Subversion Repositories Kolibri OS

Rev

Rev 6296 | Rev 6935 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2351 Serge 1
/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2
 */
3
/*
4
 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5
 * All Rights Reserved.
6
 *
7
 * Permission is hereby granted, free of charge, to any person obtaining a
8
 * copy of this software and associated documentation files (the
9
 * "Software"), to deal in the Software without restriction, including
10
 * without limitation the rights to use, copy, modify, merge, publish,
11
 * distribute, sub license, and/or sell copies of the Software, and to
12
 * permit persons to whom the Software is furnished to do so, subject to
13
 * the following conditions:
14
 *
15
 * The above copyright notice and this permission notice (including the
16
 * next paragraph) shall be included in all copies or substantial portions
17
 * of the Software.
18
 *
19
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22
 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23
 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
 *
27
 */
28
 
3746 Serge 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3031 serge 30
 
6103 serge 31
#include 
3031 serge 32
#include 
6088 serge 33
#include 
3031 serge 34
#include 
35
#include 
2351 Serge 36
#include "i915_drv.h"
37
#include "i915_trace.h"
38
#include "intel_drv.h"
39
 
5354 serge 40
/**
41
 * DOC: interrupt handling
42
 *
43
 * These functions provide the basic support for enabling and disabling the
44
 * interrupt handling support. There's a lot more functionality in i915_irq.c
45
 * and related files, but that will be described in separate chapters.
46
 */
4104 Serge 47
 
6084 serge 48
static const u32 hpd_ilk[HPD_NUM_PINS] = {
49
	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
50
};
51
 
52
static const u32 hpd_ivb[HPD_NUM_PINS] = {
53
	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54
};
55
 
56
static const u32 hpd_bdw[HPD_NUM_PINS] = {
57
	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58
};
59
 
60
static const u32 hpd_ibx[HPD_NUM_PINS] = {
3746 Serge 61
	[HPD_CRT] = SDE_CRT_HOTPLUG,
62
	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63
	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64
	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65
	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
66
};
3031 serge 67
 
6084 serge 68
static const u32 hpd_cpt[HPD_NUM_PINS] = {
3746 Serge 69
	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70
	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71
	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72
	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73
	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74
};
75
 
6084 serge 76
static const u32 hpd_spt[HPD_NUM_PINS] = {
77
	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78
	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79
	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80
	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81
	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82
};
83
 
84
static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
3746 Serge 85
	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
86
	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87
	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88
	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89
	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90
	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91
};
92
 
6084 serge 93
static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
3746 Serge 94
	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95
	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96
	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97
	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98
	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99
	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100
};
101
 
6084 serge 102
static const u32 hpd_status_i915[HPD_NUM_PINS] = {
3746 Serge 103
	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104
	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105
	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106
	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107
	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108
	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109
};
110
 
6084 serge 111
/* BXT hpd list */
112
static const u32 hpd_bxt[HPD_NUM_PINS] = {
113
	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114
	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115
	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116
};
117
 
5060 serge 118
/* IIR can theoretically queue up two events. Be paranoid. */
119
#define GEN8_IRQ_RESET_NDX(type, which) do { \
120
	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121
	POSTING_READ(GEN8_##type##_IMR(which)); \
122
	I915_WRITE(GEN8_##type##_IER(which), 0); \
123
	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124
	POSTING_READ(GEN8_##type##_IIR(which)); \
125
	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126
	POSTING_READ(GEN8_##type##_IIR(which)); \
127
} while (0)
3746 Serge 128
 
5060 serge 129
#define GEN5_IRQ_RESET(type) do { \
130
	I915_WRITE(type##IMR, 0xffffffff); \
131
	POSTING_READ(type##IMR); \
132
	I915_WRITE(type##IER, 0); \
133
	I915_WRITE(type##IIR, 0xffffffff); \
134
	POSTING_READ(type##IIR); \
135
	I915_WRITE(type##IIR, 0xffffffff); \
136
	POSTING_READ(type##IIR); \
137
} while (0)
138
 
139
/*
140
 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141
 */
6084 serge 142
static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv, u32 reg)
143
{
144
	u32 val = I915_READ(reg);
5060 serge 145
 
6084 serge 146
	if (val == 0)
147
		return;
148
 
149
	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
150
	     reg, val);
151
	I915_WRITE(reg, 0xffffffff);
152
	POSTING_READ(reg);
153
	I915_WRITE(reg, 0xffffffff);
154
	POSTING_READ(reg);
155
}
156
 
5060 serge 157
#define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
6084 serge 158
	gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
5354 serge 159
	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
5060 serge 160
	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
5354 serge 161
	POSTING_READ(GEN8_##type##_IMR(which)); \
5060 serge 162
} while (0)
163
 
164
#define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
6084 serge 165
	gen5_assert_iir_is_zero(dev_priv, type##IIR); \
5354 serge 166
	I915_WRITE(type##IER, (ier_val)); \
5060 serge 167
	I915_WRITE(type##IMR, (imr_val)); \
5354 serge 168
	POSTING_READ(type##IMR); \
5060 serge 169
} while (0)
170
 
5354 serge 171
static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
3031 serge 172
 
2351 Serge 173
/* For display hotplug interrupt */
6084 serge 174
static inline void
175
i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
176
				     uint32_t mask,
177
				     uint32_t bits)
2351 Serge 178
{
6084 serge 179
	uint32_t val;
180
 
4104 Serge 181
	assert_spin_locked(&dev_priv->irq_lock);
6084 serge 182
	WARN_ON(bits & ~mask);
4104 Serge 183
 
6084 serge 184
	val = I915_READ(PORT_HOTPLUG_EN);
185
	val &= ~mask;
186
	val |= bits;
187
	I915_WRITE(PORT_HOTPLUG_EN, val);
188
}
4104 Serge 189
 
6084 serge 190
/**
191
 * i915_hotplug_interrupt_update - update hotplug interrupt enable
192
 * @dev_priv: driver private
193
 * @mask: bits to update
194
 * @bits: bits to enable
195
 * NOTE: the HPD enable bits are modified both inside and outside
196
 * of an interrupt context. To avoid that read-modify-write cycles
197
 * interfer, these bits are protected by a spinlock. Since this
198
 * function is usually not called from a context where the lock is
199
 * held already, this function acquires the lock itself. A non-locking
200
 * version is also available.
201
 */
202
void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
203
				   uint32_t mask,
204
				   uint32_t bits)
205
{
206
	spin_lock_irq(&dev_priv->irq_lock);
207
	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
208
	spin_unlock_irq(&dev_priv->irq_lock);
2351 Serge 209
}
210
 
6084 serge 211
/**
212
 * ilk_update_display_irq - update DEIMR
213
 * @dev_priv: driver private
214
 * @interrupt_mask: mask of interrupt bits to update
215
 * @enabled_irq_mask: mask of interrupt bits to enable
216
 */
217
static void ilk_update_display_irq(struct drm_i915_private *dev_priv,
218
				   uint32_t interrupt_mask,
219
				   uint32_t enabled_irq_mask)
2351 Serge 220
{
6084 serge 221
	uint32_t new_val;
222
 
4104 Serge 223
	assert_spin_locked(&dev_priv->irq_lock);
224
 
6084 serge 225
	WARN_ON(enabled_irq_mask & ~interrupt_mask);
226
 
5354 serge 227
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
4104 Serge 228
		return;
229
 
6084 serge 230
	new_val = dev_priv->irq_mask;
231
	new_val &= ~interrupt_mask;
232
	new_val |= (~enabled_irq_mask & interrupt_mask);
233
 
234
	if (new_val != dev_priv->irq_mask) {
235
		dev_priv->irq_mask = new_val;
236
		I915_WRITE(DEIMR, dev_priv->irq_mask);
237
		POSTING_READ(DEIMR);
238
	}
2351 Serge 239
}
3031 serge 240
 
6084 serge 241
void
242
ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
243
{
244
	ilk_update_display_irq(dev_priv, mask, mask);
245
}
246
 
247
void
248
ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
249
{
250
	ilk_update_display_irq(dev_priv, mask, 0);
251
}
252
 
4104 Serge 253
/**
254
 * ilk_update_gt_irq - update GTIMR
255
 * @dev_priv: driver private
256
 * @interrupt_mask: mask of interrupt bits to update
257
 * @enabled_irq_mask: mask of interrupt bits to enable
258
 */
259
static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
260
			      uint32_t interrupt_mask,
261
			      uint32_t enabled_irq_mask)
262
{
263
	assert_spin_locked(&dev_priv->irq_lock);
264
 
6084 serge 265
	WARN_ON(enabled_irq_mask & ~interrupt_mask);
266
 
5060 serge 267
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
4104 Serge 268
		return;
269
 
270
	dev_priv->gt_irq_mask &= ~interrupt_mask;
271
	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
272
	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
273
	POSTING_READ(GTIMR);
274
}
275
 
5060 serge 276
void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
4104 Serge 277
{
278
	ilk_update_gt_irq(dev_priv, mask, mask);
279
}
280
 
5060 serge 281
void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
4104 Serge 282
{
283
	ilk_update_gt_irq(dev_priv, mask, 0);
284
}
285
 
5354 serge 286
static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
4104 Serge 287
{
5354 serge 288
	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
4104 Serge 289
}
290
 
5354 serge 291
static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
4104 Serge 292
{
5354 serge 293
	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
4104 Serge 294
}
295
 
5354 serge 296
static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
4104 Serge 297
{
5354 serge 298
	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
4104 Serge 299
}
300
 
5060 serge 301
/**
5354 serge 302
  * snb_update_pm_irq - update GEN6_PMIMR
5060 serge 303
  * @dev_priv: driver private
304
  * @interrupt_mask: mask of interrupt bits to update
305
  * @enabled_irq_mask: mask of interrupt bits to enable
306
  */
5354 serge 307
static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
5060 serge 308
			      uint32_t interrupt_mask,
309
			      uint32_t enabled_irq_mask)
310
{
311
	uint32_t new_val;
312
 
6084 serge 313
	WARN_ON(enabled_irq_mask & ~interrupt_mask);
314
 
5060 serge 315
	assert_spin_locked(&dev_priv->irq_lock);
316
 
317
	new_val = dev_priv->pm_irq_mask;
318
	new_val &= ~interrupt_mask;
319
	new_val |= (~enabled_irq_mask & interrupt_mask);
320
 
321
	if (new_val != dev_priv->pm_irq_mask) {
322
		dev_priv->pm_irq_mask = new_val;
5354 serge 323
		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
324
		POSTING_READ(gen6_pm_imr(dev_priv));
5060 serge 325
	}
326
}
327
 
5354 serge 328
void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
5060 serge 329
{
5354 serge 330
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
331
		return;
332
 
333
	snb_update_pm_irq(dev_priv, mask, mask);
5060 serge 334
}
335
 
5354 serge 336
static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
337
				  uint32_t mask)
5060 serge 338
{
5354 serge 339
	snb_update_pm_irq(dev_priv, mask, 0);
5060 serge 340
}
341
 
5354 serge 342
void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
4104 Serge 343
{
5354 serge 344
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
345
		return;
4104 Serge 346
 
5354 serge 347
	__gen6_disable_pm_irq(dev_priv, mask);
4104 Serge 348
}
349
 
5354 serge 350
void gen6_reset_rps_interrupts(struct drm_device *dev)
5060 serge 351
{
352
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 353
	uint32_t reg = gen6_pm_iir(dev_priv);
5060 serge 354
 
5354 serge 355
	spin_lock_irq(&dev_priv->irq_lock);
356
	I915_WRITE(reg, dev_priv->pm_rps_events);
357
	I915_WRITE(reg, dev_priv->pm_rps_events);
6084 serge 358
	POSTING_READ(reg);
359
	dev_priv->rps.pm_iir = 0;
5354 serge 360
	spin_unlock_irq(&dev_priv->irq_lock);
5060 serge 361
}
362
 
5354 serge 363
void gen6_enable_rps_interrupts(struct drm_device *dev)
5060 serge 364
{
365
	struct drm_i915_private *dev_priv = dev->dev_private;
366
 
5354 serge 367
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 368
 
5354 serge 369
	WARN_ON(dev_priv->rps.pm_iir);
370
	WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
371
	dev_priv->rps.interrupts_enabled = true;
372
	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
373
				dev_priv->pm_rps_events);
374
	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
375
 
376
	spin_unlock_irq(&dev_priv->irq_lock);
5060 serge 377
}
378
 
6084 serge 379
u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
380
{
381
	/*
382
	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
383
	 * if GEN6_PM_UP_EI_EXPIRED is masked.
384
	 *
385
	 * TODO: verify if this can be reproduced on VLV,CHV.
386
	 */
387
	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
388
		mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
389
 
390
	if (INTEL_INFO(dev_priv)->gen >= 8)
391
		mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
392
 
393
	return mask;
394
}
395
 
5354 serge 396
void gen6_disable_rps_interrupts(struct drm_device *dev)
4104 Serge 397
{
398
	struct drm_i915_private *dev_priv = dev->dev_private;
399
 
5354 serge 400
	spin_lock_irq(&dev_priv->irq_lock);
401
	dev_priv->rps.interrupts_enabled = false;
402
	spin_unlock_irq(&dev_priv->irq_lock);
4104 Serge 403
 
5354 serge 404
	cancel_work_sync(&dev_priv->rps.work);
4104 Serge 405
 
5354 serge 406
	spin_lock_irq(&dev_priv->irq_lock);
4104 Serge 407
 
6084 serge 408
	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4104 Serge 409
 
5354 serge 410
	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
411
	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
412
				~dev_priv->pm_rps_events);
4104 Serge 413
 
6084 serge 414
	spin_unlock_irq(&dev_priv->irq_lock);
4560 Serge 415
 
416
}
417
 
4104 Serge 418
/**
6084 serge 419
  * bdw_update_port_irq - update DE port interrupt
420
  * @dev_priv: driver private
421
  * @interrupt_mask: mask of interrupt bits to update
422
  * @enabled_irq_mask: mask of interrupt bits to enable
423
  */
424
static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
425
				uint32_t interrupt_mask,
426
				uint32_t enabled_irq_mask)
427
{
428
	uint32_t new_val;
429
	uint32_t old_val;
430
 
431
	assert_spin_locked(&dev_priv->irq_lock);
432
 
433
	WARN_ON(enabled_irq_mask & ~interrupt_mask);
434
 
435
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
436
		return;
437
 
438
	old_val = I915_READ(GEN8_DE_PORT_IMR);
439
 
440
	new_val = old_val;
441
	new_val &= ~interrupt_mask;
442
	new_val |= (~enabled_irq_mask & interrupt_mask);
443
 
444
	if (new_val != old_val) {
445
		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
446
		POSTING_READ(GEN8_DE_PORT_IMR);
447
	}
448
}
449
 
450
/**
4104 Serge 451
 * ibx_display_interrupt_update - update SDEIMR
452
 * @dev_priv: driver private
453
 * @interrupt_mask: mask of interrupt bits to update
454
 * @enabled_irq_mask: mask of interrupt bits to enable
455
 */
5354 serge 456
void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
6084 serge 457
				  uint32_t interrupt_mask,
458
				  uint32_t enabled_irq_mask)
4104 Serge 459
{
460
	uint32_t sdeimr = I915_READ(SDEIMR);
461
	sdeimr &= ~interrupt_mask;
462
	sdeimr |= (~enabled_irq_mask & interrupt_mask);
463
 
6084 serge 464
	WARN_ON(enabled_irq_mask & ~interrupt_mask);
465
 
4104 Serge 466
	assert_spin_locked(&dev_priv->irq_lock);
467
 
5060 serge 468
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
4104 Serge 469
		return;
470
 
471
	I915_WRITE(SDEIMR, sdeimr);
472
	POSTING_READ(SDEIMR);
473
}
474
 
5060 serge 475
static void
476
__i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
477
		       u32 enable_mask, u32 status_mask)
3031 serge 478
{
6084 serge 479
	u32 reg = PIPESTAT(pipe);
5060 serge 480
	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
3031 serge 481
 
4104 Serge 482
	assert_spin_locked(&dev_priv->irq_lock);
5354 serge 483
	WARN_ON(!intel_irqs_enabled(dev_priv));
4104 Serge 484
 
5060 serge 485
	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
486
		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
487
		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
488
		      pipe_name(pipe), enable_mask, status_mask))
3746 Serge 489
		return;
490
 
5060 serge 491
	if ((pipestat & enable_mask) == enable_mask)
492
		return;
493
 
494
	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
495
 
6084 serge 496
	/* Enable the interrupt, clear any pending status */
5060 serge 497
	pipestat |= enable_mask | status_mask;
3746 Serge 498
	I915_WRITE(reg, pipestat);
6084 serge 499
	POSTING_READ(reg);
3031 serge 500
}
501
 
5060 serge 502
static void
503
__i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
504
		        u32 enable_mask, u32 status_mask)
3031 serge 505
{
6084 serge 506
	u32 reg = PIPESTAT(pipe);
5060 serge 507
	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
3031 serge 508
 
4104 Serge 509
	assert_spin_locked(&dev_priv->irq_lock);
5354 serge 510
	WARN_ON(!intel_irqs_enabled(dev_priv));
4104 Serge 511
 
5060 serge 512
	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
513
		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
514
		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
515
		      pipe_name(pipe), enable_mask, status_mask))
3746 Serge 516
		return;
517
 
5060 serge 518
	if ((pipestat & enable_mask) == 0)
519
		return;
520
 
521
	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
522
 
523
	pipestat &= ~enable_mask;
3746 Serge 524
	I915_WRITE(reg, pipestat);
6084 serge 525
	POSTING_READ(reg);
3031 serge 526
}
527
 
5060 serge 528
static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
529
{
530
	u32 enable_mask = status_mask << 16;
531
 
532
	/*
533
	 * On pipe A we don't support the PSR interrupt yet,
534
	 * on pipe B and C the same bit MBZ.
535
	 */
536
	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
537
		return 0;
538
	/*
539
	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
540
	 * A the same bit is for perf counters which we don't use either.
541
	 */
542
	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
543
		return 0;
544
 
545
	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
546
			 SPRITE0_FLIP_DONE_INT_EN_VLV |
547
			 SPRITE1_FLIP_DONE_INT_EN_VLV);
548
	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
549
		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
550
	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
551
		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
552
 
553
	return enable_mask;
554
}
555
 
556
void
557
i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
558
		     u32 status_mask)
559
{
560
	u32 enable_mask;
561
 
562
	if (IS_VALLEYVIEW(dev_priv->dev))
563
		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
564
							   status_mask);
565
	else
566
		enable_mask = status_mask << 16;
567
	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
568
}
569
 
570
void
571
i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
572
		      u32 status_mask)
573
{
574
	u32 enable_mask;
575
 
576
	if (IS_VALLEYVIEW(dev_priv->dev))
577
		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
578
							   status_mask);
579
	else
580
		enable_mask = status_mask << 16;
581
	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
582
}
583
 
3031 serge 584
/**
4104 Serge 585
 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
6084 serge 586
 * @dev: drm device
3031 serge 587
 */
4104 Serge 588
static void i915_enable_asle_pipestat(struct drm_device *dev)
3031 serge 589
{
5060 serge 590
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 591
 
4104 Serge 592
	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
3031 serge 593
		return;
594
 
5354 serge 595
	spin_lock_irq(&dev_priv->irq_lock);
3031 serge 596
 
5060 serge 597
	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
6084 serge 598
	if (INTEL_INFO(dev)->gen >= 4)
4560 Serge 599
		i915_enable_pipestat(dev_priv, PIPE_A,
5060 serge 600
				     PIPE_LEGACY_BLC_EVENT_STATUS);
3031 serge 601
 
5354 serge 602
	spin_unlock_irq(&dev_priv->irq_lock);
3031 serge 603
}
604
 
5060 serge 605
/*
606
 * This timing diagram depicts the video signal in and
607
 * around the vertical blanking period.
608
 *
609
 * Assumptions about the fictitious mode used in this example:
610
 *  vblank_start >= 3
611
 *  vsync_start = vblank_start + 1
612
 *  vsync_end = vblank_start + 2
613
 *  vtotal = vblank_start + 3
614
 *
615
 *           start of vblank:
616
 *           latch double buffered registers
617
 *           increment frame counter (ctg+)
618
 *           generate start of vblank interrupt (gen4+)
619
 *           |
620
 *           |          frame start:
621
 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
622
 *           |          may be shifted forward 1-3 extra lines via PIPECONF
623
 *           |          |
624
 *           |          |  start of vsync:
625
 *           |          |  generate vsync interrupt
626
 *           |          |  |
627
 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
628
 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
629
 * ----va---> <-----------------vb--------------------> <--------va-------------
630
 *       |          |       <----vs----->                     |
631
 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
632
 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
633
 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
634
 *       |          |                                         |
635
 *       last visible pixel                                   first visible pixel
636
 *                  |                                         increment frame counter (gen3/4)
637
 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
638
 *
639
 * x  = horizontal active
640
 * _  = horizontal blanking
641
 * hs = horizontal sync
642
 * va = vertical active
643
 * vb = vertical blanking
644
 * vs = vertical sync
645
 * vbs = vblank_start (number)
646
 *
647
 * Summary:
648
 * - most events happen at the start of horizontal sync
649
 * - frame start happens at the start of horizontal blank, 1-4 lines
650
 *   (depending on PIPECONF settings) after the start of vblank
651
 * - gen3/4 pixel and frame counter are synchronized with the start
652
 *   of horizontal active on the first line of vertical active
653
 */
654
 
6084 serge 655
static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
4560 Serge 656
{
657
	/* Gen2 doesn't have a hardware frame counter */
658
	return 0;
659
}
660
 
3031 serge 661
/* Called from drm generic code, passed a 'crtc', which
662
 * we use as a pipe index
663
 */
6084 serge 664
static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
3031 serge 665
{
5060 serge 666
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 667
	unsigned long high_frame;
668
	unsigned long low_frame;
5060 serge 669
	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
6084 serge 670
	struct intel_crtc *intel_crtc =
671
		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
672
	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
3031 serge 673
 
6084 serge 674
	htotal = mode->crtc_htotal;
675
	hsync_start = mode->crtc_hsync_start;
676
	vbl_start = mode->crtc_vblank_start;
677
	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
678
		vbl_start = DIV_ROUND_UP(vbl_start, 2);
3031 serge 679
 
5060 serge 680
	/* Convert to pixel count */
6084 serge 681
	vbl_start *= htotal;
4560 Serge 682
 
5060 serge 683
	/* Start of vblank event occurs at start of hsync */
684
	vbl_start -= htotal - hsync_start;
685
 
3031 serge 686
	high_frame = PIPEFRAME(pipe);
687
	low_frame = PIPEFRAMEPIXEL(pipe);
688
 
689
	/*
690
	 * High & low register fields aren't synchronized, so make sure
691
	 * we get a low value that's stable across two reads of the high
692
	 * register.
693
	 */
694
	do {
695
		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
4560 Serge 696
		low   = I915_READ(low_frame);
3031 serge 697
		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
698
	} while (high1 != high2);
699
 
700
	high1 >>= PIPE_FRAME_HIGH_SHIFT;
4560 Serge 701
	pixel = low & PIPE_PIXEL_MASK;
3031 serge 702
	low >>= PIPE_FRAME_LOW_SHIFT;
4560 Serge 703
 
704
	/*
705
	 * The frame counter increments at beginning of active.
706
	 * Cook up a vblank counter by also checking the pixel
707
	 * counter against vblank start.
708
	 */
709
	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
3031 serge 710
}
711
 
6084 serge 712
static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
3031 serge 713
{
5060 serge 714
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 715
 
6084 serge 716
	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
3031 serge 717
}
718
 
4560 Serge 719
/* raw reads, only for fast reads of display block, no need for forcewake etc. */
720
#define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
721
 
5060 serge 722
static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
4560 Serge 723
{
5060 serge 724
	struct drm_device *dev = crtc->base.dev;
4560 Serge 725
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 726
	const struct drm_display_mode *mode = &crtc->base.hwmode;
5060 serge 727
	enum pipe pipe = crtc->pipe;
728
	int position, vtotal;
4560 Serge 729
 
5060 serge 730
	vtotal = mode->crtc_vtotal;
731
	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
732
		vtotal /= 2;
4560 Serge 733
 
5060 serge 734
	if (IS_GEN2(dev))
735
		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
736
	else
737
		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
738
 
739
	/*
6084 serge 740
	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
741
	 * read it just before the start of vblank.  So try it again
742
	 * so we don't accidentally end up spanning a vblank frame
743
	 * increment, causing the pipe_update_end() code to squak at us.
744
	 *
745
	 * The nature of this problem means we can't simply check the ISR
746
	 * bit and return the vblank start value; nor can we use the scanline
747
	 * debug register in the transcoder as it appears to have the same
748
	 * problem.  We may need to extend this to include other platforms,
749
	 * but so far testing only shows the problem on HSW.
750
	 */
751
	if (HAS_DDI(dev) && !position) {
752
		int i, temp;
753
 
754
		for (i = 0; i < 100; i++) {
755
			udelay(1);
756
			temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
757
				DSL_LINEMASK_GEN3;
758
			if (temp != position) {
759
				position = temp;
760
				break;
761
			}
762
		}
763
	}
764
 
765
	/*
5060 serge 766
	 * See update_scanline_offset() for the details on the
767
	 * scanline_offset adjustment.
768
	 */
769
	return (position + crtc->scanline_offset) % vtotal;
4560 Serge 770
}
771
 
6084 serge 772
static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
4560 Serge 773
				    unsigned int flags, int *vpos, int *hpos,
6084 serge 774
				    ktime_t *stime, ktime_t *etime,
775
				    const struct drm_display_mode *mode)
3746 Serge 776
{
4560 Serge 777
	struct drm_i915_private *dev_priv = dev->dev_private;
778
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
779
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
780
	int position;
5060 serge 781
	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
3746 Serge 782
	bool in_vbl = true;
783
	int ret = 0;
4560 Serge 784
	unsigned long irqflags;
3746 Serge 785
 
6084 serge 786
	if (WARN_ON(!mode->crtc_clock)) {
3746 Serge 787
		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
788
				 "pipe %c\n", pipe_name(pipe));
789
		return 0;
790
	}
791
 
4560 Serge 792
	htotal = mode->crtc_htotal;
5060 serge 793
	hsync_start = mode->crtc_hsync_start;
4560 Serge 794
	vtotal = mode->crtc_vtotal;
795
	vbl_start = mode->crtc_vblank_start;
796
	vbl_end = mode->crtc_vblank_end;
3746 Serge 797
 
4560 Serge 798
	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
799
		vbl_start = DIV_ROUND_UP(vbl_start, 2);
800
		vbl_end /= 2;
801
		vtotal /= 2;
802
	}
803
 
804
	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
805
 
806
	/*
807
	 * Lock uncore.lock, as we will do multiple timing critical raw
808
	 * register reads, potentially with preemption disabled, so the
809
	 * following code must not block on uncore.lock.
810
	 */
811
	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
812
 
813
	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
814
 
6084 serge 815
	/* Get optional system timestamp before query. */
816
	if (stime)
817
		*stime = ktime_get();
4560 Serge 818
 
819
	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3746 Serge 820
		/* No obvious pixelcount register. Only query vertical
821
		 * scanout position from Display scan line register.
822
		 */
5060 serge 823
		position = __intel_get_crtc_scanline(intel_crtc);
3746 Serge 824
	} else {
825
		/* Have access to pixelcount since start of frame.
826
		 * We can split this into vertical and horizontal
827
		 * scanout position.
828
		 */
4560 Serge 829
		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
3746 Serge 830
 
4560 Serge 831
		/* convert to pixel counts */
832
		vbl_start *= htotal;
833
		vbl_end *= htotal;
834
		vtotal *= htotal;
5060 serge 835
 
836
		/*
837
		 * In interlaced modes, the pixel counter counts all pixels,
838
		 * so one field will have htotal more pixels. In order to avoid
839
		 * the reported position from jumping backwards when the pixel
840
		 * counter is beyond the length of the shorter field, just
841
		 * clamp the position the length of the shorter field. This
842
		 * matches how the scanline counter based position works since
843
		 * the scanline counter doesn't count the two half lines.
844
		 */
845
		if (position >= vtotal)
846
			position = vtotal - 1;
847
 
848
		/*
849
		 * Start of vblank interrupt is triggered at start of hsync,
850
		 * just prior to the first active line of vblank. However we
851
		 * consider lines to start at the leading edge of horizontal
852
		 * active. So, should we get here before we've crossed into
853
		 * the horizontal active of the first line in vblank, we would
854
		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
855
		 * always add htotal-hsync_start to the current pixel position.
856
		 */
857
		position = (position + htotal - hsync_start) % vtotal;
3746 Serge 858
	}
859
 
6084 serge 860
	/* Get optional system timestamp after query. */
861
	if (etime)
862
		*etime = ktime_get();
3746 Serge 863
 
4560 Serge 864
	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
3746 Serge 865
 
4560 Serge 866
	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3746 Serge 867
 
4560 Serge 868
	in_vbl = position >= vbl_start && position < vbl_end;
3746 Serge 869
 
4560 Serge 870
	/*
871
	 * While in vblank, position will be negative
872
	 * counting up towards 0 at vbl_end. And outside
873
	 * vblank, position will be positive counting
874
	 * up since vbl_end.
875
	 */
876
	if (position >= vbl_start)
877
		position -= vbl_end;
878
	else
879
		position += vtotal - vbl_end;
3746 Serge 880
 
4560 Serge 881
	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
882
		*vpos = position;
883
		*hpos = 0;
884
	} else {
885
		*vpos = position / htotal;
886
		*hpos = position - (*vpos * htotal);
887
	}
888
 
3746 Serge 889
	/* In vblank? */
890
	if (in_vbl)
5354 serge 891
		ret |= DRM_SCANOUTPOS_IN_VBLANK;
3746 Serge 892
 
893
	return ret;
894
}
895
 
5060 serge 896
int intel_get_crtc_scanline(struct intel_crtc *crtc)
897
{
898
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
899
	unsigned long irqflags;
900
	int position;
901
 
902
	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
903
	position = __intel_get_crtc_scanline(crtc);
904
	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
905
 
906
	return position;
907
}
908
 
6084 serge 909
static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
3746 Serge 910
			      int *max_error,
911
			      struct timeval *vblank_time,
912
			      unsigned flags)
913
{
914
	struct drm_crtc *crtc;
915
 
6084 serge 916
	if (pipe >= INTEL_INFO(dev)->num_pipes) {
917
		DRM_ERROR("Invalid crtc %u\n", pipe);
3746 Serge 918
		return -EINVAL;
919
	}
920
 
921
	/* Get drm_crtc to timestamp: */
922
	crtc = intel_get_crtc_for_pipe(dev, pipe);
923
	if (crtc == NULL) {
6084 serge 924
		DRM_ERROR("Invalid crtc %u\n", pipe);
3746 Serge 925
		return -EINVAL;
926
	}
927
 
6084 serge 928
	if (!crtc->hwmode.crtc_clock) {
929
		DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
3746 Serge 930
		return -EBUSY;
931
	}
932
 
933
	/* Helper routine in DRM core does all the work: */
934
	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
935
						     vblank_time, flags,
6084 serge 936
						     &crtc->hwmode);
3746 Serge 937
}
938
 
4104 Serge 939
static void ironlake_rps_change_irq_handler(struct drm_device *dev)
3746 Serge 940
{
5060 serge 941
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 942
	u32 busy_up, busy_down, max_avg, min_avg;
943
	u8 new_delay;
944
 
4104 Serge 945
	spin_lock(&mchdev_lock);
3746 Serge 946
 
947
	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
948
 
949
	new_delay = dev_priv->ips.cur_delay;
950
 
951
	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
952
	busy_up = I915_READ(RCPREVBSYTUPAVG);
953
	busy_down = I915_READ(RCPREVBSYTDNAVG);
954
	max_avg = I915_READ(RCBMAXAVG);
955
	min_avg = I915_READ(RCBMINAVG);
956
 
957
	/* Handle RCS change request from hw */
958
	if (busy_up > max_avg) {
959
		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
960
			new_delay = dev_priv->ips.cur_delay - 1;
961
		if (new_delay < dev_priv->ips.max_delay)
962
			new_delay = dev_priv->ips.max_delay;
963
	} else if (busy_down < min_avg) {
964
		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
965
			new_delay = dev_priv->ips.cur_delay + 1;
966
		if (new_delay > dev_priv->ips.min_delay)
967
			new_delay = dev_priv->ips.min_delay;
968
	}
969
 
970
	if (ironlake_set_drps(dev, new_delay))
971
		dev_priv->ips.cur_delay = new_delay;
972
 
4104 Serge 973
	spin_unlock(&mchdev_lock);
3746 Serge 974
 
975
	return;
976
}
977
 
6084 serge 978
static void notify_ring(struct intel_engine_cs *ring)
2352 Serge 979
{
5060 serge 980
	if (!intel_ring_initialized(ring))
2352 Serge 981
		return;
2351 Serge 982
 
6084 serge 983
	trace_i915_gem_request_notify(ring);
2351 Serge 984
 
2352 Serge 985
	wake_up_all(&ring->irq_queue);
986
}
987
 
6084 serge 988
static void vlv_c0_read(struct drm_i915_private *dev_priv,
989
			struct intel_rps_ei *ei)
5060 serge 990
{
6084 serge 991
	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
992
	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
993
	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
994
}
5060 serge 995
 
6084 serge 996
static bool vlv_c0_above(struct drm_i915_private *dev_priv,
997
			 const struct intel_rps_ei *old,
998
			 const struct intel_rps_ei *now,
999
			 int threshold)
1000
{
1001
	u64 time, c0;
1002
	unsigned int mul = 100;
5060 serge 1003
 
6084 serge 1004
	if (old->cz_clock == 0)
1005
		return false;
5060 serge 1006
 
6084 serge 1007
	if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1008
		mul <<= 8;
5060 serge 1009
 
6084 serge 1010
	time = now->cz_clock - old->cz_clock;
1011
	time *= threshold * dev_priv->czclk_freq;
5060 serge 1012
 
6084 serge 1013
	/* Workload can be split between render + media, e.g. SwapBuffers
1014
	 * being blitted in X after being rendered in mesa. To account for
1015
	 * this we need to combine both engines into our activity counter.
5060 serge 1016
	 */
6084 serge 1017
	c0 = now->render_c0 - old->render_c0;
1018
	c0 += now->media_c0 - old->media_c0;
1019
	c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
5060 serge 1020
 
6084 serge 1021
	return c0 >= time;
5060 serge 1022
}
1023
 
6084 serge 1024
void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
5060 serge 1025
{
6084 serge 1026
	vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1027
	dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1028
}
5060 serge 1029
 
6084 serge 1030
static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1031
{
1032
	struct intel_rps_ei now;
1033
	u32 events = 0;
5060 serge 1034
 
6084 serge 1035
	if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1036
		return 0;
5060 serge 1037
 
6084 serge 1038
	vlv_c0_read(dev_priv, &now);
1039
	if (now.cz_clock == 0)
1040
		return 0;
5060 serge 1041
 
6084 serge 1042
	if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1043
		if (!vlv_c0_above(dev_priv,
1044
				  &dev_priv->rps.down_ei, &now,
1045
				  dev_priv->rps.down_threshold))
1046
			events |= GEN6_PM_RP_DOWN_THRESHOLD;
1047
		dev_priv->rps.down_ei = now;
5060 serge 1048
	}
1049
 
6084 serge 1050
	if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1051
		if (vlv_c0_above(dev_priv,
1052
				 &dev_priv->rps.up_ei, &now,
1053
				 dev_priv->rps.up_threshold))
1054
			events |= GEN6_PM_RP_UP_THRESHOLD;
1055
		dev_priv->rps.up_ei = now;
5060 serge 1056
	}
1057
 
6084 serge 1058
	return events;
1059
}
5060 serge 1060
 
6084 serge 1061
static bool any_waiters(struct drm_i915_private *dev_priv)
1062
{
1063
	struct intel_engine_cs *ring;
1064
	int i;
5060 serge 1065
 
6084 serge 1066
	for_each_ring(ring, dev_priv, i)
1067
		if (ring->irq_refcount)
1068
			return true;
5060 serge 1069
 
6084 serge 1070
	return false;
5060 serge 1071
}
1072
 
3031 serge 1073
static void gen6_pm_rps_work(struct work_struct *work)
1074
{
5060 serge 1075
	struct drm_i915_private *dev_priv =
1076
		container_of(work, struct drm_i915_private, rps.work);
6084 serge 1077
	bool client_boost;
1078
	int new_delay, adj, min, max;
4104 Serge 1079
	u32 pm_iir;
2352 Serge 1080
 
4104 Serge 1081
	spin_lock_irq(&dev_priv->irq_lock);
5354 serge 1082
	/* Speed up work cancelation during disabling rps interrupts. */
1083
	if (!dev_priv->rps.interrupts_enabled) {
1084
		spin_unlock_irq(&dev_priv->irq_lock);
1085
		return;
1086
	}
3031 serge 1087
	pm_iir = dev_priv->rps.pm_iir;
1088
	dev_priv->rps.pm_iir = 0;
5354 serge 1089
	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
6084 serge 1090
	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1091
	client_boost = dev_priv->rps.client_boost;
1092
	dev_priv->rps.client_boost = false;
4104 Serge 1093
	spin_unlock_irq(&dev_priv->irq_lock);
2352 Serge 1094
 
4104 Serge 1095
	/* Make sure we didn't queue anything we're not going to process. */
5060 serge 1096
	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
4104 Serge 1097
 
6084 serge 1098
	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
3031 serge 1099
		return;
1100
 
3243 Serge 1101
	mutex_lock(&dev_priv->rps.hw_lock);
3031 serge 1102
 
6084 serge 1103
	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1104
 
4560 Serge 1105
	adj = dev_priv->rps.last_adj;
6084 serge 1106
	new_delay = dev_priv->rps.cur_freq;
1107
	min = dev_priv->rps.min_freq_softlimit;
1108
	max = dev_priv->rps.max_freq_softlimit;
1109
 
1110
	if (client_boost) {
1111
		new_delay = dev_priv->rps.max_freq_softlimit;
1112
		adj = 0;
1113
	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
4560 Serge 1114
		if (adj > 0)
1115
			adj *= 2;
6084 serge 1116
		else /* CHV needs even encode values */
1117
			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
4104 Serge 1118
		/*
1119
		 * For better performance, jump directly
1120
		 * to RPe if we're below it.
1121
		 */
6084 serge 1122
		if (new_delay < dev_priv->rps.efficient_freq - adj) {
5060 serge 1123
			new_delay = dev_priv->rps.efficient_freq;
6084 serge 1124
			adj = 0;
1125
		}
1126
	} else if (any_waiters(dev_priv)) {
1127
		adj = 0;
4560 Serge 1128
	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
5060 serge 1129
		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1130
			new_delay = dev_priv->rps.efficient_freq;
4560 Serge 1131
		else
5060 serge 1132
			new_delay = dev_priv->rps.min_freq_softlimit;
4560 Serge 1133
		adj = 0;
1134
	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1135
		if (adj < 0)
1136
			adj *= 2;
6084 serge 1137
		else /* CHV needs even encode values */
1138
			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
4560 Serge 1139
	} else { /* unknown event */
6084 serge 1140
		adj = 0;
4560 Serge 1141
	}
3031 serge 1142
 
6084 serge 1143
	dev_priv->rps.last_adj = adj;
1144
 
3031 serge 1145
	/* sysfs frequency interfaces may have snuck in while servicing the
1146
	 * interrupt
1147
	 */
6084 serge 1148
	new_delay += adj;
1149
	new_delay = clamp_t(int, new_delay, min, max);
4560 Serge 1150
 
6084 serge 1151
	intel_set_rps(dev_priv->dev, new_delay);
5060 serge 1152
 
3243 Serge 1153
	mutex_unlock(&dev_priv->rps.hw_lock);
3031 serge 1154
}
1155
 
1156
 
1157
/**
1158
 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1159
 * occurred.
1160
 * @work: workqueue struct
1161
 *
1162
 * Doesn't actually do anything except notify userspace. As a consequence of
1163
 * this event, userspace should try to remap the bad rows since statistically
1164
 * it is likely the same row is more likely to go bad again.
1165
 */
1166
static void ivybridge_parity_work(struct work_struct *work)
2351 Serge 1167
{
5060 serge 1168
	struct drm_i915_private *dev_priv =
1169
		container_of(work, struct drm_i915_private, l3_parity.error_work);
3031 serge 1170
	u32 error_status, row, bank, subbank;
4560 Serge 1171
	char *parity_event[6];
3031 serge 1172
	uint32_t misccpctl;
4560 Serge 1173
	uint8_t slice = 0;
3031 serge 1174
 
1175
	/* We must turn off DOP level clock gating to access the L3 registers.
1176
	 * In order to prevent a get/put style interface, acquire struct mutex
1177
	 * any time we access those registers.
1178
	 */
1179
	mutex_lock(&dev_priv->dev->struct_mutex);
1180
 
4560 Serge 1181
	/* If we've screwed up tracking, just let the interrupt fire again */
1182
	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1183
		goto out;
1184
 
3031 serge 1185
	misccpctl = I915_READ(GEN7_MISCCPCTL);
1186
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1187
	POSTING_READ(GEN7_MISCCPCTL);
1188
 
4560 Serge 1189
	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1190
		u32 reg;
1191
 
1192
		slice--;
1193
		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1194
			break;
1195
 
1196
		dev_priv->l3_parity.which_slice &= ~(1<
1197
 
1198
		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1199
 
1200
		error_status = I915_READ(reg);
6084 serge 1201
		row = GEN7_PARITY_ERROR_ROW(error_status);
1202
		bank = GEN7_PARITY_ERROR_BANK(error_status);
1203
		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
3031 serge 1204
 
4560 Serge 1205
		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1206
		POSTING_READ(reg);
3031 serge 1207
 
4560 Serge 1208
		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1209
			  slice, row, bank, subbank);
1210
 
1211
	}
1212
 
3031 serge 1213
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1214
 
4560 Serge 1215
out:
1216
	WARN_ON(dev_priv->l3_parity.which_slice);
5354 serge 1217
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 1218
	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
5354 serge 1219
	spin_unlock_irq(&dev_priv->irq_lock);
3031 serge 1220
 
1221
	mutex_unlock(&dev_priv->dev->struct_mutex);
1222
}
1223
 
4560 Serge 1224
static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
3031 serge 1225
{
5060 serge 1226
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1227
 
4560 Serge 1228
	if (!HAS_L3_DPF(dev))
3031 serge 1229
		return;
1230
 
4104 Serge 1231
	spin_lock(&dev_priv->irq_lock);
5060 serge 1232
	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
4104 Serge 1233
	spin_unlock(&dev_priv->irq_lock);
3031 serge 1234
 
4560 Serge 1235
	iir &= GT_PARITY_ERROR(dev);
1236
	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1237
		dev_priv->l3_parity.which_slice |= 1 << 1;
1238
 
1239
	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1240
		dev_priv->l3_parity.which_slice |= 1 << 0;
1241
 
3243 Serge 1242
	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
3031 serge 1243
}
1244
 
4104 Serge 1245
static void ilk_gt_irq_handler(struct drm_device *dev,
1246
			       struct drm_i915_private *dev_priv,
1247
			       u32 gt_iir)
1248
{
1249
	if (gt_iir &
1250
	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
6084 serge 1251
		notify_ring(&dev_priv->ring[RCS]);
4104 Serge 1252
	if (gt_iir & ILK_BSD_USER_INTERRUPT)
6084 serge 1253
		notify_ring(&dev_priv->ring[VCS]);
4104 Serge 1254
}
1255
 
3031 serge 1256
static void snb_gt_irq_handler(struct drm_device *dev,
1257
			       struct drm_i915_private *dev_priv,
1258
			       u32 gt_iir)
1259
{
1260
 
4104 Serge 1261
	if (gt_iir &
1262
	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
6084 serge 1263
		notify_ring(&dev_priv->ring[RCS]);
4104 Serge 1264
	if (gt_iir & GT_BSD_USER_INTERRUPT)
6084 serge 1265
		notify_ring(&dev_priv->ring[VCS]);
4104 Serge 1266
	if (gt_iir & GT_BLT_USER_INTERRUPT)
6084 serge 1267
		notify_ring(&dev_priv->ring[BCS]);
3031 serge 1268
 
4104 Serge 1269
	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1270
		      GT_BSD_CS_ERROR_INTERRUPT |
5354 serge 1271
		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1272
		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
3031 serge 1273
 
4560 Serge 1274
	if (gt_iir & GT_PARITY_ERROR(dev))
1275
		ivybridge_parity_error_irq_handler(dev, gt_iir);
3031 serge 1276
}
1277
 
6084 serge 1278
static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
4560 Serge 1279
				       u32 master_ctl)
1280
{
1281
	irqreturn_t ret = IRQ_NONE;
1282
 
1283
	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
6084 serge 1284
		u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
4560 Serge 1285
		if (tmp) {
6084 serge 1286
			I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
4560 Serge 1287
			ret = IRQ_HANDLED;
5354 serge 1288
 
6084 serge 1289
			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1290
				intel_lrc_irq_handler(&dev_priv->ring[RCS]);
1291
			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1292
				notify_ring(&dev_priv->ring[RCS]);
5354 serge 1293
 
6084 serge 1294
			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1295
				intel_lrc_irq_handler(&dev_priv->ring[BCS]);
1296
			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1297
				notify_ring(&dev_priv->ring[BCS]);
4560 Serge 1298
		} else
1299
			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1300
	}
1301
 
5060 serge 1302
	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
6084 serge 1303
		u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
4560 Serge 1304
		if (tmp) {
6084 serge 1305
			I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
4560 Serge 1306
			ret = IRQ_HANDLED;
5354 serge 1307
 
6084 serge 1308
			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1309
				intel_lrc_irq_handler(&dev_priv->ring[VCS]);
1310
			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1311
				notify_ring(&dev_priv->ring[VCS]);
5354 serge 1312
 
6084 serge 1313
			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1314
				intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
1315
			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1316
				notify_ring(&dev_priv->ring[VCS2]);
4560 Serge 1317
		} else
1318
			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1319
	}
1320
 
6084 serge 1321
	if (master_ctl & GEN8_GT_VECS_IRQ) {
1322
		u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
1323
		if (tmp) {
1324
			I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
1325
			ret = IRQ_HANDLED;
1326
 
1327
			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1328
				intel_lrc_irq_handler(&dev_priv->ring[VECS]);
1329
			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1330
				notify_ring(&dev_priv->ring[VECS]);
1331
		} else
1332
			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1333
	}
1334
 
5060 serge 1335
	if (master_ctl & GEN8_GT_PM_IRQ) {
6084 serge 1336
		u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
5060 serge 1337
		if (tmp & dev_priv->pm_rps_events) {
6084 serge 1338
			I915_WRITE_FW(GEN8_GT_IIR(2),
1339
				      tmp & dev_priv->pm_rps_events);
5060 serge 1340
			ret = IRQ_HANDLED;
5354 serge 1341
			gen6_rps_irq_handler(dev_priv, tmp);
5060 serge 1342
		} else
1343
			DRM_ERROR("The master control interrupt lied (PM)!\n");
1344
	}
1345
 
6084 serge 1346
	return ret;
1347
}
5354 serge 1348
 
6084 serge 1349
static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1350
{
1351
	switch (port) {
1352
	case PORT_A:
1353
		return val & PORTA_HOTPLUG_LONG_DETECT;
1354
	case PORT_B:
1355
		return val & PORTB_HOTPLUG_LONG_DETECT;
1356
	case PORT_C:
1357
		return val & PORTC_HOTPLUG_LONG_DETECT;
1358
	default:
1359
		return false;
4560 Serge 1360
	}
6084 serge 1361
}
4560 Serge 1362
 
6084 serge 1363
static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1364
{
1365
	switch (port) {
1366
	case PORT_E:
1367
		return val & PORTE_HOTPLUG_LONG_DETECT;
1368
	default:
1369
		return false;
1370
	}
4560 Serge 1371
}
1372
 
6084 serge 1373
static bool spt_port_hotplug_long_detect(enum port port, u32 val)
5060 serge 1374
{
1375
	switch (port) {
1376
	case PORT_A:
6084 serge 1377
		return val & PORTA_HOTPLUG_LONG_DETECT;
5060 serge 1378
	case PORT_B:
6084 serge 1379
		return val & PORTB_HOTPLUG_LONG_DETECT;
5060 serge 1380
	case PORT_C:
6084 serge 1381
		return val & PORTC_HOTPLUG_LONG_DETECT;
5060 serge 1382
	case PORT_D:
6084 serge 1383
		return val & PORTD_HOTPLUG_LONG_DETECT;
1384
	default:
1385
		return false;
5060 serge 1386
	}
1387
}
1388
 
6084 serge 1389
static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
5060 serge 1390
{
1391
	switch (port) {
1392
	case PORT_A:
6084 serge 1393
		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
5060 serge 1394
	default:
6084 serge 1395
		return false;
1396
	}
1397
}
1398
 
1399
static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1400
{
1401
	switch (port) {
5060 serge 1402
	case PORT_B:
6084 serge 1403
		return val & PORTB_HOTPLUG_LONG_DETECT;
5060 serge 1404
	case PORT_C:
6084 serge 1405
		return val & PORTC_HOTPLUG_LONG_DETECT;
5060 serge 1406
	case PORT_D:
6084 serge 1407
		return val & PORTD_HOTPLUG_LONG_DETECT;
1408
	default:
1409
		return false;
5060 serge 1410
	}
1411
}
1412
 
6084 serge 1413
static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
5060 serge 1414
{
6084 serge 1415
	switch (port) {
1416
	case PORT_B:
1417
		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1418
	case PORT_C:
1419
		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1420
	case PORT_D:
1421
		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
5060 serge 1422
	default:
6084 serge 1423
		return false;
5060 serge 1424
	}
1425
}
1426
 
6084 serge 1427
/*
1428
 * Get a bit mask of pins that have triggered, and which ones may be long.
1429
 * This can be called multiple times with the same masks to accumulate
1430
 * hotplug detection results from several registers.
1431
 *
1432
 * Note that the caller is expected to zero out the masks initially.
1433
 */
1434
static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1435
			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1436
			     const u32 hpd[HPD_NUM_PINS],
1437
			     bool long_pulse_detect(enum port port, u32 val))
3746 Serge 1438
{
6084 serge 1439
	enum port port;
3746 Serge 1440
	int i;
1441
 
6084 serge 1442
	for_each_hpd_pin(i) {
1443
		if ((hpd[i] & hotplug_trigger) == 0)
5060 serge 1444
			continue;
3746 Serge 1445
 
6084 serge 1446
		*pin_mask |= BIT(i);
5060 serge 1447
 
6296 serge 1448
		if (!intel_hpd_pin_to_port(i, &port))
6131 serge 1449
			continue;
5060 serge 1450
 
6084 serge 1451
		if (long_pulse_detect(port, dig_hotplug_reg))
1452
			*long_mask |= BIT(i);
3746 Serge 1453
	}
1454
 
6084 serge 1455
	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1456
			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
3746 Serge 1457
 
1458
}
1459
 
3480 Serge 1460
static void gmbus_irq_handler(struct drm_device *dev)
1461
{
5060 serge 1462
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 1463
 
1464
	wake_up_all(&dev_priv->gmbus_wait_queue);
1465
}
1466
 
1467
static void dp_aux_irq_handler(struct drm_device *dev)
1468
{
5060 serge 1469
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 1470
 
1471
	wake_up_all(&dev_priv->gmbus_wait_queue);
1472
}
1473
 
4560 Serge 1474
#if defined(CONFIG_DEBUG_FS)
1475
static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1476
					 uint32_t crc0, uint32_t crc1,
1477
					 uint32_t crc2, uint32_t crc3,
1478
					 uint32_t crc4)
1479
{
1480
	struct drm_i915_private *dev_priv = dev->dev_private;
1481
	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1482
	struct intel_pipe_crc_entry *entry;
1483
	int head, tail;
1484
 
1485
	spin_lock(&pipe_crc->lock);
1486
 
1487
	if (!pipe_crc->entries) {
1488
		spin_unlock(&pipe_crc->lock);
5354 serge 1489
		DRM_DEBUG_KMS("spurious interrupt\n");
4560 Serge 1490
		return;
1491
	}
1492
 
1493
	head = pipe_crc->head;
1494
	tail = pipe_crc->tail;
1495
 
1496
	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1497
		spin_unlock(&pipe_crc->lock);
1498
		DRM_ERROR("CRC buffer overflowing\n");
1499
		return;
1500
	}
1501
 
1502
	entry = &pipe_crc->entries[head];
1503
 
1504
	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1505
	entry->crc[0] = crc0;
1506
	entry->crc[1] = crc1;
1507
	entry->crc[2] = crc2;
1508
	entry->crc[3] = crc3;
1509
	entry->crc[4] = crc4;
1510
 
1511
	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1512
	pipe_crc->head = head;
1513
 
1514
	spin_unlock(&pipe_crc->lock);
1515
 
1516
	wake_up_interruptible(&pipe_crc->wq);
1517
}
1518
#else
1519
static inline void
1520
display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1521
			     uint32_t crc0, uint32_t crc1,
1522
			     uint32_t crc2, uint32_t crc3,
1523
			     uint32_t crc4) {}
1524
#endif
1525
 
1526
 
1527
static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1528
{
1529
	struct drm_i915_private *dev_priv = dev->dev_private;
1530
 
1531
	display_pipe_crc_irq_handler(dev, pipe,
1532
				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1533
				     0, 0, 0, 0);
1534
}
1535
 
1536
static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1537
{
1538
	struct drm_i915_private *dev_priv = dev->dev_private;
1539
 
1540
	display_pipe_crc_irq_handler(dev, pipe,
1541
				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1542
				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1543
				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1544
				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1545
				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1546
}
1547
 
1548
static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1549
{
1550
	struct drm_i915_private *dev_priv = dev->dev_private;
1551
	uint32_t res1, res2;
1552
 
1553
	if (INTEL_INFO(dev)->gen >= 3)
1554
		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1555
	else
1556
		res1 = 0;
1557
 
1558
	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1559
		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1560
	else
1561
		res2 = 0;
1562
 
1563
	display_pipe_crc_irq_handler(dev, pipe,
1564
				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1565
				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1566
				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1567
				     res1, res2);
1568
}
1569
 
4104 Serge 1570
/* The RPS events need forcewake, so we add them to a work queue and mask their
1571
 * IMR bits until the work is done. Other interrupts can be processed without
1572
 * the work queue. */
1573
static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1574
{
5060 serge 1575
	if (pm_iir & dev_priv->pm_rps_events) {
4104 Serge 1576
		spin_lock(&dev_priv->irq_lock);
5354 serge 1577
		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1578
		if (dev_priv->rps.interrupts_enabled) {
6084 serge 1579
			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
5354 serge 1580
			queue_work(dev_priv->wq, &dev_priv->rps.work);
1581
		}
4104 Serge 1582
		spin_unlock(&dev_priv->irq_lock);
1583
	}
1584
 
5354 serge 1585
	if (INTEL_INFO(dev_priv)->gen >= 8)
1586
		return;
1587
 
4104 Serge 1588
	if (HAS_VEBOX(dev_priv->dev)) {
1589
		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
6084 serge 1590
			notify_ring(&dev_priv->ring[VECS]);
4104 Serge 1591
 
5354 serge 1592
		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1593
			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
4104 Serge 1594
	}
1595
}
1596
 
5354 serge 1597
static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1598
{
6088 serge 1599
	if (!drm_handle_vblank(dev, pipe))
1600
		return false;
5354 serge 1601
 
1602
	return true;
1603
}
1604
 
5060 serge 1605
static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
3031 serge 1606
{
5060 serge 1607
	struct drm_i915_private *dev_priv = dev->dev_private;
1608
	u32 pipe_stats[I915_MAX_PIPES] = { };
3031 serge 1609
	int pipe;
1610
 
5060 serge 1611
	spin_lock(&dev_priv->irq_lock);
5354 serge 1612
	for_each_pipe(dev_priv, pipe) {
5060 serge 1613
		int reg;
1614
		u32 mask, iir_bit = 0;
3031 serge 1615
 
5060 serge 1616
		/*
1617
		 * PIPESTAT bits get signalled even when the interrupt is
1618
		 * disabled with the mask bits, and some of the status bits do
1619
		 * not generate interrupts at all (like the underrun bit). Hence
1620
		 * we need to be careful that we only handle what we want to
1621
		 * handle.
1622
		 */
3031 serge 1623
 
5354 serge 1624
		/* fifo underruns are filterered in the underrun handler. */
1625
		mask = PIPE_FIFO_UNDERRUN_STATUS;
1626
 
5060 serge 1627
		switch (pipe) {
1628
		case PIPE_A:
1629
			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1630
			break;
1631
		case PIPE_B:
1632
			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1633
			break;
1634
		case PIPE_C:
1635
			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1636
			break;
1637
		}
1638
		if (iir & iir_bit)
1639
			mask |= dev_priv->pipestat_irq_mask[pipe];
3031 serge 1640
 
5060 serge 1641
		if (!mask)
1642
			continue;
3031 serge 1643
 
5060 serge 1644
		reg = PIPESTAT(pipe);
1645
		mask |= PIPESTAT_INT_ENABLE_MASK;
1646
		pipe_stats[pipe] = I915_READ(reg) & mask;
3031 serge 1647
 
6084 serge 1648
		/*
1649
		 * Clear the PIPE*STAT regs before the IIR
1650
		 */
5060 serge 1651
		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1652
					PIPESTAT_INT_STATUS_MASK))
6084 serge 1653
			I915_WRITE(reg, pipe_stats[pipe]);
1654
	}
5060 serge 1655
	spin_unlock(&dev_priv->irq_lock);
3031 serge 1656
 
5354 serge 1657
	for_each_pipe(dev_priv, pipe) {
6084 serge 1658
		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1659
		    intel_pipe_handle_vblank(dev, pipe))
6320 serge 1660
			intel_check_page_flip(dev, pipe);
3031 serge 1661
 
6084 serge 1662
		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
6320 serge 1663
			intel_prepare_page_flip(dev, pipe);
1664
			intel_finish_page_flip(dev, pipe);
6084 serge 1665
		}
4560 Serge 1666
 
6084 serge 1667
		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1668
			i9xx_pipe_crc_irq_handler(dev, pipe);
5060 serge 1669
 
5354 serge 1670
		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1671
			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
6084 serge 1672
	}
3031 serge 1673
 
5060 serge 1674
	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1675
		gmbus_irq_handler(dev);
1676
}
3031 serge 1677
 
5060 serge 1678
static void i9xx_hpd_irq_handler(struct drm_device *dev)
1679
{
1680
	struct drm_i915_private *dev_priv = dev->dev_private;
1681
	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
6084 serge 1682
	u32 pin_mask = 0, long_mask = 0;
4104 Serge 1683
 
6084 serge 1684
	if (!hotplug_status)
1685
		return;
4104 Serge 1686
 
6084 serge 1687
	I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1688
	/*
1689
	 * Make sure hotplug status is cleared before we clear IIR, or else we
1690
	 * may miss hotplug events.
1691
	 */
1692
	POSTING_READ(PORT_HOTPLUG_STAT);
1693
 
1694
	if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5060 serge 1695
		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
4560 Serge 1696
 
6084 serge 1697
		if (hotplug_trigger) {
1698
			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1699
					   hotplug_trigger, hpd_status_g4x,
1700
					   i9xx_port_hotplug_long_detect);
1701
 
6296 serge 1702
			intel_hpd_irq_handler(dev, pin_mask, long_mask);
6084 serge 1703
		}
1704
 
1705
		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1706
			dp_aux_irq_handler(dev);
5060 serge 1707
	} else {
1708
		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1709
 
6084 serge 1710
		if (hotplug_trigger) {
1711
			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1712
					   hotplug_trigger, hpd_status_i915,
1713
					   i9xx_port_hotplug_long_detect);
6296 serge 1714
			intel_hpd_irq_handler(dev, pin_mask, long_mask);
6084 serge 1715
		}
5060 serge 1716
	}
1717
}
1718
 
1719
static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1720
{
1721
	struct drm_device *dev = arg;
1722
	struct drm_i915_private *dev_priv = dev->dev_private;
1723
	u32 iir, gt_iir, pm_iir;
1724
	irqreturn_t ret = IRQ_NONE;
1725
 
6084 serge 1726
	if (!intel_irqs_enabled(dev_priv))
1727
		return IRQ_NONE;
1728
 
5060 serge 1729
	while (true) {
1730
		/* Find, clear, then process each source of interrupt */
1731
 
1732
		gt_iir = I915_READ(GTIIR);
1733
		if (gt_iir)
1734
			I915_WRITE(GTIIR, gt_iir);
1735
 
1736
		pm_iir = I915_READ(GEN6_PMIIR);
1737
		if (pm_iir)
1738
			I915_WRITE(GEN6_PMIIR, pm_iir);
1739
 
1740
		iir = I915_READ(VLV_IIR);
1741
		if (iir) {
1742
			/* Consume port before clearing IIR or we'll miss events */
1743
			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1744
				i9xx_hpd_irq_handler(dev);
1745
			I915_WRITE(VLV_IIR, iir);
3031 serge 1746
		}
1747
 
5060 serge 1748
		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1749
			goto out;
3031 serge 1750
 
5060 serge 1751
		ret = IRQ_HANDLED;
1752
 
1753
		if (gt_iir)
6084 serge 1754
			snb_gt_irq_handler(dev, dev_priv, gt_iir);
4126 Serge 1755
		if (pm_iir)
1756
			gen6_rps_irq_handler(dev_priv, pm_iir);
5060 serge 1757
		/* Call regardless, as some status bits might not be
1758
		 * signalled in iir */
1759
		valleyview_pipestat_irq_handler(dev, iir);
3031 serge 1760
	}
1761
 
1762
out:
1763
	return ret;
1764
}
1765
 
5060 serge 1766
static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1767
{
1768
	struct drm_device *dev = arg;
1769
	struct drm_i915_private *dev_priv = dev->dev_private;
1770
	u32 master_ctl, iir;
1771
	irqreturn_t ret = IRQ_NONE;
1772
 
6084 serge 1773
	if (!intel_irqs_enabled(dev_priv))
1774
		return IRQ_NONE;
1775
 
5060 serge 1776
	for (;;) {
1777
		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1778
		iir = I915_READ(VLV_IIR);
1779
 
1780
		if (master_ctl == 0 && iir == 0)
1781
			break;
1782
 
1783
		ret = IRQ_HANDLED;
1784
 
1785
		I915_WRITE(GEN8_MASTER_IRQ, 0);
1786
 
1787
		/* Find, clear, then process each source of interrupt */
1788
 
1789
		if (iir) {
1790
			/* Consume port before clearing IIR or we'll miss events */
1791
			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1792
				i9xx_hpd_irq_handler(dev);
1793
			I915_WRITE(VLV_IIR, iir);
1794
		}
1795
 
6084 serge 1796
		gen8_gt_irq_handler(dev_priv, master_ctl);
5060 serge 1797
 
1798
		/* Call regardless, as some status bits might not be
1799
		 * signalled in iir */
1800
		valleyview_pipestat_irq_handler(dev, iir);
1801
 
1802
		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1803
		POSTING_READ(GEN8_MASTER_IRQ);
1804
	}
1805
 
1806
	return ret;
1807
}
1808
 
6084 serge 1809
static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1810
				const u32 hpd[HPD_NUM_PINS])
1811
{
1812
	struct drm_i915_private *dev_priv = to_i915(dev);
1813
	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1814
 
1815
	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1816
	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1817
 
1818
	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1819
			   dig_hotplug_reg, hpd,
1820
			   pch_port_hotplug_long_detect);
1821
 
6296 serge 1822
	intel_hpd_irq_handler(dev, pin_mask, long_mask);
6084 serge 1823
}
1824
 
3031 serge 1825
static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1826
{
5060 serge 1827
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1828
	int pipe;
3746 Serge 1829
	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
3031 serge 1830
 
6084 serge 1831
	if (hotplug_trigger)
1832
		ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
4104 Serge 1833
 
1834
	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1835
		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1836
			       SDE_AUDIO_POWER_SHIFT);
1837
		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1838
				 port_name(port));
3746 Serge 1839
	}
3031 serge 1840
 
3480 Serge 1841
	if (pch_iir & SDE_AUX_MASK)
1842
		dp_aux_irq_handler(dev);
1843
 
3031 serge 1844
	if (pch_iir & SDE_GMBUS)
3480 Serge 1845
		gmbus_irq_handler(dev);
3031 serge 1846
 
1847
	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1848
		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1849
 
1850
	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1851
		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1852
 
1853
	if (pch_iir & SDE_POISON)
1854
		DRM_ERROR("PCH poison interrupt\n");
1855
 
1856
	if (pch_iir & SDE_FDI_MASK)
5354 serge 1857
		for_each_pipe(dev_priv, pipe)
3031 serge 1858
			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1859
					 pipe_name(pipe),
1860
					 I915_READ(FDI_RX_IIR(pipe)));
1861
 
1862
	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1863
		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1864
 
1865
	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1866
		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1867
 
4104 Serge 1868
	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
5354 serge 1869
		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
4104 Serge 1870
 
3031 serge 1871
	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
5354 serge 1872
		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
3031 serge 1873
}
1874
 
4104 Serge 1875
static void ivb_err_int_handler(struct drm_device *dev)
1876
{
1877
	struct drm_i915_private *dev_priv = dev->dev_private;
1878
	u32 err_int = I915_READ(GEN7_ERR_INT);
4560 Serge 1879
	enum pipe pipe;
4104 Serge 1880
 
1881
	if (err_int & ERR_INT_POISON)
1882
		DRM_ERROR("Poison interrupt\n");
1883
 
5354 serge 1884
	for_each_pipe(dev_priv, pipe) {
1885
		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1886
			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4104 Serge 1887
 
4560 Serge 1888
		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1889
			if (IS_IVYBRIDGE(dev))
1890
				ivb_pipe_crc_irq_handler(dev, pipe);
1891
			else
1892
				hsw_pipe_crc_irq_handler(dev, pipe);
1893
		}
1894
	}
4104 Serge 1895
 
1896
	I915_WRITE(GEN7_ERR_INT, err_int);
1897
}
1898
 
1899
static void cpt_serr_int_handler(struct drm_device *dev)
1900
{
1901
	struct drm_i915_private *dev_priv = dev->dev_private;
1902
	u32 serr_int = I915_READ(SERR_INT);
1903
 
1904
	if (serr_int & SERR_INT_POISON)
1905
		DRM_ERROR("PCH poison interrupt\n");
1906
 
1907
	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
5354 serge 1908
		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
4104 Serge 1909
 
1910
	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
5354 serge 1911
		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
4104 Serge 1912
 
1913
	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
5354 serge 1914
		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
4104 Serge 1915
 
1916
	I915_WRITE(SERR_INT, serr_int);
1917
}
1918
 
3031 serge 1919
static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1920
{
5060 serge 1921
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1922
	int pipe;
3746 Serge 1923
	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
3031 serge 1924
 
6084 serge 1925
	if (hotplug_trigger)
1926
		ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
4104 Serge 1927
 
1928
	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1929
		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1930
			       SDE_AUDIO_POWER_SHIFT_CPT);
1931
		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1932
				 port_name(port));
3746 Serge 1933
	}
3031 serge 1934
 
1935
	if (pch_iir & SDE_AUX_MASK_CPT)
3480 Serge 1936
		dp_aux_irq_handler(dev);
3031 serge 1937
 
1938
	if (pch_iir & SDE_GMBUS_CPT)
3480 Serge 1939
		gmbus_irq_handler(dev);
3031 serge 1940
 
1941
	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1942
		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1943
 
1944
	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1945
		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1946
 
1947
	if (pch_iir & SDE_FDI_MASK_CPT)
5354 serge 1948
		for_each_pipe(dev_priv, pipe)
3031 serge 1949
			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1950
					 pipe_name(pipe),
1951
					 I915_READ(FDI_RX_IIR(pipe)));
1952
 
4104 Serge 1953
	if (pch_iir & SDE_ERROR_CPT)
1954
		cpt_serr_int_handler(dev);
4539 Serge 1955
}
3480 Serge 1956
 
6084 serge 1957
static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
1958
{
1959
	struct drm_i915_private *dev_priv = dev->dev_private;
1960
	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1961
		~SDE_PORTE_HOTPLUG_SPT;
1962
	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1963
	u32 pin_mask = 0, long_mask = 0;
1964
 
1965
	if (hotplug_trigger) {
1966
		u32 dig_hotplug_reg;
1967
 
1968
		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1969
		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1970
 
1971
		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1972
				   dig_hotplug_reg, hpd_spt,
1973
				   spt_port_hotplug_long_detect);
1974
	}
1975
 
1976
	if (hotplug2_trigger) {
1977
		u32 dig_hotplug_reg;
1978
 
1979
		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1980
		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1981
 
1982
		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
1983
				   dig_hotplug_reg, hpd_spt,
1984
				   spt_port_hotplug2_long_detect);
1985
	}
1986
 
6296 serge 1987
	if (pin_mask)
1988
		intel_hpd_irq_handler(dev, pin_mask, long_mask);
1989
 
6084 serge 1990
	if (pch_iir & SDE_GMBUS_CPT)
1991
		gmbus_irq_handler(dev);
1992
}
1993
 
1994
static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1995
				const u32 hpd[HPD_NUM_PINS])
1996
{
1997
	struct drm_i915_private *dev_priv = to_i915(dev);
1998
	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1999
 
2000
	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2001
	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2002
 
2003
	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2004
			   dig_hotplug_reg, hpd,
2005
			   ilk_port_hotplug_long_detect);
2006
 
6296 serge 2007
	intel_hpd_irq_handler(dev, pin_mask, long_mask);
6084 serge 2008
}
2009
 
4104 Serge 2010
static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
3031 serge 2011
{
4104 Serge 2012
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 2013
	enum pipe pipe;
6084 serge 2014
	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
3031 serge 2015
 
6296 serge 2016
	if (hotplug_trigger)
2017
		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
6084 serge 2018
 
3480 Serge 2019
	if (de_iir & DE_AUX_CHANNEL_A)
2020
		dp_aux_irq_handler(dev);
2021
 
3031 serge 2022
	if (de_iir & DE_GSE)
4104 Serge 2023
		intel_opregion_asle_intr(dev);
2351 Serge 2024
 
4104 Serge 2025
	if (de_iir & DE_POISON)
2026
		DRM_ERROR("Poison interrupt\n");
2027
 
5354 serge 2028
	for_each_pipe(dev_priv, pipe) {
6084 serge 2029
		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2030
		    intel_pipe_handle_vblank(dev, pipe))
6320 serge 2031
			intel_check_page_flip(dev, pipe);
4104 Serge 2032
 
4560 Serge 2033
		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
5354 serge 2034
			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2351 Serge 2035
 
4560 Serge 2036
		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2037
			i9xx_pipe_crc_irq_handler(dev, pipe);
2038
 
2039
		/* plane/pipes map 1:1 on ilk+ */
2040
		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
6320 serge 2041
			intel_prepare_page_flip(dev, pipe);
2042
			intel_finish_page_flip_plane(dev, pipe);
4560 Serge 2043
		}
3031 serge 2044
	}
2351 Serge 2045
 
3031 serge 2046
	/* check event from PCH */
2047
	if (de_iir & DE_PCH_EVENT) {
3480 Serge 2048
		u32 pch_iir = I915_READ(SDEIIR);
2049
 
3031 serge 2050
		if (HAS_PCH_CPT(dev))
2051
			cpt_irq_handler(dev, pch_iir);
2052
		else
2053
			ibx_irq_handler(dev, pch_iir);
3480 Serge 2054
 
2055
		/* should clear PCH hotplug event before clear CPU irq */
2056
		I915_WRITE(SDEIIR, pch_iir);
3031 serge 2057
	}
4104 Serge 2058
 
6084 serge 2059
	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
4104 Serge 2060
		ironlake_rps_change_irq_handler(dev);
2351 Serge 2061
}
2062
 
4104 Serge 2063
static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
3031 serge 2064
{
2065
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 2066
	enum pipe pipe;
6084 serge 2067
	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2351 Serge 2068
 
6084 serge 2069
	if (hotplug_trigger)
2070
		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2071
 
4126 Serge 2072
	if (de_iir & DE_ERR_INT_IVB)
2073
		ivb_err_int_handler(dev);
2351 Serge 2074
 
4104 Serge 2075
	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2076
		dp_aux_irq_handler(dev);
3031 serge 2077
 
4104 Serge 2078
	if (de_iir & DE_GSE_IVB)
2079
		intel_opregion_asle_intr(dev);
4560 Serge 2080
 
5354 serge 2081
	for_each_pipe(dev_priv, pipe) {
6084 serge 2082
		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2083
		    intel_pipe_handle_vblank(dev, pipe))
6320 serge 2084
			intel_check_page_flip(dev, pipe);
4560 Serge 2085
 
2086
		/* plane/pipes map 1:1 on ilk+ */
5060 serge 2087
		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
6320 serge 2088
			intel_prepare_page_flip(dev, pipe);
2089
			intel_finish_page_flip_plane(dev, pipe);
3031 serge 2090
		}
2091
	}
2092
 
4104 Serge 2093
	/* check event from PCH */
2094
	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2095
		u32 pch_iir = I915_READ(SDEIIR);
3031 serge 2096
 
4104 Serge 2097
		cpt_irq_handler(dev, pch_iir);
3031 serge 2098
 
4104 Serge 2099
		/* clear PCH hotplug event before clear CPU irq */
2100
		I915_WRITE(SDEIIR, pch_iir);
4539 Serge 2101
	}
3031 serge 2102
}
2103
 
5060 serge 2104
/*
2105
 * To handle irqs with the minimum potential races with fresh interrupts, we:
2106
 * 1 - Disable Master Interrupt Control.
2107
 * 2 - Find the source(s) of the interrupt.
2108
 * 3 - Clear the Interrupt Identity bits (IIR).
2109
 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2110
 * 5 - Re-enable Master Interrupt Control.
2111
 */
4104 Serge 2112
static irqreturn_t ironlake_irq_handler(int irq, void *arg)
3031 serge 2113
{
5060 serge 2114
	struct drm_device *dev = arg;
2115
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 2116
	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2117
	irqreturn_t ret = IRQ_NONE;
3031 serge 2118
 
6084 serge 2119
	if (!intel_irqs_enabled(dev_priv))
2120
		return IRQ_NONE;
2121
 
4104 Serge 2122
	/* We get interrupts on unclaimed registers, so check for this before we
2123
	 * do any I915_{READ,WRITE}. */
2124
	intel_uncore_check_errors(dev);
3031 serge 2125
 
4104 Serge 2126
	/* disable master interrupt before clearing iir  */
2127
	de_ier = I915_READ(DEIER);
2128
	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2129
	POSTING_READ(DEIER);
3031 serge 2130
 
4104 Serge 2131
	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2132
	 * interrupts will will be stored on its back queue, and then we'll be
2133
	 * able to process them after we restore SDEIER (as soon as we restore
2134
	 * it, we'll get an interrupt if SDEIIR still has something to process
2135
	 * due to its back queue). */
2136
	if (!HAS_PCH_NOP(dev)) {
2137
		sde_ier = I915_READ(SDEIER);
2138
		I915_WRITE(SDEIER, 0);
2139
		POSTING_READ(SDEIER);
3031 serge 2140
	}
2141
 
5060 serge 2142
	/* Find, clear, then process each source of interrupt */
2143
 
4104 Serge 2144
	gt_iir = I915_READ(GTIIR);
2145
	if (gt_iir) {
5060 serge 2146
		I915_WRITE(GTIIR, gt_iir);
2147
		ret = IRQ_HANDLED;
4104 Serge 2148
		if (INTEL_INFO(dev)->gen >= 6)
2149
			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2150
		else
2151
			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
4539 Serge 2152
	}
3031 serge 2153
 
4104 Serge 2154
	de_iir = I915_READ(DEIIR);
2155
	if (de_iir) {
5060 serge 2156
		I915_WRITE(DEIIR, de_iir);
2157
		ret = IRQ_HANDLED;
4104 Serge 2158
		if (INTEL_INFO(dev)->gen >= 7)
2159
			ivb_display_irq_handler(dev, de_iir);
2160
		else
2161
			ilk_display_irq_handler(dev, de_iir);
3480 Serge 2162
	}
2163
 
4104 Serge 2164
	if (INTEL_INFO(dev)->gen >= 6) {
2165
		u32 pm_iir = I915_READ(GEN6_PMIIR);
2166
		if (pm_iir) {
2167
			I915_WRITE(GEN6_PMIIR, pm_iir);
2168
			ret = IRQ_HANDLED;
5060 serge 2169
			gen6_rps_irq_handler(dev_priv, pm_iir);
4560 Serge 2170
		}
3031 serge 2171
	}
2172
 
4104 Serge 2173
	I915_WRITE(DEIER, de_ier);
2174
	POSTING_READ(DEIER);
2175
	if (!HAS_PCH_NOP(dev)) {
2176
		I915_WRITE(SDEIER, sde_ier);
2177
		POSTING_READ(SDEIER);
3031 serge 2178
	}
2179
 
4104 Serge 2180
	return ret;
3031 serge 2181
}
2182
 
6084 serge 2183
static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2184
				const u32 hpd[HPD_NUM_PINS])
2185
{
2186
	struct drm_i915_private *dev_priv = to_i915(dev);
2187
	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2188
 
2189
	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2190
	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2191
 
2192
	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2193
			   dig_hotplug_reg, hpd,
2194
			   bxt_port_hotplug_long_detect);
2195
 
6296 serge 2196
	intel_hpd_irq_handler(dev, pin_mask, long_mask);
6084 serge 2197
}
2198
 
4560 Serge 2199
static irqreturn_t gen8_irq_handler(int irq, void *arg)
2200
{
2201
	struct drm_device *dev = arg;
2202
	struct drm_i915_private *dev_priv = dev->dev_private;
2203
	u32 master_ctl;
2204
	irqreturn_t ret = IRQ_NONE;
2205
	uint32_t tmp = 0;
2206
	enum pipe pipe;
5354 serge 2207
	u32 aux_mask = GEN8_AUX_CHANNEL_A;
4560 Serge 2208
 
6084 serge 2209
	if (!intel_irqs_enabled(dev_priv))
2210
		return IRQ_NONE;
2211
 
2212
	if (INTEL_INFO(dev_priv)->gen >= 9)
5354 serge 2213
		aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2214
			GEN9_AUX_CHANNEL_D;
2215
 
6084 serge 2216
	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
4560 Serge 2217
	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2218
	if (!master_ctl)
2219
		return IRQ_NONE;
2220
 
6084 serge 2221
	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
4560 Serge 2222
 
5060 serge 2223
	/* Find, clear, then process each source of interrupt */
2224
 
6084 serge 2225
	ret = gen8_gt_irq_handler(dev_priv, master_ctl);
4560 Serge 2226
 
2227
	if (master_ctl & GEN8_DE_MISC_IRQ) {
2228
		tmp = I915_READ(GEN8_DE_MISC_IIR);
5060 serge 2229
		if (tmp) {
2230
			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2231
			ret = IRQ_HANDLED;
6084 serge 2232
			if (tmp & GEN8_DE_MISC_GSE)
2233
				intel_opregion_asle_intr(dev);
5060 serge 2234
			else
6084 serge 2235
				DRM_ERROR("Unexpected DE Misc interrupt\n");
5060 serge 2236
		}
4560 Serge 2237
		else
2238
			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2239
	}
2240
 
2241
	if (master_ctl & GEN8_DE_PORT_IRQ) {
2242
		tmp = I915_READ(GEN8_DE_PORT_IIR);
5060 serge 2243
		if (tmp) {
6084 serge 2244
			bool found = false;
2245
			u32 hotplug_trigger = 0;
2246
 
2247
			if (IS_BROXTON(dev_priv))
2248
				hotplug_trigger = tmp & BXT_DE_PORT_HOTPLUG_MASK;
2249
			else if (IS_BROADWELL(dev_priv))
2250
				hotplug_trigger = tmp & GEN8_PORT_DP_A_HOTPLUG;
2251
 
5060 serge 2252
			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2253
			ret = IRQ_HANDLED;
5354 serge 2254
 
6084 serge 2255
			if (tmp & aux_mask) {
2256
				dp_aux_irq_handler(dev);
2257
				found = true;
2258
			}
2259
 
2260
			if (hotplug_trigger) {
2261
				if (IS_BROXTON(dev))
2262
					bxt_hpd_irq_handler(dev, hotplug_trigger, hpd_bxt);
2263
				else
2264
					ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_bdw);
2265
				found = true;
2266
			}
2267
 
2268
			if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2269
				gmbus_irq_handler(dev);
2270
				found = true;
2271
			}
2272
 
2273
			if (!found)
2274
				DRM_ERROR("Unexpected DE Port interrupt\n");
5060 serge 2275
		}
4560 Serge 2276
		else
2277
			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2278
	}
2279
 
5354 serge 2280
	for_each_pipe(dev_priv, pipe) {
2281
		uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
4560 Serge 2282
 
2283
		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2284
			continue;
2285
 
2286
		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
5060 serge 2287
		if (pipe_iir) {
2288
			ret = IRQ_HANDLED;
2289
			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
4560 Serge 2290
 
6088 serge 2291
			if (pipe_iir & GEN8_PIPE_VBLANK &&
2292
			    intel_pipe_handle_vblank(dev, pipe))
6320 serge 2293
				intel_check_page_flip(dev, pipe);
4560 Serge 2294
 
6084 serge 2295
			if (INTEL_INFO(dev_priv)->gen >= 9)
5354 serge 2296
				flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2297
			else
2298
				flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2299
 
6320 serge 2300
			if (flip_done) {
2301
				intel_prepare_page_flip(dev, pipe);
2302
				intel_finish_page_flip_plane(dev, pipe);
2303
			}
5354 serge 2304
 
6084 serge 2305
			if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2306
				hsw_pipe_crc_irq_handler(dev, pipe);
4560 Serge 2307
 
5354 serge 2308
			if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2309
				intel_cpu_fifo_underrun_irq_handler(dev_priv,
2310
								    pipe);
4560 Serge 2311
 
5354 serge 2312
 
6084 serge 2313
			if (INTEL_INFO(dev_priv)->gen >= 9)
5354 serge 2314
				fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2315
			else
2316
				fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2317
 
2318
			if (fault_errors)
6084 serge 2319
				DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2320
					  pipe_name(pipe),
2321
					  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
4560 Serge 2322
		} else
2323
			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2324
	}
2325
 
6084 serge 2326
	if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2327
	    master_ctl & GEN8_DE_PCH_IRQ) {
4560 Serge 2328
		/*
2329
		 * FIXME(BDW): Assume for now that the new interrupt handling
2330
		 * scheme also closed the SDE interrupt handling race we've seen
2331
		 * on older pch-split platforms. But this needs testing.
2332
		 */
2333
		u32 pch_iir = I915_READ(SDEIIR);
2334
		if (pch_iir) {
2335
			I915_WRITE(SDEIIR, pch_iir);
2336
			ret = IRQ_HANDLED;
6084 serge 2337
 
2338
			if (HAS_PCH_SPT(dev_priv))
2339
				spt_irq_handler(dev, pch_iir);
2340
			else
2341
				cpt_irq_handler(dev, pch_iir);
6320 serge 2342
		} else {
2343
			/*
2344
			 * Like on previous PCH there seems to be something
2345
			 * fishy going on with forwarding PCH interrupts.
2346
			 */
2347
			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2348
		}
4560 Serge 2349
	}
2350
 
6084 serge 2351
	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2352
	POSTING_READ_FW(GEN8_MASTER_IRQ);
4560 Serge 2353
 
2354
	return ret;
2355
}
2356
 
4104 Serge 2357
static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2358
			       bool reset_completed)
3746 Serge 2359
{
5060 serge 2360
	struct intel_engine_cs *ring;
4104 Serge 2361
	int i;
3031 serge 2362
 
4104 Serge 2363
	/*
2364
	 * Notify all waiters for GPU completion events that reset state has
2365
	 * been changed, and that they need to restart their wait after
2366
	 * checking for potential errors (and bail out to drop locks if there is
2367
	 * a gpu reset pending so that i915_error_work_func can acquire them).
2368
	 */
3031 serge 2369
 
4104 Serge 2370
	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2371
	for_each_ring(ring, dev_priv, i)
2372
		wake_up_all(&ring->irq_queue);
3031 serge 2373
 
6320 serge 2374
	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2375
	wake_up_all(&dev_priv->pending_flip_queue);
3031 serge 2376
 
4104 Serge 2377
	/*
2378
	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2379
	 * reset state is cleared.
2380
	 */
2381
	if (reset_completed)
2382
		wake_up_all(&dev_priv->gpu_error.reset_queue);
3031 serge 2383
}
2384
 
2385
/**
6084 serge 2386
 * i915_reset_and_wakeup - do process context error handling work
2387
 * @dev: drm device
3031 serge 2388
 *
4104 Serge 2389
 * Fire an error uevent so userspace can see that a hang or error
2390
 * was detected.
3031 serge 2391
 */
6084 serge 2392
static void i915_reset_and_wakeup(struct drm_device *dev)
3031 serge 2393
{
6084 serge 2394
	struct drm_i915_private *dev_priv = to_i915(dev);
2395
	struct i915_gpu_error *error = &dev_priv->gpu_error;
4104 Serge 2396
	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2397
	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2398
	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2399
	int ret;
3031 serge 2400
 
4104 Serge 2401
	/*
2402
	 * Note that there's only one work item which does gpu resets, so we
2403
	 * need not worry about concurrent gpu resets potentially incrementing
2404
	 * error->reset_counter twice. We only need to take care of another
2405
	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2406
	 * quick check for that is good enough: schedule_work ensures the
2407
	 * correct ordering between hang detection and this work item, and since
2408
	 * the reset in-progress bit is only ever set by code outside of this
2409
	 * work we don't need to worry about any other races.
2410
	 */
2411
	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2412
		DRM_DEBUG_DRIVER("resetting chip\n");
6084 serge 2413
		intel_runtime_pm_get(dev_priv);
3031 serge 2414
 
4104 Serge 2415
		/*
2416
		 * All state reset _must_ be completed before we update the
2417
		 * reset counter, for otherwise waiters might miss the reset
2418
		 * pending state and not properly drop locks, resulting in
2419
		 * deadlocks with the reset work.
2420
		 */
4560 Serge 2421
//		ret = i915_reset(dev);
3031 serge 2422
 
6084 serge 2423
//		intel_finish_reset(dev);
3031 serge 2424
 
6084 serge 2425
		intel_runtime_pm_put(dev_priv);
2426
 
4104 Serge 2427
		if (ret == 0) {
2428
			/*
2429
			 * After all the gem state is reset, increment the reset
2430
			 * counter and wake up everyone waiting for the reset to
2431
			 * complete.
2432
			 *
2433
			 * Since unlock operations are a one-sided barrier only,
2434
			 * we need to insert a barrier here to order any seqno
2435
			 * updates before
2436
			 * the counter increment.
2437
			 */
6084 serge 2438
			smp_mb__before_atomic();
4104 Serge 2439
			atomic_inc(&dev_priv->gpu_error.reset_counter);
3031 serge 2440
 
4104 Serge 2441
		} else {
6088 serge 2442
			atomic_or(I915_WEDGED, &error->reset_counter);
2443
		}
3031 serge 2444
 
4104 Serge 2445
		/*
2446
		 * Note: The wake_up also serves as a memory barrier so that
2447
		 * waiters see the update value of the reset counter atomic_t.
2448
		 */
2449
		i915_error_wake_up(dev_priv, true);
3031 serge 2450
	}
2451
}
2452
 
2453
static void i915_report_and_clear_eir(struct drm_device *dev)
2454
{
2455
	struct drm_i915_private *dev_priv = dev->dev_private;
2456
	uint32_t instdone[I915_NUM_INSTDONE_REG];
2457
	u32 eir = I915_READ(EIR);
2458
	int pipe, i;
2459
 
2460
	if (!eir)
2461
		return;
2462
 
2463
	pr_err("render error detected, EIR: 0x%08x\n", eir);
2464
 
2465
	i915_get_extra_instdone(dev, instdone);
2466
 
2467
	if (IS_G4X(dev)) {
2468
		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2469
			u32 ipeir = I915_READ(IPEIR_I965);
2470
 
2471
			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2472
			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2473
			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2474
				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2475
			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2476
			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2477
			I915_WRITE(IPEIR_I965, ipeir);
2478
			POSTING_READ(IPEIR_I965);
2479
		}
2480
		if (eir & GM45_ERROR_PAGE_TABLE) {
2481
			u32 pgtbl_err = I915_READ(PGTBL_ER);
2482
			pr_err("page table error\n");
2483
			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2484
			I915_WRITE(PGTBL_ER, pgtbl_err);
2485
			POSTING_READ(PGTBL_ER);
2486
		}
2487
	}
2488
 
2489
	if (!IS_GEN2(dev)) {
2490
		if (eir & I915_ERROR_PAGE_TABLE) {
2491
			u32 pgtbl_err = I915_READ(PGTBL_ER);
2492
			pr_err("page table error\n");
2493
			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2494
			I915_WRITE(PGTBL_ER, pgtbl_err);
2495
			POSTING_READ(PGTBL_ER);
2496
		}
2497
	}
2498
 
2499
	if (eir & I915_ERROR_MEMORY_REFRESH) {
2500
		pr_err("memory refresh error:\n");
5354 serge 2501
		for_each_pipe(dev_priv, pipe)
3031 serge 2502
			pr_err("pipe %c stat: 0x%08x\n",
2503
			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2504
		/* pipestat has already been acked */
2505
	}
2506
	if (eir & I915_ERROR_INSTRUCTION) {
2507
		pr_err("instruction error\n");
2508
		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2509
		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2510
			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2511
		if (INTEL_INFO(dev)->gen < 4) {
2512
			u32 ipeir = I915_READ(IPEIR);
2513
 
2514
			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2515
			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2516
			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2517
			I915_WRITE(IPEIR, ipeir);
2518
			POSTING_READ(IPEIR);
2519
		} else {
2520
			u32 ipeir = I915_READ(IPEIR_I965);
2521
 
2522
			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2523
			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2524
			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2525
			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2526
			I915_WRITE(IPEIR_I965, ipeir);
2527
			POSTING_READ(IPEIR_I965);
2528
		}
2529
	}
2530
 
2531
	I915_WRITE(EIR, eir);
2532
	POSTING_READ(EIR);
2533
	eir = I915_READ(EIR);
2534
	if (eir) {
2535
		/*
2536
		 * some errors might have become stuck,
2537
		 * mask them.
2538
		 */
2539
		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2540
		I915_WRITE(EMR, I915_READ(EMR) | eir);
2541
		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2542
	}
2543
}
2544
 
2545
/**
6084 serge 2546
 * i915_handle_error - handle a gpu error
3031 serge 2547
 * @dev: drm device
2548
 *
6084 serge 2549
 * Do some basic checking of register state at error time and
3031 serge 2550
 * dump it to the syslog.  Also call i915_capture_error_state() to make
2551
 * sure we get a record and make it available in debugfs.  Fire a uevent
2552
 * so userspace knows something bad happened (should trigger collection
2553
 * of a ring dump etc.).
2554
 */
5060 serge 2555
void i915_handle_error(struct drm_device *dev, bool wedged,
2556
		       const char *fmt, ...)
3031 serge 2557
{
2558
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 2559
	va_list args;
2560
	char error_msg[80];
3031 serge 2561
 
5060 serge 2562
	va_start(args, fmt);
2563
	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2564
	va_end(args);
2565
 
4560 Serge 2566
//	i915_capture_error_state(dev);
3031 serge 2567
	i915_report_and_clear_eir(dev);
2568
 
2569
	if (wedged) {
6084 serge 2570
		atomic_or(I915_RESET_IN_PROGRESS_FLAG,
3480 Serge 2571
				&dev_priv->gpu_error.reset_counter);
3031 serge 2572
 
2573
		/*
6084 serge 2574
		 * Wakeup waiting processes so that the reset function
2575
		 * i915_reset_and_wakeup doesn't deadlock trying to grab
2576
		 * various locks. By bumping the reset counter first, the woken
4104 Serge 2577
		 * processes will see a reset in progress and back off,
2578
		 * releasing their locks and then wait for the reset completion.
2579
		 * We must do this for _all_ gpu waiters that might hold locks
2580
		 * that the reset work needs to acquire.
2581
		 *
2582
		 * Note: The wake_up serves as the required memory barrier to
2583
		 * ensure that the waiters see the updated value of the reset
2584
		 * counter atomic_t.
3031 serge 2585
		 */
4104 Serge 2586
		i915_error_wake_up(dev_priv, false);
3031 serge 2587
	}
2588
 
6084 serge 2589
	i915_reset_and_wakeup(dev);
3031 serge 2590
}
2591
 
2592
/* Called from drm generic code, passed 'crtc' which
2593
 * we use as a pipe index
2594
 */
6084 serge 2595
static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2596
{
5060 serge 2597
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2598
	unsigned long irqflags;
2599
 
2600
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2601
	if (INTEL_INFO(dev)->gen >= 4)
2602
		i915_enable_pipestat(dev_priv, pipe,
5060 serge 2603
				     PIPE_START_VBLANK_INTERRUPT_STATUS);
3031 serge 2604
	else
2605
		i915_enable_pipestat(dev_priv, pipe,
5060 serge 2606
				     PIPE_VBLANK_INTERRUPT_STATUS);
3031 serge 2607
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2608
 
2609
	return 0;
2610
}
2611
 
6084 serge 2612
static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2613
{
5060 serge 2614
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2615
	unsigned long irqflags;
4104 Serge 2616
	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
4560 Serge 2617
						     DE_PIPE_VBLANK(pipe);
3031 serge 2618
 
2619
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4104 Serge 2620
	ironlake_enable_display_irq(dev_priv, bit);
3031 serge 2621
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2622
 
2623
	return 0;
2624
}
2625
 
6084 serge 2626
static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2627
{
5060 serge 2628
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2629
	unsigned long irqflags;
2630
 
2631
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2632
	i915_enable_pipestat(dev_priv, pipe,
5060 serge 2633
			     PIPE_START_VBLANK_INTERRUPT_STATUS);
3031 serge 2634
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2635
 
2636
	return 0;
2637
}
2638
 
6084 serge 2639
static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
4560 Serge 2640
{
2641
	struct drm_i915_private *dev_priv = dev->dev_private;
2642
	unsigned long irqflags;
2643
 
2644
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2645
	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2646
	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2647
	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2648
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2649
	return 0;
2650
}
2651
 
3031 serge 2652
/* Called from drm generic code, passed 'crtc' which
2653
 * we use as a pipe index
2654
 */
6084 serge 2655
static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2656
{
5060 serge 2657
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2658
	unsigned long irqflags;
2659
 
2660
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2661
	i915_disable_pipestat(dev_priv, pipe,
5060 serge 2662
			      PIPE_VBLANK_INTERRUPT_STATUS |
2663
			      PIPE_START_VBLANK_INTERRUPT_STATUS);
3031 serge 2664
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2665
}
2666
 
6084 serge 2667
static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2668
{
5060 serge 2669
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2670
	unsigned long irqflags;
4104 Serge 2671
	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
4560 Serge 2672
						     DE_PIPE_VBLANK(pipe);
3031 serge 2673
 
2674
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4104 Serge 2675
	ironlake_disable_display_irq(dev_priv, bit);
3031 serge 2676
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2677
}
2678
 
6084 serge 2679
static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2680
{
5060 serge 2681
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2682
	unsigned long irqflags;
2683
 
2684
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2685
	i915_disable_pipestat(dev_priv, pipe,
5060 serge 2686
			      PIPE_START_VBLANK_INTERRUPT_STATUS);
3031 serge 2687
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2688
}
2689
 
6084 serge 2690
static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
4560 Serge 2691
{
2692
	struct drm_i915_private *dev_priv = dev->dev_private;
2693
	unsigned long irqflags;
2694
 
2695
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2696
	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2697
	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2698
	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2699
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2700
}
2701
 
4104 Serge 2702
static bool
5060 serge 2703
ring_idle(struct intel_engine_cs *ring, u32 seqno)
2351 Serge 2704
{
4104 Serge 2705
	return (list_empty(&ring->request_list) ||
6084 serge 2706
		i915_seqno_passed(seqno, ring->last_submitted_seqno));
4104 Serge 2707
}
2351 Serge 2708
 
5060 serge 2709
static bool
2710
ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
4104 Serge 2711
{
5060 serge 2712
	if (INTEL_INFO(dev)->gen >= 8) {
2713
		return (ipehr >> 23) == 0x1c;
2714
	} else {
2715
		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2716
		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2717
				 MI_SEMAPHORE_REGISTER);
2718
	}
2719
}
2720
 
2721
static struct intel_engine_cs *
2722
semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2723
{
4104 Serge 2724
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
5060 serge 2725
	struct intel_engine_cs *signaller;
2726
	int i;
2351 Serge 2727
 
5060 serge 2728
	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2729
		for_each_ring(signaller, dev_priv, i) {
2730
			if (ring == signaller)
2731
				continue;
2732
 
2733
			if (offset == signaller->semaphore.signal_ggtt[ring->id])
2734
				return signaller;
2735
		}
2736
	} else {
2737
		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2738
 
2739
		for_each_ring(signaller, dev_priv, i) {
2740
			if(ring == signaller)
2741
				continue;
2742
 
2743
			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2744
				return signaller;
2745
		}
2746
	}
2747
 
2748
	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2749
		  ring->id, ipehr, offset);
2750
 
2751
	return NULL;
2752
}
2753
 
2754
static struct intel_engine_cs *
2755
semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2756
{
2757
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2758
	u32 cmd, ipehr, head;
2759
	u64 offset = 0;
2760
	int i, backwards;
2761
 
6084 serge 2762
	/*
2763
	 * This function does not support execlist mode - any attempt to
2764
	 * proceed further into this function will result in a kernel panic
2765
	 * when dereferencing ring->buffer, which is not set up in execlist
2766
	 * mode.
2767
	 *
2768
	 * The correct way of doing it would be to derive the currently
2769
	 * executing ring buffer from the current context, which is derived
2770
	 * from the currently running request. Unfortunately, to get the
2771
	 * current request we would have to grab the struct_mutex before doing
2772
	 * anything else, which would be ill-advised since some other thread
2773
	 * might have grabbed it already and managed to hang itself, causing
2774
	 * the hang checker to deadlock.
2775
	 *
2776
	 * Therefore, this function does not support execlist mode in its
2777
	 * current form. Just return NULL and move on.
2778
	 */
2779
	if (ring->buffer == NULL)
2780
		return NULL;
2781
 
4104 Serge 2782
	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
5060 serge 2783
	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
4104 Serge 2784
		return NULL;
2351 Serge 2785
 
5060 serge 2786
	/*
2787
	 * HEAD is likely pointing to the dword after the actual command,
2788
	 * so scan backwards until we find the MBOX. But limit it to just 3
2789
	 * or 4 dwords depending on the semaphore wait command size.
2790
	 * Note that we don't care about ACTHD here since that might
2791
	 * point at at batch, and semaphores are always emitted into the
2792
	 * ringbuffer itself.
4104 Serge 2793
	 */
5060 serge 2794
	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2795
	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2796
 
2797
	for (i = backwards; i; --i) {
2798
		/*
2799
		 * Be paranoid and presume the hw has gone off into the wild -
2800
		 * our ring is smaller than what the hardware (and hence
2801
		 * HEAD_ADDR) allows. Also handles wrap-around.
2802
		 */
2803
		head &= ring->buffer->size - 1;
2804
 
2805
		/* This here seems to blow up */
2806
		cmd = ioread32(ring->buffer->virtual_start + head);
4104 Serge 2807
		if (cmd == ipehr)
2808
			break;
2351 Serge 2809
 
5060 serge 2810
		head -= 4;
2811
	}
2812
 
2813
	if (!i)
6084 serge 2814
		return NULL;
2351 Serge 2815
 
5060 serge 2816
	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2817
	if (INTEL_INFO(ring->dev)->gen >= 8) {
2818
		offset = ioread32(ring->buffer->virtual_start + head + 12);
2819
		offset <<= 32;
2820
		offset = ioread32(ring->buffer->virtual_start + head + 8);
2821
	}
2822
	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
4104 Serge 2823
}
2351 Serge 2824
 
5060 serge 2825
static int semaphore_passed(struct intel_engine_cs *ring)
4104 Serge 2826
{
2827
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
5060 serge 2828
	struct intel_engine_cs *signaller;
2829
	u32 seqno;
4104 Serge 2830
 
5060 serge 2831
	ring->hangcheck.deadlock++;
4104 Serge 2832
 
2833
	signaller = semaphore_waits_for(ring, &seqno);
5060 serge 2834
	if (signaller == NULL)
4104 Serge 2835
		return -1;
2836
 
5060 serge 2837
	/* Prevent pathological recursion due to driver bugs */
2838
	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2839
		return -1;
2840
 
2841
	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2842
		return 1;
2843
 
4104 Serge 2844
	/* cursory check for an unkickable deadlock */
5060 serge 2845
	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2846
	    semaphore_passed(signaller) < 0)
4104 Serge 2847
		return -1;
2848
 
5060 serge 2849
	return 0;
4104 Serge 2850
}
2851
 
2852
static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2853
{
5060 serge 2854
	struct intel_engine_cs *ring;
4104 Serge 2855
	int i;
2856
 
2857
	for_each_ring(ring, dev_priv, i)
5060 serge 2858
		ring->hangcheck.deadlock = 0;
4104 Serge 2859
}
2860
 
2861
static enum intel_ring_hangcheck_action
5060 serge 2862
ring_stuck(struct intel_engine_cs *ring, u64 acthd)
4104 Serge 2863
{
2864
	struct drm_device *dev = ring->dev;
2865
	struct drm_i915_private *dev_priv = dev->dev_private;
2866
	u32 tmp;
2867
 
5060 serge 2868
	if (acthd != ring->hangcheck.acthd) {
2869
		if (acthd > ring->hangcheck.max_acthd) {
2870
			ring->hangcheck.max_acthd = acthd;
6084 serge 2871
			return HANGCHECK_ACTIVE;
5060 serge 2872
		}
4104 Serge 2873
 
5060 serge 2874
		return HANGCHECK_ACTIVE_LOOP;
2875
	}
2876
 
4104 Serge 2877
	if (IS_GEN2(dev))
2878
		return HANGCHECK_HUNG;
2879
 
2880
	/* Is the chip hanging on a WAIT_FOR_EVENT?
2881
	 * If so we can simply poke the RB_WAIT bit
2882
	 * and break the hang. This should work on
2883
	 * all but the second generation chipsets.
2884
	 */
2885
	tmp = I915_READ_CTL(ring);
2886
	if (tmp & RING_WAIT) {
5060 serge 2887
		i915_handle_error(dev, false,
2888
				  "Kicking stuck wait on %s",
6084 serge 2889
				  ring->name);
4104 Serge 2890
		I915_WRITE_CTL(ring, tmp);
2891
		return HANGCHECK_KICK;
2892
	}
2893
 
2894
	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2895
		switch (semaphore_passed(ring)) {
2896
		default:
2897
			return HANGCHECK_HUNG;
2898
		case 1:
5060 serge 2899
			i915_handle_error(dev, false,
2900
					  "Kicking stuck semaphore on %s",
6084 serge 2901
					  ring->name);
4104 Serge 2902
			I915_WRITE_CTL(ring, tmp);
2903
			return HANGCHECK_KICK;
2904
		case 0:
2905
			return HANGCHECK_WAIT;
2906
		}
2907
	}
2908
 
2909
	return HANGCHECK_HUNG;
2910
}
2911
 
6084 serge 2912
/*
4104 Serge 2913
 * This is called when the chip hasn't reported back with completed
2914
 * batchbuffers in a long time. We keep track per ring seqno progress and
2915
 * if there are no progress, hangcheck score for that ring is increased.
2916
 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2917
 * we kick the ring. If we see no progress on three subsequent calls
2918
 * we assume chip is wedged and try to fix it by resetting the chip.
2919
 */
6084 serge 2920
static void i915_hangcheck_elapsed(struct work_struct *work)
4104 Serge 2921
{
6084 serge 2922
	struct drm_i915_private *dev_priv =
2923
		container_of(work, typeof(*dev_priv),
2924
			     gpu_error.hangcheck_work.work);
2925
	struct drm_device *dev = dev_priv->dev;
5060 serge 2926
	struct intel_engine_cs *ring;
4104 Serge 2927
	int i;
2928
	int busy_count = 0, rings_hung = 0;
2929
	bool stuck[I915_NUM_RINGS] = { 0 };
2930
#define BUSY 1
2931
#define KICK 5
2932
#define HUNG 20
2933
 
5060 serge 2934
	if (!i915.enable_hangcheck)
4104 Serge 2935
		return;
2936
 
2937
	for_each_ring(ring, dev_priv, i) {
5060 serge 2938
		u64 acthd;
2939
		u32 seqno;
4104 Serge 2940
		bool busy = true;
2941
 
2942
		semaphore_clear_deadlocks(dev_priv);
2943
 
2944
		seqno = ring->get_seqno(ring, false);
2945
		acthd = intel_ring_get_active_head(ring);
2946
 
2947
		if (ring->hangcheck.seqno == seqno) {
2948
			if (ring_idle(ring, seqno)) {
5060 serge 2949
				ring->hangcheck.action = HANGCHECK_IDLE;
2950
 
6084 serge 2951
				if (waitqueue_active(&ring->irq_queue)) {
4104 Serge 2952
					/* Issue a wake-up to catch stuck h/w. */
6084 serge 2953
					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2954
						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2955
							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2956
								  ring->name);
2957
						else
2958
							DRM_INFO("Fake missed irq on %s\n",
2959
								 ring->name);
2960
						wake_up_all(&ring->irq_queue);
2961
					}
2962
					/* Safeguard against driver failure */
2963
					ring->hangcheck.score += BUSY;
2964
				} else
4104 Serge 2965
					busy = false;
2966
			} else {
2967
				/* We always increment the hangcheck score
2968
				 * if the ring is busy and still processing
2969
				 * the same request, so that no single request
2970
				 * can run indefinitely (such as a chain of
2971
				 * batches). The only time we do not increment
2972
				 * the hangcheck score on this ring, if this
2973
				 * ring is in a legitimate wait for another
2974
				 * ring. In that case the waiting ring is a
2975
				 * victim and we want to be sure we catch the
2976
				 * right culprit. Then every time we do kick
2977
				 * the ring, add a small increment to the
2978
				 * score so that we can catch a batch that is
2979
				 * being repeatedly kicked and so responsible
2980
				 * for stalling the machine.
2981
				 */
2982
				ring->hangcheck.action = ring_stuck(ring,
2983
								    acthd);
2984
 
2985
				switch (ring->hangcheck.action) {
4560 Serge 2986
				case HANGCHECK_IDLE:
4104 Serge 2987
				case HANGCHECK_WAIT:
5060 serge 2988
				case HANGCHECK_ACTIVE:
4104 Serge 2989
					break;
5060 serge 2990
				case HANGCHECK_ACTIVE_LOOP:
4104 Serge 2991
					ring->hangcheck.score += BUSY;
2992
					break;
2993
				case HANGCHECK_KICK:
2994
					ring->hangcheck.score += KICK;
2995
					break;
2996
				case HANGCHECK_HUNG:
2997
					ring->hangcheck.score += HUNG;
2998
					stuck[i] = true;
2999
					break;
3000
				}
3001
			}
3002
		} else {
4560 Serge 3003
			ring->hangcheck.action = HANGCHECK_ACTIVE;
3004
 
4104 Serge 3005
			/* Gradually reduce the count so that we catch DoS
3006
			 * attempts across multiple batches.
3007
			 */
3008
			if (ring->hangcheck.score > 0)
3009
				ring->hangcheck.score--;
5060 serge 3010
 
3011
			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
4104 Serge 3012
		}
3013
 
3014
		ring->hangcheck.seqno = seqno;
3015
		ring->hangcheck.acthd = acthd;
3016
		busy_count += busy;
3017
	}
3018
 
3019
	for_each_ring(ring, dev_priv, i) {
5060 serge 3020
		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
4104 Serge 3021
			DRM_INFO("%s on %s\n",
6084 serge 3022
				 stuck[i] ? "stuck" : "no progress",
3023
				 ring->name);
4104 Serge 3024
			rings_hung++;
3025
		}
3026
	}
3027
 
3028
//   if (rings_hung)
3029
//       return i915_handle_error(dev, true);
3030
 
3031
}
6088 serge 3032
 
5060 serge 3033
static void ibx_irq_reset(struct drm_device *dev)
3034
{
3035
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 3036
 
5060 serge 3037
	if (HAS_PCH_NOP(dev))
3038
		return;
3039
 
3040
	GEN5_IRQ_RESET(SDE);
3041
 
3042
	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3043
		I915_WRITE(SERR_INT, 0xffffffff);
3044
}
3045
 
3046
/*
3047
 * SDEIER is also touched by the interrupt handler to work around missed PCH
3048
 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3049
 * instead we unconditionally enable all PCH interrupt sources here, but then
3050
 * only unmask them as needed with SDEIMR.
3051
 *
3052
 * This function needs to be called before interrupts are enabled.
3053
 */
3054
static void ibx_irq_pre_postinstall(struct drm_device *dev)
4104 Serge 3055
{
3056
	struct drm_i915_private *dev_priv = dev->dev_private;
3057
 
3746 Serge 3058
	if (HAS_PCH_NOP(dev))
3059
		return;
3060
 
5060 serge 3061
	WARN_ON(I915_READ(SDEIER) != 0);
3746 Serge 3062
	I915_WRITE(SDEIER, 0xffffffff);
4104 Serge 3063
	POSTING_READ(SDEIER);
2351 Serge 3064
}
3065
 
5060 serge 3066
static void gen5_gt_irq_reset(struct drm_device *dev)
4104 Serge 3067
{
3068
	struct drm_i915_private *dev_priv = dev->dev_private;
3069
 
5060 serge 3070
	GEN5_IRQ_RESET(GT);
3071
	if (INTEL_INFO(dev)->gen >= 6)
3072
		GEN5_IRQ_RESET(GEN6_PM);
4104 Serge 3073
}
3074
 
3075
/* drm_dma.h hooks
3076
*/
5060 serge 3077
static void ironlake_irq_reset(struct drm_device *dev)
4104 Serge 3078
{
5060 serge 3079
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 3080
 
5060 serge 3081
	I915_WRITE(HWSTAM, 0xffffffff);
4104 Serge 3082
 
5060 serge 3083
	GEN5_IRQ_RESET(DE);
3084
	if (IS_GEN7(dev))
3085
		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
4104 Serge 3086
 
5060 serge 3087
	gen5_gt_irq_reset(dev);
4104 Serge 3088
 
5060 serge 3089
	ibx_irq_reset(dev);
4104 Serge 3090
}
3091
 
5354 serge 3092
static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3093
{
3094
	enum pipe pipe;
3095
 
6084 serge 3096
	i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
5354 serge 3097
	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3098
 
3099
	for_each_pipe(dev_priv, pipe)
3100
		I915_WRITE(PIPESTAT(pipe), 0xffff);
3101
 
3102
	GEN5_IRQ_RESET(VLV_);
3103
}
3104
 
3031 serge 3105
static void valleyview_irq_preinstall(struct drm_device *dev)
3106
{
5060 serge 3107
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3108
 
3109
	/* VLV magic */
3110
	I915_WRITE(VLV_IMR, 0);
3111
	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3112
	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3113
	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3114
 
5060 serge 3115
	gen5_gt_irq_reset(dev);
4104 Serge 3116
 
5354 serge 3117
	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3031 serge 3118
 
5354 serge 3119
	vlv_display_irq_reset(dev_priv);
3031 serge 3120
}
3121
 
5060 serge 3122
static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
4560 Serge 3123
{
5060 serge 3124
	GEN8_IRQ_RESET_NDX(GT, 0);
3125
	GEN8_IRQ_RESET_NDX(GT, 1);
3126
	GEN8_IRQ_RESET_NDX(GT, 2);
3127
	GEN8_IRQ_RESET_NDX(GT, 3);
3128
}
3129
 
3130
static void gen8_irq_reset(struct drm_device *dev)
3131
{
4560 Serge 3132
	struct drm_i915_private *dev_priv = dev->dev_private;
3133
	int pipe;
3134
 
3135
	I915_WRITE(GEN8_MASTER_IRQ, 0);
3136
	POSTING_READ(GEN8_MASTER_IRQ);
3137
 
5060 serge 3138
	gen8_gt_irq_reset(dev_priv);
4560 Serge 3139
 
5354 serge 3140
	for_each_pipe(dev_priv, pipe)
3141
		if (intel_display_power_is_enabled(dev_priv,
6084 serge 3142
						   POWER_DOMAIN_PIPE(pipe)))
3143
			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
4560 Serge 3144
 
5060 serge 3145
	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3146
	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3147
	GEN5_IRQ_RESET(GEN8_PCU_);
4560 Serge 3148
 
6084 serge 3149
	if (HAS_PCH_SPLIT(dev))
3150
		ibx_irq_reset(dev);
5060 serge 3151
}
4560 Serge 3152
 
6084 serge 3153
void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3154
				     unsigned int pipe_mask)
5060 serge 3155
{
5354 serge 3156
	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
4560 Serge 3157
 
5354 serge 3158
	spin_lock_irq(&dev_priv->irq_lock);
6084 serge 3159
	if (pipe_mask & 1 << PIPE_A)
3160
		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3161
				  dev_priv->de_irq_mask[PIPE_A],
3162
				  ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3163
	if (pipe_mask & 1 << PIPE_B)
3164
		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3165
				  dev_priv->de_irq_mask[PIPE_B],
3166
				  ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3167
	if (pipe_mask & 1 << PIPE_C)
3168
		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3169
				  dev_priv->de_irq_mask[PIPE_C],
3170
				  ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
5354 serge 3171
	spin_unlock_irq(&dev_priv->irq_lock);
5060 serge 3172
}
3173
 
3174
static void cherryview_irq_preinstall(struct drm_device *dev)
3175
{
3176
	struct drm_i915_private *dev_priv = dev->dev_private;
3177
 
3178
	I915_WRITE(GEN8_MASTER_IRQ, 0);
3179
	POSTING_READ(GEN8_MASTER_IRQ);
3180
 
3181
	gen8_gt_irq_reset(dev_priv);
3182
 
3183
	GEN5_IRQ_RESET(GEN8_PCU_);
3184
 
3185
	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3186
 
5354 serge 3187
	vlv_display_irq_reset(dev_priv);
4560 Serge 3188
}
3189
 
6084 serge 3190
static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3191
				  const u32 hpd[HPD_NUM_PINS])
3192
{
3193
	struct drm_i915_private *dev_priv = to_i915(dev);
3194
	struct intel_encoder *encoder;
3195
	u32 enabled_irqs = 0;
3196
 
3197
	for_each_intel_encoder(dev, encoder)
3198
		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3199
			enabled_irqs |= hpd[encoder->hpd_pin];
3200
 
3201
	return enabled_irqs;
3202
}
3203
 
3746 Serge 3204
static void ibx_hpd_irq_setup(struct drm_device *dev)
3205
{
5060 serge 3206
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 3207
	u32 hotplug_irqs, hotplug, enabled_irqs;
3746 Serge 3208
 
3209
	if (HAS_PCH_IBX(dev)) {
4104 Serge 3210
		hotplug_irqs = SDE_HOTPLUG_MASK;
6084 serge 3211
		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3746 Serge 3212
	} else {
4104 Serge 3213
		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
6084 serge 3214
		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3746 Serge 3215
	}
3216
 
4104 Serge 3217
	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3746 Serge 3218
 
3219
	/*
6084 serge 3220
	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3221
	 * duration to 2ms (which is the minimum in the Display Port spec).
3222
	 * The pulse duration bits are reserved on LPT+.
3223
	 */
2351 Serge 3224
	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3225
	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3226
	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3227
	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3228
	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
6084 serge 3229
	/*
3230
	 * When CPU and PCH are on the same package, port A
3231
	 * HPD must be enabled in both north and south.
3232
	 */
3233
	if (HAS_PCH_LPT_LP(dev))
3234
		hotplug |= PORTA_HOTPLUG_ENABLE;
2351 Serge 3235
	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3236
}
3237
 
6084 serge 3238
static void spt_hpd_irq_setup(struct drm_device *dev)
3239
{
3240
	struct drm_i915_private *dev_priv = dev->dev_private;
3241
	u32 hotplug_irqs, hotplug, enabled_irqs;
3242
 
3243
	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3244
	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3245
 
3246
	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3247
 
3248
	/* Enable digital hotplug on the PCH */
3249
	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3250
	hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3251
		PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3252
	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3253
 
3254
	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3255
	hotplug |= PORTE_HOTPLUG_ENABLE;
3256
	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3257
}
3258
 
3259
static void ilk_hpd_irq_setup(struct drm_device *dev)
3260
{
3261
	struct drm_i915_private *dev_priv = dev->dev_private;
3262
	u32 hotplug_irqs, hotplug, enabled_irqs;
3263
 
3264
	if (INTEL_INFO(dev)->gen >= 8) {
3265
		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3266
		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3267
 
3268
		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3269
	} else if (INTEL_INFO(dev)->gen >= 7) {
3270
		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3271
		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3272
 
3273
		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3274
	} else {
3275
		hotplug_irqs = DE_DP_A_HOTPLUG;
3276
		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3277
 
3278
		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3279
	}
3280
 
3281
	/*
3282
	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3283
	 * duration to 2ms (which is the minimum in the Display Port spec)
3284
	 * The pulse duration bits are reserved on HSW+.
3285
	 */
3286
	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3287
	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3288
	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3289
	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3290
 
3291
	ibx_hpd_irq_setup(dev);
3292
}
3293
 
3294
static void bxt_hpd_irq_setup(struct drm_device *dev)
3295
{
3296
	struct drm_i915_private *dev_priv = dev->dev_private;
3297
	u32 hotplug_irqs, hotplug, enabled_irqs;
3298
 
3299
	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3300
	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3301
 
3302
	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3303
 
3304
	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3305
	hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3306
		PORTA_HOTPLUG_ENABLE;
3307
	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3308
}
3309
 
3480 Serge 3310
static void ibx_irq_postinstall(struct drm_device *dev)
3311
{
5060 serge 3312
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 3313
	u32 mask;
3314
 
3746 Serge 3315
	if (HAS_PCH_NOP(dev))
3316
		return;
3317
 
5060 serge 3318
	if (HAS_PCH_IBX(dev))
3319
		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3320
	else
3321
		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
4104 Serge 3322
 
6084 serge 3323
	gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3480 Serge 3324
	I915_WRITE(SDEIMR, ~mask);
3325
}
3326
 
4104 Serge 3327
static void gen5_gt_irq_postinstall(struct drm_device *dev)
2351 Serge 3328
{
4104 Serge 3329
	struct drm_i915_private *dev_priv = dev->dev_private;
3330
	u32 pm_irqs, gt_irqs;
2351 Serge 3331
 
4104 Serge 3332
	pm_irqs = gt_irqs = 0;
2351 Serge 3333
 
3334
	dev_priv->gt_irq_mask = ~0;
4560 Serge 3335
	if (HAS_L3_DPF(dev)) {
4104 Serge 3336
		/* L3 parity interrupt is always unmasked. */
4560 Serge 3337
		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3338
		gt_irqs |= GT_PARITY_ERROR(dev);
4104 Serge 3339
	}
2351 Serge 3340
 
4104 Serge 3341
	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3342
	if (IS_GEN5(dev)) {
3343
		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3344
			   ILK_BSD_USER_INTERRUPT;
3345
	} else {
3346
		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3347
	}
2351 Serge 3348
 
5060 serge 3349
	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
2351 Serge 3350
 
4104 Serge 3351
	if (INTEL_INFO(dev)->gen >= 6) {
5354 serge 3352
		/*
3353
		 * RPS interrupts will get enabled/disabled on demand when RPS
3354
		 * itself is enabled/disabled.
3355
		 */
4104 Serge 3356
		if (HAS_VEBOX(dev))
3357
			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3358
 
3359
		dev_priv->pm_irq_mask = 0xffffffff;
5060 serge 3360
		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
6084 serge 3361
	}
2351 Serge 3362
}
3363
 
4104 Serge 3364
static int ironlake_irq_postinstall(struct drm_device *dev)
3031 serge 3365
{
5060 serge 3366
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 3367
	u32 display_mask, extra_mask;
3368
 
3369
	if (INTEL_INFO(dev)->gen >= 7) {
3370
		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3371
				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
6084 serge 3372
				DE_PLANEB_FLIP_DONE_IVB |
5060 serge 3373
				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
4104 Serge 3374
		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
6084 serge 3375
			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3376
			      DE_DP_A_HOTPLUG_IVB);
4104 Serge 3377
	} else {
3378
		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3379
				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
4560 Serge 3380
				DE_AUX_CHANNEL_A |
3381
				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3382
				DE_POISON);
6084 serge 3383
		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3384
			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3385
			      DE_DP_A_HOTPLUG);
4104 Serge 3386
	}
3387
 
3031 serge 3388
	dev_priv->irq_mask = ~display_mask;
3389
 
5060 serge 3390
	I915_WRITE(HWSTAM, 0xeffe);
3031 serge 3391
 
5060 serge 3392
	ibx_irq_pre_postinstall(dev);
3393
 
3394
	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3395
 
4104 Serge 3396
	gen5_gt_irq_postinstall(dev);
3031 serge 3397
 
4104 Serge 3398
	ibx_irq_postinstall(dev);
3031 serge 3399
 
4104 Serge 3400
	if (IS_IRONLAKE_M(dev)) {
3401
		/* Enable PCU event interrupts
3402
		 *
3403
		 * spinlocking not required here for correctness since interrupt
3404
		 * setup is guaranteed to run in single-threaded context. But we
3405
		 * need it to make the assert_spin_locked happy. */
5354 serge 3406
		spin_lock_irq(&dev_priv->irq_lock);
4104 Serge 3407
		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
5354 serge 3408
		spin_unlock_irq(&dev_priv->irq_lock);
4104 Serge 3409
	}
3031 serge 3410
 
3411
	return 0;
3412
}
3413
 
5060 serge 3414
static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3415
{
3416
	u32 pipestat_mask;
3417
	u32 iir_mask;
5354 serge 3418
	enum pipe pipe;
5060 serge 3419
 
3420
	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3421
			PIPE_FIFO_UNDERRUN_STATUS;
3422
 
5354 serge 3423
	for_each_pipe(dev_priv, pipe)
3424
		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
5060 serge 3425
	POSTING_READ(PIPESTAT(PIPE_A));
3426
 
3427
	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3428
			PIPE_CRC_DONE_INTERRUPT_STATUS;
3429
 
5354 serge 3430
	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3431
	for_each_pipe(dev_priv, pipe)
3432
		      i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
5060 serge 3433
 
3434
	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3435
		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3436
		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
5354 serge 3437
	if (IS_CHERRYVIEW(dev_priv))
3438
		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
5060 serge 3439
	dev_priv->irq_mask &= ~iir_mask;
3440
 
3441
	I915_WRITE(VLV_IIR, iir_mask);
3442
	I915_WRITE(VLV_IIR, iir_mask);
5354 serge 3443
	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
5060 serge 3444
	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
5354 serge 3445
	POSTING_READ(VLV_IMR);
5060 serge 3446
}
3447
 
3448
static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3449
{
3450
	u32 pipestat_mask;
3451
	u32 iir_mask;
5354 serge 3452
	enum pipe pipe;
5060 serge 3453
 
3454
	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3455
		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3456
		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
5354 serge 3457
	if (IS_CHERRYVIEW(dev_priv))
3458
		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
5060 serge 3459
 
3460
	dev_priv->irq_mask |= iir_mask;
5354 serge 3461
	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
5060 serge 3462
	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3463
	I915_WRITE(VLV_IIR, iir_mask);
3464
	I915_WRITE(VLV_IIR, iir_mask);
3465
	POSTING_READ(VLV_IIR);
3466
 
3467
	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3468
			PIPE_CRC_DONE_INTERRUPT_STATUS;
3469
 
5354 serge 3470
	i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3471
	for_each_pipe(dev_priv, pipe)
3472
		i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
5060 serge 3473
 
3474
	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3475
			PIPE_FIFO_UNDERRUN_STATUS;
5354 serge 3476
 
3477
	for_each_pipe(dev_priv, pipe)
3478
		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
5060 serge 3479
	POSTING_READ(PIPESTAT(PIPE_A));
3480
}
3481
 
3482
void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3483
{
3484
	assert_spin_locked(&dev_priv->irq_lock);
3485
 
3486
	if (dev_priv->display_irqs_enabled)
3487
		return;
3488
 
3489
	dev_priv->display_irqs_enabled = true;
3490
 
5354 serge 3491
	if (intel_irqs_enabled(dev_priv))
5060 serge 3492
		valleyview_display_irqs_install(dev_priv);
3493
}
3494
 
3495
void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3496
{
3497
	assert_spin_locked(&dev_priv->irq_lock);
3498
 
3499
	if (!dev_priv->display_irqs_enabled)
3500
		return;
3501
 
3502
	dev_priv->display_irqs_enabled = false;
3503
 
5354 serge 3504
	if (intel_irqs_enabled(dev_priv))
5060 serge 3505
		valleyview_display_irqs_uninstall(dev_priv);
3506
}
3507
 
5354 serge 3508
static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3031 serge 3509
{
5060 serge 3510
	dev_priv->irq_mask = ~0;
3031 serge 3511
 
6084 serge 3512
	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3480 Serge 3513
	POSTING_READ(PORT_HOTPLUG_EN);
3514
 
5354 serge 3515
	I915_WRITE(VLV_IIR, 0xffffffff);
3516
	I915_WRITE(VLV_IIR, 0xffffffff);
3517
	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3031 serge 3518
	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
5354 serge 3519
	POSTING_READ(VLV_IMR);
3031 serge 3520
 
4104 Serge 3521
	/* Interrupt setup is already guaranteed to be single-threaded, this is
3522
	 * just to make the assert_spin_locked check happy. */
5354 serge 3523
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 3524
	if (dev_priv->display_irqs_enabled)
3525
		valleyview_display_irqs_install(dev_priv);
5354 serge 3526
	spin_unlock_irq(&dev_priv->irq_lock);
3527
}
3031 serge 3528
 
5354 serge 3529
static int valleyview_irq_postinstall(struct drm_device *dev)
3530
{
3531
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3532
 
5354 serge 3533
	vlv_display_irq_postinstall(dev_priv);
3534
 
4104 Serge 3535
	gen5_gt_irq_postinstall(dev);
3243 Serge 3536
 
3031 serge 3537
	/* ack & enable invalid PTE error interrupts */
3538
#if 0 /* FIXME: add support to irq handler for checking these bits */
3539
	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3540
	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3541
#endif
3542
 
3543
	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3480 Serge 3544
 
3545
	return 0;
3546
}
3547
 
4560 Serge 3548
static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3549
{
3550
	/* These are interrupts we'll toggle with the ring mask register */
3551
	uint32_t gt_interrupts[] = {
3552
		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
5354 serge 3553
			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4560 Serge 3554
			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
5354 serge 3555
			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3556
			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
4560 Serge 3557
		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
5354 serge 3558
			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3559
			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3560
			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
4560 Serge 3561
		0,
5354 serge 3562
		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3563
			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
4560 Serge 3564
		};
3565
 
5060 serge 3566
	dev_priv->pm_irq_mask = 0xffffffff;
5354 serge 3567
	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3568
	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3569
	/*
3570
	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3571
	 * is enabled/disabled.
3572
	 */
3573
	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3574
	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
4560 Serge 3575
}
3576
 
3577
static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3578
{
5354 serge 3579
	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3580
	uint32_t de_pipe_enables;
6084 serge 3581
	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3582
	u32 de_port_enables;
3583
	enum pipe pipe;
5354 serge 3584
 
6084 serge 3585
	if (INTEL_INFO(dev_priv)->gen >= 9) {
5354 serge 3586
		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3587
				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
6084 serge 3588
		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3589
				  GEN9_AUX_CHANNEL_D;
3590
		if (IS_BROXTON(dev_priv))
3591
			de_port_masked |= BXT_DE_PORT_GMBUS;
3592
	} else {
5354 serge 3593
		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
6084 serge 3594
				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3595
	}
5354 serge 3596
 
3597
	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
6084 serge 3598
					   GEN8_PIPE_FIFO_UNDERRUN;
5354 serge 3599
 
6084 serge 3600
	de_port_enables = de_port_masked;
3601
	if (IS_BROXTON(dev_priv))
3602
		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3603
	else if (IS_BROADWELL(dev_priv))
3604
		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3605
 
4560 Serge 3606
	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3607
	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3608
	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3609
 
5354 serge 3610
	for_each_pipe(dev_priv, pipe)
3611
		if (intel_display_power_is_enabled(dev_priv,
5060 serge 3612
				POWER_DOMAIN_PIPE(pipe)))
3613
			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3614
					  dev_priv->de_irq_mask[pipe],
6084 serge 3615
					  de_pipe_enables);
4560 Serge 3616
 
6084 serge 3617
	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
4560 Serge 3618
}
3619
 
3620
static int gen8_irq_postinstall(struct drm_device *dev)
3621
{
3622
	struct drm_i915_private *dev_priv = dev->dev_private;
3623
 
6084 serge 3624
	if (HAS_PCH_SPLIT(dev))
3625
		ibx_irq_pre_postinstall(dev);
5060 serge 3626
 
4560 Serge 3627
	gen8_gt_irq_postinstall(dev_priv);
3628
	gen8_de_irq_postinstall(dev_priv);
3629
 
6084 serge 3630
	if (HAS_PCH_SPLIT(dev))
3631
		ibx_irq_postinstall(dev);
4560 Serge 3632
 
3633
	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3634
	POSTING_READ(GEN8_MASTER_IRQ);
3635
 
3636
	return 0;
3637
}
3638
 
5060 serge 3639
static int cherryview_irq_postinstall(struct drm_device *dev)
4560 Serge 3640
{
3641
	struct drm_i915_private *dev_priv = dev->dev_private;
3642
 
5354 serge 3643
	vlv_display_irq_postinstall(dev_priv);
4560 Serge 3644
 
5060 serge 3645
	gen8_gt_irq_postinstall(dev_priv);
4560 Serge 3646
 
5060 serge 3647
	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3648
	POSTING_READ(GEN8_MASTER_IRQ);
4560 Serge 3649
 
5060 serge 3650
	return 0;
3651
}
4560 Serge 3652
 
5060 serge 3653
static void gen8_irq_uninstall(struct drm_device *dev)
3654
{
3655
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 3656
 
5060 serge 3657
	if (!dev_priv)
3658
		return;
3659
 
3660
	gen8_irq_reset(dev);
4560 Serge 3661
}
3662
 
5354 serge 3663
static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3664
{
3665
	/* Interrupt setup is already guaranteed to be single-threaded, this is
3666
	 * just to make the assert_spin_locked check happy. */
3667
	spin_lock_irq(&dev_priv->irq_lock);
3668
	if (dev_priv->display_irqs_enabled)
3669
		valleyview_display_irqs_uninstall(dev_priv);
3670
	spin_unlock_irq(&dev_priv->irq_lock);
3671
 
3672
	vlv_display_irq_reset(dev_priv);
3673
 
3674
	dev_priv->irq_mask = ~0;
3675
}
3676
 
3031 serge 3677
static void valleyview_irq_uninstall(struct drm_device *dev)
3678
{
5060 serge 3679
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3680
 
3681
	if (!dev_priv)
3682
		return;
3683
 
5060 serge 3684
	I915_WRITE(VLV_MASTER_IER, 0);
4293 Serge 3685
 
5354 serge 3686
	gen5_gt_irq_reset(dev);
3031 serge 3687
 
3688
	I915_WRITE(HWSTAM, 0xffffffff);
5060 serge 3689
 
5354 serge 3690
	vlv_display_irq_uninstall(dev_priv);
3031 serge 3691
}
3692
 
5060 serge 3693
static void cherryview_irq_uninstall(struct drm_device *dev)
3031 serge 3694
{
5060 serge 3695
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3696
 
3697
	if (!dev_priv)
3698
		return;
3699
 
5060 serge 3700
	I915_WRITE(GEN8_MASTER_IRQ, 0);
3701
	POSTING_READ(GEN8_MASTER_IRQ);
4293 Serge 3702
 
5354 serge 3703
	gen8_gt_irq_reset(dev_priv);
3031 serge 3704
 
5354 serge 3705
	GEN5_IRQ_RESET(GEN8_PCU_);
3031 serge 3706
 
5354 serge 3707
	vlv_display_irq_uninstall(dev_priv);
5060 serge 3708
}
3709
 
3710
static void ironlake_irq_uninstall(struct drm_device *dev)
3711
{
3712
	struct drm_i915_private *dev_priv = dev->dev_private;
3713
 
3714
	if (!dev_priv)
3746 Serge 3715
		return;
3716
 
5060 serge 3717
	ironlake_irq_reset(dev);
3031 serge 3718
}
3719
 
3720
#if 0
3721
static void i8xx_irq_preinstall(struct drm_device * dev)
3722
{
5060 serge 3723
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3724
	int pipe;
3725
 
5354 serge 3726
	for_each_pipe(dev_priv, pipe)
3031 serge 3727
		I915_WRITE(PIPESTAT(pipe), 0);
3728
	I915_WRITE16(IMR, 0xffff);
3729
	I915_WRITE16(IER, 0x0);
3730
	POSTING_READ16(IER);
3731
}
3732
 
3733
static int i8xx_irq_postinstall(struct drm_device *dev)
3734
{
5060 serge 3735
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3736
 
3737
	I915_WRITE16(EMR,
3738
		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3739
 
3740
	/* Unmask the interrupts that we always want on. */
3741
	dev_priv->irq_mask =
3742
		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3743
		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3744
		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
6084 serge 3745
		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3031 serge 3746
	I915_WRITE16(IMR, dev_priv->irq_mask);
3747
 
3748
	I915_WRITE16(IER,
3749
		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3750
		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3751
		     I915_USER_INTERRUPT);
3752
	POSTING_READ16(IER);
3753
 
4560 Serge 3754
	/* Interrupt setup is already guaranteed to be single-threaded, this is
3755
	 * just to make the assert_spin_locked check happy. */
5354 serge 3756
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 3757
	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3758
	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
5354 serge 3759
	spin_unlock_irq(&dev_priv->irq_lock);
4560 Serge 3760
 
3031 serge 3761
	return 0;
3762
}
3763
 
3746 Serge 3764
/*
3765
 * Returns true when a page flip has completed.
3766
 */
3767
static bool i8xx_handle_vblank(struct drm_device *dev,
4560 Serge 3768
			       int plane, int pipe, u32 iir)
3746 Serge 3769
{
5060 serge 3770
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 3771
	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3746 Serge 3772
 
6084 serge 3773
	if (!intel_pipe_handle_vblank(dev, pipe))
3774
		return false;
3746 Serge 3775
 
3776
	if ((iir & flip_pending) == 0)
5354 serge 3777
		goto check_page_flip;
3746 Serge 3778
 
3779
	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3780
	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3781
	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3782
	 * the flip is completed (no longer pending). Since this doesn't raise
3783
	 * an interrupt per se, we watch for the change at vblank.
3784
	 */
3785
	if (I915_READ16(ISR) & flip_pending)
5354 serge 3786
		goto check_page_flip;
3746 Serge 3787
 
6320 serge 3788
	intel_prepare_page_flip(dev, plane);
3789
	intel_finish_page_flip(dev, pipe);
5354 serge 3790
	return true;
3746 Serge 3791
 
5354 serge 3792
check_page_flip:
6320 serge 3793
	intel_check_page_flip(dev, pipe);
5354 serge 3794
	return false;
3746 Serge 3795
}
3796
 
3243 Serge 3797
static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3031 serge 3798
{
5060 serge 3799
	struct drm_device *dev = arg;
3800
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3801
	u16 iir, new_iir;
3802
	u32 pipe_stats[2];
3803
	int pipe;
3804
	u16 flip_mask =
3805
		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3806
		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3807
 
6084 serge 3808
	if (!intel_irqs_enabled(dev_priv))
3809
		return IRQ_NONE;
3810
 
3031 serge 3811
	iir = I915_READ16(IIR);
3812
	if (iir == 0)
3813
		return IRQ_NONE;
3814
 
3815
	while (iir & ~flip_mask) {
3816
		/* Can't rely on pipestat interrupt bit in iir as it might
3817
		 * have been cleared after the pipestat interrupt was received.
3818
		 * It doesn't set the bit in iir again, but it still produces
3819
		 * interrupts (for non-MSI).
3820
		 */
5354 serge 3821
		spin_lock(&dev_priv->irq_lock);
4126 Serge 3822
		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
5354 serge 3823
			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3031 serge 3824
 
5354 serge 3825
		for_each_pipe(dev_priv, pipe) {
3031 serge 3826
			int reg = PIPESTAT(pipe);
3827
			pipe_stats[pipe] = I915_READ(reg);
3828
 
3829
			/*
3830
			 * Clear the PIPE*STAT regs before the IIR
3831
			 */
5060 serge 3832
			if (pipe_stats[pipe] & 0x8000ffff)
3031 serge 3833
				I915_WRITE(reg, pipe_stats[pipe]);
6084 serge 3834
		}
5354 serge 3835
		spin_unlock(&dev_priv->irq_lock);
3031 serge 3836
 
3837
		I915_WRITE16(IIR, iir & ~flip_mask);
3838
		new_iir = I915_READ16(IIR); /* Flush posted writes */
3839
 
3840
		if (iir & I915_USER_INTERRUPT)
6084 serge 3841
			notify_ring(&dev_priv->ring[RCS]);
3031 serge 3842
 
5354 serge 3843
		for_each_pipe(dev_priv, pipe) {
4560 Serge 3844
			int plane = pipe;
3845
			if (HAS_FBC(dev))
3846
				plane = !plane;
3031 serge 3847
 
4560 Serge 3848
			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3849
			    i8xx_handle_vblank(dev, plane, pipe, iir))
3850
				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3031 serge 3851
 
4560 Serge 3852
			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3853
				i9xx_pipe_crc_irq_handler(dev, pipe);
5060 serge 3854
 
5354 serge 3855
			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3856
				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3857
								    pipe);
4560 Serge 3858
		}
3859
 
3031 serge 3860
		iir = new_iir;
3861
	}
3862
 
3863
	return IRQ_HANDLED;
3864
}
3865
 
3866
static void i8xx_irq_uninstall(struct drm_device * dev)
3867
{
5060 serge 3868
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3869
	int pipe;
3870
 
5354 serge 3871
	for_each_pipe(dev_priv, pipe) {
3031 serge 3872
		/* Clear enable bits; then clear status bits */
3873
		I915_WRITE(PIPESTAT(pipe), 0);
3874
		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3875
	}
3876
	I915_WRITE16(IMR, 0xffff);
3877
	I915_WRITE16(IER, 0x0);
3878
	I915_WRITE16(IIR, I915_READ16(IIR));
3879
}
3880
 
3881
#endif
3882
 
3883
static void i915_irq_preinstall(struct drm_device * dev)
3884
{
5060 serge 3885
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3886
	int pipe;
3887
 
3888
	if (I915_HAS_HOTPLUG(dev)) {
6084 serge 3889
		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3031 serge 3890
		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3891
	}
3892
 
3893
	I915_WRITE16(HWSTAM, 0xeffe);
5354 serge 3894
	for_each_pipe(dev_priv, pipe)
3031 serge 3895
		I915_WRITE(PIPESTAT(pipe), 0);
3896
	I915_WRITE(IMR, 0xffffffff);
3897
	I915_WRITE(IER, 0x0);
3898
	POSTING_READ(IER);
3899
}
3900
 
3901
static int i915_irq_postinstall(struct drm_device *dev)
3902
{
5060 serge 3903
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3904
	u32 enable_mask;
3905
 
3906
	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3907
 
3908
	/* Unmask the interrupts that we always want on. */
3909
	dev_priv->irq_mask =
3910
		~(I915_ASLE_INTERRUPT |
3911
		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3912
		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3913
		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
6084 serge 3914
		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3031 serge 3915
 
3916
	enable_mask =
3917
		I915_ASLE_INTERRUPT |
3918
		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3919
		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3920
		I915_USER_INTERRUPT;
3480 Serge 3921
 
3031 serge 3922
	if (I915_HAS_HOTPLUG(dev)) {
6084 serge 3923
		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3480 Serge 3924
		POSTING_READ(PORT_HOTPLUG_EN);
3925
 
3031 serge 3926
		/* Enable in IER... */
3927
		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3928
		/* and unmask in IMR */
3929
		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3930
	}
3931
 
3932
	I915_WRITE(IMR, dev_priv->irq_mask);
3933
	I915_WRITE(IER, enable_mask);
3934
	POSTING_READ(IER);
3935
 
4126 Serge 3936
	i915_enable_asle_pipestat(dev);
3480 Serge 3937
 
4560 Serge 3938
	/* Interrupt setup is already guaranteed to be single-threaded, this is
3939
	 * just to make the assert_spin_locked check happy. */
5354 serge 3940
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 3941
	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3942
	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
5354 serge 3943
	spin_unlock_irq(&dev_priv->irq_lock);
4560 Serge 3944
 
3480 Serge 3945
	return 0;
3946
}
3947
 
3746 Serge 3948
/*
3949
 * Returns true when a page flip has completed.
3950
 */
3951
static bool i915_handle_vblank(struct drm_device *dev,
3952
			       int plane, int pipe, u32 iir)
3480 Serge 3953
{
5060 serge 3954
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 3955
	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3480 Serge 3956
 
6088 serge 3957
	if (!intel_pipe_handle_vblank(dev, pipe))
3958
		return false;
3480 Serge 3959
 
3746 Serge 3960
	if ((iir & flip_pending) == 0)
5354 serge 3961
		goto check_page_flip;
3480 Serge 3962
 
3746 Serge 3963
	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3964
	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3965
	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3966
	 * the flip is completed (no longer pending). Since this doesn't raise
3967
	 * an interrupt per se, we watch for the change at vblank.
3968
	 */
3969
	if (I915_READ(ISR) & flip_pending)
5354 serge 3970
		goto check_page_flip;
3746 Serge 3971
 
6320 serge 3972
	intel_prepare_page_flip(dev, plane);
3973
	intel_finish_page_flip(dev, pipe);
5354 serge 3974
	return true;
3746 Serge 3975
 
5354 serge 3976
check_page_flip:
6320 serge 3977
	intel_check_page_flip(dev, pipe);
5354 serge 3978
	return false;
3031 serge 3979
}
3980
 
3243 Serge 3981
static irqreturn_t i915_irq_handler(int irq, void *arg)
3031 serge 3982
{
5060 serge 3983
	struct drm_device *dev = arg;
3984
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3985
	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3986
	u32 flip_mask =
3987
		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3988
		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3989
	int pipe, ret = IRQ_NONE;
3990
 
6084 serge 3991
	if (!intel_irqs_enabled(dev_priv))
3992
		return IRQ_NONE;
3993
 
3031 serge 3994
	iir = I915_READ(IIR);
3995
	do {
3996
		bool irq_received = (iir & ~flip_mask) != 0;
3997
		bool blc_event = false;
3998
 
3999
		/* Can't rely on pipestat interrupt bit in iir as it might
4000
		 * have been cleared after the pipestat interrupt was received.
4001
		 * It doesn't set the bit in iir again, but it still produces
4002
		 * interrupts (for non-MSI).
4003
		 */
5354 serge 4004
		spin_lock(&dev_priv->irq_lock);
4126 Serge 4005
		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
5354 serge 4006
			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3031 serge 4007
 
5354 serge 4008
		for_each_pipe(dev_priv, pipe) {
3031 serge 4009
			int reg = PIPESTAT(pipe);
4010
			pipe_stats[pipe] = I915_READ(reg);
4011
 
4012
			/* Clear the PIPE*STAT regs before the IIR */
4013
			if (pipe_stats[pipe] & 0x8000ffff) {
4014
				I915_WRITE(reg, pipe_stats[pipe]);
4015
				irq_received = true;
4016
			}
4017
		}
5354 serge 4018
		spin_unlock(&dev_priv->irq_lock);
3031 serge 4019
 
4020
		if (!irq_received)
4021
			break;
4022
 
4023
		/* Consume port.  Then clear IIR or we'll miss events */
5060 serge 4024
		if (I915_HAS_HOTPLUG(dev) &&
4025
		    iir & I915_DISPLAY_PORT_INTERRUPT)
4026
			i9xx_hpd_irq_handler(dev);
3031 serge 4027
 
4028
		I915_WRITE(IIR, iir & ~flip_mask);
4029
		new_iir = I915_READ(IIR); /* Flush posted writes */
4030
 
4031
		if (iir & I915_USER_INTERRUPT)
6084 serge 4032
			notify_ring(&dev_priv->ring[RCS]);
3031 serge 4033
 
5354 serge 4034
		for_each_pipe(dev_priv, pipe) {
3031 serge 4035
			int plane = pipe;
4560 Serge 4036
			if (HAS_FBC(dev))
3031 serge 4037
				plane = !plane;
4038
 
3746 Serge 4039
			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4040
			    i915_handle_vblank(dev, plane, pipe, iir))
4041
				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4042
 
3031 serge 4043
			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4044
				blc_event = true;
4560 Serge 4045
 
4046
			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4047
				i9xx_pipe_crc_irq_handler(dev, pipe);
5060 serge 4048
 
5354 serge 4049
			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4050
				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4051
								    pipe);
3031 serge 4052
		}
4053
 
4126 Serge 4054
		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4055
			intel_opregion_asle_intr(dev);
3031 serge 4056
 
4057
		/* With MSI, interrupts are only generated when iir
4058
		 * transitions from zero to nonzero.  If another bit got
4059
		 * set while we were handling the existing iir bits, then
4060
		 * we would never get another interrupt.
4061
		 *
4062
		 * This is fine on non-MSI as well, as if we hit this path
4063
		 * we avoid exiting the interrupt handler only to generate
4064
		 * another one.
4065
		 *
4066
		 * Note that for MSI this could cause a stray interrupt report
4067
		 * if an interrupt landed in the time between writing IIR and
4068
		 * the posting read.  This should be rare enough to never
4069
		 * trigger the 99% of 100,000 interrupts test for disabling
4070
		 * stray interrupts.
4071
		 */
4072
		ret = IRQ_HANDLED;
4073
		iir = new_iir;
4074
	} while (iir & ~flip_mask);
4075
 
4076
	return ret;
4077
}
4078
 
4079
static void i915_irq_uninstall(struct drm_device * dev)
4080
{
5060 serge 4081
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4082
	int pipe;
4083
 
4084
	if (I915_HAS_HOTPLUG(dev)) {
6084 serge 4085
		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3031 serge 4086
		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4087
	}
4088
 
4089
	I915_WRITE16(HWSTAM, 0xffff);
5354 serge 4090
	for_each_pipe(dev_priv, pipe) {
3031 serge 4091
		/* Clear enable bits; then clear status bits */
4092
		I915_WRITE(PIPESTAT(pipe), 0);
4093
		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4094
	}
4095
	I915_WRITE(IMR, 0xffffffff);
4096
	I915_WRITE(IER, 0x0);
4097
 
4098
	I915_WRITE(IIR, I915_READ(IIR));
4099
}
4100
 
4101
static void i965_irq_preinstall(struct drm_device * dev)
4102
{
5060 serge 4103
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4104
	int pipe;
4105
 
6084 serge 4106
	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3031 serge 4107
	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4108
 
4109
	I915_WRITE(HWSTAM, 0xeffe);
5354 serge 4110
	for_each_pipe(dev_priv, pipe)
3031 serge 4111
		I915_WRITE(PIPESTAT(pipe), 0);
4112
	I915_WRITE(IMR, 0xffffffff);
4113
	I915_WRITE(IER, 0x0);
4114
	POSTING_READ(IER);
4115
}
4116
 
4117
static int i965_irq_postinstall(struct drm_device *dev)
4118
{
5060 serge 4119
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4120
	u32 enable_mask;
4121
	u32 error_mask;
4122
 
4123
	/* Unmask the interrupts that we always want on. */
4124
	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4125
			       I915_DISPLAY_PORT_INTERRUPT |
4126
			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4127
			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4128
			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4129
			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4130
			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4131
 
4132
	enable_mask = ~dev_priv->irq_mask;
3746 Serge 4133
	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4134
			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3031 serge 4135
	enable_mask |= I915_USER_INTERRUPT;
4136
 
4137
	if (IS_G4X(dev))
4138
		enable_mask |= I915_BSD_USER_INTERRUPT;
4139
 
4104 Serge 4140
	/* Interrupt setup is already guaranteed to be single-threaded, this is
4141
	 * just to make the assert_spin_locked check happy. */
5354 serge 4142
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 4143
	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4144
	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4145
	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
5354 serge 4146
	spin_unlock_irq(&dev_priv->irq_lock);
3031 serge 4147
 
4148
	/*
4149
	 * Enable some error detection, note the instruction error mask
4150
	 * bit is reserved, so we leave it masked.
4151
	 */
4152
	if (IS_G4X(dev)) {
4153
		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4154
			       GM45_ERROR_MEM_PRIV |
4155
			       GM45_ERROR_CP_PRIV |
4156
			       I915_ERROR_MEMORY_REFRESH);
4157
	} else {
4158
		error_mask = ~(I915_ERROR_PAGE_TABLE |
4159
			       I915_ERROR_MEMORY_REFRESH);
4160
	}
4161
	I915_WRITE(EMR, error_mask);
4162
 
4163
	I915_WRITE(IMR, dev_priv->irq_mask);
4164
	I915_WRITE(IER, enable_mask);
4165
	POSTING_READ(IER);
4166
 
6084 serge 4167
	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3480 Serge 4168
	POSTING_READ(PORT_HOTPLUG_EN);
4169
 
4126 Serge 4170
	i915_enable_asle_pipestat(dev);
3480 Serge 4171
 
4172
	return 0;
4173
}
4174
 
3746 Serge 4175
static void i915_hpd_irq_setup(struct drm_device *dev)
3480 Serge 4176
{
5060 serge 4177
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 4178
	u32 hotplug_en;
4179
 
4104 Serge 4180
	assert_spin_locked(&dev_priv->irq_lock);
4181
 
3031 serge 4182
	/* Note HDMI and DP share hotplug bits */
6084 serge 4183
	/* enable bits are the same for all generations */
4184
	hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4185
	/* Programming the CRT detection parameters tends
4186
	   to generate a spurious hotplug event about three
4187
	   seconds later.  So just do it once.
4188
	*/
4189
	if (IS_G4X(dev))
4190
		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4191
	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3480 Serge 4192
 
3031 serge 4193
	/* Ignore TV since it's buggy */
6084 serge 4194
	i915_hotplug_interrupt_update_locked(dev_priv,
4195
					     HOTPLUG_INT_EN_MASK |
4196
					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4197
					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4198
					     hotplug_en);
3031 serge 4199
}
4200
 
3243 Serge 4201
static irqreturn_t i965_irq_handler(int irq, void *arg)
3031 serge 4202
{
5060 serge 4203
	struct drm_device *dev = arg;
4204
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4205
	u32 iir, new_iir;
4206
	u32 pipe_stats[I915_MAX_PIPES];
4207
	int ret = IRQ_NONE, pipe;
3746 Serge 4208
	u32 flip_mask =
4209
		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4210
		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3031 serge 4211
 
6084 serge 4212
	if (!intel_irqs_enabled(dev_priv))
4213
		return IRQ_NONE;
4214
 
3031 serge 4215
	iir = I915_READ(IIR);
4216
 
4217
	for (;;) {
5060 serge 4218
		bool irq_received = (iir & ~flip_mask) != 0;
3031 serge 4219
		bool blc_event = false;
4220
 
4221
		/* Can't rely on pipestat interrupt bit in iir as it might
4222
		 * have been cleared after the pipestat interrupt was received.
4223
		 * It doesn't set the bit in iir again, but it still produces
4224
		 * interrupts (for non-MSI).
4225
		 */
5354 serge 4226
		spin_lock(&dev_priv->irq_lock);
4126 Serge 4227
		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
5354 serge 4228
			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3031 serge 4229
 
5354 serge 4230
		for_each_pipe(dev_priv, pipe) {
3031 serge 4231
			int reg = PIPESTAT(pipe);
4232
			pipe_stats[pipe] = I915_READ(reg);
4233
 
4234
			/*
4235
			 * Clear the PIPE*STAT regs before the IIR
4236
			 */
4237
			if (pipe_stats[pipe] & 0x8000ffff) {
4238
				I915_WRITE(reg, pipe_stats[pipe]);
5060 serge 4239
				irq_received = true;
3031 serge 4240
			}
4241
		}
5354 serge 4242
		spin_unlock(&dev_priv->irq_lock);
3031 serge 4243
 
4244
		if (!irq_received)
4245
			break;
4246
 
4247
		ret = IRQ_HANDLED;
4248
 
4249
		/* Consume port.  Then clear IIR or we'll miss events */
5060 serge 4250
		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4251
			i9xx_hpd_irq_handler(dev);
3031 serge 4252
 
3746 Serge 4253
		I915_WRITE(IIR, iir & ~flip_mask);
3031 serge 4254
		new_iir = I915_READ(IIR); /* Flush posted writes */
4255
 
4256
		if (iir & I915_USER_INTERRUPT)
6084 serge 4257
			notify_ring(&dev_priv->ring[RCS]);
3031 serge 4258
		if (iir & I915_BSD_USER_INTERRUPT)
6084 serge 4259
			notify_ring(&dev_priv->ring[VCS]);
3031 serge 4260
 
5354 serge 4261
		for_each_pipe(dev_priv, pipe) {
3746 Serge 4262
			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4263
			    i915_handle_vblank(dev, pipe, pipe, iir))
4264
				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3031 serge 4265
 
4266
			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4267
				blc_event = true;
4560 Serge 4268
 
4269
			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4270
				i9xx_pipe_crc_irq_handler(dev, pipe);
5060 serge 4271
 
5354 serge 4272
			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4273
				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
3031 serge 4274
		}
4275
 
4126 Serge 4276
		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4277
			intel_opregion_asle_intr(dev);
3031 serge 4278
 
3480 Serge 4279
		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4280
			gmbus_irq_handler(dev);
4281
 
3031 serge 4282
		/* With MSI, interrupts are only generated when iir
4283
		 * transitions from zero to nonzero.  If another bit got
4284
		 * set while we were handling the existing iir bits, then
4285
		 * we would never get another interrupt.
4286
		 *
4287
		 * This is fine on non-MSI as well, as if we hit this path
4288
		 * we avoid exiting the interrupt handler only to generate
4289
		 * another one.
4290
		 *
4291
		 * Note that for MSI this could cause a stray interrupt report
4292
		 * if an interrupt landed in the time between writing IIR and
4293
		 * the posting read.  This should be rare enough to never
4294
		 * trigger the 99% of 100,000 interrupts test for disabling
4295
		 * stray interrupts.
4296
		 */
4297
		iir = new_iir;
4298
	}
4299
 
4300
	return ret;
4301
}
4302
 
4303
static void i965_irq_uninstall(struct drm_device * dev)
4304
{
5060 serge 4305
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4306
	int pipe;
4307
 
4308
	if (!dev_priv)
4309
		return;
4310
 
6084 serge 4311
	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3031 serge 4312
	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4313
 
4314
	I915_WRITE(HWSTAM, 0xffffffff);
5354 serge 4315
	for_each_pipe(dev_priv, pipe)
3031 serge 4316
		I915_WRITE(PIPESTAT(pipe), 0);
4317
	I915_WRITE(IMR, 0xffffffff);
4318
	I915_WRITE(IER, 0x0);
4319
 
5354 serge 4320
	for_each_pipe(dev_priv, pipe)
3031 serge 4321
		I915_WRITE(PIPESTAT(pipe),
4322
			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4323
	I915_WRITE(IIR, I915_READ(IIR));
4324
}
4325
 
5354 serge 4326
/**
4327
 * intel_irq_init - initializes irq support
4328
 * @dev_priv: i915 device instance
4329
 *
4330
 * This function initializes all the irq support including work items, timers
4331
 * and all the vtables. It does not setup the interrupt itself though.
4332
 */
4333
void intel_irq_init(struct drm_i915_private *dev_priv)
2351 Serge 4334
{
5354 serge 4335
	struct drm_device *dev = dev_priv->dev;
3031 serge 4336
 
6296 serge 4337
	intel_hpd_init_work(dev_priv);
6084 serge 4338
 
4126 Serge 4339
	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4340
	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3480 Serge 4341
 
5060 serge 4342
	/* Let's track the enabled rps events */
5354 serge 4343
	if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4344
		/* WaGsvRC0ResidencyMethod:vlv */
6084 serge 4345
		dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
5060 serge 4346
	else
6084 serge 4347
		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
3480 Serge 4348
 
6084 serge 4349
	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4350
			  i915_hangcheck_elapsed);
4560 Serge 4351
 
5354 serge 4352
 
4353
	if (IS_GEN2(dev_priv)) {
4560 Serge 4354
		dev->max_vblank_count = 0;
4355
		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
5354 serge 4356
	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4560 Serge 4357
		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
6084 serge 4358
		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4560 Serge 4359
	} else {
6084 serge 4360
		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4361
		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4293 Serge 4362
	}
3480 Serge 4363
 
5354 serge 4364
	/*
4365
	 * Opt out of the vblank disable timer on everything except gen2.
4366
	 * Gen2 doesn't have a hardware frame counter and so depends on
4367
	 * vblank interrupts to produce sane vblank seuquence numbers.
4368
	 */
4369
	if (!IS_GEN2(dev_priv))
4370
		dev->vblank_disable_immediate = true;
4371
 
6084 serge 4372
	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4293 Serge 4373
	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3480 Serge 4374
 
5354 serge 4375
	if (IS_CHERRYVIEW(dev_priv)) {
5060 serge 4376
		dev->driver->irq_handler = cherryview_irq_handler;
4377
		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4378
		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4379
		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4380
		dev->driver->enable_vblank = valleyview_enable_vblank;
4381
		dev->driver->disable_vblank = valleyview_disable_vblank;
4382
		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
5354 serge 4383
	} else if (IS_VALLEYVIEW(dev_priv)) {
3243 Serge 4384
		dev->driver->irq_handler = valleyview_irq_handler;
4385
		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4386
		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4293 Serge 4387
		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4388
		dev->driver->enable_vblank = valleyview_enable_vblank;
4389
		dev->driver->disable_vblank = valleyview_disable_vblank;
3746 Serge 4390
		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
5354 serge 4391
	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4560 Serge 4392
		dev->driver->irq_handler = gen8_irq_handler;
5060 serge 4393
		dev->driver->irq_preinstall = gen8_irq_reset;
4560 Serge 4394
		dev->driver->irq_postinstall = gen8_irq_postinstall;
4395
		dev->driver->irq_uninstall = gen8_irq_uninstall;
4396
		dev->driver->enable_vblank = gen8_enable_vblank;
4397
		dev->driver->disable_vblank = gen8_disable_vblank;
6084 serge 4398
		if (IS_BROXTON(dev))
4399
			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4400
		else if (HAS_PCH_SPT(dev))
4401
			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4402
		else
4403
			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
2351 Serge 4404
	} else if (HAS_PCH_SPLIT(dev)) {
3243 Serge 4405
		dev->driver->irq_handler = ironlake_irq_handler;
5060 serge 4406
		dev->driver->irq_preinstall = ironlake_irq_reset;
3243 Serge 4407
		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4293 Serge 4408
		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4409
		dev->driver->enable_vblank = ironlake_enable_vblank;
4410
		dev->driver->disable_vblank = ironlake_disable_vblank;
6084 serge 4411
		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
2351 Serge 4412
	} else {
5354 serge 4413
		if (INTEL_INFO(dev_priv)->gen == 2) {
4414
		} else if (INTEL_INFO(dev_priv)->gen == 3) {
3243 Serge 4415
			dev->driver->irq_preinstall = i915_irq_preinstall;
4416
			dev->driver->irq_postinstall = i915_irq_postinstall;
4293 Serge 4417
			dev->driver->irq_uninstall = i915_irq_uninstall;
3243 Serge 4418
			dev->driver->irq_handler = i915_irq_handler;
3031 serge 4419
		} else {
3243 Serge 4420
			dev->driver->irq_preinstall = i965_irq_preinstall;
4421
			dev->driver->irq_postinstall = i965_irq_postinstall;
4293 Serge 4422
			dev->driver->irq_uninstall = i965_irq_uninstall;
3243 Serge 4423
			dev->driver->irq_handler = i965_irq_handler;
6084 serge 4424
		}
4425
		if (I915_HAS_HOTPLUG(dev_priv))
3746 Serge 4426
			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4293 Serge 4427
		dev->driver->enable_vblank = i915_enable_vblank;
4428
		dev->driver->disable_vblank = i915_disable_vblank;
2351 Serge 4429
	}
3480 Serge 4430
}
3243 Serge 4431
 
5354 serge 4432
/**
4433
 * intel_irq_install - enables the hardware interrupt
4434
 * @dev_priv: i915 device instance
4435
 *
4436
 * This function enables the hardware interrupt handling, but leaves the hotplug
4437
 * handling still disabled. It is called after intel_irq_init().
4438
 *
4439
 * In the driver load and resume code we need working interrupts in a few places
4440
 * but don't want to deal with the hassle of concurrent probe and hotplug
4441
 * workers. Hence the split into this two-stage approach.
4442
 */
4443
int intel_irq_install(struct drm_i915_private *dev_priv)
3243 Serge 4444
{
5354 serge 4445
	/*
4446
	 * We enable some interrupt sources in our postinstall hooks, so mark
4447
	 * interrupts as enabled _before_ actually enabling them to avoid
4448
	 * special cases in our ordering checks.
4449
	 */
4450
	dev_priv->pm.irqs_enabled = true;
2351 Serge 4451
 
5354 serge 4452
	return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
3243 Serge 4453
}
4454
 
5354 serge 4455
/**
4456
 * intel_irq_uninstall - finilizes all irq handling
4457
 * @dev_priv: i915 device instance
4458
 *
4459
 * This stops interrupt and hotplug handling and unregisters and frees all
4460
 * resources acquired in the init functions.
4461
 */
4462
void intel_irq_uninstall(struct drm_i915_private *dev_priv)
2351 Serge 4463
{
5354 serge 4464
//	drm_irq_uninstall(dev_priv->dev);
6320 serge 4465
	intel_hpd_cancel_work(dev_priv);
5354 serge 4466
	dev_priv->pm.irqs_enabled = false;
4467
}
2351 Serge 4468
 
5354 serge 4469
/**
4470
 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4471
 * @dev_priv: i915 device instance
4472
 *
4473
 * This function is used to disable interrupts at runtime, both in the runtime
4474
 * pm and the system suspend/resume code.
4475
 */
4476
void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4477
{
4478
	dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4479
	dev_priv->pm.irqs_enabled = false;
4104 Serge 4480
}
2351 Serge 4481
 
5354 serge 4482
/**
4483
 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4484
 * @dev_priv: i915 device instance
4485
 *
4486
 * This function is used to enable interrupts at runtime, both in the runtime
4487
 * pm and the system suspend/resume code.
4488
 */
4489
void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4490
{
4491
	dev_priv->pm.irqs_enabled = true;
4492
	dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4493
	dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4494
}