don't disable pipe A or pipe A PLLs if needed */
1495
	if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1496
		return;
1497
 
1498
	/* Make sure the pipe isn't still relying on us */
1499
	assert_pipe_disabled(dev_priv, pipe);
1500
 
1501
	reg = DPLL(pipe);
1502
	val = I915_READ(reg);
1503
	val &= ~DPLL_VCO_ENABLE;
1504
	I915_WRITE(reg, val);
1505
	POSTING_READ(reg);
1506
}
1507
 
3031 serge 1508
/* SBI access */
1509
static void
3243 Serge 1510
intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1511
		enum intel_sbi_destination destination)
3031 serge 1512
{
3243 Serge 1513
	u32 tmp;
3031 serge 1514
 
3480 Serge 1515
	WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1516
 
1517
	if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1518
				100)) {
3031 serge 1519
		DRM_ERROR("timeout waiting for SBI to become ready\n");
3480 Serge 1520
		return;
3031 serge 1521
	}
1522
 
3243 Serge 1523
	I915_WRITE(SBI_ADDR, (reg << 16));
1524
	I915_WRITE(SBI_DATA, value);
3031 serge 1525
 
3243 Serge 1526
	if (destination == SBI_ICLK)
1527
		tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1528
	else
1529
		tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1530
	I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1531
 
3031 serge 1532
	if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1533
				100)) {
1534
		DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
3480 Serge 1535
		return;
3031 serge 1536
	}
1537
}
1538
 
1539
static u32
3243 Serge 1540
intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1541
	       enum intel_sbi_destination destination)
3031 serge 1542
{
1543
	u32 value = 0;
3480 Serge 1544
	WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
3031 serge 1545
 
3480 Serge 1546
	if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1547
				100)) {
3031 serge 1548
		DRM_ERROR("timeout waiting for SBI to become ready\n");
3480 Serge 1549
		return 0;
3031 serge 1550
	}
1551
 
3243 Serge 1552
	I915_WRITE(SBI_ADDR, (reg << 16));
3031 serge 1553
 
3243 Serge 1554
	if (destination == SBI_ICLK)
1555
		value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1556
	else
1557
		value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1558
	I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1559
 
3031 serge 1560
	if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1561
				100)) {
1562
		DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
3480 Serge 1563
		return 0;
3031 serge 1564
	}
1565
 
3480 Serge 1566
	return I915_READ(SBI_DATA);
3031 serge 1567
}
1568
 
2327 Serge 1569
/**
3243 Serge 1570
 * ironlake_enable_pch_pll - enable PCH PLL
2327 Serge 1571
 * @dev_priv: i915 private structure
1572
 * @pipe: pipe PLL to enable
1573
 *
1574
 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1575
 * drives the transcoder clock.
1576
 */
3243 Serge 1577
static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
2327 Serge 1578
{
3031 serge 1579
	struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1580
	struct intel_pch_pll *pll;
2327 Serge 1581
	int reg;
1582
	u32 val;
1583
 
3031 serge 1584
	/* PCH PLLs only available on ILK, SNB and IVB */
1585
	BUG_ON(dev_priv->info->gen < 5);
1586
	pll = intel_crtc->pch_pll;
1587
	if (pll == NULL)
2342 Serge 1588
		return;
1589
 
3031 serge 1590
	if (WARN_ON(pll->refcount == 0))
1591
		return;
2327 Serge 1592
 
3031 serge 1593
	DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1594
		      pll->pll_reg, pll->active, pll->on,
1595
		      intel_crtc->base.base.id);
1596
 
2327 Serge 1597
	/* PCH refclock must be enabled first */
1598
	assert_pch_refclk_enabled(dev_priv);
1599
 
3031 serge 1600
	if (pll->active++ && pll->on) {
1601
		assert_pch_pll_enabled(dev_priv, pll, NULL);
1602
		return;
1603
	}
1604
 
1605
	DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1606
 
1607
	reg = pll->pll_reg;
2327 Serge 1608
	val = I915_READ(reg);
1609
	val |= DPLL_VCO_ENABLE;
1610
	I915_WRITE(reg, val);
1611
	POSTING_READ(reg);
1612
	udelay(200);
3031 serge 1613
 
1614
	pll->on = true;
2327 Serge 1615
}
1616
 
3031 serge 1617
static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
2327 Serge 1618
{
3031 serge 1619
	struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1620
	struct intel_pch_pll *pll = intel_crtc->pch_pll;
2327 Serge 1621
	int reg;
3031 serge 1622
	u32 val;
2327 Serge 1623
 
1624
	/* PCH only available on ILK+ */
1625
	BUG_ON(dev_priv->info->gen < 5);
3031 serge 1626
	if (pll == NULL)
1627
	       return;
2327 Serge 1628
 
3031 serge 1629
	if (WARN_ON(pll->refcount == 0))
1630
		return;
2327 Serge 1631
 
3031 serge 1632
	DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1633
		      pll->pll_reg, pll->active, pll->on,
1634
		      intel_crtc->base.base.id);
2342 Serge 1635
 
3031 serge 1636
	if (WARN_ON(pll->active == 0)) {
1637
		assert_pch_pll_disabled(dev_priv, pll, NULL);
1638
		return;
1639
	}
2342 Serge 1640
 
3031 serge 1641
	if (--pll->active) {
1642
		assert_pch_pll_enabled(dev_priv, pll, NULL);
2342 Serge 1643
		return;
3031 serge 1644
	}
2342 Serge 1645
 
3031 serge 1646
	DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1647
 
1648
	/* Make sure transcoder isn't still depending on us */
1649
	assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1650
 
1651
	reg = pll->pll_reg;
2327 Serge 1652
	val = I915_READ(reg);
1653
	val &= ~DPLL_VCO_ENABLE;
1654
	I915_WRITE(reg, val);
1655
	POSTING_READ(reg);
1656
	udelay(200);
3031 serge 1657
 
1658
	pll->on = false;
2327 Serge 1659
}
1660
 
3243 Serge 1661
static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2327 Serge 1662
				    enum pipe pipe)
1663
{
3243 Serge 1664
	struct drm_device *dev = dev_priv->dev;
3031 serge 1665
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
3243 Serge 1666
	uint32_t reg, val, pipeconf_val;
2327 Serge 1667
 
1668
	/* PCH only available on ILK+ */
1669
	BUG_ON(dev_priv->info->gen < 5);
1670
 
1671
	/* Make sure PCH DPLL is enabled */
3031 serge 1672
	assert_pch_pll_enabled(dev_priv,
1673
			       to_intel_crtc(crtc)->pch_pll,
1674
			       to_intel_crtc(crtc));
2327 Serge 1675
 
1676
	/* FDI must be feeding us bits for PCH ports */
1677
	assert_fdi_tx_enabled(dev_priv, pipe);
1678
	assert_fdi_rx_enabled(dev_priv, pipe);
1679
 
3243 Serge 1680
	if (HAS_PCH_CPT(dev)) {
1681
		/* Workaround: Set the timing override bit before enabling the
1682
		 * pch transcoder. */
1683
		reg = TRANS_CHICKEN2(pipe);
1684
		val = I915_READ(reg);
1685
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1686
		I915_WRITE(reg, val);
3031 serge 1687
	}
3243 Serge 1688
 
2327 Serge 1689
	reg = TRANSCONF(pipe);
1690
	val = I915_READ(reg);
3031 serge 1691
	pipeconf_val = I915_READ(PIPECONF(pipe));
2327 Serge 1692
 
1693
	if (HAS_PCH_IBX(dev_priv->dev)) {
1694
		/*
1695
		 * make the BPC in transcoder be consistent with
1696
		 * that in pipeconf reg.
1697
		 */
3480 Serge 1698
		val &= ~PIPECONF_BPC_MASK;
1699
		val |= pipeconf_val & PIPECONF_BPC_MASK;
2327 Serge 1700
	}
3031 serge 1701
 
1702
	val &= ~TRANS_INTERLACE_MASK;
1703
	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1704
		if (HAS_PCH_IBX(dev_priv->dev) &&
1705
		    intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1706
			val |= TRANS_LEGACY_INTERLACED_ILK;
1707
		else
1708
			val |= TRANS_INTERLACED;
1709
	else
1710
		val |= TRANS_PROGRESSIVE;
1711
 
2327 Serge 1712
	I915_WRITE(reg, val | TRANS_ENABLE);
1713
	if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1714
		DRM_ERROR("failed to enable transcoder %d\n", pipe);
1715
}
1716
 
3243 Serge 1717
static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1718
				      enum transcoder cpu_transcoder)
1719
{
1720
	u32 val, pipeconf_val;
1721
 
1722
	/* PCH only available on ILK+ */
1723
	BUG_ON(dev_priv->info->gen < 5);
1724
 
1725
	/* FDI must be feeding us bits for PCH ports */
3480 Serge 1726
	assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
3243 Serge 1727
	assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1728
 
1729
	/* Workaround: set timing override bit. */
1730
	val = I915_READ(_TRANSA_CHICKEN2);
1731
	val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1732
	I915_WRITE(_TRANSA_CHICKEN2, val);
1733
 
1734
	val = TRANS_ENABLE;
1735
	pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1736
 
1737
	if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1738
	    PIPECONF_INTERLACED_ILK)
1739
		val |= TRANS_INTERLACED;
1740
	else
1741
		val |= TRANS_PROGRESSIVE;
1742
 
1743
	I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1744
	if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1745
		DRM_ERROR("Failed to enable PCH transcoder\n");
1746
}
1747
 
1748
static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2327 Serge 1749
				     enum pipe pipe)
1750
{
3243 Serge 1751
	struct drm_device *dev = dev_priv->dev;
1752
	uint32_t reg, val;
2327 Serge 1753
 
1754
	/* FDI relies on the transcoder */
1755
	assert_fdi_tx_disabled(dev_priv, pipe);
1756
	assert_fdi_rx_disabled(dev_priv, pipe);
1757
 
1758
	/* Ports must be off as well */
1759
	assert_pch_ports_disabled(dev_priv, pipe);
1760
 
1761
	reg = TRANSCONF(pipe);
1762
	val = I915_READ(reg);
1763
	val &= ~TRANS_ENABLE;
1764
	I915_WRITE(reg, val);
1765
	/* wait for PCH transcoder off, transcoder state */
1766
	if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2342 Serge 1767
		DRM_ERROR("failed to disable transcoder %d\n", pipe);
3243 Serge 1768
 
1769
	if (!HAS_PCH_IBX(dev)) {
1770
		/* Workaround: Clear the timing override chicken bit again. */
1771
		reg = TRANS_CHICKEN2(pipe);
1772
		val = I915_READ(reg);
1773
		val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1774
		I915_WRITE(reg, val);
1775
	}
2327 Serge 1776
}
1777
 
3243 Serge 1778
static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1779
{
1780
	u32 val;
1781
 
1782
	val = I915_READ(_TRANSACONF);
1783
	val &= ~TRANS_ENABLE;
1784
	I915_WRITE(_TRANSACONF, val);
1785
	/* wait for PCH transcoder off, transcoder state */
1786
	if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1787
		DRM_ERROR("Failed to disable PCH transcoder\n");
1788
 
1789
	/* Workaround: clear timing override bit. */
1790
	val = I915_READ(_TRANSA_CHICKEN2);
1791
	val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1792
	I915_WRITE(_TRANSA_CHICKEN2, val);
1793
}
1794
 
2327 Serge 1795
/**
1796
 * intel_enable_pipe - enable a pipe, asserting requirements
1797
 * @dev_priv: i915 private structure
1798
 * @pipe: pipe to enable
1799
 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1800
 *
1801
 * Enable @pipe, making sure that various hardware specific requirements
1802
 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1803
 *
1804
 * @pipe should be %PIPE_A or %PIPE_B.
1805
 *
1806
 * Will wait until the pipe is actually running (i.e. first vblank) before
1807
 * returning.
1808
 */
1809
static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1810
			      bool pch_port)
1811
{
3243 Serge 1812
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1813
								      pipe);
3480 Serge 1814
	enum pipe pch_transcoder;
2327 Serge 1815
	int reg;
1816
	u32 val;
1817
 
3480 Serge 1818
	if (HAS_PCH_LPT(dev_priv->dev))
3243 Serge 1819
		pch_transcoder = TRANSCODER_A;
1820
	else
1821
		pch_transcoder = pipe;
1822
 
2327 Serge 1823
	/*
1824
	 * A pipe without a PLL won't actually be able to drive bits from
1825
	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1826
	 * need the check.
1827
	 */
1828
	if (!HAS_PCH_SPLIT(dev_priv->dev))
1829
		assert_pll_enabled(dev_priv, pipe);
1830
	else {
1831
		if (pch_port) {
1832
			/* if driving the PCH, we need FDI enabled */
3243 Serge 1833
			assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
3480 Serge 1834
			assert_fdi_tx_pll_enabled(dev_priv,
1835
						  (enum pipe) cpu_transcoder);
2327 Serge 1836
		}
1837
		/* FIXME: assert CPU port conditions for SNB+ */
1838
	}
1839
 
3243 Serge 1840
	reg = PIPECONF(cpu_transcoder);
2327 Serge 1841
	val = I915_READ(reg);
1842
	if (val & PIPECONF_ENABLE)
1843
		return;
1844
 
1845
	I915_WRITE(reg, val | PIPECONF_ENABLE);
1846
	intel_wait_for_vblank(dev_priv->dev, pipe);
1847
}
1848
 
1849
/**
1850
 * intel_disable_pipe - disable a pipe, asserting requirements
1851
 * @dev_priv: i915 private structure
1852
 * @pipe: pipe to disable
1853
 *
1854
 * Disable @pipe, making sure that various hardware specific requirements
1855
 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1856
 *
1857
 * @pipe should be %PIPE_A or %PIPE_B.
1858
 *
1859
 * Will wait until the pipe has shut down before returning.
1860
 */
1861
static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1862
			       enum pipe pipe)
1863
{
3243 Serge 1864
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1865
								      pipe);
2327 Serge 1866
	int reg;
1867
	u32 val;
1868
 
3031 serge 1869
    /*
2327 Serge 1870
	 * Make sure planes won't keep trying to pump pixels to us,
1871
	 * or we might hang the display.
1872
	 */
1873
	assert_planes_disabled(dev_priv, pipe);
1874
 
1875
	/* Don't disable pipe A or pipe A PLLs if needed */
1876
	if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1877
		return;
1878
 
3243 Serge 1879
	reg = PIPECONF(cpu_transcoder);
2327 Serge 1880
	val = I915_READ(reg);
1881
	if ((val & PIPECONF_ENABLE) == 0)
1882
		return;
1883
 
1884
	I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1885
	intel_wait_for_pipe_off(dev_priv->dev, pipe);
1886
}
1887
 
1888
/*
1889
 * Plane regs are double buffered, going from enabled->disabled needs a
1890
 * trigger in order to latch.  The display address reg provides this.
1891
 */
3031 serge 1892
void intel_flush_display_plane(struct drm_i915_private *dev_priv,
2327 Serge 1893
				      enum plane plane)
1894
{
3243 Serge 1895
	if (dev_priv->info->gen >= 4)
1896
		I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1897
	else
2327 Serge 1898
	I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1899
}
1900
 
1901
/**
1902
 * intel_enable_plane - enable a display plane on a given pipe
1903
 * @dev_priv: i915 private structure
1904
 * @plane: plane to enable
1905
 * @pipe: pipe being fed
1906
 *
1907
 * Enable @plane on @pipe, making sure that @pipe is running first.
1908
 */
1909
static void intel_enable_plane(struct drm_i915_private *dev_priv,
1910
			       enum plane plane, enum pipe pipe)
1911
{
1912
	int reg;
1913
	u32 val;
1914
 
1915
	/* If the pipe isn't enabled, we can't pump pixels and may hang */
1916
	assert_pipe_enabled(dev_priv, pipe);
1917
 
1918
	reg = DSPCNTR(plane);
1919
	val = I915_READ(reg);
1920
	if (val & DISPLAY_PLANE_ENABLE)
1921
		return;
1922
 
1923
	I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1924
	intel_flush_display_plane(dev_priv, plane);
1925
	intel_wait_for_vblank(dev_priv->dev, pipe);
1926
}
1927
 
1928
/**
1929
 * intel_disable_plane - disable a display plane
1930
 * @dev_priv: i915 private structure
1931
 * @plane: plane to disable
1932
 * @pipe: pipe consuming the data
1933
 *
1934
 * Disable @plane; should be an independent operation.
1935
 */
1936
static void intel_disable_plane(struct drm_i915_private *dev_priv,
1937
				enum plane plane, enum pipe pipe)
1938
{
1939
	int reg;
1940
	u32 val;
1941
 
1942
	reg = DSPCNTR(plane);
1943
	val = I915_READ(reg);
1944
	if ((val & DISPLAY_PLANE_ENABLE) == 0)
1945
		return;
1946
 
1947
	I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1948
	intel_flush_display_plane(dev_priv, plane);
3031 serge 1949
    intel_wait_for_vblank(dev_priv->dev, pipe);
2327 Serge 1950
}
1951
 
2335 Serge 1952
int
1953
intel_pin_and_fence_fb_obj(struct drm_device *dev,
1954
			   struct drm_i915_gem_object *obj,
1955
			   struct intel_ring_buffer *pipelined)
1956
{
1957
	struct drm_i915_private *dev_priv = dev->dev_private;
1958
	u32 alignment;
1959
	int ret;
2327 Serge 1960
 
2335 Serge 1961
	switch (obj->tiling_mode) {
1962
	case I915_TILING_NONE:
1963
		if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1964
			alignment = 128 * 1024;
1965
		else if (INTEL_INFO(dev)->gen >= 4)
1966
			alignment = 4 * 1024;
1967
		else
1968
			alignment = 64 * 1024;
1969
		break;
1970
	case I915_TILING_X:
1971
		/* pin() will align the object as required by fence */
1972
		alignment = 0;
1973
		break;
1974
	case I915_TILING_Y:
1975
		/* FIXME: Is this true? */
1976
		DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1977
		return -EINVAL;
1978
	default:
1979
		BUG();
1980
	}
2327 Serge 1981
 
2335 Serge 1982
	dev_priv->mm.interruptible = false;
1983
	ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1984
	if (ret)
1985
		goto err_interruptible;
2327 Serge 1986
 
2335 Serge 1987
	/* Install a fence for tiled scan-out. Pre-i965 always needs a
1988
	 * fence, whereas 965+ only requires a fence if using
1989
	 * framebuffer compression.  For simplicity, we always install
1990
	 * a fence as the cost is not that onerous.
1991
	 */
3480 Serge 1992
	ret = i915_gem_object_get_fence(obj);
1993
	if (ret)
1994
		goto err_unpin;
2327 Serge 1995
 
3480 Serge 1996
	i915_gem_object_pin_fence(obj);
1997
 
2335 Serge 1998
	dev_priv->mm.interruptible = true;
1999
	return 0;
2327 Serge 2000
 
2335 Serge 2001
err_unpin:
2344 Serge 2002
	i915_gem_object_unpin(obj);
2335 Serge 2003
err_interruptible:
2004
	dev_priv->mm.interruptible = true;
2005
	return ret;
2006
}
2327 Serge 2007
 
3031 serge 2008
void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2009
{
2010
//	i915_gem_object_unpin_fence(obj);
2011
//	i915_gem_object_unpin(obj);
2012
}
2013
 
2014
/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2015
 * is assumed to be a power-of-two. */
3480 Serge 2016
unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2017
					     unsigned int tiling_mode,
2018
					     unsigned int cpp,
3031 serge 2019
							unsigned int pitch)
2020
{
3480 Serge 2021
	if (tiling_mode != I915_TILING_NONE) {
2022
		unsigned int tile_rows, tiles;
3031 serge 2023
 
2024
	tile_rows = *y / 8;
2025
	*y %= 8;
2026
 
3480 Serge 2027
		tiles = *x / (512/cpp);
2028
		*x %= 512/cpp;
2029
 
3031 serge 2030
	return tile_rows * pitch * 8 + tiles * 4096;
3480 Serge 2031
	} else {
2032
		unsigned int offset;
2033
 
2034
		offset = *y * pitch + *x * cpp;
2035
		*y = 0;
2036
		*x = (offset & 4095) / cpp;
2037
		return offset & -4096;
2038
	}
3031 serge 2039
}
2040
 
2327 Serge 2041
static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2042
                 int x, int y)
2043
{
2044
    struct drm_device *dev = crtc->dev;
2045
    struct drm_i915_private *dev_priv = dev->dev_private;
2046
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2047
    struct intel_framebuffer *intel_fb;
2048
    struct drm_i915_gem_object *obj;
2049
    int plane = intel_crtc->plane;
3031 serge 2050
	unsigned long linear_offset;
2327 Serge 2051
    u32 dspcntr;
2052
    u32 reg;
2053
 
2054
    switch (plane) {
2055
    case 0:
2056
    case 1:
2057
        break;
2058
    default:
2059
        DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2060
        return -EINVAL;
2061
    }
2062
 
2063
    intel_fb = to_intel_framebuffer(fb);
2064
    obj = intel_fb->obj;
2065
 
2066
    reg = DSPCNTR(plane);
2067
    dspcntr = I915_READ(reg);
2068
    /* Mask out pixel format bits in case we change it */
2069
    dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
3243 Serge 2070
	switch (fb->pixel_format) {
2071
	case DRM_FORMAT_C8:
2327 Serge 2072
        dspcntr |= DISPPLANE_8BPP;
2073
        break;
3243 Serge 2074
	case DRM_FORMAT_XRGB1555:
2075
	case DRM_FORMAT_ARGB1555:
2076
		dspcntr |= DISPPLANE_BGRX555;
2077
		break;
2078
	case DRM_FORMAT_RGB565:
2079
		dspcntr |= DISPPLANE_BGRX565;
2080
		break;
2081
	case DRM_FORMAT_XRGB8888:
2082
	case DRM_FORMAT_ARGB8888:
2083
		dspcntr |= DISPPLANE_BGRX888;
2084
		break;
2085
	case DRM_FORMAT_XBGR8888:
2086
	case DRM_FORMAT_ABGR8888:
2087
		dspcntr |= DISPPLANE_RGBX888;
2088
		break;
2089
	case DRM_FORMAT_XRGB2101010:
2090
	case DRM_FORMAT_ARGB2101010:
2091
		dspcntr |= DISPPLANE_BGRX101010;
2327 Serge 2092
        break;
3243 Serge 2093
	case DRM_FORMAT_XBGR2101010:
2094
	case DRM_FORMAT_ABGR2101010:
2095
		dspcntr |= DISPPLANE_RGBX101010;
2327 Serge 2096
        break;
2097
    default:
3243 Serge 2098
		DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2327 Serge 2099
        return -EINVAL;
2100
    }
3243 Serge 2101
 
2327 Serge 2102
    if (INTEL_INFO(dev)->gen >= 4) {
2103
        if (obj->tiling_mode != I915_TILING_NONE)
2104
            dspcntr |= DISPPLANE_TILED;
2105
        else
2106
            dspcntr &= ~DISPPLANE_TILED;
2107
    }
2108
 
2109
    I915_WRITE(reg, dspcntr);
2110
 
3031 serge 2111
	linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2327 Serge 2112
 
3031 serge 2113
	if (INTEL_INFO(dev)->gen >= 4) {
2114
		intel_crtc->dspaddr_offset =
3480 Serge 2115
			intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
3031 serge 2116
							   fb->bits_per_pixel / 8,
2117
							   fb->pitches[0]);
2118
		linear_offset -= intel_crtc->dspaddr_offset;
2119
	} else {
2120
		intel_crtc->dspaddr_offset = linear_offset;
2121
	}
2122
 
2123
	DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2124
		      obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2342 Serge 2125
	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2327 Serge 2126
    if (INTEL_INFO(dev)->gen >= 4) {
3031 serge 2127
		I915_MODIFY_DISPBASE(DSPSURF(plane),
2128
				     obj->gtt_offset + intel_crtc->dspaddr_offset);
2327 Serge 2129
        I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3031 serge 2130
		I915_WRITE(DSPLINOFF(plane), linear_offset);
2327 Serge 2131
    } else
3031 serge 2132
		I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2327 Serge 2133
    POSTING_READ(reg);
2134
 
2135
    return 0;
2136
}
2137
 
2138
static int ironlake_update_plane(struct drm_crtc *crtc,
2139
                 struct drm_framebuffer *fb, int x, int y)
2140
{
2141
    struct drm_device *dev = crtc->dev;
2142
    struct drm_i915_private *dev_priv = dev->dev_private;
2143
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2144
    struct intel_framebuffer *intel_fb;
2145
    struct drm_i915_gem_object *obj;
2146
    int plane = intel_crtc->plane;
3031 serge 2147
	unsigned long linear_offset;
2327 Serge 2148
    u32 dspcntr;
2149
    u32 reg;
2150
 
2151
    switch (plane) {
2152
    case 0:
2153
    case 1:
2342 Serge 2154
	case 2:
2327 Serge 2155
        break;
2156
    default:
2157
        DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2158
        return -EINVAL;
2159
    }
2160
 
2161
    intel_fb = to_intel_framebuffer(fb);
2162
    obj = intel_fb->obj;
2163
 
2164
    reg = DSPCNTR(plane);
2165
    dspcntr = I915_READ(reg);
2166
    /* Mask out pixel format bits in case we change it */
2167
    dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
3243 Serge 2168
	switch (fb->pixel_format) {
2169
	case DRM_FORMAT_C8:
2327 Serge 2170
        dspcntr |= DISPPLANE_8BPP;
2171
        break;
3243 Serge 2172
	case DRM_FORMAT_RGB565:
2173
		dspcntr |= DISPPLANE_BGRX565;
2327 Serge 2174
        break;
3243 Serge 2175
	case DRM_FORMAT_XRGB8888:
2176
	case DRM_FORMAT_ARGB8888:
2177
		dspcntr |= DISPPLANE_BGRX888;
2178
		break;
2179
	case DRM_FORMAT_XBGR8888:
2180
	case DRM_FORMAT_ABGR8888:
2181
		dspcntr |= DISPPLANE_RGBX888;
2182
		break;
2183
	case DRM_FORMAT_XRGB2101010:
2184
	case DRM_FORMAT_ARGB2101010:
2185
		dspcntr |= DISPPLANE_BGRX101010;
2186
		break;
2187
	case DRM_FORMAT_XBGR2101010:
2188
	case DRM_FORMAT_ABGR2101010:
2189
		dspcntr |= DISPPLANE_RGBX101010;
2327 Serge 2190
        break;
2191
    default:
3243 Serge 2192
		DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2327 Serge 2193
        return -EINVAL;
2194
    }
2195
 
3480 Serge 2196
	if (obj->tiling_mode != I915_TILING_NONE)
2197
		dspcntr |= DISPPLANE_TILED;
2198
	else
2327 Serge 2199
        dspcntr &= ~DISPPLANE_TILED;
2200
 
2201
    /* must disable */
2202
    dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2203
 
2204
    I915_WRITE(reg, dspcntr);
2205
 
3031 serge 2206
	linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2207
	intel_crtc->dspaddr_offset =
3480 Serge 2208
		intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
3031 serge 2209
						   fb->bits_per_pixel / 8,
2210
						   fb->pitches[0]);
2211
	linear_offset -= intel_crtc->dspaddr_offset;
2327 Serge 2212
 
3031 serge 2213
	DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2214
		      obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2342 Serge 2215
	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3031 serge 2216
	I915_MODIFY_DISPBASE(DSPSURF(plane),
2217
			     obj->gtt_offset + intel_crtc->dspaddr_offset);
3243 Serge 2218
	if (IS_HASWELL(dev)) {
2219
		I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2220
	} else {
2330 Serge 2221
	I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3031 serge 2222
	I915_WRITE(DSPLINOFF(plane), linear_offset);
3243 Serge 2223
	}
2330 Serge 2224
	POSTING_READ(reg);
2327 Serge 2225
 
2226
    return 0;
2227
}
2228
 
2229
/* Assume fb object is pinned & idle & fenced and just update base pointers */
2230
static int
2231
intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2232
			   int x, int y, enum mode_set_atomic state)
2233
{
2234
	struct drm_device *dev = crtc->dev;
2235
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2236
 
2237
	if (dev_priv->display.disable_fbc)
2238
		dev_priv->display.disable_fbc(dev);
2239
	intel_increase_pllclock(crtc);
2240
 
2241
	return dev_priv->display.update_plane(crtc, fb, x, y);
2242
}
2243
 
2244
#if 0
2245
static int
2246
intel_finish_fb(struct drm_framebuffer *old_fb)
2247
{
2248
	struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2249
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2250
	bool was_interruptible = dev_priv->mm.interruptible;
2327 Serge 2251
	int ret;
2252
 
3031 serge 2253
	/* Big Hammer, we also need to ensure that any pending
2254
	 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2255
	 * current scanout is retired before unpinning the old
2256
	 * framebuffer.
2257
	 *
2258
	 * This should only fail upon a hung GPU, in which case we
2259
	 * can safely continue.
2260
	 */
2261
	dev_priv->mm.interruptible = false;
2262
	ret = i915_gem_object_finish_gpu(obj);
2263
	dev_priv->mm.interruptible = was_interruptible;
2327 Serge 2264
 
3031 serge 2265
	return ret;
2327 Serge 2266
}
3031 serge 2267
#endif
2327 Serge 2268
 
2269
static int
2270
intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
3031 serge 2271
		    struct drm_framebuffer *fb)
2327 Serge 2272
{
2273
	struct drm_device *dev = crtc->dev;
3031 serge 2274
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 2275
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 2276
	struct drm_framebuffer *old_fb;
2342 Serge 2277
	int ret;
2327 Serge 2278
 
2279
	/* no fb bound */
3031 serge 2280
	if (!fb) {
2327 Serge 2281
		DRM_ERROR("No FB bound\n");
2282
		return 0;
2283
	}
2284
 
3031 serge 2285
	if(intel_crtc->plane > dev_priv->num_pipe) {
2286
		DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2287
				intel_crtc->plane,
2288
				dev_priv->num_pipe);
2327 Serge 2289
		return -EINVAL;
2290
	}
2291
 
2292
	mutex_lock(&dev->struct_mutex);
3031 serge 2293
//   ret = intel_pin_and_fence_fb_obj(dev,
2294
//                    to_intel_framebuffer(fb)->obj,
2295
//                    NULL);
2296
//   if (ret != 0) {
2297
//       mutex_unlock(&dev->struct_mutex);
2298
//       DRM_ERROR("pin & fence failed\n");
2299
//       return ret;
2300
//   }
2327 Serge 2301
 
3031 serge 2302
//   if (crtc->fb)
2303
//       intel_finish_fb(crtc->fb);
2304
 
2305
	ret = dev_priv->display.update_plane(crtc, fb, x, y);
2327 Serge 2306
	if (ret) {
3031 serge 2307
		intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2327 Serge 2308
		mutex_unlock(&dev->struct_mutex);
2309
		DRM_ERROR("failed to update base address\n");
3243 Serge 2310
        return ret;
2327 Serge 2311
	}
2312
 
3031 serge 2313
	old_fb = crtc->fb;
2314
	crtc->fb = fb;
2315
	crtc->x = x;
2316
	crtc->y = y;
2317
 
2318
	if (old_fb) {
2319
		intel_wait_for_vblank(dev, intel_crtc->pipe);
2320
		intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2321
	}
2322
 
2323
	intel_update_fbc(dev);
2336 Serge 2324
	mutex_unlock(&dev->struct_mutex);
2327 Serge 2325
 
2336 Serge 2326
    return 0;
2327 Serge 2327
}
2328
 
2329
static void intel_fdi_normal_train(struct drm_crtc *crtc)
2330
{
2331
	struct drm_device *dev = crtc->dev;
2332
	struct drm_i915_private *dev_priv = dev->dev_private;
2333
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2334
	int pipe = intel_crtc->pipe;
2335
	u32 reg, temp;
2336
 
2337
	/* enable normal train */
2338
	reg = FDI_TX_CTL(pipe);
2339
	temp = I915_READ(reg);
2340
	if (IS_IVYBRIDGE(dev)) {
2341
		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2342
		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2343
	} else {
2344
		temp &= ~FDI_LINK_TRAIN_NONE;
2345
		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2346
	}
2347
	I915_WRITE(reg, temp);
2348
 
2349
	reg = FDI_RX_CTL(pipe);
2350
	temp = I915_READ(reg);
2351
	if (HAS_PCH_CPT(dev)) {
2352
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2353
		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2354
	} else {
2355
		temp &= ~FDI_LINK_TRAIN_NONE;
2356
		temp |= FDI_LINK_TRAIN_NONE;
2357
	}
2358
	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2359
 
2360
	/* wait one idle pattern time */
2361
	POSTING_READ(reg);
2362
	udelay(1000);
2363
 
2364
	/* IVB wants error correction enabled */
2365
	if (IS_IVYBRIDGE(dev))
2366
		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2367
			   FDI_FE_ERRC_ENABLE);
2368
}
2369
 
3243 Serge 2370
static void ivb_modeset_global_resources(struct drm_device *dev)
2327 Serge 2371
{
2372
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 2373
	struct intel_crtc *pipe_B_crtc =
2374
		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2375
	struct intel_crtc *pipe_C_crtc =
2376
		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2377
	uint32_t temp;
2327 Serge 2378
 
3243 Serge 2379
	/* When everything is off disable fdi C so that we could enable fdi B
2380
	 * with all lanes. XXX: This misses the case where a pipe is not using
2381
	 * any pch resources and so doesn't need any fdi lanes. */
2382
	if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2383
		WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2384
		WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2385
 
2386
		temp = I915_READ(SOUTH_CHICKEN1);
2387
		temp &= ~FDI_BC_BIFURCATION_SELECT;
2388
		DRM_DEBUG_KMS("disabling fdi C rx\n");
2389
		I915_WRITE(SOUTH_CHICKEN1, temp);
2390
	}
2327 Serge 2391
}
2392
 
2393
/* The FDI link training functions for ILK/Ibexpeak. */
2394
static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2395
{
2396
    struct drm_device *dev = crtc->dev;
2397
    struct drm_i915_private *dev_priv = dev->dev_private;
2398
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2399
    int pipe = intel_crtc->pipe;
2400
    int plane = intel_crtc->plane;
2401
    u32 reg, temp, tries;
2402
 
2403
    /* FDI needs bits from pipe & plane first */
2404
    assert_pipe_enabled(dev_priv, pipe);
2405
    assert_plane_enabled(dev_priv, plane);
2406
 
2407
    /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2408
       for train result */
2409
    reg = FDI_RX_IMR(pipe);
2410
    temp = I915_READ(reg);
2411
    temp &= ~FDI_RX_SYMBOL_LOCK;
2412
    temp &= ~FDI_RX_BIT_LOCK;
2413
    I915_WRITE(reg, temp);
2414
    I915_READ(reg);
2415
    udelay(150);
2416
 
2417
    /* enable CPU FDI TX and PCH FDI RX */
2418
    reg = FDI_TX_CTL(pipe);
2419
    temp = I915_READ(reg);
2420
    temp &= ~(7 << 19);
2421
    temp |= (intel_crtc->fdi_lanes - 1) << 19;
2422
    temp &= ~FDI_LINK_TRAIN_NONE;
2423
    temp |= FDI_LINK_TRAIN_PATTERN_1;
2424
    I915_WRITE(reg, temp | FDI_TX_ENABLE);
2425
 
2426
    reg = FDI_RX_CTL(pipe);
2427
    temp = I915_READ(reg);
2428
    temp &= ~FDI_LINK_TRAIN_NONE;
2429
    temp |= FDI_LINK_TRAIN_PATTERN_1;
2430
    I915_WRITE(reg, temp | FDI_RX_ENABLE);
2431
 
2432
    POSTING_READ(reg);
2433
    udelay(150);
2434
 
2435
    /* Ironlake workaround, enable clock pointer after FDI enable*/
2436
        I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2437
        I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2438
               FDI_RX_PHASE_SYNC_POINTER_EN);
2439
 
2440
    reg = FDI_RX_IIR(pipe);
2441
    for (tries = 0; tries < 5; tries++) {
2442
        temp = I915_READ(reg);
2443
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2444
 
2445
        if ((temp & FDI_RX_BIT_LOCK)) {
2446
            DRM_DEBUG_KMS("FDI train 1 done.\n");
2447
            I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2448
            break;
2449
        }
2450
    }
2451
    if (tries == 5)
2452
        DRM_ERROR("FDI train 1 fail!\n");
2453
 
2454
    /* Train 2 */
2455
    reg = FDI_TX_CTL(pipe);
2456
    temp = I915_READ(reg);
2457
    temp &= ~FDI_LINK_TRAIN_NONE;
2458
    temp |= FDI_LINK_TRAIN_PATTERN_2;
2459
    I915_WRITE(reg, temp);
2460
 
2461
    reg = FDI_RX_CTL(pipe);
2462
    temp = I915_READ(reg);
2463
    temp &= ~FDI_LINK_TRAIN_NONE;
2464
    temp |= FDI_LINK_TRAIN_PATTERN_2;
2465
    I915_WRITE(reg, temp);
2466
 
2467
    POSTING_READ(reg);
2468
    udelay(150);
2469
 
2470
    reg = FDI_RX_IIR(pipe);
2471
    for (tries = 0; tries < 5; tries++) {
2472
        temp = I915_READ(reg);
2473
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2474
 
2475
        if (temp & FDI_RX_SYMBOL_LOCK) {
2476
            I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2477
            DRM_DEBUG_KMS("FDI train 2 done.\n");
2478
            break;
2479
        }
2480
    }
2481
    if (tries == 5)
2482
        DRM_ERROR("FDI train 2 fail!\n");
2483
 
2484
    DRM_DEBUG_KMS("FDI train done\n");
2485
 
2486
}
2487
 
2342 Serge 2488
static const int snb_b_fdi_train_param[] = {
2327 Serge 2489
    FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2490
    FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2491
    FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2492
    FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2493
};
2494
 
2495
/* The FDI link training functions for SNB/Cougarpoint. */
2496
static void gen6_fdi_link_train(struct drm_crtc *crtc)
2497
{
2498
    struct drm_device *dev = crtc->dev;
2499
    struct drm_i915_private *dev_priv = dev->dev_private;
2500
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2501
    int pipe = intel_crtc->pipe;
3031 serge 2502
	u32 reg, temp, i, retry;
2327 Serge 2503
 
2504
    /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2505
       for train result */
2506
    reg = FDI_RX_IMR(pipe);
2507
    temp = I915_READ(reg);
2508
    temp &= ~FDI_RX_SYMBOL_LOCK;
2509
    temp &= ~FDI_RX_BIT_LOCK;
2510
    I915_WRITE(reg, temp);
2511
 
2512
    POSTING_READ(reg);
2513
    udelay(150);
2514
 
2515
    /* enable CPU FDI TX and PCH FDI RX */
2516
    reg = FDI_TX_CTL(pipe);
2517
    temp = I915_READ(reg);
2518
    temp &= ~(7 << 19);
2519
    temp |= (intel_crtc->fdi_lanes - 1) << 19;
2520
    temp &= ~FDI_LINK_TRAIN_NONE;
2521
    temp |= FDI_LINK_TRAIN_PATTERN_1;
2522
    temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2523
    /* SNB-B */
2524
    temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2525
    I915_WRITE(reg, temp | FDI_TX_ENABLE);
2526
 
3243 Serge 2527
	I915_WRITE(FDI_RX_MISC(pipe),
2528
		   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2529
 
2327 Serge 2530
    reg = FDI_RX_CTL(pipe);
2531
    temp = I915_READ(reg);
2532
    if (HAS_PCH_CPT(dev)) {
2533
        temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2534
        temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2535
    } else {
2536
        temp &= ~FDI_LINK_TRAIN_NONE;
2537
        temp |= FDI_LINK_TRAIN_PATTERN_1;
2538
    }
2539
    I915_WRITE(reg, temp | FDI_RX_ENABLE);
2540
 
2541
    POSTING_READ(reg);
2542
    udelay(150);
2543
 
2342 Serge 2544
	for (i = 0; i < 4; i++) {
2327 Serge 2545
        reg = FDI_TX_CTL(pipe);
2546
        temp = I915_READ(reg);
2547
        temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2548
        temp |= snb_b_fdi_train_param[i];
2549
        I915_WRITE(reg, temp);
2550
 
2551
        POSTING_READ(reg);
2552
        udelay(500);
2553
 
3031 serge 2554
		for (retry = 0; retry < 5; retry++) {
2327 Serge 2555
        reg = FDI_RX_IIR(pipe);
2556
        temp = I915_READ(reg);
2557
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2558
        if (temp & FDI_RX_BIT_LOCK) {
2559
            I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2560
            DRM_DEBUG_KMS("FDI train 1 done.\n");
2561
            break;
2562
        }
3031 serge 2563
			udelay(50);
2564
		}
2565
		if (retry < 5)
2566
			break;
2327 Serge 2567
    }
2568
    if (i == 4)
2569
        DRM_ERROR("FDI train 1 fail!\n");
2570
 
2571
    /* Train 2 */
2572
    reg = FDI_TX_CTL(pipe);
2573
    temp = I915_READ(reg);
2574
    temp &= ~FDI_LINK_TRAIN_NONE;
2575
    temp |= FDI_LINK_TRAIN_PATTERN_2;
2576
    if (IS_GEN6(dev)) {
2577
        temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2578
        /* SNB-B */
2579
        temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2580
    }
2581
    I915_WRITE(reg, temp);
2582
 
2583
    reg = FDI_RX_CTL(pipe);
2584
    temp = I915_READ(reg);
2585
    if (HAS_PCH_CPT(dev)) {
2586
        temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2587
        temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2588
    } else {
2589
        temp &= ~FDI_LINK_TRAIN_NONE;
2590
        temp |= FDI_LINK_TRAIN_PATTERN_2;
2591
    }
2592
    I915_WRITE(reg, temp);
2593
 
2594
    POSTING_READ(reg);
2595
    udelay(150);
2596
 
2342 Serge 2597
	for (i = 0; i < 4; i++) {
2327 Serge 2598
        reg = FDI_TX_CTL(pipe);
2599
        temp = I915_READ(reg);
2600
        temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2601
        temp |= snb_b_fdi_train_param[i];
2602
        I915_WRITE(reg, temp);
2603
 
2604
        POSTING_READ(reg);
2605
        udelay(500);
2606
 
3031 serge 2607
		for (retry = 0; retry < 5; retry++) {
2327 Serge 2608
        reg = FDI_RX_IIR(pipe);
2609
        temp = I915_READ(reg);
2610
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2611
        if (temp & FDI_RX_SYMBOL_LOCK) {
2612
            I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2613
            DRM_DEBUG_KMS("FDI train 2 done.\n");
2614
            break;
2615
        }
3031 serge 2616
			udelay(50);
2617
		}
2618
		if (retry < 5)
2619
			break;
2327 Serge 2620
    }
2621
    if (i == 4)
2622
        DRM_ERROR("FDI train 2 fail!\n");
2623
 
2624
    DRM_DEBUG_KMS("FDI train done.\n");
2625
}
2626
 
2627
/* Manual link training for Ivy Bridge A0 parts */
2628
static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2629
{
2630
    struct drm_device *dev = crtc->dev;
2631
    struct drm_i915_private *dev_priv = dev->dev_private;
2632
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2633
    int pipe = intel_crtc->pipe;
2634
    u32 reg, temp, i;
2635
 
2636
    /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2637
       for train result */
2638
    reg = FDI_RX_IMR(pipe);
2639
    temp = I915_READ(reg);
2640
    temp &= ~FDI_RX_SYMBOL_LOCK;
2641
    temp &= ~FDI_RX_BIT_LOCK;
2642
    I915_WRITE(reg, temp);
2643
 
2644
    POSTING_READ(reg);
2645
    udelay(150);
2646
 
3243 Serge 2647
	DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2648
		      I915_READ(FDI_RX_IIR(pipe)));
2649
 
2327 Serge 2650
    /* enable CPU FDI TX and PCH FDI RX */
2651
    reg = FDI_TX_CTL(pipe);
2652
    temp = I915_READ(reg);
2653
    temp &= ~(7 << 19);
2654
    temp |= (intel_crtc->fdi_lanes - 1) << 19;
2655
    temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2656
    temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2657
    temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2658
    temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2342 Serge 2659
	temp |= FDI_COMPOSITE_SYNC;
2327 Serge 2660
    I915_WRITE(reg, temp | FDI_TX_ENABLE);
2661
 
3243 Serge 2662
	I915_WRITE(FDI_RX_MISC(pipe),
2663
		   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2664
 
2327 Serge 2665
    reg = FDI_RX_CTL(pipe);
2666
    temp = I915_READ(reg);
2667
    temp &= ~FDI_LINK_TRAIN_AUTO;
2668
    temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2669
    temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2342 Serge 2670
	temp |= FDI_COMPOSITE_SYNC;
2327 Serge 2671
    I915_WRITE(reg, temp | FDI_RX_ENABLE);
2672
 
2673
    POSTING_READ(reg);
2674
    udelay(150);
2675
 
2342 Serge 2676
	for (i = 0; i < 4; i++) {
2327 Serge 2677
        reg = FDI_TX_CTL(pipe);
2678
        temp = I915_READ(reg);
2679
        temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2680
        temp |= snb_b_fdi_train_param[i];
2681
        I915_WRITE(reg, temp);
2682
 
2683
        POSTING_READ(reg);
2684
        udelay(500);
2685
 
2686
        reg = FDI_RX_IIR(pipe);
2687
        temp = I915_READ(reg);
2688
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2689
 
2690
        if (temp & FDI_RX_BIT_LOCK ||
2691
            (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2692
            I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3243 Serge 2693
			DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2327 Serge 2694
            break;
2695
        }
2696
    }
2697
    if (i == 4)
2698
        DRM_ERROR("FDI train 1 fail!\n");
2699
 
2700
    /* Train 2 */
2701
    reg = FDI_TX_CTL(pipe);
2702
    temp = I915_READ(reg);
2703
    temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2704
    temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2705
    temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2706
    temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2707
    I915_WRITE(reg, temp);
2708
 
2709
    reg = FDI_RX_CTL(pipe);
2710
    temp = I915_READ(reg);
2711
    temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2712
    temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2713
    I915_WRITE(reg, temp);
2714
 
2715
    POSTING_READ(reg);
2716
    udelay(150);
2717
 
2342 Serge 2718
	for (i = 0; i < 4; i++) {
2327 Serge 2719
        reg = FDI_TX_CTL(pipe);
2720
        temp = I915_READ(reg);
2721
        temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2722
        temp |= snb_b_fdi_train_param[i];
2723
        I915_WRITE(reg, temp);
2724
 
2725
        POSTING_READ(reg);
2726
        udelay(500);
2727
 
2728
        reg = FDI_RX_IIR(pipe);
2729
        temp = I915_READ(reg);
2730
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2731
 
2732
        if (temp & FDI_RX_SYMBOL_LOCK) {
2733
            I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3243 Serge 2734
			DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2327 Serge 2735
            break;
2736
        }
2737
    }
2738
    if (i == 4)
2739
        DRM_ERROR("FDI train 2 fail!\n");
2740
 
2741
    DRM_DEBUG_KMS("FDI train done.\n");
2742
}
2743
 
3031 serge 2744
static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2327 Serge 2745
{
3031 serge 2746
	struct drm_device *dev = intel_crtc->base.dev;
2327 Serge 2747
	struct drm_i915_private *dev_priv = dev->dev_private;
2748
	int pipe = intel_crtc->pipe;
2749
	u32 reg, temp;
2750
 
2751
 
2752
	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2753
	reg = FDI_RX_CTL(pipe);
2754
	temp = I915_READ(reg);
2755
	temp &= ~((0x7 << 19) | (0x7 << 16));
2756
	temp |= (intel_crtc->fdi_lanes - 1) << 19;
3480 Serge 2757
	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2327 Serge 2758
	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2759
 
2760
	POSTING_READ(reg);
2761
	udelay(200);
2762
 
2763
	/* Switch from Rawclk to PCDclk */
2764
	temp = I915_READ(reg);
2765
	I915_WRITE(reg, temp | FDI_PCDCLK);
2766
 
2767
	POSTING_READ(reg);
2768
	udelay(200);
2769
 
2770
	/* Enable CPU FDI TX PLL, always on for Ironlake */
2771
	reg = FDI_TX_CTL(pipe);
2772
	temp = I915_READ(reg);
2773
	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2774
		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2775
 
2776
		POSTING_READ(reg);
2777
		udelay(100);
2778
	}
2779
}
2780
 
3031 serge 2781
static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2782
{
2783
	struct drm_device *dev = intel_crtc->base.dev;
2784
	struct drm_i915_private *dev_priv = dev->dev_private;
2785
	int pipe = intel_crtc->pipe;
2786
	u32 reg, temp;
2787
 
2788
	/* Switch from PCDclk to Rawclk */
2789
	reg = FDI_RX_CTL(pipe);
2790
	temp = I915_READ(reg);
2791
	I915_WRITE(reg, temp & ~FDI_PCDCLK);
2792
 
2793
	/* Disable CPU FDI TX PLL */
2794
	reg = FDI_TX_CTL(pipe);
2795
	temp = I915_READ(reg);
2796
	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2797
 
2798
	POSTING_READ(reg);
2799
	udelay(100);
2800
 
2801
	reg = FDI_RX_CTL(pipe);
2802
	temp = I915_READ(reg);
2803
	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2804
 
2805
	/* Wait for the clocks to turn off. */
2806
	POSTING_READ(reg);
2807
	udelay(100);
2808
}
2809
 
2327 Serge 2810
static void ironlake_fdi_disable(struct drm_crtc *crtc)
2811
{
2812
	struct drm_device *dev = crtc->dev;
2813
	struct drm_i915_private *dev_priv = dev->dev_private;
2814
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2815
	int pipe = intel_crtc->pipe;
2816
	u32 reg, temp;
2817
 
2818
	/* disable CPU FDI tx and PCH FDI rx */
2819
	reg = FDI_TX_CTL(pipe);
2820
	temp = I915_READ(reg);
2821
	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2822
	POSTING_READ(reg);
2823
 
2824
	reg = FDI_RX_CTL(pipe);
2825
	temp = I915_READ(reg);
2826
	temp &= ~(0x7 << 16);
3480 Serge 2827
	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2327 Serge 2828
	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2829
 
2830
	POSTING_READ(reg);
2831
	udelay(100);
2832
 
2833
	/* Ironlake workaround, disable clock pointer after downing FDI */
2834
	if (HAS_PCH_IBX(dev)) {
2835
		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2836
	}
2837
 
2838
	/* still set train pattern 1 */
2839
	reg = FDI_TX_CTL(pipe);
2840
	temp = I915_READ(reg);
2841
	temp &= ~FDI_LINK_TRAIN_NONE;
2842
	temp |= FDI_LINK_TRAIN_PATTERN_1;
2843
	I915_WRITE(reg, temp);
2844
 
2845
	reg = FDI_RX_CTL(pipe);
2846
	temp = I915_READ(reg);
2847
	if (HAS_PCH_CPT(dev)) {
2848
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2849
		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2850
	} else {
2851
		temp &= ~FDI_LINK_TRAIN_NONE;
2852
		temp |= FDI_LINK_TRAIN_PATTERN_1;
2853
	}
2854
	/* BPC in FDI rx is consistent with that in PIPECONF */
2855
	temp &= ~(0x07 << 16);
3480 Serge 2856
	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2327 Serge 2857
	I915_WRITE(reg, temp);
2858
 
2859
	POSTING_READ(reg);
2860
	udelay(100);
2861
}
2862
 
3031 serge 2863
static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2327 Serge 2864
{
3031 serge 2865
	struct drm_device *dev = crtc->dev;
2327 Serge 2866
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 2867
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 2868
	unsigned long flags;
2869
	bool pending;
2327 Serge 2870
 
3480 Serge 2871
	if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2872
	    intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3031 serge 2873
		return false;
2327 Serge 2874
 
3031 serge 2875
	spin_lock_irqsave(&dev->event_lock, flags);
2876
	pending = to_intel_crtc(crtc)->unpin_work != NULL;
2877
	spin_unlock_irqrestore(&dev->event_lock, flags);
2878
 
2879
	return pending;
2327 Serge 2880
}
2881
 
3031 serge 2882
#if 0
2327 Serge 2883
static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2884
{
3031 serge 2885
	struct drm_device *dev = crtc->dev;
2886
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 2887
 
2888
	if (crtc->fb == NULL)
2889
		return;
2890
 
3480 Serge 2891
	WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2892
 
2360 Serge 2893
	wait_event(dev_priv->pending_flip_queue,
3031 serge 2894
		   !intel_crtc_has_pending_flip(crtc));
2895
 
2896
	mutex_lock(&dev->struct_mutex);
2897
	intel_finish_fb(crtc->fb);
2898
	mutex_unlock(&dev->struct_mutex);
2327 Serge 2899
}
3031 serge 2900
#endif
2327 Serge 2901
 
3243 Serge 2902
static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2327 Serge 2903
{
2904
	struct drm_device *dev = crtc->dev;
3031 serge 2905
	struct intel_encoder *intel_encoder;
2327 Serge 2906
 
2907
	/*
2908
	 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2909
	 * must be driven by its own crtc; no sharing is possible.
2910
	 */
3031 serge 2911
	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2912
		switch (intel_encoder->type) {
2327 Serge 2913
		case INTEL_OUTPUT_EDP:
3031 serge 2914
			if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2327 Serge 2915
				return false;
2916
			continue;
2917
		}
2918
	}
2919
 
2920
	return true;
2921
}
2922
 
3243 Serge 2923
static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2924
{
2925
	return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2926
}
2927
 
3031 serge 2928
/* Program iCLKIP clock to the desired frequency */
2929
static void lpt_program_iclkip(struct drm_crtc *crtc)
2930
{
2931
	struct drm_device *dev = crtc->dev;
2932
	struct drm_i915_private *dev_priv = dev->dev_private;
2933
	u32 divsel, phaseinc, auxdiv, phasedir = 0;
2934
	u32 temp;
2935
 
3480 Serge 2936
	mutex_lock(&dev_priv->dpio_lock);
2937
 
3031 serge 2938
	/* It is necessary to ungate the pixclk gate prior to programming
2939
	 * the divisors, and gate it back when it is done.
2940
	 */
2941
	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2942
 
2943
	/* Disable SSCCTL */
2944
	intel_sbi_write(dev_priv, SBI_SSCCTL6,
3243 Serge 2945
			intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2946
				SBI_SSCCTL_DISABLE,
2947
			SBI_ICLK);
3031 serge 2948
 
2949
	/* 20MHz is a corner case which is out of range for the 7-bit divisor */
2950
	if (crtc->mode.clock == 20000) {
2951
		auxdiv = 1;
2952
		divsel = 0x41;
2953
		phaseinc = 0x20;
2954
	} else {
2955
		/* The iCLK virtual clock root frequency is in MHz,
2956
		 * but the crtc->mode.clock in in KHz. To get the divisors,
2957
		 * it is necessary to divide one by another, so we
2958
		 * convert the virtual clock precision to KHz here for higher
2959
		 * precision.
2960
		 */
2961
		u32 iclk_virtual_root_freq = 172800 * 1000;
2962
		u32 iclk_pi_range = 64;
2963
		u32 desired_divisor, msb_divisor_value, pi_value;
2964
 
2965
		desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2966
		msb_divisor_value = desired_divisor / iclk_pi_range;
2967
		pi_value = desired_divisor % iclk_pi_range;
2968
 
2969
		auxdiv = 0;
2970
		divsel = msb_divisor_value - 2;
2971
		phaseinc = pi_value;
2972
	}
2973
 
2974
	/* This should not happen with any sane values */
2975
	WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2976
		~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2977
	WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2978
		~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2979
 
2980
	DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2981
			crtc->mode.clock,
2982
			auxdiv,
2983
			divsel,
2984
			phasedir,
2985
			phaseinc);
2986
 
2987
	/* Program SSCDIVINTPHASE6 */
3243 Serge 2988
	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3031 serge 2989
	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2990
	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2991
	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2992
	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2993
	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2994
	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3243 Serge 2995
	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3031 serge 2996
 
2997
	/* Program SSCAUXDIV */
3243 Serge 2998
	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3031 serge 2999
	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3000
	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3243 Serge 3001
	intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3031 serge 3002
 
3003
	/* Enable modulator and associated divider */
3243 Serge 3004
	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3031 serge 3005
	temp &= ~SBI_SSCCTL_DISABLE;
3243 Serge 3006
	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3031 serge 3007
 
3008
	/* Wait for initialization time */
3009
	udelay(24);
3010
 
3011
	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3480 Serge 3012
 
3013
	mutex_unlock(&dev_priv->dpio_lock);
3031 serge 3014
}
3015
 
2327 Serge 3016
/*
3017
 * Enable PCH resources required for PCH ports:
3018
 *   - PCH PLLs
3019
 *   - FDI training & RX/TX
3020
 *   - update transcoder timings
3021
 *   - DP transcoding bits
3022
 *   - transcoder
3023
 */
3024
static void ironlake_pch_enable(struct drm_crtc *crtc)
3025
{
3026
	struct drm_device *dev = crtc->dev;
3027
	struct drm_i915_private *dev_priv = dev->dev_private;
3028
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3029
	int pipe = intel_crtc->pipe;
3031 serge 3030
	u32 reg, temp;
2327 Serge 3031
 
3031 serge 3032
	assert_transcoder_disabled(dev_priv, pipe);
3033
 
3243 Serge 3034
	/* Write the TU size bits before fdi link training, so that error
3035
	 * detection works. */
3036
	I915_WRITE(FDI_RX_TUSIZE1(pipe),
3037
		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3038
 
2327 Serge 3039
	/* For PCH output, training FDI link */
3040
	dev_priv->display.fdi_link_train(crtc);
3041
 
3243 Serge 3042
	/* XXX: pch pll's can be enabled any time before we enable the PCH
3043
	 * transcoder, and we actually should do this to not upset any PCH
3044
	 * transcoder that already use the clock when we share it.
3045
	 *
3046
	 * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3047
	 * unconditionally resets the pll - we need that to have the right LVDS
3048
	 * enable sequence. */
3049
	ironlake_enable_pch_pll(intel_crtc);
2327 Serge 3050
 
3243 Serge 3051
	if (HAS_PCH_CPT(dev)) {
3031 serge 3052
		u32 sel;
2342 Serge 3053
 
2327 Serge 3054
		temp = I915_READ(PCH_DPLL_SEL);
3031 serge 3055
		switch (pipe) {
3056
		default:
3057
		case 0:
3058
			temp |= TRANSA_DPLL_ENABLE;
3059
			sel = TRANSA_DPLLB_SEL;
3060
			break;
3061
		case 1:
3062
			temp |= TRANSB_DPLL_ENABLE;
3063
			sel = TRANSB_DPLLB_SEL;
3064
			break;
3065
		case 2:
3066
			temp |= TRANSC_DPLL_ENABLE;
3067
			sel = TRANSC_DPLLB_SEL;
3068
			break;
2342 Serge 3069
		}
3031 serge 3070
		if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3071
			temp |= sel;
3072
		else
3073
			temp &= ~sel;
2327 Serge 3074
		I915_WRITE(PCH_DPLL_SEL, temp);
3075
	}
3076
 
3077
	/* set transcoder timing, panel must allow it */
3078
	assert_panel_unlocked(dev_priv, pipe);
3079
	I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3080
	I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3081
	I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3082
 
3083
	I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3084
	I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3085
	I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3031 serge 3086
	I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
2327 Serge 3087
 
3088
	intel_fdi_normal_train(crtc);
3089
 
3090
	/* For PCH DP, enable TRANS_DP_CTL */
3091
	if (HAS_PCH_CPT(dev) &&
2342 Serge 3092
	    (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3093
	     intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3480 Serge 3094
		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
2327 Serge 3095
		reg = TRANS_DP_CTL(pipe);
3096
		temp = I915_READ(reg);
3097
		temp &= ~(TRANS_DP_PORT_SEL_MASK |
3098
			  TRANS_DP_SYNC_MASK |
3099
			  TRANS_DP_BPC_MASK);
3100
		temp |= (TRANS_DP_OUTPUT_ENABLE |
3101
			 TRANS_DP_ENH_FRAMING);
3102
		temp |= bpc << 9; /* same format but at 11:9 */
3103
 
3104
		if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3105
			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3106
		if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3107
			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3108
 
3109
		switch (intel_trans_dp_port_sel(crtc)) {
3110
		case PCH_DP_B:
3111
			temp |= TRANS_DP_PORT_SEL_B;
3112
			break;
3113
		case PCH_DP_C:
3114
			temp |= TRANS_DP_PORT_SEL_C;
3115
			break;
3116
		case PCH_DP_D:
3117
			temp |= TRANS_DP_PORT_SEL_D;
3118
			break;
3119
		default:
3243 Serge 3120
			BUG();
2327 Serge 3121
		}
3122
 
3123
		I915_WRITE(reg, temp);
3124
	}
3125
 
3243 Serge 3126
	ironlake_enable_pch_transcoder(dev_priv, pipe);
2327 Serge 3127
}
3128
 
3243 Serge 3129
static void lpt_pch_enable(struct drm_crtc *crtc)
3130
{
3131
	struct drm_device *dev = crtc->dev;
3132
	struct drm_i915_private *dev_priv = dev->dev_private;
3133
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3134
	enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3135
 
3136
	assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3137
 
3138
	lpt_program_iclkip(crtc);
3139
 
3140
	/* Set transcoder timing. */
3141
	I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3142
	I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3143
	I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3144
 
3145
	I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3146
	I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3147
	I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3148
	I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3149
 
3150
	lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3151
}
3152
 
3031 serge 3153
static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3154
{
3155
	struct intel_pch_pll *pll = intel_crtc->pch_pll;
3156
 
3157
	if (pll == NULL)
3158
		return;
3159
 
3160
	if (pll->refcount == 0) {
3161
		WARN(1, "bad PCH PLL refcount\n");
3162
		return;
3163
	}
3164
 
3165
	--pll->refcount;
3166
	intel_crtc->pch_pll = NULL;
3167
}
3168
 
3169
static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3170
{
3171
	struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3172
	struct intel_pch_pll *pll;
3173
	int i;
3174
 
3175
	pll = intel_crtc->pch_pll;
3176
	if (pll) {
3177
		DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3178
			      intel_crtc->base.base.id, pll->pll_reg);
3179
		goto prepare;
3180
	}
3181
 
3182
	if (HAS_PCH_IBX(dev_priv->dev)) {
3183
		/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3184
		i = intel_crtc->pipe;
3185
		pll = &dev_priv->pch_plls[i];
3186
 
3187
		DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3188
			      intel_crtc->base.base.id, pll->pll_reg);
3189
 
3190
		goto found;
3191
	}
3192
 
3193
	for (i = 0; i < dev_priv->num_pch_pll; i++) {
3194
		pll = &dev_priv->pch_plls[i];
3195
 
3196
		/* Only want to check enabled timings first */
3197
		if (pll->refcount == 0)
3198
			continue;
3199
 
3200
		if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3201
		    fp == I915_READ(pll->fp0_reg)) {
3202
			DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3203
				      intel_crtc->base.base.id,
3204
				      pll->pll_reg, pll->refcount, pll->active);
3205
 
3206
			goto found;
3207
		}
3208
	}
3209
 
3210
	/* Ok no matching timings, maybe there's a free one? */
3211
	for (i = 0; i < dev_priv->num_pch_pll; i++) {
3212
		pll = &dev_priv->pch_plls[i];
3213
		if (pll->refcount == 0) {
3214
			DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3215
				      intel_crtc->base.base.id, pll->pll_reg);
3216
			goto found;
3217
		}
3218
	}
3219
 
3220
	return NULL;
3221
 
3222
found:
3223
	intel_crtc->pch_pll = pll;
3224
	pll->refcount++;
3225
	DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3226
prepare: /* separate function? */
3227
	DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3228
 
3229
	/* Wait for the clocks to stabilize before rewriting the regs */
3230
	I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3231
	POSTING_READ(pll->pll_reg);
3232
	udelay(150);
3233
 
3234
	I915_WRITE(pll->fp0_reg, fp);
3235
	I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3236
	pll->on = false;
3237
	return pll;
3238
}
3239
 
2342 Serge 3240
void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3241
{
3242
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 3243
	int dslreg = PIPEDSL(pipe);
2342 Serge 3244
	u32 temp;
3245
 
3246
	temp = I915_READ(dslreg);
3247
	udelay(500);
3248
	if (wait_for(I915_READ(dslreg) != temp, 5)) {
3249
		if (wait_for(I915_READ(dslreg) != temp, 5))
3250
			DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3251
	}
3252
}
3253
 
2327 Serge 3254
static void ironlake_crtc_enable(struct drm_crtc *crtc)
3255
{
3256
    struct drm_device *dev = crtc->dev;
3257
    struct drm_i915_private *dev_priv = dev->dev_private;
3258
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 3259
	struct intel_encoder *encoder;
2327 Serge 3260
    int pipe = intel_crtc->pipe;
3261
    int plane = intel_crtc->plane;
3262
    u32 temp;
3263
    bool is_pch_port;
3264
 
3031 serge 3265
	WARN_ON(!crtc->enabled);
3266
 
2327 Serge 3267
    if (intel_crtc->active)
3268
        return;
3269
 
3270
    intel_crtc->active = true;
3271
    intel_update_watermarks(dev);
3272
 
3273
    if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3274
        temp = I915_READ(PCH_LVDS);
3275
        if ((temp & LVDS_PORT_EN) == 0)
3276
            I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3277
    }
3278
 
3243 Serge 3279
	is_pch_port = ironlake_crtc_driving_pch(crtc);
2327 Serge 3280
 
3031 serge 3281
	if (is_pch_port) {
3243 Serge 3282
		/* Note: FDI PLL enabling _must_ be done before we enable the
3283
		 * cpu pipes, hence this is separate from all the other fdi/pch
3284
		 * enabling. */
3031 serge 3285
		ironlake_fdi_pll_enable(intel_crtc);
3286
	} else {
3287
		assert_fdi_tx_disabled(dev_priv, pipe);
3288
		assert_fdi_rx_disabled(dev_priv, pipe);
3289
	}
2327 Serge 3290
 
3031 serge 3291
	for_each_encoder_on_crtc(dev, crtc, encoder)
3292
		if (encoder->pre_enable)
3293
			encoder->pre_enable(encoder);
3294
 
2327 Serge 3295
    /* Enable panel fitting for LVDS */
3296
    if (dev_priv->pch_pf_size &&
3243 Serge 3297
	    (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3298
	     intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2327 Serge 3299
        /* Force use of hard-coded filter coefficients
3300
         * as some pre-programmed values are broken,
3301
         * e.g. x201.
3302
         */
3243 Serge 3303
		if (IS_IVYBRIDGE(dev))
3304
			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3305
						 PF_PIPE_SEL_IVB(pipe));
3306
		else
2327 Serge 3307
        I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3308
        I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3309
        I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3310
    }
3311
 
3312
    /*
3313
     * On ILK+ LUT must be loaded before the pipe is running but with
3314
     * clocks enabled
3315
     */
3316
    intel_crtc_load_lut(crtc);
3317
 
3318
    intel_enable_pipe(dev_priv, pipe, is_pch_port);
3319
    intel_enable_plane(dev_priv, plane, pipe);
3320
 
3321
    if (is_pch_port)
3322
        ironlake_pch_enable(crtc);
3323
 
3324
    mutex_lock(&dev->struct_mutex);
3325
    intel_update_fbc(dev);
3326
    mutex_unlock(&dev->struct_mutex);
3327
 
3328
//    intel_crtc_update_cursor(crtc, true);
3031 serge 3329
 
3330
	for_each_encoder_on_crtc(dev, crtc, encoder)
3331
		encoder->enable(encoder);
3332
 
3333
	if (HAS_PCH_CPT(dev))
3334
		intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3335
 
3336
	/*
3337
	 * There seems to be a race in PCH platform hw (at least on some
3338
	 * outputs) where an enabled pipe still completes any pageflip right
3339
	 * away (as if the pipe is off) instead of waiting for vblank. As soon
3340
	 * as the first vblank happend, everything works as expected. Hence just
3341
	 * wait for one vblank before returning to avoid strange things
3342
	 * happening.
3343
	 */
3344
	intel_wait_for_vblank(dev, intel_crtc->pipe);
2327 Serge 3345
}
3346
 
3243 Serge 3347
static void haswell_crtc_enable(struct drm_crtc *crtc)
3348
{
3349
	struct drm_device *dev = crtc->dev;
3350
	struct drm_i915_private *dev_priv = dev->dev_private;
3351
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3352
	struct intel_encoder *encoder;
3353
	int pipe = intel_crtc->pipe;
3354
	int plane = intel_crtc->plane;
3355
	bool is_pch_port;
3356
 
3357
	WARN_ON(!crtc->enabled);
3358
 
3359
	if (intel_crtc->active)
3360
		return;
3361
 
3362
	intel_crtc->active = true;
3363
	intel_update_watermarks(dev);
3364
 
3365
	is_pch_port = haswell_crtc_driving_pch(crtc);
3366
 
3367
	if (is_pch_port)
3368
		dev_priv->display.fdi_link_train(crtc);
3369
 
3370
	for_each_encoder_on_crtc(dev, crtc, encoder)
3371
		if (encoder->pre_enable)
3372
			encoder->pre_enable(encoder);
3373
 
3374
	intel_ddi_enable_pipe_clock(intel_crtc);
3375
 
3376
	/* Enable panel fitting for eDP */
3377
	if (dev_priv->pch_pf_size &&
3378
	    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3379
		/* Force use of hard-coded filter coefficients
3380
		 * as some pre-programmed values are broken,
3381
		 * e.g. x201.
3382
		 */
3383
		I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3384
					 PF_PIPE_SEL_IVB(pipe));
3385
		I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3386
		I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3387
	}
3388
 
3389
	/*
3390
	 * On ILK+ LUT must be loaded before the pipe is running but with
3391
	 * clocks enabled
3392
	 */
3393
	intel_crtc_load_lut(crtc);
3394
 
3395
	intel_ddi_set_pipe_settings(crtc);
3396
	intel_ddi_enable_pipe_func(crtc);
3397
 
3398
	intel_enable_pipe(dev_priv, pipe, is_pch_port);
3399
	intel_enable_plane(dev_priv, plane, pipe);
3400
 
3401
	if (is_pch_port)
3402
		lpt_pch_enable(crtc);
3403
 
3404
	mutex_lock(&dev->struct_mutex);
3405
	intel_update_fbc(dev);
3406
	mutex_unlock(&dev->struct_mutex);
3407
 
3408
//	intel_crtc_update_cursor(crtc, true);
3409
 
3410
	for_each_encoder_on_crtc(dev, crtc, encoder)
3411
		encoder->enable(encoder);
3412
 
3413
	/*
3414
	 * There seems to be a race in PCH platform hw (at least on some
3415
	 * outputs) where an enabled pipe still completes any pageflip right
3416
	 * away (as if the pipe is off) instead of waiting for vblank. As soon
3417
	 * as the first vblank happend, everything works as expected. Hence just
3418
	 * wait for one vblank before returning to avoid strange things
3419
	 * happening.
3420
	 */
3421
	intel_wait_for_vblank(dev, intel_crtc->pipe);
3422
}
3423
 
2327 Serge 3424
static void ironlake_crtc_disable(struct drm_crtc *crtc)
3425
{
3426
    struct drm_device *dev = crtc->dev;
3427
    struct drm_i915_private *dev_priv = dev->dev_private;
3428
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 3429
	struct intel_encoder *encoder;
2327 Serge 3430
    int pipe = intel_crtc->pipe;
3431
    int plane = intel_crtc->plane;
3432
    u32 reg, temp;
3433
 
3031 serge 3434
 
2327 Serge 3435
    if (!intel_crtc->active)
3436
        return;
3437
 
3031 serge 3438
	for_each_encoder_on_crtc(dev, crtc, encoder)
3439
		encoder->disable(encoder);
2336 Serge 3440
 
3031 serge 3441
//    intel_crtc_wait_for_pending_flips(crtc);
2327 Serge 3442
//    drm_vblank_off(dev, pipe);
3443
//    intel_crtc_update_cursor(crtc, false);
3444
 
3445
    intel_disable_plane(dev_priv, plane, pipe);
3446
 
3447
    if (dev_priv->cfb_plane == plane)
3448
        intel_disable_fbc(dev);
3449
 
3450
    intel_disable_pipe(dev_priv, pipe);
3451
 
3452
    /* Disable PF */
3453
    I915_WRITE(PF_CTL(pipe), 0);
3454
    I915_WRITE(PF_WIN_SZ(pipe), 0);
3455
 
3031 serge 3456
	for_each_encoder_on_crtc(dev, crtc, encoder)
3457
		if (encoder->post_disable)
3458
			encoder->post_disable(encoder);
3459
 
2327 Serge 3460
    ironlake_fdi_disable(crtc);
3461
 
3243 Serge 3462
	ironlake_disable_pch_transcoder(dev_priv, pipe);
2327 Serge 3463
 
3464
    if (HAS_PCH_CPT(dev)) {
3465
        /* disable TRANS_DP_CTL */
3466
        reg = TRANS_DP_CTL(pipe);
3467
        temp = I915_READ(reg);
3468
        temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3469
        temp |= TRANS_DP_PORT_SEL_NONE;
3470
        I915_WRITE(reg, temp);
3471
 
3472
        /* disable DPLL_SEL */
3473
        temp = I915_READ(PCH_DPLL_SEL);
3474
        switch (pipe) {
3475
        case 0:
2342 Serge 3476
			temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2327 Serge 3477
            break;
3478
        case 1:
3479
            temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3480
            break;
3481
        case 2:
2342 Serge 3482
			/* C shares PLL A or B */
2327 Serge 3483
            temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3484
            break;
3485
        default:
3486
            BUG(); /* wtf */
3487
        }
3488
        I915_WRITE(PCH_DPLL_SEL, temp);
3489
    }
3490
 
3491
    /* disable PCH DPLL */
3031 serge 3492
	intel_disable_pch_pll(intel_crtc);
2327 Serge 3493
 
3031 serge 3494
	ironlake_fdi_pll_disable(intel_crtc);
2327 Serge 3495
 
3496
    intel_crtc->active = false;
3497
    intel_update_watermarks(dev);
3498
 
3499
    mutex_lock(&dev->struct_mutex);
3500
    intel_update_fbc(dev);
3501
    mutex_unlock(&dev->struct_mutex);
3502
}
3503
 
3243 Serge 3504
static void haswell_crtc_disable(struct drm_crtc *crtc)
3505
{
3506
	struct drm_device *dev = crtc->dev;
3507
	struct drm_i915_private *dev_priv = dev->dev_private;
3508
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3509
	struct intel_encoder *encoder;
3510
	int pipe = intel_crtc->pipe;
3511
	int plane = intel_crtc->plane;
3512
	enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3513
	bool is_pch_port;
3514
 
3515
	if (!intel_crtc->active)
3516
		return;
3517
 
3518
	is_pch_port = haswell_crtc_driving_pch(crtc);
3519
 
3520
	for_each_encoder_on_crtc(dev, crtc, encoder)
3521
		encoder->disable(encoder);
3522
 
3523
 
3524
	intel_disable_plane(dev_priv, plane, pipe);
3525
 
3526
	if (dev_priv->cfb_plane == plane)
3527
		intel_disable_fbc(dev);
3528
 
3529
	intel_disable_pipe(dev_priv, pipe);
3530
 
3531
	intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3532
 
3533
	/* Disable PF */
3534
	I915_WRITE(PF_CTL(pipe), 0);
3535
	I915_WRITE(PF_WIN_SZ(pipe), 0);
3536
 
3537
	intel_ddi_disable_pipe_clock(intel_crtc);
3538
 
3539
	for_each_encoder_on_crtc(dev, crtc, encoder)
3540
		if (encoder->post_disable)
3541
			encoder->post_disable(encoder);
3542
 
3543
	if (is_pch_port) {
3544
		lpt_disable_pch_transcoder(dev_priv);
3545
		intel_ddi_fdi_disable(crtc);
3546
	}
3547
 
3548
	intel_crtc->active = false;
3549
	intel_update_watermarks(dev);
3550
 
3551
	mutex_lock(&dev->struct_mutex);
3552
	intel_update_fbc(dev);
3553
	mutex_unlock(&dev->struct_mutex);
3554
}
3555
 
3031 serge 3556
static void ironlake_crtc_off(struct drm_crtc *crtc)
2327 Serge 3557
{
3558
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 3559
	intel_put_pch_pll(intel_crtc);
2327 Serge 3560
}
3561
 
3243 Serge 3562
static void haswell_crtc_off(struct drm_crtc *crtc)
3563
{
3564
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3565
 
3566
	/* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3567
	 * start using it. */
3480 Serge 3568
	intel_crtc->cpu_transcoder = (enum transcoder) intel_crtc->pipe;
3243 Serge 3569
 
3570
	intel_ddi_put_crtc_pll(crtc);
3571
}
3572
 
2327 Serge 3573
static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3574
{
3575
	if (!enable && intel_crtc->overlay) {
3576
		struct drm_device *dev = intel_crtc->base.dev;
3577
		struct drm_i915_private *dev_priv = dev->dev_private;
3578
 
3579
		mutex_lock(&dev->struct_mutex);
3580
		dev_priv->mm.interruptible = false;
3581
//       (void) intel_overlay_switch_off(intel_crtc->overlay);
3582
		dev_priv->mm.interruptible = true;
3583
		mutex_unlock(&dev->struct_mutex);
3584
	}
3585
 
3586
	/* Let userspace switch the overlay on again. In most cases userspace
3587
	 * has to recompute where to put it anyway.
3588
	 */
3589
}
3590
 
3480 Serge 3591
/**
3592
 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3593
 * cursor plane briefly if not already running after enabling the display
3594
 * plane.
3595
 * This workaround avoids occasional blank screens when self refresh is
3596
 * enabled.
3597
 */
3598
static void
3599
g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3600
{
3601
	u32 cntl = I915_READ(CURCNTR(pipe));
3602
 
3603
	if ((cntl & CURSOR_MODE) == 0) {
3604
		u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3605
 
3606
		I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3607
		I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3608
		intel_wait_for_vblank(dev_priv->dev, pipe);
3609
		I915_WRITE(CURCNTR(pipe), cntl);
3610
		I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3611
		I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3612
	}
3613
}
3614
 
2327 Serge 3615
static void i9xx_crtc_enable(struct drm_crtc *crtc)
3616
{
3617
    struct drm_device *dev = crtc->dev;
3618
    struct drm_i915_private *dev_priv = dev->dev_private;
3619
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 3620
	struct intel_encoder *encoder;
2327 Serge 3621
    int pipe = intel_crtc->pipe;
3622
    int plane = intel_crtc->plane;
3623
 
3031 serge 3624
	WARN_ON(!crtc->enabled);
3625
 
2327 Serge 3626
    if (intel_crtc->active)
3627
        return;
3628
 
3629
    intel_crtc->active = true;
3630
    intel_update_watermarks(dev);
3631
 
3632
    intel_enable_pll(dev_priv, pipe);
3480 Serge 3633
 
3634
	for_each_encoder_on_crtc(dev, crtc, encoder)
3635
		if (encoder->pre_enable)
3636
			encoder->pre_enable(encoder);
3637
 
2327 Serge 3638
    intel_enable_pipe(dev_priv, pipe, false);
3639
    intel_enable_plane(dev_priv, plane, pipe);
3480 Serge 3640
	if (IS_G4X(dev))
3641
		g4x_fixup_plane(dev_priv, pipe);
2327 Serge 3642
 
3643
    intel_crtc_load_lut(crtc);
3644
    intel_update_fbc(dev);
3645
 
3646
    /* Give the overlay scaler a chance to enable if it's on this pipe */
3647
    intel_crtc_dpms_overlay(intel_crtc, true);
3648
//    intel_crtc_update_cursor(crtc, true);
3031 serge 3649
 
3650
	for_each_encoder_on_crtc(dev, crtc, encoder)
3651
		encoder->enable(encoder);
2327 Serge 3652
}
3653
 
3654
static void i9xx_crtc_disable(struct drm_crtc *crtc)
3655
{
3656
    struct drm_device *dev = crtc->dev;
3657
    struct drm_i915_private *dev_priv = dev->dev_private;
3658
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 3659
	struct intel_encoder *encoder;
2327 Serge 3660
    int pipe = intel_crtc->pipe;
3661
    int plane = intel_crtc->plane;
3480 Serge 3662
	u32 pctl;
2327 Serge 3663
 
3031 serge 3664
 
2327 Serge 3665
    if (!intel_crtc->active)
3666
        return;
3667
 
3031 serge 3668
	for_each_encoder_on_crtc(dev, crtc, encoder)
3669
		encoder->disable(encoder);
3670
 
2327 Serge 3671
    /* Give the overlay scaler a chance to disable if it's on this pipe */
3031 serge 3672
//    intel_crtc_wait_for_pending_flips(crtc);
2327 Serge 3673
//    drm_vblank_off(dev, pipe);
3674
    intel_crtc_dpms_overlay(intel_crtc, false);
3675
//    intel_crtc_update_cursor(crtc, false);
3676
 
3677
    if (dev_priv->cfb_plane == plane)
3678
        intel_disable_fbc(dev);
3679
 
3680
    intel_disable_plane(dev_priv, plane, pipe);
3681
    intel_disable_pipe(dev_priv, pipe);
3480 Serge 3682
 
3683
	/* Disable pannel fitter if it is on this pipe. */
3684
	pctl = I915_READ(PFIT_CONTROL);
3685
	if ((pctl & PFIT_ENABLE) &&
3686
	    ((pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT) == pipe)
3687
		I915_WRITE(PFIT_CONTROL, 0);
3688
 
2327 Serge 3689
    intel_disable_pll(dev_priv, pipe);
3690
 
3691
    intel_crtc->active = false;
3692
    intel_update_fbc(dev);
3693
    intel_update_watermarks(dev);
3694
}
3695
 
3031 serge 3696
static void i9xx_crtc_off(struct drm_crtc *crtc)
2327 Serge 3697
{
3698
}
3699
 
3031 serge 3700
static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3701
				    bool enabled)
2330 Serge 3702
{
3703
	struct drm_device *dev = crtc->dev;
3704
	struct drm_i915_master_private *master_priv;
3705
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3706
	int pipe = intel_crtc->pipe;
2327 Serge 3707
 
3708
 
2340 Serge 3709
#if 0
2330 Serge 3710
	if (!dev->primary->master)
3711
		return;
2327 Serge 3712
 
2330 Serge 3713
	master_priv = dev->primary->master->driver_priv;
3714
	if (!master_priv->sarea_priv)
3715
		return;
2327 Serge 3716
 
2330 Serge 3717
	switch (pipe) {
3718
	case 0:
3719
		master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3720
		master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3721
		break;
3722
	case 1:
3723
		master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3724
		master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3725
		break;
3726
	default:
3727
		DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3728
		break;
3729
	}
2340 Serge 3730
#endif
3731
 
2330 Serge 3732
}
2327 Serge 3733
 
3031 serge 3734
/**
3735
 * Sets the power management mode of the pipe and plane.
3736
 */
3737
void intel_crtc_update_dpms(struct drm_crtc *crtc)
3738
{
3739
	struct drm_device *dev = crtc->dev;
3740
	struct drm_i915_private *dev_priv = dev->dev_private;
3741
	struct intel_encoder *intel_encoder;
3742
	bool enable = false;
3743
 
3744
	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3745
		enable |= intel_encoder->connectors_active;
3746
 
3747
	if (enable)
3748
		dev_priv->display.crtc_enable(crtc);
3749
	else
3750
		dev_priv->display.crtc_disable(crtc);
3751
 
3752
	intel_crtc_update_sarea(crtc, enable);
3753
}
3754
 
2330 Serge 3755
static void intel_crtc_disable(struct drm_crtc *crtc)
3756
{
3757
	struct drm_device *dev = crtc->dev;
3031 serge 3758
	struct drm_connector *connector;
3759
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 3760
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 Serge 3761
 
3031 serge 3762
	/* crtc should still be enabled when we disable it. */
3763
	WARN_ON(!crtc->enabled);
2327 Serge 3764
 
3480 Serge 3765
	intel_crtc->eld_vld = false;
3031 serge 3766
	dev_priv->display.crtc_disable(crtc);
3767
	intel_crtc_update_sarea(crtc, false);
3768
	dev_priv->display.off(crtc);
3769
 
3770
	assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3771
	assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3772
 
3773
//	if (crtc->fb) {
3774
//		mutex_lock(&dev->struct_mutex);
3775
//		intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3776
//		mutex_unlock(&dev->struct_mutex);
3777
//		crtc->fb = NULL;
3778
//	}
3779
 
3780
	/* Update computed state. */
3781
	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3782
		if (!connector->encoder || !connector->encoder->crtc)
3783
			continue;
3784
 
3785
		if (connector->encoder->crtc != crtc)
3786
			continue;
3787
 
3788
		connector->dpms = DRM_MODE_DPMS_OFF;
3789
		to_intel_encoder(connector->encoder)->connectors_active = false;
2330 Serge 3790
	}
3791
}
2327 Serge 3792
 
3031 serge 3793
void intel_modeset_disable(struct drm_device *dev)
2330 Serge 3794
{
3031 serge 3795
	struct drm_crtc *crtc;
3796
 
3797
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3798
		if (crtc->enabled)
3799
			intel_crtc_disable(crtc);
3800
	}
2330 Serge 3801
}
2327 Serge 3802
 
3031 serge 3803
void intel_encoder_destroy(struct drm_encoder *encoder)
2330 Serge 3804
{
3031 serge 3805
	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3806
 
3807
	drm_encoder_cleanup(encoder);
3808
	kfree(intel_encoder);
2330 Serge 3809
}
2327 Serge 3810
 
3031 serge 3811
/* Simple dpms helper for encodres with just one connector, no cloning and only
3812
 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3813
 * state of the entire output pipe. */
3814
void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
2330 Serge 3815
{
3031 serge 3816
	if (mode == DRM_MODE_DPMS_ON) {
3817
		encoder->connectors_active = true;
3818
 
3819
		intel_crtc_update_dpms(encoder->base.crtc);
3820
	} else {
3821
		encoder->connectors_active = false;
3822
 
3823
		intel_crtc_update_dpms(encoder->base.crtc);
3824
	}
2330 Serge 3825
}
2327 Serge 3826
 
3031 serge 3827
/* Cross check the actual hw state with our own modeset state tracking (and it's
3828
 * internal consistency). */
3829
static void intel_connector_check_state(struct intel_connector *connector)
2330 Serge 3830
{
3031 serge 3831
	if (connector->get_hw_state(connector)) {
3832
		struct intel_encoder *encoder = connector->encoder;
3833
		struct drm_crtc *crtc;
3834
		bool encoder_enabled;
3835
		enum pipe pipe;
3836
 
3837
		DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3838
			      connector->base.base.id,
3839
			      drm_get_connector_name(&connector->base));
3840
 
3841
		WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3842
		     "wrong connector dpms state\n");
3843
		WARN(connector->base.encoder != &encoder->base,
3844
		     "active connector not linked to encoder\n");
3845
		WARN(!encoder->connectors_active,
3846
		     "encoder->connectors_active not set\n");
3847
 
3848
		encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3849
		WARN(!encoder_enabled, "encoder not enabled\n");
3850
		if (WARN_ON(!encoder->base.crtc))
3851
			return;
3852
 
3853
		crtc = encoder->base.crtc;
3854
 
3855
		WARN(!crtc->enabled, "crtc not enabled\n");
3856
		WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3857
		WARN(pipe != to_intel_crtc(crtc)->pipe,
3858
		     "encoder active on the wrong pipe\n");
3859
	}
2330 Serge 3860
}
2327 Serge 3861
 
3031 serge 3862
/* Even simpler default implementation, if there's really no special case to
3863
 * consider. */
3864
void intel_connector_dpms(struct drm_connector *connector, int mode)
2330 Serge 3865
{
3031 serge 3866
	struct intel_encoder *encoder = intel_attached_encoder(connector);
2342 Serge 3867
 
3031 serge 3868
	/* All the simple cases only support two dpms states. */
3869
	if (mode != DRM_MODE_DPMS_ON)
3870
		mode = DRM_MODE_DPMS_OFF;
2342 Serge 3871
 
3031 serge 3872
	if (mode == connector->dpms)
3873
		return;
3874
 
3875
	connector->dpms = mode;
3876
 
3877
	/* Only need to change hw state when actually enabled */
3878
	if (encoder->base.crtc)
3879
		intel_encoder_dpms(encoder, mode);
3880
	else
3881
		WARN_ON(encoder->connectors_active != false);
3882
 
3883
	intel_modeset_check_state(connector->dev);
2330 Serge 3884
}
2327 Serge 3885
 
3031 serge 3886
/* Simple connector->get_hw_state implementation for encoders that support only
3887
 * one connector and no cloning and hence the encoder state determines the state
3888
 * of the connector. */
3889
bool intel_connector_get_hw_state(struct intel_connector *connector)
2330 Serge 3890
{
3031 serge 3891
	enum pipe pipe = 0;
3892
	struct intel_encoder *encoder = connector->encoder;
2330 Serge 3893
 
3031 serge 3894
	return encoder->get_hw_state(encoder, &pipe);
2330 Serge 3895
}
3896
 
3897
static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3031 serge 3898
				  const struct drm_display_mode *mode,
2330 Serge 3899
				  struct drm_display_mode *adjusted_mode)
3900
{
3901
	struct drm_device *dev = crtc->dev;
3902
 
3903
	if (HAS_PCH_SPLIT(dev)) {
3904
		/* FDI link clock is fixed at 2.7G */
3905
		if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3906
			return false;
3907
	}
3908
 
3031 serge 3909
	/* All interlaced capable intel hw wants timings in frames. Note though
3910
	 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3911
	 * timings, so we need to be careful not to clobber these.*/
3912
	if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
2330 Serge 3913
		drm_mode_set_crtcinfo(adjusted_mode, 0);
3914
 
3031 serge 3915
	/* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3916
	 * with a hsync front porch of 0.
3917
	 */
3918
	if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3919
		adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3920
		return false;
3921
 
2330 Serge 3922
	return true;
3923
}
3924
 
3031 serge 3925
static int valleyview_get_display_clock_speed(struct drm_device *dev)
3926
{
3927
	return 400000; /* FIXME */
3928
}
3929
 
2327 Serge 3930
static int i945_get_display_clock_speed(struct drm_device *dev)
3931
{
3932
	return 400000;
3933
}
3934
 
3935
static int i915_get_display_clock_speed(struct drm_device *dev)
3936
{
3937
	return 333000;
3938
}
3939
 
3940
static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3941
{
3942
	return 200000;
3943
}
3944
 
3945
static int i915gm_get_display_clock_speed(struct drm_device *dev)
3946
{
3947
	u16 gcfgc = 0;
3948
 
3949
	pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3950
 
3951
	if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3952
		return 133000;
3953
	else {
3954
		switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3955
		case GC_DISPLAY_CLOCK_333_MHZ:
3956
			return 333000;
3957
		default:
3958
		case GC_DISPLAY_CLOCK_190_200_MHZ:
3959
			return 190000;
3960
		}
3961
	}
3962
}
3963
 
3964
static int i865_get_display_clock_speed(struct drm_device *dev)
3965
{
3966
	return 266000;
3967
}
3968
 
3969
static int i855_get_display_clock_speed(struct drm_device *dev)
3970
{
3971
	u16 hpllcc = 0;
3972
	/* Assume that the hardware is in the high speed state.  This
3973
	 * should be the default.
3974
	 */
3975
	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3976
	case GC_CLOCK_133_200:
3977
	case GC_CLOCK_100_200:
3978
		return 200000;
3979
	case GC_CLOCK_166_250:
3980
		return 250000;
3981
	case GC_CLOCK_100_133:
3982
		return 133000;
3983
	}
3984
 
3985
	/* Shouldn't happen */
3986
	return 0;
3987
}
3988
 
3989
static int i830_get_display_clock_speed(struct drm_device *dev)
3990
{
3991
	return 133000;
3992
}
3993
 
3994
static void
3480 Serge 3995
intel_reduce_ratio(uint32_t *num, uint32_t *den)
2327 Serge 3996
{
3997
	while (*num > 0xffffff || *den > 0xffffff) {
3998
		*num >>= 1;
3999
		*den >>= 1;
4000
	}
4001
}
4002
 
3480 Serge 4003
void
4004
intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4005
		       int pixel_clock, int link_clock,
4006
		       struct intel_link_m_n *m_n)
2327 Serge 4007
{
3480 Serge 4008
	m_n->tu = 64;
2327 Serge 4009
	m_n->gmch_m = bits_per_pixel * pixel_clock;
4010
	m_n->gmch_n = link_clock * nlanes * 8;
3480 Serge 4011
	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2327 Serge 4012
	m_n->link_m = pixel_clock;
4013
	m_n->link_n = link_clock;
3480 Serge 4014
	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
2327 Serge 4015
}
4016
 
4017
static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4018
{
2342 Serge 4019
	if (i915_panel_use_ssc >= 0)
4020
		return i915_panel_use_ssc != 0;
4021
	return dev_priv->lvds_use_ssc
2327 Serge 4022
		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4023
}
4024
 
4025
/**
4026
 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4027
 * @crtc: CRTC structure
2342 Serge 4028
 * @mode: requested mode
2327 Serge 4029
 *
4030
 * A pipe may be connected to one or more outputs.  Based on the depth of the
4031
 * attached framebuffer, choose a good color depth to use on the pipe.
4032
 *
4033
 * If possible, match the pipe depth to the fb depth.  In some cases, this
4034
 * isn't ideal, because the connected output supports a lesser or restricted
4035
 * set of depths.  Resolve that here:
4036
 *    LVDS typically supports only 6bpc, so clamp down in that case
4037
 *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4038
 *    Displays may support a restricted set as well, check EDID and clamp as
4039
 *      appropriate.
2342 Serge 4040
 *    DP may want to dither down to 6bpc to fit larger modes
2327 Serge 4041
 *
4042
 * RETURNS:
4043
 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4044
 * true if they don't match).
4045
 */
4046
static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3031 serge 4047
					 struct drm_framebuffer *fb,
2342 Serge 4048
					 unsigned int *pipe_bpp,
4049
					 struct drm_display_mode *mode)
2327 Serge 4050
{
4051
	struct drm_device *dev = crtc->dev;
4052
	struct drm_i915_private *dev_priv = dev->dev_private;
4053
	struct drm_connector *connector;
3031 serge 4054
	struct intel_encoder *intel_encoder;
2327 Serge 4055
	unsigned int display_bpc = UINT_MAX, bpc;
4056
 
4057
	/* Walk the encoders & connectors on this crtc, get min bpc */
3031 serge 4058
	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2327 Serge 4059
 
4060
		if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4061
			unsigned int lvds_bpc;
4062
 
4063
			if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4064
			    LVDS_A3_POWER_UP)
4065
				lvds_bpc = 8;
4066
			else
4067
				lvds_bpc = 6;
4068
 
4069
			if (lvds_bpc < display_bpc) {
2342 Serge 4070
				DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
2327 Serge 4071
				display_bpc = lvds_bpc;
4072
			}
4073
			continue;
4074
		}
4075
 
4076
		/* Not one of the known troublemakers, check the EDID */
4077
		list_for_each_entry(connector, &dev->mode_config.connector_list,
4078
				    head) {
3031 serge 4079
			if (connector->encoder != &intel_encoder->base)
2327 Serge 4080
				continue;
4081
 
4082
			/* Don't use an invalid EDID bpc value */
4083
			if (connector->display_info.bpc &&
4084
			    connector->display_info.bpc < display_bpc) {
2342 Serge 4085
				DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
2327 Serge 4086
				display_bpc = connector->display_info.bpc;
3031 serge 4087
        }
4088
    }
2327 Serge 4089
 
3120 serge 4090
		if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4091
			/* Use VBT settings if we have an eDP panel */
4092
			unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4093
 
3243 Serge 4094
			if (edp_bpc && edp_bpc < display_bpc) {
3120 serge 4095
				DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4096
				display_bpc = edp_bpc;
4097
			}
4098
			continue;
4099
		}
4100
 
2327 Serge 4101
		/*
4102
		 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4103
		 * through, clamp it down.  (Note: >12bpc will be caught below.)
4104
		 */
4105
		if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4106
			if (display_bpc > 8 && display_bpc < 12) {
2342 Serge 4107
				DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
2327 Serge 4108
				display_bpc = 12;
4109
			} else {
2342 Serge 4110
				DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
2327 Serge 4111
				display_bpc = 8;
4112
			}
4113
		}
4114
	}
4115
 
2342 Serge 4116
	if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4117
		DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4118
		display_bpc = 6;
4119
	}
4120
 
2327 Serge 4121
	/*
4122
	 * We could just drive the pipe at the highest bpc all the time and
4123
	 * enable dithering as needed, but that costs bandwidth.  So choose
4124
	 * the minimum value that expresses the full color range of the fb but
4125
	 * also stays within the max display bpc discovered above.
4126
	 */
4127
 
3031 serge 4128
	switch (fb->depth) {
2327 Serge 4129
	case 8:
4130
		bpc = 8; /* since we go through a colormap */
4131
		break;
4132
	case 15:
4133
	case 16:
4134
		bpc = 6; /* min is 18bpp */
4135
		break;
4136
	case 24:
2342 Serge 4137
		bpc = 8;
2327 Serge 4138
		break;
4139
	case 30:
2342 Serge 4140
		bpc = 10;
2327 Serge 4141
		break;
4142
	case 48:
2342 Serge 4143
		bpc = 12;
2327 Serge 4144
		break;
4145
	default:
4146
		DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4147
		bpc = min((unsigned int)8, display_bpc);
4148
		break;
4149
	}
4150
 
2342 Serge 4151
	display_bpc = min(display_bpc, bpc);
4152
 
4153
	DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3031 serge 4154
		      bpc, display_bpc);
2327 Serge 4155
 
2342 Serge 4156
	*pipe_bpp = display_bpc * 3;
2327 Serge 4157
 
4158
	return display_bpc != bpc;
4159
}
4160
 
3031 serge 4161
static int vlv_get_refclk(struct drm_crtc *crtc)
2327 Serge 4162
{
3031 serge 4163
	struct drm_device *dev = crtc->dev;
4164
	struct drm_i915_private *dev_priv = dev->dev_private;
4165
	int refclk = 27000; /* for DP & HDMI */
2327 Serge 4166
 
3031 serge 4167
	return 100000; /* only one validated so far */
2327 Serge 4168
 
3031 serge 4169
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4170
		refclk = 96000;
4171
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4172
		if (intel_panel_use_ssc(dev_priv))
4173
			refclk = 100000;
4174
		else
4175
			refclk = 96000;
4176
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4177
		refclk = 100000;
4178
	}
2327 Serge 4179
 
3031 serge 4180
	return refclk;
4181
}
2327 Serge 4182
 
3031 serge 4183
static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4184
{
4185
	struct drm_device *dev = crtc->dev;
4186
	struct drm_i915_private *dev_priv = dev->dev_private;
4187
	int refclk;
2327 Serge 4188
 
3031 serge 4189
	if (IS_VALLEYVIEW(dev)) {
4190
		refclk = vlv_get_refclk(crtc);
4191
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4192
	    intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4193
		refclk = dev_priv->lvds_ssc_freq * 1000;
4194
		DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4195
			      refclk / 1000);
4196
	} else if (!IS_GEN2(dev)) {
4197
		refclk = 96000;
4198
	} else {
4199
		refclk = 48000;
4200
	}
2327 Serge 4201
 
3031 serge 4202
	return refclk;
4203
}
2327 Serge 4204
 
3031 serge 4205
static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4206
				      intel_clock_t *clock)
4207
{
4208
	/* SDVO TV has fixed PLL values depend on its clock range,
4209
	   this mirrors vbios setting. */
4210
	if (adjusted_mode->clock >= 100000
4211
	    && adjusted_mode->clock < 140500) {
4212
		clock->p1 = 2;
4213
		clock->p2 = 10;
4214
		clock->n = 3;
4215
		clock->m1 = 16;
4216
		clock->m2 = 8;
4217
	} else if (adjusted_mode->clock >= 140500
4218
		   && adjusted_mode->clock <= 200000) {
4219
		clock->p1 = 1;
4220
		clock->p2 = 10;
4221
		clock->n = 6;
4222
		clock->m1 = 12;
4223
		clock->m2 = 8;
4224
	}
4225
}
2327 Serge 4226
 
3031 serge 4227
static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4228
				     intel_clock_t *clock,
4229
				     intel_clock_t *reduced_clock)
4230
{
4231
	struct drm_device *dev = crtc->dev;
4232
	struct drm_i915_private *dev_priv = dev->dev_private;
4233
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4234
	int pipe = intel_crtc->pipe;
4235
	u32 fp, fp2 = 0;
2327 Serge 4236
 
3031 serge 4237
	if (IS_PINEVIEW(dev)) {
4238
		fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4239
		if (reduced_clock)
4240
			fp2 = (1 << reduced_clock->n) << 16 |
4241
				reduced_clock->m1 << 8 | reduced_clock->m2;
4242
	} else {
4243
		fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4244
		if (reduced_clock)
4245
			fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4246
				reduced_clock->m2;
4247
	}
2327 Serge 4248
 
3031 serge 4249
	I915_WRITE(FP0(pipe), fp);
2327 Serge 4250
 
3031 serge 4251
	intel_crtc->lowfreq_avail = false;
4252
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4253
	    reduced_clock && i915_powersave) {
4254
		I915_WRITE(FP1(pipe), fp2);
4255
		intel_crtc->lowfreq_avail = true;
4256
	} else {
4257
		I915_WRITE(FP1(pipe), fp);
4258
	}
4259
}
2327 Serge 4260
 
3031 serge 4261
static void vlv_update_pll(struct drm_crtc *crtc,
4262
			   struct drm_display_mode *mode,
4263
			   struct drm_display_mode *adjusted_mode,
4264
			   intel_clock_t *clock, intel_clock_t *reduced_clock,
3243 Serge 4265
			   int num_connectors)
3031 serge 4266
{
4267
	struct drm_device *dev = crtc->dev;
4268
	struct drm_i915_private *dev_priv = dev->dev_private;
4269
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4270
	int pipe = intel_crtc->pipe;
4271
	u32 dpll, mdiv, pdiv;
4272
	u32 bestn, bestm1, bestm2, bestp1, bestp2;
3243 Serge 4273
	bool is_sdvo;
4274
	u32 temp;
2327 Serge 4275
 
3480 Serge 4276
	mutex_lock(&dev_priv->dpio_lock);
4277
 
3243 Serge 4278
	is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4279
		intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
2327 Serge 4280
 
3243 Serge 4281
	dpll = DPLL_VGA_MODE_DIS;
4282
	dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4283
	dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4284
	dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4285
 
4286
	I915_WRITE(DPLL(pipe), dpll);
4287
	POSTING_READ(DPLL(pipe));
4288
 
3031 serge 4289
	bestn = clock->n;
4290
	bestm1 = clock->m1;
4291
	bestm2 = clock->m2;
4292
	bestp1 = clock->p1;
4293
	bestp2 = clock->p2;
4294
 
3243 Serge 4295
	/*
4296
	 * In Valleyview PLL and program lane counter registers are exposed
4297
	 * through DPIO interface
4298
	 */
3031 serge 4299
	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4300
	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4301
	mdiv |= ((bestn << DPIO_N_SHIFT));
4302
	mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4303
	mdiv |= (1 << DPIO_K_SHIFT);
4304
	mdiv |= DPIO_ENABLE_CALIBRATION;
4305
	intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4306
 
4307
	intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4308
 
3243 Serge 4309
	pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
3031 serge 4310
		(3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
3243 Serge 4311
		(7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4312
		(5 << DPIO_CLK_BIAS_CTL_SHIFT);
3031 serge 4313
	intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4314
 
3243 Serge 4315
	intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
3031 serge 4316
 
4317
	dpll |= DPLL_VCO_ENABLE;
4318
	I915_WRITE(DPLL(pipe), dpll);
4319
	POSTING_READ(DPLL(pipe));
4320
	if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4321
		DRM_ERROR("DPLL %d failed to lock\n", pipe);
4322
 
3243 Serge 4323
	intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
3031 serge 4324
 
3243 Serge 4325
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4326
		intel_dp_set_m_n(crtc, mode, adjusted_mode);
4327
 
4328
	I915_WRITE(DPLL(pipe), dpll);
4329
 
4330
	/* Wait for the clocks to stabilize. */
4331
	POSTING_READ(DPLL(pipe));
4332
	udelay(150);
4333
 
4334
	temp = 0;
4335
	if (is_sdvo) {
4336
		temp = intel_mode_get_pixel_multiplier(adjusted_mode);
3031 serge 4337
		if (temp > 1)
4338
			temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4339
		else
4340
			temp = 0;
3243 Serge 4341
	}
3031 serge 4342
		I915_WRITE(DPLL_MD(pipe), temp);
4343
		POSTING_READ(DPLL_MD(pipe));
3243 Serge 4344
 
4345
	/* Now program lane control registers */
4346
	if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4347
			|| intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4348
	{
4349
		temp = 0x1000C4;
4350
		if(pipe == 1)
4351
			temp |= (1 << 21);
4352
		intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
3031 serge 4353
	}
3243 Serge 4354
	if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4355
	{
4356
		temp = 0x1000C4;
4357
		if(pipe == 1)
4358
			temp |= (1 << 21);
4359
		intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4360
	}
3480 Serge 4361
 
4362
	mutex_unlock(&dev_priv->dpio_lock);
3031 serge 4363
}
4364
 
4365
static void i9xx_update_pll(struct drm_crtc *crtc,
4366
			    struct drm_display_mode *mode,
4367
			    struct drm_display_mode *adjusted_mode,
4368
			    intel_clock_t *clock, intel_clock_t *reduced_clock,
4369
			    int num_connectors)
4370
{
4371
	struct drm_device *dev = crtc->dev;
4372
	struct drm_i915_private *dev_priv = dev->dev_private;
4373
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3480 Serge 4374
	struct intel_encoder *encoder;
3031 serge 4375
	int pipe = intel_crtc->pipe;
4376
	u32 dpll;
4377
	bool is_sdvo;
4378
 
3243 Serge 4379
	i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4380
 
3031 serge 4381
	is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4382
		intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4383
 
4384
	dpll = DPLL_VGA_MODE_DIS;
4385
 
4386
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4387
		dpll |= DPLLB_MODE_LVDS;
4388
	else
4389
		dpll |= DPLLB_MODE_DAC_SERIAL;
4390
	if (is_sdvo) {
4391
		int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4392
		if (pixel_multiplier > 1) {
4393
			if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4394
				dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
2342 Serge 4395
		}
3031 serge 4396
		dpll |= DPLL_DVO_HIGH_SPEED;
2342 Serge 4397
	}
3031 serge 4398
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4399
		dpll |= DPLL_DVO_HIGH_SPEED;
2342 Serge 4400
 
3031 serge 4401
	/* compute bitmask from p1 value */
4402
	if (IS_PINEVIEW(dev))
4403
		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4404
	else {
4405
		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4406
		if (IS_G4X(dev) && reduced_clock)
4407
			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4408
	}
4409
	switch (clock->p2) {
4410
	case 5:
4411
		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4412
		break;
4413
	case 7:
4414
		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4415
		break;
4416
	case 10:
4417
		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4418
		break;
4419
	case 14:
4420
		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4421
		break;
4422
	}
4423
	if (INTEL_INFO(dev)->gen >= 4)
4424
		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
2327 Serge 4425
 
3031 serge 4426
	if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4427
		dpll |= PLL_REF_INPUT_TVCLKINBC;
4428
	else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4429
		/* XXX: just matching BIOS for now */
4430
		/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
4431
		dpll |= 3;
4432
	else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4433
		 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4434
		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4435
	else
4436
		dpll |= PLL_REF_INPUT_DREFCLK;
2327 Serge 4437
 
3031 serge 4438
	dpll |= DPLL_VCO_ENABLE;
4439
	I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4440
	POSTING_READ(DPLL(pipe));
4441
	udelay(150);
2327 Serge 4442
 
3480 Serge 4443
	for_each_encoder_on_crtc(dev, crtc, encoder)
4444
		if (encoder->pre_pll_enable)
4445
			encoder->pre_pll_enable(encoder);
2327 Serge 4446
 
3031 serge 4447
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4448
		intel_dp_set_m_n(crtc, mode, adjusted_mode);
2327 Serge 4449
 
3031 serge 4450
	I915_WRITE(DPLL(pipe), dpll);
2327 Serge 4451
 
3031 serge 4452
	/* Wait for the clocks to stabilize. */
4453
	POSTING_READ(DPLL(pipe));
4454
	udelay(150);
2327 Serge 4455
 
3031 serge 4456
	if (INTEL_INFO(dev)->gen >= 4) {
4457
		u32 temp = 0;
4458
		if (is_sdvo) {
4459
			temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4460
			if (temp > 1)
4461
				temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4462
			else
4463
				temp = 0;
4464
	}
4465
		I915_WRITE(DPLL_MD(pipe), temp);
4466
	} else {
4467
		/* The pixel multiplier can only be updated once the
4468
		 * DPLL is enabled and the clocks are stable.
4469
		 *
4470
		 * So write it again.
4471
		 */
4472
		I915_WRITE(DPLL(pipe), dpll);
4473
	}
4474
}
2327 Serge 4475
 
3031 serge 4476
static void i8xx_update_pll(struct drm_crtc *crtc,
4477
			    struct drm_display_mode *adjusted_mode,
3243 Serge 4478
			    intel_clock_t *clock, intel_clock_t *reduced_clock,
3031 serge 4479
			    int num_connectors)
4480
{
4481
	struct drm_device *dev = crtc->dev;
4482
	struct drm_i915_private *dev_priv = dev->dev_private;
4483
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3480 Serge 4484
	struct intel_encoder *encoder;
3031 serge 4485
	int pipe = intel_crtc->pipe;
4486
	u32 dpll;
2327 Serge 4487
 
3243 Serge 4488
	i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4489
 
3031 serge 4490
	dpll = DPLL_VGA_MODE_DIS;
2327 Serge 4491
 
3031 serge 4492
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4493
		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4494
	} else {
4495
		if (clock->p1 == 2)
4496
			dpll |= PLL_P1_DIVIDE_BY_TWO;
4497
		else
4498
			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4499
		if (clock->p2 == 4)
4500
			dpll |= PLL_P2_DIVIDE_BY_4;
4501
	}
2327 Serge 4502
 
3031 serge 4503
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4504
		/* XXX: just matching BIOS for now */
4505
		/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
4506
		dpll |= 3;
4507
	else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4508
		 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4509
		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4510
	else
4511
		dpll |= PLL_REF_INPUT_DREFCLK;
4512
 
4513
	dpll |= DPLL_VCO_ENABLE;
4514
	I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4515
	POSTING_READ(DPLL(pipe));
4516
	udelay(150);
4517
 
3480 Serge 4518
	for_each_encoder_on_crtc(dev, crtc, encoder)
4519
		if (encoder->pre_pll_enable)
4520
			encoder->pre_pll_enable(encoder);
3031 serge 4521
 
4522
	I915_WRITE(DPLL(pipe), dpll);
4523
 
4524
	/* Wait for the clocks to stabilize. */
4525
	POSTING_READ(DPLL(pipe));
4526
	udelay(150);
4527
 
4528
	/* The pixel multiplier can only be updated once the
4529
	 * DPLL is enabled and the clocks are stable.
4530
	 *
4531
	 * So write it again.
4532
	 */
4533
	I915_WRITE(DPLL(pipe), dpll);
4534
}
4535
 
3243 Serge 4536
static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4537
				   struct drm_display_mode *mode,
4538
				   struct drm_display_mode *adjusted_mode)
4539
{
4540
	struct drm_device *dev = intel_crtc->base.dev;
4541
	struct drm_i915_private *dev_priv = dev->dev_private;
4542
	enum pipe pipe = intel_crtc->pipe;
4543
	enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4544
	uint32_t vsyncshift;
4545
 
4546
	if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4547
		/* the chip adds 2 halflines automatically */
4548
		adjusted_mode->crtc_vtotal -= 1;
4549
		adjusted_mode->crtc_vblank_end -= 1;
4550
		vsyncshift = adjusted_mode->crtc_hsync_start
4551
			     - adjusted_mode->crtc_htotal / 2;
4552
	} else {
4553
		vsyncshift = 0;
4554
	}
4555
 
4556
	if (INTEL_INFO(dev)->gen > 3)
4557
		I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4558
 
4559
	I915_WRITE(HTOTAL(cpu_transcoder),
4560
		   (adjusted_mode->crtc_hdisplay - 1) |
4561
		   ((adjusted_mode->crtc_htotal - 1) << 16));
4562
	I915_WRITE(HBLANK(cpu_transcoder),
4563
		   (adjusted_mode->crtc_hblank_start - 1) |
4564
		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
4565
	I915_WRITE(HSYNC(cpu_transcoder),
4566
		   (adjusted_mode->crtc_hsync_start - 1) |
4567
		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
4568
 
4569
	I915_WRITE(VTOTAL(cpu_transcoder),
4570
		   (adjusted_mode->crtc_vdisplay - 1) |
4571
		   ((adjusted_mode->crtc_vtotal - 1) << 16));
4572
	I915_WRITE(VBLANK(cpu_transcoder),
4573
		   (adjusted_mode->crtc_vblank_start - 1) |
4574
		   ((adjusted_mode->crtc_vblank_end - 1) << 16));
4575
	I915_WRITE(VSYNC(cpu_transcoder),
4576
		   (adjusted_mode->crtc_vsync_start - 1) |
4577
		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
4578
 
4579
	/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4580
	 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4581
	 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4582
	 * bits. */
4583
	if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4584
	    (pipe == PIPE_B || pipe == PIPE_C))
4585
		I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4586
 
4587
	/* pipesrc controls the size that is scaled from, which should
4588
	 * always be the user's requested size.
4589
	 */
4590
	I915_WRITE(PIPESRC(pipe),
4591
		   ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4592
}
4593
 
3031 serge 4594
static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4595
			      struct drm_display_mode *mode,
4596
			      struct drm_display_mode *adjusted_mode,
4597
			      int x, int y,
4598
			      struct drm_framebuffer *fb)
4599
{
4600
	struct drm_device *dev = crtc->dev;
4601
	struct drm_i915_private *dev_priv = dev->dev_private;
4602
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4603
	int pipe = intel_crtc->pipe;
4604
	int plane = intel_crtc->plane;
4605
	int refclk, num_connectors = 0;
4606
	intel_clock_t clock, reduced_clock;
3243 Serge 4607
	u32 dspcntr, pipeconf;
3031 serge 4608
	bool ok, has_reduced_clock = false, is_sdvo = false;
4609
	bool is_lvds = false, is_tv = false, is_dp = false;
4610
	struct intel_encoder *encoder;
4611
	const intel_limit_t *limit;
4612
	int ret;
4613
 
4614
	for_each_encoder_on_crtc(dev, crtc, encoder) {
4615
		switch (encoder->type) {
4616
		case INTEL_OUTPUT_LVDS:
4617
			is_lvds = true;
4618
			break;
4619
		case INTEL_OUTPUT_SDVO:
4620
		case INTEL_OUTPUT_HDMI:
4621
			is_sdvo = true;
4622
			if (encoder->needs_tv_clock)
4623
				is_tv = true;
4624
			break;
4625
		case INTEL_OUTPUT_TVOUT:
4626
			is_tv = true;
4627
			break;
4628
		case INTEL_OUTPUT_DISPLAYPORT:
4629
			is_dp = true;
4630
			break;
4631
		}
4632
 
4633
		num_connectors++;
4634
	}
4635
 
4636
	refclk = i9xx_get_refclk(crtc, num_connectors);
4637
 
4638
	/*
4639
	 * Returns a set of divisors for the desired target clock with the given
4640
	 * refclk, or FALSE.  The returned values represent the clock equation:
4641
	 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4642
	 */
4643
	limit = intel_limit(crtc, refclk);
4644
	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4645
			     &clock);
4646
	if (!ok) {
4647
		DRM_ERROR("Couldn't find PLL settings for mode!\n");
4648
		return -EINVAL;
4649
	}
4650
 
4651
	/* Ensure that the cursor is valid for the new mode before changing... */
4652
//   intel_crtc_update_cursor(crtc, true);
4653
 
4654
	if (is_lvds && dev_priv->lvds_downclock_avail) {
4655
		/*
4656
		 * Ensure we match the reduced clock's P to the target clock.
4657
		 * If the clocks don't match, we can't switch the display clock
4658
		 * by using the FP0/FP1. In such case we will disable the LVDS
4659
		 * downclock feature.
4660
		*/
4661
		has_reduced_clock = limit->find_pll(limit, crtc,
4662
						    dev_priv->lvds_downclock,
4663
						    refclk,
4664
						    &clock,
4665
						    &reduced_clock);
4666
	}
4667
 
4668
	if (is_sdvo && is_tv)
4669
		i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4670
 
4671
	if (IS_GEN2(dev))
3243 Serge 4672
		i8xx_update_pll(crtc, adjusted_mode, &clock,
4673
				has_reduced_clock ? &reduced_clock : NULL,
4674
				num_connectors);
3031 serge 4675
	else if (IS_VALLEYVIEW(dev))
3243 Serge 4676
		vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4677
				has_reduced_clock ? &reduced_clock : NULL,
4678
				num_connectors);
3031 serge 4679
	else
4680
		i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4681
				has_reduced_clock ? &reduced_clock : NULL,
4682
				num_connectors);
4683
 
4684
	/* setup pipeconf */
4685
	pipeconf = I915_READ(PIPECONF(pipe));
4686
 
4687
	/* Set up the display plane register */
4688
	dspcntr = DISPPLANE_GAMMA_ENABLE;
4689
 
4690
	if (pipe == 0)
4691
		dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4692
	else
4693
		dspcntr |= DISPPLANE_SEL_PIPE_B;
4694
 
4695
	if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4696
		/* Enable pixel doubling when the dot clock is > 90% of the (display)
4697
		 * core speed.
4698
		 *
4699
		 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4700
		 * pipe == 0 check?
4701
		 */
4702
		if (mode->clock >
4703
		    dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4704
			pipeconf |= PIPECONF_DOUBLE_WIDE;
4705
		else
4706
			pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4707
		}
4708
 
4709
	/* default to 8bpc */
3480 Serge 4710
	pipeconf &= ~(PIPECONF_BPC_MASK | PIPECONF_DITHER_EN);
3031 serge 4711
	if (is_dp) {
4712
		if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3480 Serge 4713
			pipeconf |= PIPECONF_6BPC |
3031 serge 4714
				    PIPECONF_DITHER_EN |
4715
				    PIPECONF_DITHER_TYPE_SP;
4716
			}
4717
		}
4718
 
3243 Serge 4719
	if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4720
		if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3480 Serge 4721
			pipeconf |= PIPECONF_6BPC |
3243 Serge 4722
					PIPECONF_ENABLE |
4723
					I965_PIPECONF_ACTIVE;
4724
		}
4725
	}
4726
 
3031 serge 4727
	DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4728
	drm_mode_debug_printmodeline(mode);
4729
 
4730
	if (HAS_PIPE_CXSR(dev)) {
4731
		if (intel_crtc->lowfreq_avail) {
4732
			DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4733
			pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4734
		} else {
4735
			DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4736
			pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4737
			}
4738
		}
4739
 
2360 Serge 4740
	pipeconf &= ~PIPECONF_INTERLACE_MASK;
3031 serge 4741
	if (!IS_GEN2(dev) &&
3243 Serge 4742
	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
3031 serge 4743
		pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
3243 Serge 4744
	else
2360 Serge 4745
		pipeconf |= PIPECONF_PROGRESSIVE;
2327 Serge 4746
 
3243 Serge 4747
	intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
2327 Serge 4748
 
3031 serge 4749
	/* pipesrc and dspsize control the size that is scaled from,
4750
	 * which should always be the user's requested size.
4751
	 */
4752
	I915_WRITE(DSPSIZE(plane),
4753
		   ((mode->vdisplay - 1) << 16) |
4754
		   (mode->hdisplay - 1));
4755
	I915_WRITE(DSPPOS(plane), 0);
2327 Serge 4756
 
3031 serge 4757
	I915_WRITE(PIPECONF(pipe), pipeconf);
4758
	POSTING_READ(PIPECONF(pipe));
4759
	intel_enable_pipe(dev_priv, pipe, false);
2327 Serge 4760
 
3031 serge 4761
	intel_wait_for_vblank(dev, pipe);
2327 Serge 4762
 
3031 serge 4763
	I915_WRITE(DSPCNTR(plane), dspcntr);
4764
	POSTING_READ(DSPCNTR(plane));
2327 Serge 4765
 
3031 serge 4766
	ret = intel_pipe_set_base(crtc, x, y, fb);
2327 Serge 4767
 
3031 serge 4768
	intel_update_watermarks(dev);
4769
 
2327 Serge 4770
    return ret;
4771
}
4772
 
3243 Serge 4773
static void ironlake_init_pch_refclk(struct drm_device *dev)
2327 Serge 4774
{
4775
	struct drm_i915_private *dev_priv = dev->dev_private;
4776
	struct drm_mode_config *mode_config = &dev->mode_config;
4777
	struct intel_encoder *encoder;
4778
	u32 temp;
4779
	bool has_lvds = false;
2342 Serge 4780
	bool has_cpu_edp = false;
4781
	bool has_pch_edp = false;
4782
	bool has_panel = false;
4783
	bool has_ck505 = false;
4784
	bool can_ssc = false;
2327 Serge 4785
 
4786
	/* We need to take the global config into account */
4787
		list_for_each_entry(encoder, &mode_config->encoder_list,
4788
				    base.head) {
4789
			switch (encoder->type) {
4790
			case INTEL_OUTPUT_LVDS:
2342 Serge 4791
			has_panel = true;
2327 Serge 4792
				has_lvds = true;
2342 Serge 4793
			break;
2327 Serge 4794
			case INTEL_OUTPUT_EDP:
2342 Serge 4795
			has_panel = true;
4796
			if (intel_encoder_is_pch_edp(&encoder->base))
4797
				has_pch_edp = true;
4798
			else
4799
				has_cpu_edp = true;
2327 Serge 4800
				break;
4801
			}
4802
		}
2342 Serge 4803
 
4804
	if (HAS_PCH_IBX(dev)) {
4805
		has_ck505 = dev_priv->display_clock_mode;
4806
		can_ssc = has_ck505;
4807
	} else {
4808
		has_ck505 = false;
4809
		can_ssc = true;
2327 Serge 4810
	}
4811
 
2342 Serge 4812
	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4813
		      has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4814
		      has_ck505);
4815
 
2327 Serge 4816
	/* Ironlake: try to setup display ref clock before DPLL
4817
	 * enabling. This is only under driver's control after
4818
	 * PCH B stepping, previous chipset stepping should be
4819
	 * ignoring this setting.
4820
	 */
4821
	temp = I915_READ(PCH_DREF_CONTROL);
4822
	/* Always enable nonspread source */
4823
	temp &= ~DREF_NONSPREAD_SOURCE_MASK;
2342 Serge 4824
 
4825
	if (has_ck505)
4826
		temp |= DREF_NONSPREAD_CK505_ENABLE;
4827
	else
2327 Serge 4828
	temp |= DREF_NONSPREAD_SOURCE_ENABLE;
2342 Serge 4829
 
4830
	if (has_panel) {
2327 Serge 4831
	temp &= ~DREF_SSC_SOURCE_MASK;
4832
	temp |= DREF_SSC_SOURCE_ENABLE;
4833
 
2342 Serge 4834
		/* SSC must be turned on before enabling the CPU output  */
4835
		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4836
			DRM_DEBUG_KMS("Using SSC on panel\n");
4837
			temp |= DREF_SSC1_ENABLE;
3031 serge 4838
		} else
4839
			temp &= ~DREF_SSC1_ENABLE;
2327 Serge 4840
 
2342 Serge 4841
		/* Get SSC going before enabling the outputs */
2327 Serge 4842
			I915_WRITE(PCH_DREF_CONTROL, temp);
4843
			POSTING_READ(PCH_DREF_CONTROL);
4844
			udelay(200);
2342 Serge 4845
 
2327 Serge 4846
		temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4847
 
4848
		/* Enable CPU source on CPU attached eDP */
2342 Serge 4849
		if (has_cpu_edp) {
4850
			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4851
				DRM_DEBUG_KMS("Using SSC on eDP\n");
2327 Serge 4852
				temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
2342 Serge 4853
			}
2327 Serge 4854
			else
4855
				temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
2342 Serge 4856
		} else
4857
			temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4858
 
4859
		I915_WRITE(PCH_DREF_CONTROL, temp);
4860
		POSTING_READ(PCH_DREF_CONTROL);
4861
		udelay(200);
2327 Serge 4862
		} else {
2342 Serge 4863
		DRM_DEBUG_KMS("Disabling SSC entirely\n");
4864
 
4865
		temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4866
 
4867
		/* Turn off CPU output */
4868
		temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4869
 
2327 Serge 4870
		I915_WRITE(PCH_DREF_CONTROL, temp);
4871
		POSTING_READ(PCH_DREF_CONTROL);
4872
		udelay(200);
2342 Serge 4873
 
4874
		/* Turn off the SSC source */
4875
		temp &= ~DREF_SSC_SOURCE_MASK;
4876
		temp |= DREF_SSC_SOURCE_DISABLE;
4877
 
4878
		/* Turn off SSC1 */
4879
		temp &= ~ DREF_SSC1_ENABLE;
4880
 
4881
		I915_WRITE(PCH_DREF_CONTROL, temp);
4882
		POSTING_READ(PCH_DREF_CONTROL);
4883
		udelay(200);
2327 Serge 4884
	}
4885
}
4886
 
3243 Serge 4887
/* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
4888
static void lpt_init_pch_refclk(struct drm_device *dev)
4889
{
4890
	struct drm_i915_private *dev_priv = dev->dev_private;
4891
	struct drm_mode_config *mode_config = &dev->mode_config;
4892
	struct intel_encoder *encoder;
4893
	bool has_vga = false;
4894
	bool is_sdv = false;
4895
	u32 tmp;
4896
 
4897
	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4898
		switch (encoder->type) {
4899
		case INTEL_OUTPUT_ANALOG:
4900
			has_vga = true;
4901
			break;
4902
		}
4903
	}
4904
 
4905
	if (!has_vga)
4906
		return;
4907
 
3480 Serge 4908
	mutex_lock(&dev_priv->dpio_lock);
4909
 
3243 Serge 4910
	/* XXX: Rip out SDV support once Haswell ships for real. */
4911
	if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
4912
		is_sdv = true;
4913
 
4914
	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4915
	tmp &= ~SBI_SSCCTL_DISABLE;
4916
	tmp |= SBI_SSCCTL_PATHALT;
4917
	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4918
 
4919
	udelay(24);
4920
 
4921
	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4922
	tmp &= ~SBI_SSCCTL_PATHALT;
4923
	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4924
 
4925
	if (!is_sdv) {
4926
		tmp = I915_READ(SOUTH_CHICKEN2);
4927
		tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
4928
		I915_WRITE(SOUTH_CHICKEN2, tmp);
4929
 
4930
		if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
4931
				       FDI_MPHY_IOSFSB_RESET_STATUS, 100))
4932
			DRM_ERROR("FDI mPHY reset assert timeout\n");
4933
 
4934
		tmp = I915_READ(SOUTH_CHICKEN2);
4935
		tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
4936
		I915_WRITE(SOUTH_CHICKEN2, tmp);
4937
 
4938
		if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
4939
				        FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
4940
				       100))
4941
			DRM_ERROR("FDI mPHY reset de-assert timeout\n");
4942
	}
4943
 
4944
	tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
4945
	tmp &= ~(0xFF << 24);
4946
	tmp |= (0x12 << 24);
4947
	intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
4948
 
4949
	if (!is_sdv) {
4950
		tmp = intel_sbi_read(dev_priv, 0x808C, SBI_MPHY);
4951
		tmp &= ~(0x3 << 6);
4952
		tmp |= (1 << 6) | (1 << 0);
4953
		intel_sbi_write(dev_priv, 0x808C, tmp, SBI_MPHY);
4954
	}
4955
 
4956
	if (is_sdv) {
4957
		tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
4958
		tmp |= 0x7FFF;
4959
		intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
4960
	}
4961
 
4962
	tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
4963
	tmp |= (1 << 11);
4964
	intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
4965
 
4966
	tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
4967
	tmp |= (1 << 11);
4968
	intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
4969
 
4970
	if (is_sdv) {
4971
		tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
4972
		tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
4973
		intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
4974
 
4975
		tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
4976
		tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
4977
		intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
4978
 
4979
		tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
4980
		tmp |= (0x3F << 8);
4981
		intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
4982
 
4983
		tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
4984
		tmp |= (0x3F << 8);
4985
		intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
4986
	}
4987
 
4988
	tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
4989
	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
4990
	intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
4991
 
4992
	tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
4993
	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
4994
	intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
4995
 
4996
	if (!is_sdv) {
4997
		tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
4998
		tmp &= ~(7 << 13);
4999
		tmp |= (5 << 13);
5000
		intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5001
 
5002
		tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5003
		tmp &= ~(7 << 13);
5004
		tmp |= (5 << 13);
5005
		intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5006
	}
5007
 
5008
	tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5009
	tmp &= ~0xFF;
5010
	tmp |= 0x1C;
5011
	intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5012
 
5013
	tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5014
	tmp &= ~0xFF;
5015
	tmp |= 0x1C;
5016
	intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5017
 
5018
	tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5019
	tmp &= ~(0xFF << 16);
5020
	tmp |= (0x1C << 16);
5021
	intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5022
 
5023
	tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5024
	tmp &= ~(0xFF << 16);
5025
	tmp |= (0x1C << 16);
5026
	intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5027
 
5028
	if (!is_sdv) {
5029
		tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5030
		tmp |= (1 << 27);
5031
		intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5032
 
5033
		tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5034
		tmp |= (1 << 27);
5035
		intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5036
 
5037
		tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5038
		tmp &= ~(0xF << 28);
5039
		tmp |= (4 << 28);
5040
		intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5041
 
5042
		tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5043
		tmp &= ~(0xF << 28);
5044
		tmp |= (4 << 28);
5045
		intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5046
	}
5047
 
5048
	/* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5049
	tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5050
	tmp |= SBI_DBUFF0_ENABLE;
5051
	intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
3480 Serge 5052
 
5053
	mutex_unlock(&dev_priv->dpio_lock);
3243 Serge 5054
}
5055
 
5056
/*
5057
 * Initialize reference clocks when the driver loads
5058
 */
5059
void intel_init_pch_refclk(struct drm_device *dev)
5060
{
5061
	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5062
		ironlake_init_pch_refclk(dev);
5063
	else if (HAS_PCH_LPT(dev))
5064
		lpt_init_pch_refclk(dev);
5065
}
5066
 
2342 Serge 5067
static int ironlake_get_refclk(struct drm_crtc *crtc)
5068
{
5069
	struct drm_device *dev = crtc->dev;
5070
	struct drm_i915_private *dev_priv = dev->dev_private;
5071
	struct intel_encoder *encoder;
5072
	struct intel_encoder *edp_encoder = NULL;
5073
	int num_connectors = 0;
5074
	bool is_lvds = false;
5075
 
3031 serge 5076
	for_each_encoder_on_crtc(dev, crtc, encoder) {
2342 Serge 5077
		switch (encoder->type) {
5078
		case INTEL_OUTPUT_LVDS:
5079
			is_lvds = true;
5080
			break;
5081
		case INTEL_OUTPUT_EDP:
5082
			edp_encoder = encoder;
5083
			break;
5084
		}
5085
		num_connectors++;
5086
	}
5087
 
5088
	if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5089
		DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5090
			      dev_priv->lvds_ssc_freq);
5091
		return dev_priv->lvds_ssc_freq * 1000;
5092
	}
5093
 
5094
	return 120000;
5095
}
5096
 
3031 serge 5097
static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5098
				  struct drm_display_mode *adjusted_mode,
5099
				  bool dither)
5100
{
5101
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5102
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5103
	int pipe = intel_crtc->pipe;
5104
	uint32_t val;
5105
 
5106
	val = I915_READ(PIPECONF(pipe));
5107
 
3480 Serge 5108
	val &= ~PIPECONF_BPC_MASK;
3031 serge 5109
	switch (intel_crtc->bpp) {
5110
	case 18:
3480 Serge 5111
		val |= PIPECONF_6BPC;
3031 serge 5112
		break;
5113
	case 24:
3480 Serge 5114
		val |= PIPECONF_8BPC;
3031 serge 5115
		break;
5116
	case 30:
3480 Serge 5117
		val |= PIPECONF_10BPC;
3031 serge 5118
		break;
5119
	case 36:
3480 Serge 5120
		val |= PIPECONF_12BPC;
3031 serge 5121
		break;
5122
	default:
3243 Serge 5123
		/* Case prevented by intel_choose_pipe_bpp_dither. */
5124
		BUG();
3031 serge 5125
	}
5126
 
5127
	val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5128
	if (dither)
5129
		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5130
 
5131
	val &= ~PIPECONF_INTERLACE_MASK;
5132
	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5133
		val |= PIPECONF_INTERLACED_ILK;
5134
	else
5135
		val |= PIPECONF_PROGRESSIVE;
5136
 
3480 Serge 5137
	if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5138
		val |= PIPECONF_COLOR_RANGE_SELECT;
5139
	else
5140
		val &= ~PIPECONF_COLOR_RANGE_SELECT;
5141
 
3031 serge 5142
	I915_WRITE(PIPECONF(pipe), val);
5143
	POSTING_READ(PIPECONF(pipe));
5144
}
5145
 
3480 Serge 5146
/*
5147
 * Set up the pipe CSC unit.
5148
 *
5149
 * Currently only full range RGB to limited range RGB conversion
5150
 * is supported, but eventually this should handle various
5151
 * RGB<->YCbCr scenarios as well.
5152
 */
5153
static void intel_set_pipe_csc(struct drm_crtc *crtc,
5154
			       const struct drm_display_mode *adjusted_mode)
5155
{
5156
	struct drm_device *dev = crtc->dev;
5157
	struct drm_i915_private *dev_priv = dev->dev_private;
5158
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5159
	int pipe = intel_crtc->pipe;
5160
	uint16_t coeff = 0x7800; /* 1.0 */
5161
 
5162
	/*
5163
	 * TODO: Check what kind of values actually come out of the pipe
5164
	 * with these coeff/postoff values and adjust to get the best
5165
	 * accuracy. Perhaps we even need to take the bpc value into
5166
	 * consideration.
5167
	 */
5168
 
5169
	if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5170
		coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5171
 
5172
	/*
5173
	 * GY/GU and RY/RU should be the other way around according
5174
	 * to BSpec, but reality doesn't agree. Just set them up in
5175
	 * a way that results in the correct picture.
5176
	 */
5177
	I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5178
	I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5179
 
5180
	I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5181
	I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5182
 
5183
	I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5184
	I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5185
 
5186
	I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5187
	I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5188
	I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5189
 
5190
	if (INTEL_INFO(dev)->gen > 6) {
5191
		uint16_t postoff = 0;
5192
 
5193
		if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5194
			postoff = (16 * (1 << 13) / 255) & 0x1fff;
5195
 
5196
		I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5197
		I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5198
		I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5199
 
5200
		I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5201
	} else {
5202
		uint32_t mode = CSC_MODE_YUV_TO_RGB;
5203
 
5204
		if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5205
			mode |= CSC_BLACK_SCREEN_OFFSET;
5206
 
5207
		I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5208
	}
5209
}
5210
 
3243 Serge 5211
static void haswell_set_pipeconf(struct drm_crtc *crtc,
5212
				 struct drm_display_mode *adjusted_mode,
5213
				 bool dither)
5214
{
5215
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5216
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5217
	enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5218
	uint32_t val;
5219
 
5220
	val = I915_READ(PIPECONF(cpu_transcoder));
5221
 
5222
	val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5223
	if (dither)
5224
		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5225
 
5226
	val &= ~PIPECONF_INTERLACE_MASK_HSW;
5227
	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5228
		val |= PIPECONF_INTERLACED_ILK;
5229
	else
5230
		val |= PIPECONF_PROGRESSIVE;
5231
 
5232
	I915_WRITE(PIPECONF(cpu_transcoder), val);
5233
	POSTING_READ(PIPECONF(cpu_transcoder));
5234
}
5235
 
3031 serge 5236
static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5237
				    struct drm_display_mode *adjusted_mode,
5238
				    intel_clock_t *clock,
5239
				    bool *has_reduced_clock,
5240
				    intel_clock_t *reduced_clock)
5241
{
5242
	struct drm_device *dev = crtc->dev;
5243
	struct drm_i915_private *dev_priv = dev->dev_private;
5244
	struct intel_encoder *intel_encoder;
5245
	int refclk;
5246
	const intel_limit_t *limit;
5247
	bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5248
 
5249
	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5250
		switch (intel_encoder->type) {
5251
		case INTEL_OUTPUT_LVDS:
5252
			is_lvds = true;
5253
			break;
5254
		case INTEL_OUTPUT_SDVO:
5255
		case INTEL_OUTPUT_HDMI:
5256
			is_sdvo = true;
5257
			if (intel_encoder->needs_tv_clock)
5258
				is_tv = true;
5259
			break;
5260
		case INTEL_OUTPUT_TVOUT:
5261
			is_tv = true;
5262
			break;
5263
		}
5264
	}
5265
 
5266
	refclk = ironlake_get_refclk(crtc);
5267
 
5268
	/*
5269
	 * Returns a set of divisors for the desired target clock with the given
5270
	 * refclk, or FALSE.  The returned values represent the clock equation:
5271
	 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5272
	 */
5273
	limit = intel_limit(crtc, refclk);
5274
	ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5275
			      clock);
5276
	if (!ret)
5277
		return false;
5278
 
5279
	if (is_lvds && dev_priv->lvds_downclock_avail) {
5280
		/*
5281
		 * Ensure we match the reduced clock's P to the target clock.
5282
		 * If the clocks don't match, we can't switch the display clock
5283
		 * by using the FP0/FP1. In such case we will disable the LVDS
5284
		 * downclock feature.
5285
		*/
5286
		*has_reduced_clock = limit->find_pll(limit, crtc,
5287
						     dev_priv->lvds_downclock,
5288
						     refclk,
5289
						     clock,
5290
						     reduced_clock);
5291
	}
5292
 
5293
	if (is_sdvo && is_tv)
5294
		i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5295
 
5296
	return true;
5297
}
5298
 
3243 Serge 5299
static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5300
{
5301
	struct drm_i915_private *dev_priv = dev->dev_private;
5302
	uint32_t temp;
5303
 
5304
	temp = I915_READ(SOUTH_CHICKEN1);
5305
	if (temp & FDI_BC_BIFURCATION_SELECT)
5306
		return;
5307
 
5308
	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5309
	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5310
 
5311
	temp |= FDI_BC_BIFURCATION_SELECT;
5312
	DRM_DEBUG_KMS("enabling fdi C rx\n");
5313
	I915_WRITE(SOUTH_CHICKEN1, temp);
5314
	POSTING_READ(SOUTH_CHICKEN1);
5315
}
5316
 
5317
static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5318
{
5319
	struct drm_device *dev = intel_crtc->base.dev;
5320
	struct drm_i915_private *dev_priv = dev->dev_private;
5321
	struct intel_crtc *pipe_B_crtc =
5322
		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5323
 
5324
	DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5325
		      intel_crtc->pipe, intel_crtc->fdi_lanes);
5326
	if (intel_crtc->fdi_lanes > 4) {
5327
		DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5328
			      intel_crtc->pipe, intel_crtc->fdi_lanes);
5329
		/* Clamp lanes to avoid programming the hw with bogus values. */
5330
		intel_crtc->fdi_lanes = 4;
5331
 
5332
		return false;
5333
	}
5334
 
5335
	if (dev_priv->num_pipe == 2)
5336
		return true;
5337
 
5338
	switch (intel_crtc->pipe) {
5339
	case PIPE_A:
5340
		return true;
5341
	case PIPE_B:
5342
		if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5343
		    intel_crtc->fdi_lanes > 2) {
5344
			DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5345
				      intel_crtc->pipe, intel_crtc->fdi_lanes);
5346
			/* Clamp lanes to avoid programming the hw with bogus values. */
5347
			intel_crtc->fdi_lanes = 2;
5348
 
5349
			return false;
5350
		}
5351
 
5352
		if (intel_crtc->fdi_lanes > 2)
5353
			WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5354
		else
5355
			cpt_enable_fdi_bc_bifurcation(dev);
5356
 
5357
		return true;
5358
	case PIPE_C:
5359
		if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5360
			if (intel_crtc->fdi_lanes > 2) {
5361
				DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5362
					      intel_crtc->pipe, intel_crtc->fdi_lanes);
5363
				/* Clamp lanes to avoid programming the hw with bogus values. */
5364
				intel_crtc->fdi_lanes = 2;
5365
 
5366
				return false;
5367
			}
5368
		} else {
5369
			DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5370
			return false;
5371
		}
5372
 
5373
		cpt_enable_fdi_bc_bifurcation(dev);
5374
 
5375
		return true;
5376
	default:
5377
		BUG();
5378
	}
5379
}
5380
 
5381
int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5382
{
5383
	/*
5384
	 * Account for spread spectrum to avoid
5385
	 * oversubscribing the link. Max center spread
5386
	 * is 2.5%; use 5% for safety's sake.
5387
	 */
5388
	u32 bps = target_clock * bpp * 21 / 20;
5389
	return bps / (link_bw * 8) + 1;
5390
}
5391
 
5392
static void ironlake_set_m_n(struct drm_crtc *crtc,
2327 Serge 5393
                  struct drm_display_mode *mode,
3243 Serge 5394
			     struct drm_display_mode *adjusted_mode)
2327 Serge 5395
{
5396
    struct drm_device *dev = crtc->dev;
5397
    struct drm_i915_private *dev_priv = dev->dev_private;
5398
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3243 Serge 5399
	enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5400
	struct intel_encoder *intel_encoder, *edp_encoder = NULL;
3480 Serge 5401
	struct intel_link_m_n m_n = {0};
3243 Serge 5402
	int target_clock, pixel_multiplier, lane, link_bw;
5403
	bool is_dp = false, is_cpu_edp = false;
2327 Serge 5404
 
3243 Serge 5405
	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5406
		switch (intel_encoder->type) {
2327 Serge 5407
        case INTEL_OUTPUT_DISPLAYPORT:
5408
            is_dp = true;
5409
            break;
5410
        case INTEL_OUTPUT_EDP:
3031 serge 5411
			is_dp = true;
3243 Serge 5412
			if (!intel_encoder_is_pch_edp(&intel_encoder->base))
3031 serge 5413
				is_cpu_edp = true;
3243 Serge 5414
			edp_encoder = intel_encoder;
2327 Serge 5415
            break;
5416
        }
5417
    }
5418
 
5419
    /* FDI link */
5420
    pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5421
    lane = 0;
5422
    /* CPU eDP doesn't require FDI link, so just set DP M/N
5423
       according to current link config */
3031 serge 5424
	if (is_cpu_edp) {
5425
		intel_edp_link_config(edp_encoder, &lane, &link_bw);
2327 Serge 5426
    } else {
5427
        /* FDI is a binary signal running at ~2.7GHz, encoding
5428
         * each output octet as 10 bits. The actual frequency
5429
         * is stored as a divider into a 100MHz clock, and the
5430
         * mode pixel clock is stored in units of 1KHz.
5431
         * Hence the bw of each lane in terms of the mode signal
5432
         * is:
5433
         */
5434
        link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5435
    }
5436
 
3031 serge 5437
	/* [e]DP over FDI requires target mode clock instead of link clock. */
5438
	if (edp_encoder)
5439
		target_clock = intel_edp_target_clock(edp_encoder, mode);
5440
	else if (is_dp)
5441
		target_clock = mode->clock;
5442
	else
5443
		target_clock = adjusted_mode->clock;
5444
 
3243 Serge 5445
	if (!lane)
5446
		lane = ironlake_get_lanes_required(target_clock, link_bw,
5447
						   intel_crtc->bpp);
3031 serge 5448
 
2327 Serge 5449
    intel_crtc->fdi_lanes = lane;
5450
 
5451
    if (pixel_multiplier > 1)
5452
        link_bw *= pixel_multiplier;
3480 Serge 5453
	intel_link_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw, &m_n);
2327 Serge 5454
 
3243 Serge 5455
	I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5456
	I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5457
	I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5458
	I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5459
}
2327 Serge 5460
 
3243 Serge 5461
static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5462
				      struct drm_display_mode *adjusted_mode,
5463
				      intel_clock_t *clock, u32 fp)
5464
{
5465
	struct drm_crtc *crtc = &intel_crtc->base;
5466
	struct drm_device *dev = crtc->dev;
5467
	struct drm_i915_private *dev_priv = dev->dev_private;
5468
	struct intel_encoder *intel_encoder;
5469
	uint32_t dpll;
5470
	int factor, pixel_multiplier, num_connectors = 0;
5471
	bool is_lvds = false, is_sdvo = false, is_tv = false;
5472
	bool is_dp = false, is_cpu_edp = false;
5473
 
5474
	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5475
		switch (intel_encoder->type) {
5476
		case INTEL_OUTPUT_LVDS:
5477
			is_lvds = true;
5478
			break;
5479
		case INTEL_OUTPUT_SDVO:
5480
		case INTEL_OUTPUT_HDMI:
5481
			is_sdvo = true;
5482
			if (intel_encoder->needs_tv_clock)
5483
				is_tv = true;
5484
			break;
5485
		case INTEL_OUTPUT_TVOUT:
5486
			is_tv = true;
5487
			break;
5488
		case INTEL_OUTPUT_DISPLAYPORT:
5489
			is_dp = true;
5490
			break;
5491
		case INTEL_OUTPUT_EDP:
5492
			is_dp = true;
5493
			if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5494
				is_cpu_edp = true;
5495
			break;
5496
		}
5497
 
5498
		num_connectors++;
5499
	}
5500
 
2327 Serge 5501
    /* Enable autotuning of the PLL clock (if permissible) */
5502
    factor = 21;
5503
    if (is_lvds) {
5504
        if ((intel_panel_use_ssc(dev_priv) &&
5505
             dev_priv->lvds_ssc_freq == 100) ||
3480 Serge 5506
		    intel_is_dual_link_lvds(dev))
2327 Serge 5507
            factor = 25;
5508
    } else if (is_sdvo && is_tv)
5509
        factor = 20;
5510
 
3243 Serge 5511
	if (clock->m < factor * clock->n)
2327 Serge 5512
        fp |= FP_CB_TUNE;
5513
 
5514
    dpll = 0;
5515
 
5516
    if (is_lvds)
5517
        dpll |= DPLLB_MODE_LVDS;
5518
    else
5519
        dpll |= DPLLB_MODE_DAC_SERIAL;
5520
    if (is_sdvo) {
3243 Serge 5521
		pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
2327 Serge 5522
        if (pixel_multiplier > 1) {
5523
            dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5524
        }
5525
        dpll |= DPLL_DVO_HIGH_SPEED;
5526
    }
3031 serge 5527
	if (is_dp && !is_cpu_edp)
2327 Serge 5528
        dpll |= DPLL_DVO_HIGH_SPEED;
5529
 
5530
    /* compute bitmask from p1 value */
3243 Serge 5531
	dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2327 Serge 5532
    /* also FPA1 */
3243 Serge 5533
	dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2327 Serge 5534
 
3243 Serge 5535
	switch (clock->p2) {
2327 Serge 5536
    case 5:
5537
        dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5538
        break;
5539
    case 7:
5540
        dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5541
        break;
5542
    case 10:
5543
        dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5544
        break;
5545
    case 14:
5546
        dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5547
        break;
5548
    }
5549
 
5550
    if (is_sdvo && is_tv)
5551
        dpll |= PLL_REF_INPUT_TVCLKINBC;
5552
    else if (is_tv)
5553
        /* XXX: just matching BIOS for now */
5554
        /*  dpll |= PLL_REF_INPUT_TVCLKINBC; */
5555
        dpll |= 3;
5556
    else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5557
        dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5558
    else
5559
        dpll |= PLL_REF_INPUT_DREFCLK;
5560
 
3243 Serge 5561
	return dpll;
5562
}
5563
 
5564
static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5565
				  struct drm_display_mode *mode,
5566
				  struct drm_display_mode *adjusted_mode,
5567
				  int x, int y,
5568
				  struct drm_framebuffer *fb)
5569
{
5570
	struct drm_device *dev = crtc->dev;
5571
	struct drm_i915_private *dev_priv = dev->dev_private;
5572
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5573
	int pipe = intel_crtc->pipe;
5574
	int plane = intel_crtc->plane;
5575
	int num_connectors = 0;
5576
	intel_clock_t clock, reduced_clock;
5577
	u32 dpll, fp = 0, fp2 = 0;
5578
	bool ok, has_reduced_clock = false;
5579
	bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5580
	struct intel_encoder *encoder;
5581
	int ret;
5582
	bool dither, fdi_config_ok;
5583
 
5584
	for_each_encoder_on_crtc(dev, crtc, encoder) {
5585
		switch (encoder->type) {
5586
		case INTEL_OUTPUT_LVDS:
5587
			is_lvds = true;
5588
			break;
5589
		case INTEL_OUTPUT_DISPLAYPORT:
5590
			is_dp = true;
5591
			break;
5592
		case INTEL_OUTPUT_EDP:
5593
			is_dp = true;
5594
			if (!intel_encoder_is_pch_edp(&encoder->base))
5595
				is_cpu_edp = true;
5596
			break;
5597
		}
5598
 
5599
		num_connectors++;
5600
	}
5601
 
5602
	WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5603
	     "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5604
 
5605
	ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5606
				     &has_reduced_clock, &reduced_clock);
5607
	if (!ok) {
5608
		DRM_ERROR("Couldn't find PLL settings for mode!\n");
5609
		return -EINVAL;
5610
	}
5611
 
5612
	/* Ensure that the cursor is valid for the new mode before changing... */
5613
//	intel_crtc_update_cursor(crtc, true);
5614
 
5615
	/* determine panel color depth */
5616
	dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5617
					      adjusted_mode);
5618
	if (is_lvds && dev_priv->lvds_dither)
5619
		dither = true;
5620
 
5621
	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5622
	if (has_reduced_clock)
5623
		fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5624
			reduced_clock.m2;
5625
 
5626
	dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5627
 
2342 Serge 5628
	DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
2327 Serge 5629
    drm_mode_debug_printmodeline(mode);
5630
 
3243 Serge 5631
	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5632
	if (!is_cpu_edp) {
3031 serge 5633
		struct intel_pch_pll *pll;
2327 Serge 5634
 
3031 serge 5635
		pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5636
		if (pll == NULL) {
5637
			DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5638
					 pipe);
2342 Serge 5639
			return -EINVAL;
2327 Serge 5640
        }
3031 serge 5641
	} else
5642
		intel_put_pch_pll(intel_crtc);
2327 Serge 5643
 
3480 Serge 5644
	if (is_dp && !is_cpu_edp)
5645
		intel_dp_set_m_n(crtc, mode, adjusted_mode);
2342 Serge 5646
 
3480 Serge 5647
	for_each_encoder_on_crtc(dev, crtc, encoder)
5648
		if (encoder->pre_pll_enable)
5649
			encoder->pre_pll_enable(encoder);
2327 Serge 5650
 
3031 serge 5651
	if (intel_crtc->pch_pll) {
5652
		I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
2327 Serge 5653
 
5654
        /* Wait for the clocks to stabilize. */
3031 serge 5655
		POSTING_READ(intel_crtc->pch_pll->pll_reg);
2327 Serge 5656
        udelay(150);
5657
 
5658
        /* The pixel multiplier can only be updated once the
5659
         * DPLL is enabled and the clocks are stable.
5660
         *
5661
         * So write it again.
5662
         */
3031 serge 5663
		I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
2327 Serge 5664
    }
5665
 
5666
    intel_crtc->lowfreq_avail = false;
3031 serge 5667
	if (intel_crtc->pch_pll) {
2327 Serge 5668
    if (is_lvds && has_reduced_clock && i915_powersave) {
3031 serge 5669
			I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
2327 Serge 5670
        intel_crtc->lowfreq_avail = true;
5671
    } else {
3031 serge 5672
			I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
2327 Serge 5673
    }
2342 Serge 5674
	}
2327 Serge 5675
 
3243 Serge 5676
	intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5677
 
5678
	/* Note, this also computes intel_crtc->fdi_lanes which is used below in
5679
	 * ironlake_check_fdi_lanes. */
5680
	ironlake_set_m_n(crtc, mode, adjusted_mode);
5681
 
5682
	fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5683
 
5684
	ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5685
 
5686
	intel_wait_for_vblank(dev, pipe);
5687
 
5688
	/* Set up the display plane register */
5689
	I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5690
	POSTING_READ(DSPCNTR(plane));
5691
 
5692
	ret = intel_pipe_set_base(crtc, x, y, fb);
5693
 
5694
	intel_update_watermarks(dev);
5695
 
5696
	intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5697
 
5698
	return fdi_config_ok ? ret : -EINVAL;
5699
}
5700
 
3480 Serge 5701
static void haswell_modeset_global_resources(struct drm_device *dev)
5702
{
5703
	struct drm_i915_private *dev_priv = dev->dev_private;
5704
	bool enable = false;
5705
	struct intel_crtc *crtc;
5706
	struct intel_encoder *encoder;
5707
 
5708
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5709
		if (crtc->pipe != PIPE_A && crtc->base.enabled)
5710
			enable = true;
5711
		/* XXX: Should check for edp transcoder here, but thanks to init
5712
		 * sequence that's not yet available. Just in case desktop eDP
5713
		 * on PORT D is possible on haswell, too. */
5714
	}
5715
 
5716
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
5717
			    base.head) {
5718
		if (encoder->type != INTEL_OUTPUT_EDP &&
5719
		    encoder->connectors_active)
5720
			enable = true;
5721
	}
5722
 
5723
	/* Even the eDP panel fitter is outside the always-on well. */
5724
	if (dev_priv->pch_pf_size)
5725
		enable = true;
5726
 
5727
	intel_set_power_well(dev, enable);
5728
}
5729
 
3243 Serge 5730
static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5731
				 struct drm_display_mode *mode,
5732
				 struct drm_display_mode *adjusted_mode,
5733
				 int x, int y,
5734
				 struct drm_framebuffer *fb)
5735
{
5736
	struct drm_device *dev = crtc->dev;
5737
	struct drm_i915_private *dev_priv = dev->dev_private;
5738
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5739
	int pipe = intel_crtc->pipe;
5740
	int plane = intel_crtc->plane;
5741
	int num_connectors = 0;
3480 Serge 5742
	bool is_dp = false, is_cpu_edp = false;
3243 Serge 5743
	struct intel_encoder *encoder;
5744
	int ret;
5745
	bool dither;
5746
 
5747
	for_each_encoder_on_crtc(dev, crtc, encoder) {
5748
		switch (encoder->type) {
5749
		case INTEL_OUTPUT_DISPLAYPORT:
5750
			is_dp = true;
5751
			break;
5752
		case INTEL_OUTPUT_EDP:
5753
			is_dp = true;
5754
			if (!intel_encoder_is_pch_edp(&encoder->base))
5755
				is_cpu_edp = true;
5756
			break;
5757
		}
5758
 
5759
		num_connectors++;
5760
	}
5761
 
5762
	if (is_cpu_edp)
5763
		intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5764
	else
5765
		intel_crtc->cpu_transcoder = pipe;
5766
 
5767
	/* We are not sure yet this won't happen. */
5768
	WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5769
	     INTEL_PCH_TYPE(dev));
5770
 
5771
	WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5772
	     num_connectors, pipe_name(pipe));
5773
 
5774
	WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5775
		(PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5776
 
5777
	WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5778
 
5779
	if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5780
		return -EINVAL;
5781
 
5782
	/* Ensure that the cursor is valid for the new mode before changing... */
5783
//   intel_crtc_update_cursor(crtc, true);
5784
 
5785
	/* determine panel color depth */
5786
	dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5787
					      adjusted_mode);
5788
 
5789
	DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5790
	drm_mode_debug_printmodeline(mode);
5791
 
3480 Serge 5792
	if (is_dp && !is_cpu_edp)
3243 Serge 5793
		intel_dp_set_m_n(crtc, mode, adjusted_mode);
2327 Serge 5794
 
3243 Serge 5795
	intel_crtc->lowfreq_avail = false;
2327 Serge 5796
 
3243 Serge 5797
	intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5798
 
5799
	if (!is_dp || is_cpu_edp)
5800
		ironlake_set_m_n(crtc, mode, adjusted_mode);
5801
 
5802
	haswell_set_pipeconf(crtc, adjusted_mode, dither);
2327 Serge 5803
 
3480 Serge 5804
	intel_set_pipe_csc(crtc, adjusted_mode);
5805
 
3031 serge 5806
	/* Set up the display plane register */
3480 Serge 5807
	I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
2327 Serge 5808
    POSTING_READ(DSPCNTR(plane));
5809
 
3031 serge 5810
	ret = intel_pipe_set_base(crtc, x, y, fb);
2327 Serge 5811
 
5812
    intel_update_watermarks(dev);
5813
 
3031 serge 5814
	intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
2336 Serge 5815
 
2327 Serge 5816
    return ret;
5817
}
5818
 
2330 Serge 5819
static int intel_crtc_mode_set(struct drm_crtc *crtc,
5820
			       struct drm_display_mode *mode,
5821
			       struct drm_display_mode *adjusted_mode,
5822
			       int x, int y,
3031 serge 5823
			       struct drm_framebuffer *fb)
2330 Serge 5824
{
5825
	struct drm_device *dev = crtc->dev;
5826
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 5827
	struct drm_encoder_helper_funcs *encoder_funcs;
5828
	struct intel_encoder *encoder;
2330 Serge 5829
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5830
	int pipe = intel_crtc->pipe;
5831
	int ret;
2327 Serge 5832
 
3031 serge 5833
	drm_vblank_pre_modeset(dev, pipe);
2327 Serge 5834
 
2330 Serge 5835
	ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
3031 serge 5836
					      x, y, fb);
5837
	drm_vblank_post_modeset(dev, pipe);
2327 Serge 5838
 
3243 Serge 5839
	if (ret != 0)
2330 Serge 5840
	return ret;
3243 Serge 5841
 
5842
	for_each_encoder_on_crtc(dev, crtc, encoder) {
5843
		DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5844
			encoder->base.base.id,
5845
			drm_get_encoder_name(&encoder->base),
5846
			mode->base.id, mode->name);
5847
		encoder_funcs = encoder->base.helper_private;
5848
		encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5849
	}
5850
 
5851
	return 0;
2330 Serge 5852
}
2327 Serge 5853
 
2342 Serge 5854
static bool intel_eld_uptodate(struct drm_connector *connector,
5855
			       int reg_eldv, uint32_t bits_eldv,
5856
			       int reg_elda, uint32_t bits_elda,
5857
			       int reg_edid)
5858
{
5859
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
5860
	uint8_t *eld = connector->eld;
5861
	uint32_t i;
5862
 
5863
	i = I915_READ(reg_eldv);
5864
	i &= bits_eldv;
5865
 
5866
	if (!eld[0])
5867
		return !i;
5868
 
5869
	if (!i)
5870
		return false;
5871
 
5872
	i = I915_READ(reg_elda);
5873
	i &= ~bits_elda;
5874
	I915_WRITE(reg_elda, i);
5875
 
5876
	for (i = 0; i < eld[2]; i++)
5877
		if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5878
			return false;
5879
 
5880
	return true;
5881
}
5882
 
5883
static void g4x_write_eld(struct drm_connector *connector,
5884
			  struct drm_crtc *crtc)
5885
{
5886
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
5887
	uint8_t *eld = connector->eld;
5888
	uint32_t eldv;
5889
	uint32_t len;
5890
	uint32_t i;
5891
 
5892
	i = I915_READ(G4X_AUD_VID_DID);
5893
 
5894
	if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5895
		eldv = G4X_ELDV_DEVCL_DEVBLC;
5896
	else
5897
		eldv = G4X_ELDV_DEVCTG;
5898
 
5899
	if (intel_eld_uptodate(connector,
5900
			       G4X_AUD_CNTL_ST, eldv,
5901
			       G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5902
			       G4X_HDMIW_HDMIEDID))
5903
		return;
5904
 
5905
	i = I915_READ(G4X_AUD_CNTL_ST);
5906
	i &= ~(eldv | G4X_ELD_ADDR);
5907
	len = (i >> 9) & 0x1f;		/* ELD buffer size */
5908
	I915_WRITE(G4X_AUD_CNTL_ST, i);
5909
 
5910
	if (!eld[0])
5911
		return;
5912
 
5913
	len = min_t(uint8_t, eld[2], len);
5914
	DRM_DEBUG_DRIVER("ELD size %d\n", len);
5915
	for (i = 0; i < len; i++)
5916
		I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5917
 
5918
	i = I915_READ(G4X_AUD_CNTL_ST);
5919
	i |= eldv;
5920
	I915_WRITE(G4X_AUD_CNTL_ST, i);
5921
}
5922
 
3031 serge 5923
static void haswell_write_eld(struct drm_connector *connector,
5924
				     struct drm_crtc *crtc)
5925
{
5926
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
5927
	uint8_t *eld = connector->eld;
5928
	struct drm_device *dev = crtc->dev;
3480 Serge 5929
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 5930
	uint32_t eldv;
5931
	uint32_t i;
5932
	int len;
5933
	int pipe = to_intel_crtc(crtc)->pipe;
5934
	int tmp;
5935
 
5936
	int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5937
	int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5938
	int aud_config = HSW_AUD_CFG(pipe);
5939
	int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5940
 
5941
 
5942
	DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5943
 
5944
	/* Audio output enable */
5945
	DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5946
	tmp = I915_READ(aud_cntrl_st2);
5947
	tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5948
	I915_WRITE(aud_cntrl_st2, tmp);
5949
 
5950
	/* Wait for 1 vertical blank */
5951
	intel_wait_for_vblank(dev, pipe);
5952
 
5953
	/* Set ELD valid state */
5954
	tmp = I915_READ(aud_cntrl_st2);
5955
	DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5956
	tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5957
	I915_WRITE(aud_cntrl_st2, tmp);
5958
	tmp = I915_READ(aud_cntrl_st2);
5959
	DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5960
 
5961
	/* Enable HDMI mode */
5962
	tmp = I915_READ(aud_config);
5963
	DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5964
	/* clear N_programing_enable and N_value_index */
5965
	tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5966
	I915_WRITE(aud_config, tmp);
5967
 
5968
	DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5969
 
5970
	eldv = AUDIO_ELD_VALID_A << (pipe * 4);
3480 Serge 5971
	intel_crtc->eld_vld = true;
3031 serge 5972
 
5973
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5974
		DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5975
		eld[5] |= (1 << 2);	/* Conn_Type, 0x1 = DisplayPort */
5976
		I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5977
	} else
5978
		I915_WRITE(aud_config, 0);
5979
 
5980
	if (intel_eld_uptodate(connector,
5981
			       aud_cntrl_st2, eldv,
5982
			       aud_cntl_st, IBX_ELD_ADDRESS,
5983
			       hdmiw_hdmiedid))
5984
		return;
5985
 
5986
	i = I915_READ(aud_cntrl_st2);
5987
	i &= ~eldv;
5988
	I915_WRITE(aud_cntrl_st2, i);
5989
 
5990
	if (!eld[0])
5991
		return;
5992
 
5993
	i = I915_READ(aud_cntl_st);
5994
	i &= ~IBX_ELD_ADDRESS;
5995
	I915_WRITE(aud_cntl_st, i);
5996
	i = (i >> 29) & DIP_PORT_SEL_MASK;		/* DIP_Port_Select, 0x1 = PortB */
5997
	DRM_DEBUG_DRIVER("port num:%d\n", i);
5998
 
5999
	len = min_t(uint8_t, eld[2], 21);	/* 84 bytes of hw ELD buffer */
6000
	DRM_DEBUG_DRIVER("ELD size %d\n", len);
6001
	for (i = 0; i < len; i++)
6002
		I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6003
 
6004
	i = I915_READ(aud_cntrl_st2);
6005
	i |= eldv;
6006
	I915_WRITE(aud_cntrl_st2, i);
6007
 
6008
}
6009
 
2342 Serge 6010
static void ironlake_write_eld(struct drm_connector *connector,
6011
				     struct drm_crtc *crtc)
6012
{
6013
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
6014
	uint8_t *eld = connector->eld;
6015
	uint32_t eldv;
6016
	uint32_t i;
6017
	int len;
6018
	int hdmiw_hdmiedid;
3031 serge 6019
	int aud_config;
2342 Serge 6020
	int aud_cntl_st;
6021
	int aud_cntrl_st2;
3031 serge 6022
	int pipe = to_intel_crtc(crtc)->pipe;
2342 Serge 6023
 
6024
	if (HAS_PCH_IBX(connector->dev)) {
3031 serge 6025
		hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6026
		aud_config = IBX_AUD_CFG(pipe);
6027
		aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
2342 Serge 6028
		aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6029
	} else {
3031 serge 6030
		hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6031
		aud_config = CPT_AUD_CFG(pipe);
6032
		aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
2342 Serge 6033
		aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6034
	}
6035
 
3031 serge 6036
	DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
2342 Serge 6037
 
6038
	i = I915_READ(aud_cntl_st);
3031 serge 6039
	i = (i >> 29) & DIP_PORT_SEL_MASK;		/* DIP_Port_Select, 0x1 = PortB */
2342 Serge 6040
	if (!i) {
6041
		DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6042
		/* operate blindly on all ports */
6043
		eldv = IBX_ELD_VALIDB;
6044
		eldv |= IBX_ELD_VALIDB << 4;
6045
		eldv |= IBX_ELD_VALIDB << 8;
6046
	} else {
6047
		DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6048
		eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6049
	}
6050
 
6051
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6052
		DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6053
		eld[5] |= (1 << 2);	/* Conn_Type, 0x1 = DisplayPort */
3031 serge 6054
		I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6055
	} else
6056
		I915_WRITE(aud_config, 0);
2342 Serge 6057
 
6058
	if (intel_eld_uptodate(connector,
6059
			       aud_cntrl_st2, eldv,
6060
			       aud_cntl_st, IBX_ELD_ADDRESS,
6061
			       hdmiw_hdmiedid))
6062
		return;
6063
 
6064
	i = I915_READ(aud_cntrl_st2);
6065
	i &= ~eldv;
6066
	I915_WRITE(aud_cntrl_st2, i);
6067
 
6068
	if (!eld[0])
6069
		return;
6070
 
6071
	i = I915_READ(aud_cntl_st);
6072
	i &= ~IBX_ELD_ADDRESS;
6073
	I915_WRITE(aud_cntl_st, i);
6074
 
6075
	len = min_t(uint8_t, eld[2], 21);	/* 84 bytes of hw ELD buffer */
6076
	DRM_DEBUG_DRIVER("ELD size %d\n", len);
6077
	for (i = 0; i < len; i++)
6078
		I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6079
 
6080
	i = I915_READ(aud_cntrl_st2);
6081
	i |= eldv;
6082
	I915_WRITE(aud_cntrl_st2, i);
6083
}
6084
 
6085
void intel_write_eld(struct drm_encoder *encoder,
6086
		     struct drm_display_mode *mode)
6087
{
6088
	struct drm_crtc *crtc = encoder->crtc;
6089
	struct drm_connector *connector;
6090
	struct drm_device *dev = encoder->dev;
6091
	struct drm_i915_private *dev_priv = dev->dev_private;
6092
 
6093
	connector = drm_select_eld(encoder, mode);
6094
	if (!connector)
6095
		return;
6096
 
6097
	DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6098
			 connector->base.id,
6099
			 drm_get_connector_name(connector),
6100
			 connector->encoder->base.id,
6101
			 drm_get_encoder_name(connector->encoder));
6102
 
6103
	connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6104
 
6105
	if (dev_priv->display.write_eld)
6106
		dev_priv->display.write_eld(connector, crtc);
6107
}
6108
 
2327 Serge 6109
/** Loads the palette/gamma unit for the CRTC with the prepared values */
6110
void intel_crtc_load_lut(struct drm_crtc *crtc)
6111
{
6112
	struct drm_device *dev = crtc->dev;
6113
	struct drm_i915_private *dev_priv = dev->dev_private;
6114
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6115
	int palreg = PALETTE(intel_crtc->pipe);
6116
	int i;
6117
 
6118
	/* The clocks have to be on to load the palette. */
3031 serge 6119
	if (!crtc->enabled || !intel_crtc->active)
2327 Serge 6120
		return;
6121
 
6122
	/* use legacy palette for Ironlake */
6123
	if (HAS_PCH_SPLIT(dev))
6124
		palreg = LGC_PALETTE(intel_crtc->pipe);
6125
 
6126
	for (i = 0; i < 256; i++) {
6127
		I915_WRITE(palreg + 4 * i,
6128
			   (intel_crtc->lut_r[i] << 16) |
6129
			   (intel_crtc->lut_g[i] << 8) |
6130
			   intel_crtc->lut_b[i]);
6131
	}
6132
}
6133
 
3031 serge 6134
#if 0
6135
static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6136
{
6137
	struct drm_device *dev = crtc->dev;
6138
	struct drm_i915_private *dev_priv = dev->dev_private;
6139
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6140
	bool visible = base != 0;
6141
	u32 cntl;
2327 Serge 6142
 
3031 serge 6143
	if (intel_crtc->cursor_visible == visible)
6144
		return;
2327 Serge 6145
 
3031 serge 6146
	cntl = I915_READ(_CURACNTR);
6147
	if (visible) {
6148
		/* On these chipsets we can only modify the base whilst
6149
		 * the cursor is disabled.
6150
		 */
6151
		I915_WRITE(_CURABASE, base);
2327 Serge 6152
 
3031 serge 6153
		cntl &= ~(CURSOR_FORMAT_MASK);
6154
		/* XXX width must be 64, stride 256 => 0x00 << 28 */
6155
		cntl |= CURSOR_ENABLE |
6156
			CURSOR_GAMMA_ENABLE |
6157
			CURSOR_FORMAT_ARGB;
6158
	} else
6159
		cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6160
	I915_WRITE(_CURACNTR, cntl);
2327 Serge 6161
 
3031 serge 6162
	intel_crtc->cursor_visible = visible;
6163
}
2327 Serge 6164
 
3031 serge 6165
static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6166
{
6167
	struct drm_device *dev = crtc->dev;
6168
	struct drm_i915_private *dev_priv = dev->dev_private;
6169
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6170
	int pipe = intel_crtc->pipe;
6171
	bool visible = base != 0;
2327 Serge 6172
 
3031 serge 6173
	if (intel_crtc->cursor_visible != visible) {
6174
		uint32_t cntl = I915_READ(CURCNTR(pipe));
6175
		if (base) {
6176
			cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6177
			cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6178
			cntl |= pipe << 28; /* Connect to correct pipe */
6179
		} else {
6180
			cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6181
			cntl |= CURSOR_MODE_DISABLE;
6182
		}
6183
		I915_WRITE(CURCNTR(pipe), cntl);
2327 Serge 6184
 
3031 serge 6185
		intel_crtc->cursor_visible = visible;
6186
	}
6187
	/* and commit changes on next vblank */
6188
	I915_WRITE(CURBASE(pipe), base);
6189
}
2327 Serge 6190
 
3031 serge 6191
static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6192
{
6193
	struct drm_device *dev = crtc->dev;
6194
	struct drm_i915_private *dev_priv = dev->dev_private;
6195
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6196
	int pipe = intel_crtc->pipe;
6197
	bool visible = base != 0;
2327 Serge 6198
 
3031 serge 6199
	if (intel_crtc->cursor_visible != visible) {
6200
		uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6201
		if (base) {
6202
			cntl &= ~CURSOR_MODE;
6203
			cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6204
		} else {
6205
			cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6206
			cntl |= CURSOR_MODE_DISABLE;
6207
		}
3480 Serge 6208
		if (IS_HASWELL(dev))
6209
			cntl |= CURSOR_PIPE_CSC_ENABLE;
3031 serge 6210
		I915_WRITE(CURCNTR_IVB(pipe), cntl);
2327 Serge 6211
 
3031 serge 6212
		intel_crtc->cursor_visible = visible;
6213
	}
6214
	/* and commit changes on next vblank */
6215
	I915_WRITE(CURBASE_IVB(pipe), base);
6216
}
2327 Serge 6217
 
3031 serge 6218
/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6219
static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6220
				     bool on)
6221
{
6222
	struct drm_device *dev = crtc->dev;
6223
	struct drm_i915_private *dev_priv = dev->dev_private;
6224
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6225
	int pipe = intel_crtc->pipe;
6226
	int x = intel_crtc->cursor_x;
6227
	int y = intel_crtc->cursor_y;
6228
	u32 base, pos;
6229
	bool visible;
2327 Serge 6230
 
3031 serge 6231
	pos = 0;
2327 Serge 6232
 
3031 serge 6233
	if (on && crtc->enabled && crtc->fb) {
6234
		base = intel_crtc->cursor_addr;
6235
		if (x > (int) crtc->fb->width)
6236
			base = 0;
2327 Serge 6237
 
3031 serge 6238
		if (y > (int) crtc->fb->height)
6239
			base = 0;
6240
	} else
6241
		base = 0;
2327 Serge 6242
 
3031 serge 6243
	if (x < 0) {
6244
		if (x + intel_crtc->cursor_width < 0)
6245
			base = 0;
2327 Serge 6246
 
3031 serge 6247
		pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6248
		x = -x;
6249
	}
6250
	pos |= x << CURSOR_X_SHIFT;
2327 Serge 6251
 
3031 serge 6252
	if (y < 0) {
6253
		if (y + intel_crtc->cursor_height < 0)
6254
			base = 0;
2327 Serge 6255
 
3031 serge 6256
		pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6257
		y = -y;
6258
	}
6259
	pos |= y << CURSOR_Y_SHIFT;
2327 Serge 6260
 
3031 serge 6261
	visible = base != 0;
6262
	if (!visible && !intel_crtc->cursor_visible)
6263
		return;
2327 Serge 6264
 
3031 serge 6265
	if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6266
		I915_WRITE(CURPOS_IVB(pipe), pos);
6267
		ivb_update_cursor(crtc, base);
6268
	} else {
6269
		I915_WRITE(CURPOS(pipe), pos);
6270
		if (IS_845G(dev) || IS_I865G(dev))
6271
			i845_update_cursor(crtc, base);
6272
		else
6273
			i9xx_update_cursor(crtc, base);
6274
	}
6275
}
2327 Serge 6276
 
3031 serge 6277
static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6278
				 struct drm_file *file,
6279
				 uint32_t handle,
6280
				 uint32_t width, uint32_t height)
6281
{
6282
	struct drm_device *dev = crtc->dev;
6283
	struct drm_i915_private *dev_priv = dev->dev_private;
6284
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6285
	struct drm_i915_gem_object *obj;
6286
	uint32_t addr;
6287
	int ret;
2327 Serge 6288
 
3031 serge 6289
	/* if we want to turn off the cursor ignore width and height */
6290
	if (!handle) {
6291
		DRM_DEBUG_KMS("cursor off\n");
6292
		addr = 0;
6293
		obj = NULL;
6294
		mutex_lock(&dev->struct_mutex);
6295
		goto finish;
6296
	}
2327 Serge 6297
 
3031 serge 6298
	/* Currently we only support 64x64 cursors */
6299
	if (width != 64 || height != 64) {
6300
		DRM_ERROR("we currently only support 64x64 cursors\n");
6301
		return -EINVAL;
6302
	}
2327 Serge 6303
 
3031 serge 6304
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6305
	if (&obj->base == NULL)
6306
		return -ENOENT;
2327 Serge 6307
 
3031 serge 6308
	if (obj->base.size < width * height * 4) {
6309
		DRM_ERROR("buffer is to small\n");
6310
		ret = -ENOMEM;
6311
		goto fail;
6312
	}
2327 Serge 6313
 
3031 serge 6314
	/* we only need to pin inside GTT if cursor is non-phy */
6315
	mutex_lock(&dev->struct_mutex);
6316
	if (!dev_priv->info->cursor_needs_physical) {
6317
		if (obj->tiling_mode) {
6318
			DRM_ERROR("cursor cannot be tiled\n");
6319
			ret = -EINVAL;
6320
			goto fail_locked;
6321
		}
2327 Serge 6322
 
3031 serge 6323
		ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6324
		if (ret) {
6325
			DRM_ERROR("failed to move cursor bo into the GTT\n");
6326
			goto fail_locked;
6327
		}
2327 Serge 6328
 
3031 serge 6329
		ret = i915_gem_object_put_fence(obj);
6330
		if (ret) {
6331
			DRM_ERROR("failed to release fence for cursor");
6332
			goto fail_unpin;
6333
		}
2327 Serge 6334
 
3031 serge 6335
		addr = obj->gtt_offset;
6336
	} else {
6337
		int align = IS_I830(dev) ? 16 * 1024 : 256;
6338
		ret = i915_gem_attach_phys_object(dev, obj,
6339
						  (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6340
						  align);
6341
		if (ret) {
6342
			DRM_ERROR("failed to attach phys object\n");
6343
			goto fail_locked;
6344
		}
6345
		addr = obj->phys_obj->handle->busaddr;
6346
	}
2327 Serge 6347
 
3031 serge 6348
	if (IS_GEN2(dev))
6349
		I915_WRITE(CURSIZE, (height << 12) | width);
2327 Serge 6350
 
3031 serge 6351
 finish:
6352
	if (intel_crtc->cursor_bo) {
6353
		if (dev_priv->info->cursor_needs_physical) {
6354
			if (intel_crtc->cursor_bo != obj)
6355
				i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6356
		} else
6357
			i915_gem_object_unpin(intel_crtc->cursor_bo);
6358
		drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6359
	}
2327 Serge 6360
 
3031 serge 6361
	mutex_unlock(&dev->struct_mutex);
2327 Serge 6362
 
3031 serge 6363
	intel_crtc->cursor_addr = addr;
6364
	intel_crtc->cursor_bo = obj;
6365
	intel_crtc->cursor_width = width;
6366
	intel_crtc->cursor_height = height;
2327 Serge 6367
 
3031 serge 6368
//   intel_crtc_update_cursor(crtc, true);
2327 Serge 6369
 
3031 serge 6370
	return 0;
6371
fail_unpin:
6372
	i915_gem_object_unpin(obj);
6373
fail_locked:
6374
	mutex_unlock(&dev->struct_mutex);
6375
fail:
6376
	drm_gem_object_unreference_unlocked(&obj->base);
6377
	return ret;
6378
}
2327 Serge 6379
 
3031 serge 6380
static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6381
{
6382
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6383
 
6384
	intel_crtc->cursor_x = x;
6385
	intel_crtc->cursor_y = y;
6386
 
6387
//   intel_crtc_update_cursor(crtc, true);
6388
 
6389
	return 0;
6390
}
6391
#endif
6392
 
2332 Serge 6393
/** Sets the color ramps on behalf of RandR */
6394
void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6395
				 u16 blue, int regno)
6396
{
6397
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 Serge 6398
 
2332 Serge 6399
	intel_crtc->lut_r[regno] = red >> 8;
6400
	intel_crtc->lut_g[regno] = green >> 8;
6401
	intel_crtc->lut_b[regno] = blue >> 8;
6402
}
2327 Serge 6403
 
2332 Serge 6404
void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6405
			     u16 *blue, int regno)
6406
{
6407
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 Serge 6408
 
2332 Serge 6409
	*red = intel_crtc->lut_r[regno] << 8;
6410
	*green = intel_crtc->lut_g[regno] << 8;
6411
	*blue = intel_crtc->lut_b[regno] << 8;
6412
}
2327 Serge 6413
 
2330 Serge 6414
static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6415
				 u16 *blue, uint32_t start, uint32_t size)
6416
{
6417
	int end = (start + size > 256) ? 256 : start + size, i;
6418
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 Serge 6419
 
2330 Serge 6420
	for (i = start; i < end; i++) {
6421
		intel_crtc->lut_r[i] = red[i] >> 8;
6422
		intel_crtc->lut_g[i] = green[i] >> 8;
6423
		intel_crtc->lut_b[i] = blue[i] >> 8;
6424
	}
2327 Serge 6425
 
2330 Serge 6426
	intel_crtc_load_lut(crtc);
6427
}
2327 Serge 6428
 
2330 Serge 6429
/**
6430
 * Get a pipe with a simple mode set on it for doing load-based monitor
6431
 * detection.
6432
 *
6433
 * It will be up to the load-detect code to adjust the pipe as appropriate for
6434
 * its requirements.  The pipe will be connected to no other encoders.
6435
 *
6436
 * Currently this code will only succeed if there is a pipe with no encoders
6437
 * configured for it.  In the future, it could choose to temporarily disable
6438
 * some outputs to free up a pipe for its use.
6439
 *
6440
 * \return crtc, or NULL if no pipes are available.
6441
 */
2327 Serge 6442
 
2330 Serge 6443
/* VESA 640x480x72Hz mode to set on the pipe */
6444
static struct drm_display_mode load_detect_mode = {
6445
	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6446
		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6447
};
2327 Serge 6448
 
3031 serge 6449
static struct drm_framebuffer *
6450
intel_framebuffer_create(struct drm_device *dev,
6451
			 struct drm_mode_fb_cmd2 *mode_cmd,
6452
			 struct drm_i915_gem_object *obj)
6453
{
6454
	struct intel_framebuffer *intel_fb;
6455
	int ret;
2327 Serge 6456
 
3031 serge 6457
	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6458
	if (!intel_fb) {
6459
		drm_gem_object_unreference_unlocked(&obj->base);
6460
		return ERR_PTR(-ENOMEM);
6461
	}
2327 Serge 6462
 
3031 serge 6463
	ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6464
	if (ret) {
6465
		drm_gem_object_unreference_unlocked(&obj->base);
6466
		kfree(intel_fb);
6467
		return ERR_PTR(ret);
6468
	}
2327 Serge 6469
 
3031 serge 6470
	return &intel_fb->base;
6471
}
2327 Serge 6472
 
2330 Serge 6473
static u32
6474
intel_framebuffer_pitch_for_width(int width, int bpp)
6475
{
6476
	u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6477
	return ALIGN(pitch, 64);
6478
}
2327 Serge 6479
 
2330 Serge 6480
static u32
6481
intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6482
{
6483
	u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6484
	return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6485
}
2327 Serge 6486
 
2330 Serge 6487
static struct drm_framebuffer *
6488
intel_framebuffer_create_for_mode(struct drm_device *dev,
6489
				  struct drm_display_mode *mode,
6490
				  int depth, int bpp)
6491
{
6492
	struct drm_i915_gem_object *obj;
3243 Serge 6493
	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2327 Serge 6494
 
2330 Serge 6495
//	obj = i915_gem_alloc_object(dev,
6496
//				    intel_framebuffer_size_for_mode(mode, bpp));
6497
//	if (obj == NULL)
6498
		return ERR_PTR(-ENOMEM);
2327 Serge 6499
 
2330 Serge 6500
//	mode_cmd.width = mode->hdisplay;
6501
//	mode_cmd.height = mode->vdisplay;
6502
//	mode_cmd.depth = depth;
6503
//	mode_cmd.bpp = bpp;
6504
//	mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
2327 Serge 6505
 
2330 Serge 6506
//	return intel_framebuffer_create(dev, &mode_cmd, obj);
6507
}
2327 Serge 6508
 
2330 Serge 6509
static struct drm_framebuffer *
6510
mode_fits_in_fbdev(struct drm_device *dev,
6511
		   struct drm_display_mode *mode)
6512
{
6513
	struct drm_i915_private *dev_priv = dev->dev_private;
6514
	struct drm_i915_gem_object *obj;
6515
	struct drm_framebuffer *fb;
2327 Serge 6516
 
2330 Serge 6517
//	if (dev_priv->fbdev == NULL)
6518
//		return NULL;
2327 Serge 6519
 
2330 Serge 6520
//	obj = dev_priv->fbdev->ifb.obj;
6521
//	if (obj == NULL)
6522
		return NULL;
2327 Serge 6523
 
2330 Serge 6524
//	if (obj->base.size < mode->vdisplay * fb->pitch)
3031 serge 6525
	if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6526
							       fb->bits_per_pixel))
2330 Serge 6527
//		return NULL;
2327 Serge 6528
 
3031 serge 6529
	if (obj->base.size < mode->vdisplay * fb->pitches[0])
6530
		return NULL;
6531
 
2330 Serge 6532
//	return fb;
6533
}
2327 Serge 6534
 
3031 serge 6535
bool intel_get_load_detect_pipe(struct drm_connector *connector,
2330 Serge 6536
				struct drm_display_mode *mode,
6537
				struct intel_load_detect_pipe *old)
6538
{
6539
	struct intel_crtc *intel_crtc;
3031 serge 6540
	struct intel_encoder *intel_encoder =
6541
		intel_attached_encoder(connector);
2330 Serge 6542
	struct drm_crtc *possible_crtc;
6543
	struct drm_encoder *encoder = &intel_encoder->base;
6544
	struct drm_crtc *crtc = NULL;
6545
	struct drm_device *dev = encoder->dev;
3031 serge 6546
	struct drm_framebuffer *fb;
2330 Serge 6547
	int i = -1;
2327 Serge 6548
 
2330 Serge 6549
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6550
		      connector->base.id, drm_get_connector_name(connector),
6551
		      encoder->base.id, drm_get_encoder_name(encoder));
2327 Serge 6552
 
2330 Serge 6553
	/*
6554
	 * Algorithm gets a little messy:
6555
	 *
6556
	 *   - if the connector already has an assigned crtc, use it (but make
6557
	 *     sure it's on first)
6558
	 *
6559
	 *   - try to find the first unused crtc that can drive this connector,
6560
	 *     and use that if we find one
6561
	 */
2327 Serge 6562
 
2330 Serge 6563
	/* See if we already have a CRTC for this connector */
6564
	if (encoder->crtc) {
6565
		crtc = encoder->crtc;
2327 Serge 6566
 
3480 Serge 6567
		mutex_lock(&crtc->mutex);
6568
 
3031 serge 6569
		old->dpms_mode = connector->dpms;
2330 Serge 6570
		old->load_detect_temp = false;
2327 Serge 6571
 
2330 Serge 6572
		/* Make sure the crtc and connector are running */
3031 serge 6573
		if (connector->dpms != DRM_MODE_DPMS_ON)
6574
			connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
2327 Serge 6575
 
2330 Serge 6576
		return true;
6577
	}
2327 Serge 6578
 
2330 Serge 6579
	/* Find an unused one (if possible) */
6580
	list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6581
		i++;
6582
		if (!(encoder->possible_crtcs & (1 << i)))
6583
			continue;
6584
		if (!possible_crtc->enabled) {
6585
			crtc = possible_crtc;
6586
			break;
6587
		}
6588
	}
2327 Serge 6589
 
2330 Serge 6590
	/*
6591
	 * If we didn't find an unused CRTC, don't use any.
6592
	 */
6593
	if (!crtc) {
6594
		DRM_DEBUG_KMS("no pipe available for load-detect\n");
6595
		return false;
6596
	}
2327 Serge 6597
 
3480 Serge 6598
	mutex_lock(&crtc->mutex);
3031 serge 6599
	intel_encoder->new_crtc = to_intel_crtc(crtc);
6600
	to_intel_connector(connector)->new_encoder = intel_encoder;
2327 Serge 6601
 
2330 Serge 6602
	intel_crtc = to_intel_crtc(crtc);
3031 serge 6603
	old->dpms_mode = connector->dpms;
2330 Serge 6604
	old->load_detect_temp = true;
6605
	old->release_fb = NULL;
2327 Serge 6606
 
2330 Serge 6607
	if (!mode)
6608
		mode = &load_detect_mode;
2327 Serge 6609
 
2330 Serge 6610
	/* We need a framebuffer large enough to accommodate all accesses
6611
	 * that the plane may generate whilst we perform load detection.
6612
	 * We can not rely on the fbcon either being present (we get called
6613
	 * during its initialisation to detect all boot displays, or it may
6614
	 * not even exist) or that it is large enough to satisfy the
6615
	 * requested mode.
6616
	 */
3031 serge 6617
	fb = mode_fits_in_fbdev(dev, mode);
6618
	if (fb == NULL) {
2330 Serge 6619
		DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
3031 serge 6620
		fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6621
		old->release_fb = fb;
2330 Serge 6622
	} else
6623
		DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
3031 serge 6624
	if (IS_ERR(fb)) {
2330 Serge 6625
		DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
3480 Serge 6626
		mutex_unlock(&crtc->mutex);
3243 Serge 6627
		return false;
2330 Serge 6628
	}
2327 Serge 6629
 
3480 Serge 6630
	if (intel_set_mode(crtc, mode, 0, 0, fb)) {
2330 Serge 6631
		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6632
		if (old->release_fb)
6633
			old->release_fb->funcs->destroy(old->release_fb);
3480 Serge 6634
		mutex_unlock(&crtc->mutex);
3243 Serge 6635
		return false;
2330 Serge 6636
	}
2327 Serge 6637
 
2330 Serge 6638
	/* let the connector get through one full cycle before testing */
6639
	intel_wait_for_vblank(dev, intel_crtc->pipe);
6640
	return true;
6641
}
2327 Serge 6642
 
3031 serge 6643
void intel_release_load_detect_pipe(struct drm_connector *connector,
2330 Serge 6644
				    struct intel_load_detect_pipe *old)
6645
{
3031 serge 6646
	struct intel_encoder *intel_encoder =
6647
		intel_attached_encoder(connector);
2330 Serge 6648
	struct drm_encoder *encoder = &intel_encoder->base;
3480 Serge 6649
	struct drm_crtc *crtc = encoder->crtc;
2327 Serge 6650
 
2330 Serge 6651
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6652
		      connector->base.id, drm_get_connector_name(connector),
6653
		      encoder->base.id, drm_get_encoder_name(encoder));
2327 Serge 6654
 
2330 Serge 6655
	if (old->load_detect_temp) {
3031 serge 6656
		to_intel_connector(connector)->new_encoder = NULL;
6657
		intel_encoder->new_crtc = NULL;
6658
		intel_set_mode(crtc, NULL, 0, 0, NULL);
6659
 
3480 Serge 6660
		if (old->release_fb) {
6661
			drm_framebuffer_unregister_private(old->release_fb);
6662
			drm_framebuffer_unreference(old->release_fb);
6663
		}
2327 Serge 6664
 
3480 Serge 6665
		mutex_unlock(&crtc->mutex);
2330 Serge 6666
		return;
6667
	}
2327 Serge 6668
 
2330 Serge 6669
	/* Switch crtc and encoder back off if necessary */
3031 serge 6670
	if (old->dpms_mode != DRM_MODE_DPMS_ON)
6671
		connector->funcs->dpms(connector, old->dpms_mode);
3480 Serge 6672
 
6673
	mutex_unlock(&crtc->mutex);
2330 Serge 6674
}
2327 Serge 6675
 
2330 Serge 6676
/* Returns the clock of the currently programmed mode of the given pipe. */
6677
static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6678
{
6679
	struct drm_i915_private *dev_priv = dev->dev_private;
6680
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6681
	int pipe = intel_crtc->pipe;
6682
	u32 dpll = I915_READ(DPLL(pipe));
6683
	u32 fp;
6684
	intel_clock_t clock;
2327 Serge 6685
 
2330 Serge 6686
	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6687
		fp = I915_READ(FP0(pipe));
6688
	else
6689
		fp = I915_READ(FP1(pipe));
2327 Serge 6690
 
2330 Serge 6691
	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6692
	if (IS_PINEVIEW(dev)) {
6693
		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6694
		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6695
	} else {
6696
		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6697
		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6698
	}
2327 Serge 6699
 
2330 Serge 6700
	if (!IS_GEN2(dev)) {
6701
		if (IS_PINEVIEW(dev))
6702
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6703
				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6704
		else
6705
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6706
			       DPLL_FPA01_P1_POST_DIV_SHIFT);
2327 Serge 6707
 
2330 Serge 6708
		switch (dpll & DPLL_MODE_MASK) {
6709
		case DPLLB_MODE_DAC_SERIAL:
6710
			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6711
				5 : 10;
6712
			break;
6713
		case DPLLB_MODE_LVDS:
6714
			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6715
				7 : 14;
6716
			break;
6717
		default:
6718
			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6719
				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
6720
			return 0;
6721
		}
2327 Serge 6722
 
2330 Serge 6723
		/* XXX: Handle the 100Mhz refclk */
6724
		intel_clock(dev, 96000, &clock);
6725
	} else {
6726
		bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
2327 Serge 6727
 
2330 Serge 6728
		if (is_lvds) {
6729
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6730
				       DPLL_FPA01_P1_POST_DIV_SHIFT);
6731
			clock.p2 = 14;
2327 Serge 6732
 
2330 Serge 6733
			if ((dpll & PLL_REF_INPUT_MASK) ==
6734
			    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6735
				/* XXX: might not be 66MHz */
6736
				intel_clock(dev, 66000, &clock);
6737
			} else
6738
				intel_clock(dev, 48000, &clock);
6739
		} else {
6740
			if (dpll & PLL_P1_DIVIDE_BY_TWO)
6741
				clock.p1 = 2;
6742
			else {
6743
				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6744
					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6745
			}
6746
			if (dpll & PLL_P2_DIVIDE_BY_4)
6747
				clock.p2 = 4;
6748
			else
6749
				clock.p2 = 2;
2327 Serge 6750
 
2330 Serge 6751
			intel_clock(dev, 48000, &clock);
6752
		}
6753
	}
2327 Serge 6754
 
2330 Serge 6755
	/* XXX: It would be nice to validate the clocks, but we can't reuse
6756
	 * i830PllIsValid() because it relies on the xf86_config connector
6757
	 * configuration being accurate, which it isn't necessarily.
6758
	 */
2327 Serge 6759
 
2330 Serge 6760
	return clock.dot;
6761
}
2327 Serge 6762
 
2330 Serge 6763
/** Returns the currently programmed mode of the given pipe. */
6764
struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6765
					     struct drm_crtc *crtc)
6766
{
6767
	struct drm_i915_private *dev_priv = dev->dev_private;
6768
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3243 Serge 6769
	enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
2330 Serge 6770
	struct drm_display_mode *mode;
3243 Serge 6771
	int htot = I915_READ(HTOTAL(cpu_transcoder));
6772
	int hsync = I915_READ(HSYNC(cpu_transcoder));
6773
	int vtot = I915_READ(VTOTAL(cpu_transcoder));
6774
	int vsync = I915_READ(VSYNC(cpu_transcoder));
2327 Serge 6775
 
2330 Serge 6776
	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6777
	if (!mode)
6778
		return NULL;
6779
 
6780
	mode->clock = intel_crtc_clock_get(dev, crtc);
6781
	mode->hdisplay = (htot & 0xffff) + 1;
6782
	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6783
	mode->hsync_start = (hsync & 0xffff) + 1;
6784
	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6785
	mode->vdisplay = (vtot & 0xffff) + 1;
6786
	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6787
	mode->vsync_start = (vsync & 0xffff) + 1;
6788
	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6789
 
6790
	drm_mode_set_name(mode);
6791
 
6792
	return mode;
6793
}
6794
 
2327 Serge 6795
static void intel_increase_pllclock(struct drm_crtc *crtc)
6796
{
6797
	struct drm_device *dev = crtc->dev;
6798
	drm_i915_private_t *dev_priv = dev->dev_private;
6799
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6800
	int pipe = intel_crtc->pipe;
6801
	int dpll_reg = DPLL(pipe);
6802
	int dpll;
6803
 
6804
	if (HAS_PCH_SPLIT(dev))
6805
		return;
6806
 
6807
	if (!dev_priv->lvds_downclock_avail)
6808
		return;
6809
 
6810
	dpll = I915_READ(dpll_reg);
6811
	if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6812
		DRM_DEBUG_DRIVER("upclocking LVDS\n");
6813
 
3031 serge 6814
		assert_panel_unlocked(dev_priv, pipe);
2327 Serge 6815
 
6816
		dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6817
		I915_WRITE(dpll_reg, dpll);
6818
		intel_wait_for_vblank(dev, pipe);
6819
 
6820
		dpll = I915_READ(dpll_reg);
6821
		if (dpll & DISPLAY_RATE_SELECT_FPA1)
6822
			DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6823
	}
6824
}
6825
 
3031 serge 6826
static void intel_decrease_pllclock(struct drm_crtc *crtc)
6827
{
6828
	struct drm_device *dev = crtc->dev;
6829
	drm_i915_private_t *dev_priv = dev->dev_private;
6830
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 Serge 6831
 
3031 serge 6832
	if (HAS_PCH_SPLIT(dev))
6833
		return;
2327 Serge 6834
 
3031 serge 6835
	if (!dev_priv->lvds_downclock_avail)
6836
		return;
2327 Serge 6837
 
3031 serge 6838
	/*
6839
	 * Since this is called by a timer, we should never get here in
6840
	 * the manual case.
6841
	 */
6842
	if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6843
		int pipe = intel_crtc->pipe;
6844
		int dpll_reg = DPLL(pipe);
6845
		int dpll;
2327 Serge 6846
 
3031 serge 6847
		DRM_DEBUG_DRIVER("downclocking LVDS\n");
2327 Serge 6848
 
3031 serge 6849
		assert_panel_unlocked(dev_priv, pipe);
2327 Serge 6850
 
3031 serge 6851
		dpll = I915_READ(dpll_reg);
6852
		dpll |= DISPLAY_RATE_SELECT_FPA1;
6853
		I915_WRITE(dpll_reg, dpll);
6854
		intel_wait_for_vblank(dev, pipe);
6855
		dpll = I915_READ(dpll_reg);
6856
		if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6857
			DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6858
	}
2327 Serge 6859
 
3031 serge 6860
}
2327 Serge 6861
 
3031 serge 6862
void intel_mark_busy(struct drm_device *dev)
6863
{
6864
	i915_update_gfx_val(dev->dev_private);
6865
}
2327 Serge 6866
 
3031 serge 6867
void intel_mark_idle(struct drm_device *dev)
6868
{
6869
	struct drm_crtc *crtc;
2327 Serge 6870
 
3031 serge 6871
	if (!i915_powersave)
6872
		return;
2327 Serge 6873
 
3031 serge 6874
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6875
		if (!crtc->fb)
6876
			continue;
2327 Serge 6877
 
3480 Serge 6878
		intel_decrease_pllclock(crtc);
3031 serge 6879
	}
6880
}
2327 Serge 6881
 
3480 Serge 6882
void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
3031 serge 6883
{
6884
	struct drm_device *dev = obj->base.dev;
6885
	struct drm_crtc *crtc;
2327 Serge 6886
 
3031 serge 6887
	if (!i915_powersave)
6888
		return;
2327 Serge 6889
 
3031 serge 6890
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6891
		if (!crtc->fb)
6892
			continue;
2327 Serge 6893
 
3031 serge 6894
		if (to_intel_framebuffer(crtc->fb)->obj == obj)
3480 Serge 6895
			intel_increase_pllclock(crtc);
3031 serge 6896
	}
6897
}
2327 Serge 6898
 
2330 Serge 6899
static void intel_crtc_destroy(struct drm_crtc *crtc)
6900
{
6901
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6902
	struct drm_device *dev = crtc->dev;
6903
	struct intel_unpin_work *work;
6904
	unsigned long flags;
2327 Serge 6905
 
2330 Serge 6906
	spin_lock_irqsave(&dev->event_lock, flags);
6907
	work = intel_crtc->unpin_work;
6908
	intel_crtc->unpin_work = NULL;
6909
	spin_unlock_irqrestore(&dev->event_lock, flags);
2327 Serge 6910
 
2330 Serge 6911
	if (work) {
6912
//		cancel_work_sync(&work->work);
6913
		kfree(work);
6914
	}
2327 Serge 6915
 
2330 Serge 6916
	drm_crtc_cleanup(crtc);
2327 Serge 6917
 
2330 Serge 6918
	kfree(intel_crtc);
6919
}
2327 Serge 6920
 
3031 serge 6921
#if 0
6922
static void intel_unpin_work_fn(struct work_struct *__work)
6923
{
6924
	struct intel_unpin_work *work =
6925
		container_of(__work, struct intel_unpin_work, work);
3243 Serge 6926
	struct drm_device *dev = work->crtc->dev;
2327 Serge 6927
 
3243 Serge 6928
	mutex_lock(&dev->struct_mutex);
3031 serge 6929
	intel_unpin_fb_obj(work->old_fb_obj);
6930
	drm_gem_object_unreference(&work->pending_flip_obj->base);
6931
	drm_gem_object_unreference(&work->old_fb_obj->base);
2327 Serge 6932
 
3243 Serge 6933
	intel_update_fbc(dev);
6934
	mutex_unlock(&dev->struct_mutex);
6935
 
6936
	BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
6937
	atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
6938
 
3031 serge 6939
	kfree(work);
6940
}
2327 Serge 6941
 
3031 serge 6942
static void do_intel_finish_page_flip(struct drm_device *dev,
6943
				      struct drm_crtc *crtc)
6944
{
6945
	drm_i915_private_t *dev_priv = dev->dev_private;
6946
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6947
	struct intel_unpin_work *work;
6948
	struct drm_i915_gem_object *obj;
6949
	unsigned long flags;
2327 Serge 6950
 
3031 serge 6951
	/* Ignore early vblank irqs */
6952
	if (intel_crtc == NULL)
6953
		return;
2327 Serge 6954
 
3031 serge 6955
	spin_lock_irqsave(&dev->event_lock, flags);
6956
	work = intel_crtc->unpin_work;
3243 Serge 6957
 
6958
	/* Ensure we don't miss a work->pending update ... */
6959
	smp_rmb();
6960
 
6961
	if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
3031 serge 6962
		spin_unlock_irqrestore(&dev->event_lock, flags);
6963
		return;
6964
	}
2327 Serge 6965
 
3243 Serge 6966
	/* and that the unpin work is consistent wrt ->pending. */
6967
	smp_rmb();
6968
 
3031 serge 6969
	intel_crtc->unpin_work = NULL;
2327 Serge 6970
 
3243 Serge 6971
	if (work->event)
6972
		drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
2327 Serge 6973
 
3031 serge 6974
	drm_vblank_put(dev, intel_crtc->pipe);
2327 Serge 6975
 
3031 serge 6976
	spin_unlock_irqrestore(&dev->event_lock, flags);
2327 Serge 6977
 
3031 serge 6978
	obj = work->old_fb_obj;
2327 Serge 6979
 
3480 Serge 6980
	wake_up_all(&dev_priv->pending_flip_queue);
2327 Serge 6981
 
3243 Serge 6982
	queue_work(dev_priv->wq, &work->work);
6983
 
3031 serge 6984
	trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6985
}
2327 Serge 6986
 
3031 serge 6987
void intel_finish_page_flip(struct drm_device *dev, int pipe)
6988
{
6989
	drm_i915_private_t *dev_priv = dev->dev_private;
6990
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2327 Serge 6991
 
3031 serge 6992
	do_intel_finish_page_flip(dev, crtc);
6993
}
2327 Serge 6994
 
3031 serge 6995
void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6996
{
6997
	drm_i915_private_t *dev_priv = dev->dev_private;
6998
	struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
2327 Serge 6999
 
3031 serge 7000
	do_intel_finish_page_flip(dev, crtc);
7001
}
2327 Serge 7002
 
3031 serge 7003
void intel_prepare_page_flip(struct drm_device *dev, int plane)
7004
{
7005
	drm_i915_private_t *dev_priv = dev->dev_private;
7006
	struct intel_crtc *intel_crtc =
7007
		to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7008
	unsigned long flags;
2327 Serge 7009
 
3243 Serge 7010
	/* NB: An MMIO update of the plane base pointer will also
7011
	 * generate a page-flip completion irq, i.e. every modeset
7012
	 * is also accompanied by a spurious intel_prepare_page_flip().
7013
	 */
3031 serge 7014
	spin_lock_irqsave(&dev->event_lock, flags);
3243 Serge 7015
	if (intel_crtc->unpin_work)
7016
		atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
3031 serge 7017
	spin_unlock_irqrestore(&dev->event_lock, flags);
7018
}
2327 Serge 7019
 
3243 Serge 7020
inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7021
{
7022
	/* Ensure that the work item is consistent when activating it ... */
7023
	smp_wmb();
7024
	atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7025
	/* and that it is marked active as soon as the irq could fire. */
7026
	smp_wmb();
7027
}
7028
 
3031 serge 7029
static int intel_gen2_queue_flip(struct drm_device *dev,
7030
				 struct drm_crtc *crtc,
7031
				 struct drm_framebuffer *fb,
7032
				 struct drm_i915_gem_object *obj)
7033
{
7034
	struct drm_i915_private *dev_priv = dev->dev_private;
7035
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7036
	u32 flip_mask;
7037
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7038
	int ret;
2327 Serge 7039
 
3031 serge 7040
	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7041
	if (ret)
7042
		goto err;
2327 Serge 7043
 
3031 serge 7044
	ret = intel_ring_begin(ring, 6);
7045
	if (ret)
7046
		goto err_unpin;
2327 Serge 7047
 
3031 serge 7048
	/* Can't queue multiple flips, so wait for the previous
7049
	 * one to finish before executing the next.
7050
	 */
7051
	if (intel_crtc->plane)
7052
		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7053
	else
7054
		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7055
	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7056
	intel_ring_emit(ring, MI_NOOP);
7057
	intel_ring_emit(ring, MI_DISPLAY_FLIP |
7058
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7059
	intel_ring_emit(ring, fb->pitches[0]);
7060
	intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7061
	intel_ring_emit(ring, 0); /* aux display base address, unused */
3243 Serge 7062
 
7063
	intel_mark_page_flip_active(intel_crtc);
3031 serge 7064
	intel_ring_advance(ring);
7065
	return 0;
2327 Serge 7066
 
3031 serge 7067
err_unpin:
7068
	intel_unpin_fb_obj(obj);
7069
err:
7070
	return ret;
7071
}
2327 Serge 7072
 
3031 serge 7073
static int intel_gen3_queue_flip(struct drm_device *dev,
7074
				 struct drm_crtc *crtc,
7075
				 struct drm_framebuffer *fb,
7076
				 struct drm_i915_gem_object *obj)
7077
{
7078
	struct drm_i915_private *dev_priv = dev->dev_private;
7079
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7080
	u32 flip_mask;
7081
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7082
	int ret;
2327 Serge 7083
 
3031 serge 7084
	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7085
	if (ret)
7086
		goto err;
2327 Serge 7087
 
3031 serge 7088
	ret = intel_ring_begin(ring, 6);
7089
	if (ret)
7090
		goto err_unpin;
2327 Serge 7091
 
3031 serge 7092
	if (intel_crtc->plane)
7093
		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7094
	else
7095
		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7096
	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7097
	intel_ring_emit(ring, MI_NOOP);
7098
	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7099
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7100
	intel_ring_emit(ring, fb->pitches[0]);
7101
	intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7102
	intel_ring_emit(ring, MI_NOOP);
2327 Serge 7103
 
3243 Serge 7104
	intel_mark_page_flip_active(intel_crtc);
3031 serge 7105
	intel_ring_advance(ring);
7106
	return 0;
2327 Serge 7107
 
3031 serge 7108
err_unpin:
7109
	intel_unpin_fb_obj(obj);
7110
err:
7111
	return ret;
7112
}
2327 Serge 7113
 
3031 serge 7114
static int intel_gen4_queue_flip(struct drm_device *dev,
7115
				 struct drm_crtc *crtc,
7116
				 struct drm_framebuffer *fb,
7117
				 struct drm_i915_gem_object *obj)
7118
{
7119
	struct drm_i915_private *dev_priv = dev->dev_private;
7120
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7121
	uint32_t pf, pipesrc;
7122
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7123
	int ret;
2327 Serge 7124
 
3031 serge 7125
	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7126
	if (ret)
7127
		goto err;
2327 Serge 7128
 
3031 serge 7129
	ret = intel_ring_begin(ring, 4);
7130
	if (ret)
7131
		goto err_unpin;
2327 Serge 7132
 
3031 serge 7133
	/* i965+ uses the linear or tiled offsets from the
7134
	 * Display Registers (which do not change across a page-flip)
7135
	 * so we need only reprogram the base address.
7136
	 */
7137
	intel_ring_emit(ring, MI_DISPLAY_FLIP |
7138
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7139
	intel_ring_emit(ring, fb->pitches[0]);
7140
	intel_ring_emit(ring,
7141
			(obj->gtt_offset + intel_crtc->dspaddr_offset) |
7142
			obj->tiling_mode);
2327 Serge 7143
 
3031 serge 7144
	/* XXX Enabling the panel-fitter across page-flip is so far
7145
	 * untested on non-native modes, so ignore it for now.
7146
	 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7147
	 */
7148
	pf = 0;
7149
	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7150
	intel_ring_emit(ring, pf | pipesrc);
3243 Serge 7151
 
7152
	intel_mark_page_flip_active(intel_crtc);
3031 serge 7153
	intel_ring_advance(ring);
7154
	return 0;
2327 Serge 7155
 
3031 serge 7156
err_unpin:
7157
	intel_unpin_fb_obj(obj);
7158
err:
7159
	return ret;
7160
}
2327 Serge 7161
 
3031 serge 7162
static int intel_gen6_queue_flip(struct drm_device *dev,
7163
				 struct drm_crtc *crtc,
7164
				 struct drm_framebuffer *fb,
7165
				 struct drm_i915_gem_object *obj)
7166
{
7167
	struct drm_i915_private *dev_priv = dev->dev_private;
7168
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7169
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7170
	uint32_t pf, pipesrc;
7171
	int ret;
2327 Serge 7172
 
3031 serge 7173
	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7174
	if (ret)
7175
		goto err;
2327 Serge 7176
 
3031 serge 7177
	ret = intel_ring_begin(ring, 4);
7178
	if (ret)
7179
		goto err_unpin;
2327 Serge 7180
 
3031 serge 7181
	intel_ring_emit(ring, MI_DISPLAY_FLIP |
7182
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7183
	intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7184
	intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
2327 Serge 7185
 
3031 serge 7186
	/* Contrary to the suggestions in the documentation,
7187
	 * "Enable Panel Fitter" does not seem to be required when page
7188
	 * flipping with a non-native mode, and worse causes a normal
7189
	 * modeset to fail.
7190
	 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7191
	 */
7192
	pf = 0;
7193
	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7194
	intel_ring_emit(ring, pf | pipesrc);
3243 Serge 7195
 
7196
	intel_mark_page_flip_active(intel_crtc);
3031 serge 7197
	intel_ring_advance(ring);
7198
	return 0;
2327 Serge 7199
 
3031 serge 7200
err_unpin:
7201
	intel_unpin_fb_obj(obj);
7202
err:
7203
	return ret;
7204
}
2327 Serge 7205
 
3031 serge 7206
/*
7207
 * On gen7 we currently use the blit ring because (in early silicon at least)
7208
 * the render ring doesn't give us interrpts for page flip completion, which
7209
 * means clients will hang after the first flip is queued.  Fortunately the
7210
 * blit ring generates interrupts properly, so use it instead.
7211
 */
7212
static int intel_gen7_queue_flip(struct drm_device *dev,
7213
				 struct drm_crtc *crtc,
7214
				 struct drm_framebuffer *fb,
7215
				 struct drm_i915_gem_object *obj)
7216
{
7217
	struct drm_i915_private *dev_priv = dev->dev_private;
7218
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7219
	struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7220
	uint32_t plane_bit = 0;
7221
	int ret;
2327 Serge 7222
 
3031 serge 7223
	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7224
	if (ret)
7225
		goto err;
2327 Serge 7226
 
3031 serge 7227
	switch(intel_crtc->plane) {
7228
	case PLANE_A:
7229
		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7230
		break;
7231
	case PLANE_B:
7232
		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7233
		break;
7234
	case PLANE_C:
7235
		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7236
		break;
7237
	default:
7238
		WARN_ONCE(1, "unknown plane in flip command\n");
7239
		ret = -ENODEV;
7240
		goto err_unpin;
7241
	}
2327 Serge 7242
 
3031 serge 7243
	ret = intel_ring_begin(ring, 4);
7244
	if (ret)
7245
		goto err_unpin;
2327 Serge 7246
 
3031 serge 7247
	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7248
	intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7249
	intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7250
	intel_ring_emit(ring, (MI_NOOP));
3243 Serge 7251
 
7252
	intel_mark_page_flip_active(intel_crtc);
3031 serge 7253
	intel_ring_advance(ring);
7254
	return 0;
2327 Serge 7255
 
3031 serge 7256
err_unpin:
7257
	intel_unpin_fb_obj(obj);
7258
err:
7259
	return ret;
7260
}
2327 Serge 7261
 
3031 serge 7262
static int intel_default_queue_flip(struct drm_device *dev,
7263
				    struct drm_crtc *crtc,
7264
				    struct drm_framebuffer *fb,
7265
				    struct drm_i915_gem_object *obj)
7266
{
7267
	return -ENODEV;
7268
}
2327 Serge 7269
 
3031 serge 7270
static int intel_crtc_page_flip(struct drm_crtc *crtc,
7271
				struct drm_framebuffer *fb,
7272
				struct drm_pending_vblank_event *event)
7273
{
7274
	struct drm_device *dev = crtc->dev;
7275
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 7276
	struct drm_framebuffer *old_fb = crtc->fb;
7277
	struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
3031 serge 7278
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7279
	struct intel_unpin_work *work;
7280
	unsigned long flags;
7281
	int ret;
2327 Serge 7282
 
3031 serge 7283
	/* Can't change pixel format via MI display flips. */
7284
	if (fb->pixel_format != crtc->fb->pixel_format)
7285
		return -EINVAL;
2327 Serge 7286
 
3031 serge 7287
	/*
7288
	 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7289
	 * Note that pitch changes could also affect these register.
7290
	 */
7291
	if (INTEL_INFO(dev)->gen > 3 &&
7292
	    (fb->offsets[0] != crtc->fb->offsets[0] ||
7293
	     fb->pitches[0] != crtc->fb->pitches[0]))
7294
		return -EINVAL;
2327 Serge 7295
 
3031 serge 7296
	work = kzalloc(sizeof *work, GFP_KERNEL);
7297
	if (work == NULL)
7298
		return -ENOMEM;
2327 Serge 7299
 
3031 serge 7300
	work->event = event;
3243 Serge 7301
	work->crtc = crtc;
3480 Serge 7302
	work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
3031 serge 7303
	INIT_WORK(&work->work, intel_unpin_work_fn);
2327 Serge 7304
 
3031 serge 7305
	ret = drm_vblank_get(dev, intel_crtc->pipe);
7306
	if (ret)
7307
		goto free_work;
2327 Serge 7308
 
3031 serge 7309
	/* We borrow the event spin lock for protecting unpin_work */
7310
	spin_lock_irqsave(&dev->event_lock, flags);
7311
	if (intel_crtc->unpin_work) {
7312
		spin_unlock_irqrestore(&dev->event_lock, flags);
7313
		kfree(work);
7314
		drm_vblank_put(dev, intel_crtc->pipe);
2327 Serge 7315
 
3031 serge 7316
		DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7317
		return -EBUSY;
7318
	}
7319
	intel_crtc->unpin_work = work;
7320
	spin_unlock_irqrestore(&dev->event_lock, flags);
2327 Serge 7321
 
3243 Serge 7322
	if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7323
		flush_workqueue(dev_priv->wq);
7324
 
3031 serge 7325
	ret = i915_mutex_lock_interruptible(dev);
7326
	if (ret)
7327
		goto cleanup;
2327 Serge 7328
 
3031 serge 7329
	/* Reference the objects for the scheduled work. */
7330
	drm_gem_object_reference(&work->old_fb_obj->base);
7331
	drm_gem_object_reference(&obj->base);
2327 Serge 7332
 
3031 serge 7333
	crtc->fb = fb;
2327 Serge 7334
 
3031 serge 7335
	work->pending_flip_obj = obj;
2327 Serge 7336
 
3031 serge 7337
	work->enable_stall_check = true;
7338
 
3243 Serge 7339
	atomic_inc(&intel_crtc->unpin_work_count);
3480 Serge 7340
	intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3031 serge 7341
 
7342
	ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7343
	if (ret)
7344
		goto cleanup_pending;
7345
 
7346
	intel_disable_fbc(dev);
7347
	intel_mark_fb_busy(obj);
7348
	mutex_unlock(&dev->struct_mutex);
7349
 
7350
	trace_i915_flip_request(intel_crtc->plane, obj);
7351
 
7352
	return 0;
7353
 
7354
cleanup_pending:
3243 Serge 7355
	atomic_dec(&intel_crtc->unpin_work_count);
3480 Serge 7356
	crtc->fb = old_fb;
3031 serge 7357
	drm_gem_object_unreference(&work->old_fb_obj->base);
7358
	drm_gem_object_unreference(&obj->base);
7359
	mutex_unlock(&dev->struct_mutex);
7360
 
7361
cleanup:
7362
	spin_lock_irqsave(&dev->event_lock, flags);
7363
	intel_crtc->unpin_work = NULL;
7364
	spin_unlock_irqrestore(&dev->event_lock, flags);
7365
 
7366
	drm_vblank_put(dev, intel_crtc->pipe);
7367
free_work:
7368
	kfree(work);
7369
 
7370
	return ret;
7371
}
7372
 
7373
#endif
7374
 
7375
static struct drm_crtc_helper_funcs intel_helper_funcs = {
7376
	.mode_set_base_atomic = intel_pipe_set_base_atomic,
7377
	.load_lut = intel_crtc_load_lut,
7378
};
7379
 
7380
bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
2330 Serge 7381
{
3031 serge 7382
	struct intel_encoder *other_encoder;
7383
	struct drm_crtc *crtc = &encoder->new_crtc->base;
2327 Serge 7384
 
3031 serge 7385
	if (WARN_ON(!crtc))
7386
		return false;
2327 Serge 7387
 
3031 serge 7388
	list_for_each_entry(other_encoder,
7389
			    &crtc->dev->mode_config.encoder_list,
7390
			    base.head) {
7391
 
7392
		if (&other_encoder->new_crtc->base != crtc ||
7393
		    encoder == other_encoder)
7394
			continue;
7395
		else
7396
			return true;
7397
	}
7398
 
7399
	return false;
7400
}
7401
 
7402
static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7403
				  struct drm_crtc *crtc)
7404
{
7405
	struct drm_device *dev;
7406
	struct drm_crtc *tmp;
7407
	int crtc_mask = 1;
7408
 
7409
	WARN(!crtc, "checking null crtc?\n");
7410
 
7411
	dev = crtc->dev;
7412
 
7413
	list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7414
		if (tmp == crtc)
7415
			break;
7416
		crtc_mask <<= 1;
7417
	}
7418
 
7419
	if (encoder->possible_crtcs & crtc_mask)
7420
		return true;
7421
	return false;
7422
}
7423
 
7424
/**
7425
 * intel_modeset_update_staged_output_state
7426
 *
7427
 * Updates the staged output configuration state, e.g. after we've read out the
7428
 * current hw state.
7429
 */
7430
static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7431
{
7432
	struct intel_encoder *encoder;
7433
	struct intel_connector *connector;
7434
 
7435
	list_for_each_entry(connector, &dev->mode_config.connector_list,
7436
			    base.head) {
7437
		connector->new_encoder =
7438
			to_intel_encoder(connector->base.encoder);
7439
	}
7440
 
7441
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7442
			    base.head) {
7443
		encoder->new_crtc =
7444
			to_intel_crtc(encoder->base.crtc);
7445
	}
7446
}
7447
 
7448
/**
7449
 * intel_modeset_commit_output_state
7450
 *
7451
 * This function copies the stage display pipe configuration to the real one.
7452
 */
7453
static void intel_modeset_commit_output_state(struct drm_device *dev)
7454
{
7455
	struct intel_encoder *encoder;
7456
	struct intel_connector *connector;
7457
 
7458
	list_for_each_entry(connector, &dev->mode_config.connector_list,
7459
			    base.head) {
7460
		connector->base.encoder = &connector->new_encoder->base;
7461
	}
7462
 
7463
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7464
			    base.head) {
7465
		encoder->base.crtc = &encoder->new_crtc->base;
7466
	}
7467
}
7468
 
7469
static struct drm_display_mode *
7470
intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7471
			    struct drm_display_mode *mode)
7472
{
7473
	struct drm_device *dev = crtc->dev;
7474
	struct drm_display_mode *adjusted_mode;
7475
	struct drm_encoder_helper_funcs *encoder_funcs;
7476
	struct intel_encoder *encoder;
7477
 
7478
	adjusted_mode = drm_mode_duplicate(dev, mode);
7479
	if (!adjusted_mode)
7480
		return ERR_PTR(-ENOMEM);
7481
 
7482
	/* Pass our mode to the connectors and the CRTC to give them a chance to
7483
	 * adjust it according to limitations or connector properties, and also
7484
	 * a chance to reject the mode entirely.
2330 Serge 7485
	 */
3031 serge 7486
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7487
			    base.head) {
2327 Serge 7488
 
3031 serge 7489
		if (&encoder->new_crtc->base != crtc)
7490
			continue;
7491
		encoder_funcs = encoder->base.helper_private;
7492
		if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7493
						adjusted_mode))) {
7494
			DRM_DEBUG_KMS("Encoder fixup failed\n");
7495
			goto fail;
7496
		}
7497
	}
2327 Serge 7498
 
3031 serge 7499
	if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7500
		DRM_DEBUG_KMS("CRTC fixup failed\n");
7501
		goto fail;
7502
	}
7503
	DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
2327 Serge 7504
 
3031 serge 7505
	return adjusted_mode;
7506
fail:
7507
	drm_mode_destroy(dev, adjusted_mode);
7508
	return ERR_PTR(-EINVAL);
7509
}
2327 Serge 7510
 
3031 serge 7511
/* Computes which crtcs are affected and sets the relevant bits in the mask. For
7512
 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7513
static void
7514
intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7515
			     unsigned *prepare_pipes, unsigned *disable_pipes)
7516
{
7517
	struct intel_crtc *intel_crtc;
7518
	struct drm_device *dev = crtc->dev;
7519
	struct intel_encoder *encoder;
7520
	struct intel_connector *connector;
7521
	struct drm_crtc *tmp_crtc;
7522
 
7523
	*disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7524
 
7525
	/* Check which crtcs have changed outputs connected to them, these need
7526
	 * to be part of the prepare_pipes mask. We don't (yet) support global
7527
	 * modeset across multiple crtcs, so modeset_pipes will only have one
7528
	 * bit set at most. */
7529
	list_for_each_entry(connector, &dev->mode_config.connector_list,
7530
			    base.head) {
7531
		if (connector->base.encoder == &connector->new_encoder->base)
7532
			continue;
7533
 
7534
		if (connector->base.encoder) {
7535
			tmp_crtc = connector->base.encoder->crtc;
7536
 
7537
			*prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7538
		}
7539
 
7540
		if (connector->new_encoder)
7541
			*prepare_pipes |=
7542
				1 << connector->new_encoder->new_crtc->pipe;
7543
	}
7544
 
7545
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7546
			    base.head) {
7547
		if (encoder->base.crtc == &encoder->new_crtc->base)
7548
			continue;
7549
 
7550
		if (encoder->base.crtc) {
7551
			tmp_crtc = encoder->base.crtc;
7552
 
7553
			*prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7554
		}
7555
 
7556
		if (encoder->new_crtc)
7557
			*prepare_pipes |= 1 << encoder->new_crtc->pipe;
7558
	}
7559
 
7560
	/* Check for any pipes that will be fully disabled ... */
7561
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7562
			    base.head) {
7563
		bool used = false;
7564
 
7565
		/* Don't try to disable disabled crtcs. */
7566
		if (!intel_crtc->base.enabled)
7567
			continue;
7568
 
7569
		list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7570
				    base.head) {
7571
			if (encoder->new_crtc == intel_crtc)
7572
				used = true;
7573
		}
7574
 
7575
		if (!used)
7576
			*disable_pipes |= 1 << intel_crtc->pipe;
7577
	}
7578
 
7579
 
7580
	/* set_mode is also used to update properties on life display pipes. */
7581
	intel_crtc = to_intel_crtc(crtc);
7582
	if (crtc->enabled)
7583
		*prepare_pipes |= 1 << intel_crtc->pipe;
7584
 
7585
	/* We only support modeset on one single crtc, hence we need to do that
7586
	 * only for the passed in crtc iff we change anything else than just
7587
	 * disable crtcs.
7588
	 *
7589
	 * This is actually not true, to be fully compatible with the old crtc
7590
	 * helper we automatically disable _any_ output (i.e. doesn't need to be
7591
	 * connected to the crtc we're modesetting on) if it's disconnected.
7592
	 * Which is a rather nutty api (since changed the output configuration
7593
	 * without userspace's explicit request can lead to confusion), but
7594
	 * alas. Hence we currently need to modeset on all pipes we prepare. */
7595
	if (*prepare_pipes)
7596
		*modeset_pipes = *prepare_pipes;
7597
 
7598
	/* ... and mask these out. */
7599
	*modeset_pipes &= ~(*disable_pipes);
7600
	*prepare_pipes &= ~(*disable_pipes);
2330 Serge 7601
}
2327 Serge 7602
 
3031 serge 7603
static bool intel_crtc_in_use(struct drm_crtc *crtc)
2330 Serge 7604
{
3031 serge 7605
	struct drm_encoder *encoder;
2330 Serge 7606
	struct drm_device *dev = crtc->dev;
2327 Serge 7607
 
3031 serge 7608
	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7609
		if (encoder->crtc == crtc)
7610
			return true;
7611
 
7612
	return false;
7613
}
7614
 
7615
static void
7616
intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7617
{
7618
	struct intel_encoder *intel_encoder;
7619
	struct intel_crtc *intel_crtc;
7620
	struct drm_connector *connector;
7621
 
7622
	list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7623
			    base.head) {
7624
		if (!intel_encoder->base.crtc)
7625
			continue;
7626
 
7627
		intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7628
 
7629
		if (prepare_pipes & (1 << intel_crtc->pipe))
7630
			intel_encoder->connectors_active = false;
7631
	}
7632
 
7633
	intel_modeset_commit_output_state(dev);
7634
 
7635
	/* Update computed state. */
7636
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7637
			    base.head) {
7638
		intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7639
	}
7640
 
7641
	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7642
		if (!connector->encoder || !connector->encoder->crtc)
7643
			continue;
7644
 
7645
		intel_crtc = to_intel_crtc(connector->encoder->crtc);
7646
 
7647
		if (prepare_pipes & (1 << intel_crtc->pipe)) {
7648
			struct drm_property *dpms_property =
7649
				dev->mode_config.dpms_property;
7650
 
7651
			connector->dpms = DRM_MODE_DPMS_ON;
3243 Serge 7652
			drm_object_property_set_value(&connector->base,
3031 serge 7653
							 dpms_property,
7654
							 DRM_MODE_DPMS_ON);
7655
 
7656
			intel_encoder = to_intel_encoder(connector->encoder);
7657
			intel_encoder->connectors_active = true;
7658
		}
7659
	}
7660
 
7661
}
7662
 
7663
#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7664
	list_for_each_entry((intel_crtc), \
7665
			    &(dev)->mode_config.crtc_list, \
7666
			    base.head) \
7667
		if (mask & (1 <<(intel_crtc)->pipe)) \
7668
 
7669
void
7670
intel_modeset_check_state(struct drm_device *dev)
7671
{
7672
	struct intel_crtc *crtc;
7673
	struct intel_encoder *encoder;
7674
	struct intel_connector *connector;
7675
 
7676
	list_for_each_entry(connector, &dev->mode_config.connector_list,
7677
			    base.head) {
7678
		/* This also checks the encoder/connector hw state with the
7679
		 * ->get_hw_state callbacks. */
7680
		intel_connector_check_state(connector);
7681
 
7682
		WARN(&connector->new_encoder->base != connector->base.encoder,
7683
		     "connector's staged encoder doesn't match current encoder\n");
7684
	}
7685
 
7686
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7687
			    base.head) {
7688
		bool enabled = false;
7689
		bool active = false;
7690
		enum pipe pipe, tracked_pipe;
7691
 
7692
		DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7693
			      encoder->base.base.id,
7694
			      drm_get_encoder_name(&encoder->base));
7695
 
7696
		WARN(&encoder->new_crtc->base != encoder->base.crtc,
7697
		     "encoder's stage crtc doesn't match current crtc\n");
7698
		WARN(encoder->connectors_active && !encoder->base.crtc,
7699
		     "encoder's active_connectors set, but no crtc\n");
7700
 
7701
		list_for_each_entry(connector, &dev->mode_config.connector_list,
7702
				    base.head) {
7703
			if (connector->base.encoder != &encoder->base)
7704
				continue;
7705
			enabled = true;
7706
			if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7707
				active = true;
7708
		}
7709
		WARN(!!encoder->base.crtc != enabled,
7710
		     "encoder's enabled state mismatch "
7711
		     "(expected %i, found %i)\n",
7712
		     !!encoder->base.crtc, enabled);
7713
		WARN(active && !encoder->base.crtc,
7714
		     "active encoder with no crtc\n");
7715
 
7716
		WARN(encoder->connectors_active != active,
7717
		     "encoder's computed active state doesn't match tracked active state "
7718
		     "(expected %i, found %i)\n", active, encoder->connectors_active);
7719
 
7720
		active = encoder->get_hw_state(encoder, &pipe);
7721
		WARN(active != encoder->connectors_active,
7722
		     "encoder's hw state doesn't match sw tracking "
7723
		     "(expected %i, found %i)\n",
7724
		     encoder->connectors_active, active);
7725
 
7726
		if (!encoder->base.crtc)
7727
			continue;
7728
 
7729
		tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7730
		WARN(active && pipe != tracked_pipe,
7731
		     "active encoder's pipe doesn't match"
7732
		     "(expected %i, found %i)\n",
7733
		     tracked_pipe, pipe);
7734
 
7735
	}
7736
 
7737
	list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7738
			    base.head) {
7739
		bool enabled = false;
7740
		bool active = false;
7741
 
7742
		DRM_DEBUG_KMS("[CRTC:%d]\n",
7743
			      crtc->base.base.id);
7744
 
7745
		WARN(crtc->active && !crtc->base.enabled,
7746
		     "active crtc, but not enabled in sw tracking\n");
7747
 
7748
		list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7749
				    base.head) {
7750
			if (encoder->base.crtc != &crtc->base)
7751
				continue;
7752
			enabled = true;
7753
			if (encoder->connectors_active)
7754
				active = true;
7755
		}
7756
		WARN(active != crtc->active,
7757
		     "crtc's computed active state doesn't match tracked active state "
7758
		     "(expected %i, found %i)\n", active, crtc->active);
7759
		WARN(enabled != crtc->base.enabled,
7760
		     "crtc's computed enabled state doesn't match tracked enabled state "
7761
		     "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7762
 
7763
		assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7764
	}
7765
}
7766
 
3480 Serge 7767
int intel_set_mode(struct drm_crtc *crtc,
3031 serge 7768
		    struct drm_display_mode *mode,
7769
		    int x, int y, struct drm_framebuffer *fb)
7770
{
7771
	struct drm_device *dev = crtc->dev;
7772
	drm_i915_private_t *dev_priv = dev->dev_private;
3480 Serge 7773
	struct drm_display_mode *adjusted_mode, *saved_mode, *saved_hwmode;
3031 serge 7774
	struct intel_crtc *intel_crtc;
7775
	unsigned disable_pipes, prepare_pipes, modeset_pipes;
3480 Serge 7776
	int ret = 0;
3031 serge 7777
 
3480 Serge 7778
	saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
7779
	if (!saved_mode)
7780
		return -ENOMEM;
7781
	saved_hwmode = saved_mode + 1;
7782
 
3031 serge 7783
	intel_modeset_affected_pipes(crtc, &modeset_pipes,
7784
				     &prepare_pipes, &disable_pipes);
7785
 
7786
	DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7787
		      modeset_pipes, prepare_pipes, disable_pipes);
7788
 
7789
	for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7790
		intel_crtc_disable(&intel_crtc->base);
7791
 
3480 Serge 7792
	*saved_hwmode = crtc->hwmode;
7793
	*saved_mode = crtc->mode;
3031 serge 7794
 
7795
	/* Hack: Because we don't (yet) support global modeset on multiple
7796
	 * crtcs, we don't keep track of the new mode for more than one crtc.
7797
	 * Hence simply check whether any bit is set in modeset_pipes in all the
7798
	 * pieces of code that are not yet converted to deal with mutliple crtcs
7799
	 * changing their mode at the same time. */
7800
	adjusted_mode = NULL;
7801
	if (modeset_pipes) {
7802
		adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7803
		if (IS_ERR(adjusted_mode)) {
3480 Serge 7804
			ret = PTR_ERR(adjusted_mode);
7805
			goto out;
3031 serge 7806
		}
7807
	}
7808
 
7809
	for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7810
		if (intel_crtc->base.enabled)
7811
			dev_priv->display.crtc_disable(&intel_crtc->base);
7812
	}
7813
 
7814
	/* crtc->mode is already used by the ->mode_set callbacks, hence we need
7815
	 * to set it here already despite that we pass it down the callchain.
2330 Serge 7816
	 */
3031 serge 7817
	if (modeset_pipes)
7818
		crtc->mode = *mode;
2327 Serge 7819
 
3031 serge 7820
	/* Only after disabling all output pipelines that will be changed can we
7821
	 * update the the output configuration. */
7822
	intel_modeset_update_state(dev, prepare_pipes);
7823
 
3243 Serge 7824
	if (dev_priv->display.modeset_global_resources)
7825
		dev_priv->display.modeset_global_resources(dev);
7826
 
3031 serge 7827
	/* Set up the DPLL and any encoders state that needs to adjust or depend
7828
	 * on the DPLL.
2330 Serge 7829
	 */
3031 serge 7830
	for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
3480 Serge 7831
		ret = intel_crtc_mode_set(&intel_crtc->base,
3031 serge 7832
					   mode, adjusted_mode,
7833
					   x, y, fb);
3480 Serge 7834
		if (ret)
3031 serge 7835
		    goto done;
7836
	}
7837
 
7838
	/* Now enable the clocks, plane, pipe, and connectors that we set up. */
7839
	for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7840
		dev_priv->display.crtc_enable(&intel_crtc->base);
7841
 
7842
	if (modeset_pipes) {
7843
		/* Store real post-adjustment hardware mode. */
7844
		crtc->hwmode = *adjusted_mode;
7845
 
7846
		/* Calculate and store various constants which
7847
		 * are later needed by vblank and swap-completion
7848
		 * timestamping. They are derived from true hwmode.
7849
		 */
7850
		drm_calc_timestamping_constants(crtc);
7851
	}
7852
 
7853
	/* FIXME: add subpixel order */
7854
done:
7855
	drm_mode_destroy(dev, adjusted_mode);
3480 Serge 7856
	if (ret && crtc->enabled) {
7857
		crtc->hwmode = *saved_hwmode;
7858
		crtc->mode = *saved_mode;
3031 serge 7859
	} else {
7860
		intel_modeset_check_state(dev);
7861
	}
7862
 
3480 Serge 7863
out:
7864
	kfree(saved_mode);
3031 serge 7865
	return ret;
2330 Serge 7866
}
2327 Serge 7867
 
3480 Serge 7868
void intel_crtc_restore_mode(struct drm_crtc *crtc)
7869
{
7870
	intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
7871
}
7872
 
3031 serge 7873
#undef for_each_intel_crtc_masked
2327 Serge 7874
 
3031 serge 7875
static void intel_set_config_free(struct intel_set_config *config)
7876
{
7877
	if (!config)
7878
		return;
7879
 
7880
	kfree(config->save_connector_encoders);
7881
	kfree(config->save_encoder_crtcs);
7882
	kfree(config);
7883
}
7884
 
7885
static int intel_set_config_save_state(struct drm_device *dev,
7886
				       struct intel_set_config *config)
7887
{
7888
	struct drm_encoder *encoder;
7889
	struct drm_connector *connector;
7890
	int count;
7891
 
7892
	config->save_encoder_crtcs =
7893
		kcalloc(dev->mode_config.num_encoder,
7894
			sizeof(struct drm_crtc *), GFP_KERNEL);
7895
	if (!config->save_encoder_crtcs)
7896
		return -ENOMEM;
7897
 
7898
	config->save_connector_encoders =
7899
		kcalloc(dev->mode_config.num_connector,
7900
			sizeof(struct drm_encoder *), GFP_KERNEL);
7901
	if (!config->save_connector_encoders)
7902
		return -ENOMEM;
7903
 
7904
	/* Copy data. Note that driver private data is not affected.
7905
	 * Should anything bad happen only the expected state is
7906
	 * restored, not the drivers personal bookkeeping.
7907
	 */
7908
	count = 0;
7909
	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7910
		config->save_encoder_crtcs[count++] = encoder->crtc;
7911
	}
7912
 
7913
	count = 0;
7914
	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7915
		config->save_connector_encoders[count++] = connector->encoder;
7916
	}
7917
 
7918
	return 0;
7919
}
7920
 
7921
static void intel_set_config_restore_state(struct drm_device *dev,
7922
					   struct intel_set_config *config)
7923
{
7924
	struct intel_encoder *encoder;
7925
	struct intel_connector *connector;
7926
	int count;
7927
 
7928
	count = 0;
7929
	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7930
		encoder->new_crtc =
7931
			to_intel_crtc(config->save_encoder_crtcs[count++]);
7932
	}
7933
 
7934
	count = 0;
7935
	list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7936
		connector->new_encoder =
7937
			to_intel_encoder(config->save_connector_encoders[count++]);
7938
	}
7939
}
7940
 
7941
static void
7942
intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7943
				      struct intel_set_config *config)
7944
{
7945
 
7946
	/* We should be able to check here if the fb has the same properties
7947
	 * and then just flip_or_move it */
7948
	if (set->crtc->fb != set->fb) {
7949
		/* If we have no fb then treat it as a full mode set */
7950
		if (set->crtc->fb == NULL) {
7951
			DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7952
			config->mode_changed = true;
7953
		} else if (set->fb == NULL) {
7954
			config->mode_changed = true;
7955
		} else if (set->fb->depth != set->crtc->fb->depth) {
7956
			config->mode_changed = true;
7957
		} else if (set->fb->bits_per_pixel !=
7958
			   set->crtc->fb->bits_per_pixel) {
7959
			config->mode_changed = true;
7960
		} else
7961
			config->fb_changed = true;
7962
	}
7963
 
7964
	if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7965
		config->fb_changed = true;
7966
 
7967
	if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7968
		DRM_DEBUG_KMS("modes are different, full mode set\n");
7969
		drm_mode_debug_printmodeline(&set->crtc->mode);
7970
		drm_mode_debug_printmodeline(set->mode);
7971
		config->mode_changed = true;
7972
	}
7973
}
7974
 
7975
static int
7976
intel_modeset_stage_output_state(struct drm_device *dev,
7977
				 struct drm_mode_set *set,
7978
				 struct intel_set_config *config)
7979
{
7980
	struct drm_crtc *new_crtc;
7981
	struct intel_connector *connector;
7982
	struct intel_encoder *encoder;
7983
	int count, ro;
7984
 
3480 Serge 7985
	/* The upper layers ensure that we either disable a crtc or have a list
3031 serge 7986
	 * of connectors. For paranoia, double-check this. */
7987
	WARN_ON(!set->fb && (set->num_connectors != 0));
7988
	WARN_ON(set->fb && (set->num_connectors == 0));
7989
 
7990
	count = 0;
7991
	list_for_each_entry(connector, &dev->mode_config.connector_list,
7992
			    base.head) {
7993
		/* Otherwise traverse passed in connector list and get encoders
7994
		 * for them. */
7995
		for (ro = 0; ro < set->num_connectors; ro++) {
7996
			if (set->connectors[ro] == &connector->base) {
7997
				connector->new_encoder = connector->encoder;
7998
				break;
7999
			}
8000
		}
8001
 
8002
		/* If we disable the crtc, disable all its connectors. Also, if
8003
		 * the connector is on the changing crtc but not on the new
8004
		 * connector list, disable it. */
8005
		if ((!set->fb || ro == set->num_connectors) &&
8006
		    connector->base.encoder &&
8007
		    connector->base.encoder->crtc == set->crtc) {
8008
			connector->new_encoder = NULL;
8009
 
8010
			DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8011
				connector->base.base.id,
8012
				drm_get_connector_name(&connector->base));
8013
		}
8014
 
8015
 
8016
		if (&connector->new_encoder->base != connector->base.encoder) {
8017
			DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8018
			config->mode_changed = true;
8019
		}
8020
	}
8021
	/* connector->new_encoder is now updated for all connectors. */
8022
 
8023
	/* Update crtc of enabled connectors. */
8024
	count = 0;
8025
	list_for_each_entry(connector, &dev->mode_config.connector_list,
8026
			    base.head) {
8027
		if (!connector->new_encoder)
8028
			continue;
8029
 
8030
		new_crtc = connector->new_encoder->base.crtc;
8031
 
8032
		for (ro = 0; ro < set->num_connectors; ro++) {
8033
			if (set->connectors[ro] == &connector->base)
8034
				new_crtc = set->crtc;
8035
		}
8036
 
8037
		/* Make sure the new CRTC will work with the encoder */
8038
		if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8039
					   new_crtc)) {
8040
			return -EINVAL;
8041
		}
8042
		connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8043
 
8044
		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8045
			connector->base.base.id,
8046
			drm_get_connector_name(&connector->base),
8047
			new_crtc->base.id);
8048
	}
8049
 
8050
	/* Check for any encoders that needs to be disabled. */
8051
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8052
			    base.head) {
8053
		list_for_each_entry(connector,
8054
				    &dev->mode_config.connector_list,
8055
				    base.head) {
8056
			if (connector->new_encoder == encoder) {
8057
				WARN_ON(!connector->new_encoder->new_crtc);
8058
 
8059
				goto next_encoder;
8060
			}
8061
		}
8062
		encoder->new_crtc = NULL;
8063
next_encoder:
8064
		/* Only now check for crtc changes so we don't miss encoders
8065
		 * that will be disabled. */
8066
		if (&encoder->new_crtc->base != encoder->base.crtc) {
8067
			DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8068
			config->mode_changed = true;
8069
		}
8070
	}
8071
	/* Now we've also updated encoder->new_crtc for all encoders. */
8072
 
8073
	return 0;
8074
}
8075
 
8076
static int intel_crtc_set_config(struct drm_mode_set *set)
8077
{
8078
	struct drm_device *dev;
8079
	struct drm_mode_set save_set;
8080
	struct intel_set_config *config;
8081
	int ret;
8082
 
8083
	BUG_ON(!set);
8084
	BUG_ON(!set->crtc);
8085
	BUG_ON(!set->crtc->helper_private);
8086
 
3480 Serge 8087
	/* Enforce sane interface api - has been abused by the fb helper. */
8088
	BUG_ON(!set->mode && set->fb);
8089
	BUG_ON(set->fb && set->num_connectors == 0);
3031 serge 8090
 
8091
	if (set->fb) {
8092
		DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8093
				set->crtc->base.id, set->fb->base.id,
8094
				(int)set->num_connectors, set->x, set->y);
8095
	} else {
8096
		DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8097
	}
8098
 
8099
	dev = set->crtc->dev;
8100
 
8101
	ret = -ENOMEM;
8102
	config = kzalloc(sizeof(*config), GFP_KERNEL);
8103
	if (!config)
8104
		goto out_config;
8105
 
8106
	ret = intel_set_config_save_state(dev, config);
8107
	if (ret)
8108
		goto out_config;
8109
 
8110
	save_set.crtc = set->crtc;
8111
	save_set.mode = &set->crtc->mode;
8112
	save_set.x = set->crtc->x;
8113
	save_set.y = set->crtc->y;
8114
	save_set.fb = set->crtc->fb;
8115
 
8116
	/* Compute whether we need a full modeset, only an fb base update or no
8117
	 * change at all. In the future we might also check whether only the
8118
	 * mode changed, e.g. for LVDS where we only change the panel fitter in
8119
	 * such cases. */
8120
	intel_set_config_compute_mode_changes(set, config);
8121
 
8122
	ret = intel_modeset_stage_output_state(dev, set, config);
8123
	if (ret)
8124
		goto fail;
8125
 
8126
	if (config->mode_changed) {
8127
		if (set->mode) {
8128
			DRM_DEBUG_KMS("attempting to set mode from"
8129
					" userspace\n");
8130
			drm_mode_debug_printmodeline(set->mode);
8131
		}
8132
 
3480 Serge 8133
		ret = intel_set_mode(set->crtc, set->mode,
8134
				     set->x, set->y, set->fb);
8135
		if (ret) {
8136
			DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8137
				  set->crtc->base.id, ret);
3031 serge 8138
			goto fail;
8139
		}
8140
	} else if (config->fb_changed) {
8141
		ret = intel_pipe_set_base(set->crtc,
8142
					  set->x, set->y, set->fb);
8143
	}
8144
 
8145
	intel_set_config_free(config);
8146
 
8147
	return 0;
8148
 
8149
fail:
8150
	intel_set_config_restore_state(dev, config);
8151
 
8152
	/* Try to restore the config */
8153
	if (config->mode_changed &&
3480 Serge 8154
	    intel_set_mode(save_set.crtc, save_set.mode,
3031 serge 8155
			    save_set.x, save_set.y, save_set.fb))
8156
		DRM_ERROR("failed to restore config after modeset failure\n");
8157
 
8158
out_config:
8159
	intel_set_config_free(config);
8160
	return ret;
8161
}
8162
 
2330 Serge 8163
static const struct drm_crtc_funcs intel_crtc_funcs = {
8164
//	.cursor_set = intel_crtc_cursor_set,
8165
//	.cursor_move = intel_crtc_cursor_move,
8166
	.gamma_set = intel_crtc_gamma_set,
3031 serge 8167
	.set_config = intel_crtc_set_config,
2330 Serge 8168
	.destroy = intel_crtc_destroy,
8169
//	.page_flip = intel_crtc_page_flip,
8170
};
2327 Serge 8171
 
3243 Serge 8172
static void intel_cpu_pll_init(struct drm_device *dev)
8173
{
3480 Serge 8174
	if (HAS_DDI(dev))
3243 Serge 8175
		intel_ddi_pll_init(dev);
8176
}
8177
 
3031 serge 8178
static void intel_pch_pll_init(struct drm_device *dev)
8179
{
8180
	drm_i915_private_t *dev_priv = dev->dev_private;
8181
	int i;
8182
 
8183
	if (dev_priv->num_pch_pll == 0) {
8184
		DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8185
		return;
8186
	}
8187
 
8188
	for (i = 0; i < dev_priv->num_pch_pll; i++) {
8189
		dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8190
		dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8191
		dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8192
	}
8193
}
8194
 
2330 Serge 8195
static void intel_crtc_init(struct drm_device *dev, int pipe)
8196
{
8197
	drm_i915_private_t *dev_priv = dev->dev_private;
8198
	struct intel_crtc *intel_crtc;
8199
	int i;
2327 Serge 8200
 
2330 Serge 8201
	intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8202
	if (intel_crtc == NULL)
8203
		return;
2327 Serge 8204
 
2330 Serge 8205
	drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
2327 Serge 8206
 
2330 Serge 8207
	drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8208
	for (i = 0; i < 256; i++) {
8209
		intel_crtc->lut_r[i] = i;
8210
		intel_crtc->lut_g[i] = i;
8211
		intel_crtc->lut_b[i] = i;
8212
	}
2327 Serge 8213
 
2330 Serge 8214
	/* Swap pipes & planes for FBC on pre-965 */
8215
	intel_crtc->pipe = pipe;
8216
	intel_crtc->plane = pipe;
3243 Serge 8217
	intel_crtc->cpu_transcoder = pipe;
2330 Serge 8218
	if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8219
		DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8220
		intel_crtc->plane = !pipe;
8221
	}
2327 Serge 8222
 
2330 Serge 8223
	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8224
	       dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8225
	dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8226
	dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
2327 Serge 8227
 
2330 Serge 8228
	intel_crtc->bpp = 24; /* default for pre-Ironlake */
2327 Serge 8229
 
2330 Serge 8230
	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8231
}
2327 Serge 8232
 
3031 serge 8233
int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8234
				struct drm_file *file)
8235
{
8236
	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8237
	struct drm_mode_object *drmmode_obj;
8238
	struct intel_crtc *crtc;
2327 Serge 8239
 
3482 Serge 8240
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
8241
		return -ENODEV;
8242
 
3031 serge 8243
	drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8244
			DRM_MODE_OBJECT_CRTC);
2327 Serge 8245
 
3031 serge 8246
	if (!drmmode_obj) {
8247
		DRM_ERROR("no such CRTC id\n");
8248
		return -EINVAL;
8249
	}
2327 Serge 8250
 
3031 serge 8251
	crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8252
	pipe_from_crtc_id->pipe = crtc->pipe;
2327 Serge 8253
 
3031 serge 8254
	return 0;
8255
}
2327 Serge 8256
 
3031 serge 8257
static int intel_encoder_clones(struct intel_encoder *encoder)
2330 Serge 8258
{
3031 serge 8259
	struct drm_device *dev = encoder->base.dev;
8260
	struct intel_encoder *source_encoder;
2330 Serge 8261
	int index_mask = 0;
8262
	int entry = 0;
2327 Serge 8263
 
3031 serge 8264
	list_for_each_entry(source_encoder,
8265
			    &dev->mode_config.encoder_list, base.head) {
8266
 
8267
		if (encoder == source_encoder)
2330 Serge 8268
			index_mask |= (1 << entry);
3031 serge 8269
 
8270
		/* Intel hw has only one MUX where enocoders could be cloned. */
8271
		if (encoder->cloneable && source_encoder->cloneable)
8272
			index_mask |= (1 << entry);
8273
 
2330 Serge 8274
		entry++;
8275
	}
2327 Serge 8276
 
2330 Serge 8277
	return index_mask;
8278
}
2327 Serge 8279
 
2330 Serge 8280
static bool has_edp_a(struct drm_device *dev)
8281
{
8282
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 8283
 
2330 Serge 8284
	if (!IS_MOBILE(dev))
8285
		return false;
2327 Serge 8286
 
2330 Serge 8287
	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8288
		return false;
2327 Serge 8289
 
2330 Serge 8290
	if (IS_GEN5(dev) &&
8291
	    (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8292
		return false;
2327 Serge 8293
 
2330 Serge 8294
	return true;
8295
}
2327 Serge 8296
 
2330 Serge 8297
static void intel_setup_outputs(struct drm_device *dev)
8298
{
8299
	struct drm_i915_private *dev_priv = dev->dev_private;
8300
	struct intel_encoder *encoder;
8301
	bool dpd_is_edp = false;
3031 serge 8302
	bool has_lvds;
2327 Serge 8303
 
2330 Serge 8304
		has_lvds = intel_lvds_init(dev);
8305
	if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8306
		/* disable the panel fitter on everything but LVDS */
8307
		I915_WRITE(PFIT_CONTROL, 0);
8308
	}
2327 Serge 8309
 
3480 Serge 8310
	if (!(HAS_DDI(dev) && (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
2330 Serge 8311
	intel_crt_init(dev);
2327 Serge 8312
 
3480 Serge 8313
	if (HAS_DDI(dev)) {
2330 Serge 8314
		int found;
2327 Serge 8315
 
3031 serge 8316
		/* Haswell uses DDI functions to detect digital outputs */
8317
		found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8318
		/* DDI A only supports eDP */
8319
		if (found)
8320
			intel_ddi_init(dev, PORT_A);
8321
 
8322
		/* DDI B, C and D detection is indicated by the SFUSE_STRAP
8323
		 * register */
8324
		found = I915_READ(SFUSE_STRAP);
8325
 
8326
		if (found & SFUSE_STRAP_DDIB_DETECTED)
8327
			intel_ddi_init(dev, PORT_B);
8328
		if (found & SFUSE_STRAP_DDIC_DETECTED)
8329
			intel_ddi_init(dev, PORT_C);
8330
		if (found & SFUSE_STRAP_DDID_DETECTED)
8331
			intel_ddi_init(dev, PORT_D);
8332
	} else if (HAS_PCH_SPLIT(dev)) {
8333
		int found;
3243 Serge 8334
		dpd_is_edp = intel_dpd_is_edp(dev);
3031 serge 8335
 
3243 Serge 8336
		if (has_edp_a(dev))
8337
			intel_dp_init(dev, DP_A, PORT_A);
8338
 
2330 Serge 8339
		if (I915_READ(HDMIB) & PORT_DETECTED) {
8340
			/* PCH SDVOB multiplex with HDMIB */
3031 serge 8341
			found = intel_sdvo_init(dev, PCH_SDVOB, true);
2330 Serge 8342
			if (!found)
3031 serge 8343
				intel_hdmi_init(dev, HDMIB, PORT_B);
2330 Serge 8344
			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
3031 serge 8345
				intel_dp_init(dev, PCH_DP_B, PORT_B);
2330 Serge 8346
		}
2327 Serge 8347
 
2330 Serge 8348
		if (I915_READ(HDMIC) & PORT_DETECTED)
3031 serge 8349
			intel_hdmi_init(dev, HDMIC, PORT_C);
2327 Serge 8350
 
3031 serge 8351
		if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8352
			intel_hdmi_init(dev, HDMID, PORT_D);
2327 Serge 8353
 
2330 Serge 8354
		if (I915_READ(PCH_DP_C) & DP_DETECTED)
3031 serge 8355
			intel_dp_init(dev, PCH_DP_C, PORT_C);
2327 Serge 8356
 
3243 Serge 8357
		if (I915_READ(PCH_DP_D) & DP_DETECTED)
3031 serge 8358
			intel_dp_init(dev, PCH_DP_D, PORT_D);
8359
	} else if (IS_VALLEYVIEW(dev)) {
3243 Serge 8360
		/* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
3480 Serge 8361
		if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
8362
			intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
3243 Serge 8363
 
3480 Serge 8364
		if (I915_READ(VLV_DISPLAY_BASE + SDVOB) & PORT_DETECTED) {
8365
			intel_hdmi_init(dev, VLV_DISPLAY_BASE + SDVOB, PORT_B);
8366
			if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
8367
				intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
3031 serge 8368
		}
8369
 
3480 Serge 8370
		if (I915_READ(VLV_DISPLAY_BASE + SDVOC) & PORT_DETECTED)
8371
			intel_hdmi_init(dev, VLV_DISPLAY_BASE + SDVOC, PORT_C);
3031 serge 8372
 
2330 Serge 8373
	} else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8374
		bool found = false;
2327 Serge 8375
 
2330 Serge 8376
		if (I915_READ(SDVOB) & SDVO_DETECTED) {
8377
			DRM_DEBUG_KMS("probing SDVOB\n");
3031 serge 8378
			found = intel_sdvo_init(dev, SDVOB, true);
2330 Serge 8379
			if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8380
				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
3031 serge 8381
				intel_hdmi_init(dev, SDVOB, PORT_B);
2330 Serge 8382
			}
2327 Serge 8383
 
2330 Serge 8384
			if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8385
				DRM_DEBUG_KMS("probing DP_B\n");
3031 serge 8386
				intel_dp_init(dev, DP_B, PORT_B);
2330 Serge 8387
			}
8388
		}
2327 Serge 8389
 
2330 Serge 8390
		/* Before G4X SDVOC doesn't have its own detect register */
2327 Serge 8391
 
2330 Serge 8392
		if (I915_READ(SDVOB) & SDVO_DETECTED) {
8393
			DRM_DEBUG_KMS("probing SDVOC\n");
3031 serge 8394
			found = intel_sdvo_init(dev, SDVOC, false);
2330 Serge 8395
		}
2327 Serge 8396
 
2330 Serge 8397
		if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
2327 Serge 8398
 
2330 Serge 8399
			if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8400
				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
3031 serge 8401
				intel_hdmi_init(dev, SDVOC, PORT_C);
2330 Serge 8402
			}
8403
			if (SUPPORTS_INTEGRATED_DP(dev)) {
8404
				DRM_DEBUG_KMS("probing DP_C\n");
3031 serge 8405
				intel_dp_init(dev, DP_C, PORT_C);
2330 Serge 8406
			}
8407
		}
2327 Serge 8408
 
2330 Serge 8409
		if (SUPPORTS_INTEGRATED_DP(dev) &&
8410
		    (I915_READ(DP_D) & DP_DETECTED)) {
8411
			DRM_DEBUG_KMS("probing DP_D\n");
3031 serge 8412
			intel_dp_init(dev, DP_D, PORT_D);
2330 Serge 8413
		}
8414
	} else if (IS_GEN2(dev))
8415
		intel_dvo_init(dev);
2327 Serge 8416
 
2330 Serge 8417
//   if (SUPPORTS_TV(dev))
8418
//       intel_tv_init(dev);
2327 Serge 8419
 
2330 Serge 8420
	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8421
		encoder->base.possible_crtcs = encoder->crtc_mask;
8422
		encoder->base.possible_clones =
3031 serge 8423
			intel_encoder_clones(encoder);
2330 Serge 8424
	}
2327 Serge 8425
 
3243 Serge 8426
	intel_init_pch_refclk(dev);
8427
 
8428
	drm_helper_move_panel_connectors_to_head(dev);
2330 Serge 8429
}
8430
 
8431
 
8432
 
2335 Serge 8433
static const struct drm_framebuffer_funcs intel_fb_funcs = {
8434
//	.destroy = intel_user_framebuffer_destroy,
8435
//	.create_handle = intel_user_framebuffer_create_handle,
8436
};
2327 Serge 8437
 
2335 Serge 8438
int intel_framebuffer_init(struct drm_device *dev,
8439
			   struct intel_framebuffer *intel_fb,
2342 Serge 8440
			   struct drm_mode_fb_cmd2 *mode_cmd,
2335 Serge 8441
			   struct drm_i915_gem_object *obj)
8442
{
8443
	int ret;
2327 Serge 8444
 
3243 Serge 8445
	if (obj->tiling_mode == I915_TILING_Y) {
8446
		DRM_DEBUG("hardware does not support tiling Y\n");
2335 Serge 8447
		return -EINVAL;
3243 Serge 8448
	}
2327 Serge 8449
 
3243 Serge 8450
	if (mode_cmd->pitches[0] & 63) {
8451
		DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8452
			  mode_cmd->pitches[0]);
8453
		return -EINVAL;
8454
	}
8455
 
8456
	/* FIXME <= Gen4 stride limits are bit unclear */
8457
	if (mode_cmd->pitches[0] > 32768) {
8458
		DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8459
			  mode_cmd->pitches[0]);
8460
		return -EINVAL;
8461
	}
8462
 
8463
	if (obj->tiling_mode != I915_TILING_NONE &&
8464
	    mode_cmd->pitches[0] != obj->stride) {
8465
		DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8466
			  mode_cmd->pitches[0], obj->stride);
2335 Serge 8467
			return -EINVAL;
3243 Serge 8468
	}
2327 Serge 8469
 
3243 Serge 8470
	/* Reject formats not supported by any plane early. */
2342 Serge 8471
	switch (mode_cmd->pixel_format) {
3243 Serge 8472
	case DRM_FORMAT_C8:
2342 Serge 8473
	case DRM_FORMAT_RGB565:
8474
	case DRM_FORMAT_XRGB8888:
3243 Serge 8475
	case DRM_FORMAT_ARGB8888:
8476
		break;
8477
	case DRM_FORMAT_XRGB1555:
8478
	case DRM_FORMAT_ARGB1555:
8479
		if (INTEL_INFO(dev)->gen > 3) {
8480
			DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8481
			return -EINVAL;
8482
		}
8483
		break;
3031 serge 8484
	case DRM_FORMAT_XBGR8888:
3243 Serge 8485
	case DRM_FORMAT_ABGR8888:
2342 Serge 8486
	case DRM_FORMAT_XRGB2101010:
8487
	case DRM_FORMAT_ARGB2101010:
3243 Serge 8488
	case DRM_FORMAT_XBGR2101010:
8489
	case DRM_FORMAT_ABGR2101010:
8490
		if (INTEL_INFO(dev)->gen < 4) {
8491
			DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8492
			return -EINVAL;
8493
		}
2335 Serge 8494
		break;
2342 Serge 8495
	case DRM_FORMAT_YUYV:
8496
	case DRM_FORMAT_UYVY:
8497
	case DRM_FORMAT_YVYU:
8498
	case DRM_FORMAT_VYUY:
3243 Serge 8499
		if (INTEL_INFO(dev)->gen < 5) {
8500
			DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8501
			return -EINVAL;
8502
		}
2342 Serge 8503
		break;
2335 Serge 8504
	default:
3243 Serge 8505
		DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
2335 Serge 8506
		return -EINVAL;
8507
	}
2327 Serge 8508
 
3243 Serge 8509
	/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8510
	if (mode_cmd->offsets[0] != 0)
8511
		return -EINVAL;
8512
 
3480 Serge 8513
	drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8514
	intel_fb->obj = obj;
8515
 
2335 Serge 8516
	ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8517
	if (ret) {
8518
		DRM_ERROR("framebuffer init failed %d\n", ret);
8519
		return ret;
8520
	}
2327 Serge 8521
 
2335 Serge 8522
	return 0;
8523
}
2327 Serge 8524
 
8525
 
2360 Serge 8526
static const struct drm_mode_config_funcs intel_mode_funcs = {
8527
	.fb_create = NULL /*intel_user_framebuffer_create*/,
3480 Serge 8528
	.output_poll_changed = intel_fb_output_poll_changed,
2360 Serge 8529
};
2327 Serge 8530
 
3031 serge 8531
/* Set up chip specific display functions */
8532
static void intel_init_display(struct drm_device *dev)
8533
{
8534
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 8535
 
3031 serge 8536
	/* We always want a DPMS function */
3480 Serge 8537
	if (HAS_DDI(dev)) {
3243 Serge 8538
		dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8539
		dev_priv->display.crtc_enable = haswell_crtc_enable;
8540
		dev_priv->display.crtc_disable = haswell_crtc_disable;
8541
		dev_priv->display.off = haswell_crtc_off;
8542
		dev_priv->display.update_plane = ironlake_update_plane;
8543
	} else if (HAS_PCH_SPLIT(dev)) {
3031 serge 8544
		dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8545
		dev_priv->display.crtc_enable = ironlake_crtc_enable;
8546
		dev_priv->display.crtc_disable = ironlake_crtc_disable;
8547
		dev_priv->display.off = ironlake_crtc_off;
8548
		dev_priv->display.update_plane = ironlake_update_plane;
8549
	} else {
8550
		dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8551
		dev_priv->display.crtc_enable = i9xx_crtc_enable;
8552
		dev_priv->display.crtc_disable = i9xx_crtc_disable;
8553
		dev_priv->display.off = i9xx_crtc_off;
8554
		dev_priv->display.update_plane = i9xx_update_plane;
8555
	}
2327 Serge 8556
 
3031 serge 8557
	/* Returns the core display clock speed */
8558
	if (IS_VALLEYVIEW(dev))
8559
		dev_priv->display.get_display_clock_speed =
8560
			valleyview_get_display_clock_speed;
8561
	else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8562
		dev_priv->display.get_display_clock_speed =
8563
			i945_get_display_clock_speed;
8564
	else if (IS_I915G(dev))
8565
		dev_priv->display.get_display_clock_speed =
8566
			i915_get_display_clock_speed;
8567
	else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8568
		dev_priv->display.get_display_clock_speed =
8569
			i9xx_misc_get_display_clock_speed;
8570
	else if (IS_I915GM(dev))
8571
		dev_priv->display.get_display_clock_speed =
8572
			i915gm_get_display_clock_speed;
8573
	else if (IS_I865G(dev))
8574
		dev_priv->display.get_display_clock_speed =
8575
			i865_get_display_clock_speed;
8576
	else if (IS_I85X(dev))
8577
		dev_priv->display.get_display_clock_speed =
8578
			i855_get_display_clock_speed;
8579
	else /* 852, 830 */
8580
		dev_priv->display.get_display_clock_speed =
8581
			i830_get_display_clock_speed;
2327 Serge 8582
 
3031 serge 8583
	if (HAS_PCH_SPLIT(dev)) {
8584
		if (IS_GEN5(dev)) {
8585
			dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8586
			dev_priv->display.write_eld = ironlake_write_eld;
8587
		} else if (IS_GEN6(dev)) {
8588
			dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8589
			dev_priv->display.write_eld = ironlake_write_eld;
8590
		} else if (IS_IVYBRIDGE(dev)) {
8591
			/* FIXME: detect B0+ stepping and use auto training */
8592
			dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8593
			dev_priv->display.write_eld = ironlake_write_eld;
3243 Serge 8594
			dev_priv->display.modeset_global_resources =
8595
				ivb_modeset_global_resources;
3031 serge 8596
		} else if (IS_HASWELL(dev)) {
8597
			dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8598
			dev_priv->display.write_eld = haswell_write_eld;
3480 Serge 8599
			dev_priv->display.modeset_global_resources =
8600
				haswell_modeset_global_resources;
8601
		}
3031 serge 8602
	} else if (IS_G4X(dev)) {
8603
		dev_priv->display.write_eld = g4x_write_eld;
8604
	}
2327 Serge 8605
 
3031 serge 8606
	/* Default just returns -ENODEV to indicate unsupported */
8607
//	dev_priv->display.queue_flip = intel_default_queue_flip;
2327 Serge 8608
 
8609
 
8610
 
8611
 
3031 serge 8612
}
8613
 
8614
/*
8615
 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8616
 * resume, or other times.  This quirk makes sure that's the case for
8617
 * affected systems.
8618
 */
8619
static void quirk_pipea_force(struct drm_device *dev)
2330 Serge 8620
{
8621
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 8622
 
3031 serge 8623
	dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8624
	DRM_INFO("applying pipe a force quirk\n");
8625
}
2327 Serge 8626
 
3031 serge 8627
/*
8628
 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8629
 */
8630
static void quirk_ssc_force_disable(struct drm_device *dev)
8631
{
8632
	struct drm_i915_private *dev_priv = dev->dev_private;
8633
	dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8634
	DRM_INFO("applying lvds SSC disable quirk\n");
2330 Serge 8635
}
2327 Serge 8636
 
3031 serge 8637
/*
8638
 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8639
 * brightness value
8640
 */
8641
static void quirk_invert_brightness(struct drm_device *dev)
2330 Serge 8642
{
8643
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 8644
	dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8645
	DRM_INFO("applying inverted panel brightness quirk\n");
8646
}
2327 Serge 8647
 
3031 serge 8648
struct intel_quirk {
8649
	int device;
8650
	int subsystem_vendor;
8651
	int subsystem_device;
8652
	void (*hook)(struct drm_device *dev);
8653
};
2327 Serge 8654
 
3031 serge 8655
/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8656
struct intel_dmi_quirk {
8657
	void (*hook)(struct drm_device *dev);
8658
	const struct dmi_system_id (*dmi_id_list)[];
8659
};
2327 Serge 8660
 
3031 serge 8661
static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8662
{
8663
	DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8664
	return 1;
2330 Serge 8665
}
2327 Serge 8666
 
3031 serge 8667
static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8668
	{
8669
		.dmi_id_list = &(const struct dmi_system_id[]) {
8670
			{
8671
				.callback = intel_dmi_reverse_brightness,
8672
				.ident = "NCR Corporation",
8673
				.matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8674
					    DMI_MATCH(DMI_PRODUCT_NAME, ""),
8675
				},
8676
			},
8677
			{ }  /* terminating entry */
8678
		},
8679
		.hook = quirk_invert_brightness,
8680
	},
8681
};
2327 Serge 8682
 
3031 serge 8683
static struct intel_quirk intel_quirks[] = {
8684
	/* HP Mini needs pipe A force quirk (LP: #322104) */
8685
	{ 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
2327 Serge 8686
 
3031 serge 8687
	/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8688
	{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
2327 Serge 8689
 
3031 serge 8690
	/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8691
	{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
2327 Serge 8692
 
3031 serge 8693
	/* 830/845 need to leave pipe A & dpll A up */
8694
	{ 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8695
	{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
2327 Serge 8696
 
3031 serge 8697
	/* Lenovo U160 cannot use SSC on LVDS */
8698
	{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
2327 Serge 8699
 
3031 serge 8700
	/* Sony Vaio Y cannot use SSC on LVDS */
8701
	{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
2327 Serge 8702
 
3031 serge 8703
	/* Acer Aspire 5734Z must invert backlight brightness */
8704
	{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
3480 Serge 8705
 
8706
	/* Acer/eMachines G725 */
8707
	{ 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
8708
 
8709
	/* Acer/eMachines e725 */
8710
	{ 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
8711
 
8712
	/* Acer/Packard Bell NCL20 */
8713
	{ 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
8714
 
8715
	/* Acer Aspire 4736Z */
8716
	{ 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
3031 serge 8717
};
2327 Serge 8718
 
3031 serge 8719
static void intel_init_quirks(struct drm_device *dev)
2330 Serge 8720
{
3031 serge 8721
	struct pci_dev *d = dev->pdev;
8722
	int i;
2327 Serge 8723
 
3031 serge 8724
	for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8725
		struct intel_quirk *q = &intel_quirks[i];
2327 Serge 8726
 
3031 serge 8727
		if (d->device == q->device &&
8728
		    (d->subsystem_vendor == q->subsystem_vendor ||
8729
		     q->subsystem_vendor == PCI_ANY_ID) &&
8730
		    (d->subsystem_device == q->subsystem_device ||
8731
		     q->subsystem_device == PCI_ANY_ID))
8732
			q->hook(dev);
8733
	}
8734
//	for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8735
//		if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8736
//			intel_dmi_quirks[i].hook(dev);
8737
//	}
2330 Serge 8738
}
2327 Serge 8739
 
3031 serge 8740
/* Disable the VGA plane that we never use */
8741
static void i915_disable_vga(struct drm_device *dev)
2330 Serge 8742
{
8743
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 8744
	u8 sr1;
3480 Serge 8745
	u32 vga_reg = i915_vgacntrl_reg(dev);
2327 Serge 8746
 
3031 serge 8747
//   vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8748
    out8(SR01, VGA_SR_INDEX);
8749
    sr1 = in8(VGA_SR_DATA);
8750
    out8(sr1 | 1<<5, VGA_SR_DATA);
8751
//   vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8752
	udelay(300);
2327 Serge 8753
 
3031 serge 8754
	I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8755
	POSTING_READ(vga_reg);
2330 Serge 8756
}
8757
 
3031 serge 8758
void intel_modeset_init_hw(struct drm_device *dev)
2342 Serge 8759
{
3480 Serge 8760
	intel_init_power_well(dev);
2342 Serge 8761
 
3031 serge 8762
	intel_prepare_ddi(dev);
2342 Serge 8763
 
3031 serge 8764
	intel_init_clock_gating(dev);
8765
 
3482 Serge 8766
    mutex_lock(&dev->struct_mutex);
8767
    intel_enable_gt_powersave(dev);
8768
    mutex_unlock(&dev->struct_mutex);
2342 Serge 8769
}
8770
 
3031 serge 8771
void intel_modeset_init(struct drm_device *dev)
2330 Serge 8772
{
3031 serge 8773
	struct drm_i915_private *dev_priv = dev->dev_private;
8774
	int i, ret;
2330 Serge 8775
 
3031 serge 8776
	drm_mode_config_init(dev);
2330 Serge 8777
 
3031 serge 8778
	dev->mode_config.min_width = 0;
8779
	dev->mode_config.min_height = 0;
2330 Serge 8780
 
3031 serge 8781
	dev->mode_config.preferred_depth = 24;
8782
	dev->mode_config.prefer_shadow = 1;
2330 Serge 8783
 
3031 serge 8784
	dev->mode_config.funcs = &intel_mode_funcs;
2330 Serge 8785
 
3031 serge 8786
	intel_init_quirks(dev);
2330 Serge 8787
 
3031 serge 8788
	intel_init_pm(dev);
2330 Serge 8789
 
3031 serge 8790
	intel_init_display(dev);
2330 Serge 8791
 
3031 serge 8792
	if (IS_GEN2(dev)) {
8793
		dev->mode_config.max_width = 2048;
8794
		dev->mode_config.max_height = 2048;
8795
	} else if (IS_GEN3(dev)) {
8796
		dev->mode_config.max_width = 4096;
8797
		dev->mode_config.max_height = 4096;
8798
	} else {
8799
		dev->mode_config.max_width = 8192;
8800
		dev->mode_config.max_height = 8192;
8801
	}
3480 Serge 8802
	dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
2330 Serge 8803
 
3031 serge 8804
	DRM_DEBUG_KMS("%d display pipe%s available.\n",
8805
		      dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
2330 Serge 8806
 
3031 serge 8807
	for (i = 0; i < dev_priv->num_pipe; i++) {
8808
		intel_crtc_init(dev, i);
8809
		ret = intel_plane_init(dev, i);
8810
		if (ret)
8811
			DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
2330 Serge 8812
	}
8813
 
3243 Serge 8814
	intel_cpu_pll_init(dev);
3031 serge 8815
	intel_pch_pll_init(dev);
2330 Serge 8816
 
3031 serge 8817
	/* Just disable it once at startup */
8818
	i915_disable_vga(dev);
8819
	intel_setup_outputs(dev);
3480 Serge 8820
 
8821
	/* Just in case the BIOS is doing something questionable. */
8822
	intel_disable_fbc(dev);
3031 serge 8823
}
2330 Serge 8824
 
3031 serge 8825
static void
8826
intel_connector_break_all_links(struct intel_connector *connector)
8827
{
8828
	connector->base.dpms = DRM_MODE_DPMS_OFF;
8829
	connector->base.encoder = NULL;
8830
	connector->encoder->connectors_active = false;
8831
	connector->encoder->base.crtc = NULL;
2330 Serge 8832
}
8833
 
3031 serge 8834
static void intel_enable_pipe_a(struct drm_device *dev)
2330 Serge 8835
{
3031 serge 8836
	struct intel_connector *connector;
8837
	struct drm_connector *crt = NULL;
8838
	struct intel_load_detect_pipe load_detect_temp;
2330 Serge 8839
 
3031 serge 8840
	/* We can't just switch on the pipe A, we need to set things up with a
8841
	 * proper mode and output configuration. As a gross hack, enable pipe A
8842
	 * by enabling the load detect pipe once. */
8843
	list_for_each_entry(connector,
8844
			    &dev->mode_config.connector_list,
8845
			    base.head) {
8846
		if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8847
			crt = &connector->base;
8848
			break;
2330 Serge 8849
		}
8850
	}
8851
 
3031 serge 8852
	if (!crt)
8853
		return;
2330 Serge 8854
 
3031 serge 8855
	if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8856
		intel_release_load_detect_pipe(crt, &load_detect_temp);
2327 Serge 8857
 
8858
 
8859
}
8860
 
3031 serge 8861
static bool
8862
intel_check_plane_mapping(struct intel_crtc *crtc)
2327 Serge 8863
{
3031 serge 8864
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8865
	u32 reg, val;
2327 Serge 8866
 
3031 serge 8867
	if (dev_priv->num_pipe == 1)
8868
		return true;
2327 Serge 8869
 
3031 serge 8870
	reg = DSPCNTR(!crtc->plane);
8871
	val = I915_READ(reg);
2327 Serge 8872
 
3031 serge 8873
	if ((val & DISPLAY_PLANE_ENABLE) &&
8874
	    (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8875
		return false;
2327 Serge 8876
 
3031 serge 8877
	return true;
2327 Serge 8878
}
8879
 
3031 serge 8880
static void intel_sanitize_crtc(struct intel_crtc *crtc)
2327 Serge 8881
{
3031 serge 8882
	struct drm_device *dev = crtc->base.dev;
2327 Serge 8883
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 8884
	u32 reg;
2327 Serge 8885
 
3031 serge 8886
	/* Clear any frame start delays used for debugging left by the BIOS */
3243 Serge 8887
	reg = PIPECONF(crtc->cpu_transcoder);
3031 serge 8888
	I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
2327 Serge 8889
 
3031 serge 8890
	/* We need to sanitize the plane -> pipe mapping first because this will
8891
	 * disable the crtc (and hence change the state) if it is wrong. Note
8892
	 * that gen4+ has a fixed plane -> pipe mapping.  */
8893
	if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8894
		struct intel_connector *connector;
8895
		bool plane;
2327 Serge 8896
 
3031 serge 8897
		DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8898
			      crtc->base.base.id);
2327 Serge 8899
 
3031 serge 8900
		/* Pipe has the wrong plane attached and the plane is active.
8901
		 * Temporarily change the plane mapping and disable everything
8902
		 * ...  */
8903
		plane = crtc->plane;
8904
		crtc->plane = !plane;
8905
		dev_priv->display.crtc_disable(&crtc->base);
8906
		crtc->plane = plane;
2342 Serge 8907
 
3031 serge 8908
		/* ... and break all links. */
8909
		list_for_each_entry(connector, &dev->mode_config.connector_list,
8910
				    base.head) {
8911
			if (connector->encoder->base.crtc != &crtc->base)
8912
				continue;
2327 Serge 8913
 
3031 serge 8914
			intel_connector_break_all_links(connector);
8915
		}
2327 Serge 8916
 
3031 serge 8917
		WARN_ON(crtc->active);
8918
		crtc->base.enabled = false;
8919
	}
2327 Serge 8920
 
3031 serge 8921
	if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8922
	    crtc->pipe == PIPE_A && !crtc->active) {
8923
		/* BIOS forgot to enable pipe A, this mostly happens after
8924
		 * resume. Force-enable the pipe to fix this, the update_dpms
8925
		 * call below we restore the pipe to the right state, but leave
8926
		 * the required bits on. */
8927
		intel_enable_pipe_a(dev);
8928
	}
2327 Serge 8929
 
3031 serge 8930
	/* Adjust the state of the output pipe according to whether we
8931
	 * have active connectors/encoders. */
8932
	intel_crtc_update_dpms(&crtc->base);
2327 Serge 8933
 
3031 serge 8934
	if (crtc->active != crtc->base.enabled) {
8935
		struct intel_encoder *encoder;
2327 Serge 8936
 
3031 serge 8937
		/* This can happen either due to bugs in the get_hw_state
8938
		 * functions or because the pipe is force-enabled due to the
8939
		 * pipe A quirk. */
8940
		DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8941
			      crtc->base.base.id,
8942
			      crtc->base.enabled ? "enabled" : "disabled",
8943
			      crtc->active ? "enabled" : "disabled");
2327 Serge 8944
 
3031 serge 8945
		crtc->base.enabled = crtc->active;
2327 Serge 8946
 
3031 serge 8947
		/* Because we only establish the connector -> encoder ->
8948
		 * crtc links if something is active, this means the
8949
		 * crtc is now deactivated. Break the links. connector
8950
		 * -> encoder links are only establish when things are
8951
		 *  actually up, hence no need to break them. */
8952
		WARN_ON(crtc->active);
2327 Serge 8953
 
3031 serge 8954
		for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8955
			WARN_ON(encoder->connectors_active);
8956
			encoder->base.crtc = NULL;
8957
		}
8958
	}
2327 Serge 8959
}
8960
 
3031 serge 8961
static void intel_sanitize_encoder(struct intel_encoder *encoder)
2327 Serge 8962
{
3031 serge 8963
	struct intel_connector *connector;
8964
	struct drm_device *dev = encoder->base.dev;
2327 Serge 8965
 
3031 serge 8966
	/* We need to check both for a crtc link (meaning that the
8967
	 * encoder is active and trying to read from a pipe) and the
8968
	 * pipe itself being active. */
8969
	bool has_active_crtc = encoder->base.crtc &&
8970
		to_intel_crtc(encoder->base.crtc)->active;
2327 Serge 8971
 
3031 serge 8972
	if (encoder->connectors_active && !has_active_crtc) {
8973
		DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8974
			      encoder->base.base.id,
8975
			      drm_get_encoder_name(&encoder->base));
2327 Serge 8976
 
3031 serge 8977
		/* Connector is active, but has no active pipe. This is
8978
		 * fallout from our resume register restoring. Disable
8979
		 * the encoder manually again. */
8980
		if (encoder->base.crtc) {
8981
			DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8982
				      encoder->base.base.id,
8983
				      drm_get_encoder_name(&encoder->base));
8984
			encoder->disable(encoder);
8985
		}
2327 Serge 8986
 
3031 serge 8987
		/* Inconsistent output/port/pipe state happens presumably due to
8988
		 * a bug in one of the get_hw_state functions. Or someplace else
8989
		 * in our code, like the register restore mess on resume. Clamp
8990
		 * things to off as a safer default. */
8991
		list_for_each_entry(connector,
8992
				    &dev->mode_config.connector_list,
8993
				    base.head) {
8994
			if (connector->encoder != encoder)
8995
				continue;
2327 Serge 8996
 
3031 serge 8997
			intel_connector_break_all_links(connector);
8998
		}
8999
	}
9000
	/* Enabled encoders without active connectors will be fixed in
9001
	 * the crtc fixup. */
2327 Serge 9002
}
9003
 
3031 serge 9004
/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9005
 * and i915 state tracking structures. */
3243 Serge 9006
void intel_modeset_setup_hw_state(struct drm_device *dev,
9007
				  bool force_restore)
2332 Serge 9008
{
9009
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 9010
	enum pipe pipe;
9011
	u32 tmp;
9012
	struct intel_crtc *crtc;
9013
	struct intel_encoder *encoder;
9014
	struct intel_connector *connector;
2327 Serge 9015
 
3480 Serge 9016
	if (HAS_DDI(dev)) {
3243 Serge 9017
		tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9018
 
9019
		if (tmp & TRANS_DDI_FUNC_ENABLE) {
9020
			switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9021
			case TRANS_DDI_EDP_INPUT_A_ON:
9022
			case TRANS_DDI_EDP_INPUT_A_ONOFF:
9023
				pipe = PIPE_A;
9024
				break;
9025
			case TRANS_DDI_EDP_INPUT_B_ONOFF:
9026
				pipe = PIPE_B;
9027
				break;
9028
			case TRANS_DDI_EDP_INPUT_C_ONOFF:
9029
				pipe = PIPE_C;
9030
				break;
9031
			}
9032
 
9033
			crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9034
			crtc->cpu_transcoder = TRANSCODER_EDP;
9035
 
9036
			DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9037
				      pipe_name(pipe));
9038
		}
9039
	}
9040
 
3031 serge 9041
	for_each_pipe(pipe) {
9042
		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2327 Serge 9043
 
3243 Serge 9044
		tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
3031 serge 9045
		if (tmp & PIPECONF_ENABLE)
9046
			crtc->active = true;
9047
		else
9048
			crtc->active = false;
2327 Serge 9049
 
3031 serge 9050
		crtc->base.enabled = crtc->active;
2330 Serge 9051
 
3031 serge 9052
		DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9053
			      crtc->base.base.id,
9054
			      crtc->active ? "enabled" : "disabled");
2339 Serge 9055
	}
2332 Serge 9056
 
3480 Serge 9057
	if (HAS_DDI(dev))
3243 Serge 9058
		intel_ddi_setup_hw_pll_state(dev);
9059
 
3031 serge 9060
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9061
			    base.head) {
9062
		pipe = 0;
2332 Serge 9063
 
3031 serge 9064
		if (encoder->get_hw_state(encoder, &pipe)) {
9065
			encoder->base.crtc =
9066
				dev_priv->pipe_to_crtc_mapping[pipe];
9067
		} else {
9068
			encoder->base.crtc = NULL;
9069
		}
2332 Serge 9070
 
3031 serge 9071
		encoder->connectors_active = false;
9072
		DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9073
			      encoder->base.base.id,
9074
			      drm_get_encoder_name(&encoder->base),
9075
			      encoder->base.crtc ? "enabled" : "disabled",
9076
			      pipe);
9077
	}
2332 Serge 9078
 
3031 serge 9079
	list_for_each_entry(connector, &dev->mode_config.connector_list,
9080
			    base.head) {
9081
		if (connector->get_hw_state(connector)) {
9082
			connector->base.dpms = DRM_MODE_DPMS_ON;
9083
			connector->encoder->connectors_active = true;
9084
			connector->base.encoder = &connector->encoder->base;
9085
		} else {
9086
			connector->base.dpms = DRM_MODE_DPMS_OFF;
9087
			connector->base.encoder = NULL;
9088
		}
9089
		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9090
			      connector->base.base.id,
9091
			      drm_get_connector_name(&connector->base),
9092
			      connector->base.encoder ? "enabled" : "disabled");
2332 Serge 9093
	}
9094
 
3031 serge 9095
	/* HW state is read out, now we need to sanitize this mess. */
9096
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9097
			    base.head) {
9098
		intel_sanitize_encoder(encoder);
2332 Serge 9099
	}
9100
 
3031 serge 9101
	for_each_pipe(pipe) {
9102
		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9103
		intel_sanitize_crtc(crtc);
2332 Serge 9104
	}
9105
 
3243 Serge 9106
	if (force_restore) {
9107
		for_each_pipe(pipe) {
3480 Serge 9108
			intel_crtc_restore_mode(dev_priv->pipe_to_crtc_mapping[pipe]);
3243 Serge 9109
		}
9110
 
9111
//       i915_redisable_vga(dev);
9112
	} else {
3031 serge 9113
	intel_modeset_update_staged_output_state(dev);
3243 Serge 9114
	}
2332 Serge 9115
 
3031 serge 9116
	intel_modeset_check_state(dev);
3243 Serge 9117
 
9118
	drm_mode_config_reset(dev);
2332 Serge 9119
}
9120
 
3031 serge 9121
void intel_modeset_gem_init(struct drm_device *dev)
2330 Serge 9122
{
3031 serge 9123
	intel_modeset_init_hw(dev);
2330 Serge 9124
 
3031 serge 9125
//   intel_setup_overlay(dev);
2330 Serge 9126
 
3243 Serge 9127
	intel_modeset_setup_hw_state(dev, false);
2330 Serge 9128
}
9129
 
3031 serge 9130
void intel_modeset_cleanup(struct drm_device *dev)
2327 Serge 9131
{
3031 serge 9132
#if 0
9133
	struct drm_i915_private *dev_priv = dev->dev_private;
9134
	struct drm_crtc *crtc;
9135
	struct intel_crtc *intel_crtc;
2327 Serge 9136
 
3031 serge 9137
//   drm_kms_helper_poll_fini(dev);
9138
	mutex_lock(&dev->struct_mutex);
2327 Serge 9139
 
3031 serge 9140
//   intel_unregister_dsm_handler();
2327 Serge 9141
 
9142
 
3031 serge 9143
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9144
		/* Skip inactive CRTCs */
9145
		if (!crtc->fb)
9146
			continue;
2342 Serge 9147
 
3031 serge 9148
		intel_crtc = to_intel_crtc(crtc);
9149
		intel_increase_pllclock(crtc);
9150
	}
2342 Serge 9151
 
3031 serge 9152
	intel_disable_fbc(dev);
2342 Serge 9153
 
3031 serge 9154
	intel_disable_gt_powersave(dev);
2342 Serge 9155
 
3031 serge 9156
	ironlake_teardown_rc6(dev);
2327 Serge 9157
 
3031 serge 9158
	if (IS_VALLEYVIEW(dev))
9159
		vlv_init_dpio(dev);
2327 Serge 9160
 
3031 serge 9161
	mutex_unlock(&dev->struct_mutex);
2327 Serge 9162
 
3031 serge 9163
	/* Disable the irq before mode object teardown, for the irq might
9164
	 * enqueue unpin/hotplug work. */
9165
//   drm_irq_uninstall(dev);
9166
//   cancel_work_sync(&dev_priv->hotplug_work);
9167
//   cancel_work_sync(&dev_priv->rps.work);
2327 Serge 9168
 
3031 serge 9169
	/* flush any delayed tasks or pending work */
9170
//   flush_scheduled_work();
2327 Serge 9171
 
3031 serge 9172
	drm_mode_config_cleanup(dev);
2327 Serge 9173
#endif
9174
}
9175
 
9176
/*
3031 serge 9177
 * Return which encoder is currently attached for connector.
2327 Serge 9178
 */
3031 serge 9179
struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
2327 Serge 9180
{
3031 serge 9181
	return &intel_attached_encoder(connector)->base;
9182
}
2327 Serge 9183
 
3031 serge 9184
void intel_connector_attach_encoder(struct intel_connector *connector,
9185
				    struct intel_encoder *encoder)
9186
{
9187
	connector->encoder = encoder;
9188
	drm_mode_connector_attach_encoder(&connector->base,
9189
					  &encoder->base);
2327 Serge 9190
}
9191
 
9192
/*
3031 serge 9193
 * set vga decode state - true == enable VGA decode
2327 Serge 9194
 */
3031 serge 9195
int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
2327 Serge 9196
{
2330 Serge 9197
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 9198
	u16 gmch_ctrl;
2327 Serge 9199
 
3031 serge 9200
	pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9201
	if (state)
9202
		gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
2330 Serge 9203
	else
3031 serge 9204
		gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9205
	pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9206
	return 0;
2330 Serge 9207
}
9208
 
3031 serge 9209
#ifdef CONFIG_DEBUG_FS
9210
#include 
2327 Serge 9211
 
3031 serge 9212
struct intel_display_error_state {
9213
	struct intel_cursor_error_state {
9214
		u32 control;
9215
		u32 position;
9216
		u32 base;
9217
		u32 size;
9218
	} cursor[I915_MAX_PIPES];
2327 Serge 9219
 
3031 serge 9220
	struct intel_pipe_error_state {
9221
		u32 conf;
9222
		u32 source;
2327 Serge 9223
 
3031 serge 9224
		u32 htotal;
9225
		u32 hblank;
9226
		u32 hsync;
9227
		u32 vtotal;
9228
		u32 vblank;
9229
		u32 vsync;
9230
	} pipe[I915_MAX_PIPES];
2327 Serge 9231
 
3031 serge 9232
	struct intel_plane_error_state {
9233
		u32 control;
9234
		u32 stride;
9235
		u32 size;
9236
		u32 pos;
9237
		u32 addr;
9238
		u32 surface;
9239
		u32 tile_offset;
9240
	} plane[I915_MAX_PIPES];
9241
};
2327 Serge 9242
 
3031 serge 9243
struct intel_display_error_state *
9244
intel_display_capture_error_state(struct drm_device *dev)
9245
{
9246
	drm_i915_private_t *dev_priv = dev->dev_private;
9247
	struct intel_display_error_state *error;
3243 Serge 9248
	enum transcoder cpu_transcoder;
3031 serge 9249
	int i;
2327 Serge 9250
 
3031 serge 9251
	error = kmalloc(sizeof(*error), GFP_ATOMIC);
9252
	if (error == NULL)
9253
		return NULL;
2327 Serge 9254
 
3031 serge 9255
	for_each_pipe(i) {
3243 Serge 9256
		cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9257
 
3031 serge 9258
		error->cursor[i].control = I915_READ(CURCNTR(i));
9259
		error->cursor[i].position = I915_READ(CURPOS(i));
9260
		error->cursor[i].base = I915_READ(CURBASE(i));
2327 Serge 9261
 
3031 serge 9262
		error->plane[i].control = I915_READ(DSPCNTR(i));
9263
		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9264
		error->plane[i].size = I915_READ(DSPSIZE(i));
9265
		error->plane[i].pos = I915_READ(DSPPOS(i));
9266
		error->plane[i].addr = I915_READ(DSPADDR(i));
9267
		if (INTEL_INFO(dev)->gen >= 4) {
9268
			error->plane[i].surface = I915_READ(DSPSURF(i));
9269
			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9270
		}
2327 Serge 9271
 
3243 Serge 9272
		error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
3031 serge 9273
		error->pipe[i].source = I915_READ(PIPESRC(i));
3243 Serge 9274
		error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9275
		error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9276
		error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9277
		error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9278
		error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9279
		error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
3031 serge 9280
	}
2327 Serge 9281
 
3031 serge 9282
	return error;
2330 Serge 9283
}
2327 Serge 9284
 
3031 serge 9285
void
9286
intel_display_print_error_state(struct seq_file *m,
9287
				struct drm_device *dev,
9288
				struct intel_display_error_state *error)
2332 Serge 9289
{
3031 serge 9290
	drm_i915_private_t *dev_priv = dev->dev_private;
9291
	int i;
2330 Serge 9292
 
3031 serge 9293
	seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9294
	for_each_pipe(i) {
9295
		seq_printf(m, "Pipe [%d]:\n", i);
9296
		seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9297
		seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9298
		seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9299
		seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9300
		seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9301
		seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9302
		seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9303
		seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
2332 Serge 9304
 
3031 serge 9305
		seq_printf(m, "Plane [%d]:\n", i);
9306
		seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9307
		seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9308
		seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9309
		seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9310
		seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9311
		if (INTEL_INFO(dev)->gen >= 4) {
9312
			seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9313
			seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9314
		}
2332 Serge 9315
 
3031 serge 9316
		seq_printf(m, "Cursor [%d]:\n", i);
9317
		seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9318
		seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9319
		seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9320
	}
2327 Serge 9321
}
3031 serge 9322
#endif