Subversion Repositories Kolibri OS

Rev

Rev 6935 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2351 Serge 1
/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2
 */
3
/*
4
 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5
 * All Rights Reserved.
6
 *
7
 * Permission is hereby granted, free of charge, to any person obtaining a
8
 * copy of this software and associated documentation files (the
9
 * "Software"), to deal in the Software without restriction, including
10
 * without limitation the rights to use, copy, modify, merge, publish,
11
 * distribute, sub license, and/or sell copies of the Software, and to
12
 * permit persons to whom the Software is furnished to do so, subject to
13
 * the following conditions:
14
 *
15
 * The above copyright notice and this permission notice (including the
16
 * next paragraph) shall be included in all copies or substantial portions
17
 * of the Software.
18
 *
19
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22
 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23
 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
 *
27
 */
28
 
3746 Serge 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3031 serge 30
 
6103 serge 31
#include 
3031 serge 32
#include 
6088 serge 33
#include 
3031 serge 34
#include 
35
#include 
2351 Serge 36
#include "i915_drv.h"
37
#include "i915_trace.h"
38
#include "intel_drv.h"
39
 
5354 serge 40
/**
41
 * DOC: interrupt handling
42
 *
43
 * These functions provide the basic support for enabling and disabling the
44
 * interrupt handling support. There's a lot more functionality in i915_irq.c
45
 * and related files, but that will be described in separate chapters.
46
 */
4104 Serge 47
 
6084 serge 48
static const u32 hpd_ilk[HPD_NUM_PINS] = {
49
	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
50
};
51
 
52
static const u32 hpd_ivb[HPD_NUM_PINS] = {
53
	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54
};
55
 
56
static const u32 hpd_bdw[HPD_NUM_PINS] = {
57
	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58
};
59
 
60
static const u32 hpd_ibx[HPD_NUM_PINS] = {
3746 Serge 61
	[HPD_CRT] = SDE_CRT_HOTPLUG,
62
	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63
	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64
	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65
	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
66
};
3031 serge 67
 
6084 serge 68
static const u32 hpd_cpt[HPD_NUM_PINS] = {
3746 Serge 69
	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70
	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71
	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72
	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73
	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74
};
75
 
6084 serge 76
static const u32 hpd_spt[HPD_NUM_PINS] = {
77
	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78
	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79
	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80
	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81
	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82
};
83
 
84
static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
3746 Serge 85
	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
86
	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87
	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88
	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89
	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90
	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91
};
92
 
6084 serge 93
static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
3746 Serge 94
	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95
	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96
	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97
	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98
	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99
	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100
};
101
 
6084 serge 102
static const u32 hpd_status_i915[HPD_NUM_PINS] = {
3746 Serge 103
	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104
	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105
	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106
	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107
	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108
	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109
};
110
 
6084 serge 111
/* BXT hpd list */
112
static const u32 hpd_bxt[HPD_NUM_PINS] = {
113
	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114
	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115
	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116
};
117
 
5060 serge 118
/* IIR can theoretically queue up two events. Be paranoid. */
119
#define GEN8_IRQ_RESET_NDX(type, which) do { \
120
	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121
	POSTING_READ(GEN8_##type##_IMR(which)); \
122
	I915_WRITE(GEN8_##type##_IER(which), 0); \
123
	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124
	POSTING_READ(GEN8_##type##_IIR(which)); \
125
	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126
	POSTING_READ(GEN8_##type##_IIR(which)); \
127
} while (0)
3746 Serge 128
 
5060 serge 129
#define GEN5_IRQ_RESET(type) do { \
130
	I915_WRITE(type##IMR, 0xffffffff); \
131
	POSTING_READ(type##IMR); \
132
	I915_WRITE(type##IER, 0); \
133
	I915_WRITE(type##IIR, 0xffffffff); \
134
	POSTING_READ(type##IIR); \
135
	I915_WRITE(type##IIR, 0xffffffff); \
136
	POSTING_READ(type##IIR); \
137
} while (0)
138
 
139
/*
140
 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141
 */
6937 serge 142
static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143
				    i915_reg_t reg)
6084 serge 144
{
145
	u32 val = I915_READ(reg);
5060 serge 146
 
6084 serge 147
	if (val == 0)
148
		return;
149
 
150
	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
6937 serge 151
	     i915_mmio_reg_offset(reg), val);
6084 serge 152
	I915_WRITE(reg, 0xffffffff);
153
	POSTING_READ(reg);
154
	I915_WRITE(reg, 0xffffffff);
155
	POSTING_READ(reg);
156
}
157
 
5060 serge 158
#define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
6084 serge 159
	gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
5354 serge 160
	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
5060 serge 161
	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
5354 serge 162
	POSTING_READ(GEN8_##type##_IMR(which)); \
5060 serge 163
} while (0)
164
 
165
#define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
6084 serge 166
	gen5_assert_iir_is_zero(dev_priv, type##IIR); \
5354 serge 167
	I915_WRITE(type##IER, (ier_val)); \
5060 serge 168
	I915_WRITE(type##IMR, (imr_val)); \
5354 serge 169
	POSTING_READ(type##IMR); \
5060 serge 170
} while (0)
171
 
5354 serge 172
static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
3031 serge 173
 
2351 Serge 174
/* For display hotplug interrupt */
6084 serge 175
static inline void
176
i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177
				     uint32_t mask,
178
				     uint32_t bits)
2351 Serge 179
{
6084 serge 180
	uint32_t val;
181
 
4104 Serge 182
	assert_spin_locked(&dev_priv->irq_lock);
6084 serge 183
	WARN_ON(bits & ~mask);
4104 Serge 184
 
6084 serge 185
	val = I915_READ(PORT_HOTPLUG_EN);
186
	val &= ~mask;
187
	val |= bits;
188
	I915_WRITE(PORT_HOTPLUG_EN, val);
189
}
4104 Serge 190
 
6084 serge 191
/**
192
 * i915_hotplug_interrupt_update - update hotplug interrupt enable
193
 * @dev_priv: driver private
194
 * @mask: bits to update
195
 * @bits: bits to enable
196
 * NOTE: the HPD enable bits are modified both inside and outside
197
 * of an interrupt context. To avoid that read-modify-write cycles
198
 * interfer, these bits are protected by a spinlock. Since this
199
 * function is usually not called from a context where the lock is
200
 * held already, this function acquires the lock itself. A non-locking
201
 * version is also available.
202
 */
203
void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204
				   uint32_t mask,
205
				   uint32_t bits)
206
{
207
	spin_lock_irq(&dev_priv->irq_lock);
208
	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209
	spin_unlock_irq(&dev_priv->irq_lock);
2351 Serge 210
}
211
 
6084 serge 212
/**
213
 * ilk_update_display_irq - update DEIMR
214
 * @dev_priv: driver private
215
 * @interrupt_mask: mask of interrupt bits to update
216
 * @enabled_irq_mask: mask of interrupt bits to enable
217
 */
6937 serge 218
void ilk_update_display_irq(struct drm_i915_private *dev_priv,
6084 serge 219
				   uint32_t interrupt_mask,
220
				   uint32_t enabled_irq_mask)
2351 Serge 221
{
6084 serge 222
	uint32_t new_val;
223
 
4104 Serge 224
	assert_spin_locked(&dev_priv->irq_lock);
225
 
6084 serge 226
	WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
 
5354 serge 228
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
4104 Serge 229
		return;
230
 
6084 serge 231
	new_val = dev_priv->irq_mask;
232
	new_val &= ~interrupt_mask;
233
	new_val |= (~enabled_irq_mask & interrupt_mask);
234
 
235
	if (new_val != dev_priv->irq_mask) {
236
		dev_priv->irq_mask = new_val;
237
		I915_WRITE(DEIMR, dev_priv->irq_mask);
238
		POSTING_READ(DEIMR);
239
	}
2351 Serge 240
}
3031 serge 241
 
4104 Serge 242
/**
243
 * ilk_update_gt_irq - update GTIMR
244
 * @dev_priv: driver private
245
 * @interrupt_mask: mask of interrupt bits to update
246
 * @enabled_irq_mask: mask of interrupt bits to enable
247
 */
248
static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249
			      uint32_t interrupt_mask,
250
			      uint32_t enabled_irq_mask)
251
{
252
	assert_spin_locked(&dev_priv->irq_lock);
253
 
6084 serge 254
	WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
 
5060 serge 256
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
4104 Serge 257
		return;
258
 
259
	dev_priv->gt_irq_mask &= ~interrupt_mask;
260
	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261
	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262
	POSTING_READ(GTIMR);
263
}
264
 
5060 serge 265
void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
4104 Serge 266
{
267
	ilk_update_gt_irq(dev_priv, mask, mask);
268
}
269
 
5060 serge 270
void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
4104 Serge 271
{
272
	ilk_update_gt_irq(dev_priv, mask, 0);
273
}
274
 
6937 serge 275
static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
4104 Serge 276
{
5354 serge 277
	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
4104 Serge 278
}
279
 
6937 serge 280
static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
4104 Serge 281
{
5354 serge 282
	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
4104 Serge 283
}
284
 
6937 serge 285
static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
4104 Serge 286
{
5354 serge 287
	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
4104 Serge 288
}
289
 
5060 serge 290
/**
5354 serge 291
  * snb_update_pm_irq - update GEN6_PMIMR
5060 serge 292
  * @dev_priv: driver private
293
  * @interrupt_mask: mask of interrupt bits to update
294
  * @enabled_irq_mask: mask of interrupt bits to enable
295
  */
5354 serge 296
static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
5060 serge 297
			      uint32_t interrupt_mask,
298
			      uint32_t enabled_irq_mask)
299
{
300
	uint32_t new_val;
301
 
6084 serge 302
	WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
 
5060 serge 304
	assert_spin_locked(&dev_priv->irq_lock);
305
 
306
	new_val = dev_priv->pm_irq_mask;
307
	new_val &= ~interrupt_mask;
308
	new_val |= (~enabled_irq_mask & interrupt_mask);
309
 
310
	if (new_val != dev_priv->pm_irq_mask) {
311
		dev_priv->pm_irq_mask = new_val;
5354 serge 312
		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313
		POSTING_READ(gen6_pm_imr(dev_priv));
5060 serge 314
	}
315
}
316
 
5354 serge 317
void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
5060 serge 318
{
5354 serge 319
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320
		return;
321
 
322
	snb_update_pm_irq(dev_priv, mask, mask);
5060 serge 323
}
324
 
5354 serge 325
static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326
				  uint32_t mask)
5060 serge 327
{
5354 serge 328
	snb_update_pm_irq(dev_priv, mask, 0);
5060 serge 329
}
330
 
5354 serge 331
void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
4104 Serge 332
{
5354 serge 333
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334
		return;
4104 Serge 335
 
5354 serge 336
	__gen6_disable_pm_irq(dev_priv, mask);
4104 Serge 337
}
338
 
5354 serge 339
void gen6_reset_rps_interrupts(struct drm_device *dev)
5060 serge 340
{
341
	struct drm_i915_private *dev_priv = dev->dev_private;
6937 serge 342
	i915_reg_t reg = gen6_pm_iir(dev_priv);
5060 serge 343
 
5354 serge 344
	spin_lock_irq(&dev_priv->irq_lock);
345
	I915_WRITE(reg, dev_priv->pm_rps_events);
346
	I915_WRITE(reg, dev_priv->pm_rps_events);
6084 serge 347
	POSTING_READ(reg);
348
	dev_priv->rps.pm_iir = 0;
5354 serge 349
	spin_unlock_irq(&dev_priv->irq_lock);
5060 serge 350
}
351
 
5354 serge 352
void gen6_enable_rps_interrupts(struct drm_device *dev)
5060 serge 353
{
354
	struct drm_i915_private *dev_priv = dev->dev_private;
355
 
5354 serge 356
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 357
 
5354 serge 358
	WARN_ON(dev_priv->rps.pm_iir);
359
	WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
360
	dev_priv->rps.interrupts_enabled = true;
361
	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
362
				dev_priv->pm_rps_events);
363
	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
364
 
365
	spin_unlock_irq(&dev_priv->irq_lock);
5060 serge 366
}
367
 
6084 serge 368
u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
369
{
370
	/*
371
	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
372
	 * if GEN6_PM_UP_EI_EXPIRED is masked.
373
	 *
374
	 * TODO: verify if this can be reproduced on VLV,CHV.
375
	 */
376
	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
377
		mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
378
 
379
	if (INTEL_INFO(dev_priv)->gen >= 8)
380
		mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
381
 
382
	return mask;
383
}
384
 
5354 serge 385
void gen6_disable_rps_interrupts(struct drm_device *dev)
4104 Serge 386
{
387
	struct drm_i915_private *dev_priv = dev->dev_private;
388
 
5354 serge 389
	spin_lock_irq(&dev_priv->irq_lock);
390
	dev_priv->rps.interrupts_enabled = false;
391
	spin_unlock_irq(&dev_priv->irq_lock);
4104 Serge 392
 
393
 
5354 serge 394
	spin_lock_irq(&dev_priv->irq_lock);
4104 Serge 395
 
6084 serge 396
	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4104 Serge 397
 
5354 serge 398
	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
399
	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
400
				~dev_priv->pm_rps_events);
4104 Serge 401
 
6084 serge 402
	spin_unlock_irq(&dev_priv->irq_lock);
4560 Serge 403
 
404
}
405
 
4104 Serge 406
/**
6084 serge 407
  * bdw_update_port_irq - update DE port interrupt
408
  * @dev_priv: driver private
409
  * @interrupt_mask: mask of interrupt bits to update
410
  * @enabled_irq_mask: mask of interrupt bits to enable
411
  */
412
static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
413
				uint32_t interrupt_mask,
414
				uint32_t enabled_irq_mask)
415
{
416
	uint32_t new_val;
417
	uint32_t old_val;
418
 
419
	assert_spin_locked(&dev_priv->irq_lock);
420
 
421
	WARN_ON(enabled_irq_mask & ~interrupt_mask);
422
 
423
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
424
		return;
425
 
426
	old_val = I915_READ(GEN8_DE_PORT_IMR);
427
 
428
	new_val = old_val;
429
	new_val &= ~interrupt_mask;
430
	new_val |= (~enabled_irq_mask & interrupt_mask);
431
 
432
	if (new_val != old_val) {
433
		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
434
		POSTING_READ(GEN8_DE_PORT_IMR);
435
	}
436
}
437
 
438
/**
6937 serge 439
 * bdw_update_pipe_irq - update DE pipe interrupt
440
 * @dev_priv: driver private
441
 * @pipe: pipe whose interrupt to update
442
 * @interrupt_mask: mask of interrupt bits to update
443
 * @enabled_irq_mask: mask of interrupt bits to enable
444
 */
445
void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
446
			 enum pipe pipe,
447
			 uint32_t interrupt_mask,
448
			 uint32_t enabled_irq_mask)
449
{
450
	uint32_t new_val;
451
 
452
	assert_spin_locked(&dev_priv->irq_lock);
453
 
454
	WARN_ON(enabled_irq_mask & ~interrupt_mask);
455
 
456
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
457
		return;
458
 
459
	new_val = dev_priv->de_irq_mask[pipe];
460
	new_val &= ~interrupt_mask;
461
	new_val |= (~enabled_irq_mask & interrupt_mask);
462
 
463
	if (new_val != dev_priv->de_irq_mask[pipe]) {
464
		dev_priv->de_irq_mask[pipe] = new_val;
465
		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
466
		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
467
	}
468
}
469
 
470
/**
4104 Serge 471
 * ibx_display_interrupt_update - update SDEIMR
472
 * @dev_priv: driver private
473
 * @interrupt_mask: mask of interrupt bits to update
474
 * @enabled_irq_mask: mask of interrupt bits to enable
475
 */
5354 serge 476
void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
6084 serge 477
				  uint32_t interrupt_mask,
478
				  uint32_t enabled_irq_mask)
4104 Serge 479
{
480
	uint32_t sdeimr = I915_READ(SDEIMR);
481
	sdeimr &= ~interrupt_mask;
482
	sdeimr |= (~enabled_irq_mask & interrupt_mask);
483
 
6084 serge 484
	WARN_ON(enabled_irq_mask & ~interrupt_mask);
485
 
4104 Serge 486
	assert_spin_locked(&dev_priv->irq_lock);
487
 
5060 serge 488
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
4104 Serge 489
		return;
490
 
491
	I915_WRITE(SDEIMR, sdeimr);
492
	POSTING_READ(SDEIMR);
493
}
494
 
5060 serge 495
static void
496
__i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
497
		       u32 enable_mask, u32 status_mask)
3031 serge 498
{
6937 serge 499
	i915_reg_t reg = PIPESTAT(pipe);
5060 serge 500
	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
3031 serge 501
 
4104 Serge 502
	assert_spin_locked(&dev_priv->irq_lock);
5354 serge 503
	WARN_ON(!intel_irqs_enabled(dev_priv));
4104 Serge 504
 
5060 serge 505
	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
506
		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
507
		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
508
		      pipe_name(pipe), enable_mask, status_mask))
3746 Serge 509
		return;
510
 
5060 serge 511
	if ((pipestat & enable_mask) == enable_mask)
512
		return;
513
 
514
	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
515
 
6084 serge 516
	/* Enable the interrupt, clear any pending status */
5060 serge 517
	pipestat |= enable_mask | status_mask;
3746 Serge 518
	I915_WRITE(reg, pipestat);
6084 serge 519
	POSTING_READ(reg);
3031 serge 520
}
521
 
5060 serge 522
static void
523
__i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
524
		        u32 enable_mask, u32 status_mask)
3031 serge 525
{
6937 serge 526
	i915_reg_t reg = PIPESTAT(pipe);
5060 serge 527
	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
3031 serge 528
 
4104 Serge 529
	assert_spin_locked(&dev_priv->irq_lock);
5354 serge 530
	WARN_ON(!intel_irqs_enabled(dev_priv));
4104 Serge 531
 
5060 serge 532
	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
533
		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
534
		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
535
		      pipe_name(pipe), enable_mask, status_mask))
3746 Serge 536
		return;
537
 
5060 serge 538
	if ((pipestat & enable_mask) == 0)
539
		return;
540
 
541
	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
542
 
543
	pipestat &= ~enable_mask;
3746 Serge 544
	I915_WRITE(reg, pipestat);
6084 serge 545
	POSTING_READ(reg);
3031 serge 546
}
547
 
5060 serge 548
static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
549
{
550
	u32 enable_mask = status_mask << 16;
551
 
552
	/*
553
	 * On pipe A we don't support the PSR interrupt yet,
554
	 * on pipe B and C the same bit MBZ.
555
	 */
556
	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
557
		return 0;
558
	/*
559
	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
560
	 * A the same bit is for perf counters which we don't use either.
561
	 */
562
	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
563
		return 0;
564
 
565
	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
566
			 SPRITE0_FLIP_DONE_INT_EN_VLV |
567
			 SPRITE1_FLIP_DONE_INT_EN_VLV);
568
	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
569
		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
570
	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
571
		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
572
 
573
	return enable_mask;
574
}
575
 
576
void
577
i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
578
		     u32 status_mask)
579
{
580
	u32 enable_mask;
581
 
6937 serge 582
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5060 serge 583
		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
584
							   status_mask);
585
	else
586
		enable_mask = status_mask << 16;
587
	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
588
}
589
 
590
void
591
i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
592
		      u32 status_mask)
593
{
594
	u32 enable_mask;
595
 
6937 serge 596
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5060 serge 597
		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
598
							   status_mask);
599
	else
600
		enable_mask = status_mask << 16;
601
	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
602
}
603
 
3031 serge 604
/**
4104 Serge 605
 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
6084 serge 606
 * @dev: drm device
3031 serge 607
 */
4104 Serge 608
static void i915_enable_asle_pipestat(struct drm_device *dev)
3031 serge 609
{
5060 serge 610
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 611
 
4104 Serge 612
	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
3031 serge 613
		return;
614
 
5354 serge 615
	spin_lock_irq(&dev_priv->irq_lock);
3031 serge 616
 
5060 serge 617
	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
6084 serge 618
	if (INTEL_INFO(dev)->gen >= 4)
4560 Serge 619
		i915_enable_pipestat(dev_priv, PIPE_A,
5060 serge 620
				     PIPE_LEGACY_BLC_EVENT_STATUS);
3031 serge 621
 
5354 serge 622
	spin_unlock_irq(&dev_priv->irq_lock);
3031 serge 623
}
624
 
5060 serge 625
/*
626
 * This timing diagram depicts the video signal in and
627
 * around the vertical blanking period.
628
 *
629
 * Assumptions about the fictitious mode used in this example:
630
 *  vblank_start >= 3
631
 *  vsync_start = vblank_start + 1
632
 *  vsync_end = vblank_start + 2
633
 *  vtotal = vblank_start + 3
634
 *
635
 *           start of vblank:
636
 *           latch double buffered registers
637
 *           increment frame counter (ctg+)
638
 *           generate start of vblank interrupt (gen4+)
639
 *           |
640
 *           |          frame start:
641
 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
642
 *           |          may be shifted forward 1-3 extra lines via PIPECONF
643
 *           |          |
644
 *           |          |  start of vsync:
645
 *           |          |  generate vsync interrupt
646
 *           |          |  |
647
 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
648
 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
649
 * ----va---> <-----------------vb--------------------> <--------va-------------
650
 *       |          |       <----vs----->                     |
651
 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
652
 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
653
 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
654
 *       |          |                                         |
655
 *       last visible pixel                                   first visible pixel
656
 *                  |                                         increment frame counter (gen3/4)
657
 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
658
 *
659
 * x  = horizontal active
660
 * _  = horizontal blanking
661
 * hs = horizontal sync
662
 * va = vertical active
663
 * vb = vertical blanking
664
 * vs = vertical sync
665
 * vbs = vblank_start (number)
666
 *
667
 * Summary:
668
 * - most events happen at the start of horizontal sync
669
 * - frame start happens at the start of horizontal blank, 1-4 lines
670
 *   (depending on PIPECONF settings) after the start of vblank
671
 * - gen3/4 pixel and frame counter are synchronized with the start
672
 *   of horizontal active on the first line of vertical active
673
 */
674
 
6084 serge 675
static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
4560 Serge 676
{
677
	/* Gen2 doesn't have a hardware frame counter */
678
	return 0;
679
}
680
 
3031 serge 681
/* Called from drm generic code, passed a 'crtc', which
682
 * we use as a pipe index
683
 */
6084 serge 684
static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
3031 serge 685
{
5060 serge 686
	struct drm_i915_private *dev_priv = dev->dev_private;
6937 serge 687
	i915_reg_t high_frame, low_frame;
5060 serge 688
	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
6084 serge 689
	struct intel_crtc *intel_crtc =
690
		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
691
	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
3031 serge 692
 
6084 serge 693
	htotal = mode->crtc_htotal;
694
	hsync_start = mode->crtc_hsync_start;
695
	vbl_start = mode->crtc_vblank_start;
696
	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
697
		vbl_start = DIV_ROUND_UP(vbl_start, 2);
3031 serge 698
 
5060 serge 699
	/* Convert to pixel count */
6084 serge 700
	vbl_start *= htotal;
4560 Serge 701
 
5060 serge 702
	/* Start of vblank event occurs at start of hsync */
703
	vbl_start -= htotal - hsync_start;
704
 
3031 serge 705
	high_frame = PIPEFRAME(pipe);
706
	low_frame = PIPEFRAMEPIXEL(pipe);
707
 
708
	/*
709
	 * High & low register fields aren't synchronized, so make sure
710
	 * we get a low value that's stable across two reads of the high
711
	 * register.
712
	 */
713
	do {
714
		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
4560 Serge 715
		low   = I915_READ(low_frame);
3031 serge 716
		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
717
	} while (high1 != high2);
718
 
719
	high1 >>= PIPE_FRAME_HIGH_SHIFT;
4560 Serge 720
	pixel = low & PIPE_PIXEL_MASK;
3031 serge 721
	low >>= PIPE_FRAME_LOW_SHIFT;
4560 Serge 722
 
723
	/*
724
	 * The frame counter increments at beginning of active.
725
	 * Cook up a vblank counter by also checking the pixel
726
	 * counter against vblank start.
727
	 */
728
	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
3031 serge 729
}
730
 
6084 serge 731
static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
3031 serge 732
{
5060 serge 733
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 734
 
6084 serge 735
	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
3031 serge 736
}
737
 
6937 serge 738
/* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
5060 serge 739
static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
4560 Serge 740
{
5060 serge 741
	struct drm_device *dev = crtc->base.dev;
4560 Serge 742
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 743
	const struct drm_display_mode *mode = &crtc->base.hwmode;
5060 serge 744
	enum pipe pipe = crtc->pipe;
745
	int position, vtotal;
4560 Serge 746
 
5060 serge 747
	vtotal = mode->crtc_vtotal;
748
	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
749
		vtotal /= 2;
4560 Serge 750
 
5060 serge 751
	if (IS_GEN2(dev))
6937 serge 752
		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
5060 serge 753
	else
6937 serge 754
		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
5060 serge 755
 
756
	/*
6084 serge 757
	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
758
	 * read it just before the start of vblank.  So try it again
759
	 * so we don't accidentally end up spanning a vblank frame
760
	 * increment, causing the pipe_update_end() code to squak at us.
761
	 *
762
	 * The nature of this problem means we can't simply check the ISR
763
	 * bit and return the vblank start value; nor can we use the scanline
764
	 * debug register in the transcoder as it appears to have the same
765
	 * problem.  We may need to extend this to include other platforms,
766
	 * but so far testing only shows the problem on HSW.
767
	 */
768
	if (HAS_DDI(dev) && !position) {
769
		int i, temp;
770
 
771
		for (i = 0; i < 100; i++) {
772
			udelay(1);
773
			temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
774
				DSL_LINEMASK_GEN3;
775
			if (temp != position) {
776
				position = temp;
777
				break;
778
			}
779
		}
780
	}
781
 
782
	/*
5060 serge 783
	 * See update_scanline_offset() for the details on the
784
	 * scanline_offset adjustment.
785
	 */
786
	return (position + crtc->scanline_offset) % vtotal;
4560 Serge 787
}
788
 
6084 serge 789
static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
4560 Serge 790
				    unsigned int flags, int *vpos, int *hpos,
6084 serge 791
				    ktime_t *stime, ktime_t *etime,
792
				    const struct drm_display_mode *mode)
3746 Serge 793
{
4560 Serge 794
	struct drm_i915_private *dev_priv = dev->dev_private;
795
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
796
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
797
	int position;
5060 serge 798
	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
3746 Serge 799
	bool in_vbl = true;
800
	int ret = 0;
4560 Serge 801
	unsigned long irqflags;
3746 Serge 802
 
6084 serge 803
	if (WARN_ON(!mode->crtc_clock)) {
3746 Serge 804
		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
805
				 "pipe %c\n", pipe_name(pipe));
806
		return 0;
807
	}
808
 
4560 Serge 809
	htotal = mode->crtc_htotal;
5060 serge 810
	hsync_start = mode->crtc_hsync_start;
4560 Serge 811
	vtotal = mode->crtc_vtotal;
812
	vbl_start = mode->crtc_vblank_start;
813
	vbl_end = mode->crtc_vblank_end;
3746 Serge 814
 
4560 Serge 815
	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
816
		vbl_start = DIV_ROUND_UP(vbl_start, 2);
817
		vbl_end /= 2;
818
		vtotal /= 2;
819
	}
820
 
821
	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
822
 
823
	/*
824
	 * Lock uncore.lock, as we will do multiple timing critical raw
825
	 * register reads, potentially with preemption disabled, so the
826
	 * following code must not block on uncore.lock.
827
	 */
828
	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
829
 
830
	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
831
 
6084 serge 832
	/* Get optional system timestamp before query. */
833
	if (stime)
834
		*stime = ktime_get();
4560 Serge 835
 
836
	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3746 Serge 837
		/* No obvious pixelcount register. Only query vertical
838
		 * scanout position from Display scan line register.
839
		 */
5060 serge 840
		position = __intel_get_crtc_scanline(intel_crtc);
3746 Serge 841
	} else {
842
		/* Have access to pixelcount since start of frame.
843
		 * We can split this into vertical and horizontal
844
		 * scanout position.
845
		 */
6937 serge 846
		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
3746 Serge 847
 
4560 Serge 848
		/* convert to pixel counts */
849
		vbl_start *= htotal;
850
		vbl_end *= htotal;
851
		vtotal *= htotal;
5060 serge 852
 
853
		/*
854
		 * In interlaced modes, the pixel counter counts all pixels,
855
		 * so one field will have htotal more pixels. In order to avoid
856
		 * the reported position from jumping backwards when the pixel
857
		 * counter is beyond the length of the shorter field, just
858
		 * clamp the position the length of the shorter field. This
859
		 * matches how the scanline counter based position works since
860
		 * the scanline counter doesn't count the two half lines.
861
		 */
862
		if (position >= vtotal)
863
			position = vtotal - 1;
864
 
865
		/*
866
		 * Start of vblank interrupt is triggered at start of hsync,
867
		 * just prior to the first active line of vblank. However we
868
		 * consider lines to start at the leading edge of horizontal
869
		 * active. So, should we get here before we've crossed into
870
		 * the horizontal active of the first line in vblank, we would
871
		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
872
		 * always add htotal-hsync_start to the current pixel position.
873
		 */
874
		position = (position + htotal - hsync_start) % vtotal;
3746 Serge 875
	}
876
 
6084 serge 877
	/* Get optional system timestamp after query. */
878
	if (etime)
879
		*etime = ktime_get();
3746 Serge 880
 
4560 Serge 881
	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
3746 Serge 882
 
4560 Serge 883
	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3746 Serge 884
 
4560 Serge 885
	in_vbl = position >= vbl_start && position < vbl_end;
3746 Serge 886
 
4560 Serge 887
	/*
888
	 * While in vblank, position will be negative
889
	 * counting up towards 0 at vbl_end. And outside
890
	 * vblank, position will be positive counting
891
	 * up since vbl_end.
892
	 */
893
	if (position >= vbl_start)
894
		position -= vbl_end;
895
	else
896
		position += vtotal - vbl_end;
3746 Serge 897
 
4560 Serge 898
	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
899
		*vpos = position;
900
		*hpos = 0;
901
	} else {
902
		*vpos = position / htotal;
903
		*hpos = position - (*vpos * htotal);
904
	}
905
 
3746 Serge 906
	/* In vblank? */
907
	if (in_vbl)
5354 serge 908
		ret |= DRM_SCANOUTPOS_IN_VBLANK;
3746 Serge 909
 
910
	return ret;
911
}
912
 
5060 serge 913
int intel_get_crtc_scanline(struct intel_crtc *crtc)
914
{
915
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
916
	unsigned long irqflags;
917
	int position;
918
 
919
	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
920
	position = __intel_get_crtc_scanline(crtc);
921
	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
922
 
923
	return position;
924
}
925
 
6084 serge 926
static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
3746 Serge 927
			      int *max_error,
928
			      struct timeval *vblank_time,
929
			      unsigned flags)
930
{
931
	struct drm_crtc *crtc;
932
 
6084 serge 933
	if (pipe >= INTEL_INFO(dev)->num_pipes) {
934
		DRM_ERROR("Invalid crtc %u\n", pipe);
3746 Serge 935
		return -EINVAL;
936
	}
937
 
938
	/* Get drm_crtc to timestamp: */
939
	crtc = intel_get_crtc_for_pipe(dev, pipe);
940
	if (crtc == NULL) {
6084 serge 941
		DRM_ERROR("Invalid crtc %u\n", pipe);
3746 Serge 942
		return -EINVAL;
943
	}
944
 
6084 serge 945
	if (!crtc->hwmode.crtc_clock) {
946
		DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
3746 Serge 947
		return -EBUSY;
948
	}
949
 
950
	/* Helper routine in DRM core does all the work: */
951
	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
952
						     vblank_time, flags,
6084 serge 953
						     &crtc->hwmode);
3746 Serge 954
}
955
 
4104 Serge 956
static void ironlake_rps_change_irq_handler(struct drm_device *dev)
3746 Serge 957
{
5060 serge 958
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 959
	u32 busy_up, busy_down, max_avg, min_avg;
960
	u8 new_delay;
961
 
4104 Serge 962
	spin_lock(&mchdev_lock);
3746 Serge 963
 
964
	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
965
 
966
	new_delay = dev_priv->ips.cur_delay;
967
 
968
	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
969
	busy_up = I915_READ(RCPREVBSYTUPAVG);
970
	busy_down = I915_READ(RCPREVBSYTDNAVG);
971
	max_avg = I915_READ(RCBMAXAVG);
972
	min_avg = I915_READ(RCBMINAVG);
973
 
974
	/* Handle RCS change request from hw */
975
	if (busy_up > max_avg) {
976
		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
977
			new_delay = dev_priv->ips.cur_delay - 1;
978
		if (new_delay < dev_priv->ips.max_delay)
979
			new_delay = dev_priv->ips.max_delay;
980
	} else if (busy_down < min_avg) {
981
		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
982
			new_delay = dev_priv->ips.cur_delay + 1;
983
		if (new_delay > dev_priv->ips.min_delay)
984
			new_delay = dev_priv->ips.min_delay;
985
	}
986
 
987
	if (ironlake_set_drps(dev, new_delay))
988
		dev_priv->ips.cur_delay = new_delay;
989
 
4104 Serge 990
	spin_unlock(&mchdev_lock);
3746 Serge 991
 
992
	return;
993
}
994
 
6084 serge 995
static void notify_ring(struct intel_engine_cs *ring)
2352 Serge 996
{
5060 serge 997
	if (!intel_ring_initialized(ring))
2352 Serge 998
		return;
2351 Serge 999
 
6084 serge 1000
	trace_i915_gem_request_notify(ring);
2351 Serge 1001
 
2352 Serge 1002
	wake_up_all(&ring->irq_queue);
1003
}
1004
 
6084 serge 1005
static void vlv_c0_read(struct drm_i915_private *dev_priv,
1006
			struct intel_rps_ei *ei)
5060 serge 1007
{
6084 serge 1008
	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1009
	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1010
	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1011
}
5060 serge 1012
 
6937 serge 1013
static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1014
			 const struct intel_rps_ei *old,
1015
			 const struct intel_rps_ei *now,
1016
			 int threshold)
1017
{
1018
	u64 time, c0;
1019
	unsigned int mul = 100;
1020
 
1021
	if (old->cz_clock == 0)
1022
		return false;
1023
 
1024
	if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1025
		mul <<= 8;
1026
 
1027
	time = now->cz_clock - old->cz_clock;
1028
	time *= threshold * dev_priv->czclk_freq;
1029
 
1030
	/* Workload can be split between render + media, e.g. SwapBuffers
1031
	 * being blitted in X after being rendered in mesa. To account for
1032
	 * this we need to combine both engines into our activity counter.
1033
	 */
1034
	c0 = now->render_c0 - old->render_c0;
1035
	c0 += now->media_c0 - old->media_c0;
1036
	c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1037
 
1038
	return c0 >= time;
1039
}
1040
 
6084 serge 1041
void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
5060 serge 1042
{
6937 serge 1043
	vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1044
	dev_priv->rps.up_ei = dev_priv->rps.down_ei;
6084 serge 1045
}
5060 serge 1046
 
6084 serge 1047
static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1048
{
1049
	struct intel_rps_ei now;
1050
	u32 events = 0;
5060 serge 1051
 
6937 serge 1052
	if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
6084 serge 1053
		return 0;
5060 serge 1054
 
6084 serge 1055
	vlv_c0_read(dev_priv, &now);
1056
	if (now.cz_clock == 0)
1057
		return 0;
5060 serge 1058
 
6937 serge 1059
	if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1060
		if (!vlv_c0_above(dev_priv,
1061
				  &dev_priv->rps.down_ei, &now,
1062
				  dev_priv->rps.down_threshold))
1063
			events |= GEN6_PM_RP_DOWN_THRESHOLD;
1064
		dev_priv->rps.down_ei = now;
1065
	}
5060 serge 1066
 
6937 serge 1067
	if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1068
		if (vlv_c0_above(dev_priv,
1069
				 &dev_priv->rps.up_ei, &now,
1070
				 dev_priv->rps.up_threshold))
1071
			events |= GEN6_PM_RP_UP_THRESHOLD;
1072
		dev_priv->rps.up_ei = now;
5060 serge 1073
	}
1074
 
6084 serge 1075
	return events;
1076
}
5060 serge 1077
 
6084 serge 1078
static bool any_waiters(struct drm_i915_private *dev_priv)
1079
{
1080
	struct intel_engine_cs *ring;
1081
	int i;
5060 serge 1082
 
6084 serge 1083
	for_each_ring(ring, dev_priv, i)
1084
		if (ring->irq_refcount)
1085
			return true;
5060 serge 1086
 
6084 serge 1087
	return false;
5060 serge 1088
}
1089
 
3031 serge 1090
static void gen6_pm_rps_work(struct work_struct *work)
1091
{
5060 serge 1092
	struct drm_i915_private *dev_priv =
1093
		container_of(work, struct drm_i915_private, rps.work);
6084 serge 1094
	bool client_boost;
1095
	int new_delay, adj, min, max;
4104 Serge 1096
	u32 pm_iir;
2352 Serge 1097
 
4104 Serge 1098
	spin_lock_irq(&dev_priv->irq_lock);
5354 serge 1099
	/* Speed up work cancelation during disabling rps interrupts. */
1100
	if (!dev_priv->rps.interrupts_enabled) {
1101
		spin_unlock_irq(&dev_priv->irq_lock);
1102
		return;
1103
	}
6937 serge 1104
 
1105
	/*
1106
	 * The RPS work is synced during runtime suspend, we don't require a
1107
	 * wakeref. TODO: instead of disabling the asserts make sure that we
1108
	 * always hold an RPM reference while the work is running.
1109
	 */
1110
	DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1111
 
3031 serge 1112
	pm_iir = dev_priv->rps.pm_iir;
1113
	dev_priv->rps.pm_iir = 0;
5354 serge 1114
	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
6084 serge 1115
	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1116
	client_boost = dev_priv->rps.client_boost;
1117
	dev_priv->rps.client_boost = false;
4104 Serge 1118
	spin_unlock_irq(&dev_priv->irq_lock);
2352 Serge 1119
 
4104 Serge 1120
	/* Make sure we didn't queue anything we're not going to process. */
5060 serge 1121
	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
4104 Serge 1122
 
6084 serge 1123
	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
6937 serge 1124
		goto out;
3031 serge 1125
 
3243 Serge 1126
	mutex_lock(&dev_priv->rps.hw_lock);
3031 serge 1127
 
6084 serge 1128
	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1129
 
4560 Serge 1130
	adj = dev_priv->rps.last_adj;
6084 serge 1131
	new_delay = dev_priv->rps.cur_freq;
1132
	min = dev_priv->rps.min_freq_softlimit;
1133
	max = dev_priv->rps.max_freq_softlimit;
1134
 
1135
	if (client_boost) {
1136
		new_delay = dev_priv->rps.max_freq_softlimit;
1137
		adj = 0;
1138
	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
4560 Serge 1139
		if (adj > 0)
1140
			adj *= 2;
6084 serge 1141
		else /* CHV needs even encode values */
1142
			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
4104 Serge 1143
		/*
1144
		 * For better performance, jump directly
1145
		 * to RPe if we're below it.
1146
		 */
6084 serge 1147
		if (new_delay < dev_priv->rps.efficient_freq - adj) {
5060 serge 1148
			new_delay = dev_priv->rps.efficient_freq;
6084 serge 1149
			adj = 0;
1150
		}
1151
	} else if (any_waiters(dev_priv)) {
1152
		adj = 0;
4560 Serge 1153
	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
5060 serge 1154
		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1155
			new_delay = dev_priv->rps.efficient_freq;
4560 Serge 1156
		else
5060 serge 1157
			new_delay = dev_priv->rps.min_freq_softlimit;
4560 Serge 1158
		adj = 0;
1159
	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1160
		if (adj < 0)
1161
			adj *= 2;
6084 serge 1162
		else /* CHV needs even encode values */
1163
			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
4560 Serge 1164
	} else { /* unknown event */
6084 serge 1165
		adj = 0;
4560 Serge 1166
	}
3031 serge 1167
 
6084 serge 1168
	dev_priv->rps.last_adj = adj;
1169
 
3031 serge 1170
	/* sysfs frequency interfaces may have snuck in while servicing the
1171
	 * interrupt
1172
	 */
6084 serge 1173
	new_delay += adj;
1174
	new_delay = clamp_t(int, new_delay, min, max);
4560 Serge 1175
 
6084 serge 1176
	intel_set_rps(dev_priv->dev, new_delay);
5060 serge 1177
 
3243 Serge 1178
	mutex_unlock(&dev_priv->rps.hw_lock);
6937 serge 1179
out:
1180
	ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3031 serge 1181
}
1182
 
1183
 
1184
/**
1185
 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1186
 * occurred.
1187
 * @work: workqueue struct
1188
 *
1189
 * Doesn't actually do anything except notify userspace. As a consequence of
1190
 * this event, userspace should try to remap the bad rows since statistically
1191
 * it is likely the same row is more likely to go bad again.
1192
 */
1193
static void ivybridge_parity_work(struct work_struct *work)
2351 Serge 1194
{
5060 serge 1195
	struct drm_i915_private *dev_priv =
1196
		container_of(work, struct drm_i915_private, l3_parity.error_work);
3031 serge 1197
	u32 error_status, row, bank, subbank;
4560 Serge 1198
	char *parity_event[6];
3031 serge 1199
	uint32_t misccpctl;
4560 Serge 1200
	uint8_t slice = 0;
3031 serge 1201
 
1202
	/* We must turn off DOP level clock gating to access the L3 registers.
1203
	 * In order to prevent a get/put style interface, acquire struct mutex
1204
	 * any time we access those registers.
1205
	 */
1206
	mutex_lock(&dev_priv->dev->struct_mutex);
1207
 
4560 Serge 1208
	/* If we've screwed up tracking, just let the interrupt fire again */
1209
	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1210
		goto out;
1211
 
3031 serge 1212
	misccpctl = I915_READ(GEN7_MISCCPCTL);
1213
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1214
	POSTING_READ(GEN7_MISCCPCTL);
1215
 
4560 Serge 1216
	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
6937 serge 1217
		i915_reg_t reg;
4560 Serge 1218
 
1219
		slice--;
1220
		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1221
			break;
1222
 
1223
		dev_priv->l3_parity.which_slice &= ~(1<
1224
 
6937 serge 1225
		reg = GEN7_L3CDERRST1(slice);
4560 Serge 1226
 
1227
		error_status = I915_READ(reg);
6084 serge 1228
		row = GEN7_PARITY_ERROR_ROW(error_status);
1229
		bank = GEN7_PARITY_ERROR_BANK(error_status);
1230
		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
3031 serge 1231
 
4560 Serge 1232
		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1233
		POSTING_READ(reg);
3031 serge 1234
 
4560 Serge 1235
		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1236
			  slice, row, bank, subbank);
1237
 
1238
	}
1239
 
3031 serge 1240
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1241
 
4560 Serge 1242
out:
1243
	WARN_ON(dev_priv->l3_parity.which_slice);
5354 serge 1244
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 1245
	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
5354 serge 1246
	spin_unlock_irq(&dev_priv->irq_lock);
3031 serge 1247
 
1248
	mutex_unlock(&dev_priv->dev->struct_mutex);
1249
}
1250
 
4560 Serge 1251
static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
3031 serge 1252
{
5060 serge 1253
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1254
 
4560 Serge 1255
	if (!HAS_L3_DPF(dev))
3031 serge 1256
		return;
1257
 
4104 Serge 1258
	spin_lock(&dev_priv->irq_lock);
5060 serge 1259
	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
4104 Serge 1260
	spin_unlock(&dev_priv->irq_lock);
3031 serge 1261
 
4560 Serge 1262
	iir &= GT_PARITY_ERROR(dev);
1263
	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1264
		dev_priv->l3_parity.which_slice |= 1 << 1;
1265
 
1266
	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1267
		dev_priv->l3_parity.which_slice |= 1 << 0;
1268
 
3243 Serge 1269
	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
3031 serge 1270
}
1271
 
4104 Serge 1272
static void ilk_gt_irq_handler(struct drm_device *dev,
1273
			       struct drm_i915_private *dev_priv,
1274
			       u32 gt_iir)
1275
{
1276
	if (gt_iir &
1277
	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
6084 serge 1278
		notify_ring(&dev_priv->ring[RCS]);
4104 Serge 1279
	if (gt_iir & ILK_BSD_USER_INTERRUPT)
6084 serge 1280
		notify_ring(&dev_priv->ring[VCS]);
4104 Serge 1281
}
1282
 
3031 serge 1283
static void snb_gt_irq_handler(struct drm_device *dev,
1284
			       struct drm_i915_private *dev_priv,
1285
			       u32 gt_iir)
1286
{
1287
 
4104 Serge 1288
	if (gt_iir &
1289
	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
6084 serge 1290
		notify_ring(&dev_priv->ring[RCS]);
4104 Serge 1291
	if (gt_iir & GT_BSD_USER_INTERRUPT)
6084 serge 1292
		notify_ring(&dev_priv->ring[VCS]);
4104 Serge 1293
	if (gt_iir & GT_BLT_USER_INTERRUPT)
6084 serge 1294
		notify_ring(&dev_priv->ring[BCS]);
3031 serge 1295
 
4104 Serge 1296
	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1297
		      GT_BSD_CS_ERROR_INTERRUPT |
5354 serge 1298
		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1299
		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
3031 serge 1300
 
4560 Serge 1301
	if (gt_iir & GT_PARITY_ERROR(dev))
1302
		ivybridge_parity_error_irq_handler(dev, gt_iir);
3031 serge 1303
}
1304
 
6937 serge 1305
static __always_inline void
1306
gen8_cs_irq_handler(struct intel_engine_cs *ring, u32 iir, int test_shift)
1307
{
1308
	if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1309
		notify_ring(ring);
1310
	if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1311
		intel_lrc_irq_handler(ring);
1312
}
1313
 
6084 serge 1314
static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
4560 Serge 1315
				       u32 master_ctl)
1316
{
1317
	irqreturn_t ret = IRQ_NONE;
1318
 
1319
	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
6937 serge 1320
		u32 iir = I915_READ_FW(GEN8_GT_IIR(0));
1321
		if (iir) {
1322
			I915_WRITE_FW(GEN8_GT_IIR(0), iir);
4560 Serge 1323
			ret = IRQ_HANDLED;
5354 serge 1324
 
6937 serge 1325
			gen8_cs_irq_handler(&dev_priv->ring[RCS],
1326
					iir, GEN8_RCS_IRQ_SHIFT);
5354 serge 1327
 
6937 serge 1328
			gen8_cs_irq_handler(&dev_priv->ring[BCS],
1329
					iir, GEN8_BCS_IRQ_SHIFT);
4560 Serge 1330
		} else
1331
			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1332
	}
1333
 
5060 serge 1334
	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
6937 serge 1335
		u32 iir = I915_READ_FW(GEN8_GT_IIR(1));
1336
		if (iir) {
1337
			I915_WRITE_FW(GEN8_GT_IIR(1), iir);
4560 Serge 1338
			ret = IRQ_HANDLED;
5354 serge 1339
 
6937 serge 1340
			gen8_cs_irq_handler(&dev_priv->ring[VCS],
1341
					iir, GEN8_VCS1_IRQ_SHIFT);
5354 serge 1342
 
6937 serge 1343
			gen8_cs_irq_handler(&dev_priv->ring[VCS2],
1344
					iir, GEN8_VCS2_IRQ_SHIFT);
4560 Serge 1345
		} else
1346
			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1347
	}
1348
 
6084 serge 1349
	if (master_ctl & GEN8_GT_VECS_IRQ) {
6937 serge 1350
		u32 iir = I915_READ_FW(GEN8_GT_IIR(3));
1351
		if (iir) {
1352
			I915_WRITE_FW(GEN8_GT_IIR(3), iir);
6084 serge 1353
			ret = IRQ_HANDLED;
1354
 
6937 serge 1355
			gen8_cs_irq_handler(&dev_priv->ring[VECS],
1356
					iir, GEN8_VECS_IRQ_SHIFT);
6084 serge 1357
		} else
1358
			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1359
	}
1360
 
5060 serge 1361
	if (master_ctl & GEN8_GT_PM_IRQ) {
6937 serge 1362
		u32 iir = I915_READ_FW(GEN8_GT_IIR(2));
1363
		if (iir & dev_priv->pm_rps_events) {
6084 serge 1364
			I915_WRITE_FW(GEN8_GT_IIR(2),
6937 serge 1365
				      iir & dev_priv->pm_rps_events);
5060 serge 1366
			ret = IRQ_HANDLED;
6937 serge 1367
			gen6_rps_irq_handler(dev_priv, iir);
5060 serge 1368
		} else
1369
			DRM_ERROR("The master control interrupt lied (PM)!\n");
1370
	}
1371
 
6084 serge 1372
	return ret;
1373
}
5354 serge 1374
 
6084 serge 1375
static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1376
{
1377
	switch (port) {
1378
	case PORT_A:
1379
		return val & PORTA_HOTPLUG_LONG_DETECT;
1380
	case PORT_B:
1381
		return val & PORTB_HOTPLUG_LONG_DETECT;
1382
	case PORT_C:
1383
		return val & PORTC_HOTPLUG_LONG_DETECT;
1384
	default:
1385
		return false;
4560 Serge 1386
	}
6084 serge 1387
}
4560 Serge 1388
 
6084 serge 1389
static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1390
{
1391
	switch (port) {
1392
	case PORT_E:
1393
		return val & PORTE_HOTPLUG_LONG_DETECT;
1394
	default:
1395
		return false;
1396
	}
4560 Serge 1397
}
1398
 
6084 serge 1399
static bool spt_port_hotplug_long_detect(enum port port, u32 val)
5060 serge 1400
{
1401
	switch (port) {
1402
	case PORT_A:
6084 serge 1403
		return val & PORTA_HOTPLUG_LONG_DETECT;
5060 serge 1404
	case PORT_B:
6084 serge 1405
		return val & PORTB_HOTPLUG_LONG_DETECT;
5060 serge 1406
	case PORT_C:
6084 serge 1407
		return val & PORTC_HOTPLUG_LONG_DETECT;
5060 serge 1408
	case PORT_D:
6084 serge 1409
		return val & PORTD_HOTPLUG_LONG_DETECT;
1410
	default:
1411
		return false;
5060 serge 1412
	}
1413
}
1414
 
6084 serge 1415
static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
5060 serge 1416
{
1417
	switch (port) {
1418
	case PORT_A:
6084 serge 1419
		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
5060 serge 1420
	default:
6084 serge 1421
		return false;
1422
	}
1423
}
1424
 
1425
static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1426
{
1427
	switch (port) {
5060 serge 1428
	case PORT_B:
6084 serge 1429
		return val & PORTB_HOTPLUG_LONG_DETECT;
5060 serge 1430
	case PORT_C:
6084 serge 1431
		return val & PORTC_HOTPLUG_LONG_DETECT;
5060 serge 1432
	case PORT_D:
6084 serge 1433
		return val & PORTD_HOTPLUG_LONG_DETECT;
1434
	default:
1435
		return false;
5060 serge 1436
	}
1437
}
1438
 
6084 serge 1439
static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
5060 serge 1440
{
6084 serge 1441
	switch (port) {
1442
	case PORT_B:
1443
		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1444
	case PORT_C:
1445
		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1446
	case PORT_D:
1447
		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
5060 serge 1448
	default:
6084 serge 1449
		return false;
5060 serge 1450
	}
1451
}
1452
 
6084 serge 1453
/*
1454
 * Get a bit mask of pins that have triggered, and which ones may be long.
1455
 * This can be called multiple times with the same masks to accumulate
1456
 * hotplug detection results from several registers.
1457
 *
1458
 * Note that the caller is expected to zero out the masks initially.
1459
 */
1460
static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1461
			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1462
			     const u32 hpd[HPD_NUM_PINS],
1463
			     bool long_pulse_detect(enum port port, u32 val))
3746 Serge 1464
{
6084 serge 1465
	enum port port;
3746 Serge 1466
	int i;
1467
 
6084 serge 1468
	for_each_hpd_pin(i) {
1469
		if ((hpd[i] & hotplug_trigger) == 0)
5060 serge 1470
			continue;
3746 Serge 1471
 
6084 serge 1472
		*pin_mask |= BIT(i);
5060 serge 1473
 
6296 serge 1474
		if (!intel_hpd_pin_to_port(i, &port))
6131 serge 1475
			continue;
5060 serge 1476
 
6084 serge 1477
		if (long_pulse_detect(port, dig_hotplug_reg))
1478
			*long_mask |= BIT(i);
3746 Serge 1479
	}
1480
 
6084 serge 1481
	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1482
			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
3746 Serge 1483
 
1484
}
1485
 
3480 Serge 1486
static void gmbus_irq_handler(struct drm_device *dev)
1487
{
5060 serge 1488
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 1489
 
1490
	wake_up_all(&dev_priv->gmbus_wait_queue);
1491
}
1492
 
1493
static void dp_aux_irq_handler(struct drm_device *dev)
1494
{
5060 serge 1495
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 1496
 
1497
	wake_up_all(&dev_priv->gmbus_wait_queue);
1498
}
1499
 
4560 Serge 1500
#if defined(CONFIG_DEBUG_FS)
1501
static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1502
					 uint32_t crc0, uint32_t crc1,
1503
					 uint32_t crc2, uint32_t crc3,
1504
					 uint32_t crc4)
1505
{
1506
	struct drm_i915_private *dev_priv = dev->dev_private;
1507
	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1508
	struct intel_pipe_crc_entry *entry;
1509
	int head, tail;
1510
 
1511
	spin_lock(&pipe_crc->lock);
1512
 
1513
	if (!pipe_crc->entries) {
1514
		spin_unlock(&pipe_crc->lock);
5354 serge 1515
		DRM_DEBUG_KMS("spurious interrupt\n");
4560 Serge 1516
		return;
1517
	}
1518
 
1519
	head = pipe_crc->head;
1520
	tail = pipe_crc->tail;
1521
 
1522
	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1523
		spin_unlock(&pipe_crc->lock);
1524
		DRM_ERROR("CRC buffer overflowing\n");
1525
		return;
1526
	}
1527
 
1528
	entry = &pipe_crc->entries[head];
1529
 
1530
	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1531
	entry->crc[0] = crc0;
1532
	entry->crc[1] = crc1;
1533
	entry->crc[2] = crc2;
1534
	entry->crc[3] = crc3;
1535
	entry->crc[4] = crc4;
1536
 
1537
	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1538
	pipe_crc->head = head;
1539
 
1540
	spin_unlock(&pipe_crc->lock);
1541
 
1542
	wake_up_interruptible(&pipe_crc->wq);
1543
}
1544
#else
1545
static inline void
1546
display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1547
			     uint32_t crc0, uint32_t crc1,
1548
			     uint32_t crc2, uint32_t crc3,
1549
			     uint32_t crc4) {}
1550
#endif
1551
 
1552
 
1553
static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1554
{
1555
	struct drm_i915_private *dev_priv = dev->dev_private;
1556
 
1557
	display_pipe_crc_irq_handler(dev, pipe,
1558
				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1559
				     0, 0, 0, 0);
1560
}
1561
 
1562
static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1563
{
1564
	struct drm_i915_private *dev_priv = dev->dev_private;
1565
 
1566
	display_pipe_crc_irq_handler(dev, pipe,
1567
				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1568
				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1569
				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1570
				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1571
				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1572
}
1573
 
1574
static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1575
{
1576
	struct drm_i915_private *dev_priv = dev->dev_private;
1577
	uint32_t res1, res2;
1578
 
1579
	if (INTEL_INFO(dev)->gen >= 3)
1580
		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1581
	else
1582
		res1 = 0;
1583
 
1584
	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1585
		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1586
	else
1587
		res2 = 0;
1588
 
1589
	display_pipe_crc_irq_handler(dev, pipe,
1590
				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1591
				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1592
				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1593
				     res1, res2);
1594
}
1595
 
4104 Serge 1596
/* The RPS events need forcewake, so we add them to a work queue and mask their
1597
 * IMR bits until the work is done. Other interrupts can be processed without
1598
 * the work queue. */
1599
static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1600
{
5060 serge 1601
	if (pm_iir & dev_priv->pm_rps_events) {
4104 Serge 1602
		spin_lock(&dev_priv->irq_lock);
5354 serge 1603
		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1604
		if (dev_priv->rps.interrupts_enabled) {
6084 serge 1605
			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
5354 serge 1606
			queue_work(dev_priv->wq, &dev_priv->rps.work);
1607
		}
4104 Serge 1608
		spin_unlock(&dev_priv->irq_lock);
1609
	}
1610
 
5354 serge 1611
	if (INTEL_INFO(dev_priv)->gen >= 8)
1612
		return;
1613
 
4104 Serge 1614
	if (HAS_VEBOX(dev_priv->dev)) {
1615
		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
6084 serge 1616
			notify_ring(&dev_priv->ring[VECS]);
4104 Serge 1617
 
5354 serge 1618
		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1619
			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
4104 Serge 1620
	}
1621
}
1622
 
5354 serge 1623
static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1624
{
6088 serge 1625
	if (!drm_handle_vblank(dev, pipe))
1626
		return false;
5354 serge 1627
 
1628
	return true;
1629
}
1630
 
5060 serge 1631
static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
3031 serge 1632
{
5060 serge 1633
	struct drm_i915_private *dev_priv = dev->dev_private;
1634
	u32 pipe_stats[I915_MAX_PIPES] = { };
3031 serge 1635
	int pipe;
1636
 
5060 serge 1637
	spin_lock(&dev_priv->irq_lock);
5354 serge 1638
	for_each_pipe(dev_priv, pipe) {
6937 serge 1639
		i915_reg_t reg;
5060 serge 1640
		u32 mask, iir_bit = 0;
3031 serge 1641
 
5060 serge 1642
		/*
1643
		 * PIPESTAT bits get signalled even when the interrupt is
1644
		 * disabled with the mask bits, and some of the status bits do
1645
		 * not generate interrupts at all (like the underrun bit). Hence
1646
		 * we need to be careful that we only handle what we want to
1647
		 * handle.
1648
		 */
3031 serge 1649
 
5354 serge 1650
		/* fifo underruns are filterered in the underrun handler. */
1651
		mask = PIPE_FIFO_UNDERRUN_STATUS;
1652
 
5060 serge 1653
		switch (pipe) {
1654
		case PIPE_A:
1655
			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1656
			break;
1657
		case PIPE_B:
1658
			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1659
			break;
1660
		case PIPE_C:
1661
			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1662
			break;
1663
		}
1664
		if (iir & iir_bit)
1665
			mask |= dev_priv->pipestat_irq_mask[pipe];
3031 serge 1666
 
5060 serge 1667
		if (!mask)
1668
			continue;
3031 serge 1669
 
5060 serge 1670
		reg = PIPESTAT(pipe);
1671
		mask |= PIPESTAT_INT_ENABLE_MASK;
1672
		pipe_stats[pipe] = I915_READ(reg) & mask;
3031 serge 1673
 
6084 serge 1674
		/*
1675
		 * Clear the PIPE*STAT regs before the IIR
1676
		 */
5060 serge 1677
		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1678
					PIPESTAT_INT_STATUS_MASK))
6084 serge 1679
			I915_WRITE(reg, pipe_stats[pipe]);
1680
	}
5060 serge 1681
	spin_unlock(&dev_priv->irq_lock);
3031 serge 1682
 
5354 serge 1683
	for_each_pipe(dev_priv, pipe) {
6084 serge 1684
		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1685
		    intel_pipe_handle_vblank(dev, pipe))
6320 serge 1686
			intel_check_page_flip(dev, pipe);
3031 serge 1687
 
6084 serge 1688
		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
6320 serge 1689
			intel_prepare_page_flip(dev, pipe);
1690
			intel_finish_page_flip(dev, pipe);
6084 serge 1691
		}
4560 Serge 1692
 
6084 serge 1693
		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1694
			i9xx_pipe_crc_irq_handler(dev, pipe);
5060 serge 1695
 
5354 serge 1696
		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1697
			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
6084 serge 1698
	}
3031 serge 1699
 
5060 serge 1700
	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1701
		gmbus_irq_handler(dev);
1702
}
3031 serge 1703
 
5060 serge 1704
static void i9xx_hpd_irq_handler(struct drm_device *dev)
1705
{
1706
	struct drm_i915_private *dev_priv = dev->dev_private;
1707
	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
6084 serge 1708
	u32 pin_mask = 0, long_mask = 0;
4104 Serge 1709
 
6084 serge 1710
	if (!hotplug_status)
1711
		return;
4104 Serge 1712
 
6084 serge 1713
	I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1714
	/*
1715
	 * Make sure hotplug status is cleared before we clear IIR, or else we
1716
	 * may miss hotplug events.
1717
	 */
1718
	POSTING_READ(PORT_HOTPLUG_STAT);
1719
 
6937 serge 1720
	if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5060 serge 1721
		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
4560 Serge 1722
 
6084 serge 1723
		if (hotplug_trigger) {
1724
			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1725
					   hotplug_trigger, hpd_status_g4x,
1726
					   i9xx_port_hotplug_long_detect);
1727
 
6296 serge 1728
			intel_hpd_irq_handler(dev, pin_mask, long_mask);
6084 serge 1729
		}
1730
 
1731
		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1732
			dp_aux_irq_handler(dev);
5060 serge 1733
	} else {
1734
		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1735
 
6084 serge 1736
		if (hotplug_trigger) {
1737
			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1738
					   hotplug_trigger, hpd_status_i915,
1739
					   i9xx_port_hotplug_long_detect);
6296 serge 1740
			intel_hpd_irq_handler(dev, pin_mask, long_mask);
6084 serge 1741
		}
5060 serge 1742
	}
1743
}
1744
 
1745
static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1746
{
1747
	struct drm_device *dev = arg;
1748
	struct drm_i915_private *dev_priv = dev->dev_private;
1749
	u32 iir, gt_iir, pm_iir;
1750
	irqreturn_t ret = IRQ_NONE;
1751
 
6084 serge 1752
	if (!intel_irqs_enabled(dev_priv))
1753
		return IRQ_NONE;
1754
 
6937 serge 1755
	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1756
	disable_rpm_wakeref_asserts(dev_priv);
1757
 
5060 serge 1758
	while (true) {
1759
		/* Find, clear, then process each source of interrupt */
1760
 
1761
		gt_iir = I915_READ(GTIIR);
1762
		if (gt_iir)
1763
			I915_WRITE(GTIIR, gt_iir);
1764
 
1765
		pm_iir = I915_READ(GEN6_PMIIR);
1766
		if (pm_iir)
1767
			I915_WRITE(GEN6_PMIIR, pm_iir);
1768
 
1769
		iir = I915_READ(VLV_IIR);
1770
		if (iir) {
1771
			/* Consume port before clearing IIR or we'll miss events */
1772
			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1773
				i9xx_hpd_irq_handler(dev);
1774
			I915_WRITE(VLV_IIR, iir);
3031 serge 1775
		}
1776
 
5060 serge 1777
		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1778
			goto out;
3031 serge 1779
 
5060 serge 1780
		ret = IRQ_HANDLED;
1781
 
1782
		if (gt_iir)
6084 serge 1783
			snb_gt_irq_handler(dev, dev_priv, gt_iir);
4126 Serge 1784
		if (pm_iir)
1785
			gen6_rps_irq_handler(dev_priv, pm_iir);
5060 serge 1786
		/* Call regardless, as some status bits might not be
1787
		 * signalled in iir */
1788
		valleyview_pipestat_irq_handler(dev, iir);
3031 serge 1789
	}
1790
 
1791
out:
6937 serge 1792
	enable_rpm_wakeref_asserts(dev_priv);
1793
 
3031 serge 1794
	return ret;
1795
}
1796
 
5060 serge 1797
static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1798
{
1799
	struct drm_device *dev = arg;
1800
	struct drm_i915_private *dev_priv = dev->dev_private;
1801
	u32 master_ctl, iir;
1802
	irqreturn_t ret = IRQ_NONE;
1803
 
6084 serge 1804
	if (!intel_irqs_enabled(dev_priv))
1805
		return IRQ_NONE;
1806
 
6937 serge 1807
	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1808
	disable_rpm_wakeref_asserts(dev_priv);
1809
 
5060 serge 1810
	for (;;) {
1811
		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1812
		iir = I915_READ(VLV_IIR);
1813
 
1814
		if (master_ctl == 0 && iir == 0)
1815
			break;
1816
 
1817
		ret = IRQ_HANDLED;
1818
 
1819
		I915_WRITE(GEN8_MASTER_IRQ, 0);
1820
 
1821
		/* Find, clear, then process each source of interrupt */
1822
 
1823
		if (iir) {
1824
			/* Consume port before clearing IIR or we'll miss events */
1825
			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1826
				i9xx_hpd_irq_handler(dev);
1827
			I915_WRITE(VLV_IIR, iir);
1828
		}
1829
 
6084 serge 1830
		gen8_gt_irq_handler(dev_priv, master_ctl);
5060 serge 1831
 
1832
		/* Call regardless, as some status bits might not be
1833
		 * signalled in iir */
1834
		valleyview_pipestat_irq_handler(dev, iir);
1835
 
1836
		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1837
		POSTING_READ(GEN8_MASTER_IRQ);
1838
	}
1839
 
6937 serge 1840
	enable_rpm_wakeref_asserts(dev_priv);
1841
 
5060 serge 1842
	return ret;
1843
}
1844
 
6084 serge 1845
static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1846
				const u32 hpd[HPD_NUM_PINS])
1847
{
1848
	struct drm_i915_private *dev_priv = to_i915(dev);
1849
	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1850
 
6937 serge 1851
	/*
1852
	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1853
	 * unless we touch the hotplug register, even if hotplug_trigger is
1854
	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1855
	 * errors.
1856
	 */
6084 serge 1857
	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
6937 serge 1858
	if (!hotplug_trigger) {
1859
		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1860
			PORTD_HOTPLUG_STATUS_MASK |
1861
			PORTC_HOTPLUG_STATUS_MASK |
1862
			PORTB_HOTPLUG_STATUS_MASK;
1863
		dig_hotplug_reg &= ~mask;
1864
	}
1865
 
6084 serge 1866
	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
6937 serge 1867
	if (!hotplug_trigger)
1868
		return;
6084 serge 1869
 
1870
	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1871
			   dig_hotplug_reg, hpd,
1872
			   pch_port_hotplug_long_detect);
1873
 
6296 serge 1874
	intel_hpd_irq_handler(dev, pin_mask, long_mask);
6084 serge 1875
}
1876
 
3031 serge 1877
static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1878
{
5060 serge 1879
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1880
	int pipe;
3746 Serge 1881
	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
3031 serge 1882
 
6084 serge 1883
		ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
4104 Serge 1884
 
1885
	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1886
		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1887
			       SDE_AUDIO_POWER_SHIFT);
1888
		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1889
				 port_name(port));
3746 Serge 1890
	}
3031 serge 1891
 
3480 Serge 1892
	if (pch_iir & SDE_AUX_MASK)
1893
		dp_aux_irq_handler(dev);
1894
 
3031 serge 1895
	if (pch_iir & SDE_GMBUS)
3480 Serge 1896
		gmbus_irq_handler(dev);
3031 serge 1897
 
1898
	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1899
		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1900
 
1901
	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1902
		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1903
 
1904
	if (pch_iir & SDE_POISON)
1905
		DRM_ERROR("PCH poison interrupt\n");
1906
 
1907
	if (pch_iir & SDE_FDI_MASK)
5354 serge 1908
		for_each_pipe(dev_priv, pipe)
3031 serge 1909
			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1910
					 pipe_name(pipe),
1911
					 I915_READ(FDI_RX_IIR(pipe)));
1912
 
1913
	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1914
		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1915
 
1916
	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1917
		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1918
 
4104 Serge 1919
	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
5354 serge 1920
		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
4104 Serge 1921
 
3031 serge 1922
	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
5354 serge 1923
		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
3031 serge 1924
}
1925
 
4104 Serge 1926
static void ivb_err_int_handler(struct drm_device *dev)
1927
{
1928
	struct drm_i915_private *dev_priv = dev->dev_private;
1929
	u32 err_int = I915_READ(GEN7_ERR_INT);
4560 Serge 1930
	enum pipe pipe;
4104 Serge 1931
 
1932
	if (err_int & ERR_INT_POISON)
1933
		DRM_ERROR("Poison interrupt\n");
1934
 
5354 serge 1935
	for_each_pipe(dev_priv, pipe) {
1936
		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1937
			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4104 Serge 1938
 
4560 Serge 1939
		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1940
			if (IS_IVYBRIDGE(dev))
1941
				ivb_pipe_crc_irq_handler(dev, pipe);
1942
			else
1943
				hsw_pipe_crc_irq_handler(dev, pipe);
1944
		}
1945
	}
4104 Serge 1946
 
1947
	I915_WRITE(GEN7_ERR_INT, err_int);
1948
}
1949
 
1950
static void cpt_serr_int_handler(struct drm_device *dev)
1951
{
1952
	struct drm_i915_private *dev_priv = dev->dev_private;
1953
	u32 serr_int = I915_READ(SERR_INT);
1954
 
1955
	if (serr_int & SERR_INT_POISON)
1956
		DRM_ERROR("PCH poison interrupt\n");
1957
 
1958
	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
5354 serge 1959
		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
4104 Serge 1960
 
1961
	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
5354 serge 1962
		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
4104 Serge 1963
 
1964
	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
5354 serge 1965
		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
4104 Serge 1966
 
1967
	I915_WRITE(SERR_INT, serr_int);
1968
}
1969
 
3031 serge 1970
static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1971
{
5060 serge 1972
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1973
	int pipe;
3746 Serge 1974
	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
3031 serge 1975
 
6084 serge 1976
		ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
4104 Serge 1977
 
1978
	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1979
		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1980
			       SDE_AUDIO_POWER_SHIFT_CPT);
1981
		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1982
				 port_name(port));
3746 Serge 1983
	}
3031 serge 1984
 
1985
	if (pch_iir & SDE_AUX_MASK_CPT)
3480 Serge 1986
		dp_aux_irq_handler(dev);
3031 serge 1987
 
1988
	if (pch_iir & SDE_GMBUS_CPT)
3480 Serge 1989
		gmbus_irq_handler(dev);
3031 serge 1990
 
1991
	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1992
		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1993
 
1994
	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1995
		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1996
 
1997
	if (pch_iir & SDE_FDI_MASK_CPT)
5354 serge 1998
		for_each_pipe(dev_priv, pipe)
3031 serge 1999
			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2000
					 pipe_name(pipe),
2001
					 I915_READ(FDI_RX_IIR(pipe)));
2002
 
4104 Serge 2003
	if (pch_iir & SDE_ERROR_CPT)
2004
		cpt_serr_int_handler(dev);
4539 Serge 2005
}
3480 Serge 2006
 
6084 serge 2007
static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
2008
{
2009
	struct drm_i915_private *dev_priv = dev->dev_private;
2010
	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2011
		~SDE_PORTE_HOTPLUG_SPT;
2012
	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2013
	u32 pin_mask = 0, long_mask = 0;
2014
 
2015
	if (hotplug_trigger) {
2016
		u32 dig_hotplug_reg;
2017
 
2018
		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2019
		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2020
 
2021
		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2022
				   dig_hotplug_reg, hpd_spt,
2023
				   spt_port_hotplug_long_detect);
2024
	}
2025
 
2026
	if (hotplug2_trigger) {
2027
		u32 dig_hotplug_reg;
2028
 
2029
		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2030
		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2031
 
2032
		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2033
				   dig_hotplug_reg, hpd_spt,
2034
				   spt_port_hotplug2_long_detect);
2035
	}
2036
 
6296 serge 2037
	if (pin_mask)
2038
		intel_hpd_irq_handler(dev, pin_mask, long_mask);
2039
 
6084 serge 2040
	if (pch_iir & SDE_GMBUS_CPT)
2041
		gmbus_irq_handler(dev);
2042
}
2043
 
2044
static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2045
				const u32 hpd[HPD_NUM_PINS])
2046
{
2047
	struct drm_i915_private *dev_priv = to_i915(dev);
2048
	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2049
 
2050
	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2051
	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2052
 
2053
	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2054
			   dig_hotplug_reg, hpd,
2055
			   ilk_port_hotplug_long_detect);
2056
 
6296 serge 2057
	intel_hpd_irq_handler(dev, pin_mask, long_mask);
6084 serge 2058
}
2059
 
4104 Serge 2060
static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
3031 serge 2061
{
4104 Serge 2062
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 2063
	enum pipe pipe;
6084 serge 2064
	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
3031 serge 2065
 
6296 serge 2066
	if (hotplug_trigger)
2067
		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
6084 serge 2068
 
3480 Serge 2069
	if (de_iir & DE_AUX_CHANNEL_A)
2070
		dp_aux_irq_handler(dev);
2071
 
3031 serge 2072
	if (de_iir & DE_GSE)
4104 Serge 2073
		intel_opregion_asle_intr(dev);
2351 Serge 2074
 
4104 Serge 2075
	if (de_iir & DE_POISON)
2076
		DRM_ERROR("Poison interrupt\n");
2077
 
5354 serge 2078
	for_each_pipe(dev_priv, pipe) {
6084 serge 2079
		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2080
		    intel_pipe_handle_vblank(dev, pipe))
6320 serge 2081
			intel_check_page_flip(dev, pipe);
4104 Serge 2082
 
4560 Serge 2083
		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
5354 serge 2084
			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2351 Serge 2085
 
4560 Serge 2086
		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2087
			i9xx_pipe_crc_irq_handler(dev, pipe);
2088
 
2089
		/* plane/pipes map 1:1 on ilk+ */
2090
		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
6320 serge 2091
			intel_prepare_page_flip(dev, pipe);
2092
			intel_finish_page_flip_plane(dev, pipe);
4560 Serge 2093
		}
3031 serge 2094
	}
2351 Serge 2095
 
3031 serge 2096
	/* check event from PCH */
2097
	if (de_iir & DE_PCH_EVENT) {
3480 Serge 2098
		u32 pch_iir = I915_READ(SDEIIR);
2099
 
3031 serge 2100
		if (HAS_PCH_CPT(dev))
2101
			cpt_irq_handler(dev, pch_iir);
2102
		else
2103
			ibx_irq_handler(dev, pch_iir);
3480 Serge 2104
 
2105
		/* should clear PCH hotplug event before clear CPU irq */
2106
		I915_WRITE(SDEIIR, pch_iir);
3031 serge 2107
	}
4104 Serge 2108
 
6084 serge 2109
	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
4104 Serge 2110
		ironlake_rps_change_irq_handler(dev);
2351 Serge 2111
}
2112
 
4104 Serge 2113
static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
3031 serge 2114
{
2115
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 2116
	enum pipe pipe;
6084 serge 2117
	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2351 Serge 2118
 
6084 serge 2119
	if (hotplug_trigger)
2120
		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2121
 
4126 Serge 2122
	if (de_iir & DE_ERR_INT_IVB)
2123
		ivb_err_int_handler(dev);
2351 Serge 2124
 
4104 Serge 2125
	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2126
		dp_aux_irq_handler(dev);
3031 serge 2127
 
4104 Serge 2128
	if (de_iir & DE_GSE_IVB)
2129
		intel_opregion_asle_intr(dev);
4560 Serge 2130
 
5354 serge 2131
	for_each_pipe(dev_priv, pipe) {
6084 serge 2132
		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2133
		    intel_pipe_handle_vblank(dev, pipe))
6320 serge 2134
			intel_check_page_flip(dev, pipe);
4560 Serge 2135
 
2136
		/* plane/pipes map 1:1 on ilk+ */
5060 serge 2137
		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
6320 serge 2138
			intel_prepare_page_flip(dev, pipe);
2139
			intel_finish_page_flip_plane(dev, pipe);
3031 serge 2140
		}
2141
	}
2142
 
4104 Serge 2143
	/* check event from PCH */
2144
	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2145
		u32 pch_iir = I915_READ(SDEIIR);
3031 serge 2146
 
4104 Serge 2147
		cpt_irq_handler(dev, pch_iir);
3031 serge 2148
 
4104 Serge 2149
		/* clear PCH hotplug event before clear CPU irq */
2150
		I915_WRITE(SDEIIR, pch_iir);
4539 Serge 2151
	}
3031 serge 2152
}
2153
 
5060 serge 2154
/*
2155
 * To handle irqs with the minimum potential races with fresh interrupts, we:
2156
 * 1 - Disable Master Interrupt Control.
2157
 * 2 - Find the source(s) of the interrupt.
2158
 * 3 - Clear the Interrupt Identity bits (IIR).
2159
 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2160
 * 5 - Re-enable Master Interrupt Control.
2161
 */
4104 Serge 2162
static irqreturn_t ironlake_irq_handler(int irq, void *arg)
3031 serge 2163
{
5060 serge 2164
	struct drm_device *dev = arg;
2165
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 2166
	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2167
	irqreturn_t ret = IRQ_NONE;
3031 serge 2168
 
6084 serge 2169
	if (!intel_irqs_enabled(dev_priv))
2170
		return IRQ_NONE;
2171
 
6937 serge 2172
	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2173
	disable_rpm_wakeref_asserts(dev_priv);
2174
 
4104 Serge 2175
	/* We get interrupts on unclaimed registers, so check for this before we
2176
	 * do any I915_{READ,WRITE}. */
2177
	intel_uncore_check_errors(dev);
3031 serge 2178
 
4104 Serge 2179
	/* disable master interrupt before clearing iir  */
2180
	de_ier = I915_READ(DEIER);
2181
	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2182
	POSTING_READ(DEIER);
3031 serge 2183
 
4104 Serge 2184
	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2185
	 * interrupts will will be stored on its back queue, and then we'll be
2186
	 * able to process them after we restore SDEIER (as soon as we restore
2187
	 * it, we'll get an interrupt if SDEIIR still has something to process
2188
	 * due to its back queue). */
2189
	if (!HAS_PCH_NOP(dev)) {
2190
		sde_ier = I915_READ(SDEIER);
2191
		I915_WRITE(SDEIER, 0);
2192
		POSTING_READ(SDEIER);
3031 serge 2193
	}
2194
 
5060 serge 2195
	/* Find, clear, then process each source of interrupt */
2196
 
4104 Serge 2197
	gt_iir = I915_READ(GTIIR);
2198
	if (gt_iir) {
5060 serge 2199
		I915_WRITE(GTIIR, gt_iir);
2200
		ret = IRQ_HANDLED;
4104 Serge 2201
		if (INTEL_INFO(dev)->gen >= 6)
2202
			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2203
		else
2204
			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
4539 Serge 2205
	}
3031 serge 2206
 
4104 Serge 2207
	de_iir = I915_READ(DEIIR);
2208
	if (de_iir) {
5060 serge 2209
		I915_WRITE(DEIIR, de_iir);
2210
		ret = IRQ_HANDLED;
4104 Serge 2211
		if (INTEL_INFO(dev)->gen >= 7)
2212
			ivb_display_irq_handler(dev, de_iir);
2213
		else
2214
			ilk_display_irq_handler(dev, de_iir);
3480 Serge 2215
	}
2216
 
4104 Serge 2217
	if (INTEL_INFO(dev)->gen >= 6) {
2218
		u32 pm_iir = I915_READ(GEN6_PMIIR);
2219
		if (pm_iir) {
2220
			I915_WRITE(GEN6_PMIIR, pm_iir);
2221
			ret = IRQ_HANDLED;
5060 serge 2222
			gen6_rps_irq_handler(dev_priv, pm_iir);
4560 Serge 2223
		}
3031 serge 2224
	}
2225
 
4104 Serge 2226
	I915_WRITE(DEIER, de_ier);
2227
	POSTING_READ(DEIER);
2228
	if (!HAS_PCH_NOP(dev)) {
2229
		I915_WRITE(SDEIER, sde_ier);
2230
		POSTING_READ(SDEIER);
3031 serge 2231
	}
2232
 
6937 serge 2233
	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2234
	enable_rpm_wakeref_asserts(dev_priv);
2235
 
4104 Serge 2236
	return ret;
3031 serge 2237
}
2238
 
6084 serge 2239
static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2240
				const u32 hpd[HPD_NUM_PINS])
2241
{
2242
	struct drm_i915_private *dev_priv = to_i915(dev);
2243
	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2244
 
2245
	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2246
	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2247
 
2248
	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2249
			   dig_hotplug_reg, hpd,
2250
			   bxt_port_hotplug_long_detect);
2251
 
6296 serge 2252
	intel_hpd_irq_handler(dev, pin_mask, long_mask);
6084 serge 2253
}
2254
 
4560 Serge 2255
static irqreturn_t gen8_irq_handler(int irq, void *arg)
2256
{
2257
	struct drm_device *dev = arg;
2258
	struct drm_i915_private *dev_priv = dev->dev_private;
2259
	u32 master_ctl;
2260
	irqreturn_t ret = IRQ_NONE;
2261
	uint32_t tmp = 0;
2262
	enum pipe pipe;
5354 serge 2263
	u32 aux_mask = GEN8_AUX_CHANNEL_A;
4560 Serge 2264
 
6084 serge 2265
	if (!intel_irqs_enabled(dev_priv))
2266
		return IRQ_NONE;
2267
 
6937 serge 2268
	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2269
	disable_rpm_wakeref_asserts(dev_priv);
2270
 
6084 serge 2271
	if (INTEL_INFO(dev_priv)->gen >= 9)
5354 serge 2272
		aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2273
			GEN9_AUX_CHANNEL_D;
2274
 
6084 serge 2275
	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
4560 Serge 2276
	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2277
	if (!master_ctl)
6937 serge 2278
		goto out;
4560 Serge 2279
 
6084 serge 2280
	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
4560 Serge 2281
 
5060 serge 2282
	/* Find, clear, then process each source of interrupt */
2283
 
6084 serge 2284
	ret = gen8_gt_irq_handler(dev_priv, master_ctl);
4560 Serge 2285
 
2286
	if (master_ctl & GEN8_DE_MISC_IRQ) {
2287
		tmp = I915_READ(GEN8_DE_MISC_IIR);
5060 serge 2288
		if (tmp) {
2289
			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2290
			ret = IRQ_HANDLED;
6084 serge 2291
			if (tmp & GEN8_DE_MISC_GSE)
2292
				intel_opregion_asle_intr(dev);
5060 serge 2293
			else
6084 serge 2294
				DRM_ERROR("Unexpected DE Misc interrupt\n");
5060 serge 2295
		}
4560 Serge 2296
		else
2297
			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2298
	}
2299
 
2300
	if (master_ctl & GEN8_DE_PORT_IRQ) {
2301
		tmp = I915_READ(GEN8_DE_PORT_IIR);
5060 serge 2302
		if (tmp) {
6084 serge 2303
			bool found = false;
2304
			u32 hotplug_trigger = 0;
2305
 
2306
			if (IS_BROXTON(dev_priv))
2307
				hotplug_trigger = tmp & BXT_DE_PORT_HOTPLUG_MASK;
2308
			else if (IS_BROADWELL(dev_priv))
2309
				hotplug_trigger = tmp & GEN8_PORT_DP_A_HOTPLUG;
2310
 
5060 serge 2311
			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2312
			ret = IRQ_HANDLED;
5354 serge 2313
 
6084 serge 2314
			if (tmp & aux_mask) {
2315
				dp_aux_irq_handler(dev);
2316
				found = true;
2317
			}
2318
 
2319
			if (hotplug_trigger) {
2320
				if (IS_BROXTON(dev))
2321
					bxt_hpd_irq_handler(dev, hotplug_trigger, hpd_bxt);
2322
				else
2323
					ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_bdw);
2324
				found = true;
2325
			}
2326
 
2327
			if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2328
				gmbus_irq_handler(dev);
2329
				found = true;
2330
			}
2331
 
2332
			if (!found)
2333
				DRM_ERROR("Unexpected DE Port interrupt\n");
5060 serge 2334
		}
4560 Serge 2335
		else
2336
			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2337
	}
2338
 
5354 serge 2339
	for_each_pipe(dev_priv, pipe) {
2340
		uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
4560 Serge 2341
 
2342
		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2343
			continue;
2344
 
2345
		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
5060 serge 2346
		if (pipe_iir) {
2347
			ret = IRQ_HANDLED;
2348
			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
4560 Serge 2349
 
6088 serge 2350
			if (pipe_iir & GEN8_PIPE_VBLANK &&
2351
			    intel_pipe_handle_vblank(dev, pipe))
6320 serge 2352
				intel_check_page_flip(dev, pipe);
4560 Serge 2353
 
6084 serge 2354
			if (INTEL_INFO(dev_priv)->gen >= 9)
5354 serge 2355
				flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2356
			else
2357
				flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2358
 
6320 serge 2359
			if (flip_done) {
2360
				intel_prepare_page_flip(dev, pipe);
2361
				intel_finish_page_flip_plane(dev, pipe);
2362
			}
5354 serge 2363
 
6084 serge 2364
			if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2365
				hsw_pipe_crc_irq_handler(dev, pipe);
4560 Serge 2366
 
5354 serge 2367
			if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2368
				intel_cpu_fifo_underrun_irq_handler(dev_priv,
2369
								    pipe);
4560 Serge 2370
 
5354 serge 2371
 
6084 serge 2372
			if (INTEL_INFO(dev_priv)->gen >= 9)
5354 serge 2373
				fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2374
			else
2375
				fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2376
 
2377
			if (fault_errors)
6084 serge 2378
				DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2379
					  pipe_name(pipe),
2380
					  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
4560 Serge 2381
		} else
2382
			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2383
	}
2384
 
6084 serge 2385
	if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2386
	    master_ctl & GEN8_DE_PCH_IRQ) {
4560 Serge 2387
		/*
2388
		 * FIXME(BDW): Assume for now that the new interrupt handling
2389
		 * scheme also closed the SDE interrupt handling race we've seen
2390
		 * on older pch-split platforms. But this needs testing.
2391
		 */
2392
		u32 pch_iir = I915_READ(SDEIIR);
2393
		if (pch_iir) {
2394
			I915_WRITE(SDEIIR, pch_iir);
2395
			ret = IRQ_HANDLED;
6084 serge 2396
 
2397
			if (HAS_PCH_SPT(dev_priv))
2398
				spt_irq_handler(dev, pch_iir);
2399
			else
2400
				cpt_irq_handler(dev, pch_iir);
6320 serge 2401
		} else {
2402
			/*
2403
			 * Like on previous PCH there seems to be something
2404
			 * fishy going on with forwarding PCH interrupts.
2405
			 */
2406
			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2407
		}
4560 Serge 2408
	}
2409
 
6084 serge 2410
	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2411
	POSTING_READ_FW(GEN8_MASTER_IRQ);
4560 Serge 2412
 
6937 serge 2413
out:
2414
	enable_rpm_wakeref_asserts(dev_priv);
2415
 
4560 Serge 2416
	return ret;
2417
}
2418
 
4104 Serge 2419
static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2420
			       bool reset_completed)
3746 Serge 2421
{
5060 serge 2422
	struct intel_engine_cs *ring;
4104 Serge 2423
	int i;
3031 serge 2424
 
4104 Serge 2425
	/*
2426
	 * Notify all waiters for GPU completion events that reset state has
2427
	 * been changed, and that they need to restart their wait after
2428
	 * checking for potential errors (and bail out to drop locks if there is
2429
	 * a gpu reset pending so that i915_error_work_func can acquire them).
2430
	 */
3031 serge 2431
 
4104 Serge 2432
	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2433
	for_each_ring(ring, dev_priv, i)
2434
		wake_up_all(&ring->irq_queue);
3031 serge 2435
 
6320 serge 2436
	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2437
	wake_up_all(&dev_priv->pending_flip_queue);
3031 serge 2438
 
4104 Serge 2439
	/*
2440
	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2441
	 * reset state is cleared.
2442
	 */
2443
	if (reset_completed)
2444
		wake_up_all(&dev_priv->gpu_error.reset_queue);
3031 serge 2445
}
2446
 
2447
/**
6084 serge 2448
 * i915_reset_and_wakeup - do process context error handling work
2449
 * @dev: drm device
3031 serge 2450
 *
4104 Serge 2451
 * Fire an error uevent so userspace can see that a hang or error
2452
 * was detected.
3031 serge 2453
 */
6084 serge 2454
static void i915_reset_and_wakeup(struct drm_device *dev)
3031 serge 2455
{
6084 serge 2456
	struct drm_i915_private *dev_priv = to_i915(dev);
2457
	struct i915_gpu_error *error = &dev_priv->gpu_error;
4104 Serge 2458
	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2459
	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2460
	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2461
	int ret;
3031 serge 2462
 
4104 Serge 2463
	/*
2464
	 * Note that there's only one work item which does gpu resets, so we
2465
	 * need not worry about concurrent gpu resets potentially incrementing
2466
	 * error->reset_counter twice. We only need to take care of another
2467
	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2468
	 * quick check for that is good enough: schedule_work ensures the
2469
	 * correct ordering between hang detection and this work item, and since
2470
	 * the reset in-progress bit is only ever set by code outside of this
2471
	 * work we don't need to worry about any other races.
2472
	 */
2473
	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2474
		DRM_DEBUG_DRIVER("resetting chip\n");
6937 serge 2475
		/*
2476
		 * In most cases it's guaranteed that we get here with an RPM
2477
		 * reference held, for example because there is a pending GPU
2478
		 * request that won't finish until the reset is done. This
2479
		 * isn't the case at least when we get here by doing a
2480
		 * simulated reset via debugs, so get an RPM reference.
2481
		 */
6084 serge 2482
		intel_runtime_pm_get(dev_priv);
3031 serge 2483
 
4104 Serge 2484
		/*
2485
		 * All state reset _must_ be completed before we update the
2486
		 * reset counter, for otherwise waiters might miss the reset
2487
		 * pending state and not properly drop locks, resulting in
2488
		 * deadlocks with the reset work.
2489
		 */
4560 Serge 2490
//		ret = i915_reset(dev);
3031 serge 2491
 
6084 serge 2492
//		intel_finish_reset(dev);
3031 serge 2493
 
6084 serge 2494
		intel_runtime_pm_put(dev_priv);
2495
 
4104 Serge 2496
		if (ret == 0) {
2497
			/*
2498
			 * After all the gem state is reset, increment the reset
2499
			 * counter and wake up everyone waiting for the reset to
2500
			 * complete.
2501
			 *
2502
			 * Since unlock operations are a one-sided barrier only,
2503
			 * we need to insert a barrier here to order any seqno
2504
			 * updates before
2505
			 * the counter increment.
2506
			 */
6084 serge 2507
			smp_mb__before_atomic();
4104 Serge 2508
			atomic_inc(&dev_priv->gpu_error.reset_counter);
3031 serge 2509
 
4104 Serge 2510
		} else {
6088 serge 2511
			atomic_or(I915_WEDGED, &error->reset_counter);
2512
		}
3031 serge 2513
 
4104 Serge 2514
		/*
2515
		 * Note: The wake_up also serves as a memory barrier so that
2516
		 * waiters see the update value of the reset counter atomic_t.
2517
		 */
2518
		i915_error_wake_up(dev_priv, true);
3031 serge 2519
	}
2520
}
2521
 
2522
static void i915_report_and_clear_eir(struct drm_device *dev)
2523
{
2524
	struct drm_i915_private *dev_priv = dev->dev_private;
2525
	uint32_t instdone[I915_NUM_INSTDONE_REG];
2526
	u32 eir = I915_READ(EIR);
2527
	int pipe, i;
2528
 
2529
	if (!eir)
2530
		return;
2531
 
2532
	pr_err("render error detected, EIR: 0x%08x\n", eir);
2533
 
2534
	i915_get_extra_instdone(dev, instdone);
2535
 
2536
	if (IS_G4X(dev)) {
2537
		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2538
			u32 ipeir = I915_READ(IPEIR_I965);
2539
 
2540
			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2541
			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2542
			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2543
				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2544
			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2545
			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2546
			I915_WRITE(IPEIR_I965, ipeir);
2547
			POSTING_READ(IPEIR_I965);
2548
		}
2549
		if (eir & GM45_ERROR_PAGE_TABLE) {
2550
			u32 pgtbl_err = I915_READ(PGTBL_ER);
2551
			pr_err("page table error\n");
2552
			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2553
			I915_WRITE(PGTBL_ER, pgtbl_err);
2554
			POSTING_READ(PGTBL_ER);
2555
		}
2556
	}
2557
 
2558
	if (!IS_GEN2(dev)) {
2559
		if (eir & I915_ERROR_PAGE_TABLE) {
2560
			u32 pgtbl_err = I915_READ(PGTBL_ER);
2561
			pr_err("page table error\n");
2562
			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2563
			I915_WRITE(PGTBL_ER, pgtbl_err);
2564
			POSTING_READ(PGTBL_ER);
2565
		}
2566
	}
2567
 
2568
	if (eir & I915_ERROR_MEMORY_REFRESH) {
2569
		pr_err("memory refresh error:\n");
5354 serge 2570
		for_each_pipe(dev_priv, pipe)
3031 serge 2571
			pr_err("pipe %c stat: 0x%08x\n",
2572
			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2573
		/* pipestat has already been acked */
2574
	}
2575
	if (eir & I915_ERROR_INSTRUCTION) {
2576
		pr_err("instruction error\n");
2577
		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2578
		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2579
			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2580
		if (INTEL_INFO(dev)->gen < 4) {
2581
			u32 ipeir = I915_READ(IPEIR);
2582
 
2583
			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2584
			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2585
			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2586
			I915_WRITE(IPEIR, ipeir);
2587
			POSTING_READ(IPEIR);
2588
		} else {
2589
			u32 ipeir = I915_READ(IPEIR_I965);
2590
 
2591
			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2592
			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2593
			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2594
			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2595
			I915_WRITE(IPEIR_I965, ipeir);
2596
			POSTING_READ(IPEIR_I965);
2597
		}
2598
	}
2599
 
2600
	I915_WRITE(EIR, eir);
2601
	POSTING_READ(EIR);
2602
	eir = I915_READ(EIR);
2603
	if (eir) {
2604
		/*
2605
		 * some errors might have become stuck,
2606
		 * mask them.
2607
		 */
2608
		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2609
		I915_WRITE(EMR, I915_READ(EMR) | eir);
2610
		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2611
	}
2612
}
2613
 
2614
/**
6084 serge 2615
 * i915_handle_error - handle a gpu error
3031 serge 2616
 * @dev: drm device
2617
 *
6084 serge 2618
 * Do some basic checking of register state at error time and
3031 serge 2619
 * dump it to the syslog.  Also call i915_capture_error_state() to make
2620
 * sure we get a record and make it available in debugfs.  Fire a uevent
2621
 * so userspace knows something bad happened (should trigger collection
2622
 * of a ring dump etc.).
2623
 */
5060 serge 2624
void i915_handle_error(struct drm_device *dev, bool wedged,
2625
		       const char *fmt, ...)
3031 serge 2626
{
2627
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 2628
	va_list args;
2629
	char error_msg[80];
3031 serge 2630
 
5060 serge 2631
	va_start(args, fmt);
2632
	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2633
	va_end(args);
2634
 
4560 Serge 2635
//	i915_capture_error_state(dev);
3031 serge 2636
	i915_report_and_clear_eir(dev);
2637
 
2638
	if (wedged) {
6084 serge 2639
		atomic_or(I915_RESET_IN_PROGRESS_FLAG,
3480 Serge 2640
				&dev_priv->gpu_error.reset_counter);
3031 serge 2641
 
2642
		/*
6084 serge 2643
		 * Wakeup waiting processes so that the reset function
2644
		 * i915_reset_and_wakeup doesn't deadlock trying to grab
2645
		 * various locks. By bumping the reset counter first, the woken
4104 Serge 2646
		 * processes will see a reset in progress and back off,
2647
		 * releasing their locks and then wait for the reset completion.
2648
		 * We must do this for _all_ gpu waiters that might hold locks
2649
		 * that the reset work needs to acquire.
2650
		 *
2651
		 * Note: The wake_up serves as the required memory barrier to
2652
		 * ensure that the waiters see the updated value of the reset
2653
		 * counter atomic_t.
3031 serge 2654
		 */
4104 Serge 2655
		i915_error_wake_up(dev_priv, false);
3031 serge 2656
	}
2657
 
6084 serge 2658
	i915_reset_and_wakeup(dev);
3031 serge 2659
}
2660
 
2661
/* Called from drm generic code, passed 'crtc' which
2662
 * we use as a pipe index
2663
 */
6084 serge 2664
static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2665
{
5060 serge 2666
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2667
	unsigned long irqflags;
2668
 
2669
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2670
	if (INTEL_INFO(dev)->gen >= 4)
2671
		i915_enable_pipestat(dev_priv, pipe,
5060 serge 2672
				     PIPE_START_VBLANK_INTERRUPT_STATUS);
3031 serge 2673
	else
2674
		i915_enable_pipestat(dev_priv, pipe,
5060 serge 2675
				     PIPE_VBLANK_INTERRUPT_STATUS);
3031 serge 2676
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2677
 
2678
	return 0;
2679
}
2680
 
6084 serge 2681
static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2682
{
5060 serge 2683
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2684
	unsigned long irqflags;
4104 Serge 2685
	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
4560 Serge 2686
						     DE_PIPE_VBLANK(pipe);
3031 serge 2687
 
2688
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6937 serge 2689
	ilk_enable_display_irq(dev_priv, bit);
3031 serge 2690
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2691
 
2692
	return 0;
2693
}
2694
 
6084 serge 2695
static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2696
{
5060 serge 2697
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2698
	unsigned long irqflags;
2699
 
2700
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2701
	i915_enable_pipestat(dev_priv, pipe,
5060 serge 2702
			     PIPE_START_VBLANK_INTERRUPT_STATUS);
3031 serge 2703
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2704
 
2705
	return 0;
2706
}
2707
 
6084 serge 2708
static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
4560 Serge 2709
{
2710
	struct drm_i915_private *dev_priv = dev->dev_private;
2711
	unsigned long irqflags;
2712
 
2713
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6937 serge 2714
	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
4560 Serge 2715
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6937 serge 2716
 
4560 Serge 2717
	return 0;
2718
}
2719
 
3031 serge 2720
/* Called from drm generic code, passed 'crtc' which
2721
 * we use as a pipe index
2722
 */
6084 serge 2723
static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2724
{
5060 serge 2725
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2726
	unsigned long irqflags;
2727
 
2728
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2729
	i915_disable_pipestat(dev_priv, pipe,
5060 serge 2730
			      PIPE_VBLANK_INTERRUPT_STATUS |
2731
			      PIPE_START_VBLANK_INTERRUPT_STATUS);
3031 serge 2732
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2733
}
2734
 
6084 serge 2735
static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2736
{
5060 serge 2737
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2738
	unsigned long irqflags;
4104 Serge 2739
	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
4560 Serge 2740
						     DE_PIPE_VBLANK(pipe);
3031 serge 2741
 
2742
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6937 serge 2743
	ilk_disable_display_irq(dev_priv, bit);
3031 serge 2744
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2745
}
2746
 
6084 serge 2747
static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2748
{
5060 serge 2749
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2750
	unsigned long irqflags;
2751
 
2752
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2753
	i915_disable_pipestat(dev_priv, pipe,
5060 serge 2754
			      PIPE_START_VBLANK_INTERRUPT_STATUS);
3031 serge 2755
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2756
}
2757
 
6084 serge 2758
static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
4560 Serge 2759
{
2760
	struct drm_i915_private *dev_priv = dev->dev_private;
2761
	unsigned long irqflags;
2762
 
2763
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6937 serge 2764
	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
4560 Serge 2765
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2766
}
2767
 
4104 Serge 2768
static bool
5060 serge 2769
ring_idle(struct intel_engine_cs *ring, u32 seqno)
2351 Serge 2770
{
4104 Serge 2771
	return (list_empty(&ring->request_list) ||
6084 serge 2772
		i915_seqno_passed(seqno, ring->last_submitted_seqno));
4104 Serge 2773
}
2351 Serge 2774
 
5060 serge 2775
static bool
2776
ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
4104 Serge 2777
{
5060 serge 2778
	if (INTEL_INFO(dev)->gen >= 8) {
2779
		return (ipehr >> 23) == 0x1c;
2780
	} else {
2781
		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2782
		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2783
				 MI_SEMAPHORE_REGISTER);
2784
	}
2785
}
2786
 
2787
static struct intel_engine_cs *
2788
semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2789
{
4104 Serge 2790
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
5060 serge 2791
	struct intel_engine_cs *signaller;
2792
	int i;
2351 Serge 2793
 
5060 serge 2794
	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2795
		for_each_ring(signaller, dev_priv, i) {
2796
			if (ring == signaller)
2797
				continue;
2798
 
2799
			if (offset == signaller->semaphore.signal_ggtt[ring->id])
2800
				return signaller;
2801
		}
2802
	} else {
2803
		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2804
 
2805
		for_each_ring(signaller, dev_priv, i) {
2806
			if(ring == signaller)
2807
				continue;
2808
 
2809
			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2810
				return signaller;
2811
		}
2812
	}
2813
 
2814
	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2815
		  ring->id, ipehr, offset);
2816
 
2817
	return NULL;
2818
}
2819
 
2820
static struct intel_engine_cs *
2821
semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2822
{
2823
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2824
	u32 cmd, ipehr, head;
2825
	u64 offset = 0;
2826
	int i, backwards;
2827
 
6084 serge 2828
	/*
2829
	 * This function does not support execlist mode - any attempt to
2830
	 * proceed further into this function will result in a kernel panic
2831
	 * when dereferencing ring->buffer, which is not set up in execlist
2832
	 * mode.
2833
	 *
2834
	 * The correct way of doing it would be to derive the currently
2835
	 * executing ring buffer from the current context, which is derived
2836
	 * from the currently running request. Unfortunately, to get the
2837
	 * current request we would have to grab the struct_mutex before doing
2838
	 * anything else, which would be ill-advised since some other thread
2839
	 * might have grabbed it already and managed to hang itself, causing
2840
	 * the hang checker to deadlock.
2841
	 *
2842
	 * Therefore, this function does not support execlist mode in its
2843
	 * current form. Just return NULL and move on.
2844
	 */
2845
	if (ring->buffer == NULL)
2846
		return NULL;
2847
 
4104 Serge 2848
	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
5060 serge 2849
	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
4104 Serge 2850
		return NULL;
2351 Serge 2851
 
5060 serge 2852
	/*
2853
	 * HEAD is likely pointing to the dword after the actual command,
2854
	 * so scan backwards until we find the MBOX. But limit it to just 3
2855
	 * or 4 dwords depending on the semaphore wait command size.
2856
	 * Note that we don't care about ACTHD here since that might
2857
	 * point at at batch, and semaphores are always emitted into the
2858
	 * ringbuffer itself.
4104 Serge 2859
	 */
5060 serge 2860
	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2861
	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2862
 
2863
	for (i = backwards; i; --i) {
2864
		/*
2865
		 * Be paranoid and presume the hw has gone off into the wild -
2866
		 * our ring is smaller than what the hardware (and hence
2867
		 * HEAD_ADDR) allows. Also handles wrap-around.
2868
		 */
2869
		head &= ring->buffer->size - 1;
2870
 
2871
		/* This here seems to blow up */
2872
		cmd = ioread32(ring->buffer->virtual_start + head);
4104 Serge 2873
		if (cmd == ipehr)
2874
			break;
2351 Serge 2875
 
5060 serge 2876
		head -= 4;
2877
	}
2878
 
2879
	if (!i)
6084 serge 2880
		return NULL;
2351 Serge 2881
 
5060 serge 2882
	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2883
	if (INTEL_INFO(ring->dev)->gen >= 8) {
2884
		offset = ioread32(ring->buffer->virtual_start + head + 12);
2885
		offset <<= 32;
2886
		offset = ioread32(ring->buffer->virtual_start + head + 8);
2887
	}
2888
	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
4104 Serge 2889
}
2351 Serge 2890
 
5060 serge 2891
static int semaphore_passed(struct intel_engine_cs *ring)
4104 Serge 2892
{
2893
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
5060 serge 2894
	struct intel_engine_cs *signaller;
2895
	u32 seqno;
4104 Serge 2896
 
5060 serge 2897
	ring->hangcheck.deadlock++;
4104 Serge 2898
 
2899
	signaller = semaphore_waits_for(ring, &seqno);
5060 serge 2900
	if (signaller == NULL)
4104 Serge 2901
		return -1;
2902
 
5060 serge 2903
	/* Prevent pathological recursion due to driver bugs */
2904
	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2905
		return -1;
2906
 
2907
	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2908
		return 1;
2909
 
4104 Serge 2910
	/* cursory check for an unkickable deadlock */
5060 serge 2911
	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2912
	    semaphore_passed(signaller) < 0)
4104 Serge 2913
		return -1;
2914
 
5060 serge 2915
	return 0;
4104 Serge 2916
}
2917
 
2918
static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2919
{
5060 serge 2920
	struct intel_engine_cs *ring;
4104 Serge 2921
	int i;
2922
 
2923
	for_each_ring(ring, dev_priv, i)
5060 serge 2924
		ring->hangcheck.deadlock = 0;
4104 Serge 2925
}
2926
 
2927
static enum intel_ring_hangcheck_action
5060 serge 2928
ring_stuck(struct intel_engine_cs *ring, u64 acthd)
4104 Serge 2929
{
2930
	struct drm_device *dev = ring->dev;
2931
	struct drm_i915_private *dev_priv = dev->dev_private;
2932
	u32 tmp;
2933
 
5060 serge 2934
	if (acthd != ring->hangcheck.acthd) {
2935
		if (acthd > ring->hangcheck.max_acthd) {
2936
			ring->hangcheck.max_acthd = acthd;
6084 serge 2937
			return HANGCHECK_ACTIVE;
5060 serge 2938
		}
4104 Serge 2939
 
5060 serge 2940
		return HANGCHECK_ACTIVE_LOOP;
2941
	}
2942
 
4104 Serge 2943
	if (IS_GEN2(dev))
2944
		return HANGCHECK_HUNG;
2945
 
2946
	/* Is the chip hanging on a WAIT_FOR_EVENT?
2947
	 * If so we can simply poke the RB_WAIT bit
2948
	 * and break the hang. This should work on
2949
	 * all but the second generation chipsets.
2950
	 */
2951
	tmp = I915_READ_CTL(ring);
2952
	if (tmp & RING_WAIT) {
5060 serge 2953
		i915_handle_error(dev, false,
2954
				  "Kicking stuck wait on %s",
6084 serge 2955
				  ring->name);
4104 Serge 2956
		I915_WRITE_CTL(ring, tmp);
2957
		return HANGCHECK_KICK;
2958
	}
2959
 
2960
	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2961
		switch (semaphore_passed(ring)) {
2962
		default:
2963
			return HANGCHECK_HUNG;
2964
		case 1:
5060 serge 2965
			i915_handle_error(dev, false,
2966
					  "Kicking stuck semaphore on %s",
6084 serge 2967
					  ring->name);
4104 Serge 2968
			I915_WRITE_CTL(ring, tmp);
2969
			return HANGCHECK_KICK;
2970
		case 0:
2971
			return HANGCHECK_WAIT;
2972
		}
2973
	}
2974
 
2975
	return HANGCHECK_HUNG;
2976
}
2977
 
6084 serge 2978
/*
4104 Serge 2979
 * This is called when the chip hasn't reported back with completed
2980
 * batchbuffers in a long time. We keep track per ring seqno progress and
2981
 * if there are no progress, hangcheck score for that ring is increased.
2982
 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2983
 * we kick the ring. If we see no progress on three subsequent calls
2984
 * we assume chip is wedged and try to fix it by resetting the chip.
2985
 */
6084 serge 2986
static void i915_hangcheck_elapsed(struct work_struct *work)
4104 Serge 2987
{
6084 serge 2988
	struct drm_i915_private *dev_priv =
2989
		container_of(work, typeof(*dev_priv),
2990
			     gpu_error.hangcheck_work.work);
2991
	struct drm_device *dev = dev_priv->dev;
5060 serge 2992
	struct intel_engine_cs *ring;
4104 Serge 2993
	int i;
2994
	int busy_count = 0, rings_hung = 0;
2995
	bool stuck[I915_NUM_RINGS] = { 0 };
2996
#define BUSY 1
2997
#define KICK 5
2998
#define HUNG 20
2999
 
5060 serge 3000
	if (!i915.enable_hangcheck)
4104 Serge 3001
		return;
3002
 
6937 serge 3003
	/*
3004
	 * The hangcheck work is synced during runtime suspend, we don't
3005
	 * require a wakeref. TODO: instead of disabling the asserts make
3006
	 * sure that we hold a reference when this work is running.
3007
	 */
3008
	DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3009
 
4104 Serge 3010
	for_each_ring(ring, dev_priv, i) {
5060 serge 3011
		u64 acthd;
3012
		u32 seqno;
4104 Serge 3013
		bool busy = true;
3014
 
3015
		semaphore_clear_deadlocks(dev_priv);
3016
 
3017
		seqno = ring->get_seqno(ring, false);
3018
		acthd = intel_ring_get_active_head(ring);
3019
 
3020
		if (ring->hangcheck.seqno == seqno) {
3021
			if (ring_idle(ring, seqno)) {
5060 serge 3022
				ring->hangcheck.action = HANGCHECK_IDLE;
3023
 
6084 serge 3024
				if (waitqueue_active(&ring->irq_queue)) {
4104 Serge 3025
					/* Issue a wake-up to catch stuck h/w. */
6084 serge 3026
					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3027
						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3028
							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3029
								  ring->name);
3030
						else
3031
							DRM_INFO("Fake missed irq on %s\n",
3032
								 ring->name);
3033
						wake_up_all(&ring->irq_queue);
3034
					}
3035
					/* Safeguard against driver failure */
3036
					ring->hangcheck.score += BUSY;
3037
				} else
4104 Serge 3038
					busy = false;
3039
			} else {
3040
				/* We always increment the hangcheck score
3041
				 * if the ring is busy and still processing
3042
				 * the same request, so that no single request
3043
				 * can run indefinitely (such as a chain of
3044
				 * batches). The only time we do not increment
3045
				 * the hangcheck score on this ring, if this
3046
				 * ring is in a legitimate wait for another
3047
				 * ring. In that case the waiting ring is a
3048
				 * victim and we want to be sure we catch the
3049
				 * right culprit. Then every time we do kick
3050
				 * the ring, add a small increment to the
3051
				 * score so that we can catch a batch that is
3052
				 * being repeatedly kicked and so responsible
3053
				 * for stalling the machine.
3054
				 */
3055
				ring->hangcheck.action = ring_stuck(ring,
3056
								    acthd);
3057
 
3058
				switch (ring->hangcheck.action) {
4560 Serge 3059
				case HANGCHECK_IDLE:
4104 Serge 3060
				case HANGCHECK_WAIT:
5060 serge 3061
				case HANGCHECK_ACTIVE:
4104 Serge 3062
					break;
5060 serge 3063
				case HANGCHECK_ACTIVE_LOOP:
4104 Serge 3064
					ring->hangcheck.score += BUSY;
3065
					break;
3066
				case HANGCHECK_KICK:
3067
					ring->hangcheck.score += KICK;
3068
					break;
3069
				case HANGCHECK_HUNG:
3070
					ring->hangcheck.score += HUNG;
3071
					stuck[i] = true;
3072
					break;
3073
				}
3074
			}
3075
		} else {
4560 Serge 3076
			ring->hangcheck.action = HANGCHECK_ACTIVE;
3077
 
4104 Serge 3078
			/* Gradually reduce the count so that we catch DoS
3079
			 * attempts across multiple batches.
3080
			 */
3081
			if (ring->hangcheck.score > 0)
3082
				ring->hangcheck.score--;
5060 serge 3083
 
3084
			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
4104 Serge 3085
		}
3086
 
3087
		ring->hangcheck.seqno = seqno;
3088
		ring->hangcheck.acthd = acthd;
3089
		busy_count += busy;
3090
	}
3091
 
3092
	for_each_ring(ring, dev_priv, i) {
5060 serge 3093
		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
4104 Serge 3094
			DRM_INFO("%s on %s\n",
6084 serge 3095
				 stuck[i] ? "stuck" : "no progress",
3096
				 ring->name);
4104 Serge 3097
			rings_hung++;
3098
		}
3099
	}
3100
 
3101
//   if (rings_hung)
3102
//       return i915_handle_error(dev, true);
3103
 
3104
}
6088 serge 3105
 
5060 serge 3106
static void ibx_irq_reset(struct drm_device *dev)
3107
{
3108
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 3109
 
5060 serge 3110
	if (HAS_PCH_NOP(dev))
3111
		return;
3112
 
3113
	GEN5_IRQ_RESET(SDE);
3114
 
3115
	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3116
		I915_WRITE(SERR_INT, 0xffffffff);
3117
}
3118
 
3119
/*
3120
 * SDEIER is also touched by the interrupt handler to work around missed PCH
3121
 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3122
 * instead we unconditionally enable all PCH interrupt sources here, but then
3123
 * only unmask them as needed with SDEIMR.
3124
 *
3125
 * This function needs to be called before interrupts are enabled.
3126
 */
3127
static void ibx_irq_pre_postinstall(struct drm_device *dev)
4104 Serge 3128
{
3129
	struct drm_i915_private *dev_priv = dev->dev_private;
3130
 
3746 Serge 3131
	if (HAS_PCH_NOP(dev))
3132
		return;
3133
 
5060 serge 3134
	WARN_ON(I915_READ(SDEIER) != 0);
3746 Serge 3135
	I915_WRITE(SDEIER, 0xffffffff);
4104 Serge 3136
	POSTING_READ(SDEIER);
2351 Serge 3137
}
3138
 
5060 serge 3139
static void gen5_gt_irq_reset(struct drm_device *dev)
4104 Serge 3140
{
3141
	struct drm_i915_private *dev_priv = dev->dev_private;
3142
 
5060 serge 3143
	GEN5_IRQ_RESET(GT);
3144
	if (INTEL_INFO(dev)->gen >= 6)
3145
		GEN5_IRQ_RESET(GEN6_PM);
4104 Serge 3146
}
3147
 
3148
/* drm_dma.h hooks
3149
*/
5060 serge 3150
static void ironlake_irq_reset(struct drm_device *dev)
4104 Serge 3151
{
5060 serge 3152
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 3153
 
5060 serge 3154
	I915_WRITE(HWSTAM, 0xffffffff);
4104 Serge 3155
 
5060 serge 3156
	GEN5_IRQ_RESET(DE);
3157
	if (IS_GEN7(dev))
3158
		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
4104 Serge 3159
 
5060 serge 3160
	gen5_gt_irq_reset(dev);
4104 Serge 3161
 
5060 serge 3162
	ibx_irq_reset(dev);
4104 Serge 3163
}
3164
 
5354 serge 3165
static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3166
{
3167
	enum pipe pipe;
3168
 
6084 serge 3169
	i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
5354 serge 3170
	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3171
 
3172
	for_each_pipe(dev_priv, pipe)
3173
		I915_WRITE(PIPESTAT(pipe), 0xffff);
3174
 
3175
	GEN5_IRQ_RESET(VLV_);
3176
}
3177
 
3031 serge 3178
static void valleyview_irq_preinstall(struct drm_device *dev)
3179
{
5060 serge 3180
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3181
 
3182
	/* VLV magic */
3183
	I915_WRITE(VLV_IMR, 0);
3184
	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3185
	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3186
	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3187
 
5060 serge 3188
	gen5_gt_irq_reset(dev);
4104 Serge 3189
 
5354 serge 3190
	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3031 serge 3191
 
5354 serge 3192
	vlv_display_irq_reset(dev_priv);
3031 serge 3193
}
3194
 
5060 serge 3195
static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
4560 Serge 3196
{
5060 serge 3197
	GEN8_IRQ_RESET_NDX(GT, 0);
3198
	GEN8_IRQ_RESET_NDX(GT, 1);
3199
	GEN8_IRQ_RESET_NDX(GT, 2);
3200
	GEN8_IRQ_RESET_NDX(GT, 3);
3201
}
3202
 
3203
static void gen8_irq_reset(struct drm_device *dev)
3204
{
4560 Serge 3205
	struct drm_i915_private *dev_priv = dev->dev_private;
3206
	int pipe;
3207
 
3208
	I915_WRITE(GEN8_MASTER_IRQ, 0);
3209
	POSTING_READ(GEN8_MASTER_IRQ);
3210
 
5060 serge 3211
	gen8_gt_irq_reset(dev_priv);
4560 Serge 3212
 
5354 serge 3213
	for_each_pipe(dev_priv, pipe)
3214
		if (intel_display_power_is_enabled(dev_priv,
6084 serge 3215
						   POWER_DOMAIN_PIPE(pipe)))
3216
			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
4560 Serge 3217
 
5060 serge 3218
	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3219
	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3220
	GEN5_IRQ_RESET(GEN8_PCU_);
4560 Serge 3221
 
6084 serge 3222
	if (HAS_PCH_SPLIT(dev))
3223
		ibx_irq_reset(dev);
5060 serge 3224
}
4560 Serge 3225
 
6084 serge 3226
void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3227
				     unsigned int pipe_mask)
5060 serge 3228
{
5354 serge 3229
	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
4560 Serge 3230
 
5354 serge 3231
	spin_lock_irq(&dev_priv->irq_lock);
6084 serge 3232
	if (pipe_mask & 1 << PIPE_A)
3233
		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3234
				  dev_priv->de_irq_mask[PIPE_A],
3235
				  ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3236
	if (pipe_mask & 1 << PIPE_B)
3237
		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3238
				  dev_priv->de_irq_mask[PIPE_B],
3239
				  ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3240
	if (pipe_mask & 1 << PIPE_C)
3241
		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3242
				  dev_priv->de_irq_mask[PIPE_C],
3243
				  ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
5354 serge 3244
	spin_unlock_irq(&dev_priv->irq_lock);
5060 serge 3245
}
3246
 
3247
static void cherryview_irq_preinstall(struct drm_device *dev)
3248
{
3249
	struct drm_i915_private *dev_priv = dev->dev_private;
3250
 
3251
	I915_WRITE(GEN8_MASTER_IRQ, 0);
3252
	POSTING_READ(GEN8_MASTER_IRQ);
3253
 
3254
	gen8_gt_irq_reset(dev_priv);
3255
 
3256
	GEN5_IRQ_RESET(GEN8_PCU_);
3257
 
3258
	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3259
 
5354 serge 3260
	vlv_display_irq_reset(dev_priv);
4560 Serge 3261
}
3262
 
6084 serge 3263
static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3264
				  const u32 hpd[HPD_NUM_PINS])
3265
{
3266
	struct drm_i915_private *dev_priv = to_i915(dev);
3267
	struct intel_encoder *encoder;
3268
	u32 enabled_irqs = 0;
3269
 
3270
	for_each_intel_encoder(dev, encoder)
3271
		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3272
			enabled_irqs |= hpd[encoder->hpd_pin];
3273
 
3274
	return enabled_irqs;
3275
}
3276
 
3746 Serge 3277
static void ibx_hpd_irq_setup(struct drm_device *dev)
3278
{
5060 serge 3279
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 3280
	u32 hotplug_irqs, hotplug, enabled_irqs;
3746 Serge 3281
 
3282
	if (HAS_PCH_IBX(dev)) {
4104 Serge 3283
		hotplug_irqs = SDE_HOTPLUG_MASK;
6084 serge 3284
		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3746 Serge 3285
	} else {
4104 Serge 3286
		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
6084 serge 3287
		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3746 Serge 3288
	}
3289
 
4104 Serge 3290
	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3746 Serge 3291
 
3292
	/*
6084 serge 3293
	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3294
	 * duration to 2ms (which is the minimum in the Display Port spec).
3295
	 * The pulse duration bits are reserved on LPT+.
3296
	 */
2351 Serge 3297
	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3298
	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3299
	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3300
	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3301
	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
6084 serge 3302
	/*
3303
	 * When CPU and PCH are on the same package, port A
3304
	 * HPD must be enabled in both north and south.
3305
	 */
3306
	if (HAS_PCH_LPT_LP(dev))
3307
		hotplug |= PORTA_HOTPLUG_ENABLE;
2351 Serge 3308
	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3309
}
3310
 
6084 serge 3311
static void spt_hpd_irq_setup(struct drm_device *dev)
3312
{
3313
	struct drm_i915_private *dev_priv = dev->dev_private;
3314
	u32 hotplug_irqs, hotplug, enabled_irqs;
3315
 
3316
	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3317
	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3318
 
3319
	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3320
 
3321
	/* Enable digital hotplug on the PCH */
3322
	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3323
	hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3324
		PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3325
	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3326
 
3327
	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3328
	hotplug |= PORTE_HOTPLUG_ENABLE;
3329
	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3330
}
3331
 
3332
static void ilk_hpd_irq_setup(struct drm_device *dev)
3333
{
3334
	struct drm_i915_private *dev_priv = dev->dev_private;
3335
	u32 hotplug_irqs, hotplug, enabled_irqs;
3336
 
3337
	if (INTEL_INFO(dev)->gen >= 8) {
3338
		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3339
		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3340
 
3341
		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3342
	} else if (INTEL_INFO(dev)->gen >= 7) {
3343
		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3344
		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3345
 
3346
		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3347
	} else {
3348
		hotplug_irqs = DE_DP_A_HOTPLUG;
3349
		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3350
 
3351
		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3352
	}
3353
 
3354
	/*
3355
	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3356
	 * duration to 2ms (which is the minimum in the Display Port spec)
3357
	 * The pulse duration bits are reserved on HSW+.
3358
	 */
3359
	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3360
	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3361
	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3362
	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3363
 
3364
	ibx_hpd_irq_setup(dev);
3365
}
3366
 
3367
static void bxt_hpd_irq_setup(struct drm_device *dev)
3368
{
3369
	struct drm_i915_private *dev_priv = dev->dev_private;
3370
	u32 hotplug_irqs, hotplug, enabled_irqs;
3371
 
3372
	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3373
	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3374
 
3375
	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3376
 
3377
	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3378
	hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3379
		PORTA_HOTPLUG_ENABLE;
3380
	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3381
}
3382
 
3480 Serge 3383
static void ibx_irq_postinstall(struct drm_device *dev)
3384
{
5060 serge 3385
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 3386
	u32 mask;
3387
 
3746 Serge 3388
	if (HAS_PCH_NOP(dev))
3389
		return;
3390
 
5060 serge 3391
	if (HAS_PCH_IBX(dev))
3392
		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3393
	else
3394
		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
4104 Serge 3395
 
6084 serge 3396
	gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3480 Serge 3397
	I915_WRITE(SDEIMR, ~mask);
3398
}
3399
 
4104 Serge 3400
static void gen5_gt_irq_postinstall(struct drm_device *dev)
2351 Serge 3401
{
4104 Serge 3402
	struct drm_i915_private *dev_priv = dev->dev_private;
3403
	u32 pm_irqs, gt_irqs;
2351 Serge 3404
 
4104 Serge 3405
	pm_irqs = gt_irqs = 0;
2351 Serge 3406
 
3407
	dev_priv->gt_irq_mask = ~0;
4560 Serge 3408
	if (HAS_L3_DPF(dev)) {
4104 Serge 3409
		/* L3 parity interrupt is always unmasked. */
4560 Serge 3410
		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3411
		gt_irqs |= GT_PARITY_ERROR(dev);
4104 Serge 3412
	}
2351 Serge 3413
 
4104 Serge 3414
	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3415
	if (IS_GEN5(dev)) {
3416
		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3417
			   ILK_BSD_USER_INTERRUPT;
3418
	} else {
3419
		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3420
	}
2351 Serge 3421
 
5060 serge 3422
	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
2351 Serge 3423
 
4104 Serge 3424
	if (INTEL_INFO(dev)->gen >= 6) {
5354 serge 3425
		/*
3426
		 * RPS interrupts will get enabled/disabled on demand when RPS
3427
		 * itself is enabled/disabled.
3428
		 */
4104 Serge 3429
		if (HAS_VEBOX(dev))
3430
			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3431
 
3432
		dev_priv->pm_irq_mask = 0xffffffff;
5060 serge 3433
		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
6084 serge 3434
	}
2351 Serge 3435
}
3436
 
4104 Serge 3437
static int ironlake_irq_postinstall(struct drm_device *dev)
3031 serge 3438
{
5060 serge 3439
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 3440
	u32 display_mask, extra_mask;
3441
 
3442
	if (INTEL_INFO(dev)->gen >= 7) {
3443
		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3444
				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
6084 serge 3445
				DE_PLANEB_FLIP_DONE_IVB |
5060 serge 3446
				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
4104 Serge 3447
		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
6084 serge 3448
			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3449
			      DE_DP_A_HOTPLUG_IVB);
4104 Serge 3450
	} else {
3451
		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3452
				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
4560 Serge 3453
				DE_AUX_CHANNEL_A |
3454
				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3455
				DE_POISON);
6084 serge 3456
		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3457
			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3458
			      DE_DP_A_HOTPLUG);
4104 Serge 3459
	}
3460
 
3031 serge 3461
	dev_priv->irq_mask = ~display_mask;
3462
 
5060 serge 3463
	I915_WRITE(HWSTAM, 0xeffe);
3031 serge 3464
 
5060 serge 3465
	ibx_irq_pre_postinstall(dev);
3466
 
3467
	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3468
 
4104 Serge 3469
	gen5_gt_irq_postinstall(dev);
3031 serge 3470
 
4104 Serge 3471
	ibx_irq_postinstall(dev);
3031 serge 3472
 
4104 Serge 3473
	if (IS_IRONLAKE_M(dev)) {
3474
		/* Enable PCU event interrupts
3475
		 *
3476
		 * spinlocking not required here for correctness since interrupt
3477
		 * setup is guaranteed to run in single-threaded context. But we
3478
		 * need it to make the assert_spin_locked happy. */
5354 serge 3479
		spin_lock_irq(&dev_priv->irq_lock);
6937 serge 3480
		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
5354 serge 3481
		spin_unlock_irq(&dev_priv->irq_lock);
4104 Serge 3482
	}
3031 serge 3483
 
3484
	return 0;
3485
}
3486
 
5060 serge 3487
static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3488
{
3489
	u32 pipestat_mask;
3490
	u32 iir_mask;
5354 serge 3491
	enum pipe pipe;
5060 serge 3492
 
3493
	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3494
			PIPE_FIFO_UNDERRUN_STATUS;
3495
 
5354 serge 3496
	for_each_pipe(dev_priv, pipe)
3497
		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
5060 serge 3498
	POSTING_READ(PIPESTAT(PIPE_A));
3499
 
3500
	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3501
			PIPE_CRC_DONE_INTERRUPT_STATUS;
3502
 
5354 serge 3503
	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3504
	for_each_pipe(dev_priv, pipe)
3505
		      i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
5060 serge 3506
 
3507
	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3508
		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3509
		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
5354 serge 3510
	if (IS_CHERRYVIEW(dev_priv))
3511
		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
5060 serge 3512
	dev_priv->irq_mask &= ~iir_mask;
3513
 
3514
	I915_WRITE(VLV_IIR, iir_mask);
3515
	I915_WRITE(VLV_IIR, iir_mask);
5354 serge 3516
	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
5060 serge 3517
	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
5354 serge 3518
	POSTING_READ(VLV_IMR);
5060 serge 3519
}
3520
 
3521
static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3522
{
3523
	u32 pipestat_mask;
3524
	u32 iir_mask;
5354 serge 3525
	enum pipe pipe;
5060 serge 3526
 
3527
	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3528
		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3529
		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
5354 serge 3530
	if (IS_CHERRYVIEW(dev_priv))
3531
		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
5060 serge 3532
 
3533
	dev_priv->irq_mask |= iir_mask;
5354 serge 3534
	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
5060 serge 3535
	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3536
	I915_WRITE(VLV_IIR, iir_mask);
3537
	I915_WRITE(VLV_IIR, iir_mask);
3538
	POSTING_READ(VLV_IIR);
3539
 
3540
	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3541
			PIPE_CRC_DONE_INTERRUPT_STATUS;
3542
 
5354 serge 3543
	i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3544
	for_each_pipe(dev_priv, pipe)
3545
		i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
5060 serge 3546
 
3547
	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3548
			PIPE_FIFO_UNDERRUN_STATUS;
5354 serge 3549
 
3550
	for_each_pipe(dev_priv, pipe)
3551
		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
5060 serge 3552
	POSTING_READ(PIPESTAT(PIPE_A));
3553
}
3554
 
3555
void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3556
{
3557
	assert_spin_locked(&dev_priv->irq_lock);
3558
 
3559
	if (dev_priv->display_irqs_enabled)
3560
		return;
3561
 
3562
	dev_priv->display_irqs_enabled = true;
3563
 
5354 serge 3564
	if (intel_irqs_enabled(dev_priv))
5060 serge 3565
		valleyview_display_irqs_install(dev_priv);
3566
}
3567
 
3568
void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3569
{
3570
	assert_spin_locked(&dev_priv->irq_lock);
3571
 
3572
	if (!dev_priv->display_irqs_enabled)
3573
		return;
3574
 
3575
	dev_priv->display_irqs_enabled = false;
3576
 
5354 serge 3577
	if (intel_irqs_enabled(dev_priv))
5060 serge 3578
		valleyview_display_irqs_uninstall(dev_priv);
3579
}
3580
 
5354 serge 3581
static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3031 serge 3582
{
5060 serge 3583
	dev_priv->irq_mask = ~0;
3031 serge 3584
 
6084 serge 3585
	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3480 Serge 3586
	POSTING_READ(PORT_HOTPLUG_EN);
3587
 
5354 serge 3588
	I915_WRITE(VLV_IIR, 0xffffffff);
3589
	I915_WRITE(VLV_IIR, 0xffffffff);
3590
	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3031 serge 3591
	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
5354 serge 3592
	POSTING_READ(VLV_IMR);
3031 serge 3593
 
4104 Serge 3594
	/* Interrupt setup is already guaranteed to be single-threaded, this is
3595
	 * just to make the assert_spin_locked check happy. */
5354 serge 3596
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 3597
	if (dev_priv->display_irqs_enabled)
3598
		valleyview_display_irqs_install(dev_priv);
5354 serge 3599
	spin_unlock_irq(&dev_priv->irq_lock);
3600
}
3031 serge 3601
 
5354 serge 3602
static int valleyview_irq_postinstall(struct drm_device *dev)
3603
{
3604
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3605
 
5354 serge 3606
	vlv_display_irq_postinstall(dev_priv);
3607
 
4104 Serge 3608
	gen5_gt_irq_postinstall(dev);
3243 Serge 3609
 
3031 serge 3610
	/* ack & enable invalid PTE error interrupts */
3611
#if 0 /* FIXME: add support to irq handler for checking these bits */
3612
	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3613
	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3614
#endif
3615
 
3616
	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3480 Serge 3617
 
3618
	return 0;
3619
}
3620
 
4560 Serge 3621
static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3622
{
3623
	/* These are interrupts we'll toggle with the ring mask register */
3624
	uint32_t gt_interrupts[] = {
3625
		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
5354 serge 3626
			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4560 Serge 3627
			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
5354 serge 3628
			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3629
			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
4560 Serge 3630
		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
5354 serge 3631
			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3632
			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3633
			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
4560 Serge 3634
		0,
5354 serge 3635
		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3636
			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
4560 Serge 3637
		};
3638
 
5060 serge 3639
	dev_priv->pm_irq_mask = 0xffffffff;
5354 serge 3640
	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3641
	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3642
	/*
3643
	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3644
	 * is enabled/disabled.
3645
	 */
3646
	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3647
	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
4560 Serge 3648
}
3649
 
3650
static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3651
{
5354 serge 3652
	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3653
	uint32_t de_pipe_enables;
6084 serge 3654
	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3655
	u32 de_port_enables;
3656
	enum pipe pipe;
5354 serge 3657
 
6084 serge 3658
	if (INTEL_INFO(dev_priv)->gen >= 9) {
5354 serge 3659
		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3660
				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
6084 serge 3661
		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3662
				  GEN9_AUX_CHANNEL_D;
3663
		if (IS_BROXTON(dev_priv))
3664
			de_port_masked |= BXT_DE_PORT_GMBUS;
3665
	} else {
5354 serge 3666
		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
6084 serge 3667
				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3668
	}
5354 serge 3669
 
3670
	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
6084 serge 3671
					   GEN8_PIPE_FIFO_UNDERRUN;
5354 serge 3672
 
6084 serge 3673
	de_port_enables = de_port_masked;
3674
	if (IS_BROXTON(dev_priv))
3675
		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3676
	else if (IS_BROADWELL(dev_priv))
3677
		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3678
 
4560 Serge 3679
	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3680
	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3681
	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3682
 
5354 serge 3683
	for_each_pipe(dev_priv, pipe)
3684
		if (intel_display_power_is_enabled(dev_priv,
5060 serge 3685
				POWER_DOMAIN_PIPE(pipe)))
3686
			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3687
					  dev_priv->de_irq_mask[pipe],
6084 serge 3688
					  de_pipe_enables);
4560 Serge 3689
 
6084 serge 3690
	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
4560 Serge 3691
}
3692
 
3693
static int gen8_irq_postinstall(struct drm_device *dev)
3694
{
3695
	struct drm_i915_private *dev_priv = dev->dev_private;
3696
 
6084 serge 3697
	if (HAS_PCH_SPLIT(dev))
3698
		ibx_irq_pre_postinstall(dev);
5060 serge 3699
 
4560 Serge 3700
	gen8_gt_irq_postinstall(dev_priv);
3701
	gen8_de_irq_postinstall(dev_priv);
3702
 
6084 serge 3703
	if (HAS_PCH_SPLIT(dev))
3704
		ibx_irq_postinstall(dev);
4560 Serge 3705
 
3706
	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3707
	POSTING_READ(GEN8_MASTER_IRQ);
3708
 
3709
	return 0;
3710
}
3711
 
5060 serge 3712
static int cherryview_irq_postinstall(struct drm_device *dev)
4560 Serge 3713
{
3714
	struct drm_i915_private *dev_priv = dev->dev_private;
3715
 
5354 serge 3716
	vlv_display_irq_postinstall(dev_priv);
4560 Serge 3717
 
5060 serge 3718
	gen8_gt_irq_postinstall(dev_priv);
4560 Serge 3719
 
5060 serge 3720
	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3721
	POSTING_READ(GEN8_MASTER_IRQ);
4560 Serge 3722
 
5060 serge 3723
	return 0;
3724
}
4560 Serge 3725
 
5060 serge 3726
static void gen8_irq_uninstall(struct drm_device *dev)
3727
{
3728
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 3729
 
5060 serge 3730
	if (!dev_priv)
3731
		return;
3732
 
3733
	gen8_irq_reset(dev);
4560 Serge 3734
}
3735
 
5354 serge 3736
static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3737
{
3738
	/* Interrupt setup is already guaranteed to be single-threaded, this is
3739
	 * just to make the assert_spin_locked check happy. */
3740
	spin_lock_irq(&dev_priv->irq_lock);
3741
	if (dev_priv->display_irqs_enabled)
3742
		valleyview_display_irqs_uninstall(dev_priv);
3743
	spin_unlock_irq(&dev_priv->irq_lock);
3744
 
3745
	vlv_display_irq_reset(dev_priv);
3746
 
3747
	dev_priv->irq_mask = ~0;
3748
}
3749
 
3031 serge 3750
static void valleyview_irq_uninstall(struct drm_device *dev)
3751
{
5060 serge 3752
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3753
 
3754
	if (!dev_priv)
3755
		return;
3756
 
5060 serge 3757
	I915_WRITE(VLV_MASTER_IER, 0);
4293 Serge 3758
 
5354 serge 3759
	gen5_gt_irq_reset(dev);
3031 serge 3760
 
3761
	I915_WRITE(HWSTAM, 0xffffffff);
5060 serge 3762
 
5354 serge 3763
	vlv_display_irq_uninstall(dev_priv);
3031 serge 3764
}
3765
 
5060 serge 3766
static void cherryview_irq_uninstall(struct drm_device *dev)
3031 serge 3767
{
5060 serge 3768
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3769
 
3770
	if (!dev_priv)
3771
		return;
3772
 
5060 serge 3773
	I915_WRITE(GEN8_MASTER_IRQ, 0);
3774
	POSTING_READ(GEN8_MASTER_IRQ);
4293 Serge 3775
 
5354 serge 3776
	gen8_gt_irq_reset(dev_priv);
3031 serge 3777
 
5354 serge 3778
	GEN5_IRQ_RESET(GEN8_PCU_);
3031 serge 3779
 
5354 serge 3780
	vlv_display_irq_uninstall(dev_priv);
5060 serge 3781
}
3782
 
3783
static void ironlake_irq_uninstall(struct drm_device *dev)
3784
{
3785
	struct drm_i915_private *dev_priv = dev->dev_private;
3786
 
3787
	if (!dev_priv)
3746 Serge 3788
		return;
3789
 
5060 serge 3790
	ironlake_irq_reset(dev);
3031 serge 3791
}
3792
 
3793
#if 0
3794
static void i8xx_irq_preinstall(struct drm_device * dev)
3795
{
5060 serge 3796
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3797
	int pipe;
3798
 
5354 serge 3799
	for_each_pipe(dev_priv, pipe)
3031 serge 3800
		I915_WRITE(PIPESTAT(pipe), 0);
3801
	I915_WRITE16(IMR, 0xffff);
3802
	I915_WRITE16(IER, 0x0);
3803
	POSTING_READ16(IER);
3804
}
3805
 
3806
static int i8xx_irq_postinstall(struct drm_device *dev)
3807
{
5060 serge 3808
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3809
 
3810
	I915_WRITE16(EMR,
3811
		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3812
 
3813
	/* Unmask the interrupts that we always want on. */
3814
	dev_priv->irq_mask =
3815
		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3816
		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3817
		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
6084 serge 3818
		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3031 serge 3819
	I915_WRITE16(IMR, dev_priv->irq_mask);
3820
 
3821
	I915_WRITE16(IER,
3822
		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3823
		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3824
		     I915_USER_INTERRUPT);
3825
	POSTING_READ16(IER);
3826
 
4560 Serge 3827
	/* Interrupt setup is already guaranteed to be single-threaded, this is
3828
	 * just to make the assert_spin_locked check happy. */
5354 serge 3829
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 3830
	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3831
	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
5354 serge 3832
	spin_unlock_irq(&dev_priv->irq_lock);
4560 Serge 3833
 
3031 serge 3834
	return 0;
3835
}
3836
 
3746 Serge 3837
/*
3838
 * Returns true when a page flip has completed.
3839
 */
3840
static bool i8xx_handle_vblank(struct drm_device *dev,
4560 Serge 3841
			       int plane, int pipe, u32 iir)
3746 Serge 3842
{
5060 serge 3843
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 3844
	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3746 Serge 3845
 
6084 serge 3846
	if (!intel_pipe_handle_vblank(dev, pipe))
3847
		return false;
3746 Serge 3848
 
3849
	if ((iir & flip_pending) == 0)
5354 serge 3850
		goto check_page_flip;
3746 Serge 3851
 
3852
	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3853
	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3854
	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3855
	 * the flip is completed (no longer pending). Since this doesn't raise
3856
	 * an interrupt per se, we watch for the change at vblank.
3857
	 */
3858
	if (I915_READ16(ISR) & flip_pending)
5354 serge 3859
		goto check_page_flip;
3746 Serge 3860
 
6320 serge 3861
	intel_prepare_page_flip(dev, plane);
3862
	intel_finish_page_flip(dev, pipe);
5354 serge 3863
	return true;
3746 Serge 3864
 
5354 serge 3865
check_page_flip:
6320 serge 3866
	intel_check_page_flip(dev, pipe);
5354 serge 3867
	return false;
3746 Serge 3868
}
3869
 
3243 Serge 3870
static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3031 serge 3871
{
5060 serge 3872
	struct drm_device *dev = arg;
3873
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3874
	u16 iir, new_iir;
3875
	u32 pipe_stats[2];
3876
	int pipe;
3877
	u16 flip_mask =
3878
		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3879
		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
6937 serge 3880
	irqreturn_t ret;
3031 serge 3881
 
6084 serge 3882
	if (!intel_irqs_enabled(dev_priv))
3883
		return IRQ_NONE;
3884
 
6937 serge 3885
	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3886
	disable_rpm_wakeref_asserts(dev_priv);
3887
 
3888
	ret = IRQ_NONE;
3031 serge 3889
	iir = I915_READ16(IIR);
3890
	if (iir == 0)
6937 serge 3891
		goto out;
3031 serge 3892
 
3893
	while (iir & ~flip_mask) {
3894
		/* Can't rely on pipestat interrupt bit in iir as it might
3895
		 * have been cleared after the pipestat interrupt was received.
3896
		 * It doesn't set the bit in iir again, but it still produces
3897
		 * interrupts (for non-MSI).
3898
		 */
5354 serge 3899
		spin_lock(&dev_priv->irq_lock);
4126 Serge 3900
		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
5354 serge 3901
			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3031 serge 3902
 
5354 serge 3903
		for_each_pipe(dev_priv, pipe) {
6937 serge 3904
			i915_reg_t reg = PIPESTAT(pipe);
3031 serge 3905
			pipe_stats[pipe] = I915_READ(reg);
3906
 
3907
			/*
3908
			 * Clear the PIPE*STAT regs before the IIR
3909
			 */
5060 serge 3910
			if (pipe_stats[pipe] & 0x8000ffff)
3031 serge 3911
				I915_WRITE(reg, pipe_stats[pipe]);
6084 serge 3912
		}
5354 serge 3913
		spin_unlock(&dev_priv->irq_lock);
3031 serge 3914
 
3915
		I915_WRITE16(IIR, iir & ~flip_mask);
3916
		new_iir = I915_READ16(IIR); /* Flush posted writes */
3917
 
3918
		if (iir & I915_USER_INTERRUPT)
6084 serge 3919
			notify_ring(&dev_priv->ring[RCS]);
3031 serge 3920
 
5354 serge 3921
		for_each_pipe(dev_priv, pipe) {
4560 Serge 3922
			int plane = pipe;
3923
			if (HAS_FBC(dev))
3924
				plane = !plane;
3031 serge 3925
 
4560 Serge 3926
			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3927
			    i8xx_handle_vblank(dev, plane, pipe, iir))
3928
				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3031 serge 3929
 
4560 Serge 3930
			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3931
				i9xx_pipe_crc_irq_handler(dev, pipe);
5060 serge 3932
 
5354 serge 3933
			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3934
				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3935
								    pipe);
4560 Serge 3936
		}
3937
 
3031 serge 3938
		iir = new_iir;
3939
	}
6937 serge 3940
	ret = IRQ_HANDLED;
3031 serge 3941
 
6937 serge 3942
out:
3943
	enable_rpm_wakeref_asserts(dev_priv);
3944
 
3945
	return ret;
3031 serge 3946
}
3947
 
3948
static void i8xx_irq_uninstall(struct drm_device * dev)
3949
{
5060 serge 3950
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3951
	int pipe;
3952
 
5354 serge 3953
	for_each_pipe(dev_priv, pipe) {
3031 serge 3954
		/* Clear enable bits; then clear status bits */
3955
		I915_WRITE(PIPESTAT(pipe), 0);
3956
		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3957
	}
3958
	I915_WRITE16(IMR, 0xffff);
3959
	I915_WRITE16(IER, 0x0);
3960
	I915_WRITE16(IIR, I915_READ16(IIR));
3961
}
3962
 
3963
#endif
3964
 
3965
static void i915_irq_preinstall(struct drm_device * dev)
3966
{
5060 serge 3967
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3968
	int pipe;
3969
 
3970
	if (I915_HAS_HOTPLUG(dev)) {
6084 serge 3971
		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3031 serge 3972
		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3973
	}
3974
 
3975
	I915_WRITE16(HWSTAM, 0xeffe);
5354 serge 3976
	for_each_pipe(dev_priv, pipe)
3031 serge 3977
		I915_WRITE(PIPESTAT(pipe), 0);
3978
	I915_WRITE(IMR, 0xffffffff);
3979
	I915_WRITE(IER, 0x0);
3980
	POSTING_READ(IER);
3981
}
3982
 
3983
static int i915_irq_postinstall(struct drm_device *dev)
3984
{
5060 serge 3985
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3986
	u32 enable_mask;
3987
 
3988
	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3989
 
3990
	/* Unmask the interrupts that we always want on. */
3991
	dev_priv->irq_mask =
3992
		~(I915_ASLE_INTERRUPT |
3993
		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3994
		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3995
		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
6084 serge 3996
		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3031 serge 3997
 
3998
	enable_mask =
3999
		I915_ASLE_INTERRUPT |
4000
		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4001
		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4002
		I915_USER_INTERRUPT;
3480 Serge 4003
 
3031 serge 4004
	if (I915_HAS_HOTPLUG(dev)) {
6084 serge 4005
		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3480 Serge 4006
		POSTING_READ(PORT_HOTPLUG_EN);
4007
 
3031 serge 4008
		/* Enable in IER... */
4009
		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4010
		/* and unmask in IMR */
4011
		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4012
	}
4013
 
4014
	I915_WRITE(IMR, dev_priv->irq_mask);
4015
	I915_WRITE(IER, enable_mask);
4016
	POSTING_READ(IER);
4017
 
4126 Serge 4018
	i915_enable_asle_pipestat(dev);
3480 Serge 4019
 
4560 Serge 4020
	/* Interrupt setup is already guaranteed to be single-threaded, this is
4021
	 * just to make the assert_spin_locked check happy. */
5354 serge 4022
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 4023
	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4024
	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
5354 serge 4025
	spin_unlock_irq(&dev_priv->irq_lock);
4560 Serge 4026
 
3480 Serge 4027
	return 0;
4028
}
4029
 
3746 Serge 4030
/*
4031
 * Returns true when a page flip has completed.
4032
 */
4033
static bool i915_handle_vblank(struct drm_device *dev,
4034
			       int plane, int pipe, u32 iir)
3480 Serge 4035
{
5060 serge 4036
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 4037
	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3480 Serge 4038
 
6088 serge 4039
	if (!intel_pipe_handle_vblank(dev, pipe))
4040
		return false;
3480 Serge 4041
 
3746 Serge 4042
	if ((iir & flip_pending) == 0)
5354 serge 4043
		goto check_page_flip;
3480 Serge 4044
 
3746 Serge 4045
	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4046
	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4047
	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4048
	 * the flip is completed (no longer pending). Since this doesn't raise
4049
	 * an interrupt per se, we watch for the change at vblank.
4050
	 */
4051
	if (I915_READ(ISR) & flip_pending)
5354 serge 4052
		goto check_page_flip;
3746 Serge 4053
 
6320 serge 4054
	intel_prepare_page_flip(dev, plane);
4055
	intel_finish_page_flip(dev, pipe);
5354 serge 4056
	return true;
3746 Serge 4057
 
5354 serge 4058
check_page_flip:
6320 serge 4059
	intel_check_page_flip(dev, pipe);
5354 serge 4060
	return false;
3031 serge 4061
}
4062
 
3243 Serge 4063
static irqreturn_t i915_irq_handler(int irq, void *arg)
3031 serge 4064
{
5060 serge 4065
	struct drm_device *dev = arg;
4066
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4067
	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4068
	u32 flip_mask =
4069
		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4070
		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4071
	int pipe, ret = IRQ_NONE;
4072
 
6084 serge 4073
	if (!intel_irqs_enabled(dev_priv))
4074
		return IRQ_NONE;
4075
 
6937 serge 4076
	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4077
	disable_rpm_wakeref_asserts(dev_priv);
4078
 
3031 serge 4079
	iir = I915_READ(IIR);
4080
	do {
4081
		bool irq_received = (iir & ~flip_mask) != 0;
4082
		bool blc_event = false;
4083
 
4084
		/* Can't rely on pipestat interrupt bit in iir as it might
4085
		 * have been cleared after the pipestat interrupt was received.
4086
		 * It doesn't set the bit in iir again, but it still produces
4087
		 * interrupts (for non-MSI).
4088
		 */
5354 serge 4089
		spin_lock(&dev_priv->irq_lock);
4126 Serge 4090
		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
5354 serge 4091
			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3031 serge 4092
 
5354 serge 4093
		for_each_pipe(dev_priv, pipe) {
6937 serge 4094
			i915_reg_t reg = PIPESTAT(pipe);
3031 serge 4095
			pipe_stats[pipe] = I915_READ(reg);
4096
 
4097
			/* Clear the PIPE*STAT regs before the IIR */
4098
			if (pipe_stats[pipe] & 0x8000ffff) {
4099
				I915_WRITE(reg, pipe_stats[pipe]);
4100
				irq_received = true;
4101
			}
4102
		}
5354 serge 4103
		spin_unlock(&dev_priv->irq_lock);
3031 serge 4104
 
4105
		if (!irq_received)
4106
			break;
4107
 
4108
		/* Consume port.  Then clear IIR or we'll miss events */
5060 serge 4109
		if (I915_HAS_HOTPLUG(dev) &&
4110
		    iir & I915_DISPLAY_PORT_INTERRUPT)
4111
			i9xx_hpd_irq_handler(dev);
3031 serge 4112
 
4113
		I915_WRITE(IIR, iir & ~flip_mask);
4114
		new_iir = I915_READ(IIR); /* Flush posted writes */
4115
 
4116
		if (iir & I915_USER_INTERRUPT)
6084 serge 4117
			notify_ring(&dev_priv->ring[RCS]);
3031 serge 4118
 
5354 serge 4119
		for_each_pipe(dev_priv, pipe) {
3031 serge 4120
			int plane = pipe;
4560 Serge 4121
			if (HAS_FBC(dev))
3031 serge 4122
				plane = !plane;
4123
 
3746 Serge 4124
			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4125
			    i915_handle_vblank(dev, plane, pipe, iir))
4126
				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4127
 
3031 serge 4128
			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4129
				blc_event = true;
4560 Serge 4130
 
4131
			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4132
				i9xx_pipe_crc_irq_handler(dev, pipe);
5060 serge 4133
 
5354 serge 4134
			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4135
				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4136
								    pipe);
3031 serge 4137
		}
4138
 
4126 Serge 4139
		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4140
			intel_opregion_asle_intr(dev);
3031 serge 4141
 
4142
		/* With MSI, interrupts are only generated when iir
4143
		 * transitions from zero to nonzero.  If another bit got
4144
		 * set while we were handling the existing iir bits, then
4145
		 * we would never get another interrupt.
4146
		 *
4147
		 * This is fine on non-MSI as well, as if we hit this path
4148
		 * we avoid exiting the interrupt handler only to generate
4149
		 * another one.
4150
		 *
4151
		 * Note that for MSI this could cause a stray interrupt report
4152
		 * if an interrupt landed in the time between writing IIR and
4153
		 * the posting read.  This should be rare enough to never
4154
		 * trigger the 99% of 100,000 interrupts test for disabling
4155
		 * stray interrupts.
4156
		 */
4157
		ret = IRQ_HANDLED;
4158
		iir = new_iir;
4159
	} while (iir & ~flip_mask);
4160
 
6937 serge 4161
	enable_rpm_wakeref_asserts(dev_priv);
4162
 
3031 serge 4163
	return ret;
4164
}
4165
 
4166
static void i915_irq_uninstall(struct drm_device * dev)
4167
{
5060 serge 4168
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4169
	int pipe;
4170
 
4171
	if (I915_HAS_HOTPLUG(dev)) {
6084 serge 4172
		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3031 serge 4173
		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4174
	}
4175
 
4176
	I915_WRITE16(HWSTAM, 0xffff);
5354 serge 4177
	for_each_pipe(dev_priv, pipe) {
3031 serge 4178
		/* Clear enable bits; then clear status bits */
4179
		I915_WRITE(PIPESTAT(pipe), 0);
4180
		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4181
	}
4182
	I915_WRITE(IMR, 0xffffffff);
4183
	I915_WRITE(IER, 0x0);
4184
 
4185
	I915_WRITE(IIR, I915_READ(IIR));
4186
}
4187
 
4188
static void i965_irq_preinstall(struct drm_device * dev)
4189
{
5060 serge 4190
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4191
	int pipe;
4192
 
6084 serge 4193
	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3031 serge 4194
	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4195
 
4196
	I915_WRITE(HWSTAM, 0xeffe);
5354 serge 4197
	for_each_pipe(dev_priv, pipe)
3031 serge 4198
		I915_WRITE(PIPESTAT(pipe), 0);
4199
	I915_WRITE(IMR, 0xffffffff);
4200
	I915_WRITE(IER, 0x0);
4201
	POSTING_READ(IER);
4202
}
4203
 
4204
static int i965_irq_postinstall(struct drm_device *dev)
4205
{
5060 serge 4206
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4207
	u32 enable_mask;
4208
	u32 error_mask;
4209
 
4210
	/* Unmask the interrupts that we always want on. */
4211
	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4212
			       I915_DISPLAY_PORT_INTERRUPT |
4213
			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4214
			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4215
			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4216
			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4217
			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4218
 
4219
	enable_mask = ~dev_priv->irq_mask;
3746 Serge 4220
	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4221
			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3031 serge 4222
	enable_mask |= I915_USER_INTERRUPT;
4223
 
4224
	if (IS_G4X(dev))
4225
		enable_mask |= I915_BSD_USER_INTERRUPT;
4226
 
4104 Serge 4227
	/* Interrupt setup is already guaranteed to be single-threaded, this is
4228
	 * just to make the assert_spin_locked check happy. */
5354 serge 4229
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 4230
	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4231
	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4232
	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
5354 serge 4233
	spin_unlock_irq(&dev_priv->irq_lock);
3031 serge 4234
 
4235
	/*
4236
	 * Enable some error detection, note the instruction error mask
4237
	 * bit is reserved, so we leave it masked.
4238
	 */
4239
	if (IS_G4X(dev)) {
4240
		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4241
			       GM45_ERROR_MEM_PRIV |
4242
			       GM45_ERROR_CP_PRIV |
4243
			       I915_ERROR_MEMORY_REFRESH);
4244
	} else {
4245
		error_mask = ~(I915_ERROR_PAGE_TABLE |
4246
			       I915_ERROR_MEMORY_REFRESH);
4247
	}
4248
	I915_WRITE(EMR, error_mask);
4249
 
4250
	I915_WRITE(IMR, dev_priv->irq_mask);
4251
	I915_WRITE(IER, enable_mask);
4252
	POSTING_READ(IER);
4253
 
6084 serge 4254
	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3480 Serge 4255
	POSTING_READ(PORT_HOTPLUG_EN);
4256
 
4126 Serge 4257
	i915_enable_asle_pipestat(dev);
3480 Serge 4258
 
4259
	return 0;
4260
}
4261
 
3746 Serge 4262
static void i915_hpd_irq_setup(struct drm_device *dev)
3480 Serge 4263
{
5060 serge 4264
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 4265
	u32 hotplug_en;
4266
 
4104 Serge 4267
	assert_spin_locked(&dev_priv->irq_lock);
4268
 
3031 serge 4269
	/* Note HDMI and DP share hotplug bits */
6084 serge 4270
	/* enable bits are the same for all generations */
4271
	hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4272
	/* Programming the CRT detection parameters tends
4273
	   to generate a spurious hotplug event about three
4274
	   seconds later.  So just do it once.
4275
	*/
4276
	if (IS_G4X(dev))
4277
		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4278
	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3480 Serge 4279
 
3031 serge 4280
	/* Ignore TV since it's buggy */
6084 serge 4281
	i915_hotplug_interrupt_update_locked(dev_priv,
4282
					     HOTPLUG_INT_EN_MASK |
4283
					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4284
					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4285
					     hotplug_en);
3031 serge 4286
}
4287
 
3243 Serge 4288
static irqreturn_t i965_irq_handler(int irq, void *arg)
3031 serge 4289
{
5060 serge 4290
	struct drm_device *dev = arg;
4291
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4292
	u32 iir, new_iir;
4293
	u32 pipe_stats[I915_MAX_PIPES];
4294
	int ret = IRQ_NONE, pipe;
3746 Serge 4295
	u32 flip_mask =
4296
		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4297
		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3031 serge 4298
 
6084 serge 4299
	if (!intel_irqs_enabled(dev_priv))
4300
		return IRQ_NONE;
4301
 
6937 serge 4302
	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4303
	disable_rpm_wakeref_asserts(dev_priv);
4304
 
3031 serge 4305
	iir = I915_READ(IIR);
4306
 
4307
	for (;;) {
5060 serge 4308
		bool irq_received = (iir & ~flip_mask) != 0;
3031 serge 4309
		bool blc_event = false;
4310
 
4311
		/* Can't rely on pipestat interrupt bit in iir as it might
4312
		 * have been cleared after the pipestat interrupt was received.
4313
		 * It doesn't set the bit in iir again, but it still produces
4314
		 * interrupts (for non-MSI).
4315
		 */
5354 serge 4316
		spin_lock(&dev_priv->irq_lock);
4126 Serge 4317
		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
5354 serge 4318
			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3031 serge 4319
 
5354 serge 4320
		for_each_pipe(dev_priv, pipe) {
6937 serge 4321
			i915_reg_t reg = PIPESTAT(pipe);
3031 serge 4322
			pipe_stats[pipe] = I915_READ(reg);
4323
 
4324
			/*
4325
			 * Clear the PIPE*STAT regs before the IIR
4326
			 */
4327
			if (pipe_stats[pipe] & 0x8000ffff) {
4328
				I915_WRITE(reg, pipe_stats[pipe]);
5060 serge 4329
				irq_received = true;
3031 serge 4330
			}
4331
		}
5354 serge 4332
		spin_unlock(&dev_priv->irq_lock);
3031 serge 4333
 
4334
		if (!irq_received)
4335
			break;
4336
 
4337
		ret = IRQ_HANDLED;
4338
 
4339
		/* Consume port.  Then clear IIR or we'll miss events */
5060 serge 4340
		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4341
			i9xx_hpd_irq_handler(dev);
3031 serge 4342
 
3746 Serge 4343
		I915_WRITE(IIR, iir & ~flip_mask);
3031 serge 4344
		new_iir = I915_READ(IIR); /* Flush posted writes */
4345
 
4346
		if (iir & I915_USER_INTERRUPT)
6084 serge 4347
			notify_ring(&dev_priv->ring[RCS]);
3031 serge 4348
		if (iir & I915_BSD_USER_INTERRUPT)
6084 serge 4349
			notify_ring(&dev_priv->ring[VCS]);
3031 serge 4350
 
5354 serge 4351
		for_each_pipe(dev_priv, pipe) {
3746 Serge 4352
			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4353
			    i915_handle_vblank(dev, pipe, pipe, iir))
4354
				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3031 serge 4355
 
4356
			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4357
				blc_event = true;
4560 Serge 4358
 
4359
			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4360
				i9xx_pipe_crc_irq_handler(dev, pipe);
5060 serge 4361
 
5354 serge 4362
			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4363
				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
3031 serge 4364
		}
4365
 
4126 Serge 4366
		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4367
			intel_opregion_asle_intr(dev);
3031 serge 4368
 
3480 Serge 4369
		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4370
			gmbus_irq_handler(dev);
4371
 
3031 serge 4372
		/* With MSI, interrupts are only generated when iir
4373
		 * transitions from zero to nonzero.  If another bit got
4374
		 * set while we were handling the existing iir bits, then
4375
		 * we would never get another interrupt.
4376
		 *
4377
		 * This is fine on non-MSI as well, as if we hit this path
4378
		 * we avoid exiting the interrupt handler only to generate
4379
		 * another one.
4380
		 *
4381
		 * Note that for MSI this could cause a stray interrupt report
4382
		 * if an interrupt landed in the time between writing IIR and
4383
		 * the posting read.  This should be rare enough to never
4384
		 * trigger the 99% of 100,000 interrupts test for disabling
4385
		 * stray interrupts.
4386
		 */
4387
		iir = new_iir;
4388
	}
4389
 
6937 serge 4390
	enable_rpm_wakeref_asserts(dev_priv);
4391
 
3031 serge 4392
	return ret;
4393
}
4394
 
4395
static void i965_irq_uninstall(struct drm_device * dev)
4396
{
5060 serge 4397
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4398
	int pipe;
4399
 
4400
	if (!dev_priv)
4401
		return;
4402
 
6084 serge 4403
	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3031 serge 4404
	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4405
 
4406
	I915_WRITE(HWSTAM, 0xffffffff);
5354 serge 4407
	for_each_pipe(dev_priv, pipe)
3031 serge 4408
		I915_WRITE(PIPESTAT(pipe), 0);
4409
	I915_WRITE(IMR, 0xffffffff);
4410
	I915_WRITE(IER, 0x0);
4411
 
5354 serge 4412
	for_each_pipe(dev_priv, pipe)
3031 serge 4413
		I915_WRITE(PIPESTAT(pipe),
4414
			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4415
	I915_WRITE(IIR, I915_READ(IIR));
4416
}
4417
 
5354 serge 4418
/**
4419
 * intel_irq_init - initializes irq support
4420
 * @dev_priv: i915 device instance
4421
 *
4422
 * This function initializes all the irq support including work items, timers
4423
 * and all the vtables. It does not setup the interrupt itself though.
4424
 */
4425
void intel_irq_init(struct drm_i915_private *dev_priv)
2351 Serge 4426
{
5354 serge 4427
	struct drm_device *dev = dev_priv->dev;
3031 serge 4428
 
6296 serge 4429
	intel_hpd_init_work(dev_priv);
6084 serge 4430
 
4126 Serge 4431
	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4432
	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3480 Serge 4433
 
5060 serge 4434
	/* Let's track the enabled rps events */
6937 serge 4435
	if (IS_VALLEYVIEW(dev_priv))
5354 serge 4436
		/* WaGsvRC0ResidencyMethod:vlv */
6937 serge 4437
		dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
5060 serge 4438
	else
6084 serge 4439
		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
3480 Serge 4440
 
6084 serge 4441
	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4442
			  i915_hangcheck_elapsed);
4560 Serge 4443
 
5354 serge 4444
 
4445
	if (IS_GEN2(dev_priv)) {
4560 Serge 4446
		dev->max_vblank_count = 0;
4447
		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
5354 serge 4448
	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4560 Serge 4449
		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
6084 serge 4450
		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4560 Serge 4451
	} else {
6084 serge 4452
		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4453
		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4293 Serge 4454
	}
3480 Serge 4455
 
5354 serge 4456
	/*
4457
	 * Opt out of the vblank disable timer on everything except gen2.
4458
	 * Gen2 doesn't have a hardware frame counter and so depends on
4459
	 * vblank interrupts to produce sane vblank seuquence numbers.
4460
	 */
4461
	if (!IS_GEN2(dev_priv))
4462
		dev->vblank_disable_immediate = true;
4463
 
6084 serge 4464
	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4293 Serge 4465
	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3480 Serge 4466
 
5354 serge 4467
	if (IS_CHERRYVIEW(dev_priv)) {
5060 serge 4468
		dev->driver->irq_handler = cherryview_irq_handler;
4469
		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4470
		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4471
		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4472
		dev->driver->enable_vblank = valleyview_enable_vblank;
4473
		dev->driver->disable_vblank = valleyview_disable_vblank;
4474
		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
5354 serge 4475
	} else if (IS_VALLEYVIEW(dev_priv)) {
3243 Serge 4476
		dev->driver->irq_handler = valleyview_irq_handler;
4477
		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4478
		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4293 Serge 4479
		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4480
		dev->driver->enable_vblank = valleyview_enable_vblank;
4481
		dev->driver->disable_vblank = valleyview_disable_vblank;
3746 Serge 4482
		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
5354 serge 4483
	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4560 Serge 4484
		dev->driver->irq_handler = gen8_irq_handler;
5060 serge 4485
		dev->driver->irq_preinstall = gen8_irq_reset;
4560 Serge 4486
		dev->driver->irq_postinstall = gen8_irq_postinstall;
4487
		dev->driver->irq_uninstall = gen8_irq_uninstall;
4488
		dev->driver->enable_vblank = gen8_enable_vblank;
4489
		dev->driver->disable_vblank = gen8_disable_vblank;
6084 serge 4490
		if (IS_BROXTON(dev))
4491
			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4492
		else if (HAS_PCH_SPT(dev))
4493
			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4494
		else
4495
			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
2351 Serge 4496
	} else if (HAS_PCH_SPLIT(dev)) {
3243 Serge 4497
		dev->driver->irq_handler = ironlake_irq_handler;
5060 serge 4498
		dev->driver->irq_preinstall = ironlake_irq_reset;
3243 Serge 4499
		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4293 Serge 4500
		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4501
		dev->driver->enable_vblank = ironlake_enable_vblank;
4502
		dev->driver->disable_vblank = ironlake_disable_vblank;
6084 serge 4503
		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
2351 Serge 4504
	} else {
5354 serge 4505
		if (INTEL_INFO(dev_priv)->gen == 2) {
4506
		} else if (INTEL_INFO(dev_priv)->gen == 3) {
3243 Serge 4507
			dev->driver->irq_preinstall = i915_irq_preinstall;
4508
			dev->driver->irq_postinstall = i915_irq_postinstall;
4293 Serge 4509
			dev->driver->irq_uninstall = i915_irq_uninstall;
3243 Serge 4510
			dev->driver->irq_handler = i915_irq_handler;
3031 serge 4511
		} else {
3243 Serge 4512
			dev->driver->irq_preinstall = i965_irq_preinstall;
4513
			dev->driver->irq_postinstall = i965_irq_postinstall;
4293 Serge 4514
			dev->driver->irq_uninstall = i965_irq_uninstall;
3243 Serge 4515
			dev->driver->irq_handler = i965_irq_handler;
6084 serge 4516
		}
4517
		if (I915_HAS_HOTPLUG(dev_priv))
3746 Serge 4518
			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4293 Serge 4519
		dev->driver->enable_vblank = i915_enable_vblank;
4520
		dev->driver->disable_vblank = i915_disable_vblank;
2351 Serge 4521
	}
3480 Serge 4522
}
3243 Serge 4523
 
5354 serge 4524
/**
4525
 * intel_irq_install - enables the hardware interrupt
4526
 * @dev_priv: i915 device instance
4527
 *
4528
 * This function enables the hardware interrupt handling, but leaves the hotplug
4529
 * handling still disabled. It is called after intel_irq_init().
4530
 *
4531
 * In the driver load and resume code we need working interrupts in a few places
4532
 * but don't want to deal with the hassle of concurrent probe and hotplug
4533
 * workers. Hence the split into this two-stage approach.
4534
 */
4535
int intel_irq_install(struct drm_i915_private *dev_priv)
3243 Serge 4536
{
5354 serge 4537
	/*
4538
	 * We enable some interrupt sources in our postinstall hooks, so mark
4539
	 * interrupts as enabled _before_ actually enabling them to avoid
4540
	 * special cases in our ordering checks.
4541
	 */
4542
	dev_priv->pm.irqs_enabled = true;
2351 Serge 4543
 
5354 serge 4544
	return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
3243 Serge 4545
}
4546
 
5354 serge 4547
/**
4548
 * intel_irq_uninstall - finilizes all irq handling
4549
 * @dev_priv: i915 device instance
4550
 *
4551
 * This stops interrupt and hotplug handling and unregisters and frees all
4552
 * resources acquired in the init functions.
4553
 */
4554
void intel_irq_uninstall(struct drm_i915_private *dev_priv)
2351 Serge 4555
{
5354 serge 4556
//	drm_irq_uninstall(dev_priv->dev);
6320 serge 4557
	intel_hpd_cancel_work(dev_priv);
5354 serge 4558
	dev_priv->pm.irqs_enabled = false;
4559
}
2351 Serge 4560
 
5354 serge 4561
/**
4562
 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4563
 * @dev_priv: i915 device instance
4564
 *
4565
 * This function is used to disable interrupts at runtime, both in the runtime
4566
 * pm and the system suspend/resume code.
4567
 */
4568
void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4569
{
4570
	dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4571
	dev_priv->pm.irqs_enabled = false;
4104 Serge 4572
}
2351 Serge 4573
 
5354 serge 4574
/**
4575
 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4576
 * @dev_priv: i915 device instance
4577
 *
4578
 * This function is used to enable interrupts at runtime, both in the runtime
4579
 * pm and the system suspend/resume code.
4580
 */
4581
void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4582
{
4583
	dev_priv->pm.irqs_enabled = true;
4584
	dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4585
	dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4586
}