Subversion Repositories Kolibri OS

Rev

Rev 6320 | Rev 6937 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2351 Serge 1
/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2
 */
3
/*
4
 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5
 * All Rights Reserved.
6
 *
7
 * Permission is hereby granted, free of charge, to any person obtaining a
8
 * copy of this software and associated documentation files (the
9
 * "Software"), to deal in the Software without restriction, including
10
 * without limitation the rights to use, copy, modify, merge, publish,
11
 * distribute, sub license, and/or sell copies of the Software, and to
12
 * permit persons to whom the Software is furnished to do so, subject to
13
 * the following conditions:
14
 *
15
 * The above copyright notice and this permission notice (including the
16
 * next paragraph) shall be included in all copies or substantial portions
17
 * of the Software.
18
 *
19
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22
 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23
 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
 *
27
 */
28
 
3746 Serge 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3031 serge 30
 
6103 serge 31
#include 
3031 serge 32
#include 
6088 serge 33
#include 
3031 serge 34
#include 
35
#include 
2351 Serge 36
#include "i915_drv.h"
37
#include "i915_trace.h"
38
#include "intel_drv.h"
39
 
5354 serge 40
/**
41
 * DOC: interrupt handling
42
 *
43
 * These functions provide the basic support for enabling and disabling the
44
 * interrupt handling support. There's a lot more functionality in i915_irq.c
45
 * and related files, but that will be described in separate chapters.
46
 */
4104 Serge 47
 
6084 serge 48
static const u32 hpd_ilk[HPD_NUM_PINS] = {
49
	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
50
};
51
 
52
static const u32 hpd_ivb[HPD_NUM_PINS] = {
53
	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54
};
55
 
56
static const u32 hpd_bdw[HPD_NUM_PINS] = {
57
	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58
};
59
 
60
static const u32 hpd_ibx[HPD_NUM_PINS] = {
3746 Serge 61
	[HPD_CRT] = SDE_CRT_HOTPLUG,
62
	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63
	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64
	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65
	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
66
};
3031 serge 67
 
6084 serge 68
static const u32 hpd_cpt[HPD_NUM_PINS] = {
3746 Serge 69
	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70
	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71
	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72
	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73
	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74
};
75
 
6084 serge 76
static const u32 hpd_spt[HPD_NUM_PINS] = {
77
	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78
	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79
	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80
	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81
	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82
};
83
 
84
static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
3746 Serge 85
	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
86
	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87
	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88
	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89
	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90
	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91
};
92
 
6084 serge 93
static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
3746 Serge 94
	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95
	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96
	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97
	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98
	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99
	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100
};
101
 
6084 serge 102
static const u32 hpd_status_i915[HPD_NUM_PINS] = {
3746 Serge 103
	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104
	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105
	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106
	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107
	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108
	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109
};
110
 
6084 serge 111
/* BXT hpd list */
112
static const u32 hpd_bxt[HPD_NUM_PINS] = {
113
	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114
	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115
	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116
};
117
 
5060 serge 118
/* IIR can theoretically queue up two events. Be paranoid. */
119
#define GEN8_IRQ_RESET_NDX(type, which) do { \
120
	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121
	POSTING_READ(GEN8_##type##_IMR(which)); \
122
	I915_WRITE(GEN8_##type##_IER(which), 0); \
123
	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124
	POSTING_READ(GEN8_##type##_IIR(which)); \
125
	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126
	POSTING_READ(GEN8_##type##_IIR(which)); \
127
} while (0)
3746 Serge 128
 
5060 serge 129
#define GEN5_IRQ_RESET(type) do { \
130
	I915_WRITE(type##IMR, 0xffffffff); \
131
	POSTING_READ(type##IMR); \
132
	I915_WRITE(type##IER, 0); \
133
	I915_WRITE(type##IIR, 0xffffffff); \
134
	POSTING_READ(type##IIR); \
135
	I915_WRITE(type##IIR, 0xffffffff); \
136
	POSTING_READ(type##IIR); \
137
} while (0)
138
 
139
/*
140
 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141
 */
6084 serge 142
static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv, u32 reg)
143
{
144
	u32 val = I915_READ(reg);
5060 serge 145
 
6084 serge 146
	if (val == 0)
147
		return;
148
 
149
	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
150
	     reg, val);
151
	I915_WRITE(reg, 0xffffffff);
152
	POSTING_READ(reg);
153
	I915_WRITE(reg, 0xffffffff);
154
	POSTING_READ(reg);
155
}
156
 
5060 serge 157
#define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
6084 serge 158
	gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
5354 serge 159
	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
5060 serge 160
	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
5354 serge 161
	POSTING_READ(GEN8_##type##_IMR(which)); \
5060 serge 162
} while (0)
163
 
164
#define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
6084 serge 165
	gen5_assert_iir_is_zero(dev_priv, type##IIR); \
5354 serge 166
	I915_WRITE(type##IER, (ier_val)); \
5060 serge 167
	I915_WRITE(type##IMR, (imr_val)); \
5354 serge 168
	POSTING_READ(type##IMR); \
5060 serge 169
} while (0)
170
 
5354 serge 171
static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
3031 serge 172
 
2351 Serge 173
/* For display hotplug interrupt */
6084 serge 174
static inline void
175
i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
176
				     uint32_t mask,
177
				     uint32_t bits)
2351 Serge 178
{
6084 serge 179
	uint32_t val;
180
 
4104 Serge 181
	assert_spin_locked(&dev_priv->irq_lock);
6084 serge 182
	WARN_ON(bits & ~mask);
4104 Serge 183
 
6084 serge 184
	val = I915_READ(PORT_HOTPLUG_EN);
185
	val &= ~mask;
186
	val |= bits;
187
	I915_WRITE(PORT_HOTPLUG_EN, val);
188
}
4104 Serge 189
 
6084 serge 190
/**
191
 * i915_hotplug_interrupt_update - update hotplug interrupt enable
192
 * @dev_priv: driver private
193
 * @mask: bits to update
194
 * @bits: bits to enable
195
 * NOTE: the HPD enable bits are modified both inside and outside
196
 * of an interrupt context. To avoid that read-modify-write cycles
197
 * interfer, these bits are protected by a spinlock. Since this
198
 * function is usually not called from a context where the lock is
199
 * held already, this function acquires the lock itself. A non-locking
200
 * version is also available.
201
 */
202
void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
203
				   uint32_t mask,
204
				   uint32_t bits)
205
{
206
	spin_lock_irq(&dev_priv->irq_lock);
207
	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
208
	spin_unlock_irq(&dev_priv->irq_lock);
2351 Serge 209
}
210
 
6084 serge 211
/**
212
 * ilk_update_display_irq - update DEIMR
213
 * @dev_priv: driver private
214
 * @interrupt_mask: mask of interrupt bits to update
215
 * @enabled_irq_mask: mask of interrupt bits to enable
216
 */
217
static void ilk_update_display_irq(struct drm_i915_private *dev_priv,
218
				   uint32_t interrupt_mask,
219
				   uint32_t enabled_irq_mask)
2351 Serge 220
{
6084 serge 221
	uint32_t new_val;
222
 
4104 Serge 223
	assert_spin_locked(&dev_priv->irq_lock);
224
 
6084 serge 225
	WARN_ON(enabled_irq_mask & ~interrupt_mask);
226
 
5354 serge 227
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
4104 Serge 228
		return;
229
 
6084 serge 230
	new_val = dev_priv->irq_mask;
231
	new_val &= ~interrupt_mask;
232
	new_val |= (~enabled_irq_mask & interrupt_mask);
233
 
234
	if (new_val != dev_priv->irq_mask) {
235
		dev_priv->irq_mask = new_val;
236
		I915_WRITE(DEIMR, dev_priv->irq_mask);
237
		POSTING_READ(DEIMR);
238
	}
2351 Serge 239
}
3031 serge 240
 
6084 serge 241
void
242
ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
243
{
244
	ilk_update_display_irq(dev_priv, mask, mask);
245
}
246
 
247
void
248
ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
249
{
250
	ilk_update_display_irq(dev_priv, mask, 0);
251
}
252
 
4104 Serge 253
/**
254
 * ilk_update_gt_irq - update GTIMR
255
 * @dev_priv: driver private
256
 * @interrupt_mask: mask of interrupt bits to update
257
 * @enabled_irq_mask: mask of interrupt bits to enable
258
 */
259
static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
260
			      uint32_t interrupt_mask,
261
			      uint32_t enabled_irq_mask)
262
{
263
	assert_spin_locked(&dev_priv->irq_lock);
264
 
6084 serge 265
	WARN_ON(enabled_irq_mask & ~interrupt_mask);
266
 
5060 serge 267
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
4104 Serge 268
		return;
269
 
270
	dev_priv->gt_irq_mask &= ~interrupt_mask;
271
	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
272
	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
273
	POSTING_READ(GTIMR);
274
}
275
 
5060 serge 276
void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
4104 Serge 277
{
278
	ilk_update_gt_irq(dev_priv, mask, mask);
279
}
280
 
5060 serge 281
void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
4104 Serge 282
{
283
	ilk_update_gt_irq(dev_priv, mask, 0);
284
}
285
 
5354 serge 286
static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
4104 Serge 287
{
5354 serge 288
	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
4104 Serge 289
}
290
 
5354 serge 291
static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
4104 Serge 292
{
5354 serge 293
	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
4104 Serge 294
}
295
 
5354 serge 296
static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
4104 Serge 297
{
5354 serge 298
	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
4104 Serge 299
}
300
 
5060 serge 301
/**
5354 serge 302
  * snb_update_pm_irq - update GEN6_PMIMR
5060 serge 303
  * @dev_priv: driver private
304
  * @interrupt_mask: mask of interrupt bits to update
305
  * @enabled_irq_mask: mask of interrupt bits to enable
306
  */
5354 serge 307
static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
5060 serge 308
			      uint32_t interrupt_mask,
309
			      uint32_t enabled_irq_mask)
310
{
311
	uint32_t new_val;
312
 
6084 serge 313
	WARN_ON(enabled_irq_mask & ~interrupt_mask);
314
 
5060 serge 315
	assert_spin_locked(&dev_priv->irq_lock);
316
 
317
	new_val = dev_priv->pm_irq_mask;
318
	new_val &= ~interrupt_mask;
319
	new_val |= (~enabled_irq_mask & interrupt_mask);
320
 
321
	if (new_val != dev_priv->pm_irq_mask) {
322
		dev_priv->pm_irq_mask = new_val;
5354 serge 323
		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
324
		POSTING_READ(gen6_pm_imr(dev_priv));
5060 serge 325
	}
326
}
327
 
5354 serge 328
void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
5060 serge 329
{
5354 serge 330
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
331
		return;
332
 
333
	snb_update_pm_irq(dev_priv, mask, mask);
5060 serge 334
}
335
 
5354 serge 336
static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
337
				  uint32_t mask)
5060 serge 338
{
5354 serge 339
	snb_update_pm_irq(dev_priv, mask, 0);
5060 serge 340
}
341
 
5354 serge 342
void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
4104 Serge 343
{
5354 serge 344
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
345
		return;
4104 Serge 346
 
5354 serge 347
	__gen6_disable_pm_irq(dev_priv, mask);
4104 Serge 348
}
349
 
5354 serge 350
void gen6_reset_rps_interrupts(struct drm_device *dev)
5060 serge 351
{
352
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 353
	uint32_t reg = gen6_pm_iir(dev_priv);
5060 serge 354
 
5354 serge 355
	spin_lock_irq(&dev_priv->irq_lock);
356
	I915_WRITE(reg, dev_priv->pm_rps_events);
357
	I915_WRITE(reg, dev_priv->pm_rps_events);
6084 serge 358
	POSTING_READ(reg);
359
	dev_priv->rps.pm_iir = 0;
5354 serge 360
	spin_unlock_irq(&dev_priv->irq_lock);
5060 serge 361
}
362
 
5354 serge 363
void gen6_enable_rps_interrupts(struct drm_device *dev)
5060 serge 364
{
365
	struct drm_i915_private *dev_priv = dev->dev_private;
366
 
5354 serge 367
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 368
 
5354 serge 369
	WARN_ON(dev_priv->rps.pm_iir);
370
	WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
371
	dev_priv->rps.interrupts_enabled = true;
372
	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
373
				dev_priv->pm_rps_events);
374
	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
375
 
376
	spin_unlock_irq(&dev_priv->irq_lock);
5060 serge 377
}
378
 
6084 serge 379
u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
380
{
381
	/*
382
	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
383
	 * if GEN6_PM_UP_EI_EXPIRED is masked.
384
	 *
385
	 * TODO: verify if this can be reproduced on VLV,CHV.
386
	 */
387
	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
388
		mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
389
 
390
	if (INTEL_INFO(dev_priv)->gen >= 8)
391
		mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
392
 
393
	return mask;
394
}
395
 
5354 serge 396
void gen6_disable_rps_interrupts(struct drm_device *dev)
4104 Serge 397
{
398
	struct drm_i915_private *dev_priv = dev->dev_private;
399
 
5354 serge 400
	spin_lock_irq(&dev_priv->irq_lock);
401
	dev_priv->rps.interrupts_enabled = false;
402
	spin_unlock_irq(&dev_priv->irq_lock);
4104 Serge 403
 
5354 serge 404
	cancel_work_sync(&dev_priv->rps.work);
4104 Serge 405
 
5354 serge 406
	spin_lock_irq(&dev_priv->irq_lock);
4104 Serge 407
 
6084 serge 408
	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4104 Serge 409
 
5354 serge 410
	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
411
	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
412
				~dev_priv->pm_rps_events);
4104 Serge 413
 
6084 serge 414
	spin_unlock_irq(&dev_priv->irq_lock);
4560 Serge 415
 
416
}
417
 
4104 Serge 418
/**
6084 serge 419
  * bdw_update_port_irq - update DE port interrupt
420
  * @dev_priv: driver private
421
  * @interrupt_mask: mask of interrupt bits to update
422
  * @enabled_irq_mask: mask of interrupt bits to enable
423
  */
424
static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
425
				uint32_t interrupt_mask,
426
				uint32_t enabled_irq_mask)
427
{
428
	uint32_t new_val;
429
	uint32_t old_val;
430
 
431
	assert_spin_locked(&dev_priv->irq_lock);
432
 
433
	WARN_ON(enabled_irq_mask & ~interrupt_mask);
434
 
435
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
436
		return;
437
 
438
	old_val = I915_READ(GEN8_DE_PORT_IMR);
439
 
440
	new_val = old_val;
441
	new_val &= ~interrupt_mask;
442
	new_val |= (~enabled_irq_mask & interrupt_mask);
443
 
444
	if (new_val != old_val) {
445
		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
446
		POSTING_READ(GEN8_DE_PORT_IMR);
447
	}
448
}
449
 
450
/**
4104 Serge 451
 * ibx_display_interrupt_update - update SDEIMR
452
 * @dev_priv: driver private
453
 * @interrupt_mask: mask of interrupt bits to update
454
 * @enabled_irq_mask: mask of interrupt bits to enable
455
 */
5354 serge 456
void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
6084 serge 457
				  uint32_t interrupt_mask,
458
				  uint32_t enabled_irq_mask)
4104 Serge 459
{
460
	uint32_t sdeimr = I915_READ(SDEIMR);
461
	sdeimr &= ~interrupt_mask;
462
	sdeimr |= (~enabled_irq_mask & interrupt_mask);
463
 
6084 serge 464
	WARN_ON(enabled_irq_mask & ~interrupt_mask);
465
 
4104 Serge 466
	assert_spin_locked(&dev_priv->irq_lock);
467
 
5060 serge 468
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
4104 Serge 469
		return;
470
 
471
	I915_WRITE(SDEIMR, sdeimr);
472
	POSTING_READ(SDEIMR);
473
}
474
 
5060 serge 475
static void
476
__i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
477
		       u32 enable_mask, u32 status_mask)
3031 serge 478
{
6084 serge 479
	u32 reg = PIPESTAT(pipe);
5060 serge 480
	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
3031 serge 481
 
4104 Serge 482
	assert_spin_locked(&dev_priv->irq_lock);
5354 serge 483
	WARN_ON(!intel_irqs_enabled(dev_priv));
4104 Serge 484
 
5060 serge 485
	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
486
		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
487
		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
488
		      pipe_name(pipe), enable_mask, status_mask))
3746 Serge 489
		return;
490
 
5060 serge 491
	if ((pipestat & enable_mask) == enable_mask)
492
		return;
493
 
494
	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
495
 
6084 serge 496
	/* Enable the interrupt, clear any pending status */
5060 serge 497
	pipestat |= enable_mask | status_mask;
3746 Serge 498
	I915_WRITE(reg, pipestat);
6084 serge 499
	POSTING_READ(reg);
3031 serge 500
}
501
 
5060 serge 502
static void
503
__i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
504
		        u32 enable_mask, u32 status_mask)
3031 serge 505
{
6084 serge 506
	u32 reg = PIPESTAT(pipe);
5060 serge 507
	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
3031 serge 508
 
4104 Serge 509
	assert_spin_locked(&dev_priv->irq_lock);
5354 serge 510
	WARN_ON(!intel_irqs_enabled(dev_priv));
4104 Serge 511
 
5060 serge 512
	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
513
		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
514
		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
515
		      pipe_name(pipe), enable_mask, status_mask))
3746 Serge 516
		return;
517
 
5060 serge 518
	if ((pipestat & enable_mask) == 0)
519
		return;
520
 
521
	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
522
 
523
	pipestat &= ~enable_mask;
3746 Serge 524
	I915_WRITE(reg, pipestat);
6084 serge 525
	POSTING_READ(reg);
3031 serge 526
}
527
 
5060 serge 528
static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
529
{
530
	u32 enable_mask = status_mask << 16;
531
 
532
	/*
533
	 * On pipe A we don't support the PSR interrupt yet,
534
	 * on pipe B and C the same bit MBZ.
535
	 */
536
	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
537
		return 0;
538
	/*
539
	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
540
	 * A the same bit is for perf counters which we don't use either.
541
	 */
542
	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
543
		return 0;
544
 
545
	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
546
			 SPRITE0_FLIP_DONE_INT_EN_VLV |
547
			 SPRITE1_FLIP_DONE_INT_EN_VLV);
548
	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
549
		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
550
	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
551
		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
552
 
553
	return enable_mask;
554
}
555
 
556
void
557
i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
558
		     u32 status_mask)
559
{
560
	u32 enable_mask;
561
 
562
	if (IS_VALLEYVIEW(dev_priv->dev))
563
		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
564
							   status_mask);
565
	else
566
		enable_mask = status_mask << 16;
567
	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
568
}
569
 
570
void
571
i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
572
		      u32 status_mask)
573
{
574
	u32 enable_mask;
575
 
576
	if (IS_VALLEYVIEW(dev_priv->dev))
577
		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
578
							   status_mask);
579
	else
580
		enable_mask = status_mask << 16;
581
	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
582
}
583
 
3031 serge 584
/**
4104 Serge 585
 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
6084 serge 586
 * @dev: drm device
3031 serge 587
 */
4104 Serge 588
static void i915_enable_asle_pipestat(struct drm_device *dev)
3031 serge 589
{
5060 serge 590
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 591
 
4104 Serge 592
	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
3031 serge 593
		return;
594
 
5354 serge 595
	spin_lock_irq(&dev_priv->irq_lock);
3031 serge 596
 
5060 serge 597
	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
6084 serge 598
	if (INTEL_INFO(dev)->gen >= 4)
4560 Serge 599
		i915_enable_pipestat(dev_priv, PIPE_A,
5060 serge 600
				     PIPE_LEGACY_BLC_EVENT_STATUS);
3031 serge 601
 
5354 serge 602
	spin_unlock_irq(&dev_priv->irq_lock);
3031 serge 603
}
604
 
5060 serge 605
/*
606
 * This timing diagram depicts the video signal in and
607
 * around the vertical blanking period.
608
 *
609
 * Assumptions about the fictitious mode used in this example:
610
 *  vblank_start >= 3
611
 *  vsync_start = vblank_start + 1
612
 *  vsync_end = vblank_start + 2
613
 *  vtotal = vblank_start + 3
614
 *
615
 *           start of vblank:
616
 *           latch double buffered registers
617
 *           increment frame counter (ctg+)
618
 *           generate start of vblank interrupt (gen4+)
619
 *           |
620
 *           |          frame start:
621
 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
622
 *           |          may be shifted forward 1-3 extra lines via PIPECONF
623
 *           |          |
624
 *           |          |  start of vsync:
625
 *           |          |  generate vsync interrupt
626
 *           |          |  |
627
 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
628
 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
629
 * ----va---> <-----------------vb--------------------> <--------va-------------
630
 *       |          |       <----vs----->                     |
631
 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
632
 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
633
 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
634
 *       |          |                                         |
635
 *       last visible pixel                                   first visible pixel
636
 *                  |                                         increment frame counter (gen3/4)
637
 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
638
 *
639
 * x  = horizontal active
640
 * _  = horizontal blanking
641
 * hs = horizontal sync
642
 * va = vertical active
643
 * vb = vertical blanking
644
 * vs = vertical sync
645
 * vbs = vblank_start (number)
646
 *
647
 * Summary:
648
 * - most events happen at the start of horizontal sync
649
 * - frame start happens at the start of horizontal blank, 1-4 lines
650
 *   (depending on PIPECONF settings) after the start of vblank
651
 * - gen3/4 pixel and frame counter are synchronized with the start
652
 *   of horizontal active on the first line of vertical active
653
 */
654
 
6084 serge 655
static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
4560 Serge 656
{
657
	/* Gen2 doesn't have a hardware frame counter */
658
	return 0;
659
}
660
 
3031 serge 661
/* Called from drm generic code, passed a 'crtc', which
662
 * we use as a pipe index
663
 */
6084 serge 664
static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
3031 serge 665
{
5060 serge 666
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 667
	unsigned long high_frame;
668
	unsigned long low_frame;
5060 serge 669
	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
6084 serge 670
	struct intel_crtc *intel_crtc =
671
		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
672
	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
3031 serge 673
 
6084 serge 674
	htotal = mode->crtc_htotal;
675
	hsync_start = mode->crtc_hsync_start;
676
	vbl_start = mode->crtc_vblank_start;
677
	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
678
		vbl_start = DIV_ROUND_UP(vbl_start, 2);
3031 serge 679
 
5060 serge 680
	/* Convert to pixel count */
6084 serge 681
	vbl_start *= htotal;
4560 Serge 682
 
5060 serge 683
	/* Start of vblank event occurs at start of hsync */
684
	vbl_start -= htotal - hsync_start;
685
 
3031 serge 686
	high_frame = PIPEFRAME(pipe);
687
	low_frame = PIPEFRAMEPIXEL(pipe);
688
 
689
	/*
690
	 * High & low register fields aren't synchronized, so make sure
691
	 * we get a low value that's stable across two reads of the high
692
	 * register.
693
	 */
694
	do {
695
		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
4560 Serge 696
		low   = I915_READ(low_frame);
3031 serge 697
		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
698
	} while (high1 != high2);
699
 
700
	high1 >>= PIPE_FRAME_HIGH_SHIFT;
4560 Serge 701
	pixel = low & PIPE_PIXEL_MASK;
3031 serge 702
	low >>= PIPE_FRAME_LOW_SHIFT;
4560 Serge 703
 
704
	/*
705
	 * The frame counter increments at beginning of active.
706
	 * Cook up a vblank counter by also checking the pixel
707
	 * counter against vblank start.
708
	 */
709
	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
3031 serge 710
}
711
 
6084 serge 712
static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
3031 serge 713
{
5060 serge 714
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 715
 
6084 serge 716
	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
3031 serge 717
}
718
 
4560 Serge 719
/* raw reads, only for fast reads of display block, no need for forcewake etc. */
720
#define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
721
 
5060 serge 722
static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
4560 Serge 723
{
5060 serge 724
	struct drm_device *dev = crtc->base.dev;
4560 Serge 725
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 726
	const struct drm_display_mode *mode = &crtc->base.hwmode;
5060 serge 727
	enum pipe pipe = crtc->pipe;
728
	int position, vtotal;
4560 Serge 729
 
5060 serge 730
	vtotal = mode->crtc_vtotal;
731
	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
732
		vtotal /= 2;
4560 Serge 733
 
5060 serge 734
	if (IS_GEN2(dev))
735
		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
736
	else
737
		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
738
 
739
	/*
6084 serge 740
	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
741
	 * read it just before the start of vblank.  So try it again
742
	 * so we don't accidentally end up spanning a vblank frame
743
	 * increment, causing the pipe_update_end() code to squak at us.
744
	 *
745
	 * The nature of this problem means we can't simply check the ISR
746
	 * bit and return the vblank start value; nor can we use the scanline
747
	 * debug register in the transcoder as it appears to have the same
748
	 * problem.  We may need to extend this to include other platforms,
749
	 * but so far testing only shows the problem on HSW.
750
	 */
751
	if (HAS_DDI(dev) && !position) {
752
		int i, temp;
753
 
754
		for (i = 0; i < 100; i++) {
755
			udelay(1);
756
			temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
757
				DSL_LINEMASK_GEN3;
758
			if (temp != position) {
759
				position = temp;
760
				break;
761
			}
762
		}
763
	}
764
 
765
	/*
5060 serge 766
	 * See update_scanline_offset() for the details on the
767
	 * scanline_offset adjustment.
768
	 */
769
	return (position + crtc->scanline_offset) % vtotal;
4560 Serge 770
}
771
 
6084 serge 772
static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
4560 Serge 773
				    unsigned int flags, int *vpos, int *hpos,
6084 serge 774
				    ktime_t *stime, ktime_t *etime,
775
				    const struct drm_display_mode *mode)
3746 Serge 776
{
4560 Serge 777
	struct drm_i915_private *dev_priv = dev->dev_private;
778
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
779
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
780
	int position;
5060 serge 781
	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
3746 Serge 782
	bool in_vbl = true;
783
	int ret = 0;
4560 Serge 784
	unsigned long irqflags;
3746 Serge 785
 
6084 serge 786
	if (WARN_ON(!mode->crtc_clock)) {
3746 Serge 787
		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
788
				 "pipe %c\n", pipe_name(pipe));
789
		return 0;
790
	}
791
 
4560 Serge 792
	htotal = mode->crtc_htotal;
5060 serge 793
	hsync_start = mode->crtc_hsync_start;
4560 Serge 794
	vtotal = mode->crtc_vtotal;
795
	vbl_start = mode->crtc_vblank_start;
796
	vbl_end = mode->crtc_vblank_end;
3746 Serge 797
 
4560 Serge 798
	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
799
		vbl_start = DIV_ROUND_UP(vbl_start, 2);
800
		vbl_end /= 2;
801
		vtotal /= 2;
802
	}
803
 
804
	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
805
 
806
	/*
807
	 * Lock uncore.lock, as we will do multiple timing critical raw
808
	 * register reads, potentially with preemption disabled, so the
809
	 * following code must not block on uncore.lock.
810
	 */
811
	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
812
 
813
	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
814
 
6084 serge 815
	/* Get optional system timestamp before query. */
816
	if (stime)
817
		*stime = ktime_get();
4560 Serge 818
 
819
	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3746 Serge 820
		/* No obvious pixelcount register. Only query vertical
821
		 * scanout position from Display scan line register.
822
		 */
5060 serge 823
		position = __intel_get_crtc_scanline(intel_crtc);
3746 Serge 824
	} else {
825
		/* Have access to pixelcount since start of frame.
826
		 * We can split this into vertical and horizontal
827
		 * scanout position.
828
		 */
4560 Serge 829
		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
3746 Serge 830
 
4560 Serge 831
		/* convert to pixel counts */
832
		vbl_start *= htotal;
833
		vbl_end *= htotal;
834
		vtotal *= htotal;
5060 serge 835
 
836
		/*
837
		 * In interlaced modes, the pixel counter counts all pixels,
838
		 * so one field will have htotal more pixels. In order to avoid
839
		 * the reported position from jumping backwards when the pixel
840
		 * counter is beyond the length of the shorter field, just
841
		 * clamp the position the length of the shorter field. This
842
		 * matches how the scanline counter based position works since
843
		 * the scanline counter doesn't count the two half lines.
844
		 */
845
		if (position >= vtotal)
846
			position = vtotal - 1;
847
 
848
		/*
849
		 * Start of vblank interrupt is triggered at start of hsync,
850
		 * just prior to the first active line of vblank. However we
851
		 * consider lines to start at the leading edge of horizontal
852
		 * active. So, should we get here before we've crossed into
853
		 * the horizontal active of the first line in vblank, we would
854
		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
855
		 * always add htotal-hsync_start to the current pixel position.
856
		 */
857
		position = (position + htotal - hsync_start) % vtotal;
3746 Serge 858
	}
859
 
6084 serge 860
	/* Get optional system timestamp after query. */
861
	if (etime)
862
		*etime = ktime_get();
3746 Serge 863
 
4560 Serge 864
	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
3746 Serge 865
 
4560 Serge 866
	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3746 Serge 867
 
4560 Serge 868
	in_vbl = position >= vbl_start && position < vbl_end;
3746 Serge 869
 
4560 Serge 870
	/*
871
	 * While in vblank, position will be negative
872
	 * counting up towards 0 at vbl_end. And outside
873
	 * vblank, position will be positive counting
874
	 * up since vbl_end.
875
	 */
876
	if (position >= vbl_start)
877
		position -= vbl_end;
878
	else
879
		position += vtotal - vbl_end;
3746 Serge 880
 
4560 Serge 881
	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
882
		*vpos = position;
883
		*hpos = 0;
884
	} else {
885
		*vpos = position / htotal;
886
		*hpos = position - (*vpos * htotal);
887
	}
888
 
3746 Serge 889
	/* In vblank? */
890
	if (in_vbl)
5354 serge 891
		ret |= DRM_SCANOUTPOS_IN_VBLANK;
3746 Serge 892
 
893
	return ret;
894
}
895
 
5060 serge 896
int intel_get_crtc_scanline(struct intel_crtc *crtc)
897
{
898
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
899
	unsigned long irqflags;
900
	int position;
901
 
902
	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
903
	position = __intel_get_crtc_scanline(crtc);
904
	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
905
 
906
	return position;
907
}
908
 
6084 serge 909
static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
3746 Serge 910
			      int *max_error,
911
			      struct timeval *vblank_time,
912
			      unsigned flags)
913
{
914
	struct drm_crtc *crtc;
915
 
6084 serge 916
	if (pipe >= INTEL_INFO(dev)->num_pipes) {
917
		DRM_ERROR("Invalid crtc %u\n", pipe);
3746 Serge 918
		return -EINVAL;
919
	}
920
 
921
	/* Get drm_crtc to timestamp: */
922
	crtc = intel_get_crtc_for_pipe(dev, pipe);
923
	if (crtc == NULL) {
6084 serge 924
		DRM_ERROR("Invalid crtc %u\n", pipe);
3746 Serge 925
		return -EINVAL;
926
	}
927
 
6084 serge 928
	if (!crtc->hwmode.crtc_clock) {
929
		DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
3746 Serge 930
		return -EBUSY;
931
	}
932
 
933
	/* Helper routine in DRM core does all the work: */
934
	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
935
						     vblank_time, flags,
6084 serge 936
						     &crtc->hwmode);
3746 Serge 937
}
938
 
4104 Serge 939
static void ironlake_rps_change_irq_handler(struct drm_device *dev)
3746 Serge 940
{
5060 serge 941
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 942
	u32 busy_up, busy_down, max_avg, min_avg;
943
	u8 new_delay;
944
 
4104 Serge 945
	spin_lock(&mchdev_lock);
3746 Serge 946
 
947
	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
948
 
949
	new_delay = dev_priv->ips.cur_delay;
950
 
951
	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
952
	busy_up = I915_READ(RCPREVBSYTUPAVG);
953
	busy_down = I915_READ(RCPREVBSYTDNAVG);
954
	max_avg = I915_READ(RCBMAXAVG);
955
	min_avg = I915_READ(RCBMINAVG);
956
 
957
	/* Handle RCS change request from hw */
958
	if (busy_up > max_avg) {
959
		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
960
			new_delay = dev_priv->ips.cur_delay - 1;
961
		if (new_delay < dev_priv->ips.max_delay)
962
			new_delay = dev_priv->ips.max_delay;
963
	} else if (busy_down < min_avg) {
964
		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
965
			new_delay = dev_priv->ips.cur_delay + 1;
966
		if (new_delay > dev_priv->ips.min_delay)
967
			new_delay = dev_priv->ips.min_delay;
968
	}
969
 
970
	if (ironlake_set_drps(dev, new_delay))
971
		dev_priv->ips.cur_delay = new_delay;
972
 
4104 Serge 973
	spin_unlock(&mchdev_lock);
3746 Serge 974
 
975
	return;
976
}
977
 
6084 serge 978
static void notify_ring(struct intel_engine_cs *ring)
2352 Serge 979
{
5060 serge 980
	if (!intel_ring_initialized(ring))
2352 Serge 981
		return;
2351 Serge 982
 
6084 serge 983
	trace_i915_gem_request_notify(ring);
2351 Serge 984
 
2352 Serge 985
	wake_up_all(&ring->irq_queue);
986
}
987
 
6084 serge 988
static void vlv_c0_read(struct drm_i915_private *dev_priv,
989
			struct intel_rps_ei *ei)
5060 serge 990
{
6084 serge 991
	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
992
	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
993
	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
994
}
5060 serge 995
 
6084 serge 996
void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
5060 serge 997
{
6935 serge 998
	memset(&dev_priv->rps.ei, 0, sizeof(dev_priv->rps.ei));
6084 serge 999
}
5060 serge 1000
 
6084 serge 1001
static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1002
{
6935 serge 1003
	const struct intel_rps_ei *prev = &dev_priv->rps.ei;
6084 serge 1004
	struct intel_rps_ei now;
1005
	u32 events = 0;
5060 serge 1006
 
6935 serge 1007
	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
6084 serge 1008
		return 0;
5060 serge 1009
 
6084 serge 1010
	vlv_c0_read(dev_priv, &now);
1011
	if (now.cz_clock == 0)
1012
		return 0;
5060 serge 1013
 
6935 serge 1014
	if (prev->cz_clock) {
1015
		u64 time, c0;
1016
		unsigned int mul;
5060 serge 1017
 
6935 serge 1018
		mul = VLV_CZ_CLOCK_TO_MILLI_SEC * 100; /* scale to threshold% */
1019
		if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1020
			mul <<= 8;
1021
 
1022
		time = now.cz_clock - prev->cz_clock;
1023
		time *= dev_priv->czclk_freq;
1024
 
1025
		/* Workload can be split between render + media,
1026
		 * e.g. SwapBuffers being blitted in X after being rendered in
1027
		 * mesa. To account for this we need to combine both engines
1028
		 * into our activity counter.
1029
		 */
1030
		c0 = now.render_c0 - prev->render_c0;
1031
		c0 += now.media_c0 - prev->media_c0;
1032
		c0 *= mul;
1033
 
1034
		if (c0 > time * dev_priv->rps.up_threshold)
1035
			events = GEN6_PM_RP_UP_THRESHOLD;
1036
		else if (c0 < time * dev_priv->rps.down_threshold)
1037
			events = GEN6_PM_RP_DOWN_THRESHOLD;
5060 serge 1038
	}
1039
 
6935 serge 1040
	dev_priv->rps.ei = now;
6084 serge 1041
	return events;
1042
}
5060 serge 1043
 
6084 serge 1044
static bool any_waiters(struct drm_i915_private *dev_priv)
1045
{
1046
	struct intel_engine_cs *ring;
1047
	int i;
5060 serge 1048
 
6084 serge 1049
	for_each_ring(ring, dev_priv, i)
1050
		if (ring->irq_refcount)
1051
			return true;
5060 serge 1052
 
6084 serge 1053
	return false;
5060 serge 1054
}
1055
 
3031 serge 1056
static void gen6_pm_rps_work(struct work_struct *work)
1057
{
5060 serge 1058
	struct drm_i915_private *dev_priv =
1059
		container_of(work, struct drm_i915_private, rps.work);
6084 serge 1060
	bool client_boost;
1061
	int new_delay, adj, min, max;
4104 Serge 1062
	u32 pm_iir;
2352 Serge 1063
 
4104 Serge 1064
	spin_lock_irq(&dev_priv->irq_lock);
5354 serge 1065
	/* Speed up work cancelation during disabling rps interrupts. */
1066
	if (!dev_priv->rps.interrupts_enabled) {
1067
		spin_unlock_irq(&dev_priv->irq_lock);
1068
		return;
1069
	}
3031 serge 1070
	pm_iir = dev_priv->rps.pm_iir;
1071
	dev_priv->rps.pm_iir = 0;
5354 serge 1072
	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
6084 serge 1073
	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1074
	client_boost = dev_priv->rps.client_boost;
1075
	dev_priv->rps.client_boost = false;
4104 Serge 1076
	spin_unlock_irq(&dev_priv->irq_lock);
2352 Serge 1077
 
4104 Serge 1078
	/* Make sure we didn't queue anything we're not going to process. */
5060 serge 1079
	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
4104 Serge 1080
 
6084 serge 1081
	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
3031 serge 1082
		return;
1083
 
3243 Serge 1084
	mutex_lock(&dev_priv->rps.hw_lock);
3031 serge 1085
 
6084 serge 1086
	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1087
 
4560 Serge 1088
	adj = dev_priv->rps.last_adj;
6084 serge 1089
	new_delay = dev_priv->rps.cur_freq;
1090
	min = dev_priv->rps.min_freq_softlimit;
1091
	max = dev_priv->rps.max_freq_softlimit;
1092
 
1093
	if (client_boost) {
1094
		new_delay = dev_priv->rps.max_freq_softlimit;
1095
		adj = 0;
1096
	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
4560 Serge 1097
		if (adj > 0)
1098
			adj *= 2;
6084 serge 1099
		else /* CHV needs even encode values */
1100
			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
4104 Serge 1101
		/*
1102
		 * For better performance, jump directly
1103
		 * to RPe if we're below it.
1104
		 */
6084 serge 1105
		if (new_delay < dev_priv->rps.efficient_freq - adj) {
5060 serge 1106
			new_delay = dev_priv->rps.efficient_freq;
6084 serge 1107
			adj = 0;
1108
		}
1109
	} else if (any_waiters(dev_priv)) {
1110
		adj = 0;
4560 Serge 1111
	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
5060 serge 1112
		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1113
			new_delay = dev_priv->rps.efficient_freq;
4560 Serge 1114
		else
5060 serge 1115
			new_delay = dev_priv->rps.min_freq_softlimit;
4560 Serge 1116
		adj = 0;
1117
	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1118
		if (adj < 0)
1119
			adj *= 2;
6084 serge 1120
		else /* CHV needs even encode values */
1121
			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
4560 Serge 1122
	} else { /* unknown event */
6084 serge 1123
		adj = 0;
4560 Serge 1124
	}
3031 serge 1125
 
6084 serge 1126
	dev_priv->rps.last_adj = adj;
1127
 
3031 serge 1128
	/* sysfs frequency interfaces may have snuck in while servicing the
1129
	 * interrupt
1130
	 */
6084 serge 1131
	new_delay += adj;
1132
	new_delay = clamp_t(int, new_delay, min, max);
4560 Serge 1133
 
6084 serge 1134
	intel_set_rps(dev_priv->dev, new_delay);
5060 serge 1135
 
3243 Serge 1136
	mutex_unlock(&dev_priv->rps.hw_lock);
3031 serge 1137
}
1138
 
1139
 
1140
/**
1141
 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1142
 * occurred.
1143
 * @work: workqueue struct
1144
 *
1145
 * Doesn't actually do anything except notify userspace. As a consequence of
1146
 * this event, userspace should try to remap the bad rows since statistically
1147
 * it is likely the same row is more likely to go bad again.
1148
 */
1149
static void ivybridge_parity_work(struct work_struct *work)
2351 Serge 1150
{
5060 serge 1151
	struct drm_i915_private *dev_priv =
1152
		container_of(work, struct drm_i915_private, l3_parity.error_work);
3031 serge 1153
	u32 error_status, row, bank, subbank;
4560 Serge 1154
	char *parity_event[6];
3031 serge 1155
	uint32_t misccpctl;
4560 Serge 1156
	uint8_t slice = 0;
3031 serge 1157
 
1158
	/* We must turn off DOP level clock gating to access the L3 registers.
1159
	 * In order to prevent a get/put style interface, acquire struct mutex
1160
	 * any time we access those registers.
1161
	 */
1162
	mutex_lock(&dev_priv->dev->struct_mutex);
1163
 
4560 Serge 1164
	/* If we've screwed up tracking, just let the interrupt fire again */
1165
	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1166
		goto out;
1167
 
3031 serge 1168
	misccpctl = I915_READ(GEN7_MISCCPCTL);
1169
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1170
	POSTING_READ(GEN7_MISCCPCTL);
1171
 
4560 Serge 1172
	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1173
		u32 reg;
1174
 
1175
		slice--;
1176
		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1177
			break;
1178
 
1179
		dev_priv->l3_parity.which_slice &= ~(1<
1180
 
1181
		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1182
 
1183
		error_status = I915_READ(reg);
6084 serge 1184
		row = GEN7_PARITY_ERROR_ROW(error_status);
1185
		bank = GEN7_PARITY_ERROR_BANK(error_status);
1186
		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
3031 serge 1187
 
4560 Serge 1188
		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1189
		POSTING_READ(reg);
3031 serge 1190
 
4560 Serge 1191
		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1192
			  slice, row, bank, subbank);
1193
 
1194
	}
1195
 
3031 serge 1196
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1197
 
4560 Serge 1198
out:
1199
	WARN_ON(dev_priv->l3_parity.which_slice);
5354 serge 1200
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 1201
	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
5354 serge 1202
	spin_unlock_irq(&dev_priv->irq_lock);
3031 serge 1203
 
1204
	mutex_unlock(&dev_priv->dev->struct_mutex);
1205
}
1206
 
4560 Serge 1207
static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
3031 serge 1208
{
5060 serge 1209
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1210
 
4560 Serge 1211
	if (!HAS_L3_DPF(dev))
3031 serge 1212
		return;
1213
 
4104 Serge 1214
	spin_lock(&dev_priv->irq_lock);
5060 serge 1215
	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
4104 Serge 1216
	spin_unlock(&dev_priv->irq_lock);
3031 serge 1217
 
4560 Serge 1218
	iir &= GT_PARITY_ERROR(dev);
1219
	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1220
		dev_priv->l3_parity.which_slice |= 1 << 1;
1221
 
1222
	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1223
		dev_priv->l3_parity.which_slice |= 1 << 0;
1224
 
3243 Serge 1225
	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
3031 serge 1226
}
1227
 
4104 Serge 1228
static void ilk_gt_irq_handler(struct drm_device *dev,
1229
			       struct drm_i915_private *dev_priv,
1230
			       u32 gt_iir)
1231
{
1232
	if (gt_iir &
1233
	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
6084 serge 1234
		notify_ring(&dev_priv->ring[RCS]);
4104 Serge 1235
	if (gt_iir & ILK_BSD_USER_INTERRUPT)
6084 serge 1236
		notify_ring(&dev_priv->ring[VCS]);
4104 Serge 1237
}
1238
 
3031 serge 1239
static void snb_gt_irq_handler(struct drm_device *dev,
1240
			       struct drm_i915_private *dev_priv,
1241
			       u32 gt_iir)
1242
{
1243
 
4104 Serge 1244
	if (gt_iir &
1245
	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
6084 serge 1246
		notify_ring(&dev_priv->ring[RCS]);
4104 Serge 1247
	if (gt_iir & GT_BSD_USER_INTERRUPT)
6084 serge 1248
		notify_ring(&dev_priv->ring[VCS]);
4104 Serge 1249
	if (gt_iir & GT_BLT_USER_INTERRUPT)
6084 serge 1250
		notify_ring(&dev_priv->ring[BCS]);
3031 serge 1251
 
4104 Serge 1252
	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1253
		      GT_BSD_CS_ERROR_INTERRUPT |
5354 serge 1254
		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1255
		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
3031 serge 1256
 
4560 Serge 1257
	if (gt_iir & GT_PARITY_ERROR(dev))
1258
		ivybridge_parity_error_irq_handler(dev, gt_iir);
3031 serge 1259
}
1260
 
6084 serge 1261
static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
4560 Serge 1262
				       u32 master_ctl)
1263
{
1264
	irqreturn_t ret = IRQ_NONE;
1265
 
1266
	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
6084 serge 1267
		u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
4560 Serge 1268
		if (tmp) {
6084 serge 1269
			I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
4560 Serge 1270
			ret = IRQ_HANDLED;
5354 serge 1271
 
6084 serge 1272
			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1273
				intel_lrc_irq_handler(&dev_priv->ring[RCS]);
1274
			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1275
				notify_ring(&dev_priv->ring[RCS]);
5354 serge 1276
 
6084 serge 1277
			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1278
				intel_lrc_irq_handler(&dev_priv->ring[BCS]);
1279
			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1280
				notify_ring(&dev_priv->ring[BCS]);
4560 Serge 1281
		} else
1282
			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1283
	}
1284
 
5060 serge 1285
	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
6084 serge 1286
		u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
4560 Serge 1287
		if (tmp) {
6084 serge 1288
			I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
4560 Serge 1289
			ret = IRQ_HANDLED;
5354 serge 1290
 
6084 serge 1291
			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1292
				intel_lrc_irq_handler(&dev_priv->ring[VCS]);
1293
			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1294
				notify_ring(&dev_priv->ring[VCS]);
5354 serge 1295
 
6084 serge 1296
			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1297
				intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
1298
			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1299
				notify_ring(&dev_priv->ring[VCS2]);
4560 Serge 1300
		} else
1301
			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1302
	}
1303
 
6084 serge 1304
	if (master_ctl & GEN8_GT_VECS_IRQ) {
1305
		u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
1306
		if (tmp) {
1307
			I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
1308
			ret = IRQ_HANDLED;
1309
 
1310
			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1311
				intel_lrc_irq_handler(&dev_priv->ring[VECS]);
1312
			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1313
				notify_ring(&dev_priv->ring[VECS]);
1314
		} else
1315
			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1316
	}
1317
 
5060 serge 1318
	if (master_ctl & GEN8_GT_PM_IRQ) {
6084 serge 1319
		u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
5060 serge 1320
		if (tmp & dev_priv->pm_rps_events) {
6084 serge 1321
			I915_WRITE_FW(GEN8_GT_IIR(2),
1322
				      tmp & dev_priv->pm_rps_events);
5060 serge 1323
			ret = IRQ_HANDLED;
5354 serge 1324
			gen6_rps_irq_handler(dev_priv, tmp);
5060 serge 1325
		} else
1326
			DRM_ERROR("The master control interrupt lied (PM)!\n");
1327
	}
1328
 
6084 serge 1329
	return ret;
1330
}
5354 serge 1331
 
6084 serge 1332
static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1333
{
1334
	switch (port) {
1335
	case PORT_A:
1336
		return val & PORTA_HOTPLUG_LONG_DETECT;
1337
	case PORT_B:
1338
		return val & PORTB_HOTPLUG_LONG_DETECT;
1339
	case PORT_C:
1340
		return val & PORTC_HOTPLUG_LONG_DETECT;
1341
	default:
1342
		return false;
4560 Serge 1343
	}
6084 serge 1344
}
4560 Serge 1345
 
6084 serge 1346
static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1347
{
1348
	switch (port) {
1349
	case PORT_E:
1350
		return val & PORTE_HOTPLUG_LONG_DETECT;
1351
	default:
1352
		return false;
1353
	}
4560 Serge 1354
}
1355
 
6084 serge 1356
static bool spt_port_hotplug_long_detect(enum port port, u32 val)
5060 serge 1357
{
1358
	switch (port) {
1359
	case PORT_A:
6084 serge 1360
		return val & PORTA_HOTPLUG_LONG_DETECT;
5060 serge 1361
	case PORT_B:
6084 serge 1362
		return val & PORTB_HOTPLUG_LONG_DETECT;
5060 serge 1363
	case PORT_C:
6084 serge 1364
		return val & PORTC_HOTPLUG_LONG_DETECT;
5060 serge 1365
	case PORT_D:
6084 serge 1366
		return val & PORTD_HOTPLUG_LONG_DETECT;
1367
	default:
1368
		return false;
5060 serge 1369
	}
1370
}
1371
 
6084 serge 1372
static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
5060 serge 1373
{
1374
	switch (port) {
1375
	case PORT_A:
6084 serge 1376
		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
5060 serge 1377
	default:
6084 serge 1378
		return false;
1379
	}
1380
}
1381
 
1382
static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1383
{
1384
	switch (port) {
5060 serge 1385
	case PORT_B:
6084 serge 1386
		return val & PORTB_HOTPLUG_LONG_DETECT;
5060 serge 1387
	case PORT_C:
6084 serge 1388
		return val & PORTC_HOTPLUG_LONG_DETECT;
5060 serge 1389
	case PORT_D:
6084 serge 1390
		return val & PORTD_HOTPLUG_LONG_DETECT;
1391
	default:
1392
		return false;
5060 serge 1393
	}
1394
}
1395
 
6084 serge 1396
static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
5060 serge 1397
{
6084 serge 1398
	switch (port) {
1399
	case PORT_B:
1400
		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1401
	case PORT_C:
1402
		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1403
	case PORT_D:
1404
		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
5060 serge 1405
	default:
6084 serge 1406
		return false;
5060 serge 1407
	}
1408
}
1409
 
6084 serge 1410
/*
1411
 * Get a bit mask of pins that have triggered, and which ones may be long.
1412
 * This can be called multiple times with the same masks to accumulate
1413
 * hotplug detection results from several registers.
1414
 *
1415
 * Note that the caller is expected to zero out the masks initially.
1416
 */
1417
static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1418
			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1419
			     const u32 hpd[HPD_NUM_PINS],
1420
			     bool long_pulse_detect(enum port port, u32 val))
3746 Serge 1421
{
6084 serge 1422
	enum port port;
3746 Serge 1423
	int i;
1424
 
6084 serge 1425
	for_each_hpd_pin(i) {
1426
		if ((hpd[i] & hotplug_trigger) == 0)
5060 serge 1427
			continue;
3746 Serge 1428
 
6084 serge 1429
		*pin_mask |= BIT(i);
5060 serge 1430
 
6296 serge 1431
		if (!intel_hpd_pin_to_port(i, &port))
6131 serge 1432
			continue;
5060 serge 1433
 
6084 serge 1434
		if (long_pulse_detect(port, dig_hotplug_reg))
1435
			*long_mask |= BIT(i);
3746 Serge 1436
	}
1437
 
6084 serge 1438
	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1439
			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
3746 Serge 1440
 
1441
}
1442
 
3480 Serge 1443
static void gmbus_irq_handler(struct drm_device *dev)
1444
{
5060 serge 1445
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 1446
 
1447
	wake_up_all(&dev_priv->gmbus_wait_queue);
1448
}
1449
 
1450
static void dp_aux_irq_handler(struct drm_device *dev)
1451
{
5060 serge 1452
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 1453
 
1454
	wake_up_all(&dev_priv->gmbus_wait_queue);
1455
}
1456
 
4560 Serge 1457
#if defined(CONFIG_DEBUG_FS)
1458
static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1459
					 uint32_t crc0, uint32_t crc1,
1460
					 uint32_t crc2, uint32_t crc3,
1461
					 uint32_t crc4)
1462
{
1463
	struct drm_i915_private *dev_priv = dev->dev_private;
1464
	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1465
	struct intel_pipe_crc_entry *entry;
1466
	int head, tail;
1467
 
1468
	spin_lock(&pipe_crc->lock);
1469
 
1470
	if (!pipe_crc->entries) {
1471
		spin_unlock(&pipe_crc->lock);
5354 serge 1472
		DRM_DEBUG_KMS("spurious interrupt\n");
4560 Serge 1473
		return;
1474
	}
1475
 
1476
	head = pipe_crc->head;
1477
	tail = pipe_crc->tail;
1478
 
1479
	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1480
		spin_unlock(&pipe_crc->lock);
1481
		DRM_ERROR("CRC buffer overflowing\n");
1482
		return;
1483
	}
1484
 
1485
	entry = &pipe_crc->entries[head];
1486
 
1487
	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1488
	entry->crc[0] = crc0;
1489
	entry->crc[1] = crc1;
1490
	entry->crc[2] = crc2;
1491
	entry->crc[3] = crc3;
1492
	entry->crc[4] = crc4;
1493
 
1494
	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1495
	pipe_crc->head = head;
1496
 
1497
	spin_unlock(&pipe_crc->lock);
1498
 
1499
	wake_up_interruptible(&pipe_crc->wq);
1500
}
1501
#else
1502
static inline void
1503
display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1504
			     uint32_t crc0, uint32_t crc1,
1505
			     uint32_t crc2, uint32_t crc3,
1506
			     uint32_t crc4) {}
1507
#endif
1508
 
1509
 
1510
static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1511
{
1512
	struct drm_i915_private *dev_priv = dev->dev_private;
1513
 
1514
	display_pipe_crc_irq_handler(dev, pipe,
1515
				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1516
				     0, 0, 0, 0);
1517
}
1518
 
1519
static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1520
{
1521
	struct drm_i915_private *dev_priv = dev->dev_private;
1522
 
1523
	display_pipe_crc_irq_handler(dev, pipe,
1524
				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1525
				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1526
				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1527
				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1528
				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1529
}
1530
 
1531
static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1532
{
1533
	struct drm_i915_private *dev_priv = dev->dev_private;
1534
	uint32_t res1, res2;
1535
 
1536
	if (INTEL_INFO(dev)->gen >= 3)
1537
		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1538
	else
1539
		res1 = 0;
1540
 
1541
	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1542
		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1543
	else
1544
		res2 = 0;
1545
 
1546
	display_pipe_crc_irq_handler(dev, pipe,
1547
				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1548
				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1549
				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1550
				     res1, res2);
1551
}
1552
 
4104 Serge 1553
/* The RPS events need forcewake, so we add them to a work queue and mask their
1554
 * IMR bits until the work is done. Other interrupts can be processed without
1555
 * the work queue. */
1556
static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1557
{
5060 serge 1558
	if (pm_iir & dev_priv->pm_rps_events) {
4104 Serge 1559
		spin_lock(&dev_priv->irq_lock);
5354 serge 1560
		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1561
		if (dev_priv->rps.interrupts_enabled) {
6084 serge 1562
			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
5354 serge 1563
			queue_work(dev_priv->wq, &dev_priv->rps.work);
1564
		}
4104 Serge 1565
		spin_unlock(&dev_priv->irq_lock);
1566
	}
1567
 
5354 serge 1568
	if (INTEL_INFO(dev_priv)->gen >= 8)
1569
		return;
1570
 
4104 Serge 1571
	if (HAS_VEBOX(dev_priv->dev)) {
1572
		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
6084 serge 1573
			notify_ring(&dev_priv->ring[VECS]);
4104 Serge 1574
 
5354 serge 1575
		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1576
			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
4104 Serge 1577
	}
1578
}
1579
 
5354 serge 1580
static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1581
{
6088 serge 1582
	if (!drm_handle_vblank(dev, pipe))
1583
		return false;
5354 serge 1584
 
1585
	return true;
1586
}
1587
 
5060 serge 1588
static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
3031 serge 1589
{
5060 serge 1590
	struct drm_i915_private *dev_priv = dev->dev_private;
1591
	u32 pipe_stats[I915_MAX_PIPES] = { };
3031 serge 1592
	int pipe;
1593
 
5060 serge 1594
	spin_lock(&dev_priv->irq_lock);
5354 serge 1595
	for_each_pipe(dev_priv, pipe) {
5060 serge 1596
		int reg;
1597
		u32 mask, iir_bit = 0;
3031 serge 1598
 
5060 serge 1599
		/*
1600
		 * PIPESTAT bits get signalled even when the interrupt is
1601
		 * disabled with the mask bits, and some of the status bits do
1602
		 * not generate interrupts at all (like the underrun bit). Hence
1603
		 * we need to be careful that we only handle what we want to
1604
		 * handle.
1605
		 */
3031 serge 1606
 
5354 serge 1607
		/* fifo underruns are filterered in the underrun handler. */
1608
		mask = PIPE_FIFO_UNDERRUN_STATUS;
1609
 
5060 serge 1610
		switch (pipe) {
1611
		case PIPE_A:
1612
			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1613
			break;
1614
		case PIPE_B:
1615
			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1616
			break;
1617
		case PIPE_C:
1618
			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1619
			break;
1620
		}
1621
		if (iir & iir_bit)
1622
			mask |= dev_priv->pipestat_irq_mask[pipe];
3031 serge 1623
 
5060 serge 1624
		if (!mask)
1625
			continue;
3031 serge 1626
 
5060 serge 1627
		reg = PIPESTAT(pipe);
1628
		mask |= PIPESTAT_INT_ENABLE_MASK;
1629
		pipe_stats[pipe] = I915_READ(reg) & mask;
3031 serge 1630
 
6084 serge 1631
		/*
1632
		 * Clear the PIPE*STAT regs before the IIR
1633
		 */
5060 serge 1634
		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1635
					PIPESTAT_INT_STATUS_MASK))
6084 serge 1636
			I915_WRITE(reg, pipe_stats[pipe]);
1637
	}
5060 serge 1638
	spin_unlock(&dev_priv->irq_lock);
3031 serge 1639
 
5354 serge 1640
	for_each_pipe(dev_priv, pipe) {
6084 serge 1641
		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1642
		    intel_pipe_handle_vblank(dev, pipe))
6320 serge 1643
			intel_check_page_flip(dev, pipe);
3031 serge 1644
 
6084 serge 1645
		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
6320 serge 1646
			intel_prepare_page_flip(dev, pipe);
1647
			intel_finish_page_flip(dev, pipe);
6084 serge 1648
		}
4560 Serge 1649
 
6084 serge 1650
		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1651
			i9xx_pipe_crc_irq_handler(dev, pipe);
5060 serge 1652
 
5354 serge 1653
		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1654
			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
6084 serge 1655
	}
3031 serge 1656
 
5060 serge 1657
	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1658
		gmbus_irq_handler(dev);
1659
}
3031 serge 1660
 
5060 serge 1661
static void i9xx_hpd_irq_handler(struct drm_device *dev)
1662
{
1663
	struct drm_i915_private *dev_priv = dev->dev_private;
1664
	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
6084 serge 1665
	u32 pin_mask = 0, long_mask = 0;
4104 Serge 1666
 
6084 serge 1667
	if (!hotplug_status)
1668
		return;
4104 Serge 1669
 
6084 serge 1670
	I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1671
	/*
1672
	 * Make sure hotplug status is cleared before we clear IIR, or else we
1673
	 * may miss hotplug events.
1674
	 */
1675
	POSTING_READ(PORT_HOTPLUG_STAT);
1676
 
1677
	if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5060 serge 1678
		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
4560 Serge 1679
 
6084 serge 1680
		if (hotplug_trigger) {
1681
			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1682
					   hotplug_trigger, hpd_status_g4x,
1683
					   i9xx_port_hotplug_long_detect);
1684
 
6296 serge 1685
			intel_hpd_irq_handler(dev, pin_mask, long_mask);
6084 serge 1686
		}
1687
 
1688
		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1689
			dp_aux_irq_handler(dev);
5060 serge 1690
	} else {
1691
		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1692
 
6084 serge 1693
		if (hotplug_trigger) {
1694
			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1695
					   hotplug_trigger, hpd_status_i915,
1696
					   i9xx_port_hotplug_long_detect);
6296 serge 1697
			intel_hpd_irq_handler(dev, pin_mask, long_mask);
6084 serge 1698
		}
5060 serge 1699
	}
1700
}
1701
 
1702
static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1703
{
1704
	struct drm_device *dev = arg;
1705
	struct drm_i915_private *dev_priv = dev->dev_private;
1706
	u32 iir, gt_iir, pm_iir;
1707
	irqreturn_t ret = IRQ_NONE;
1708
 
6084 serge 1709
	if (!intel_irqs_enabled(dev_priv))
1710
		return IRQ_NONE;
1711
 
5060 serge 1712
	while (true) {
1713
		/* Find, clear, then process each source of interrupt */
1714
 
1715
		gt_iir = I915_READ(GTIIR);
1716
		if (gt_iir)
1717
			I915_WRITE(GTIIR, gt_iir);
1718
 
1719
		pm_iir = I915_READ(GEN6_PMIIR);
1720
		if (pm_iir)
1721
			I915_WRITE(GEN6_PMIIR, pm_iir);
1722
 
1723
		iir = I915_READ(VLV_IIR);
1724
		if (iir) {
1725
			/* Consume port before clearing IIR or we'll miss events */
1726
			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1727
				i9xx_hpd_irq_handler(dev);
1728
			I915_WRITE(VLV_IIR, iir);
3031 serge 1729
		}
1730
 
5060 serge 1731
		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1732
			goto out;
3031 serge 1733
 
5060 serge 1734
		ret = IRQ_HANDLED;
1735
 
1736
		if (gt_iir)
6084 serge 1737
			snb_gt_irq_handler(dev, dev_priv, gt_iir);
4126 Serge 1738
		if (pm_iir)
1739
			gen6_rps_irq_handler(dev_priv, pm_iir);
5060 serge 1740
		/* Call regardless, as some status bits might not be
1741
		 * signalled in iir */
1742
		valleyview_pipestat_irq_handler(dev, iir);
3031 serge 1743
	}
1744
 
1745
out:
1746
	return ret;
1747
}
1748
 
5060 serge 1749
static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1750
{
1751
	struct drm_device *dev = arg;
1752
	struct drm_i915_private *dev_priv = dev->dev_private;
1753
	u32 master_ctl, iir;
1754
	irqreturn_t ret = IRQ_NONE;
1755
 
6084 serge 1756
	if (!intel_irqs_enabled(dev_priv))
1757
		return IRQ_NONE;
1758
 
5060 serge 1759
	for (;;) {
1760
		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1761
		iir = I915_READ(VLV_IIR);
1762
 
1763
		if (master_ctl == 0 && iir == 0)
1764
			break;
1765
 
1766
		ret = IRQ_HANDLED;
1767
 
1768
		I915_WRITE(GEN8_MASTER_IRQ, 0);
1769
 
1770
		/* Find, clear, then process each source of interrupt */
1771
 
1772
		if (iir) {
1773
			/* Consume port before clearing IIR or we'll miss events */
1774
			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1775
				i9xx_hpd_irq_handler(dev);
1776
			I915_WRITE(VLV_IIR, iir);
1777
		}
1778
 
6084 serge 1779
		gen8_gt_irq_handler(dev_priv, master_ctl);
5060 serge 1780
 
1781
		/* Call regardless, as some status bits might not be
1782
		 * signalled in iir */
1783
		valleyview_pipestat_irq_handler(dev, iir);
1784
 
1785
		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1786
		POSTING_READ(GEN8_MASTER_IRQ);
1787
	}
1788
 
1789
	return ret;
1790
}
1791
 
6084 serge 1792
static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1793
				const u32 hpd[HPD_NUM_PINS])
1794
{
1795
	struct drm_i915_private *dev_priv = to_i915(dev);
1796
	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1797
 
1798
	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1799
	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1800
 
1801
	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1802
			   dig_hotplug_reg, hpd,
1803
			   pch_port_hotplug_long_detect);
1804
 
6296 serge 1805
	intel_hpd_irq_handler(dev, pin_mask, long_mask);
6084 serge 1806
}
1807
 
3031 serge 1808
static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1809
{
5060 serge 1810
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1811
	int pipe;
3746 Serge 1812
	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
3031 serge 1813
 
6084 serge 1814
	if (hotplug_trigger)
1815
		ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
4104 Serge 1816
 
1817
	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1818
		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1819
			       SDE_AUDIO_POWER_SHIFT);
1820
		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1821
				 port_name(port));
3746 Serge 1822
	}
3031 serge 1823
 
3480 Serge 1824
	if (pch_iir & SDE_AUX_MASK)
1825
		dp_aux_irq_handler(dev);
1826
 
3031 serge 1827
	if (pch_iir & SDE_GMBUS)
3480 Serge 1828
		gmbus_irq_handler(dev);
3031 serge 1829
 
1830
	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1831
		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1832
 
1833
	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1834
		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1835
 
1836
	if (pch_iir & SDE_POISON)
1837
		DRM_ERROR("PCH poison interrupt\n");
1838
 
1839
	if (pch_iir & SDE_FDI_MASK)
5354 serge 1840
		for_each_pipe(dev_priv, pipe)
3031 serge 1841
			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1842
					 pipe_name(pipe),
1843
					 I915_READ(FDI_RX_IIR(pipe)));
1844
 
1845
	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1846
		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1847
 
1848
	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1849
		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1850
 
4104 Serge 1851
	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
5354 serge 1852
		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
4104 Serge 1853
 
3031 serge 1854
	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
5354 serge 1855
		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
3031 serge 1856
}
1857
 
4104 Serge 1858
static void ivb_err_int_handler(struct drm_device *dev)
1859
{
1860
	struct drm_i915_private *dev_priv = dev->dev_private;
1861
	u32 err_int = I915_READ(GEN7_ERR_INT);
4560 Serge 1862
	enum pipe pipe;
4104 Serge 1863
 
1864
	if (err_int & ERR_INT_POISON)
1865
		DRM_ERROR("Poison interrupt\n");
1866
 
5354 serge 1867
	for_each_pipe(dev_priv, pipe) {
1868
		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1869
			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4104 Serge 1870
 
4560 Serge 1871
		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1872
			if (IS_IVYBRIDGE(dev))
1873
				ivb_pipe_crc_irq_handler(dev, pipe);
1874
			else
1875
				hsw_pipe_crc_irq_handler(dev, pipe);
1876
		}
1877
	}
4104 Serge 1878
 
1879
	I915_WRITE(GEN7_ERR_INT, err_int);
1880
}
1881
 
1882
static void cpt_serr_int_handler(struct drm_device *dev)
1883
{
1884
	struct drm_i915_private *dev_priv = dev->dev_private;
1885
	u32 serr_int = I915_READ(SERR_INT);
1886
 
1887
	if (serr_int & SERR_INT_POISON)
1888
		DRM_ERROR("PCH poison interrupt\n");
1889
 
1890
	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
5354 serge 1891
		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
4104 Serge 1892
 
1893
	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
5354 serge 1894
		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
4104 Serge 1895
 
1896
	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
5354 serge 1897
		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
4104 Serge 1898
 
1899
	I915_WRITE(SERR_INT, serr_int);
1900
}
1901
 
3031 serge 1902
static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1903
{
5060 serge 1904
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1905
	int pipe;
3746 Serge 1906
	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
3031 serge 1907
 
6084 serge 1908
	if (hotplug_trigger)
1909
		ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
4104 Serge 1910
 
1911
	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1912
		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1913
			       SDE_AUDIO_POWER_SHIFT_CPT);
1914
		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1915
				 port_name(port));
3746 Serge 1916
	}
3031 serge 1917
 
1918
	if (pch_iir & SDE_AUX_MASK_CPT)
3480 Serge 1919
		dp_aux_irq_handler(dev);
3031 serge 1920
 
1921
	if (pch_iir & SDE_GMBUS_CPT)
3480 Serge 1922
		gmbus_irq_handler(dev);
3031 serge 1923
 
1924
	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1925
		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1926
 
1927
	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1928
		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1929
 
1930
	if (pch_iir & SDE_FDI_MASK_CPT)
5354 serge 1931
		for_each_pipe(dev_priv, pipe)
3031 serge 1932
			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1933
					 pipe_name(pipe),
1934
					 I915_READ(FDI_RX_IIR(pipe)));
1935
 
4104 Serge 1936
	if (pch_iir & SDE_ERROR_CPT)
1937
		cpt_serr_int_handler(dev);
4539 Serge 1938
}
3480 Serge 1939
 
6084 serge 1940
static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
1941
{
1942
	struct drm_i915_private *dev_priv = dev->dev_private;
1943
	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1944
		~SDE_PORTE_HOTPLUG_SPT;
1945
	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1946
	u32 pin_mask = 0, long_mask = 0;
1947
 
1948
	if (hotplug_trigger) {
1949
		u32 dig_hotplug_reg;
1950
 
1951
		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1952
		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1953
 
1954
		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1955
				   dig_hotplug_reg, hpd_spt,
1956
				   spt_port_hotplug_long_detect);
1957
	}
1958
 
1959
	if (hotplug2_trigger) {
1960
		u32 dig_hotplug_reg;
1961
 
1962
		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1963
		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1964
 
1965
		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
1966
				   dig_hotplug_reg, hpd_spt,
1967
				   spt_port_hotplug2_long_detect);
1968
	}
1969
 
6296 serge 1970
	if (pin_mask)
1971
		intel_hpd_irq_handler(dev, pin_mask, long_mask);
1972
 
6084 serge 1973
	if (pch_iir & SDE_GMBUS_CPT)
1974
		gmbus_irq_handler(dev);
1975
}
1976
 
1977
static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1978
				const u32 hpd[HPD_NUM_PINS])
1979
{
1980
	struct drm_i915_private *dev_priv = to_i915(dev);
1981
	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1982
 
1983
	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
1984
	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
1985
 
1986
	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1987
			   dig_hotplug_reg, hpd,
1988
			   ilk_port_hotplug_long_detect);
1989
 
6296 serge 1990
	intel_hpd_irq_handler(dev, pin_mask, long_mask);
6084 serge 1991
}
1992
 
4104 Serge 1993
static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
3031 serge 1994
{
4104 Serge 1995
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 1996
	enum pipe pipe;
6084 serge 1997
	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
3031 serge 1998
 
6296 serge 1999
	if (hotplug_trigger)
2000
		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
6084 serge 2001
 
3480 Serge 2002
	if (de_iir & DE_AUX_CHANNEL_A)
2003
		dp_aux_irq_handler(dev);
2004
 
3031 serge 2005
	if (de_iir & DE_GSE)
4104 Serge 2006
		intel_opregion_asle_intr(dev);
2351 Serge 2007
 
4104 Serge 2008
	if (de_iir & DE_POISON)
2009
		DRM_ERROR("Poison interrupt\n");
2010
 
5354 serge 2011
	for_each_pipe(dev_priv, pipe) {
6084 serge 2012
		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2013
		    intel_pipe_handle_vblank(dev, pipe))
6320 serge 2014
			intel_check_page_flip(dev, pipe);
4104 Serge 2015
 
4560 Serge 2016
		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
5354 serge 2017
			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2351 Serge 2018
 
4560 Serge 2019
		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2020
			i9xx_pipe_crc_irq_handler(dev, pipe);
2021
 
2022
		/* plane/pipes map 1:1 on ilk+ */
2023
		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
6320 serge 2024
			intel_prepare_page_flip(dev, pipe);
2025
			intel_finish_page_flip_plane(dev, pipe);
4560 Serge 2026
		}
3031 serge 2027
	}
2351 Serge 2028
 
3031 serge 2029
	/* check event from PCH */
2030
	if (de_iir & DE_PCH_EVENT) {
3480 Serge 2031
		u32 pch_iir = I915_READ(SDEIIR);
2032
 
3031 serge 2033
		if (HAS_PCH_CPT(dev))
2034
			cpt_irq_handler(dev, pch_iir);
2035
		else
2036
			ibx_irq_handler(dev, pch_iir);
3480 Serge 2037
 
2038
		/* should clear PCH hotplug event before clear CPU irq */
2039
		I915_WRITE(SDEIIR, pch_iir);
3031 serge 2040
	}
4104 Serge 2041
 
6084 serge 2042
	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
4104 Serge 2043
		ironlake_rps_change_irq_handler(dev);
2351 Serge 2044
}
2045
 
4104 Serge 2046
static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
3031 serge 2047
{
2048
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 2049
	enum pipe pipe;
6084 serge 2050
	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2351 Serge 2051
 
6084 serge 2052
	if (hotplug_trigger)
2053
		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2054
 
4126 Serge 2055
	if (de_iir & DE_ERR_INT_IVB)
2056
		ivb_err_int_handler(dev);
2351 Serge 2057
 
4104 Serge 2058
	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2059
		dp_aux_irq_handler(dev);
3031 serge 2060
 
4104 Serge 2061
	if (de_iir & DE_GSE_IVB)
2062
		intel_opregion_asle_intr(dev);
4560 Serge 2063
 
5354 serge 2064
	for_each_pipe(dev_priv, pipe) {
6084 serge 2065
		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2066
		    intel_pipe_handle_vblank(dev, pipe))
6320 serge 2067
			intel_check_page_flip(dev, pipe);
4560 Serge 2068
 
2069
		/* plane/pipes map 1:1 on ilk+ */
5060 serge 2070
		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
6320 serge 2071
			intel_prepare_page_flip(dev, pipe);
2072
			intel_finish_page_flip_plane(dev, pipe);
3031 serge 2073
		}
2074
	}
2075
 
4104 Serge 2076
	/* check event from PCH */
2077
	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2078
		u32 pch_iir = I915_READ(SDEIIR);
3031 serge 2079
 
4104 Serge 2080
		cpt_irq_handler(dev, pch_iir);
3031 serge 2081
 
4104 Serge 2082
		/* clear PCH hotplug event before clear CPU irq */
2083
		I915_WRITE(SDEIIR, pch_iir);
4539 Serge 2084
	}
3031 serge 2085
}
2086
 
5060 serge 2087
/*
2088
 * To handle irqs with the minimum potential races with fresh interrupts, we:
2089
 * 1 - Disable Master Interrupt Control.
2090
 * 2 - Find the source(s) of the interrupt.
2091
 * 3 - Clear the Interrupt Identity bits (IIR).
2092
 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2093
 * 5 - Re-enable Master Interrupt Control.
2094
 */
4104 Serge 2095
static irqreturn_t ironlake_irq_handler(int irq, void *arg)
3031 serge 2096
{
5060 serge 2097
	struct drm_device *dev = arg;
2098
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 2099
	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2100
	irqreturn_t ret = IRQ_NONE;
3031 serge 2101
 
6084 serge 2102
	if (!intel_irqs_enabled(dev_priv))
2103
		return IRQ_NONE;
2104
 
4104 Serge 2105
	/* We get interrupts on unclaimed registers, so check for this before we
2106
	 * do any I915_{READ,WRITE}. */
2107
	intel_uncore_check_errors(dev);
3031 serge 2108
 
4104 Serge 2109
	/* disable master interrupt before clearing iir  */
2110
	de_ier = I915_READ(DEIER);
2111
	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2112
	POSTING_READ(DEIER);
3031 serge 2113
 
4104 Serge 2114
	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2115
	 * interrupts will will be stored on its back queue, and then we'll be
2116
	 * able to process them after we restore SDEIER (as soon as we restore
2117
	 * it, we'll get an interrupt if SDEIIR still has something to process
2118
	 * due to its back queue). */
2119
	if (!HAS_PCH_NOP(dev)) {
2120
		sde_ier = I915_READ(SDEIER);
2121
		I915_WRITE(SDEIER, 0);
2122
		POSTING_READ(SDEIER);
3031 serge 2123
	}
2124
 
5060 serge 2125
	/* Find, clear, then process each source of interrupt */
2126
 
4104 Serge 2127
	gt_iir = I915_READ(GTIIR);
2128
	if (gt_iir) {
5060 serge 2129
		I915_WRITE(GTIIR, gt_iir);
2130
		ret = IRQ_HANDLED;
4104 Serge 2131
		if (INTEL_INFO(dev)->gen >= 6)
2132
			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2133
		else
2134
			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
4539 Serge 2135
	}
3031 serge 2136
 
4104 Serge 2137
	de_iir = I915_READ(DEIIR);
2138
	if (de_iir) {
5060 serge 2139
		I915_WRITE(DEIIR, de_iir);
2140
		ret = IRQ_HANDLED;
4104 Serge 2141
		if (INTEL_INFO(dev)->gen >= 7)
2142
			ivb_display_irq_handler(dev, de_iir);
2143
		else
2144
			ilk_display_irq_handler(dev, de_iir);
3480 Serge 2145
	}
2146
 
4104 Serge 2147
	if (INTEL_INFO(dev)->gen >= 6) {
2148
		u32 pm_iir = I915_READ(GEN6_PMIIR);
2149
		if (pm_iir) {
2150
			I915_WRITE(GEN6_PMIIR, pm_iir);
2151
			ret = IRQ_HANDLED;
5060 serge 2152
			gen6_rps_irq_handler(dev_priv, pm_iir);
4560 Serge 2153
		}
3031 serge 2154
	}
2155
 
4104 Serge 2156
	I915_WRITE(DEIER, de_ier);
2157
	POSTING_READ(DEIER);
2158
	if (!HAS_PCH_NOP(dev)) {
2159
		I915_WRITE(SDEIER, sde_ier);
2160
		POSTING_READ(SDEIER);
3031 serge 2161
	}
2162
 
4104 Serge 2163
	return ret;
3031 serge 2164
}
2165
 
6084 serge 2166
static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2167
				const u32 hpd[HPD_NUM_PINS])
2168
{
2169
	struct drm_i915_private *dev_priv = to_i915(dev);
2170
	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2171
 
2172
	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2173
	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2174
 
2175
	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2176
			   dig_hotplug_reg, hpd,
2177
			   bxt_port_hotplug_long_detect);
2178
 
6296 serge 2179
	intel_hpd_irq_handler(dev, pin_mask, long_mask);
6084 serge 2180
}
2181
 
4560 Serge 2182
static irqreturn_t gen8_irq_handler(int irq, void *arg)
2183
{
2184
	struct drm_device *dev = arg;
2185
	struct drm_i915_private *dev_priv = dev->dev_private;
2186
	u32 master_ctl;
2187
	irqreturn_t ret = IRQ_NONE;
2188
	uint32_t tmp = 0;
2189
	enum pipe pipe;
5354 serge 2190
	u32 aux_mask = GEN8_AUX_CHANNEL_A;
4560 Serge 2191
 
6084 serge 2192
	if (!intel_irqs_enabled(dev_priv))
2193
		return IRQ_NONE;
2194
 
2195
	if (INTEL_INFO(dev_priv)->gen >= 9)
5354 serge 2196
		aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2197
			GEN9_AUX_CHANNEL_D;
2198
 
6084 serge 2199
	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
4560 Serge 2200
	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2201
	if (!master_ctl)
2202
		return IRQ_NONE;
2203
 
6084 serge 2204
	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
4560 Serge 2205
 
5060 serge 2206
	/* Find, clear, then process each source of interrupt */
2207
 
6084 serge 2208
	ret = gen8_gt_irq_handler(dev_priv, master_ctl);
4560 Serge 2209
 
2210
	if (master_ctl & GEN8_DE_MISC_IRQ) {
2211
		tmp = I915_READ(GEN8_DE_MISC_IIR);
5060 serge 2212
		if (tmp) {
2213
			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2214
			ret = IRQ_HANDLED;
6084 serge 2215
			if (tmp & GEN8_DE_MISC_GSE)
2216
				intel_opregion_asle_intr(dev);
5060 serge 2217
			else
6084 serge 2218
				DRM_ERROR("Unexpected DE Misc interrupt\n");
5060 serge 2219
		}
4560 Serge 2220
		else
2221
			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2222
	}
2223
 
2224
	if (master_ctl & GEN8_DE_PORT_IRQ) {
2225
		tmp = I915_READ(GEN8_DE_PORT_IIR);
5060 serge 2226
		if (tmp) {
6084 serge 2227
			bool found = false;
2228
			u32 hotplug_trigger = 0;
2229
 
2230
			if (IS_BROXTON(dev_priv))
2231
				hotplug_trigger = tmp & BXT_DE_PORT_HOTPLUG_MASK;
2232
			else if (IS_BROADWELL(dev_priv))
2233
				hotplug_trigger = tmp & GEN8_PORT_DP_A_HOTPLUG;
2234
 
5060 serge 2235
			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2236
			ret = IRQ_HANDLED;
5354 serge 2237
 
6084 serge 2238
			if (tmp & aux_mask) {
2239
				dp_aux_irq_handler(dev);
2240
				found = true;
2241
			}
2242
 
2243
			if (hotplug_trigger) {
2244
				if (IS_BROXTON(dev))
2245
					bxt_hpd_irq_handler(dev, hotplug_trigger, hpd_bxt);
2246
				else
2247
					ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_bdw);
2248
				found = true;
2249
			}
2250
 
2251
			if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2252
				gmbus_irq_handler(dev);
2253
				found = true;
2254
			}
2255
 
2256
			if (!found)
2257
				DRM_ERROR("Unexpected DE Port interrupt\n");
5060 serge 2258
		}
4560 Serge 2259
		else
2260
			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2261
	}
2262
 
5354 serge 2263
	for_each_pipe(dev_priv, pipe) {
2264
		uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
4560 Serge 2265
 
2266
		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2267
			continue;
2268
 
2269
		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
5060 serge 2270
		if (pipe_iir) {
2271
			ret = IRQ_HANDLED;
2272
			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
4560 Serge 2273
 
6088 serge 2274
			if (pipe_iir & GEN8_PIPE_VBLANK &&
2275
			    intel_pipe_handle_vblank(dev, pipe))
6320 serge 2276
				intel_check_page_flip(dev, pipe);
4560 Serge 2277
 
6084 serge 2278
			if (INTEL_INFO(dev_priv)->gen >= 9)
5354 serge 2279
				flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2280
			else
2281
				flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2282
 
6320 serge 2283
			if (flip_done) {
2284
				intel_prepare_page_flip(dev, pipe);
2285
				intel_finish_page_flip_plane(dev, pipe);
2286
			}
5354 serge 2287
 
6084 serge 2288
			if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2289
				hsw_pipe_crc_irq_handler(dev, pipe);
4560 Serge 2290
 
5354 serge 2291
			if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2292
				intel_cpu_fifo_underrun_irq_handler(dev_priv,
2293
								    pipe);
4560 Serge 2294
 
5354 serge 2295
 
6084 serge 2296
			if (INTEL_INFO(dev_priv)->gen >= 9)
5354 serge 2297
				fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2298
			else
2299
				fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2300
 
2301
			if (fault_errors)
6084 serge 2302
				DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2303
					  pipe_name(pipe),
2304
					  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
4560 Serge 2305
		} else
2306
			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2307
	}
2308
 
6084 serge 2309
	if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2310
	    master_ctl & GEN8_DE_PCH_IRQ) {
4560 Serge 2311
		/*
2312
		 * FIXME(BDW): Assume for now that the new interrupt handling
2313
		 * scheme also closed the SDE interrupt handling race we've seen
2314
		 * on older pch-split platforms. But this needs testing.
2315
		 */
2316
		u32 pch_iir = I915_READ(SDEIIR);
2317
		if (pch_iir) {
2318
			I915_WRITE(SDEIIR, pch_iir);
2319
			ret = IRQ_HANDLED;
6084 serge 2320
 
2321
			if (HAS_PCH_SPT(dev_priv))
2322
				spt_irq_handler(dev, pch_iir);
2323
			else
2324
				cpt_irq_handler(dev, pch_iir);
6320 serge 2325
		} else {
2326
			/*
2327
			 * Like on previous PCH there seems to be something
2328
			 * fishy going on with forwarding PCH interrupts.
2329
			 */
2330
			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2331
		}
4560 Serge 2332
	}
2333
 
6084 serge 2334
	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2335
	POSTING_READ_FW(GEN8_MASTER_IRQ);
4560 Serge 2336
 
2337
	return ret;
2338
}
2339
 
4104 Serge 2340
static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2341
			       bool reset_completed)
3746 Serge 2342
{
5060 serge 2343
	struct intel_engine_cs *ring;
4104 Serge 2344
	int i;
3031 serge 2345
 
4104 Serge 2346
	/*
2347
	 * Notify all waiters for GPU completion events that reset state has
2348
	 * been changed, and that they need to restart their wait after
2349
	 * checking for potential errors (and bail out to drop locks if there is
2350
	 * a gpu reset pending so that i915_error_work_func can acquire them).
2351
	 */
3031 serge 2352
 
4104 Serge 2353
	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2354
	for_each_ring(ring, dev_priv, i)
2355
		wake_up_all(&ring->irq_queue);
3031 serge 2356
 
6320 serge 2357
	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2358
	wake_up_all(&dev_priv->pending_flip_queue);
3031 serge 2359
 
4104 Serge 2360
	/*
2361
	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2362
	 * reset state is cleared.
2363
	 */
2364
	if (reset_completed)
2365
		wake_up_all(&dev_priv->gpu_error.reset_queue);
3031 serge 2366
}
2367
 
2368
/**
6084 serge 2369
 * i915_reset_and_wakeup - do process context error handling work
2370
 * @dev: drm device
3031 serge 2371
 *
4104 Serge 2372
 * Fire an error uevent so userspace can see that a hang or error
2373
 * was detected.
3031 serge 2374
 */
6084 serge 2375
static void i915_reset_and_wakeup(struct drm_device *dev)
3031 serge 2376
{
6084 serge 2377
	struct drm_i915_private *dev_priv = to_i915(dev);
2378
	struct i915_gpu_error *error = &dev_priv->gpu_error;
4104 Serge 2379
	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2380
	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2381
	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2382
	int ret;
3031 serge 2383
 
4104 Serge 2384
	/*
2385
	 * Note that there's only one work item which does gpu resets, so we
2386
	 * need not worry about concurrent gpu resets potentially incrementing
2387
	 * error->reset_counter twice. We only need to take care of another
2388
	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2389
	 * quick check for that is good enough: schedule_work ensures the
2390
	 * correct ordering between hang detection and this work item, and since
2391
	 * the reset in-progress bit is only ever set by code outside of this
2392
	 * work we don't need to worry about any other races.
2393
	 */
2394
	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2395
		DRM_DEBUG_DRIVER("resetting chip\n");
6084 serge 2396
		intel_runtime_pm_get(dev_priv);
3031 serge 2397
 
4104 Serge 2398
		/*
2399
		 * All state reset _must_ be completed before we update the
2400
		 * reset counter, for otherwise waiters might miss the reset
2401
		 * pending state and not properly drop locks, resulting in
2402
		 * deadlocks with the reset work.
2403
		 */
4560 Serge 2404
//		ret = i915_reset(dev);
3031 serge 2405
 
6084 serge 2406
//		intel_finish_reset(dev);
3031 serge 2407
 
6084 serge 2408
		intel_runtime_pm_put(dev_priv);
2409
 
4104 Serge 2410
		if (ret == 0) {
2411
			/*
2412
			 * After all the gem state is reset, increment the reset
2413
			 * counter and wake up everyone waiting for the reset to
2414
			 * complete.
2415
			 *
2416
			 * Since unlock operations are a one-sided barrier only,
2417
			 * we need to insert a barrier here to order any seqno
2418
			 * updates before
2419
			 * the counter increment.
2420
			 */
6084 serge 2421
			smp_mb__before_atomic();
4104 Serge 2422
			atomic_inc(&dev_priv->gpu_error.reset_counter);
3031 serge 2423
 
4104 Serge 2424
		} else {
6088 serge 2425
			atomic_or(I915_WEDGED, &error->reset_counter);
2426
		}
3031 serge 2427
 
4104 Serge 2428
		/*
2429
		 * Note: The wake_up also serves as a memory barrier so that
2430
		 * waiters see the update value of the reset counter atomic_t.
2431
		 */
2432
		i915_error_wake_up(dev_priv, true);
3031 serge 2433
	}
2434
}
2435
 
2436
static void i915_report_and_clear_eir(struct drm_device *dev)
2437
{
2438
	struct drm_i915_private *dev_priv = dev->dev_private;
2439
	uint32_t instdone[I915_NUM_INSTDONE_REG];
2440
	u32 eir = I915_READ(EIR);
2441
	int pipe, i;
2442
 
2443
	if (!eir)
2444
		return;
2445
 
2446
	pr_err("render error detected, EIR: 0x%08x\n", eir);
2447
 
2448
	i915_get_extra_instdone(dev, instdone);
2449
 
2450
	if (IS_G4X(dev)) {
2451
		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2452
			u32 ipeir = I915_READ(IPEIR_I965);
2453
 
2454
			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2455
			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2456
			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2457
				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2458
			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2459
			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2460
			I915_WRITE(IPEIR_I965, ipeir);
2461
			POSTING_READ(IPEIR_I965);
2462
		}
2463
		if (eir & GM45_ERROR_PAGE_TABLE) {
2464
			u32 pgtbl_err = I915_READ(PGTBL_ER);
2465
			pr_err("page table error\n");
2466
			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2467
			I915_WRITE(PGTBL_ER, pgtbl_err);
2468
			POSTING_READ(PGTBL_ER);
2469
		}
2470
	}
2471
 
2472
	if (!IS_GEN2(dev)) {
2473
		if (eir & I915_ERROR_PAGE_TABLE) {
2474
			u32 pgtbl_err = I915_READ(PGTBL_ER);
2475
			pr_err("page table error\n");
2476
			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2477
			I915_WRITE(PGTBL_ER, pgtbl_err);
2478
			POSTING_READ(PGTBL_ER);
2479
		}
2480
	}
2481
 
2482
	if (eir & I915_ERROR_MEMORY_REFRESH) {
2483
		pr_err("memory refresh error:\n");
5354 serge 2484
		for_each_pipe(dev_priv, pipe)
3031 serge 2485
			pr_err("pipe %c stat: 0x%08x\n",
2486
			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2487
		/* pipestat has already been acked */
2488
	}
2489
	if (eir & I915_ERROR_INSTRUCTION) {
2490
		pr_err("instruction error\n");
2491
		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2492
		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2493
			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2494
		if (INTEL_INFO(dev)->gen < 4) {
2495
			u32 ipeir = I915_READ(IPEIR);
2496
 
2497
			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2498
			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2499
			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2500
			I915_WRITE(IPEIR, ipeir);
2501
			POSTING_READ(IPEIR);
2502
		} else {
2503
			u32 ipeir = I915_READ(IPEIR_I965);
2504
 
2505
			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2506
			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2507
			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2508
			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2509
			I915_WRITE(IPEIR_I965, ipeir);
2510
			POSTING_READ(IPEIR_I965);
2511
		}
2512
	}
2513
 
2514
	I915_WRITE(EIR, eir);
2515
	POSTING_READ(EIR);
2516
	eir = I915_READ(EIR);
2517
	if (eir) {
2518
		/*
2519
		 * some errors might have become stuck,
2520
		 * mask them.
2521
		 */
2522
		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2523
		I915_WRITE(EMR, I915_READ(EMR) | eir);
2524
		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2525
	}
2526
}
2527
 
2528
/**
6084 serge 2529
 * i915_handle_error - handle a gpu error
3031 serge 2530
 * @dev: drm device
2531
 *
6084 serge 2532
 * Do some basic checking of register state at error time and
3031 serge 2533
 * dump it to the syslog.  Also call i915_capture_error_state() to make
2534
 * sure we get a record and make it available in debugfs.  Fire a uevent
2535
 * so userspace knows something bad happened (should trigger collection
2536
 * of a ring dump etc.).
2537
 */
5060 serge 2538
void i915_handle_error(struct drm_device *dev, bool wedged,
2539
		       const char *fmt, ...)
3031 serge 2540
{
2541
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 2542
	va_list args;
2543
	char error_msg[80];
3031 serge 2544
 
5060 serge 2545
	va_start(args, fmt);
2546
	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2547
	va_end(args);
2548
 
4560 Serge 2549
//	i915_capture_error_state(dev);
3031 serge 2550
	i915_report_and_clear_eir(dev);
2551
 
2552
	if (wedged) {
6084 serge 2553
		atomic_or(I915_RESET_IN_PROGRESS_FLAG,
3480 Serge 2554
				&dev_priv->gpu_error.reset_counter);
3031 serge 2555
 
2556
		/*
6084 serge 2557
		 * Wakeup waiting processes so that the reset function
2558
		 * i915_reset_and_wakeup doesn't deadlock trying to grab
2559
		 * various locks. By bumping the reset counter first, the woken
4104 Serge 2560
		 * processes will see a reset in progress and back off,
2561
		 * releasing their locks and then wait for the reset completion.
2562
		 * We must do this for _all_ gpu waiters that might hold locks
2563
		 * that the reset work needs to acquire.
2564
		 *
2565
		 * Note: The wake_up serves as the required memory barrier to
2566
		 * ensure that the waiters see the updated value of the reset
2567
		 * counter atomic_t.
3031 serge 2568
		 */
4104 Serge 2569
		i915_error_wake_up(dev_priv, false);
3031 serge 2570
	}
2571
 
6084 serge 2572
	i915_reset_and_wakeup(dev);
3031 serge 2573
}
2574
 
2575
/* Called from drm generic code, passed 'crtc' which
2576
 * we use as a pipe index
2577
 */
6084 serge 2578
static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2579
{
5060 serge 2580
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2581
	unsigned long irqflags;
2582
 
2583
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2584
	if (INTEL_INFO(dev)->gen >= 4)
2585
		i915_enable_pipestat(dev_priv, pipe,
5060 serge 2586
				     PIPE_START_VBLANK_INTERRUPT_STATUS);
3031 serge 2587
	else
2588
		i915_enable_pipestat(dev_priv, pipe,
5060 serge 2589
				     PIPE_VBLANK_INTERRUPT_STATUS);
3031 serge 2590
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2591
 
2592
	return 0;
2593
}
2594
 
6084 serge 2595
static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2596
{
5060 serge 2597
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2598
	unsigned long irqflags;
4104 Serge 2599
	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
4560 Serge 2600
						     DE_PIPE_VBLANK(pipe);
3031 serge 2601
 
2602
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4104 Serge 2603
	ironlake_enable_display_irq(dev_priv, bit);
3031 serge 2604
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2605
 
2606
	return 0;
2607
}
2608
 
6084 serge 2609
static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2610
{
5060 serge 2611
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2612
	unsigned long irqflags;
2613
 
2614
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2615
	i915_enable_pipestat(dev_priv, pipe,
5060 serge 2616
			     PIPE_START_VBLANK_INTERRUPT_STATUS);
3031 serge 2617
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2618
 
2619
	return 0;
2620
}
2621
 
6084 serge 2622
static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
4560 Serge 2623
{
2624
	struct drm_i915_private *dev_priv = dev->dev_private;
2625
	unsigned long irqflags;
2626
 
2627
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2628
	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2629
	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2630
	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2631
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2632
	return 0;
2633
}
2634
 
3031 serge 2635
/* Called from drm generic code, passed 'crtc' which
2636
 * we use as a pipe index
2637
 */
6084 serge 2638
static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2639
{
5060 serge 2640
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2641
	unsigned long irqflags;
2642
 
2643
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2644
	i915_disable_pipestat(dev_priv, pipe,
5060 serge 2645
			      PIPE_VBLANK_INTERRUPT_STATUS |
2646
			      PIPE_START_VBLANK_INTERRUPT_STATUS);
3031 serge 2647
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2648
}
2649
 
6084 serge 2650
static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2651
{
5060 serge 2652
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2653
	unsigned long irqflags;
4104 Serge 2654
	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
4560 Serge 2655
						     DE_PIPE_VBLANK(pipe);
3031 serge 2656
 
2657
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4104 Serge 2658
	ironlake_disable_display_irq(dev_priv, bit);
3031 serge 2659
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2660
}
2661
 
6084 serge 2662
static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2663
{
5060 serge 2664
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2665
	unsigned long irqflags;
2666
 
2667
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2668
	i915_disable_pipestat(dev_priv, pipe,
5060 serge 2669
			      PIPE_START_VBLANK_INTERRUPT_STATUS);
3031 serge 2670
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2671
}
2672
 
6084 serge 2673
static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
4560 Serge 2674
{
2675
	struct drm_i915_private *dev_priv = dev->dev_private;
2676
	unsigned long irqflags;
2677
 
2678
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2679
	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2680
	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2681
	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2682
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2683
}
2684
 
4104 Serge 2685
static bool
5060 serge 2686
ring_idle(struct intel_engine_cs *ring, u32 seqno)
2351 Serge 2687
{
4104 Serge 2688
	return (list_empty(&ring->request_list) ||
6084 serge 2689
		i915_seqno_passed(seqno, ring->last_submitted_seqno));
4104 Serge 2690
}
2351 Serge 2691
 
5060 serge 2692
static bool
2693
ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
4104 Serge 2694
{
5060 serge 2695
	if (INTEL_INFO(dev)->gen >= 8) {
2696
		return (ipehr >> 23) == 0x1c;
2697
	} else {
2698
		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2699
		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2700
				 MI_SEMAPHORE_REGISTER);
2701
	}
2702
}
2703
 
2704
static struct intel_engine_cs *
2705
semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2706
{
4104 Serge 2707
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
5060 serge 2708
	struct intel_engine_cs *signaller;
2709
	int i;
2351 Serge 2710
 
5060 serge 2711
	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2712
		for_each_ring(signaller, dev_priv, i) {
2713
			if (ring == signaller)
2714
				continue;
2715
 
2716
			if (offset == signaller->semaphore.signal_ggtt[ring->id])
2717
				return signaller;
2718
		}
2719
	} else {
2720
		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2721
 
2722
		for_each_ring(signaller, dev_priv, i) {
2723
			if(ring == signaller)
2724
				continue;
2725
 
2726
			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2727
				return signaller;
2728
		}
2729
	}
2730
 
2731
	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2732
		  ring->id, ipehr, offset);
2733
 
2734
	return NULL;
2735
}
2736
 
2737
static struct intel_engine_cs *
2738
semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2739
{
2740
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2741
	u32 cmd, ipehr, head;
2742
	u64 offset = 0;
2743
	int i, backwards;
2744
 
6084 serge 2745
	/*
2746
	 * This function does not support execlist mode - any attempt to
2747
	 * proceed further into this function will result in a kernel panic
2748
	 * when dereferencing ring->buffer, which is not set up in execlist
2749
	 * mode.
2750
	 *
2751
	 * The correct way of doing it would be to derive the currently
2752
	 * executing ring buffer from the current context, which is derived
2753
	 * from the currently running request. Unfortunately, to get the
2754
	 * current request we would have to grab the struct_mutex before doing
2755
	 * anything else, which would be ill-advised since some other thread
2756
	 * might have grabbed it already and managed to hang itself, causing
2757
	 * the hang checker to deadlock.
2758
	 *
2759
	 * Therefore, this function does not support execlist mode in its
2760
	 * current form. Just return NULL and move on.
2761
	 */
2762
	if (ring->buffer == NULL)
2763
		return NULL;
2764
 
4104 Serge 2765
	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
5060 serge 2766
	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
4104 Serge 2767
		return NULL;
2351 Serge 2768
 
5060 serge 2769
	/*
2770
	 * HEAD is likely pointing to the dword after the actual command,
2771
	 * so scan backwards until we find the MBOX. But limit it to just 3
2772
	 * or 4 dwords depending on the semaphore wait command size.
2773
	 * Note that we don't care about ACTHD here since that might
2774
	 * point at at batch, and semaphores are always emitted into the
2775
	 * ringbuffer itself.
4104 Serge 2776
	 */
5060 serge 2777
	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2778
	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2779
 
2780
	for (i = backwards; i; --i) {
2781
		/*
2782
		 * Be paranoid and presume the hw has gone off into the wild -
2783
		 * our ring is smaller than what the hardware (and hence
2784
		 * HEAD_ADDR) allows. Also handles wrap-around.
2785
		 */
2786
		head &= ring->buffer->size - 1;
2787
 
2788
		/* This here seems to blow up */
2789
		cmd = ioread32(ring->buffer->virtual_start + head);
4104 Serge 2790
		if (cmd == ipehr)
2791
			break;
2351 Serge 2792
 
5060 serge 2793
		head -= 4;
2794
	}
2795
 
2796
	if (!i)
6084 serge 2797
		return NULL;
2351 Serge 2798
 
5060 serge 2799
	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2800
	if (INTEL_INFO(ring->dev)->gen >= 8) {
2801
		offset = ioread32(ring->buffer->virtual_start + head + 12);
2802
		offset <<= 32;
2803
		offset = ioread32(ring->buffer->virtual_start + head + 8);
2804
	}
2805
	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
4104 Serge 2806
}
2351 Serge 2807
 
5060 serge 2808
static int semaphore_passed(struct intel_engine_cs *ring)
4104 Serge 2809
{
2810
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
5060 serge 2811
	struct intel_engine_cs *signaller;
2812
	u32 seqno;
4104 Serge 2813
 
5060 serge 2814
	ring->hangcheck.deadlock++;
4104 Serge 2815
 
2816
	signaller = semaphore_waits_for(ring, &seqno);
5060 serge 2817
	if (signaller == NULL)
4104 Serge 2818
		return -1;
2819
 
5060 serge 2820
	/* Prevent pathological recursion due to driver bugs */
2821
	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2822
		return -1;
2823
 
2824
	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2825
		return 1;
2826
 
4104 Serge 2827
	/* cursory check for an unkickable deadlock */
5060 serge 2828
	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2829
	    semaphore_passed(signaller) < 0)
4104 Serge 2830
		return -1;
2831
 
5060 serge 2832
	return 0;
4104 Serge 2833
}
2834
 
2835
static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2836
{
5060 serge 2837
	struct intel_engine_cs *ring;
4104 Serge 2838
	int i;
2839
 
2840
	for_each_ring(ring, dev_priv, i)
5060 serge 2841
		ring->hangcheck.deadlock = 0;
4104 Serge 2842
}
2843
 
2844
static enum intel_ring_hangcheck_action
5060 serge 2845
ring_stuck(struct intel_engine_cs *ring, u64 acthd)
4104 Serge 2846
{
2847
	struct drm_device *dev = ring->dev;
2848
	struct drm_i915_private *dev_priv = dev->dev_private;
2849
	u32 tmp;
2850
 
5060 serge 2851
	if (acthd != ring->hangcheck.acthd) {
2852
		if (acthd > ring->hangcheck.max_acthd) {
2853
			ring->hangcheck.max_acthd = acthd;
6084 serge 2854
			return HANGCHECK_ACTIVE;
5060 serge 2855
		}
4104 Serge 2856
 
5060 serge 2857
		return HANGCHECK_ACTIVE_LOOP;
2858
	}
2859
 
4104 Serge 2860
	if (IS_GEN2(dev))
2861
		return HANGCHECK_HUNG;
2862
 
2863
	/* Is the chip hanging on a WAIT_FOR_EVENT?
2864
	 * If so we can simply poke the RB_WAIT bit
2865
	 * and break the hang. This should work on
2866
	 * all but the second generation chipsets.
2867
	 */
2868
	tmp = I915_READ_CTL(ring);
2869
	if (tmp & RING_WAIT) {
5060 serge 2870
		i915_handle_error(dev, false,
2871
				  "Kicking stuck wait on %s",
6084 serge 2872
				  ring->name);
4104 Serge 2873
		I915_WRITE_CTL(ring, tmp);
2874
		return HANGCHECK_KICK;
2875
	}
2876
 
2877
	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2878
		switch (semaphore_passed(ring)) {
2879
		default:
2880
			return HANGCHECK_HUNG;
2881
		case 1:
5060 serge 2882
			i915_handle_error(dev, false,
2883
					  "Kicking stuck semaphore on %s",
6084 serge 2884
					  ring->name);
4104 Serge 2885
			I915_WRITE_CTL(ring, tmp);
2886
			return HANGCHECK_KICK;
2887
		case 0:
2888
			return HANGCHECK_WAIT;
2889
		}
2890
	}
2891
 
2892
	return HANGCHECK_HUNG;
2893
}
2894
 
6084 serge 2895
/*
4104 Serge 2896
 * This is called when the chip hasn't reported back with completed
2897
 * batchbuffers in a long time. We keep track per ring seqno progress and
2898
 * if there are no progress, hangcheck score for that ring is increased.
2899
 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2900
 * we kick the ring. If we see no progress on three subsequent calls
2901
 * we assume chip is wedged and try to fix it by resetting the chip.
2902
 */
6084 serge 2903
static void i915_hangcheck_elapsed(struct work_struct *work)
4104 Serge 2904
{
6084 serge 2905
	struct drm_i915_private *dev_priv =
2906
		container_of(work, typeof(*dev_priv),
2907
			     gpu_error.hangcheck_work.work);
2908
	struct drm_device *dev = dev_priv->dev;
5060 serge 2909
	struct intel_engine_cs *ring;
4104 Serge 2910
	int i;
2911
	int busy_count = 0, rings_hung = 0;
2912
	bool stuck[I915_NUM_RINGS] = { 0 };
2913
#define BUSY 1
2914
#define KICK 5
2915
#define HUNG 20
2916
 
5060 serge 2917
	if (!i915.enable_hangcheck)
4104 Serge 2918
		return;
2919
 
2920
	for_each_ring(ring, dev_priv, i) {
5060 serge 2921
		u64 acthd;
2922
		u32 seqno;
4104 Serge 2923
		bool busy = true;
2924
 
2925
		semaphore_clear_deadlocks(dev_priv);
2926
 
2927
		seqno = ring->get_seqno(ring, false);
2928
		acthd = intel_ring_get_active_head(ring);
2929
 
2930
		if (ring->hangcheck.seqno == seqno) {
2931
			if (ring_idle(ring, seqno)) {
5060 serge 2932
				ring->hangcheck.action = HANGCHECK_IDLE;
2933
 
6084 serge 2934
				if (waitqueue_active(&ring->irq_queue)) {
4104 Serge 2935
					/* Issue a wake-up to catch stuck h/w. */
6084 serge 2936
					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2937
						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2938
							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2939
								  ring->name);
2940
						else
2941
							DRM_INFO("Fake missed irq on %s\n",
2942
								 ring->name);
2943
						wake_up_all(&ring->irq_queue);
2944
					}
2945
					/* Safeguard against driver failure */
2946
					ring->hangcheck.score += BUSY;
2947
				} else
4104 Serge 2948
					busy = false;
2949
			} else {
2950
				/* We always increment the hangcheck score
2951
				 * if the ring is busy and still processing
2952
				 * the same request, so that no single request
2953
				 * can run indefinitely (such as a chain of
2954
				 * batches). The only time we do not increment
2955
				 * the hangcheck score on this ring, if this
2956
				 * ring is in a legitimate wait for another
2957
				 * ring. In that case the waiting ring is a
2958
				 * victim and we want to be sure we catch the
2959
				 * right culprit. Then every time we do kick
2960
				 * the ring, add a small increment to the
2961
				 * score so that we can catch a batch that is
2962
				 * being repeatedly kicked and so responsible
2963
				 * for stalling the machine.
2964
				 */
2965
				ring->hangcheck.action = ring_stuck(ring,
2966
								    acthd);
2967
 
2968
				switch (ring->hangcheck.action) {
4560 Serge 2969
				case HANGCHECK_IDLE:
4104 Serge 2970
				case HANGCHECK_WAIT:
5060 serge 2971
				case HANGCHECK_ACTIVE:
4104 Serge 2972
					break;
5060 serge 2973
				case HANGCHECK_ACTIVE_LOOP:
4104 Serge 2974
					ring->hangcheck.score += BUSY;
2975
					break;
2976
				case HANGCHECK_KICK:
2977
					ring->hangcheck.score += KICK;
2978
					break;
2979
				case HANGCHECK_HUNG:
2980
					ring->hangcheck.score += HUNG;
2981
					stuck[i] = true;
2982
					break;
2983
				}
2984
			}
2985
		} else {
4560 Serge 2986
			ring->hangcheck.action = HANGCHECK_ACTIVE;
2987
 
4104 Serge 2988
			/* Gradually reduce the count so that we catch DoS
2989
			 * attempts across multiple batches.
2990
			 */
2991
			if (ring->hangcheck.score > 0)
2992
				ring->hangcheck.score--;
5060 serge 2993
 
2994
			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
4104 Serge 2995
		}
2996
 
2997
		ring->hangcheck.seqno = seqno;
2998
		ring->hangcheck.acthd = acthd;
2999
		busy_count += busy;
3000
	}
3001
 
3002
	for_each_ring(ring, dev_priv, i) {
5060 serge 3003
		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
4104 Serge 3004
			DRM_INFO("%s on %s\n",
6084 serge 3005
				 stuck[i] ? "stuck" : "no progress",
3006
				 ring->name);
4104 Serge 3007
			rings_hung++;
3008
		}
3009
	}
3010
 
3011
//   if (rings_hung)
3012
//       return i915_handle_error(dev, true);
3013
 
3014
}
6088 serge 3015
 
5060 serge 3016
static void ibx_irq_reset(struct drm_device *dev)
3017
{
3018
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 3019
 
5060 serge 3020
	if (HAS_PCH_NOP(dev))
3021
		return;
3022
 
3023
	GEN5_IRQ_RESET(SDE);
3024
 
3025
	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3026
		I915_WRITE(SERR_INT, 0xffffffff);
3027
}
3028
 
3029
/*
3030
 * SDEIER is also touched by the interrupt handler to work around missed PCH
3031
 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3032
 * instead we unconditionally enable all PCH interrupt sources here, but then
3033
 * only unmask them as needed with SDEIMR.
3034
 *
3035
 * This function needs to be called before interrupts are enabled.
3036
 */
3037
static void ibx_irq_pre_postinstall(struct drm_device *dev)
4104 Serge 3038
{
3039
	struct drm_i915_private *dev_priv = dev->dev_private;
3040
 
3746 Serge 3041
	if (HAS_PCH_NOP(dev))
3042
		return;
3043
 
5060 serge 3044
	WARN_ON(I915_READ(SDEIER) != 0);
3746 Serge 3045
	I915_WRITE(SDEIER, 0xffffffff);
4104 Serge 3046
	POSTING_READ(SDEIER);
2351 Serge 3047
}
3048
 
5060 serge 3049
static void gen5_gt_irq_reset(struct drm_device *dev)
4104 Serge 3050
{
3051
	struct drm_i915_private *dev_priv = dev->dev_private;
3052
 
5060 serge 3053
	GEN5_IRQ_RESET(GT);
3054
	if (INTEL_INFO(dev)->gen >= 6)
3055
		GEN5_IRQ_RESET(GEN6_PM);
4104 Serge 3056
}
3057
 
3058
/* drm_dma.h hooks
3059
*/
5060 serge 3060
static void ironlake_irq_reset(struct drm_device *dev)
4104 Serge 3061
{
5060 serge 3062
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 3063
 
5060 serge 3064
	I915_WRITE(HWSTAM, 0xffffffff);
4104 Serge 3065
 
5060 serge 3066
	GEN5_IRQ_RESET(DE);
3067
	if (IS_GEN7(dev))
3068
		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
4104 Serge 3069
 
5060 serge 3070
	gen5_gt_irq_reset(dev);
4104 Serge 3071
 
5060 serge 3072
	ibx_irq_reset(dev);
4104 Serge 3073
}
3074
 
5354 serge 3075
static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3076
{
3077
	enum pipe pipe;
3078
 
6084 serge 3079
	i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
5354 serge 3080
	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3081
 
3082
	for_each_pipe(dev_priv, pipe)
3083
		I915_WRITE(PIPESTAT(pipe), 0xffff);
3084
 
3085
	GEN5_IRQ_RESET(VLV_);
3086
}
3087
 
3031 serge 3088
static void valleyview_irq_preinstall(struct drm_device *dev)
3089
{
5060 serge 3090
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3091
 
3092
	/* VLV magic */
3093
	I915_WRITE(VLV_IMR, 0);
3094
	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3095
	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3096
	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3097
 
5060 serge 3098
	gen5_gt_irq_reset(dev);
4104 Serge 3099
 
5354 serge 3100
	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3031 serge 3101
 
5354 serge 3102
	vlv_display_irq_reset(dev_priv);
3031 serge 3103
}
3104
 
5060 serge 3105
static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
4560 Serge 3106
{
5060 serge 3107
	GEN8_IRQ_RESET_NDX(GT, 0);
3108
	GEN8_IRQ_RESET_NDX(GT, 1);
3109
	GEN8_IRQ_RESET_NDX(GT, 2);
3110
	GEN8_IRQ_RESET_NDX(GT, 3);
3111
}
3112
 
3113
static void gen8_irq_reset(struct drm_device *dev)
3114
{
4560 Serge 3115
	struct drm_i915_private *dev_priv = dev->dev_private;
3116
	int pipe;
3117
 
3118
	I915_WRITE(GEN8_MASTER_IRQ, 0);
3119
	POSTING_READ(GEN8_MASTER_IRQ);
3120
 
5060 serge 3121
	gen8_gt_irq_reset(dev_priv);
4560 Serge 3122
 
5354 serge 3123
	for_each_pipe(dev_priv, pipe)
3124
		if (intel_display_power_is_enabled(dev_priv,
6084 serge 3125
						   POWER_DOMAIN_PIPE(pipe)))
3126
			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
4560 Serge 3127
 
5060 serge 3128
	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3129
	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3130
	GEN5_IRQ_RESET(GEN8_PCU_);
4560 Serge 3131
 
6084 serge 3132
	if (HAS_PCH_SPLIT(dev))
3133
		ibx_irq_reset(dev);
5060 serge 3134
}
4560 Serge 3135
 
6084 serge 3136
void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3137
				     unsigned int pipe_mask)
5060 serge 3138
{
5354 serge 3139
	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
4560 Serge 3140
 
5354 serge 3141
	spin_lock_irq(&dev_priv->irq_lock);
6084 serge 3142
	if (pipe_mask & 1 << PIPE_A)
3143
		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3144
				  dev_priv->de_irq_mask[PIPE_A],
3145
				  ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3146
	if (pipe_mask & 1 << PIPE_B)
3147
		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3148
				  dev_priv->de_irq_mask[PIPE_B],
3149
				  ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3150
	if (pipe_mask & 1 << PIPE_C)
3151
		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3152
				  dev_priv->de_irq_mask[PIPE_C],
3153
				  ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
5354 serge 3154
	spin_unlock_irq(&dev_priv->irq_lock);
5060 serge 3155
}
3156
 
3157
static void cherryview_irq_preinstall(struct drm_device *dev)
3158
{
3159
	struct drm_i915_private *dev_priv = dev->dev_private;
3160
 
3161
	I915_WRITE(GEN8_MASTER_IRQ, 0);
3162
	POSTING_READ(GEN8_MASTER_IRQ);
3163
 
3164
	gen8_gt_irq_reset(dev_priv);
3165
 
3166
	GEN5_IRQ_RESET(GEN8_PCU_);
3167
 
3168
	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3169
 
5354 serge 3170
	vlv_display_irq_reset(dev_priv);
4560 Serge 3171
}
3172
 
6084 serge 3173
static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3174
				  const u32 hpd[HPD_NUM_PINS])
3175
{
3176
	struct drm_i915_private *dev_priv = to_i915(dev);
3177
	struct intel_encoder *encoder;
3178
	u32 enabled_irqs = 0;
3179
 
3180
	for_each_intel_encoder(dev, encoder)
3181
		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3182
			enabled_irqs |= hpd[encoder->hpd_pin];
3183
 
3184
	return enabled_irqs;
3185
}
3186
 
3746 Serge 3187
static void ibx_hpd_irq_setup(struct drm_device *dev)
3188
{
5060 serge 3189
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 3190
	u32 hotplug_irqs, hotplug, enabled_irqs;
3746 Serge 3191
 
3192
	if (HAS_PCH_IBX(dev)) {
4104 Serge 3193
		hotplug_irqs = SDE_HOTPLUG_MASK;
6084 serge 3194
		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3746 Serge 3195
	} else {
4104 Serge 3196
		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
6084 serge 3197
		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3746 Serge 3198
	}
3199
 
4104 Serge 3200
	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3746 Serge 3201
 
3202
	/*
6084 serge 3203
	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3204
	 * duration to 2ms (which is the minimum in the Display Port spec).
3205
	 * The pulse duration bits are reserved on LPT+.
3206
	 */
2351 Serge 3207
	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3208
	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3209
	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3210
	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3211
	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
6084 serge 3212
	/*
3213
	 * When CPU and PCH are on the same package, port A
3214
	 * HPD must be enabled in both north and south.
3215
	 */
3216
	if (HAS_PCH_LPT_LP(dev))
3217
		hotplug |= PORTA_HOTPLUG_ENABLE;
2351 Serge 3218
	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3219
}
3220
 
6084 serge 3221
static void spt_hpd_irq_setup(struct drm_device *dev)
3222
{
3223
	struct drm_i915_private *dev_priv = dev->dev_private;
3224
	u32 hotplug_irqs, hotplug, enabled_irqs;
3225
 
3226
	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3227
	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3228
 
3229
	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3230
 
3231
	/* Enable digital hotplug on the PCH */
3232
	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3233
	hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3234
		PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3235
	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3236
 
3237
	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3238
	hotplug |= PORTE_HOTPLUG_ENABLE;
3239
	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3240
}
3241
 
3242
static void ilk_hpd_irq_setup(struct drm_device *dev)
3243
{
3244
	struct drm_i915_private *dev_priv = dev->dev_private;
3245
	u32 hotplug_irqs, hotplug, enabled_irqs;
3246
 
3247
	if (INTEL_INFO(dev)->gen >= 8) {
3248
		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3249
		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3250
 
3251
		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3252
	} else if (INTEL_INFO(dev)->gen >= 7) {
3253
		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3254
		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3255
 
3256
		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3257
	} else {
3258
		hotplug_irqs = DE_DP_A_HOTPLUG;
3259
		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3260
 
3261
		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3262
	}
3263
 
3264
	/*
3265
	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3266
	 * duration to 2ms (which is the minimum in the Display Port spec)
3267
	 * The pulse duration bits are reserved on HSW+.
3268
	 */
3269
	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3270
	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3271
	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3272
	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3273
 
3274
	ibx_hpd_irq_setup(dev);
3275
}
3276
 
3277
static void bxt_hpd_irq_setup(struct drm_device *dev)
3278
{
3279
	struct drm_i915_private *dev_priv = dev->dev_private;
3280
	u32 hotplug_irqs, hotplug, enabled_irqs;
3281
 
3282
	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3283
	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3284
 
3285
	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3286
 
3287
	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3288
	hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3289
		PORTA_HOTPLUG_ENABLE;
3290
	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3291
}
3292
 
3480 Serge 3293
static void ibx_irq_postinstall(struct drm_device *dev)
3294
{
5060 serge 3295
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 3296
	u32 mask;
3297
 
3746 Serge 3298
	if (HAS_PCH_NOP(dev))
3299
		return;
3300
 
5060 serge 3301
	if (HAS_PCH_IBX(dev))
3302
		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3303
	else
3304
		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
4104 Serge 3305
 
6084 serge 3306
	gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3480 Serge 3307
	I915_WRITE(SDEIMR, ~mask);
3308
}
3309
 
4104 Serge 3310
static void gen5_gt_irq_postinstall(struct drm_device *dev)
2351 Serge 3311
{
4104 Serge 3312
	struct drm_i915_private *dev_priv = dev->dev_private;
3313
	u32 pm_irqs, gt_irqs;
2351 Serge 3314
 
4104 Serge 3315
	pm_irqs = gt_irqs = 0;
2351 Serge 3316
 
3317
	dev_priv->gt_irq_mask = ~0;
4560 Serge 3318
	if (HAS_L3_DPF(dev)) {
4104 Serge 3319
		/* L3 parity interrupt is always unmasked. */
4560 Serge 3320
		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3321
		gt_irqs |= GT_PARITY_ERROR(dev);
4104 Serge 3322
	}
2351 Serge 3323
 
4104 Serge 3324
	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3325
	if (IS_GEN5(dev)) {
3326
		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3327
			   ILK_BSD_USER_INTERRUPT;
3328
	} else {
3329
		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3330
	}
2351 Serge 3331
 
5060 serge 3332
	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
2351 Serge 3333
 
4104 Serge 3334
	if (INTEL_INFO(dev)->gen >= 6) {
5354 serge 3335
		/*
3336
		 * RPS interrupts will get enabled/disabled on demand when RPS
3337
		 * itself is enabled/disabled.
3338
		 */
4104 Serge 3339
		if (HAS_VEBOX(dev))
3340
			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3341
 
3342
		dev_priv->pm_irq_mask = 0xffffffff;
5060 serge 3343
		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
6084 serge 3344
	}
2351 Serge 3345
}
3346
 
4104 Serge 3347
static int ironlake_irq_postinstall(struct drm_device *dev)
3031 serge 3348
{
5060 serge 3349
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 3350
	u32 display_mask, extra_mask;
3351
 
3352
	if (INTEL_INFO(dev)->gen >= 7) {
3353
		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3354
				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
6084 serge 3355
				DE_PLANEB_FLIP_DONE_IVB |
5060 serge 3356
				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
4104 Serge 3357
		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
6084 serge 3358
			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3359
			      DE_DP_A_HOTPLUG_IVB);
4104 Serge 3360
	} else {
3361
		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3362
				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
4560 Serge 3363
				DE_AUX_CHANNEL_A |
3364
				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3365
				DE_POISON);
6084 serge 3366
		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3367
			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3368
			      DE_DP_A_HOTPLUG);
4104 Serge 3369
	}
3370
 
3031 serge 3371
	dev_priv->irq_mask = ~display_mask;
3372
 
5060 serge 3373
	I915_WRITE(HWSTAM, 0xeffe);
3031 serge 3374
 
5060 serge 3375
	ibx_irq_pre_postinstall(dev);
3376
 
3377
	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3378
 
4104 Serge 3379
	gen5_gt_irq_postinstall(dev);
3031 serge 3380
 
4104 Serge 3381
	ibx_irq_postinstall(dev);
3031 serge 3382
 
4104 Serge 3383
	if (IS_IRONLAKE_M(dev)) {
3384
		/* Enable PCU event interrupts
3385
		 *
3386
		 * spinlocking not required here for correctness since interrupt
3387
		 * setup is guaranteed to run in single-threaded context. But we
3388
		 * need it to make the assert_spin_locked happy. */
5354 serge 3389
		spin_lock_irq(&dev_priv->irq_lock);
4104 Serge 3390
		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
5354 serge 3391
		spin_unlock_irq(&dev_priv->irq_lock);
4104 Serge 3392
	}
3031 serge 3393
 
3394
	return 0;
3395
}
3396
 
5060 serge 3397
static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3398
{
3399
	u32 pipestat_mask;
3400
	u32 iir_mask;
5354 serge 3401
	enum pipe pipe;
5060 serge 3402
 
3403
	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3404
			PIPE_FIFO_UNDERRUN_STATUS;
3405
 
5354 serge 3406
	for_each_pipe(dev_priv, pipe)
3407
		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
5060 serge 3408
	POSTING_READ(PIPESTAT(PIPE_A));
3409
 
3410
	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3411
			PIPE_CRC_DONE_INTERRUPT_STATUS;
3412
 
5354 serge 3413
	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3414
	for_each_pipe(dev_priv, pipe)
3415
		      i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
5060 serge 3416
 
3417
	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3418
		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3419
		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
5354 serge 3420
	if (IS_CHERRYVIEW(dev_priv))
3421
		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
5060 serge 3422
	dev_priv->irq_mask &= ~iir_mask;
3423
 
3424
	I915_WRITE(VLV_IIR, iir_mask);
3425
	I915_WRITE(VLV_IIR, iir_mask);
5354 serge 3426
	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
5060 serge 3427
	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
5354 serge 3428
	POSTING_READ(VLV_IMR);
5060 serge 3429
}
3430
 
3431
static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3432
{
3433
	u32 pipestat_mask;
3434
	u32 iir_mask;
5354 serge 3435
	enum pipe pipe;
5060 serge 3436
 
3437
	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3438
		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3439
		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
5354 serge 3440
	if (IS_CHERRYVIEW(dev_priv))
3441
		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
5060 serge 3442
 
3443
	dev_priv->irq_mask |= iir_mask;
5354 serge 3444
	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
5060 serge 3445
	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3446
	I915_WRITE(VLV_IIR, iir_mask);
3447
	I915_WRITE(VLV_IIR, iir_mask);
3448
	POSTING_READ(VLV_IIR);
3449
 
3450
	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3451
			PIPE_CRC_DONE_INTERRUPT_STATUS;
3452
 
5354 serge 3453
	i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3454
	for_each_pipe(dev_priv, pipe)
3455
		i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
5060 serge 3456
 
3457
	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3458
			PIPE_FIFO_UNDERRUN_STATUS;
5354 serge 3459
 
3460
	for_each_pipe(dev_priv, pipe)
3461
		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
5060 serge 3462
	POSTING_READ(PIPESTAT(PIPE_A));
3463
}
3464
 
3465
void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3466
{
3467
	assert_spin_locked(&dev_priv->irq_lock);
3468
 
3469
	if (dev_priv->display_irqs_enabled)
3470
		return;
3471
 
3472
	dev_priv->display_irqs_enabled = true;
3473
 
5354 serge 3474
	if (intel_irqs_enabled(dev_priv))
5060 serge 3475
		valleyview_display_irqs_install(dev_priv);
3476
}
3477
 
3478
void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3479
{
3480
	assert_spin_locked(&dev_priv->irq_lock);
3481
 
3482
	if (!dev_priv->display_irqs_enabled)
3483
		return;
3484
 
3485
	dev_priv->display_irqs_enabled = false;
3486
 
5354 serge 3487
	if (intel_irqs_enabled(dev_priv))
5060 serge 3488
		valleyview_display_irqs_uninstall(dev_priv);
3489
}
3490
 
5354 serge 3491
static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3031 serge 3492
{
5060 serge 3493
	dev_priv->irq_mask = ~0;
3031 serge 3494
 
6084 serge 3495
	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3480 Serge 3496
	POSTING_READ(PORT_HOTPLUG_EN);
3497
 
5354 serge 3498
	I915_WRITE(VLV_IIR, 0xffffffff);
3499
	I915_WRITE(VLV_IIR, 0xffffffff);
3500
	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3031 serge 3501
	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
5354 serge 3502
	POSTING_READ(VLV_IMR);
3031 serge 3503
 
4104 Serge 3504
	/* Interrupt setup is already guaranteed to be single-threaded, this is
3505
	 * just to make the assert_spin_locked check happy. */
5354 serge 3506
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 3507
	if (dev_priv->display_irqs_enabled)
3508
		valleyview_display_irqs_install(dev_priv);
5354 serge 3509
	spin_unlock_irq(&dev_priv->irq_lock);
3510
}
3031 serge 3511
 
5354 serge 3512
static int valleyview_irq_postinstall(struct drm_device *dev)
3513
{
3514
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3515
 
5354 serge 3516
	vlv_display_irq_postinstall(dev_priv);
3517
 
4104 Serge 3518
	gen5_gt_irq_postinstall(dev);
3243 Serge 3519
 
3031 serge 3520
	/* ack & enable invalid PTE error interrupts */
3521
#if 0 /* FIXME: add support to irq handler for checking these bits */
3522
	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3523
	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3524
#endif
3525
 
3526
	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3480 Serge 3527
 
3528
	return 0;
3529
}
3530
 
4560 Serge 3531
static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3532
{
3533
	/* These are interrupts we'll toggle with the ring mask register */
3534
	uint32_t gt_interrupts[] = {
3535
		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
5354 serge 3536
			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4560 Serge 3537
			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
5354 serge 3538
			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3539
			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
4560 Serge 3540
		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
5354 serge 3541
			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3542
			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3543
			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
4560 Serge 3544
		0,
5354 serge 3545
		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3546
			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
4560 Serge 3547
		};
3548
 
5060 serge 3549
	dev_priv->pm_irq_mask = 0xffffffff;
5354 serge 3550
	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3551
	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3552
	/*
3553
	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3554
	 * is enabled/disabled.
3555
	 */
3556
	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3557
	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
4560 Serge 3558
}
3559
 
3560
static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3561
{
5354 serge 3562
	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3563
	uint32_t de_pipe_enables;
6084 serge 3564
	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3565
	u32 de_port_enables;
3566
	enum pipe pipe;
5354 serge 3567
 
6084 serge 3568
	if (INTEL_INFO(dev_priv)->gen >= 9) {
5354 serge 3569
		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3570
				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
6084 serge 3571
		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3572
				  GEN9_AUX_CHANNEL_D;
3573
		if (IS_BROXTON(dev_priv))
3574
			de_port_masked |= BXT_DE_PORT_GMBUS;
3575
	} else {
5354 serge 3576
		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
6084 serge 3577
				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3578
	}
5354 serge 3579
 
3580
	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
6084 serge 3581
					   GEN8_PIPE_FIFO_UNDERRUN;
5354 serge 3582
 
6084 serge 3583
	de_port_enables = de_port_masked;
3584
	if (IS_BROXTON(dev_priv))
3585
		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3586
	else if (IS_BROADWELL(dev_priv))
3587
		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3588
 
4560 Serge 3589
	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3590
	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3591
	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3592
 
5354 serge 3593
	for_each_pipe(dev_priv, pipe)
3594
		if (intel_display_power_is_enabled(dev_priv,
5060 serge 3595
				POWER_DOMAIN_PIPE(pipe)))
3596
			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3597
					  dev_priv->de_irq_mask[pipe],
6084 serge 3598
					  de_pipe_enables);
4560 Serge 3599
 
6084 serge 3600
	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
4560 Serge 3601
}
3602
 
3603
static int gen8_irq_postinstall(struct drm_device *dev)
3604
{
3605
	struct drm_i915_private *dev_priv = dev->dev_private;
3606
 
6084 serge 3607
	if (HAS_PCH_SPLIT(dev))
3608
		ibx_irq_pre_postinstall(dev);
5060 serge 3609
 
4560 Serge 3610
	gen8_gt_irq_postinstall(dev_priv);
3611
	gen8_de_irq_postinstall(dev_priv);
3612
 
6084 serge 3613
	if (HAS_PCH_SPLIT(dev))
3614
		ibx_irq_postinstall(dev);
4560 Serge 3615
 
3616
	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3617
	POSTING_READ(GEN8_MASTER_IRQ);
3618
 
3619
	return 0;
3620
}
3621
 
5060 serge 3622
static int cherryview_irq_postinstall(struct drm_device *dev)
4560 Serge 3623
{
3624
	struct drm_i915_private *dev_priv = dev->dev_private;
3625
 
5354 serge 3626
	vlv_display_irq_postinstall(dev_priv);
4560 Serge 3627
 
5060 serge 3628
	gen8_gt_irq_postinstall(dev_priv);
4560 Serge 3629
 
5060 serge 3630
	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3631
	POSTING_READ(GEN8_MASTER_IRQ);
4560 Serge 3632
 
5060 serge 3633
	return 0;
3634
}
4560 Serge 3635
 
5060 serge 3636
static void gen8_irq_uninstall(struct drm_device *dev)
3637
{
3638
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 3639
 
5060 serge 3640
	if (!dev_priv)
3641
		return;
3642
 
3643
	gen8_irq_reset(dev);
4560 Serge 3644
}
3645
 
5354 serge 3646
static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3647
{
3648
	/* Interrupt setup is already guaranteed to be single-threaded, this is
3649
	 * just to make the assert_spin_locked check happy. */
3650
	spin_lock_irq(&dev_priv->irq_lock);
3651
	if (dev_priv->display_irqs_enabled)
3652
		valleyview_display_irqs_uninstall(dev_priv);
3653
	spin_unlock_irq(&dev_priv->irq_lock);
3654
 
3655
	vlv_display_irq_reset(dev_priv);
3656
 
3657
	dev_priv->irq_mask = ~0;
3658
}
3659
 
3031 serge 3660
static void valleyview_irq_uninstall(struct drm_device *dev)
3661
{
5060 serge 3662
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3663
 
3664
	if (!dev_priv)
3665
		return;
3666
 
5060 serge 3667
	I915_WRITE(VLV_MASTER_IER, 0);
4293 Serge 3668
 
5354 serge 3669
	gen5_gt_irq_reset(dev);
3031 serge 3670
 
3671
	I915_WRITE(HWSTAM, 0xffffffff);
5060 serge 3672
 
5354 serge 3673
	vlv_display_irq_uninstall(dev_priv);
3031 serge 3674
}
3675
 
5060 serge 3676
static void cherryview_irq_uninstall(struct drm_device *dev)
3031 serge 3677
{
5060 serge 3678
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3679
 
3680
	if (!dev_priv)
3681
		return;
3682
 
5060 serge 3683
	I915_WRITE(GEN8_MASTER_IRQ, 0);
3684
	POSTING_READ(GEN8_MASTER_IRQ);
4293 Serge 3685
 
5354 serge 3686
	gen8_gt_irq_reset(dev_priv);
3031 serge 3687
 
5354 serge 3688
	GEN5_IRQ_RESET(GEN8_PCU_);
3031 serge 3689
 
5354 serge 3690
	vlv_display_irq_uninstall(dev_priv);
5060 serge 3691
}
3692
 
3693
static void ironlake_irq_uninstall(struct drm_device *dev)
3694
{
3695
	struct drm_i915_private *dev_priv = dev->dev_private;
3696
 
3697
	if (!dev_priv)
3746 Serge 3698
		return;
3699
 
5060 serge 3700
	ironlake_irq_reset(dev);
3031 serge 3701
}
3702
 
3703
#if 0
3704
static void i8xx_irq_preinstall(struct drm_device * dev)
3705
{
5060 serge 3706
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3707
	int pipe;
3708
 
5354 serge 3709
	for_each_pipe(dev_priv, pipe)
3031 serge 3710
		I915_WRITE(PIPESTAT(pipe), 0);
3711
	I915_WRITE16(IMR, 0xffff);
3712
	I915_WRITE16(IER, 0x0);
3713
	POSTING_READ16(IER);
3714
}
3715
 
3716
static int i8xx_irq_postinstall(struct drm_device *dev)
3717
{
5060 serge 3718
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3719
 
3720
	I915_WRITE16(EMR,
3721
		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3722
 
3723
	/* Unmask the interrupts that we always want on. */
3724
	dev_priv->irq_mask =
3725
		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3726
		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3727
		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
6084 serge 3728
		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3031 serge 3729
	I915_WRITE16(IMR, dev_priv->irq_mask);
3730
 
3731
	I915_WRITE16(IER,
3732
		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3733
		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3734
		     I915_USER_INTERRUPT);
3735
	POSTING_READ16(IER);
3736
 
4560 Serge 3737
	/* Interrupt setup is already guaranteed to be single-threaded, this is
3738
	 * just to make the assert_spin_locked check happy. */
5354 serge 3739
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 3740
	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3741
	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
5354 serge 3742
	spin_unlock_irq(&dev_priv->irq_lock);
4560 Serge 3743
 
3031 serge 3744
	return 0;
3745
}
3746
 
3746 Serge 3747
/*
3748
 * Returns true when a page flip has completed.
3749
 */
3750
static bool i8xx_handle_vblank(struct drm_device *dev,
4560 Serge 3751
			       int plane, int pipe, u32 iir)
3746 Serge 3752
{
5060 serge 3753
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 3754
	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3746 Serge 3755
 
6084 serge 3756
	if (!intel_pipe_handle_vblank(dev, pipe))
3757
		return false;
3746 Serge 3758
 
3759
	if ((iir & flip_pending) == 0)
5354 serge 3760
		goto check_page_flip;
3746 Serge 3761
 
3762
	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3763
	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3764
	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3765
	 * the flip is completed (no longer pending). Since this doesn't raise
3766
	 * an interrupt per se, we watch for the change at vblank.
3767
	 */
3768
	if (I915_READ16(ISR) & flip_pending)
5354 serge 3769
		goto check_page_flip;
3746 Serge 3770
 
6320 serge 3771
	intel_prepare_page_flip(dev, plane);
3772
	intel_finish_page_flip(dev, pipe);
5354 serge 3773
	return true;
3746 Serge 3774
 
5354 serge 3775
check_page_flip:
6320 serge 3776
	intel_check_page_flip(dev, pipe);
5354 serge 3777
	return false;
3746 Serge 3778
}
3779
 
3243 Serge 3780
static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3031 serge 3781
{
5060 serge 3782
	struct drm_device *dev = arg;
3783
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3784
	u16 iir, new_iir;
3785
	u32 pipe_stats[2];
3786
	int pipe;
3787
	u16 flip_mask =
3788
		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3789
		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3790
 
6084 serge 3791
	if (!intel_irqs_enabled(dev_priv))
3792
		return IRQ_NONE;
3793
 
3031 serge 3794
	iir = I915_READ16(IIR);
3795
	if (iir == 0)
3796
		return IRQ_NONE;
3797
 
3798
	while (iir & ~flip_mask) {
3799
		/* Can't rely on pipestat interrupt bit in iir as it might
3800
		 * have been cleared after the pipestat interrupt was received.
3801
		 * It doesn't set the bit in iir again, but it still produces
3802
		 * interrupts (for non-MSI).
3803
		 */
5354 serge 3804
		spin_lock(&dev_priv->irq_lock);
4126 Serge 3805
		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
5354 serge 3806
			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3031 serge 3807
 
5354 serge 3808
		for_each_pipe(dev_priv, pipe) {
3031 serge 3809
			int reg = PIPESTAT(pipe);
3810
			pipe_stats[pipe] = I915_READ(reg);
3811
 
3812
			/*
3813
			 * Clear the PIPE*STAT regs before the IIR
3814
			 */
5060 serge 3815
			if (pipe_stats[pipe] & 0x8000ffff)
3031 serge 3816
				I915_WRITE(reg, pipe_stats[pipe]);
6084 serge 3817
		}
5354 serge 3818
		spin_unlock(&dev_priv->irq_lock);
3031 serge 3819
 
3820
		I915_WRITE16(IIR, iir & ~flip_mask);
3821
		new_iir = I915_READ16(IIR); /* Flush posted writes */
3822
 
3823
		if (iir & I915_USER_INTERRUPT)
6084 serge 3824
			notify_ring(&dev_priv->ring[RCS]);
3031 serge 3825
 
5354 serge 3826
		for_each_pipe(dev_priv, pipe) {
4560 Serge 3827
			int plane = pipe;
3828
			if (HAS_FBC(dev))
3829
				plane = !plane;
3031 serge 3830
 
4560 Serge 3831
			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3832
			    i8xx_handle_vblank(dev, plane, pipe, iir))
3833
				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3031 serge 3834
 
4560 Serge 3835
			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3836
				i9xx_pipe_crc_irq_handler(dev, pipe);
5060 serge 3837
 
5354 serge 3838
			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3839
				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3840
								    pipe);
4560 Serge 3841
		}
3842
 
3031 serge 3843
		iir = new_iir;
3844
	}
3845
 
3846
	return IRQ_HANDLED;
3847
}
3848
 
3849
static void i8xx_irq_uninstall(struct drm_device * dev)
3850
{
5060 serge 3851
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3852
	int pipe;
3853
 
5354 serge 3854
	for_each_pipe(dev_priv, pipe) {
3031 serge 3855
		/* Clear enable bits; then clear status bits */
3856
		I915_WRITE(PIPESTAT(pipe), 0);
3857
		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3858
	}
3859
	I915_WRITE16(IMR, 0xffff);
3860
	I915_WRITE16(IER, 0x0);
3861
	I915_WRITE16(IIR, I915_READ16(IIR));
3862
}
3863
 
3864
#endif
3865
 
3866
static void i915_irq_preinstall(struct drm_device * dev)
3867
{
5060 serge 3868
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3869
	int pipe;
3870
 
3871
	if (I915_HAS_HOTPLUG(dev)) {
6084 serge 3872
		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3031 serge 3873
		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3874
	}
3875
 
3876
	I915_WRITE16(HWSTAM, 0xeffe);
5354 serge 3877
	for_each_pipe(dev_priv, pipe)
3031 serge 3878
		I915_WRITE(PIPESTAT(pipe), 0);
3879
	I915_WRITE(IMR, 0xffffffff);
3880
	I915_WRITE(IER, 0x0);
3881
	POSTING_READ(IER);
3882
}
3883
 
3884
static int i915_irq_postinstall(struct drm_device *dev)
3885
{
5060 serge 3886
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3887
	u32 enable_mask;
3888
 
3889
	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3890
 
3891
	/* Unmask the interrupts that we always want on. */
3892
	dev_priv->irq_mask =
3893
		~(I915_ASLE_INTERRUPT |
3894
		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3895
		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3896
		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
6084 serge 3897
		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3031 serge 3898
 
3899
	enable_mask =
3900
		I915_ASLE_INTERRUPT |
3901
		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3902
		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3903
		I915_USER_INTERRUPT;
3480 Serge 3904
 
3031 serge 3905
	if (I915_HAS_HOTPLUG(dev)) {
6084 serge 3906
		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3480 Serge 3907
		POSTING_READ(PORT_HOTPLUG_EN);
3908
 
3031 serge 3909
		/* Enable in IER... */
3910
		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3911
		/* and unmask in IMR */
3912
		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3913
	}
3914
 
3915
	I915_WRITE(IMR, dev_priv->irq_mask);
3916
	I915_WRITE(IER, enable_mask);
3917
	POSTING_READ(IER);
3918
 
4126 Serge 3919
	i915_enable_asle_pipestat(dev);
3480 Serge 3920
 
4560 Serge 3921
	/* Interrupt setup is already guaranteed to be single-threaded, this is
3922
	 * just to make the assert_spin_locked check happy. */
5354 serge 3923
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 3924
	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3925
	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
5354 serge 3926
	spin_unlock_irq(&dev_priv->irq_lock);
4560 Serge 3927
 
3480 Serge 3928
	return 0;
3929
}
3930
 
3746 Serge 3931
/*
3932
 * Returns true when a page flip has completed.
3933
 */
3934
static bool i915_handle_vblank(struct drm_device *dev,
3935
			       int plane, int pipe, u32 iir)
3480 Serge 3936
{
5060 serge 3937
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 3938
	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3480 Serge 3939
 
6088 serge 3940
	if (!intel_pipe_handle_vblank(dev, pipe))
3941
		return false;
3480 Serge 3942
 
3746 Serge 3943
	if ((iir & flip_pending) == 0)
5354 serge 3944
		goto check_page_flip;
3480 Serge 3945
 
3746 Serge 3946
	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3947
	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3948
	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3949
	 * the flip is completed (no longer pending). Since this doesn't raise
3950
	 * an interrupt per se, we watch for the change at vblank.
3951
	 */
3952
	if (I915_READ(ISR) & flip_pending)
5354 serge 3953
		goto check_page_flip;
3746 Serge 3954
 
6320 serge 3955
	intel_prepare_page_flip(dev, plane);
3956
	intel_finish_page_flip(dev, pipe);
5354 serge 3957
	return true;
3746 Serge 3958
 
5354 serge 3959
check_page_flip:
6320 serge 3960
	intel_check_page_flip(dev, pipe);
5354 serge 3961
	return false;
3031 serge 3962
}
3963
 
3243 Serge 3964
static irqreturn_t i915_irq_handler(int irq, void *arg)
3031 serge 3965
{
5060 serge 3966
	struct drm_device *dev = arg;
3967
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3968
	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3969
	u32 flip_mask =
3970
		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3971
		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3972
	int pipe, ret = IRQ_NONE;
3973
 
6084 serge 3974
	if (!intel_irqs_enabled(dev_priv))
3975
		return IRQ_NONE;
3976
 
3031 serge 3977
	iir = I915_READ(IIR);
3978
	do {
3979
		bool irq_received = (iir & ~flip_mask) != 0;
3980
		bool blc_event = false;
3981
 
3982
		/* Can't rely on pipestat interrupt bit in iir as it might
3983
		 * have been cleared after the pipestat interrupt was received.
3984
		 * It doesn't set the bit in iir again, but it still produces
3985
		 * interrupts (for non-MSI).
3986
		 */
5354 serge 3987
		spin_lock(&dev_priv->irq_lock);
4126 Serge 3988
		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
5354 serge 3989
			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3031 serge 3990
 
5354 serge 3991
		for_each_pipe(dev_priv, pipe) {
3031 serge 3992
			int reg = PIPESTAT(pipe);
3993
			pipe_stats[pipe] = I915_READ(reg);
3994
 
3995
			/* Clear the PIPE*STAT regs before the IIR */
3996
			if (pipe_stats[pipe] & 0x8000ffff) {
3997
				I915_WRITE(reg, pipe_stats[pipe]);
3998
				irq_received = true;
3999
			}
4000
		}
5354 serge 4001
		spin_unlock(&dev_priv->irq_lock);
3031 serge 4002
 
4003
		if (!irq_received)
4004
			break;
4005
 
4006
		/* Consume port.  Then clear IIR or we'll miss events */
5060 serge 4007
		if (I915_HAS_HOTPLUG(dev) &&
4008
		    iir & I915_DISPLAY_PORT_INTERRUPT)
4009
			i9xx_hpd_irq_handler(dev);
3031 serge 4010
 
4011
		I915_WRITE(IIR, iir & ~flip_mask);
4012
		new_iir = I915_READ(IIR); /* Flush posted writes */
4013
 
4014
		if (iir & I915_USER_INTERRUPT)
6084 serge 4015
			notify_ring(&dev_priv->ring[RCS]);
3031 serge 4016
 
5354 serge 4017
		for_each_pipe(dev_priv, pipe) {
3031 serge 4018
			int plane = pipe;
4560 Serge 4019
			if (HAS_FBC(dev))
3031 serge 4020
				plane = !plane;
4021
 
3746 Serge 4022
			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4023
			    i915_handle_vblank(dev, plane, pipe, iir))
4024
				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4025
 
3031 serge 4026
			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4027
				blc_event = true;
4560 Serge 4028
 
4029
			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4030
				i9xx_pipe_crc_irq_handler(dev, pipe);
5060 serge 4031
 
5354 serge 4032
			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4033
				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4034
								    pipe);
3031 serge 4035
		}
4036
 
4126 Serge 4037
		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4038
			intel_opregion_asle_intr(dev);
3031 serge 4039
 
4040
		/* With MSI, interrupts are only generated when iir
4041
		 * transitions from zero to nonzero.  If another bit got
4042
		 * set while we were handling the existing iir bits, then
4043
		 * we would never get another interrupt.
4044
		 *
4045
		 * This is fine on non-MSI as well, as if we hit this path
4046
		 * we avoid exiting the interrupt handler only to generate
4047
		 * another one.
4048
		 *
4049
		 * Note that for MSI this could cause a stray interrupt report
4050
		 * if an interrupt landed in the time between writing IIR and
4051
		 * the posting read.  This should be rare enough to never
4052
		 * trigger the 99% of 100,000 interrupts test for disabling
4053
		 * stray interrupts.
4054
		 */
4055
		ret = IRQ_HANDLED;
4056
		iir = new_iir;
4057
	} while (iir & ~flip_mask);
4058
 
4059
	return ret;
4060
}
4061
 
4062
static void i915_irq_uninstall(struct drm_device * dev)
4063
{
5060 serge 4064
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4065
	int pipe;
4066
 
4067
	if (I915_HAS_HOTPLUG(dev)) {
6084 serge 4068
		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3031 serge 4069
		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4070
	}
4071
 
4072
	I915_WRITE16(HWSTAM, 0xffff);
5354 serge 4073
	for_each_pipe(dev_priv, pipe) {
3031 serge 4074
		/* Clear enable bits; then clear status bits */
4075
		I915_WRITE(PIPESTAT(pipe), 0);
4076
		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4077
	}
4078
	I915_WRITE(IMR, 0xffffffff);
4079
	I915_WRITE(IER, 0x0);
4080
 
4081
	I915_WRITE(IIR, I915_READ(IIR));
4082
}
4083
 
4084
static void i965_irq_preinstall(struct drm_device * dev)
4085
{
5060 serge 4086
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4087
	int pipe;
4088
 
6084 serge 4089
	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3031 serge 4090
	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4091
 
4092
	I915_WRITE(HWSTAM, 0xeffe);
5354 serge 4093
	for_each_pipe(dev_priv, pipe)
3031 serge 4094
		I915_WRITE(PIPESTAT(pipe), 0);
4095
	I915_WRITE(IMR, 0xffffffff);
4096
	I915_WRITE(IER, 0x0);
4097
	POSTING_READ(IER);
4098
}
4099
 
4100
static int i965_irq_postinstall(struct drm_device *dev)
4101
{
5060 serge 4102
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4103
	u32 enable_mask;
4104
	u32 error_mask;
4105
 
4106
	/* Unmask the interrupts that we always want on. */
4107
	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4108
			       I915_DISPLAY_PORT_INTERRUPT |
4109
			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4110
			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4111
			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4112
			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4113
			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4114
 
4115
	enable_mask = ~dev_priv->irq_mask;
3746 Serge 4116
	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4117
			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3031 serge 4118
	enable_mask |= I915_USER_INTERRUPT;
4119
 
4120
	if (IS_G4X(dev))
4121
		enable_mask |= I915_BSD_USER_INTERRUPT;
4122
 
4104 Serge 4123
	/* Interrupt setup is already guaranteed to be single-threaded, this is
4124
	 * just to make the assert_spin_locked check happy. */
5354 serge 4125
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 4126
	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4127
	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4128
	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
5354 serge 4129
	spin_unlock_irq(&dev_priv->irq_lock);
3031 serge 4130
 
4131
	/*
4132
	 * Enable some error detection, note the instruction error mask
4133
	 * bit is reserved, so we leave it masked.
4134
	 */
4135
	if (IS_G4X(dev)) {
4136
		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4137
			       GM45_ERROR_MEM_PRIV |
4138
			       GM45_ERROR_CP_PRIV |
4139
			       I915_ERROR_MEMORY_REFRESH);
4140
	} else {
4141
		error_mask = ~(I915_ERROR_PAGE_TABLE |
4142
			       I915_ERROR_MEMORY_REFRESH);
4143
	}
4144
	I915_WRITE(EMR, error_mask);
4145
 
4146
	I915_WRITE(IMR, dev_priv->irq_mask);
4147
	I915_WRITE(IER, enable_mask);
4148
	POSTING_READ(IER);
4149
 
6084 serge 4150
	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3480 Serge 4151
	POSTING_READ(PORT_HOTPLUG_EN);
4152
 
4126 Serge 4153
	i915_enable_asle_pipestat(dev);
3480 Serge 4154
 
4155
	return 0;
4156
}
4157
 
3746 Serge 4158
static void i915_hpd_irq_setup(struct drm_device *dev)
3480 Serge 4159
{
5060 serge 4160
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 4161
	u32 hotplug_en;
4162
 
4104 Serge 4163
	assert_spin_locked(&dev_priv->irq_lock);
4164
 
3031 serge 4165
	/* Note HDMI and DP share hotplug bits */
6084 serge 4166
	/* enable bits are the same for all generations */
4167
	hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4168
	/* Programming the CRT detection parameters tends
4169
	   to generate a spurious hotplug event about three
4170
	   seconds later.  So just do it once.
4171
	*/
4172
	if (IS_G4X(dev))
4173
		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4174
	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3480 Serge 4175
 
3031 serge 4176
	/* Ignore TV since it's buggy */
6084 serge 4177
	i915_hotplug_interrupt_update_locked(dev_priv,
4178
					     HOTPLUG_INT_EN_MASK |
4179
					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4180
					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4181
					     hotplug_en);
3031 serge 4182
}
4183
 
3243 Serge 4184
static irqreturn_t i965_irq_handler(int irq, void *arg)
3031 serge 4185
{
5060 serge 4186
	struct drm_device *dev = arg;
4187
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4188
	u32 iir, new_iir;
4189
	u32 pipe_stats[I915_MAX_PIPES];
4190
	int ret = IRQ_NONE, pipe;
3746 Serge 4191
	u32 flip_mask =
4192
		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4193
		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3031 serge 4194
 
6084 serge 4195
	if (!intel_irqs_enabled(dev_priv))
4196
		return IRQ_NONE;
4197
 
3031 serge 4198
	iir = I915_READ(IIR);
4199
 
4200
	for (;;) {
5060 serge 4201
		bool irq_received = (iir & ~flip_mask) != 0;
3031 serge 4202
		bool blc_event = false;
4203
 
4204
		/* Can't rely on pipestat interrupt bit in iir as it might
4205
		 * have been cleared after the pipestat interrupt was received.
4206
		 * It doesn't set the bit in iir again, but it still produces
4207
		 * interrupts (for non-MSI).
4208
		 */
5354 serge 4209
		spin_lock(&dev_priv->irq_lock);
4126 Serge 4210
		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
5354 serge 4211
			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3031 serge 4212
 
5354 serge 4213
		for_each_pipe(dev_priv, pipe) {
3031 serge 4214
			int reg = PIPESTAT(pipe);
4215
			pipe_stats[pipe] = I915_READ(reg);
4216
 
4217
			/*
4218
			 * Clear the PIPE*STAT regs before the IIR
4219
			 */
4220
			if (pipe_stats[pipe] & 0x8000ffff) {
4221
				I915_WRITE(reg, pipe_stats[pipe]);
5060 serge 4222
				irq_received = true;
3031 serge 4223
			}
4224
		}
5354 serge 4225
		spin_unlock(&dev_priv->irq_lock);
3031 serge 4226
 
4227
		if (!irq_received)
4228
			break;
4229
 
4230
		ret = IRQ_HANDLED;
4231
 
4232
		/* Consume port.  Then clear IIR or we'll miss events */
5060 serge 4233
		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4234
			i9xx_hpd_irq_handler(dev);
3031 serge 4235
 
3746 Serge 4236
		I915_WRITE(IIR, iir & ~flip_mask);
3031 serge 4237
		new_iir = I915_READ(IIR); /* Flush posted writes */
4238
 
4239
		if (iir & I915_USER_INTERRUPT)
6084 serge 4240
			notify_ring(&dev_priv->ring[RCS]);
3031 serge 4241
		if (iir & I915_BSD_USER_INTERRUPT)
6084 serge 4242
			notify_ring(&dev_priv->ring[VCS]);
3031 serge 4243
 
5354 serge 4244
		for_each_pipe(dev_priv, pipe) {
3746 Serge 4245
			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4246
			    i915_handle_vblank(dev, pipe, pipe, iir))
4247
				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3031 serge 4248
 
4249
			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4250
				blc_event = true;
4560 Serge 4251
 
4252
			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4253
				i9xx_pipe_crc_irq_handler(dev, pipe);
5060 serge 4254
 
5354 serge 4255
			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4256
				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
3031 serge 4257
		}
4258
 
4126 Serge 4259
		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4260
			intel_opregion_asle_intr(dev);
3031 serge 4261
 
3480 Serge 4262
		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4263
			gmbus_irq_handler(dev);
4264
 
3031 serge 4265
		/* With MSI, interrupts are only generated when iir
4266
		 * transitions from zero to nonzero.  If another bit got
4267
		 * set while we were handling the existing iir bits, then
4268
		 * we would never get another interrupt.
4269
		 *
4270
		 * This is fine on non-MSI as well, as if we hit this path
4271
		 * we avoid exiting the interrupt handler only to generate
4272
		 * another one.
4273
		 *
4274
		 * Note that for MSI this could cause a stray interrupt report
4275
		 * if an interrupt landed in the time between writing IIR and
4276
		 * the posting read.  This should be rare enough to never
4277
		 * trigger the 99% of 100,000 interrupts test for disabling
4278
		 * stray interrupts.
4279
		 */
4280
		iir = new_iir;
4281
	}
4282
 
4283
	return ret;
4284
}
4285
 
4286
static void i965_irq_uninstall(struct drm_device * dev)
4287
{
5060 serge 4288
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4289
	int pipe;
4290
 
4291
	if (!dev_priv)
4292
		return;
4293
 
6084 serge 4294
	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3031 serge 4295
	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4296
 
4297
	I915_WRITE(HWSTAM, 0xffffffff);
5354 serge 4298
	for_each_pipe(dev_priv, pipe)
3031 serge 4299
		I915_WRITE(PIPESTAT(pipe), 0);
4300
	I915_WRITE(IMR, 0xffffffff);
4301
	I915_WRITE(IER, 0x0);
4302
 
5354 serge 4303
	for_each_pipe(dev_priv, pipe)
3031 serge 4304
		I915_WRITE(PIPESTAT(pipe),
4305
			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4306
	I915_WRITE(IIR, I915_READ(IIR));
4307
}
4308
 
5354 serge 4309
/**
4310
 * intel_irq_init - initializes irq support
4311
 * @dev_priv: i915 device instance
4312
 *
4313
 * This function initializes all the irq support including work items, timers
4314
 * and all the vtables. It does not setup the interrupt itself though.
4315
 */
4316
void intel_irq_init(struct drm_i915_private *dev_priv)
2351 Serge 4317
{
5354 serge 4318
	struct drm_device *dev = dev_priv->dev;
3031 serge 4319
 
6296 serge 4320
	intel_hpd_init_work(dev_priv);
6084 serge 4321
 
4126 Serge 4322
	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4323
	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3480 Serge 4324
 
5060 serge 4325
	/* Let's track the enabled rps events */
5354 serge 4326
	if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4327
		/* WaGsvRC0ResidencyMethod:vlv */
6935 serge 4328
		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
5060 serge 4329
	else
6084 serge 4330
		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
3480 Serge 4331
 
6084 serge 4332
	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4333
			  i915_hangcheck_elapsed);
4560 Serge 4334
 
5354 serge 4335
 
4336
	if (IS_GEN2(dev_priv)) {
4560 Serge 4337
		dev->max_vblank_count = 0;
4338
		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
5354 serge 4339
	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4560 Serge 4340
		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
6084 serge 4341
		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4560 Serge 4342
	} else {
6084 serge 4343
		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4344
		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4293 Serge 4345
	}
3480 Serge 4346
 
5354 serge 4347
	/*
4348
	 * Opt out of the vblank disable timer on everything except gen2.
4349
	 * Gen2 doesn't have a hardware frame counter and so depends on
4350
	 * vblank interrupts to produce sane vblank seuquence numbers.
4351
	 */
4352
	if (!IS_GEN2(dev_priv))
4353
		dev->vblank_disable_immediate = true;
4354
 
6084 serge 4355
	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4293 Serge 4356
	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3480 Serge 4357
 
5354 serge 4358
	if (IS_CHERRYVIEW(dev_priv)) {
5060 serge 4359
		dev->driver->irq_handler = cherryview_irq_handler;
4360
		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4361
		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4362
		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4363
		dev->driver->enable_vblank = valleyview_enable_vblank;
4364
		dev->driver->disable_vblank = valleyview_disable_vblank;
4365
		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
5354 serge 4366
	} else if (IS_VALLEYVIEW(dev_priv)) {
3243 Serge 4367
		dev->driver->irq_handler = valleyview_irq_handler;
4368
		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4369
		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4293 Serge 4370
		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4371
		dev->driver->enable_vblank = valleyview_enable_vblank;
4372
		dev->driver->disable_vblank = valleyview_disable_vblank;
3746 Serge 4373
		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
5354 serge 4374
	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4560 Serge 4375
		dev->driver->irq_handler = gen8_irq_handler;
5060 serge 4376
		dev->driver->irq_preinstall = gen8_irq_reset;
4560 Serge 4377
		dev->driver->irq_postinstall = gen8_irq_postinstall;
4378
		dev->driver->irq_uninstall = gen8_irq_uninstall;
4379
		dev->driver->enable_vblank = gen8_enable_vblank;
4380
		dev->driver->disable_vblank = gen8_disable_vblank;
6084 serge 4381
		if (IS_BROXTON(dev))
4382
			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4383
		else if (HAS_PCH_SPT(dev))
4384
			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4385
		else
4386
			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
2351 Serge 4387
	} else if (HAS_PCH_SPLIT(dev)) {
3243 Serge 4388
		dev->driver->irq_handler = ironlake_irq_handler;
5060 serge 4389
		dev->driver->irq_preinstall = ironlake_irq_reset;
3243 Serge 4390
		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4293 Serge 4391
		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4392
		dev->driver->enable_vblank = ironlake_enable_vblank;
4393
		dev->driver->disable_vblank = ironlake_disable_vblank;
6084 serge 4394
		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
2351 Serge 4395
	} else {
5354 serge 4396
		if (INTEL_INFO(dev_priv)->gen == 2) {
4397
		} else if (INTEL_INFO(dev_priv)->gen == 3) {
3243 Serge 4398
			dev->driver->irq_preinstall = i915_irq_preinstall;
4399
			dev->driver->irq_postinstall = i915_irq_postinstall;
4293 Serge 4400
			dev->driver->irq_uninstall = i915_irq_uninstall;
3243 Serge 4401
			dev->driver->irq_handler = i915_irq_handler;
3031 serge 4402
		} else {
3243 Serge 4403
			dev->driver->irq_preinstall = i965_irq_preinstall;
4404
			dev->driver->irq_postinstall = i965_irq_postinstall;
4293 Serge 4405
			dev->driver->irq_uninstall = i965_irq_uninstall;
3243 Serge 4406
			dev->driver->irq_handler = i965_irq_handler;
6084 serge 4407
		}
4408
		if (I915_HAS_HOTPLUG(dev_priv))
3746 Serge 4409
			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4293 Serge 4410
		dev->driver->enable_vblank = i915_enable_vblank;
4411
		dev->driver->disable_vblank = i915_disable_vblank;
2351 Serge 4412
	}
3480 Serge 4413
}
3243 Serge 4414
 
5354 serge 4415
/**
4416
 * intel_irq_install - enables the hardware interrupt
4417
 * @dev_priv: i915 device instance
4418
 *
4419
 * This function enables the hardware interrupt handling, but leaves the hotplug
4420
 * handling still disabled. It is called after intel_irq_init().
4421
 *
4422
 * In the driver load and resume code we need working interrupts in a few places
4423
 * but don't want to deal with the hassle of concurrent probe and hotplug
4424
 * workers. Hence the split into this two-stage approach.
4425
 */
4426
int intel_irq_install(struct drm_i915_private *dev_priv)
3243 Serge 4427
{
5354 serge 4428
	/*
4429
	 * We enable some interrupt sources in our postinstall hooks, so mark
4430
	 * interrupts as enabled _before_ actually enabling them to avoid
4431
	 * special cases in our ordering checks.
4432
	 */
4433
	dev_priv->pm.irqs_enabled = true;
2351 Serge 4434
 
5354 serge 4435
	return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
3243 Serge 4436
}
4437
 
5354 serge 4438
/**
4439
 * intel_irq_uninstall - finilizes all irq handling
4440
 * @dev_priv: i915 device instance
4441
 *
4442
 * This stops interrupt and hotplug handling and unregisters and frees all
4443
 * resources acquired in the init functions.
4444
 */
4445
void intel_irq_uninstall(struct drm_i915_private *dev_priv)
2351 Serge 4446
{
5354 serge 4447
//	drm_irq_uninstall(dev_priv->dev);
6320 serge 4448
	intel_hpd_cancel_work(dev_priv);
5354 serge 4449
	dev_priv->pm.irqs_enabled = false;
4450
}
2351 Serge 4451
 
5354 serge 4452
/**
4453
 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4454
 * @dev_priv: i915 device instance
4455
 *
4456
 * This function is used to disable interrupts at runtime, both in the runtime
4457
 * pm and the system suspend/resume code.
4458
 */
4459
void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4460
{
4461
	dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4462
	dev_priv->pm.irqs_enabled = false;
4104 Serge 4463
}
2351 Serge 4464
 
5354 serge 4465
/**
4466
 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4467
 * @dev_priv: i915 device instance
4468
 *
4469
 * This function is used to enable interrupts at runtime, both in the runtime
4470
 * pm and the system suspend/resume code.
4471
 */
4472
void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4473
{
4474
	dev_priv->pm.irqs_enabled = true;
4475
	dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4476
	dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4477
}