Subversion Repositories Kolibri OS

Rev

Rev 5367 | Rev 6088 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2351 Serge 1
/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2
 */
3
/*
4
 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5
 * All Rights Reserved.
6
 *
7
 * Permission is hereby granted, free of charge, to any person obtaining a
8
 * copy of this software and associated documentation files (the
9
 * "Software"), to deal in the Software without restriction, including
10
 * without limitation the rights to use, copy, modify, merge, publish,
11
 * distribute, sub license, and/or sell copies of the Software, and to
12
 * permit persons to whom the Software is furnished to do so, subject to
13
 * the following conditions:
14
 *
15
 * The above copyright notice and this permission notice (including the
16
 * next paragraph) shall be included in all copies or substantial portions
17
 * of the Software.
18
 *
19
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22
 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23
 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
 *
27
 */
28
 
3746 Serge 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3031 serge 30
 
31
#include 
32
#include 
33
#include 
2351 Serge 34
#include "i915_drv.h"
35
#include "i915_trace.h"
36
#include "intel_drv.h"
37
 
5354 serge 38
/**
39
 * DOC: interrupt handling
40
 *
41
 * These functions provide the basic support for enabling and disabling the
42
 * interrupt handling support. There's a lot more functionality in i915_irq.c
43
 * and related files, but that will be described in separate chapters.
44
 */
4104 Serge 45
 
6084 serge 46
static const u32 hpd_ilk[HPD_NUM_PINS] = {
47
	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
48
};
49
 
50
static const u32 hpd_ivb[HPD_NUM_PINS] = {
51
	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
52
};
53
 
54
static const u32 hpd_bdw[HPD_NUM_PINS] = {
55
	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
56
};
57
 
58
static const u32 hpd_ibx[HPD_NUM_PINS] = {
3746 Serge 59
	[HPD_CRT] = SDE_CRT_HOTPLUG,
60
	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
61
	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
62
	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
63
	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
64
};
3031 serge 65
 
6084 serge 66
static const u32 hpd_cpt[HPD_NUM_PINS] = {
3746 Serge 67
	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
68
	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
69
	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
70
	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
71
	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
72
};
73
 
6084 serge 74
static const u32 hpd_spt[HPD_NUM_PINS] = {
75
	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
76
	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
77
	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
78
	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
79
	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
80
};
81
 
82
static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
3746 Serge 83
	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
84
	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
85
	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
86
	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
87
	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
88
	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
89
};
90
 
6084 serge 91
static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
3746 Serge 92
	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
93
	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
94
	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
95
	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
96
	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
97
	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
98
};
99
 
6084 serge 100
static const u32 hpd_status_i915[HPD_NUM_PINS] = {
3746 Serge 101
	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
102
	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
103
	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
104
	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
105
	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
106
	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
107
};
108
 
6084 serge 109
/* BXT hpd list */
110
static const u32 hpd_bxt[HPD_NUM_PINS] = {
111
	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
112
	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
113
	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
114
};
115
 
5060 serge 116
/* IIR can theoretically queue up two events. Be paranoid. */
117
#define GEN8_IRQ_RESET_NDX(type, which) do { \
118
	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
119
	POSTING_READ(GEN8_##type##_IMR(which)); \
120
	I915_WRITE(GEN8_##type##_IER(which), 0); \
121
	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
122
	POSTING_READ(GEN8_##type##_IIR(which)); \
123
	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124
	POSTING_READ(GEN8_##type##_IIR(which)); \
125
} while (0)
3746 Serge 126
 
5060 serge 127
#define GEN5_IRQ_RESET(type) do { \
128
	I915_WRITE(type##IMR, 0xffffffff); \
129
	POSTING_READ(type##IMR); \
130
	I915_WRITE(type##IER, 0); \
131
	I915_WRITE(type##IIR, 0xffffffff); \
132
	POSTING_READ(type##IIR); \
133
	I915_WRITE(type##IIR, 0xffffffff); \
134
	POSTING_READ(type##IIR); \
135
} while (0)
136
 
137
/*
138
 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
139
 */
6084 serge 140
static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv, u32 reg)
141
{
142
	u32 val = I915_READ(reg);
5060 serge 143
 
6084 serge 144
	if (val == 0)
145
		return;
146
 
147
	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
148
	     reg, val);
149
	I915_WRITE(reg, 0xffffffff);
150
	POSTING_READ(reg);
151
	I915_WRITE(reg, 0xffffffff);
152
	POSTING_READ(reg);
153
}
154
 
5060 serge 155
#define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
6084 serge 156
	gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
5354 serge 157
	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
5060 serge 158
	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
5354 serge 159
	POSTING_READ(GEN8_##type##_IMR(which)); \
5060 serge 160
} while (0)
161
 
162
#define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
6084 serge 163
	gen5_assert_iir_is_zero(dev_priv, type##IIR); \
5354 serge 164
	I915_WRITE(type##IER, (ier_val)); \
5060 serge 165
	I915_WRITE(type##IMR, (imr_val)); \
5354 serge 166
	POSTING_READ(type##IMR); \
5060 serge 167
} while (0)
168
 
5354 serge 169
static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
3031 serge 170
 
2351 Serge 171
/* For display hotplug interrupt */
6084 serge 172
static inline void
173
i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
174
				     uint32_t mask,
175
				     uint32_t bits)
2351 Serge 176
{
6084 serge 177
	uint32_t val;
178
 
4104 Serge 179
	assert_spin_locked(&dev_priv->irq_lock);
6084 serge 180
	WARN_ON(bits & ~mask);
4104 Serge 181
 
6084 serge 182
	val = I915_READ(PORT_HOTPLUG_EN);
183
	val &= ~mask;
184
	val |= bits;
185
	I915_WRITE(PORT_HOTPLUG_EN, val);
186
}
4104 Serge 187
 
6084 serge 188
/**
189
 * i915_hotplug_interrupt_update - update hotplug interrupt enable
190
 * @dev_priv: driver private
191
 * @mask: bits to update
192
 * @bits: bits to enable
193
 * NOTE: the HPD enable bits are modified both inside and outside
194
 * of an interrupt context. To avoid that read-modify-write cycles
195
 * interfer, these bits are protected by a spinlock. Since this
196
 * function is usually not called from a context where the lock is
197
 * held already, this function acquires the lock itself. A non-locking
198
 * version is also available.
199
 */
200
void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
201
				   uint32_t mask,
202
				   uint32_t bits)
203
{
204
	spin_lock_irq(&dev_priv->irq_lock);
205
	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
206
	spin_unlock_irq(&dev_priv->irq_lock);
2351 Serge 207
}
208
 
6084 serge 209
/**
210
 * ilk_update_display_irq - update DEIMR
211
 * @dev_priv: driver private
212
 * @interrupt_mask: mask of interrupt bits to update
213
 * @enabled_irq_mask: mask of interrupt bits to enable
214
 */
215
static void ilk_update_display_irq(struct drm_i915_private *dev_priv,
216
				   uint32_t interrupt_mask,
217
				   uint32_t enabled_irq_mask)
2351 Serge 218
{
6084 serge 219
	uint32_t new_val;
220
 
4104 Serge 221
	assert_spin_locked(&dev_priv->irq_lock);
222
 
6084 serge 223
	WARN_ON(enabled_irq_mask & ~interrupt_mask);
224
 
5354 serge 225
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
4104 Serge 226
		return;
227
 
6084 serge 228
	new_val = dev_priv->irq_mask;
229
	new_val &= ~interrupt_mask;
230
	new_val |= (~enabled_irq_mask & interrupt_mask);
231
 
232
	if (new_val != dev_priv->irq_mask) {
233
		dev_priv->irq_mask = new_val;
234
		I915_WRITE(DEIMR, dev_priv->irq_mask);
235
		POSTING_READ(DEIMR);
236
	}
2351 Serge 237
}
3031 serge 238
 
6084 serge 239
void
240
ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
241
{
242
	ilk_update_display_irq(dev_priv, mask, mask);
243
}
244
 
245
void
246
ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
247
{
248
	ilk_update_display_irq(dev_priv, mask, 0);
249
}
250
 
4104 Serge 251
/**
252
 * ilk_update_gt_irq - update GTIMR
253
 * @dev_priv: driver private
254
 * @interrupt_mask: mask of interrupt bits to update
255
 * @enabled_irq_mask: mask of interrupt bits to enable
256
 */
257
static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
258
			      uint32_t interrupt_mask,
259
			      uint32_t enabled_irq_mask)
260
{
261
	assert_spin_locked(&dev_priv->irq_lock);
262
 
6084 serge 263
	WARN_ON(enabled_irq_mask & ~interrupt_mask);
264
 
5060 serge 265
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
4104 Serge 266
		return;
267
 
268
	dev_priv->gt_irq_mask &= ~interrupt_mask;
269
	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
270
	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
271
	POSTING_READ(GTIMR);
272
}
273
 
5060 serge 274
void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
4104 Serge 275
{
276
	ilk_update_gt_irq(dev_priv, mask, mask);
277
}
278
 
5060 serge 279
void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
4104 Serge 280
{
281
	ilk_update_gt_irq(dev_priv, mask, 0);
282
}
283
 
5354 serge 284
static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
4104 Serge 285
{
5354 serge 286
	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
4104 Serge 287
}
288
 
5354 serge 289
static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
4104 Serge 290
{
5354 serge 291
	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
4104 Serge 292
}
293
 
5354 serge 294
static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
4104 Serge 295
{
5354 serge 296
	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
4104 Serge 297
}
298
 
5060 serge 299
/**
5354 serge 300
  * snb_update_pm_irq - update GEN6_PMIMR
5060 serge 301
  * @dev_priv: driver private
302
  * @interrupt_mask: mask of interrupt bits to update
303
  * @enabled_irq_mask: mask of interrupt bits to enable
304
  */
5354 serge 305
static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
5060 serge 306
			      uint32_t interrupt_mask,
307
			      uint32_t enabled_irq_mask)
308
{
309
	uint32_t new_val;
310
 
6084 serge 311
	WARN_ON(enabled_irq_mask & ~interrupt_mask);
312
 
5060 serge 313
	assert_spin_locked(&dev_priv->irq_lock);
314
 
315
	new_val = dev_priv->pm_irq_mask;
316
	new_val &= ~interrupt_mask;
317
	new_val |= (~enabled_irq_mask & interrupt_mask);
318
 
319
	if (new_val != dev_priv->pm_irq_mask) {
320
		dev_priv->pm_irq_mask = new_val;
5354 serge 321
		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
322
		POSTING_READ(gen6_pm_imr(dev_priv));
5060 serge 323
	}
324
}
325
 
5354 serge 326
void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
5060 serge 327
{
5354 serge 328
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
329
		return;
330
 
331
	snb_update_pm_irq(dev_priv, mask, mask);
5060 serge 332
}
333
 
5354 serge 334
static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
335
				  uint32_t mask)
5060 serge 336
{
5354 serge 337
	snb_update_pm_irq(dev_priv, mask, 0);
5060 serge 338
}
339
 
5354 serge 340
void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
4104 Serge 341
{
5354 serge 342
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
343
		return;
4104 Serge 344
 
5354 serge 345
	__gen6_disable_pm_irq(dev_priv, mask);
4104 Serge 346
}
347
 
5354 serge 348
void gen6_reset_rps_interrupts(struct drm_device *dev)
5060 serge 349
{
350
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 351
	uint32_t reg = gen6_pm_iir(dev_priv);
5060 serge 352
 
5354 serge 353
	spin_lock_irq(&dev_priv->irq_lock);
354
	I915_WRITE(reg, dev_priv->pm_rps_events);
355
	I915_WRITE(reg, dev_priv->pm_rps_events);
6084 serge 356
	POSTING_READ(reg);
357
	dev_priv->rps.pm_iir = 0;
5354 serge 358
	spin_unlock_irq(&dev_priv->irq_lock);
5060 serge 359
}
360
 
5354 serge 361
void gen6_enable_rps_interrupts(struct drm_device *dev)
5060 serge 362
{
363
	struct drm_i915_private *dev_priv = dev->dev_private;
364
 
5354 serge 365
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 366
 
5354 serge 367
	WARN_ON(dev_priv->rps.pm_iir);
368
	WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
369
	dev_priv->rps.interrupts_enabled = true;
370
	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
371
				dev_priv->pm_rps_events);
372
	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
373
 
374
	spin_unlock_irq(&dev_priv->irq_lock);
5060 serge 375
}
376
 
6084 serge 377
u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
378
{
379
	/*
380
	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
381
	 * if GEN6_PM_UP_EI_EXPIRED is masked.
382
	 *
383
	 * TODO: verify if this can be reproduced on VLV,CHV.
384
	 */
385
	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
386
		mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
387
 
388
	if (INTEL_INFO(dev_priv)->gen >= 8)
389
		mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
390
 
391
	return mask;
392
}
393
 
5354 serge 394
void gen6_disable_rps_interrupts(struct drm_device *dev)
4104 Serge 395
{
396
	struct drm_i915_private *dev_priv = dev->dev_private;
397
 
5354 serge 398
	spin_lock_irq(&dev_priv->irq_lock);
399
	dev_priv->rps.interrupts_enabled = false;
400
	spin_unlock_irq(&dev_priv->irq_lock);
4104 Serge 401
 
5354 serge 402
	cancel_work_sync(&dev_priv->rps.work);
4104 Serge 403
 
5354 serge 404
	spin_lock_irq(&dev_priv->irq_lock);
4104 Serge 405
 
6084 serge 406
	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4104 Serge 407
 
5354 serge 408
	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
409
	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
410
				~dev_priv->pm_rps_events);
4104 Serge 411
 
6084 serge 412
	spin_unlock_irq(&dev_priv->irq_lock);
4560 Serge 413
 
414
}
415
 
4104 Serge 416
/**
6084 serge 417
  * bdw_update_port_irq - update DE port interrupt
418
  * @dev_priv: driver private
419
  * @interrupt_mask: mask of interrupt bits to update
420
  * @enabled_irq_mask: mask of interrupt bits to enable
421
  */
422
static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
423
				uint32_t interrupt_mask,
424
				uint32_t enabled_irq_mask)
425
{
426
	uint32_t new_val;
427
	uint32_t old_val;
428
 
429
	assert_spin_locked(&dev_priv->irq_lock);
430
 
431
	WARN_ON(enabled_irq_mask & ~interrupt_mask);
432
 
433
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
434
		return;
435
 
436
	old_val = I915_READ(GEN8_DE_PORT_IMR);
437
 
438
	new_val = old_val;
439
	new_val &= ~interrupt_mask;
440
	new_val |= (~enabled_irq_mask & interrupt_mask);
441
 
442
	if (new_val != old_val) {
443
		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
444
		POSTING_READ(GEN8_DE_PORT_IMR);
445
	}
446
}
447
 
448
/**
4104 Serge 449
 * ibx_display_interrupt_update - update SDEIMR
450
 * @dev_priv: driver private
451
 * @interrupt_mask: mask of interrupt bits to update
452
 * @enabled_irq_mask: mask of interrupt bits to enable
453
 */
5354 serge 454
void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
6084 serge 455
				  uint32_t interrupt_mask,
456
				  uint32_t enabled_irq_mask)
4104 Serge 457
{
458
	uint32_t sdeimr = I915_READ(SDEIMR);
459
	sdeimr &= ~interrupt_mask;
460
	sdeimr |= (~enabled_irq_mask & interrupt_mask);
461
 
6084 serge 462
	WARN_ON(enabled_irq_mask & ~interrupt_mask);
463
 
4104 Serge 464
	assert_spin_locked(&dev_priv->irq_lock);
465
 
5060 serge 466
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
4104 Serge 467
		return;
468
 
469
	I915_WRITE(SDEIMR, sdeimr);
470
	POSTING_READ(SDEIMR);
471
}
472
 
5060 serge 473
static void
474
__i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
475
		       u32 enable_mask, u32 status_mask)
3031 serge 476
{
6084 serge 477
	u32 reg = PIPESTAT(pipe);
5060 serge 478
	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
3031 serge 479
 
4104 Serge 480
	assert_spin_locked(&dev_priv->irq_lock);
5354 serge 481
	WARN_ON(!intel_irqs_enabled(dev_priv));
4104 Serge 482
 
5060 serge 483
	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
484
		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
485
		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
486
		      pipe_name(pipe), enable_mask, status_mask))
3746 Serge 487
		return;
488
 
5060 serge 489
	if ((pipestat & enable_mask) == enable_mask)
490
		return;
491
 
492
	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
493
 
6084 serge 494
	/* Enable the interrupt, clear any pending status */
5060 serge 495
	pipestat |= enable_mask | status_mask;
3746 Serge 496
	I915_WRITE(reg, pipestat);
6084 serge 497
	POSTING_READ(reg);
3031 serge 498
}
499
 
5060 serge 500
static void
501
__i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
502
		        u32 enable_mask, u32 status_mask)
3031 serge 503
{
6084 serge 504
	u32 reg = PIPESTAT(pipe);
5060 serge 505
	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
3031 serge 506
 
4104 Serge 507
	assert_spin_locked(&dev_priv->irq_lock);
5354 serge 508
	WARN_ON(!intel_irqs_enabled(dev_priv));
4104 Serge 509
 
5060 serge 510
	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
511
		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
512
		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
513
		      pipe_name(pipe), enable_mask, status_mask))
3746 Serge 514
		return;
515
 
5060 serge 516
	if ((pipestat & enable_mask) == 0)
517
		return;
518
 
519
	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
520
 
521
	pipestat &= ~enable_mask;
3746 Serge 522
	I915_WRITE(reg, pipestat);
6084 serge 523
	POSTING_READ(reg);
3031 serge 524
}
525
 
5060 serge 526
static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
527
{
528
	u32 enable_mask = status_mask << 16;
529
 
530
	/*
531
	 * On pipe A we don't support the PSR interrupt yet,
532
	 * on pipe B and C the same bit MBZ.
533
	 */
534
	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
535
		return 0;
536
	/*
537
	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
538
	 * A the same bit is for perf counters which we don't use either.
539
	 */
540
	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
541
		return 0;
542
 
543
	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
544
			 SPRITE0_FLIP_DONE_INT_EN_VLV |
545
			 SPRITE1_FLIP_DONE_INT_EN_VLV);
546
	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
547
		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
548
	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
549
		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
550
 
551
	return enable_mask;
552
}
553
 
554
void
555
i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
556
		     u32 status_mask)
557
{
558
	u32 enable_mask;
559
 
560
	if (IS_VALLEYVIEW(dev_priv->dev))
561
		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
562
							   status_mask);
563
	else
564
		enable_mask = status_mask << 16;
565
	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
566
}
567
 
568
void
569
i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
570
		      u32 status_mask)
571
{
572
	u32 enable_mask;
573
 
574
	if (IS_VALLEYVIEW(dev_priv->dev))
575
		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
576
							   status_mask);
577
	else
578
		enable_mask = status_mask << 16;
579
	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
580
}
581
 
3031 serge 582
/**
4104 Serge 583
 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
6084 serge 584
 * @dev: drm device
3031 serge 585
 */
4104 Serge 586
static void i915_enable_asle_pipestat(struct drm_device *dev)
3031 serge 587
{
5060 serge 588
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 589
 
4104 Serge 590
	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
3031 serge 591
		return;
592
 
5354 serge 593
	spin_lock_irq(&dev_priv->irq_lock);
3031 serge 594
 
5060 serge 595
	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
6084 serge 596
	if (INTEL_INFO(dev)->gen >= 4)
4560 Serge 597
		i915_enable_pipestat(dev_priv, PIPE_A,
5060 serge 598
				     PIPE_LEGACY_BLC_EVENT_STATUS);
3031 serge 599
 
5354 serge 600
	spin_unlock_irq(&dev_priv->irq_lock);
3031 serge 601
}
602
 
5060 serge 603
/*
604
 * This timing diagram depicts the video signal in and
605
 * around the vertical blanking period.
606
 *
607
 * Assumptions about the fictitious mode used in this example:
608
 *  vblank_start >= 3
609
 *  vsync_start = vblank_start + 1
610
 *  vsync_end = vblank_start + 2
611
 *  vtotal = vblank_start + 3
612
 *
613
 *           start of vblank:
614
 *           latch double buffered registers
615
 *           increment frame counter (ctg+)
616
 *           generate start of vblank interrupt (gen4+)
617
 *           |
618
 *           |          frame start:
619
 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
620
 *           |          may be shifted forward 1-3 extra lines via PIPECONF
621
 *           |          |
622
 *           |          |  start of vsync:
623
 *           |          |  generate vsync interrupt
624
 *           |          |  |
625
 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
626
 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
627
 * ----va---> <-----------------vb--------------------> <--------va-------------
628
 *       |          |       <----vs----->                     |
629
 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
630
 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
631
 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
632
 *       |          |                                         |
633
 *       last visible pixel                                   first visible pixel
634
 *                  |                                         increment frame counter (gen3/4)
635
 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
636
 *
637
 * x  = horizontal active
638
 * _  = horizontal blanking
639
 * hs = horizontal sync
640
 * va = vertical active
641
 * vb = vertical blanking
642
 * vs = vertical sync
643
 * vbs = vblank_start (number)
644
 *
645
 * Summary:
646
 * - most events happen at the start of horizontal sync
647
 * - frame start happens at the start of horizontal blank, 1-4 lines
648
 *   (depending on PIPECONF settings) after the start of vblank
649
 * - gen3/4 pixel and frame counter are synchronized with the start
650
 *   of horizontal active on the first line of vertical active
651
 */
652
 
6084 serge 653
static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
4560 Serge 654
{
655
	/* Gen2 doesn't have a hardware frame counter */
656
	return 0;
657
}
658
 
3031 serge 659
/* Called from drm generic code, passed a 'crtc', which
660
 * we use as a pipe index
661
 */
6084 serge 662
static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
3031 serge 663
{
5060 serge 664
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 665
	unsigned long high_frame;
666
	unsigned long low_frame;
5060 serge 667
	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
6084 serge 668
	struct intel_crtc *intel_crtc =
669
		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
670
	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
3031 serge 671
 
6084 serge 672
	htotal = mode->crtc_htotal;
673
	hsync_start = mode->crtc_hsync_start;
674
	vbl_start = mode->crtc_vblank_start;
675
	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
676
		vbl_start = DIV_ROUND_UP(vbl_start, 2);
3031 serge 677
 
5060 serge 678
	/* Convert to pixel count */
6084 serge 679
	vbl_start *= htotal;
4560 Serge 680
 
5060 serge 681
	/* Start of vblank event occurs at start of hsync */
682
	vbl_start -= htotal - hsync_start;
683
 
3031 serge 684
	high_frame = PIPEFRAME(pipe);
685
	low_frame = PIPEFRAMEPIXEL(pipe);
686
 
687
	/*
688
	 * High & low register fields aren't synchronized, so make sure
689
	 * we get a low value that's stable across two reads of the high
690
	 * register.
691
	 */
692
	do {
693
		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
4560 Serge 694
		low   = I915_READ(low_frame);
3031 serge 695
		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
696
	} while (high1 != high2);
697
 
698
	high1 >>= PIPE_FRAME_HIGH_SHIFT;
4560 Serge 699
	pixel = low & PIPE_PIXEL_MASK;
3031 serge 700
	low >>= PIPE_FRAME_LOW_SHIFT;
4560 Serge 701
 
702
	/*
703
	 * The frame counter increments at beginning of active.
704
	 * Cook up a vblank counter by also checking the pixel
705
	 * counter against vblank start.
706
	 */
707
	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
3031 serge 708
}
709
 
6084 serge 710
static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
3031 serge 711
{
5060 serge 712
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 713
 
6084 serge 714
	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
3031 serge 715
}
716
 
4560 Serge 717
/* raw reads, only for fast reads of display block, no need for forcewake etc. */
718
#define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
719
 
5060 serge 720
static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
4560 Serge 721
{
5060 serge 722
	struct drm_device *dev = crtc->base.dev;
4560 Serge 723
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 724
	const struct drm_display_mode *mode = &crtc->base.hwmode;
5060 serge 725
	enum pipe pipe = crtc->pipe;
726
	int position, vtotal;
4560 Serge 727
 
5060 serge 728
	vtotal = mode->crtc_vtotal;
729
	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
730
		vtotal /= 2;
4560 Serge 731
 
5060 serge 732
	if (IS_GEN2(dev))
733
		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
734
	else
735
		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
736
 
737
	/*
6084 serge 738
	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
739
	 * read it just before the start of vblank.  So try it again
740
	 * so we don't accidentally end up spanning a vblank frame
741
	 * increment, causing the pipe_update_end() code to squak at us.
742
	 *
743
	 * The nature of this problem means we can't simply check the ISR
744
	 * bit and return the vblank start value; nor can we use the scanline
745
	 * debug register in the transcoder as it appears to have the same
746
	 * problem.  We may need to extend this to include other platforms,
747
	 * but so far testing only shows the problem on HSW.
748
	 */
749
	if (HAS_DDI(dev) && !position) {
750
		int i, temp;
751
 
752
		for (i = 0; i < 100; i++) {
753
			udelay(1);
754
			temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
755
				DSL_LINEMASK_GEN3;
756
			if (temp != position) {
757
				position = temp;
758
				break;
759
			}
760
		}
761
	}
762
 
763
	/*
5060 serge 764
	 * See update_scanline_offset() for the details on the
765
	 * scanline_offset adjustment.
766
	 */
767
	return (position + crtc->scanline_offset) % vtotal;
4560 Serge 768
}
769
 
6084 serge 770
static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
4560 Serge 771
				    unsigned int flags, int *vpos, int *hpos,
6084 serge 772
				    ktime_t *stime, ktime_t *etime,
773
				    const struct drm_display_mode *mode)
3746 Serge 774
{
4560 Serge 775
	struct drm_i915_private *dev_priv = dev->dev_private;
776
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
777
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
778
	int position;
5060 serge 779
	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
3746 Serge 780
	bool in_vbl = true;
781
	int ret = 0;
4560 Serge 782
	unsigned long irqflags;
3746 Serge 783
 
6084 serge 784
	if (WARN_ON(!mode->crtc_clock)) {
3746 Serge 785
		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
786
				 "pipe %c\n", pipe_name(pipe));
787
		return 0;
788
	}
789
 
4560 Serge 790
	htotal = mode->crtc_htotal;
5060 serge 791
	hsync_start = mode->crtc_hsync_start;
4560 Serge 792
	vtotal = mode->crtc_vtotal;
793
	vbl_start = mode->crtc_vblank_start;
794
	vbl_end = mode->crtc_vblank_end;
3746 Serge 795
 
4560 Serge 796
	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
797
		vbl_start = DIV_ROUND_UP(vbl_start, 2);
798
		vbl_end /= 2;
799
		vtotal /= 2;
800
	}
801
 
802
	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
803
 
804
	/*
805
	 * Lock uncore.lock, as we will do multiple timing critical raw
806
	 * register reads, potentially with preemption disabled, so the
807
	 * following code must not block on uncore.lock.
808
	 */
809
	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
810
 
811
	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
812
 
6084 serge 813
	/* Get optional system timestamp before query. */
814
	if (stime)
815
		*stime = ktime_get();
4560 Serge 816
 
817
	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3746 Serge 818
		/* No obvious pixelcount register. Only query vertical
819
		 * scanout position from Display scan line register.
820
		 */
5060 serge 821
		position = __intel_get_crtc_scanline(intel_crtc);
3746 Serge 822
	} else {
823
		/* Have access to pixelcount since start of frame.
824
		 * We can split this into vertical and horizontal
825
		 * scanout position.
826
		 */
4560 Serge 827
		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
3746 Serge 828
 
4560 Serge 829
		/* convert to pixel counts */
830
		vbl_start *= htotal;
831
		vbl_end *= htotal;
832
		vtotal *= htotal;
5060 serge 833
 
834
		/*
835
		 * In interlaced modes, the pixel counter counts all pixels,
836
		 * so one field will have htotal more pixels. In order to avoid
837
		 * the reported position from jumping backwards when the pixel
838
		 * counter is beyond the length of the shorter field, just
839
		 * clamp the position the length of the shorter field. This
840
		 * matches how the scanline counter based position works since
841
		 * the scanline counter doesn't count the two half lines.
842
		 */
843
		if (position >= vtotal)
844
			position = vtotal - 1;
845
 
846
		/*
847
		 * Start of vblank interrupt is triggered at start of hsync,
848
		 * just prior to the first active line of vblank. However we
849
		 * consider lines to start at the leading edge of horizontal
850
		 * active. So, should we get here before we've crossed into
851
		 * the horizontal active of the first line in vblank, we would
852
		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
853
		 * always add htotal-hsync_start to the current pixel position.
854
		 */
855
		position = (position + htotal - hsync_start) % vtotal;
3746 Serge 856
	}
857
 
6084 serge 858
	/* Get optional system timestamp after query. */
859
	if (etime)
860
		*etime = ktime_get();
3746 Serge 861
 
4560 Serge 862
	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
3746 Serge 863
 
4560 Serge 864
	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3746 Serge 865
 
4560 Serge 866
	in_vbl = position >= vbl_start && position < vbl_end;
3746 Serge 867
 
4560 Serge 868
	/*
869
	 * While in vblank, position will be negative
870
	 * counting up towards 0 at vbl_end. And outside
871
	 * vblank, position will be positive counting
872
	 * up since vbl_end.
873
	 */
874
	if (position >= vbl_start)
875
		position -= vbl_end;
876
	else
877
		position += vtotal - vbl_end;
3746 Serge 878
 
4560 Serge 879
	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
880
		*vpos = position;
881
		*hpos = 0;
882
	} else {
883
		*vpos = position / htotal;
884
		*hpos = position - (*vpos * htotal);
885
	}
886
 
3746 Serge 887
	/* In vblank? */
888
	if (in_vbl)
5354 serge 889
		ret |= DRM_SCANOUTPOS_IN_VBLANK;
3746 Serge 890
 
891
	return ret;
892
}
893
 
5060 serge 894
int intel_get_crtc_scanline(struct intel_crtc *crtc)
895
{
896
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
897
	unsigned long irqflags;
898
	int position;
899
 
900
	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
901
	position = __intel_get_crtc_scanline(crtc);
902
	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
903
 
904
	return position;
905
}
906
 
6084 serge 907
static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
3746 Serge 908
			      int *max_error,
909
			      struct timeval *vblank_time,
910
			      unsigned flags)
911
{
912
	struct drm_crtc *crtc;
913
 
6084 serge 914
	if (pipe >= INTEL_INFO(dev)->num_pipes) {
915
		DRM_ERROR("Invalid crtc %u\n", pipe);
3746 Serge 916
		return -EINVAL;
917
	}
918
 
919
	/* Get drm_crtc to timestamp: */
920
	crtc = intel_get_crtc_for_pipe(dev, pipe);
921
	if (crtc == NULL) {
6084 serge 922
		DRM_ERROR("Invalid crtc %u\n", pipe);
3746 Serge 923
		return -EINVAL;
924
	}
925
 
6084 serge 926
	if (!crtc->hwmode.crtc_clock) {
927
		DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
3746 Serge 928
		return -EBUSY;
929
	}
930
 
931
	/* Helper routine in DRM core does all the work: */
932
	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
933
						     vblank_time, flags,
6084 serge 934
						     &crtc->hwmode);
3746 Serge 935
}
936
 
4104 Serge 937
static void ironlake_rps_change_irq_handler(struct drm_device *dev)
3746 Serge 938
{
5060 serge 939
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 940
	u32 busy_up, busy_down, max_avg, min_avg;
941
	u8 new_delay;
942
 
4104 Serge 943
	spin_lock(&mchdev_lock);
3746 Serge 944
 
945
	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
946
 
947
	new_delay = dev_priv->ips.cur_delay;
948
 
949
	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
950
	busy_up = I915_READ(RCPREVBSYTUPAVG);
951
	busy_down = I915_READ(RCPREVBSYTDNAVG);
952
	max_avg = I915_READ(RCBMAXAVG);
953
	min_avg = I915_READ(RCBMINAVG);
954
 
955
	/* Handle RCS change request from hw */
956
	if (busy_up > max_avg) {
957
		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
958
			new_delay = dev_priv->ips.cur_delay - 1;
959
		if (new_delay < dev_priv->ips.max_delay)
960
			new_delay = dev_priv->ips.max_delay;
961
	} else if (busy_down < min_avg) {
962
		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
963
			new_delay = dev_priv->ips.cur_delay + 1;
964
		if (new_delay > dev_priv->ips.min_delay)
965
			new_delay = dev_priv->ips.min_delay;
966
	}
967
 
968
	if (ironlake_set_drps(dev, new_delay))
969
		dev_priv->ips.cur_delay = new_delay;
970
 
4104 Serge 971
	spin_unlock(&mchdev_lock);
3746 Serge 972
 
973
	return;
974
}
975
 
6084 serge 976
static void notify_ring(struct intel_engine_cs *ring)
2352 Serge 977
{
5060 serge 978
	if (!intel_ring_initialized(ring))
2352 Serge 979
		return;
2351 Serge 980
 
6084 serge 981
	trace_i915_gem_request_notify(ring);
2351 Serge 982
 
2352 Serge 983
	wake_up_all(&ring->irq_queue);
984
}
985
 
6084 serge 986
static void vlv_c0_read(struct drm_i915_private *dev_priv,
987
			struct intel_rps_ei *ei)
5060 serge 988
{
6084 serge 989
	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
990
	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
991
	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
992
}
5060 serge 993
 
6084 serge 994
static bool vlv_c0_above(struct drm_i915_private *dev_priv,
995
			 const struct intel_rps_ei *old,
996
			 const struct intel_rps_ei *now,
997
			 int threshold)
998
{
999
	u64 time, c0;
1000
	unsigned int mul = 100;
5060 serge 1001
 
6084 serge 1002
	if (old->cz_clock == 0)
1003
		return false;
5060 serge 1004
 
6084 serge 1005
	if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1006
		mul <<= 8;
5060 serge 1007
 
6084 serge 1008
	time = now->cz_clock - old->cz_clock;
1009
	time *= threshold * dev_priv->czclk_freq;
5060 serge 1010
 
6084 serge 1011
	/* Workload can be split between render + media, e.g. SwapBuffers
1012
	 * being blitted in X after being rendered in mesa. To account for
1013
	 * this we need to combine both engines into our activity counter.
5060 serge 1014
	 */
6084 serge 1015
	c0 = now->render_c0 - old->render_c0;
1016
	c0 += now->media_c0 - old->media_c0;
1017
	c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
5060 serge 1018
 
6084 serge 1019
	return c0 >= time;
5060 serge 1020
}
1021
 
6084 serge 1022
void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
5060 serge 1023
{
6084 serge 1024
	vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1025
	dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1026
}
5060 serge 1027
 
6084 serge 1028
static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1029
{
1030
	struct intel_rps_ei now;
1031
	u32 events = 0;
5060 serge 1032
 
6084 serge 1033
	if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1034
		return 0;
5060 serge 1035
 
6084 serge 1036
	vlv_c0_read(dev_priv, &now);
1037
	if (now.cz_clock == 0)
1038
		return 0;
5060 serge 1039
 
6084 serge 1040
	if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1041
		if (!vlv_c0_above(dev_priv,
1042
				  &dev_priv->rps.down_ei, &now,
1043
				  dev_priv->rps.down_threshold))
1044
			events |= GEN6_PM_RP_DOWN_THRESHOLD;
1045
		dev_priv->rps.down_ei = now;
5060 serge 1046
	}
1047
 
6084 serge 1048
	if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1049
		if (vlv_c0_above(dev_priv,
1050
				 &dev_priv->rps.up_ei, &now,
1051
				 dev_priv->rps.up_threshold))
1052
			events |= GEN6_PM_RP_UP_THRESHOLD;
1053
		dev_priv->rps.up_ei = now;
5060 serge 1054
	}
1055
 
6084 serge 1056
	return events;
1057
}
5060 serge 1058
 
6084 serge 1059
static bool any_waiters(struct drm_i915_private *dev_priv)
1060
{
1061
	struct intel_engine_cs *ring;
1062
	int i;
5060 serge 1063
 
6084 serge 1064
	for_each_ring(ring, dev_priv, i)
1065
		if (ring->irq_refcount)
1066
			return true;
5060 serge 1067
 
6084 serge 1068
	return false;
5060 serge 1069
}
1070
 
3031 serge 1071
static void gen6_pm_rps_work(struct work_struct *work)
1072
{
5060 serge 1073
	struct drm_i915_private *dev_priv =
1074
		container_of(work, struct drm_i915_private, rps.work);
6084 serge 1075
	bool client_boost;
1076
	int new_delay, adj, min, max;
4104 Serge 1077
	u32 pm_iir;
2352 Serge 1078
 
4104 Serge 1079
	spin_lock_irq(&dev_priv->irq_lock);
5354 serge 1080
	/* Speed up work cancelation during disabling rps interrupts. */
1081
	if (!dev_priv->rps.interrupts_enabled) {
1082
		spin_unlock_irq(&dev_priv->irq_lock);
1083
		return;
1084
	}
3031 serge 1085
	pm_iir = dev_priv->rps.pm_iir;
1086
	dev_priv->rps.pm_iir = 0;
5354 serge 1087
	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
6084 serge 1088
	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1089
	client_boost = dev_priv->rps.client_boost;
1090
	dev_priv->rps.client_boost = false;
4104 Serge 1091
	spin_unlock_irq(&dev_priv->irq_lock);
2352 Serge 1092
 
4104 Serge 1093
	/* Make sure we didn't queue anything we're not going to process. */
5060 serge 1094
	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
4104 Serge 1095
 
6084 serge 1096
	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
3031 serge 1097
		return;
1098
 
3243 Serge 1099
	mutex_lock(&dev_priv->rps.hw_lock);
3031 serge 1100
 
6084 serge 1101
	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1102
 
4560 Serge 1103
	adj = dev_priv->rps.last_adj;
6084 serge 1104
	new_delay = dev_priv->rps.cur_freq;
1105
	min = dev_priv->rps.min_freq_softlimit;
1106
	max = dev_priv->rps.max_freq_softlimit;
1107
 
1108
	if (client_boost) {
1109
		new_delay = dev_priv->rps.max_freq_softlimit;
1110
		adj = 0;
1111
	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
4560 Serge 1112
		if (adj > 0)
1113
			adj *= 2;
6084 serge 1114
		else /* CHV needs even encode values */
1115
			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
4104 Serge 1116
		/*
1117
		 * For better performance, jump directly
1118
		 * to RPe if we're below it.
1119
		 */
6084 serge 1120
		if (new_delay < dev_priv->rps.efficient_freq - adj) {
5060 serge 1121
			new_delay = dev_priv->rps.efficient_freq;
6084 serge 1122
			adj = 0;
1123
		}
1124
	} else if (any_waiters(dev_priv)) {
1125
		adj = 0;
4560 Serge 1126
	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
5060 serge 1127
		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1128
			new_delay = dev_priv->rps.efficient_freq;
4560 Serge 1129
		else
5060 serge 1130
			new_delay = dev_priv->rps.min_freq_softlimit;
4560 Serge 1131
		adj = 0;
1132
	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1133
		if (adj < 0)
1134
			adj *= 2;
6084 serge 1135
		else /* CHV needs even encode values */
1136
			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
4560 Serge 1137
	} else { /* unknown event */
6084 serge 1138
		adj = 0;
4560 Serge 1139
	}
3031 serge 1140
 
6084 serge 1141
	dev_priv->rps.last_adj = adj;
1142
 
3031 serge 1143
	/* sysfs frequency interfaces may have snuck in while servicing the
1144
	 * interrupt
1145
	 */
6084 serge 1146
	new_delay += adj;
1147
	new_delay = clamp_t(int, new_delay, min, max);
4560 Serge 1148
 
6084 serge 1149
	intel_set_rps(dev_priv->dev, new_delay);
5060 serge 1150
 
3243 Serge 1151
	mutex_unlock(&dev_priv->rps.hw_lock);
3031 serge 1152
}
1153
 
1154
 
1155
/**
1156
 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1157
 * occurred.
1158
 * @work: workqueue struct
1159
 *
1160
 * Doesn't actually do anything except notify userspace. As a consequence of
1161
 * this event, userspace should try to remap the bad rows since statistically
1162
 * it is likely the same row is more likely to go bad again.
1163
 */
1164
static void ivybridge_parity_work(struct work_struct *work)
2351 Serge 1165
{
5060 serge 1166
	struct drm_i915_private *dev_priv =
1167
		container_of(work, struct drm_i915_private, l3_parity.error_work);
3031 serge 1168
	u32 error_status, row, bank, subbank;
4560 Serge 1169
	char *parity_event[6];
3031 serge 1170
	uint32_t misccpctl;
4560 Serge 1171
	uint8_t slice = 0;
3031 serge 1172
 
1173
	/* We must turn off DOP level clock gating to access the L3 registers.
1174
	 * In order to prevent a get/put style interface, acquire struct mutex
1175
	 * any time we access those registers.
1176
	 */
1177
	mutex_lock(&dev_priv->dev->struct_mutex);
1178
 
4560 Serge 1179
	/* If we've screwed up tracking, just let the interrupt fire again */
1180
	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1181
		goto out;
1182
 
3031 serge 1183
	misccpctl = I915_READ(GEN7_MISCCPCTL);
1184
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1185
	POSTING_READ(GEN7_MISCCPCTL);
1186
 
4560 Serge 1187
	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1188
		u32 reg;
1189
 
1190
		slice--;
1191
		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1192
			break;
1193
 
1194
		dev_priv->l3_parity.which_slice &= ~(1<
1195
 
1196
		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1197
 
1198
		error_status = I915_READ(reg);
6084 serge 1199
		row = GEN7_PARITY_ERROR_ROW(error_status);
1200
		bank = GEN7_PARITY_ERROR_BANK(error_status);
1201
		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
3031 serge 1202
 
4560 Serge 1203
		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1204
		POSTING_READ(reg);
3031 serge 1205
 
4560 Serge 1206
		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1207
			  slice, row, bank, subbank);
1208
 
1209
	}
1210
 
3031 serge 1211
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1212
 
4560 Serge 1213
out:
1214
	WARN_ON(dev_priv->l3_parity.which_slice);
5354 serge 1215
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 1216
	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
5354 serge 1217
	spin_unlock_irq(&dev_priv->irq_lock);
3031 serge 1218
 
1219
	mutex_unlock(&dev_priv->dev->struct_mutex);
1220
}
1221
 
4560 Serge 1222
static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
3031 serge 1223
{
5060 serge 1224
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1225
 
4560 Serge 1226
	if (!HAS_L3_DPF(dev))
3031 serge 1227
		return;
1228
 
4104 Serge 1229
	spin_lock(&dev_priv->irq_lock);
5060 serge 1230
	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
4104 Serge 1231
	spin_unlock(&dev_priv->irq_lock);
3031 serge 1232
 
4560 Serge 1233
	iir &= GT_PARITY_ERROR(dev);
1234
	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1235
		dev_priv->l3_parity.which_slice |= 1 << 1;
1236
 
1237
	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1238
		dev_priv->l3_parity.which_slice |= 1 << 0;
1239
 
3243 Serge 1240
	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
3031 serge 1241
}
1242
 
4104 Serge 1243
static void ilk_gt_irq_handler(struct drm_device *dev,
1244
			       struct drm_i915_private *dev_priv,
1245
			       u32 gt_iir)
1246
{
1247
	if (gt_iir &
1248
	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
6084 serge 1249
		notify_ring(&dev_priv->ring[RCS]);
4104 Serge 1250
	if (gt_iir & ILK_BSD_USER_INTERRUPT)
6084 serge 1251
		notify_ring(&dev_priv->ring[VCS]);
4104 Serge 1252
}
1253
 
3031 serge 1254
static void snb_gt_irq_handler(struct drm_device *dev,
1255
			       struct drm_i915_private *dev_priv,
1256
			       u32 gt_iir)
1257
{
1258
 
4104 Serge 1259
	if (gt_iir &
1260
	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
6084 serge 1261
		notify_ring(&dev_priv->ring[RCS]);
4104 Serge 1262
	if (gt_iir & GT_BSD_USER_INTERRUPT)
6084 serge 1263
		notify_ring(&dev_priv->ring[VCS]);
4104 Serge 1264
	if (gt_iir & GT_BLT_USER_INTERRUPT)
6084 serge 1265
		notify_ring(&dev_priv->ring[BCS]);
3031 serge 1266
 
4104 Serge 1267
	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1268
		      GT_BSD_CS_ERROR_INTERRUPT |
5354 serge 1269
		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1270
		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
3031 serge 1271
 
4560 Serge 1272
	if (gt_iir & GT_PARITY_ERROR(dev))
1273
		ivybridge_parity_error_irq_handler(dev, gt_iir);
3031 serge 1274
}
1275
 
6084 serge 1276
static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
4560 Serge 1277
				       u32 master_ctl)
1278
{
1279
	irqreturn_t ret = IRQ_NONE;
1280
 
1281
	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
6084 serge 1282
		u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
4560 Serge 1283
		if (tmp) {
6084 serge 1284
			I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
4560 Serge 1285
			ret = IRQ_HANDLED;
5354 serge 1286
 
6084 serge 1287
			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1288
				intel_lrc_irq_handler(&dev_priv->ring[RCS]);
1289
			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1290
				notify_ring(&dev_priv->ring[RCS]);
5354 serge 1291
 
6084 serge 1292
			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1293
				intel_lrc_irq_handler(&dev_priv->ring[BCS]);
1294
			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1295
				notify_ring(&dev_priv->ring[BCS]);
4560 Serge 1296
		} else
1297
			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1298
	}
1299
 
5060 serge 1300
	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
6084 serge 1301
		u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
4560 Serge 1302
		if (tmp) {
6084 serge 1303
			I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
4560 Serge 1304
			ret = IRQ_HANDLED;
5354 serge 1305
 
6084 serge 1306
			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1307
				intel_lrc_irq_handler(&dev_priv->ring[VCS]);
1308
			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1309
				notify_ring(&dev_priv->ring[VCS]);
5354 serge 1310
 
6084 serge 1311
			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1312
				intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
1313
			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1314
				notify_ring(&dev_priv->ring[VCS2]);
4560 Serge 1315
		} else
1316
			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1317
	}
1318
 
6084 serge 1319
	if (master_ctl & GEN8_GT_VECS_IRQ) {
1320
		u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
1321
		if (tmp) {
1322
			I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
1323
			ret = IRQ_HANDLED;
1324
 
1325
			if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1326
				intel_lrc_irq_handler(&dev_priv->ring[VECS]);
1327
			if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1328
				notify_ring(&dev_priv->ring[VECS]);
1329
		} else
1330
			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1331
	}
1332
 
5060 serge 1333
	if (master_ctl & GEN8_GT_PM_IRQ) {
6084 serge 1334
		u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
5060 serge 1335
		if (tmp & dev_priv->pm_rps_events) {
6084 serge 1336
			I915_WRITE_FW(GEN8_GT_IIR(2),
1337
				      tmp & dev_priv->pm_rps_events);
5060 serge 1338
			ret = IRQ_HANDLED;
5354 serge 1339
			gen6_rps_irq_handler(dev_priv, tmp);
5060 serge 1340
		} else
1341
			DRM_ERROR("The master control interrupt lied (PM)!\n");
1342
	}
1343
 
6084 serge 1344
	return ret;
1345
}
5354 serge 1346
 
6084 serge 1347
static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1348
{
1349
	switch (port) {
1350
	case PORT_A:
1351
		return val & PORTA_HOTPLUG_LONG_DETECT;
1352
	case PORT_B:
1353
		return val & PORTB_HOTPLUG_LONG_DETECT;
1354
	case PORT_C:
1355
		return val & PORTC_HOTPLUG_LONG_DETECT;
1356
	default:
1357
		return false;
4560 Serge 1358
	}
6084 serge 1359
}
4560 Serge 1360
 
6084 serge 1361
static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1362
{
1363
	switch (port) {
1364
	case PORT_E:
1365
		return val & PORTE_HOTPLUG_LONG_DETECT;
1366
	default:
1367
		return false;
1368
	}
4560 Serge 1369
}
1370
 
6084 serge 1371
static bool spt_port_hotplug_long_detect(enum port port, u32 val)
5060 serge 1372
{
1373
	switch (port) {
1374
	case PORT_A:
6084 serge 1375
		return val & PORTA_HOTPLUG_LONG_DETECT;
5060 serge 1376
	case PORT_B:
6084 serge 1377
		return val & PORTB_HOTPLUG_LONG_DETECT;
5060 serge 1378
	case PORT_C:
6084 serge 1379
		return val & PORTC_HOTPLUG_LONG_DETECT;
5060 serge 1380
	case PORT_D:
6084 serge 1381
		return val & PORTD_HOTPLUG_LONG_DETECT;
1382
	default:
1383
		return false;
5060 serge 1384
	}
1385
}
1386
 
6084 serge 1387
static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
5060 serge 1388
{
1389
	switch (port) {
1390
	case PORT_A:
6084 serge 1391
		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
5060 serge 1392
	default:
6084 serge 1393
		return false;
1394
	}
1395
}
1396
 
1397
static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1398
{
1399
	switch (port) {
5060 serge 1400
	case PORT_B:
6084 serge 1401
		return val & PORTB_HOTPLUG_LONG_DETECT;
5060 serge 1402
	case PORT_C:
6084 serge 1403
		return val & PORTC_HOTPLUG_LONG_DETECT;
5060 serge 1404
	case PORT_D:
6084 serge 1405
		return val & PORTD_HOTPLUG_LONG_DETECT;
1406
	default:
1407
		return false;
5060 serge 1408
	}
1409
}
1410
 
6084 serge 1411
static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
5060 serge 1412
{
6084 serge 1413
	switch (port) {
1414
	case PORT_B:
1415
		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1416
	case PORT_C:
1417
		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1418
	case PORT_D:
1419
		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
5060 serge 1420
	default:
6084 serge 1421
		return false;
5060 serge 1422
	}
1423
}
1424
 
6084 serge 1425
/*
1426
 * Get a bit mask of pins that have triggered, and which ones may be long.
1427
 * This can be called multiple times with the same masks to accumulate
1428
 * hotplug detection results from several registers.
1429
 *
1430
 * Note that the caller is expected to zero out the masks initially.
1431
 */
1432
static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1433
			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1434
			     const u32 hpd[HPD_NUM_PINS],
1435
			     bool long_pulse_detect(enum port port, u32 val))
3746 Serge 1436
{
6084 serge 1437
	enum port port;
3746 Serge 1438
	int i;
1439
 
6084 serge 1440
	for_each_hpd_pin(i) {
1441
		if ((hpd[i] & hotplug_trigger) == 0)
5060 serge 1442
			continue;
3746 Serge 1443
 
6084 serge 1444
		*pin_mask |= BIT(i);
5060 serge 1445
 
6084 serge 1446
//       if (!intel_hpd_pin_to_port(i, &port))
5060 serge 1447
			continue;
1448
 
6084 serge 1449
		if (long_pulse_detect(port, dig_hotplug_reg))
1450
			*long_mask |= BIT(i);
3746 Serge 1451
	}
1452
 
6084 serge 1453
	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1454
			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
3746 Serge 1455
 
1456
}
1457
 
3480 Serge 1458
static void gmbus_irq_handler(struct drm_device *dev)
1459
{
5060 serge 1460
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 1461
 
1462
	wake_up_all(&dev_priv->gmbus_wait_queue);
1463
}
1464
 
1465
static void dp_aux_irq_handler(struct drm_device *dev)
1466
{
5060 serge 1467
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 1468
 
1469
	wake_up_all(&dev_priv->gmbus_wait_queue);
1470
}
1471
 
4560 Serge 1472
#if defined(CONFIG_DEBUG_FS)
1473
static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1474
					 uint32_t crc0, uint32_t crc1,
1475
					 uint32_t crc2, uint32_t crc3,
1476
					 uint32_t crc4)
1477
{
1478
	struct drm_i915_private *dev_priv = dev->dev_private;
1479
	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1480
	struct intel_pipe_crc_entry *entry;
1481
	int head, tail;
1482
 
1483
	spin_lock(&pipe_crc->lock);
1484
 
1485
	if (!pipe_crc->entries) {
1486
		spin_unlock(&pipe_crc->lock);
5354 serge 1487
		DRM_DEBUG_KMS("spurious interrupt\n");
4560 Serge 1488
		return;
1489
	}
1490
 
1491
	head = pipe_crc->head;
1492
	tail = pipe_crc->tail;
1493
 
1494
	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1495
		spin_unlock(&pipe_crc->lock);
1496
		DRM_ERROR("CRC buffer overflowing\n");
1497
		return;
1498
	}
1499
 
1500
	entry = &pipe_crc->entries[head];
1501
 
1502
	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1503
	entry->crc[0] = crc0;
1504
	entry->crc[1] = crc1;
1505
	entry->crc[2] = crc2;
1506
	entry->crc[3] = crc3;
1507
	entry->crc[4] = crc4;
1508
 
1509
	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1510
	pipe_crc->head = head;
1511
 
1512
	spin_unlock(&pipe_crc->lock);
1513
 
1514
	wake_up_interruptible(&pipe_crc->wq);
1515
}
1516
#else
1517
static inline void
1518
display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1519
			     uint32_t crc0, uint32_t crc1,
1520
			     uint32_t crc2, uint32_t crc3,
1521
			     uint32_t crc4) {}
1522
#endif
1523
 
1524
 
1525
static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1526
{
1527
	struct drm_i915_private *dev_priv = dev->dev_private;
1528
 
1529
	display_pipe_crc_irq_handler(dev, pipe,
1530
				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1531
				     0, 0, 0, 0);
1532
}
1533
 
1534
static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1535
{
1536
	struct drm_i915_private *dev_priv = dev->dev_private;
1537
 
1538
	display_pipe_crc_irq_handler(dev, pipe,
1539
				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1540
				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1541
				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1542
				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1543
				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1544
}
1545
 
1546
static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1547
{
1548
	struct drm_i915_private *dev_priv = dev->dev_private;
1549
	uint32_t res1, res2;
1550
 
1551
	if (INTEL_INFO(dev)->gen >= 3)
1552
		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1553
	else
1554
		res1 = 0;
1555
 
1556
	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1557
		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1558
	else
1559
		res2 = 0;
1560
 
1561
	display_pipe_crc_irq_handler(dev, pipe,
1562
				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1563
				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1564
				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1565
				     res1, res2);
1566
}
1567
 
4104 Serge 1568
/* The RPS events need forcewake, so we add them to a work queue and mask their
1569
 * IMR bits until the work is done. Other interrupts can be processed without
1570
 * the work queue. */
1571
static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1572
{
5060 serge 1573
	if (pm_iir & dev_priv->pm_rps_events) {
4104 Serge 1574
		spin_lock(&dev_priv->irq_lock);
5354 serge 1575
		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1576
		if (dev_priv->rps.interrupts_enabled) {
6084 serge 1577
			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
5354 serge 1578
			queue_work(dev_priv->wq, &dev_priv->rps.work);
1579
		}
4104 Serge 1580
		spin_unlock(&dev_priv->irq_lock);
1581
	}
1582
 
5354 serge 1583
	if (INTEL_INFO(dev_priv)->gen >= 8)
1584
		return;
1585
 
4104 Serge 1586
	if (HAS_VEBOX(dev_priv->dev)) {
1587
		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
6084 serge 1588
			notify_ring(&dev_priv->ring[VECS]);
4104 Serge 1589
 
5354 serge 1590
		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1591
			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
4104 Serge 1592
	}
1593
}
1594
 
5354 serge 1595
static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1596
{
6084 serge 1597
//   if (!drm_handle_vblank(dev, pipe))
1598
//       return false;
5354 serge 1599
 
1600
	return true;
1601
}
1602
 
5060 serge 1603
static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
3031 serge 1604
{
5060 serge 1605
	struct drm_i915_private *dev_priv = dev->dev_private;
1606
	u32 pipe_stats[I915_MAX_PIPES] = { };
3031 serge 1607
	int pipe;
1608
 
5060 serge 1609
	spin_lock(&dev_priv->irq_lock);
5354 serge 1610
	for_each_pipe(dev_priv, pipe) {
5060 serge 1611
		int reg;
1612
		u32 mask, iir_bit = 0;
3031 serge 1613
 
5060 serge 1614
		/*
1615
		 * PIPESTAT bits get signalled even when the interrupt is
1616
		 * disabled with the mask bits, and some of the status bits do
1617
		 * not generate interrupts at all (like the underrun bit). Hence
1618
		 * we need to be careful that we only handle what we want to
1619
		 * handle.
1620
		 */
3031 serge 1621
 
5354 serge 1622
		/* fifo underruns are filterered in the underrun handler. */
1623
		mask = PIPE_FIFO_UNDERRUN_STATUS;
1624
 
5060 serge 1625
		switch (pipe) {
1626
		case PIPE_A:
1627
			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1628
			break;
1629
		case PIPE_B:
1630
			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1631
			break;
1632
		case PIPE_C:
1633
			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1634
			break;
1635
		}
1636
		if (iir & iir_bit)
1637
			mask |= dev_priv->pipestat_irq_mask[pipe];
3031 serge 1638
 
5060 serge 1639
		if (!mask)
1640
			continue;
3031 serge 1641
 
5060 serge 1642
		reg = PIPESTAT(pipe);
1643
		mask |= PIPESTAT_INT_ENABLE_MASK;
1644
		pipe_stats[pipe] = I915_READ(reg) & mask;
3031 serge 1645
 
6084 serge 1646
		/*
1647
		 * Clear the PIPE*STAT regs before the IIR
1648
		 */
5060 serge 1649
		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1650
					PIPESTAT_INT_STATUS_MASK))
6084 serge 1651
			I915_WRITE(reg, pipe_stats[pipe]);
1652
	}
5060 serge 1653
	spin_unlock(&dev_priv->irq_lock);
3031 serge 1654
 
5354 serge 1655
	for_each_pipe(dev_priv, pipe) {
6084 serge 1656
		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1657
		    intel_pipe_handle_vblank(dev, pipe))
1658
            /*intel_check_page_flip(dev, pipe)*/;
3031 serge 1659
 
6084 serge 1660
		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1661
//           intel_prepare_page_flip(dev, pipe);
1662
//           intel_finish_page_flip(dev, pipe);
1663
		}
4560 Serge 1664
 
6084 serge 1665
		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1666
			i9xx_pipe_crc_irq_handler(dev, pipe);
5060 serge 1667
 
5354 serge 1668
		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1669
			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
6084 serge 1670
	}
3031 serge 1671
 
5060 serge 1672
	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1673
		gmbus_irq_handler(dev);
1674
}
3031 serge 1675
 
5060 serge 1676
static void i9xx_hpd_irq_handler(struct drm_device *dev)
1677
{
1678
	struct drm_i915_private *dev_priv = dev->dev_private;
1679
	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
6084 serge 1680
	u32 pin_mask = 0, long_mask = 0;
4104 Serge 1681
 
6084 serge 1682
	if (!hotplug_status)
1683
		return;
4104 Serge 1684
 
6084 serge 1685
	I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1686
	/*
1687
	 * Make sure hotplug status is cleared before we clear IIR, or else we
1688
	 * may miss hotplug events.
1689
	 */
1690
	POSTING_READ(PORT_HOTPLUG_STAT);
1691
 
1692
	if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5060 serge 1693
		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
4560 Serge 1694
 
6084 serge 1695
		if (hotplug_trigger) {
1696
			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1697
					   hotplug_trigger, hpd_status_g4x,
1698
					   i9xx_port_hotplug_long_detect);
1699
 
1700
//           intel_hpd_irq_handler(dev, pin_mask, long_mask);
1701
		}
1702
 
1703
		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1704
			dp_aux_irq_handler(dev);
5060 serge 1705
	} else {
1706
		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1707
 
6084 serge 1708
		if (hotplug_trigger) {
1709
			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1710
					   hotplug_trigger, hpd_status_i915,
1711
					   i9xx_port_hotplug_long_detect);
1712
//           intel_hpd_irq_handler(dev, pin_mask, long_mask);
1713
		}
5060 serge 1714
	}
1715
}
1716
 
1717
static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1718
{
1719
	struct drm_device *dev = arg;
1720
	struct drm_i915_private *dev_priv = dev->dev_private;
1721
	u32 iir, gt_iir, pm_iir;
1722
	irqreturn_t ret = IRQ_NONE;
1723
 
6084 serge 1724
	if (!intel_irqs_enabled(dev_priv))
1725
		return IRQ_NONE;
1726
 
5060 serge 1727
	while (true) {
1728
		/* Find, clear, then process each source of interrupt */
1729
 
1730
		gt_iir = I915_READ(GTIIR);
1731
		if (gt_iir)
1732
			I915_WRITE(GTIIR, gt_iir);
1733
 
1734
		pm_iir = I915_READ(GEN6_PMIIR);
1735
		if (pm_iir)
1736
			I915_WRITE(GEN6_PMIIR, pm_iir);
1737
 
1738
		iir = I915_READ(VLV_IIR);
1739
		if (iir) {
1740
			/* Consume port before clearing IIR or we'll miss events */
1741
			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1742
				i9xx_hpd_irq_handler(dev);
1743
			I915_WRITE(VLV_IIR, iir);
3031 serge 1744
		}
1745
 
5060 serge 1746
		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1747
			goto out;
3031 serge 1748
 
5060 serge 1749
		ret = IRQ_HANDLED;
1750
 
1751
		if (gt_iir)
6084 serge 1752
			snb_gt_irq_handler(dev, dev_priv, gt_iir);
4126 Serge 1753
		if (pm_iir)
1754
			gen6_rps_irq_handler(dev_priv, pm_iir);
5060 serge 1755
		/* Call regardless, as some status bits might not be
1756
		 * signalled in iir */
1757
		valleyview_pipestat_irq_handler(dev, iir);
3031 serge 1758
	}
1759
 
1760
out:
1761
	return ret;
1762
}
1763
 
5060 serge 1764
static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1765
{
1766
	struct drm_device *dev = arg;
1767
	struct drm_i915_private *dev_priv = dev->dev_private;
1768
	u32 master_ctl, iir;
1769
	irqreturn_t ret = IRQ_NONE;
1770
 
6084 serge 1771
	if (!intel_irqs_enabled(dev_priv))
1772
		return IRQ_NONE;
1773
 
5060 serge 1774
	for (;;) {
1775
		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1776
		iir = I915_READ(VLV_IIR);
1777
 
1778
		if (master_ctl == 0 && iir == 0)
1779
			break;
1780
 
1781
		ret = IRQ_HANDLED;
1782
 
1783
		I915_WRITE(GEN8_MASTER_IRQ, 0);
1784
 
1785
		/* Find, clear, then process each source of interrupt */
1786
 
1787
		if (iir) {
1788
			/* Consume port before clearing IIR or we'll miss events */
1789
			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1790
				i9xx_hpd_irq_handler(dev);
1791
			I915_WRITE(VLV_IIR, iir);
1792
		}
1793
 
6084 serge 1794
		gen8_gt_irq_handler(dev_priv, master_ctl);
5060 serge 1795
 
1796
		/* Call regardless, as some status bits might not be
1797
		 * signalled in iir */
1798
		valleyview_pipestat_irq_handler(dev, iir);
1799
 
1800
		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1801
		POSTING_READ(GEN8_MASTER_IRQ);
1802
	}
1803
 
1804
	return ret;
1805
}
1806
 
6084 serge 1807
static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1808
				const u32 hpd[HPD_NUM_PINS])
1809
{
1810
	struct drm_i915_private *dev_priv = to_i915(dev);
1811
	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1812
 
1813
	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1814
	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1815
 
1816
	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1817
			   dig_hotplug_reg, hpd,
1818
			   pch_port_hotplug_long_detect);
1819
 
1820
//   intel_hpd_irq_handler(dev, pin_mask, long_mask);
1821
}
1822
 
3031 serge 1823
static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1824
{
5060 serge 1825
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1826
	int pipe;
3746 Serge 1827
	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
3031 serge 1828
 
6084 serge 1829
	if (hotplug_trigger)
1830
		ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
4104 Serge 1831
 
1832
	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1833
		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1834
			       SDE_AUDIO_POWER_SHIFT);
1835
		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1836
				 port_name(port));
3746 Serge 1837
	}
3031 serge 1838
 
3480 Serge 1839
	if (pch_iir & SDE_AUX_MASK)
1840
		dp_aux_irq_handler(dev);
1841
 
3031 serge 1842
	if (pch_iir & SDE_GMBUS)
3480 Serge 1843
		gmbus_irq_handler(dev);
3031 serge 1844
 
1845
	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1846
		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1847
 
1848
	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1849
		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1850
 
1851
	if (pch_iir & SDE_POISON)
1852
		DRM_ERROR("PCH poison interrupt\n");
1853
 
1854
	if (pch_iir & SDE_FDI_MASK)
5354 serge 1855
		for_each_pipe(dev_priv, pipe)
3031 serge 1856
			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1857
					 pipe_name(pipe),
1858
					 I915_READ(FDI_RX_IIR(pipe)));
1859
 
1860
	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1861
		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1862
 
1863
	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1864
		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1865
 
4104 Serge 1866
	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
5354 serge 1867
		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
4104 Serge 1868
 
3031 serge 1869
	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
5354 serge 1870
		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
3031 serge 1871
}
1872
 
4104 Serge 1873
static void ivb_err_int_handler(struct drm_device *dev)
1874
{
1875
	struct drm_i915_private *dev_priv = dev->dev_private;
1876
	u32 err_int = I915_READ(GEN7_ERR_INT);
4560 Serge 1877
	enum pipe pipe;
4104 Serge 1878
 
1879
	if (err_int & ERR_INT_POISON)
1880
		DRM_ERROR("Poison interrupt\n");
1881
 
5354 serge 1882
	for_each_pipe(dev_priv, pipe) {
1883
		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1884
			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4104 Serge 1885
 
4560 Serge 1886
		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1887
			if (IS_IVYBRIDGE(dev))
1888
				ivb_pipe_crc_irq_handler(dev, pipe);
1889
			else
1890
				hsw_pipe_crc_irq_handler(dev, pipe);
1891
		}
1892
	}
4104 Serge 1893
 
1894
	I915_WRITE(GEN7_ERR_INT, err_int);
1895
}
1896
 
1897
static void cpt_serr_int_handler(struct drm_device *dev)
1898
{
1899
	struct drm_i915_private *dev_priv = dev->dev_private;
1900
	u32 serr_int = I915_READ(SERR_INT);
1901
 
1902
	if (serr_int & SERR_INT_POISON)
1903
		DRM_ERROR("PCH poison interrupt\n");
1904
 
1905
	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
5354 serge 1906
		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
4104 Serge 1907
 
1908
	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
5354 serge 1909
		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
4104 Serge 1910
 
1911
	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
5354 serge 1912
		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
4104 Serge 1913
 
1914
	I915_WRITE(SERR_INT, serr_int);
1915
}
1916
 
3031 serge 1917
static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1918
{
5060 serge 1919
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 1920
	int pipe;
3746 Serge 1921
	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
3031 serge 1922
 
6084 serge 1923
	if (hotplug_trigger)
1924
		ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
4104 Serge 1925
 
1926
	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1927
		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1928
			       SDE_AUDIO_POWER_SHIFT_CPT);
1929
		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1930
				 port_name(port));
3746 Serge 1931
	}
3031 serge 1932
 
1933
	if (pch_iir & SDE_AUX_MASK_CPT)
3480 Serge 1934
		dp_aux_irq_handler(dev);
3031 serge 1935
 
1936
	if (pch_iir & SDE_GMBUS_CPT)
3480 Serge 1937
		gmbus_irq_handler(dev);
3031 serge 1938
 
1939
	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1940
		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1941
 
1942
	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1943
		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1944
 
1945
	if (pch_iir & SDE_FDI_MASK_CPT)
5354 serge 1946
		for_each_pipe(dev_priv, pipe)
3031 serge 1947
			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1948
					 pipe_name(pipe),
1949
					 I915_READ(FDI_RX_IIR(pipe)));
1950
 
4104 Serge 1951
	if (pch_iir & SDE_ERROR_CPT)
1952
		cpt_serr_int_handler(dev);
4539 Serge 1953
}
3480 Serge 1954
 
6084 serge 1955
static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
1956
{
1957
	struct drm_i915_private *dev_priv = dev->dev_private;
1958
	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1959
		~SDE_PORTE_HOTPLUG_SPT;
1960
	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1961
	u32 pin_mask = 0, long_mask = 0;
1962
 
1963
	if (hotplug_trigger) {
1964
		u32 dig_hotplug_reg;
1965
 
1966
		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1967
		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1968
 
1969
		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1970
				   dig_hotplug_reg, hpd_spt,
1971
				   spt_port_hotplug_long_detect);
1972
	}
1973
 
1974
	if (hotplug2_trigger) {
1975
		u32 dig_hotplug_reg;
1976
 
1977
		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1978
		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1979
 
1980
		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
1981
				   dig_hotplug_reg, hpd_spt,
1982
				   spt_port_hotplug2_long_detect);
1983
	}
1984
 
1985
	if (pch_iir & SDE_GMBUS_CPT)
1986
		gmbus_irq_handler(dev);
1987
}
1988
 
1989
static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1990
				const u32 hpd[HPD_NUM_PINS])
1991
{
1992
	struct drm_i915_private *dev_priv = to_i915(dev);
1993
	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1994
 
1995
	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
1996
	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
1997
 
1998
	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1999
			   dig_hotplug_reg, hpd,
2000
			   ilk_port_hotplug_long_detect);
2001
 
2002
}
2003
 
4104 Serge 2004
static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
3031 serge 2005
{
4104 Serge 2006
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 2007
	enum pipe pipe;
6084 serge 2008
	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
3031 serge 2009
 
6084 serge 2010
	if (hotplug_trigger)
2011
		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2012
 
3480 Serge 2013
	if (de_iir & DE_AUX_CHANNEL_A)
2014
		dp_aux_irq_handler(dev);
2015
 
3031 serge 2016
	if (de_iir & DE_GSE)
4104 Serge 2017
		intel_opregion_asle_intr(dev);
2351 Serge 2018
 
4104 Serge 2019
	if (de_iir & DE_POISON)
2020
		DRM_ERROR("Poison interrupt\n");
2021
 
5354 serge 2022
	for_each_pipe(dev_priv, pipe) {
6084 serge 2023
		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2024
		    intel_pipe_handle_vblank(dev, pipe))
2025
            /*intel_check_page_flip(dev, pipe)*/;
4104 Serge 2026
 
4560 Serge 2027
		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
5354 serge 2028
			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2351 Serge 2029
 
4560 Serge 2030
		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2031
			i9xx_pipe_crc_irq_handler(dev, pipe);
2032
 
2033
		/* plane/pipes map 1:1 on ilk+ */
2034
		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2035
//			intel_prepare_page_flip(dev, pipe);
2036
//			intel_finish_page_flip_plane(dev, pipe);
2037
		}
3031 serge 2038
	}
2351 Serge 2039
 
3031 serge 2040
	/* check event from PCH */
2041
	if (de_iir & DE_PCH_EVENT) {
3480 Serge 2042
		u32 pch_iir = I915_READ(SDEIIR);
2043
 
3031 serge 2044
		if (HAS_PCH_CPT(dev))
2045
			cpt_irq_handler(dev, pch_iir);
2046
		else
2047
			ibx_irq_handler(dev, pch_iir);
3480 Serge 2048
 
2049
		/* should clear PCH hotplug event before clear CPU irq */
2050
		I915_WRITE(SDEIIR, pch_iir);
3031 serge 2051
	}
4104 Serge 2052
 
6084 serge 2053
	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
4104 Serge 2054
		ironlake_rps_change_irq_handler(dev);
2351 Serge 2055
}
2056
 
4104 Serge 2057
static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
3031 serge 2058
{
2059
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 2060
	enum pipe pipe;
6084 serge 2061
	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2351 Serge 2062
 
6084 serge 2063
	if (hotplug_trigger)
2064
		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2065
 
4126 Serge 2066
	if (de_iir & DE_ERR_INT_IVB)
2067
		ivb_err_int_handler(dev);
2351 Serge 2068
 
4104 Serge 2069
	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2070
		dp_aux_irq_handler(dev);
3031 serge 2071
 
4104 Serge 2072
	if (de_iir & DE_GSE_IVB)
2073
		intel_opregion_asle_intr(dev);
4560 Serge 2074
 
5354 serge 2075
	for_each_pipe(dev_priv, pipe) {
6084 serge 2076
		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2077
		    intel_pipe_handle_vblank(dev, pipe))
2078
            /*intel_check_page_flip(dev, pipe)*/;
4560 Serge 2079
 
2080
		/* plane/pipes map 1:1 on ilk+ */
5060 serge 2081
		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2082
//			intel_prepare_page_flip(dev, pipe);
2083
//			intel_finish_page_flip_plane(dev, pipe);
3031 serge 2084
		}
2085
	}
2086
 
4104 Serge 2087
	/* check event from PCH */
2088
	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2089
		u32 pch_iir = I915_READ(SDEIIR);
3031 serge 2090
 
4104 Serge 2091
		cpt_irq_handler(dev, pch_iir);
3031 serge 2092
 
4104 Serge 2093
		/* clear PCH hotplug event before clear CPU irq */
2094
		I915_WRITE(SDEIIR, pch_iir);
4539 Serge 2095
	}
3031 serge 2096
}
2097
 
5060 serge 2098
/*
2099
 * To handle irqs with the minimum potential races with fresh interrupts, we:
2100
 * 1 - Disable Master Interrupt Control.
2101
 * 2 - Find the source(s) of the interrupt.
2102
 * 3 - Clear the Interrupt Identity bits (IIR).
2103
 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2104
 * 5 - Re-enable Master Interrupt Control.
2105
 */
4104 Serge 2106
static irqreturn_t ironlake_irq_handler(int irq, void *arg)
3031 serge 2107
{
5060 serge 2108
	struct drm_device *dev = arg;
2109
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 2110
	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2111
	irqreturn_t ret = IRQ_NONE;
3031 serge 2112
 
6084 serge 2113
	if (!intel_irqs_enabled(dev_priv))
2114
		return IRQ_NONE;
2115
 
4104 Serge 2116
	/* We get interrupts on unclaimed registers, so check for this before we
2117
	 * do any I915_{READ,WRITE}. */
2118
	intel_uncore_check_errors(dev);
3031 serge 2119
 
4104 Serge 2120
	/* disable master interrupt before clearing iir  */
2121
	de_ier = I915_READ(DEIER);
2122
	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2123
	POSTING_READ(DEIER);
3031 serge 2124
 
4104 Serge 2125
	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2126
	 * interrupts will will be stored on its back queue, and then we'll be
2127
	 * able to process them after we restore SDEIER (as soon as we restore
2128
	 * it, we'll get an interrupt if SDEIIR still has something to process
2129
	 * due to its back queue). */
2130
	if (!HAS_PCH_NOP(dev)) {
2131
		sde_ier = I915_READ(SDEIER);
2132
		I915_WRITE(SDEIER, 0);
2133
		POSTING_READ(SDEIER);
3031 serge 2134
	}
2135
 
5060 serge 2136
	/* Find, clear, then process each source of interrupt */
2137
 
4104 Serge 2138
	gt_iir = I915_READ(GTIIR);
2139
	if (gt_iir) {
5060 serge 2140
		I915_WRITE(GTIIR, gt_iir);
2141
		ret = IRQ_HANDLED;
4104 Serge 2142
		if (INTEL_INFO(dev)->gen >= 6)
2143
			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2144
		else
2145
			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
4539 Serge 2146
	}
3031 serge 2147
 
4104 Serge 2148
	de_iir = I915_READ(DEIIR);
2149
	if (de_iir) {
5060 serge 2150
		I915_WRITE(DEIIR, de_iir);
2151
		ret = IRQ_HANDLED;
4104 Serge 2152
		if (INTEL_INFO(dev)->gen >= 7)
2153
			ivb_display_irq_handler(dev, de_iir);
2154
		else
2155
			ilk_display_irq_handler(dev, de_iir);
3480 Serge 2156
	}
2157
 
4104 Serge 2158
	if (INTEL_INFO(dev)->gen >= 6) {
2159
		u32 pm_iir = I915_READ(GEN6_PMIIR);
2160
		if (pm_iir) {
2161
			I915_WRITE(GEN6_PMIIR, pm_iir);
2162
			ret = IRQ_HANDLED;
5060 serge 2163
			gen6_rps_irq_handler(dev_priv, pm_iir);
4560 Serge 2164
		}
3031 serge 2165
	}
2166
 
4104 Serge 2167
	I915_WRITE(DEIER, de_ier);
2168
	POSTING_READ(DEIER);
2169
	if (!HAS_PCH_NOP(dev)) {
2170
		I915_WRITE(SDEIER, sde_ier);
2171
		POSTING_READ(SDEIER);
3031 serge 2172
	}
2173
 
4104 Serge 2174
	return ret;
3031 serge 2175
}
2176
 
6084 serge 2177
static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2178
				const u32 hpd[HPD_NUM_PINS])
2179
{
2180
	struct drm_i915_private *dev_priv = to_i915(dev);
2181
	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2182
 
2183
	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2184
	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2185
 
2186
	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2187
			   dig_hotplug_reg, hpd,
2188
			   bxt_port_hotplug_long_detect);
2189
 
2190
}
2191
 
4560 Serge 2192
static irqreturn_t gen8_irq_handler(int irq, void *arg)
2193
{
2194
	struct drm_device *dev = arg;
2195
	struct drm_i915_private *dev_priv = dev->dev_private;
2196
	u32 master_ctl;
2197
	irqreturn_t ret = IRQ_NONE;
2198
	uint32_t tmp = 0;
2199
	enum pipe pipe;
5354 serge 2200
	u32 aux_mask = GEN8_AUX_CHANNEL_A;
4560 Serge 2201
 
6084 serge 2202
	if (!intel_irqs_enabled(dev_priv))
2203
		return IRQ_NONE;
2204
 
2205
	if (INTEL_INFO(dev_priv)->gen >= 9)
5354 serge 2206
		aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2207
			GEN9_AUX_CHANNEL_D;
2208
 
6084 serge 2209
	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
4560 Serge 2210
	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2211
	if (!master_ctl)
2212
		return IRQ_NONE;
2213
 
6084 serge 2214
	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
4560 Serge 2215
 
5060 serge 2216
	/* Find, clear, then process each source of interrupt */
2217
 
6084 serge 2218
	ret = gen8_gt_irq_handler(dev_priv, master_ctl);
4560 Serge 2219
 
2220
	if (master_ctl & GEN8_DE_MISC_IRQ) {
2221
		tmp = I915_READ(GEN8_DE_MISC_IIR);
5060 serge 2222
		if (tmp) {
2223
			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2224
			ret = IRQ_HANDLED;
6084 serge 2225
			if (tmp & GEN8_DE_MISC_GSE)
2226
				intel_opregion_asle_intr(dev);
5060 serge 2227
			else
6084 serge 2228
				DRM_ERROR("Unexpected DE Misc interrupt\n");
5060 serge 2229
		}
4560 Serge 2230
		else
2231
			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2232
	}
2233
 
2234
	if (master_ctl & GEN8_DE_PORT_IRQ) {
2235
		tmp = I915_READ(GEN8_DE_PORT_IIR);
5060 serge 2236
		if (tmp) {
6084 serge 2237
			bool found = false;
2238
			u32 hotplug_trigger = 0;
2239
 
2240
			if (IS_BROXTON(dev_priv))
2241
				hotplug_trigger = tmp & BXT_DE_PORT_HOTPLUG_MASK;
2242
			else if (IS_BROADWELL(dev_priv))
2243
				hotplug_trigger = tmp & GEN8_PORT_DP_A_HOTPLUG;
2244
 
5060 serge 2245
			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2246
			ret = IRQ_HANDLED;
5354 serge 2247
 
6084 serge 2248
			if (tmp & aux_mask) {
2249
				dp_aux_irq_handler(dev);
2250
				found = true;
2251
			}
2252
 
2253
			if (hotplug_trigger) {
2254
				if (IS_BROXTON(dev))
2255
					bxt_hpd_irq_handler(dev, hotplug_trigger, hpd_bxt);
2256
				else
2257
					ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_bdw);
2258
				found = true;
2259
			}
2260
 
2261
			if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2262
				gmbus_irq_handler(dev);
2263
				found = true;
2264
			}
2265
 
2266
			if (!found)
2267
				DRM_ERROR("Unexpected DE Port interrupt\n");
5060 serge 2268
		}
4560 Serge 2269
		else
2270
			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2271
	}
2272
 
5354 serge 2273
	for_each_pipe(dev_priv, pipe) {
2274
		uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
4560 Serge 2275
 
2276
		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2277
			continue;
2278
 
2279
		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
5060 serge 2280
		if (pipe_iir) {
2281
			ret = IRQ_HANDLED;
2282
			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
4560 Serge 2283
 
2284
 
6084 serge 2285
			if (INTEL_INFO(dev_priv)->gen >= 9)
5354 serge 2286
				flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2287
			else
2288
				flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2289
 
2290
 
6084 serge 2291
			if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2292
				hsw_pipe_crc_irq_handler(dev, pipe);
4560 Serge 2293
 
5354 serge 2294
			if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2295
				intel_cpu_fifo_underrun_irq_handler(dev_priv,
2296
								    pipe);
4560 Serge 2297
 
5354 serge 2298
 
6084 serge 2299
			if (INTEL_INFO(dev_priv)->gen >= 9)
5354 serge 2300
				fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2301
			else
2302
				fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2303
 
2304
			if (fault_errors)
6084 serge 2305
				DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2306
					  pipe_name(pipe),
2307
					  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
4560 Serge 2308
		} else
2309
			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2310
	}
2311
 
6084 serge 2312
	if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2313
	    master_ctl & GEN8_DE_PCH_IRQ) {
4560 Serge 2314
		/*
2315
		 * FIXME(BDW): Assume for now that the new interrupt handling
2316
		 * scheme also closed the SDE interrupt handling race we've seen
2317
		 * on older pch-split platforms. But this needs testing.
2318
		 */
2319
		u32 pch_iir = I915_READ(SDEIIR);
2320
		if (pch_iir) {
2321
			I915_WRITE(SDEIIR, pch_iir);
2322
			ret = IRQ_HANDLED;
6084 serge 2323
 
2324
			if (HAS_PCH_SPT(dev_priv))
2325
				spt_irq_handler(dev, pch_iir);
2326
			else
2327
				cpt_irq_handler(dev, pch_iir);
5060 serge 2328
		} else
2329
			DRM_ERROR("The master control interrupt lied (SDE)!\n");
2330
 
4560 Serge 2331
	}
2332
 
6084 serge 2333
	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2334
	POSTING_READ_FW(GEN8_MASTER_IRQ);
4560 Serge 2335
 
2336
	return ret;
2337
}
2338
 
4104 Serge 2339
static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2340
			       bool reset_completed)
3746 Serge 2341
{
5060 serge 2342
	struct intel_engine_cs *ring;
4104 Serge 2343
	int i;
3031 serge 2344
 
4104 Serge 2345
	/*
2346
	 * Notify all waiters for GPU completion events that reset state has
2347
	 * been changed, and that they need to restart their wait after
2348
	 * checking for potential errors (and bail out to drop locks if there is
2349
	 * a gpu reset pending so that i915_error_work_func can acquire them).
2350
	 */
3031 serge 2351
 
4104 Serge 2352
	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2353
	for_each_ring(ring, dev_priv, i)
2354
		wake_up_all(&ring->irq_queue);
3031 serge 2355
 
2356
 
4104 Serge 2357
	/*
2358
	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2359
	 * reset state is cleared.
2360
	 */
2361
	if (reset_completed)
2362
		wake_up_all(&dev_priv->gpu_error.reset_queue);
3031 serge 2363
}
2364
 
2365
/**
6084 serge 2366
 * i915_reset_and_wakeup - do process context error handling work
2367
 * @dev: drm device
3031 serge 2368
 *
4104 Serge 2369
 * Fire an error uevent so userspace can see that a hang or error
2370
 * was detected.
3031 serge 2371
 */
6084 serge 2372
static void i915_reset_and_wakeup(struct drm_device *dev)
3031 serge 2373
{
6084 serge 2374
	struct drm_i915_private *dev_priv = to_i915(dev);
2375
	struct i915_gpu_error *error = &dev_priv->gpu_error;
4104 Serge 2376
	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2377
	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2378
	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2379
	int ret;
3031 serge 2380
 
4104 Serge 2381
	/*
2382
	 * Note that there's only one work item which does gpu resets, so we
2383
	 * need not worry about concurrent gpu resets potentially incrementing
2384
	 * error->reset_counter twice. We only need to take care of another
2385
	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2386
	 * quick check for that is good enough: schedule_work ensures the
2387
	 * correct ordering between hang detection and this work item, and since
2388
	 * the reset in-progress bit is only ever set by code outside of this
2389
	 * work we don't need to worry about any other races.
2390
	 */
2391
	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2392
		DRM_DEBUG_DRIVER("resetting chip\n");
6084 serge 2393
		intel_runtime_pm_get(dev_priv);
3031 serge 2394
 
4104 Serge 2395
		/*
2396
		 * All state reset _must_ be completed before we update the
2397
		 * reset counter, for otherwise waiters might miss the reset
2398
		 * pending state and not properly drop locks, resulting in
2399
		 * deadlocks with the reset work.
2400
		 */
4560 Serge 2401
//		ret = i915_reset(dev);
3031 serge 2402
 
6084 serge 2403
//		intel_finish_reset(dev);
3031 serge 2404
 
6084 serge 2405
		intel_runtime_pm_put(dev_priv);
2406
 
4104 Serge 2407
		if (ret == 0) {
2408
			/*
2409
			 * After all the gem state is reset, increment the reset
2410
			 * counter and wake up everyone waiting for the reset to
2411
			 * complete.
2412
			 *
2413
			 * Since unlock operations are a one-sided barrier only,
2414
			 * we need to insert a barrier here to order any seqno
2415
			 * updates before
2416
			 * the counter increment.
2417
			 */
6084 serge 2418
			smp_mb__before_atomic();
4104 Serge 2419
			atomic_inc(&dev_priv->gpu_error.reset_counter);
3031 serge 2420
 
4104 Serge 2421
		} else {
4560 Serge 2422
			atomic_set_mask(I915_WEDGED, &error->reset_counter);
3031 serge 2423
	}
2424
 
4104 Serge 2425
		/*
2426
		 * Note: The wake_up also serves as a memory barrier so that
2427
		 * waiters see the update value of the reset counter atomic_t.
2428
		 */
2429
		i915_error_wake_up(dev_priv, true);
3031 serge 2430
	}
2431
}
2432
 
2433
static void i915_report_and_clear_eir(struct drm_device *dev)
2434
{
2435
	struct drm_i915_private *dev_priv = dev->dev_private;
2436
	uint32_t instdone[I915_NUM_INSTDONE_REG];
2437
	u32 eir = I915_READ(EIR);
2438
	int pipe, i;
2439
 
2440
	if (!eir)
2441
		return;
2442
 
2443
	pr_err("render error detected, EIR: 0x%08x\n", eir);
2444
 
2445
	i915_get_extra_instdone(dev, instdone);
2446
 
2447
	if (IS_G4X(dev)) {
2448
		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2449
			u32 ipeir = I915_READ(IPEIR_I965);
2450
 
2451
			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2452
			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2453
			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2454
				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2455
			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2456
			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2457
			I915_WRITE(IPEIR_I965, ipeir);
2458
			POSTING_READ(IPEIR_I965);
2459
		}
2460
		if (eir & GM45_ERROR_PAGE_TABLE) {
2461
			u32 pgtbl_err = I915_READ(PGTBL_ER);
2462
			pr_err("page table error\n");
2463
			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2464
			I915_WRITE(PGTBL_ER, pgtbl_err);
2465
			POSTING_READ(PGTBL_ER);
2466
		}
2467
	}
2468
 
2469
	if (!IS_GEN2(dev)) {
2470
		if (eir & I915_ERROR_PAGE_TABLE) {
2471
			u32 pgtbl_err = I915_READ(PGTBL_ER);
2472
			pr_err("page table error\n");
2473
			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2474
			I915_WRITE(PGTBL_ER, pgtbl_err);
2475
			POSTING_READ(PGTBL_ER);
2476
		}
2477
	}
2478
 
2479
	if (eir & I915_ERROR_MEMORY_REFRESH) {
2480
		pr_err("memory refresh error:\n");
5354 serge 2481
		for_each_pipe(dev_priv, pipe)
3031 serge 2482
			pr_err("pipe %c stat: 0x%08x\n",
2483
			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2484
		/* pipestat has already been acked */
2485
	}
2486
	if (eir & I915_ERROR_INSTRUCTION) {
2487
		pr_err("instruction error\n");
2488
		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2489
		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2490
			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2491
		if (INTEL_INFO(dev)->gen < 4) {
2492
			u32 ipeir = I915_READ(IPEIR);
2493
 
2494
			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2495
			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2496
			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2497
			I915_WRITE(IPEIR, ipeir);
2498
			POSTING_READ(IPEIR);
2499
		} else {
2500
			u32 ipeir = I915_READ(IPEIR_I965);
2501
 
2502
			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2503
			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2504
			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2505
			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2506
			I915_WRITE(IPEIR_I965, ipeir);
2507
			POSTING_READ(IPEIR_I965);
2508
		}
2509
	}
2510
 
2511
	I915_WRITE(EIR, eir);
2512
	POSTING_READ(EIR);
2513
	eir = I915_READ(EIR);
2514
	if (eir) {
2515
		/*
2516
		 * some errors might have become stuck,
2517
		 * mask them.
2518
		 */
2519
		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2520
		I915_WRITE(EMR, I915_READ(EMR) | eir);
2521
		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2522
	}
2523
}
2524
 
2525
/**
6084 serge 2526
 * i915_handle_error - handle a gpu error
3031 serge 2527
 * @dev: drm device
2528
 *
6084 serge 2529
 * Do some basic checking of register state at error time and
3031 serge 2530
 * dump it to the syslog.  Also call i915_capture_error_state() to make
2531
 * sure we get a record and make it available in debugfs.  Fire a uevent
2532
 * so userspace knows something bad happened (should trigger collection
2533
 * of a ring dump etc.).
2534
 */
5060 serge 2535
void i915_handle_error(struct drm_device *dev, bool wedged,
2536
		       const char *fmt, ...)
3031 serge 2537
{
2538
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 2539
	va_list args;
2540
	char error_msg[80];
3031 serge 2541
 
5060 serge 2542
	va_start(args, fmt);
2543
	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2544
	va_end(args);
2545
 
4560 Serge 2546
//	i915_capture_error_state(dev);
3031 serge 2547
	i915_report_and_clear_eir(dev);
2548
 
2549
	if (wedged) {
6084 serge 2550
		atomic_or(I915_RESET_IN_PROGRESS_FLAG,
3480 Serge 2551
				&dev_priv->gpu_error.reset_counter);
3031 serge 2552
 
2553
		/*
6084 serge 2554
		 * Wakeup waiting processes so that the reset function
2555
		 * i915_reset_and_wakeup doesn't deadlock trying to grab
2556
		 * various locks. By bumping the reset counter first, the woken
4104 Serge 2557
		 * processes will see a reset in progress and back off,
2558
		 * releasing their locks and then wait for the reset completion.
2559
		 * We must do this for _all_ gpu waiters that might hold locks
2560
		 * that the reset work needs to acquire.
2561
		 *
2562
		 * Note: The wake_up serves as the required memory barrier to
2563
		 * ensure that the waiters see the updated value of the reset
2564
		 * counter atomic_t.
3031 serge 2565
		 */
4104 Serge 2566
		i915_error_wake_up(dev_priv, false);
3031 serge 2567
	}
2568
 
6084 serge 2569
	i915_reset_and_wakeup(dev);
3031 serge 2570
}
2571
 
2572
/* Called from drm generic code, passed 'crtc' which
2573
 * we use as a pipe index
2574
 */
6084 serge 2575
static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2576
{
5060 serge 2577
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2578
	unsigned long irqflags;
2579
 
2580
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2581
	if (INTEL_INFO(dev)->gen >= 4)
2582
		i915_enable_pipestat(dev_priv, pipe,
5060 serge 2583
				     PIPE_START_VBLANK_INTERRUPT_STATUS);
3031 serge 2584
	else
2585
		i915_enable_pipestat(dev_priv, pipe,
5060 serge 2586
				     PIPE_VBLANK_INTERRUPT_STATUS);
3031 serge 2587
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2588
 
2589
	return 0;
2590
}
2591
 
6084 serge 2592
static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2593
{
5060 serge 2594
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2595
	unsigned long irqflags;
4104 Serge 2596
	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
4560 Serge 2597
						     DE_PIPE_VBLANK(pipe);
3031 serge 2598
 
2599
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4104 Serge 2600
	ironlake_enable_display_irq(dev_priv, bit);
3031 serge 2601
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2602
 
2603
	return 0;
2604
}
2605
 
6084 serge 2606
static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2607
{
5060 serge 2608
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2609
	unsigned long irqflags;
2610
 
2611
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2612
	i915_enable_pipestat(dev_priv, pipe,
5060 serge 2613
			     PIPE_START_VBLANK_INTERRUPT_STATUS);
3031 serge 2614
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2615
 
2616
	return 0;
2617
}
2618
 
6084 serge 2619
static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
4560 Serge 2620
{
2621
	struct drm_i915_private *dev_priv = dev->dev_private;
2622
	unsigned long irqflags;
2623
 
2624
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2625
	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2626
	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2627
	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2628
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2629
	return 0;
2630
}
2631
 
3031 serge 2632
/* Called from drm generic code, passed 'crtc' which
2633
 * we use as a pipe index
2634
 */
6084 serge 2635
static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2636
{
5060 serge 2637
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2638
	unsigned long irqflags;
2639
 
2640
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2641
	i915_disable_pipestat(dev_priv, pipe,
5060 serge 2642
			      PIPE_VBLANK_INTERRUPT_STATUS |
2643
			      PIPE_START_VBLANK_INTERRUPT_STATUS);
3031 serge 2644
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2645
}
2646
 
6084 serge 2647
static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2648
{
5060 serge 2649
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2650
	unsigned long irqflags;
4104 Serge 2651
	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
4560 Serge 2652
						     DE_PIPE_VBLANK(pipe);
3031 serge 2653
 
2654
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4104 Serge 2655
	ironlake_disable_display_irq(dev_priv, bit);
3031 serge 2656
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2657
}
2658
 
6084 serge 2659
static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
3031 serge 2660
{
5060 serge 2661
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2662
	unsigned long irqflags;
2663
 
2664
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2665
	i915_disable_pipestat(dev_priv, pipe,
5060 serge 2666
			      PIPE_START_VBLANK_INTERRUPT_STATUS);
3031 serge 2667
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2668
}
2669
 
6084 serge 2670
static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
4560 Serge 2671
{
2672
	struct drm_i915_private *dev_priv = dev->dev_private;
2673
	unsigned long irqflags;
2674
 
2675
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2676
	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2677
	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2678
	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2679
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2680
}
2681
 
4104 Serge 2682
static bool
5060 serge 2683
ring_idle(struct intel_engine_cs *ring, u32 seqno)
2351 Serge 2684
{
4104 Serge 2685
	return (list_empty(&ring->request_list) ||
6084 serge 2686
		i915_seqno_passed(seqno, ring->last_submitted_seqno));
4104 Serge 2687
}
2351 Serge 2688
 
5060 serge 2689
static bool
2690
ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
4104 Serge 2691
{
5060 serge 2692
	if (INTEL_INFO(dev)->gen >= 8) {
2693
		return (ipehr >> 23) == 0x1c;
2694
	} else {
2695
		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2696
		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2697
				 MI_SEMAPHORE_REGISTER);
2698
	}
2699
}
2700
 
2701
static struct intel_engine_cs *
2702
semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2703
{
4104 Serge 2704
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
5060 serge 2705
	struct intel_engine_cs *signaller;
2706
	int i;
2351 Serge 2707
 
5060 serge 2708
	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2709
		for_each_ring(signaller, dev_priv, i) {
2710
			if (ring == signaller)
2711
				continue;
2712
 
2713
			if (offset == signaller->semaphore.signal_ggtt[ring->id])
2714
				return signaller;
2715
		}
2716
	} else {
2717
		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2718
 
2719
		for_each_ring(signaller, dev_priv, i) {
2720
			if(ring == signaller)
2721
				continue;
2722
 
2723
			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2724
				return signaller;
2725
		}
2726
	}
2727
 
2728
	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2729
		  ring->id, ipehr, offset);
2730
 
2731
	return NULL;
2732
}
2733
 
2734
static struct intel_engine_cs *
2735
semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2736
{
2737
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2738
	u32 cmd, ipehr, head;
2739
	u64 offset = 0;
2740
	int i, backwards;
2741
 
6084 serge 2742
	/*
2743
	 * This function does not support execlist mode - any attempt to
2744
	 * proceed further into this function will result in a kernel panic
2745
	 * when dereferencing ring->buffer, which is not set up in execlist
2746
	 * mode.
2747
	 *
2748
	 * The correct way of doing it would be to derive the currently
2749
	 * executing ring buffer from the current context, which is derived
2750
	 * from the currently running request. Unfortunately, to get the
2751
	 * current request we would have to grab the struct_mutex before doing
2752
	 * anything else, which would be ill-advised since some other thread
2753
	 * might have grabbed it already and managed to hang itself, causing
2754
	 * the hang checker to deadlock.
2755
	 *
2756
	 * Therefore, this function does not support execlist mode in its
2757
	 * current form. Just return NULL and move on.
2758
	 */
2759
	if (ring->buffer == NULL)
2760
		return NULL;
2761
 
4104 Serge 2762
	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
5060 serge 2763
	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
4104 Serge 2764
		return NULL;
2351 Serge 2765
 
5060 serge 2766
	/*
2767
	 * HEAD is likely pointing to the dword after the actual command,
2768
	 * so scan backwards until we find the MBOX. But limit it to just 3
2769
	 * or 4 dwords depending on the semaphore wait command size.
2770
	 * Note that we don't care about ACTHD here since that might
2771
	 * point at at batch, and semaphores are always emitted into the
2772
	 * ringbuffer itself.
4104 Serge 2773
	 */
5060 serge 2774
	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2775
	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2776
 
2777
	for (i = backwards; i; --i) {
2778
		/*
2779
		 * Be paranoid and presume the hw has gone off into the wild -
2780
		 * our ring is smaller than what the hardware (and hence
2781
		 * HEAD_ADDR) allows. Also handles wrap-around.
2782
		 */
2783
		head &= ring->buffer->size - 1;
2784
 
2785
		/* This here seems to blow up */
2786
		cmd = ioread32(ring->buffer->virtual_start + head);
4104 Serge 2787
		if (cmd == ipehr)
2788
			break;
2351 Serge 2789
 
5060 serge 2790
		head -= 4;
2791
	}
2792
 
2793
	if (!i)
6084 serge 2794
		return NULL;
2351 Serge 2795
 
5060 serge 2796
	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2797
	if (INTEL_INFO(ring->dev)->gen >= 8) {
2798
		offset = ioread32(ring->buffer->virtual_start + head + 12);
2799
		offset <<= 32;
2800
		offset = ioread32(ring->buffer->virtual_start + head + 8);
2801
	}
2802
	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
4104 Serge 2803
}
2351 Serge 2804
 
5060 serge 2805
static int semaphore_passed(struct intel_engine_cs *ring)
4104 Serge 2806
{
2807
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
5060 serge 2808
	struct intel_engine_cs *signaller;
2809
	u32 seqno;
4104 Serge 2810
 
5060 serge 2811
	ring->hangcheck.deadlock++;
4104 Serge 2812
 
2813
	signaller = semaphore_waits_for(ring, &seqno);
5060 serge 2814
	if (signaller == NULL)
4104 Serge 2815
		return -1;
2816
 
5060 serge 2817
	/* Prevent pathological recursion due to driver bugs */
2818
	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2819
		return -1;
2820
 
2821
	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2822
		return 1;
2823
 
4104 Serge 2824
	/* cursory check for an unkickable deadlock */
5060 serge 2825
	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2826
	    semaphore_passed(signaller) < 0)
4104 Serge 2827
		return -1;
2828
 
5060 serge 2829
	return 0;
4104 Serge 2830
}
2831
 
2832
static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2833
{
5060 serge 2834
	struct intel_engine_cs *ring;
4104 Serge 2835
	int i;
2836
 
2837
	for_each_ring(ring, dev_priv, i)
5060 serge 2838
		ring->hangcheck.deadlock = 0;
4104 Serge 2839
}
2840
 
2841
static enum intel_ring_hangcheck_action
5060 serge 2842
ring_stuck(struct intel_engine_cs *ring, u64 acthd)
4104 Serge 2843
{
2844
	struct drm_device *dev = ring->dev;
2845
	struct drm_i915_private *dev_priv = dev->dev_private;
2846
	u32 tmp;
2847
 
5060 serge 2848
	if (acthd != ring->hangcheck.acthd) {
2849
		if (acthd > ring->hangcheck.max_acthd) {
2850
			ring->hangcheck.max_acthd = acthd;
6084 serge 2851
			return HANGCHECK_ACTIVE;
5060 serge 2852
		}
4104 Serge 2853
 
5060 serge 2854
		return HANGCHECK_ACTIVE_LOOP;
2855
	}
2856
 
4104 Serge 2857
	if (IS_GEN2(dev))
2858
		return HANGCHECK_HUNG;
2859
 
2860
	/* Is the chip hanging on a WAIT_FOR_EVENT?
2861
	 * If so we can simply poke the RB_WAIT bit
2862
	 * and break the hang. This should work on
2863
	 * all but the second generation chipsets.
2864
	 */
2865
	tmp = I915_READ_CTL(ring);
2866
	if (tmp & RING_WAIT) {
5060 serge 2867
		i915_handle_error(dev, false,
2868
				  "Kicking stuck wait on %s",
6084 serge 2869
				  ring->name);
4104 Serge 2870
		I915_WRITE_CTL(ring, tmp);
2871
		return HANGCHECK_KICK;
2872
	}
2873
 
2874
	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2875
		switch (semaphore_passed(ring)) {
2876
		default:
2877
			return HANGCHECK_HUNG;
2878
		case 1:
5060 serge 2879
			i915_handle_error(dev, false,
2880
					  "Kicking stuck semaphore on %s",
6084 serge 2881
					  ring->name);
4104 Serge 2882
			I915_WRITE_CTL(ring, tmp);
2883
			return HANGCHECK_KICK;
2884
		case 0:
2885
			return HANGCHECK_WAIT;
2886
		}
2887
	}
2888
 
2889
	return HANGCHECK_HUNG;
2890
}
2891
 
6084 serge 2892
/*
4104 Serge 2893
 * This is called when the chip hasn't reported back with completed
2894
 * batchbuffers in a long time. We keep track per ring seqno progress and
2895
 * if there are no progress, hangcheck score for that ring is increased.
2896
 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2897
 * we kick the ring. If we see no progress on three subsequent calls
2898
 * we assume chip is wedged and try to fix it by resetting the chip.
2899
 */
6084 serge 2900
static void i915_hangcheck_elapsed(struct work_struct *work)
4104 Serge 2901
{
6084 serge 2902
	struct drm_i915_private *dev_priv =
2903
		container_of(work, typeof(*dev_priv),
2904
			     gpu_error.hangcheck_work.work);
2905
	struct drm_device *dev = dev_priv->dev;
5060 serge 2906
	struct intel_engine_cs *ring;
4104 Serge 2907
	int i;
2908
	int busy_count = 0, rings_hung = 0;
2909
	bool stuck[I915_NUM_RINGS] = { 0 };
2910
#define BUSY 1
2911
#define KICK 5
2912
#define HUNG 20
2913
 
5060 serge 2914
	if (!i915.enable_hangcheck)
4104 Serge 2915
		return;
2916
 
2917
	for_each_ring(ring, dev_priv, i) {
5060 serge 2918
		u64 acthd;
2919
		u32 seqno;
4104 Serge 2920
		bool busy = true;
2921
 
2922
		semaphore_clear_deadlocks(dev_priv);
2923
 
2924
		seqno = ring->get_seqno(ring, false);
2925
		acthd = intel_ring_get_active_head(ring);
2926
 
2927
		if (ring->hangcheck.seqno == seqno) {
2928
			if (ring_idle(ring, seqno)) {
5060 serge 2929
				ring->hangcheck.action = HANGCHECK_IDLE;
2930
 
6084 serge 2931
				if (waitqueue_active(&ring->irq_queue)) {
4104 Serge 2932
					/* Issue a wake-up to catch stuck h/w. */
6084 serge 2933
					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2934
						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2935
							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2936
								  ring->name);
2937
						else
2938
							DRM_INFO("Fake missed irq on %s\n",
2939
								 ring->name);
2940
						wake_up_all(&ring->irq_queue);
2941
					}
2942
					/* Safeguard against driver failure */
2943
					ring->hangcheck.score += BUSY;
2944
				} else
4104 Serge 2945
					busy = false;
2946
			} else {
2947
				/* We always increment the hangcheck score
2948
				 * if the ring is busy and still processing
2949
				 * the same request, so that no single request
2950
				 * can run indefinitely (such as a chain of
2951
				 * batches). The only time we do not increment
2952
				 * the hangcheck score on this ring, if this
2953
				 * ring is in a legitimate wait for another
2954
				 * ring. In that case the waiting ring is a
2955
				 * victim and we want to be sure we catch the
2956
				 * right culprit. Then every time we do kick
2957
				 * the ring, add a small increment to the
2958
				 * score so that we can catch a batch that is
2959
				 * being repeatedly kicked and so responsible
2960
				 * for stalling the machine.
2961
				 */
2962
				ring->hangcheck.action = ring_stuck(ring,
2963
								    acthd);
2964
 
2965
				switch (ring->hangcheck.action) {
4560 Serge 2966
				case HANGCHECK_IDLE:
4104 Serge 2967
				case HANGCHECK_WAIT:
5060 serge 2968
				case HANGCHECK_ACTIVE:
4104 Serge 2969
					break;
5060 serge 2970
				case HANGCHECK_ACTIVE_LOOP:
4104 Serge 2971
					ring->hangcheck.score += BUSY;
2972
					break;
2973
				case HANGCHECK_KICK:
2974
					ring->hangcheck.score += KICK;
2975
					break;
2976
				case HANGCHECK_HUNG:
2977
					ring->hangcheck.score += HUNG;
2978
					stuck[i] = true;
2979
					break;
2980
				}
2981
			}
2982
		} else {
4560 Serge 2983
			ring->hangcheck.action = HANGCHECK_ACTIVE;
2984
 
4104 Serge 2985
			/* Gradually reduce the count so that we catch DoS
2986
			 * attempts across multiple batches.
2987
			 */
2988
			if (ring->hangcheck.score > 0)
2989
				ring->hangcheck.score--;
5060 serge 2990
 
2991
			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
4104 Serge 2992
		}
2993
 
2994
		ring->hangcheck.seqno = seqno;
2995
		ring->hangcheck.acthd = acthd;
2996
		busy_count += busy;
2997
	}
2998
 
2999
	for_each_ring(ring, dev_priv, i) {
5060 serge 3000
		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
4104 Serge 3001
			DRM_INFO("%s on %s\n",
6084 serge 3002
				 stuck[i] ? "stuck" : "no progress",
3003
				 ring->name);
4104 Serge 3004
			rings_hung++;
3005
		}
3006
	}
3007
 
3008
//   if (rings_hung)
3009
//       return i915_handle_error(dev, true);
3010
 
3011
}
5060 serge 3012
static void ibx_irq_reset(struct drm_device *dev)
3013
{
3014
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 3015
 
5060 serge 3016
	if (HAS_PCH_NOP(dev))
3017
		return;
3018
 
3019
	GEN5_IRQ_RESET(SDE);
3020
 
3021
	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3022
		I915_WRITE(SERR_INT, 0xffffffff);
3023
}
3024
 
3025
/*
3026
 * SDEIER is also touched by the interrupt handler to work around missed PCH
3027
 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3028
 * instead we unconditionally enable all PCH interrupt sources here, but then
3029
 * only unmask them as needed with SDEIMR.
3030
 *
3031
 * This function needs to be called before interrupts are enabled.
3032
 */
3033
static void ibx_irq_pre_postinstall(struct drm_device *dev)
4104 Serge 3034
{
3035
	struct drm_i915_private *dev_priv = dev->dev_private;
3036
 
3746 Serge 3037
	if (HAS_PCH_NOP(dev))
3038
		return;
3039
 
5060 serge 3040
	WARN_ON(I915_READ(SDEIER) != 0);
3746 Serge 3041
	I915_WRITE(SDEIER, 0xffffffff);
4104 Serge 3042
	POSTING_READ(SDEIER);
2351 Serge 3043
}
3044
 
5060 serge 3045
static void gen5_gt_irq_reset(struct drm_device *dev)
4104 Serge 3046
{
3047
	struct drm_i915_private *dev_priv = dev->dev_private;
3048
 
5060 serge 3049
	GEN5_IRQ_RESET(GT);
3050
	if (INTEL_INFO(dev)->gen >= 6)
3051
		GEN5_IRQ_RESET(GEN6_PM);
4104 Serge 3052
}
3053
 
3054
/* drm_dma.h hooks
3055
*/
5060 serge 3056
static void ironlake_irq_reset(struct drm_device *dev)
4104 Serge 3057
{
5060 serge 3058
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 3059
 
5060 serge 3060
	I915_WRITE(HWSTAM, 0xffffffff);
4104 Serge 3061
 
5060 serge 3062
	GEN5_IRQ_RESET(DE);
3063
	if (IS_GEN7(dev))
3064
		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
4104 Serge 3065
 
5060 serge 3066
	gen5_gt_irq_reset(dev);
4104 Serge 3067
 
5060 serge 3068
	ibx_irq_reset(dev);
4104 Serge 3069
}
3070
 
5354 serge 3071
static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3072
{
3073
	enum pipe pipe;
3074
 
6084 serge 3075
	i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
5354 serge 3076
	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3077
 
3078
	for_each_pipe(dev_priv, pipe)
3079
		I915_WRITE(PIPESTAT(pipe), 0xffff);
3080
 
3081
	GEN5_IRQ_RESET(VLV_);
3082
}
3083
 
3031 serge 3084
static void valleyview_irq_preinstall(struct drm_device *dev)
3085
{
5060 serge 3086
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3087
 
3088
	/* VLV magic */
3089
	I915_WRITE(VLV_IMR, 0);
3090
	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3091
	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3092
	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3093
 
5060 serge 3094
	gen5_gt_irq_reset(dev);
4104 Serge 3095
 
5354 serge 3096
	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3031 serge 3097
 
5354 serge 3098
	vlv_display_irq_reset(dev_priv);
3031 serge 3099
}
3100
 
5060 serge 3101
static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
4560 Serge 3102
{
5060 serge 3103
	GEN8_IRQ_RESET_NDX(GT, 0);
3104
	GEN8_IRQ_RESET_NDX(GT, 1);
3105
	GEN8_IRQ_RESET_NDX(GT, 2);
3106
	GEN8_IRQ_RESET_NDX(GT, 3);
3107
}
3108
 
3109
static void gen8_irq_reset(struct drm_device *dev)
3110
{
4560 Serge 3111
	struct drm_i915_private *dev_priv = dev->dev_private;
3112
	int pipe;
3113
 
3114
	I915_WRITE(GEN8_MASTER_IRQ, 0);
3115
	POSTING_READ(GEN8_MASTER_IRQ);
3116
 
5060 serge 3117
	gen8_gt_irq_reset(dev_priv);
4560 Serge 3118
 
5354 serge 3119
	for_each_pipe(dev_priv, pipe)
3120
		if (intel_display_power_is_enabled(dev_priv,
6084 serge 3121
						   POWER_DOMAIN_PIPE(pipe)))
3122
			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
4560 Serge 3123
 
5060 serge 3124
	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3125
	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3126
	GEN5_IRQ_RESET(GEN8_PCU_);
4560 Serge 3127
 
6084 serge 3128
	if (HAS_PCH_SPLIT(dev))
3129
		ibx_irq_reset(dev);
5060 serge 3130
}
4560 Serge 3131
 
6084 serge 3132
void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3133
				     unsigned int pipe_mask)
5060 serge 3134
{
5354 serge 3135
	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
4560 Serge 3136
 
5354 serge 3137
	spin_lock_irq(&dev_priv->irq_lock);
6084 serge 3138
	if (pipe_mask & 1 << PIPE_A)
3139
		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3140
				  dev_priv->de_irq_mask[PIPE_A],
3141
				  ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3142
	if (pipe_mask & 1 << PIPE_B)
3143
		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3144
				  dev_priv->de_irq_mask[PIPE_B],
3145
				  ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3146
	if (pipe_mask & 1 << PIPE_C)
3147
		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3148
				  dev_priv->de_irq_mask[PIPE_C],
3149
				  ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
5354 serge 3150
	spin_unlock_irq(&dev_priv->irq_lock);
5060 serge 3151
}
3152
 
3153
static void cherryview_irq_preinstall(struct drm_device *dev)
3154
{
3155
	struct drm_i915_private *dev_priv = dev->dev_private;
3156
 
3157
	I915_WRITE(GEN8_MASTER_IRQ, 0);
3158
	POSTING_READ(GEN8_MASTER_IRQ);
3159
 
3160
	gen8_gt_irq_reset(dev_priv);
3161
 
3162
	GEN5_IRQ_RESET(GEN8_PCU_);
3163
 
3164
	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3165
 
5354 serge 3166
	vlv_display_irq_reset(dev_priv);
4560 Serge 3167
}
3168
 
6084 serge 3169
static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3170
				  const u32 hpd[HPD_NUM_PINS])
3171
{
3172
	struct drm_i915_private *dev_priv = to_i915(dev);
3173
	struct intel_encoder *encoder;
3174
	u32 enabled_irqs = 0;
3175
 
3176
	for_each_intel_encoder(dev, encoder)
3177
		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3178
			enabled_irqs |= hpd[encoder->hpd_pin];
3179
 
3180
	return enabled_irqs;
3181
}
3182
 
3746 Serge 3183
static void ibx_hpd_irq_setup(struct drm_device *dev)
3184
{
5060 serge 3185
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 3186
	u32 hotplug_irqs, hotplug, enabled_irqs;
3746 Serge 3187
 
3188
	if (HAS_PCH_IBX(dev)) {
4104 Serge 3189
		hotplug_irqs = SDE_HOTPLUG_MASK;
6084 serge 3190
		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3746 Serge 3191
	} else {
4104 Serge 3192
		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
6084 serge 3193
		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3746 Serge 3194
	}
3195
 
4104 Serge 3196
	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3746 Serge 3197
 
3198
	/*
6084 serge 3199
	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3200
	 * duration to 2ms (which is the minimum in the Display Port spec).
3201
	 * The pulse duration bits are reserved on LPT+.
3202
	 */
2351 Serge 3203
	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3204
	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3205
	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3206
	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3207
	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
6084 serge 3208
	/*
3209
	 * When CPU and PCH are on the same package, port A
3210
	 * HPD must be enabled in both north and south.
3211
	 */
3212
	if (HAS_PCH_LPT_LP(dev))
3213
		hotplug |= PORTA_HOTPLUG_ENABLE;
2351 Serge 3214
	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3215
}
3216
 
6084 serge 3217
static void spt_hpd_irq_setup(struct drm_device *dev)
3218
{
3219
	struct drm_i915_private *dev_priv = dev->dev_private;
3220
	u32 hotplug_irqs, hotplug, enabled_irqs;
3221
 
3222
	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3223
	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3224
 
3225
	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3226
 
3227
	/* Enable digital hotplug on the PCH */
3228
	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3229
	hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3230
		PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3231
	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3232
 
3233
	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3234
	hotplug |= PORTE_HOTPLUG_ENABLE;
3235
	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3236
}
3237
 
3238
static void ilk_hpd_irq_setup(struct drm_device *dev)
3239
{
3240
	struct drm_i915_private *dev_priv = dev->dev_private;
3241
	u32 hotplug_irqs, hotplug, enabled_irqs;
3242
 
3243
	if (INTEL_INFO(dev)->gen >= 8) {
3244
		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3245
		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3246
 
3247
		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3248
	} else if (INTEL_INFO(dev)->gen >= 7) {
3249
		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3250
		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3251
 
3252
		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3253
	} else {
3254
		hotplug_irqs = DE_DP_A_HOTPLUG;
3255
		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3256
 
3257
		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3258
	}
3259
 
3260
	/*
3261
	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3262
	 * duration to 2ms (which is the minimum in the Display Port spec)
3263
	 * The pulse duration bits are reserved on HSW+.
3264
	 */
3265
	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3266
	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3267
	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3268
	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3269
 
3270
	ibx_hpd_irq_setup(dev);
3271
}
3272
 
3273
static void bxt_hpd_irq_setup(struct drm_device *dev)
3274
{
3275
	struct drm_i915_private *dev_priv = dev->dev_private;
3276
	u32 hotplug_irqs, hotplug, enabled_irqs;
3277
 
3278
	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3279
	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3280
 
3281
	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3282
 
3283
	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3284
	hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3285
		PORTA_HOTPLUG_ENABLE;
3286
	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3287
}
3288
 
3480 Serge 3289
static void ibx_irq_postinstall(struct drm_device *dev)
3290
{
5060 serge 3291
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 3292
	u32 mask;
3293
 
3746 Serge 3294
	if (HAS_PCH_NOP(dev))
3295
		return;
3296
 
5060 serge 3297
	if (HAS_PCH_IBX(dev))
3298
		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3299
	else
3300
		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
4104 Serge 3301
 
6084 serge 3302
	gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3480 Serge 3303
	I915_WRITE(SDEIMR, ~mask);
3304
}
3305
 
4104 Serge 3306
static void gen5_gt_irq_postinstall(struct drm_device *dev)
2351 Serge 3307
{
4104 Serge 3308
	struct drm_i915_private *dev_priv = dev->dev_private;
3309
	u32 pm_irqs, gt_irqs;
2351 Serge 3310
 
4104 Serge 3311
	pm_irqs = gt_irqs = 0;
2351 Serge 3312
 
3313
	dev_priv->gt_irq_mask = ~0;
4560 Serge 3314
	if (HAS_L3_DPF(dev)) {
4104 Serge 3315
		/* L3 parity interrupt is always unmasked. */
4560 Serge 3316
		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3317
		gt_irqs |= GT_PARITY_ERROR(dev);
4104 Serge 3318
	}
2351 Serge 3319
 
4104 Serge 3320
	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3321
	if (IS_GEN5(dev)) {
3322
		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3323
			   ILK_BSD_USER_INTERRUPT;
3324
	} else {
3325
		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3326
	}
2351 Serge 3327
 
5060 serge 3328
	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
2351 Serge 3329
 
4104 Serge 3330
	if (INTEL_INFO(dev)->gen >= 6) {
5354 serge 3331
		/*
3332
		 * RPS interrupts will get enabled/disabled on demand when RPS
3333
		 * itself is enabled/disabled.
3334
		 */
4104 Serge 3335
		if (HAS_VEBOX(dev))
3336
			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3337
 
3338
		dev_priv->pm_irq_mask = 0xffffffff;
5060 serge 3339
		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
6084 serge 3340
	}
2351 Serge 3341
}
3342
 
4104 Serge 3343
static int ironlake_irq_postinstall(struct drm_device *dev)
3031 serge 3344
{
5060 serge 3345
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 3346
	u32 display_mask, extra_mask;
3347
 
3348
	if (INTEL_INFO(dev)->gen >= 7) {
3349
		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3350
				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
6084 serge 3351
				DE_PLANEB_FLIP_DONE_IVB |
5060 serge 3352
				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
4104 Serge 3353
		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
6084 serge 3354
			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3355
			      DE_DP_A_HOTPLUG_IVB);
4104 Serge 3356
	} else {
3357
		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3358
				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
4560 Serge 3359
				DE_AUX_CHANNEL_A |
3360
				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3361
				DE_POISON);
6084 serge 3362
		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3363
			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3364
			      DE_DP_A_HOTPLUG);
4104 Serge 3365
	}
3366
 
3031 serge 3367
	dev_priv->irq_mask = ~display_mask;
3368
 
5060 serge 3369
	I915_WRITE(HWSTAM, 0xeffe);
3031 serge 3370
 
5060 serge 3371
	ibx_irq_pre_postinstall(dev);
3372
 
3373
	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3374
 
4104 Serge 3375
	gen5_gt_irq_postinstall(dev);
3031 serge 3376
 
4104 Serge 3377
	ibx_irq_postinstall(dev);
3031 serge 3378
 
4104 Serge 3379
	if (IS_IRONLAKE_M(dev)) {
3380
		/* Enable PCU event interrupts
3381
		 *
3382
		 * spinlocking not required here for correctness since interrupt
3383
		 * setup is guaranteed to run in single-threaded context. But we
3384
		 * need it to make the assert_spin_locked happy. */
5354 serge 3385
		spin_lock_irq(&dev_priv->irq_lock);
4104 Serge 3386
		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
5354 serge 3387
		spin_unlock_irq(&dev_priv->irq_lock);
4104 Serge 3388
	}
3031 serge 3389
 
3390
	return 0;
3391
}
3392
 
5060 serge 3393
static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3394
{
3395
	u32 pipestat_mask;
3396
	u32 iir_mask;
5354 serge 3397
	enum pipe pipe;
5060 serge 3398
 
3399
	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3400
			PIPE_FIFO_UNDERRUN_STATUS;
3401
 
5354 serge 3402
	for_each_pipe(dev_priv, pipe)
3403
		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
5060 serge 3404
	POSTING_READ(PIPESTAT(PIPE_A));
3405
 
3406
	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3407
			PIPE_CRC_DONE_INTERRUPT_STATUS;
3408
 
5354 serge 3409
	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3410
	for_each_pipe(dev_priv, pipe)
3411
		      i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
5060 serge 3412
 
3413
	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3414
		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3415
		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
5354 serge 3416
	if (IS_CHERRYVIEW(dev_priv))
3417
		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
5060 serge 3418
	dev_priv->irq_mask &= ~iir_mask;
3419
 
3420
	I915_WRITE(VLV_IIR, iir_mask);
3421
	I915_WRITE(VLV_IIR, iir_mask);
5354 serge 3422
	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
5060 serge 3423
	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
5354 serge 3424
	POSTING_READ(VLV_IMR);
5060 serge 3425
}
3426
 
3427
static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3428
{
3429
	u32 pipestat_mask;
3430
	u32 iir_mask;
5354 serge 3431
	enum pipe pipe;
5060 serge 3432
 
3433
	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3434
		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3435
		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
5354 serge 3436
	if (IS_CHERRYVIEW(dev_priv))
3437
		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
5060 serge 3438
 
3439
	dev_priv->irq_mask |= iir_mask;
5354 serge 3440
	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
5060 serge 3441
	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3442
	I915_WRITE(VLV_IIR, iir_mask);
3443
	I915_WRITE(VLV_IIR, iir_mask);
3444
	POSTING_READ(VLV_IIR);
3445
 
3446
	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3447
			PIPE_CRC_DONE_INTERRUPT_STATUS;
3448
 
5354 serge 3449
	i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3450
	for_each_pipe(dev_priv, pipe)
3451
		i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
5060 serge 3452
 
3453
	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3454
			PIPE_FIFO_UNDERRUN_STATUS;
5354 serge 3455
 
3456
	for_each_pipe(dev_priv, pipe)
3457
		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
5060 serge 3458
	POSTING_READ(PIPESTAT(PIPE_A));
3459
}
3460
 
3461
void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3462
{
3463
	assert_spin_locked(&dev_priv->irq_lock);
3464
 
3465
	if (dev_priv->display_irqs_enabled)
3466
		return;
3467
 
3468
	dev_priv->display_irqs_enabled = true;
3469
 
5354 serge 3470
	if (intel_irqs_enabled(dev_priv))
5060 serge 3471
		valleyview_display_irqs_install(dev_priv);
3472
}
3473
 
3474
void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3475
{
3476
	assert_spin_locked(&dev_priv->irq_lock);
3477
 
3478
	if (!dev_priv->display_irqs_enabled)
3479
		return;
3480
 
3481
	dev_priv->display_irqs_enabled = false;
3482
 
5354 serge 3483
	if (intel_irqs_enabled(dev_priv))
5060 serge 3484
		valleyview_display_irqs_uninstall(dev_priv);
3485
}
3486
 
5354 serge 3487
static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3031 serge 3488
{
5060 serge 3489
	dev_priv->irq_mask = ~0;
3031 serge 3490
 
6084 serge 3491
	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3480 Serge 3492
	POSTING_READ(PORT_HOTPLUG_EN);
3493
 
5354 serge 3494
	I915_WRITE(VLV_IIR, 0xffffffff);
3495
	I915_WRITE(VLV_IIR, 0xffffffff);
3496
	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3031 serge 3497
	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
5354 serge 3498
	POSTING_READ(VLV_IMR);
3031 serge 3499
 
4104 Serge 3500
	/* Interrupt setup is already guaranteed to be single-threaded, this is
3501
	 * just to make the assert_spin_locked check happy. */
5354 serge 3502
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 3503
	if (dev_priv->display_irqs_enabled)
3504
		valleyview_display_irqs_install(dev_priv);
5354 serge 3505
	spin_unlock_irq(&dev_priv->irq_lock);
3506
}
3031 serge 3507
 
5354 serge 3508
static int valleyview_irq_postinstall(struct drm_device *dev)
3509
{
3510
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3511
 
5354 serge 3512
	vlv_display_irq_postinstall(dev_priv);
3513
 
4104 Serge 3514
	gen5_gt_irq_postinstall(dev);
3243 Serge 3515
 
3031 serge 3516
	/* ack & enable invalid PTE error interrupts */
3517
#if 0 /* FIXME: add support to irq handler for checking these bits */
3518
	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3519
	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3520
#endif
3521
 
3522
	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3480 Serge 3523
 
3524
	return 0;
3525
}
3526
 
4560 Serge 3527
static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3528
{
3529
	/* These are interrupts we'll toggle with the ring mask register */
3530
	uint32_t gt_interrupts[] = {
3531
		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
5354 serge 3532
			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4560 Serge 3533
			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
5354 serge 3534
			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3535
			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
4560 Serge 3536
		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
5354 serge 3537
			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3538
			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3539
			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
4560 Serge 3540
		0,
5354 serge 3541
		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3542
			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
4560 Serge 3543
		};
3544
 
5060 serge 3545
	dev_priv->pm_irq_mask = 0xffffffff;
5354 serge 3546
	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3547
	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3548
	/*
3549
	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3550
	 * is enabled/disabled.
3551
	 */
3552
	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3553
	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
4560 Serge 3554
}
3555
 
3556
static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3557
{
5354 serge 3558
	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3559
	uint32_t de_pipe_enables;
6084 serge 3560
	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3561
	u32 de_port_enables;
3562
	enum pipe pipe;
5354 serge 3563
 
6084 serge 3564
	if (INTEL_INFO(dev_priv)->gen >= 9) {
5354 serge 3565
		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3566
				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
6084 serge 3567
		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3568
				  GEN9_AUX_CHANNEL_D;
3569
		if (IS_BROXTON(dev_priv))
3570
			de_port_masked |= BXT_DE_PORT_GMBUS;
3571
	} else {
5354 serge 3572
		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
6084 serge 3573
				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3574
	}
5354 serge 3575
 
3576
	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
6084 serge 3577
					   GEN8_PIPE_FIFO_UNDERRUN;
5354 serge 3578
 
6084 serge 3579
	de_port_enables = de_port_masked;
3580
	if (IS_BROXTON(dev_priv))
3581
		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3582
	else if (IS_BROADWELL(dev_priv))
3583
		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3584
 
4560 Serge 3585
	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3586
	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3587
	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3588
 
5354 serge 3589
	for_each_pipe(dev_priv, pipe)
3590
		if (intel_display_power_is_enabled(dev_priv,
5060 serge 3591
				POWER_DOMAIN_PIPE(pipe)))
3592
			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3593
					  dev_priv->de_irq_mask[pipe],
6084 serge 3594
					  de_pipe_enables);
4560 Serge 3595
 
6084 serge 3596
	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
4560 Serge 3597
}
3598
 
3599
static int gen8_irq_postinstall(struct drm_device *dev)
3600
{
3601
	struct drm_i915_private *dev_priv = dev->dev_private;
3602
 
6084 serge 3603
	if (HAS_PCH_SPLIT(dev))
3604
		ibx_irq_pre_postinstall(dev);
5060 serge 3605
 
4560 Serge 3606
	gen8_gt_irq_postinstall(dev_priv);
3607
	gen8_de_irq_postinstall(dev_priv);
3608
 
6084 serge 3609
	if (HAS_PCH_SPLIT(dev))
3610
		ibx_irq_postinstall(dev);
4560 Serge 3611
 
3612
	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3613
	POSTING_READ(GEN8_MASTER_IRQ);
3614
 
3615
	return 0;
3616
}
3617
 
5060 serge 3618
static int cherryview_irq_postinstall(struct drm_device *dev)
4560 Serge 3619
{
3620
	struct drm_i915_private *dev_priv = dev->dev_private;
3621
 
5354 serge 3622
	vlv_display_irq_postinstall(dev_priv);
4560 Serge 3623
 
5060 serge 3624
	gen8_gt_irq_postinstall(dev_priv);
4560 Serge 3625
 
5060 serge 3626
	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3627
	POSTING_READ(GEN8_MASTER_IRQ);
4560 Serge 3628
 
5060 serge 3629
	return 0;
3630
}
4560 Serge 3631
 
5060 serge 3632
static void gen8_irq_uninstall(struct drm_device *dev)
3633
{
3634
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 3635
 
5060 serge 3636
	if (!dev_priv)
3637
		return;
3638
 
3639
	gen8_irq_reset(dev);
4560 Serge 3640
}
3641
 
5354 serge 3642
static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3643
{
3644
	/* Interrupt setup is already guaranteed to be single-threaded, this is
3645
	 * just to make the assert_spin_locked check happy. */
3646
	spin_lock_irq(&dev_priv->irq_lock);
3647
	if (dev_priv->display_irqs_enabled)
3648
		valleyview_display_irqs_uninstall(dev_priv);
3649
	spin_unlock_irq(&dev_priv->irq_lock);
3650
 
3651
	vlv_display_irq_reset(dev_priv);
3652
 
3653
	dev_priv->irq_mask = ~0;
3654
}
3655
 
3031 serge 3656
static void valleyview_irq_uninstall(struct drm_device *dev)
3657
{
5060 serge 3658
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3659
 
3660
	if (!dev_priv)
3661
		return;
3662
 
5060 serge 3663
	I915_WRITE(VLV_MASTER_IER, 0);
4293 Serge 3664
 
5354 serge 3665
	gen5_gt_irq_reset(dev);
3031 serge 3666
 
3667
	I915_WRITE(HWSTAM, 0xffffffff);
5060 serge 3668
 
5354 serge 3669
	vlv_display_irq_uninstall(dev_priv);
3031 serge 3670
}
3671
 
5060 serge 3672
static void cherryview_irq_uninstall(struct drm_device *dev)
3031 serge 3673
{
5060 serge 3674
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3675
 
3676
	if (!dev_priv)
3677
		return;
3678
 
5060 serge 3679
	I915_WRITE(GEN8_MASTER_IRQ, 0);
3680
	POSTING_READ(GEN8_MASTER_IRQ);
4293 Serge 3681
 
5354 serge 3682
	gen8_gt_irq_reset(dev_priv);
3031 serge 3683
 
5354 serge 3684
	GEN5_IRQ_RESET(GEN8_PCU_);
3031 serge 3685
 
5354 serge 3686
	vlv_display_irq_uninstall(dev_priv);
5060 serge 3687
}
3688
 
3689
static void ironlake_irq_uninstall(struct drm_device *dev)
3690
{
3691
	struct drm_i915_private *dev_priv = dev->dev_private;
3692
 
3693
	if (!dev_priv)
3746 Serge 3694
		return;
3695
 
5060 serge 3696
	ironlake_irq_reset(dev);
3031 serge 3697
}
3698
 
3699
#if 0
3700
static void i8xx_irq_preinstall(struct drm_device * dev)
3701
{
5060 serge 3702
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3703
	int pipe;
3704
 
5354 serge 3705
	for_each_pipe(dev_priv, pipe)
3031 serge 3706
		I915_WRITE(PIPESTAT(pipe), 0);
3707
	I915_WRITE16(IMR, 0xffff);
3708
	I915_WRITE16(IER, 0x0);
3709
	POSTING_READ16(IER);
3710
}
3711
 
3712
static int i8xx_irq_postinstall(struct drm_device *dev)
3713
{
5060 serge 3714
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3715
 
3716
	I915_WRITE16(EMR,
3717
		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3718
 
3719
	/* Unmask the interrupts that we always want on. */
3720
	dev_priv->irq_mask =
3721
		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3722
		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3723
		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
6084 serge 3724
		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3031 serge 3725
	I915_WRITE16(IMR, dev_priv->irq_mask);
3726
 
3727
	I915_WRITE16(IER,
3728
		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3729
		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3730
		     I915_USER_INTERRUPT);
3731
	POSTING_READ16(IER);
3732
 
4560 Serge 3733
	/* Interrupt setup is already guaranteed to be single-threaded, this is
3734
	 * just to make the assert_spin_locked check happy. */
5354 serge 3735
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 3736
	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3737
	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
5354 serge 3738
	spin_unlock_irq(&dev_priv->irq_lock);
4560 Serge 3739
 
3031 serge 3740
	return 0;
3741
}
3742
 
3746 Serge 3743
/*
3744
 * Returns true when a page flip has completed.
3745
 */
3746
static bool i8xx_handle_vblank(struct drm_device *dev,
4560 Serge 3747
			       int plane, int pipe, u32 iir)
3746 Serge 3748
{
5060 serge 3749
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 3750
	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3746 Serge 3751
 
6084 serge 3752
	if (!intel_pipe_handle_vblank(dev, pipe))
3753
		return false;
3746 Serge 3754
 
3755
	if ((iir & flip_pending) == 0)
5354 serge 3756
		goto check_page_flip;
3746 Serge 3757
 
3758
	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3759
	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3760
	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3761
	 * the flip is completed (no longer pending). Since this doesn't raise
3762
	 * an interrupt per se, we watch for the change at vblank.
3763
	 */
3764
	if (I915_READ16(ISR) & flip_pending)
5354 serge 3765
		goto check_page_flip;
3746 Serge 3766
 
6084 serge 3767
//   intel_prepare_page_flip(dev, plane);
3768
//   intel_finish_page_flip(dev, pipe);
5354 serge 3769
	return true;
3746 Serge 3770
 
5354 serge 3771
check_page_flip:
6084 serge 3772
//   intel_check_page_flip(dev, pipe);
5354 serge 3773
	return false;
3746 Serge 3774
}
3775
 
3243 Serge 3776
static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3031 serge 3777
{
5060 serge 3778
	struct drm_device *dev = arg;
3779
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3780
	u16 iir, new_iir;
3781
	u32 pipe_stats[2];
3782
	int pipe;
3783
	u16 flip_mask =
3784
		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3785
		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3786
 
6084 serge 3787
	if (!intel_irqs_enabled(dev_priv))
3788
		return IRQ_NONE;
3789
 
3031 serge 3790
	iir = I915_READ16(IIR);
3791
	if (iir == 0)
3792
		return IRQ_NONE;
3793
 
3794
	while (iir & ~flip_mask) {
3795
		/* Can't rely on pipestat interrupt bit in iir as it might
3796
		 * have been cleared after the pipestat interrupt was received.
3797
		 * It doesn't set the bit in iir again, but it still produces
3798
		 * interrupts (for non-MSI).
3799
		 */
5354 serge 3800
		spin_lock(&dev_priv->irq_lock);
4126 Serge 3801
		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
5354 serge 3802
			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3031 serge 3803
 
5354 serge 3804
		for_each_pipe(dev_priv, pipe) {
3031 serge 3805
			int reg = PIPESTAT(pipe);
3806
			pipe_stats[pipe] = I915_READ(reg);
3807
 
3808
			/*
3809
			 * Clear the PIPE*STAT regs before the IIR
3810
			 */
5060 serge 3811
			if (pipe_stats[pipe] & 0x8000ffff)
3031 serge 3812
				I915_WRITE(reg, pipe_stats[pipe]);
6084 serge 3813
		}
5354 serge 3814
		spin_unlock(&dev_priv->irq_lock);
3031 serge 3815
 
3816
		I915_WRITE16(IIR, iir & ~flip_mask);
3817
		new_iir = I915_READ16(IIR); /* Flush posted writes */
3818
 
3819
		if (iir & I915_USER_INTERRUPT)
6084 serge 3820
			notify_ring(&dev_priv->ring[RCS]);
3031 serge 3821
 
5354 serge 3822
		for_each_pipe(dev_priv, pipe) {
4560 Serge 3823
			int plane = pipe;
3824
			if (HAS_FBC(dev))
3825
				plane = !plane;
3031 serge 3826
 
4560 Serge 3827
			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3828
			    i8xx_handle_vblank(dev, plane, pipe, iir))
3829
				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3031 serge 3830
 
4560 Serge 3831
			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3832
				i9xx_pipe_crc_irq_handler(dev, pipe);
5060 serge 3833
 
5354 serge 3834
			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3835
				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3836
								    pipe);
4560 Serge 3837
		}
3838
 
3031 serge 3839
		iir = new_iir;
3840
	}
3841
 
3842
	return IRQ_HANDLED;
3843
}
3844
 
3845
static void i8xx_irq_uninstall(struct drm_device * dev)
3846
{
5060 serge 3847
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3848
	int pipe;
3849
 
5354 serge 3850
	for_each_pipe(dev_priv, pipe) {
3031 serge 3851
		/* Clear enable bits; then clear status bits */
3852
		I915_WRITE(PIPESTAT(pipe), 0);
3853
		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3854
	}
3855
	I915_WRITE16(IMR, 0xffff);
3856
	I915_WRITE16(IER, 0x0);
3857
	I915_WRITE16(IIR, I915_READ16(IIR));
3858
}
3859
 
3860
#endif
3861
 
3862
static void i915_irq_preinstall(struct drm_device * dev)
3863
{
5060 serge 3864
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3865
	int pipe;
3866
 
3867
	if (I915_HAS_HOTPLUG(dev)) {
6084 serge 3868
		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3031 serge 3869
		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3870
	}
3871
 
3872
	I915_WRITE16(HWSTAM, 0xeffe);
5354 serge 3873
	for_each_pipe(dev_priv, pipe)
3031 serge 3874
		I915_WRITE(PIPESTAT(pipe), 0);
3875
	I915_WRITE(IMR, 0xffffffff);
3876
	I915_WRITE(IER, 0x0);
3877
	POSTING_READ(IER);
3878
}
3879
 
3880
static int i915_irq_postinstall(struct drm_device *dev)
3881
{
5060 serge 3882
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3883
	u32 enable_mask;
3884
 
3885
	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3886
 
3887
	/* Unmask the interrupts that we always want on. */
3888
	dev_priv->irq_mask =
3889
		~(I915_ASLE_INTERRUPT |
3890
		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3891
		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3892
		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
6084 serge 3893
		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3031 serge 3894
 
3895
	enable_mask =
3896
		I915_ASLE_INTERRUPT |
3897
		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3898
		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3899
		I915_USER_INTERRUPT;
3480 Serge 3900
 
3031 serge 3901
	if (I915_HAS_HOTPLUG(dev)) {
6084 serge 3902
		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3480 Serge 3903
		POSTING_READ(PORT_HOTPLUG_EN);
3904
 
3031 serge 3905
		/* Enable in IER... */
3906
		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3907
		/* and unmask in IMR */
3908
		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3909
	}
3910
 
3911
	I915_WRITE(IMR, dev_priv->irq_mask);
3912
	I915_WRITE(IER, enable_mask);
3913
	POSTING_READ(IER);
3914
 
4126 Serge 3915
	i915_enable_asle_pipestat(dev);
3480 Serge 3916
 
4560 Serge 3917
	/* Interrupt setup is already guaranteed to be single-threaded, this is
3918
	 * just to make the assert_spin_locked check happy. */
5354 serge 3919
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 3920
	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3921
	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
5354 serge 3922
	spin_unlock_irq(&dev_priv->irq_lock);
4560 Serge 3923
 
3480 Serge 3924
	return 0;
3925
}
3926
 
3746 Serge 3927
/*
3928
 * Returns true when a page flip has completed.
3929
 */
3930
static bool i915_handle_vblank(struct drm_device *dev,
3931
			       int plane, int pipe, u32 iir)
3480 Serge 3932
{
5060 serge 3933
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 3934
	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3480 Serge 3935
 
6084 serge 3936
	return false;
3480 Serge 3937
 
3746 Serge 3938
	if ((iir & flip_pending) == 0)
5354 serge 3939
		goto check_page_flip;
3480 Serge 3940
 
3746 Serge 3941
	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3942
	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3943
	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3944
	 * the flip is completed (no longer pending). Since this doesn't raise
3945
	 * an interrupt per se, we watch for the change at vblank.
3946
	 */
3947
	if (I915_READ(ISR) & flip_pending)
5354 serge 3948
		goto check_page_flip;
3746 Serge 3949
 
5354 serge 3950
	return true;
3746 Serge 3951
 
5354 serge 3952
check_page_flip:
3953
	return false;
3031 serge 3954
}
3955
 
3243 Serge 3956
static irqreturn_t i915_irq_handler(int irq, void *arg)
3031 serge 3957
{
5060 serge 3958
	struct drm_device *dev = arg;
3959
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3960
	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3961
	u32 flip_mask =
3962
		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3963
		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3964
	int pipe, ret = IRQ_NONE;
3965
 
6084 serge 3966
	if (!intel_irqs_enabled(dev_priv))
3967
		return IRQ_NONE;
3968
 
3031 serge 3969
	iir = I915_READ(IIR);
3970
	do {
3971
		bool irq_received = (iir & ~flip_mask) != 0;
3972
		bool blc_event = false;
3973
 
3974
		/* Can't rely on pipestat interrupt bit in iir as it might
3975
		 * have been cleared after the pipestat interrupt was received.
3976
		 * It doesn't set the bit in iir again, but it still produces
3977
		 * interrupts (for non-MSI).
3978
		 */
5354 serge 3979
		spin_lock(&dev_priv->irq_lock);
4126 Serge 3980
		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
5354 serge 3981
			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3031 serge 3982
 
5354 serge 3983
		for_each_pipe(dev_priv, pipe) {
3031 serge 3984
			int reg = PIPESTAT(pipe);
3985
			pipe_stats[pipe] = I915_READ(reg);
3986
 
3987
			/* Clear the PIPE*STAT regs before the IIR */
3988
			if (pipe_stats[pipe] & 0x8000ffff) {
3989
				I915_WRITE(reg, pipe_stats[pipe]);
3990
				irq_received = true;
3991
			}
3992
		}
5354 serge 3993
		spin_unlock(&dev_priv->irq_lock);
3031 serge 3994
 
3995
		if (!irq_received)
3996
			break;
3997
 
3998
		/* Consume port.  Then clear IIR or we'll miss events */
5060 serge 3999
		if (I915_HAS_HOTPLUG(dev) &&
4000
		    iir & I915_DISPLAY_PORT_INTERRUPT)
4001
			i9xx_hpd_irq_handler(dev);
3031 serge 4002
 
4003
		I915_WRITE(IIR, iir & ~flip_mask);
4004
		new_iir = I915_READ(IIR); /* Flush posted writes */
4005
 
4006
		if (iir & I915_USER_INTERRUPT)
6084 serge 4007
			notify_ring(&dev_priv->ring[RCS]);
3031 serge 4008
 
5354 serge 4009
		for_each_pipe(dev_priv, pipe) {
3031 serge 4010
			int plane = pipe;
4560 Serge 4011
			if (HAS_FBC(dev))
3031 serge 4012
				plane = !plane;
4013
 
3746 Serge 4014
			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4015
			    i915_handle_vblank(dev, plane, pipe, iir))
4016
				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4017
 
3031 serge 4018
			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4019
				blc_event = true;
4560 Serge 4020
 
4021
			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4022
				i9xx_pipe_crc_irq_handler(dev, pipe);
5060 serge 4023
 
5354 serge 4024
			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4025
				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4026
								    pipe);
3031 serge 4027
		}
4028
 
4126 Serge 4029
		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4030
			intel_opregion_asle_intr(dev);
3031 serge 4031
 
4032
		/* With MSI, interrupts are only generated when iir
4033
		 * transitions from zero to nonzero.  If another bit got
4034
		 * set while we were handling the existing iir bits, then
4035
		 * we would never get another interrupt.
4036
		 *
4037
		 * This is fine on non-MSI as well, as if we hit this path
4038
		 * we avoid exiting the interrupt handler only to generate
4039
		 * another one.
4040
		 *
4041
		 * Note that for MSI this could cause a stray interrupt report
4042
		 * if an interrupt landed in the time between writing IIR and
4043
		 * the posting read.  This should be rare enough to never
4044
		 * trigger the 99% of 100,000 interrupts test for disabling
4045
		 * stray interrupts.
4046
		 */
4047
		ret = IRQ_HANDLED;
4048
		iir = new_iir;
4049
	} while (iir & ~flip_mask);
4050
 
4051
	return ret;
4052
}
4053
 
4054
static void i915_irq_uninstall(struct drm_device * dev)
4055
{
5060 serge 4056
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4057
	int pipe;
4058
 
4059
	if (I915_HAS_HOTPLUG(dev)) {
6084 serge 4060
		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3031 serge 4061
		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4062
	}
4063
 
4064
	I915_WRITE16(HWSTAM, 0xffff);
5354 serge 4065
	for_each_pipe(dev_priv, pipe) {
3031 serge 4066
		/* Clear enable bits; then clear status bits */
4067
		I915_WRITE(PIPESTAT(pipe), 0);
4068
		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4069
	}
4070
	I915_WRITE(IMR, 0xffffffff);
4071
	I915_WRITE(IER, 0x0);
4072
 
4073
	I915_WRITE(IIR, I915_READ(IIR));
4074
}
4075
 
4076
static void i965_irq_preinstall(struct drm_device * dev)
4077
{
5060 serge 4078
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4079
	int pipe;
4080
 
6084 serge 4081
	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3031 serge 4082
	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4083
 
4084
	I915_WRITE(HWSTAM, 0xeffe);
5354 serge 4085
	for_each_pipe(dev_priv, pipe)
3031 serge 4086
		I915_WRITE(PIPESTAT(pipe), 0);
4087
	I915_WRITE(IMR, 0xffffffff);
4088
	I915_WRITE(IER, 0x0);
4089
	POSTING_READ(IER);
4090
}
4091
 
4092
static int i965_irq_postinstall(struct drm_device *dev)
4093
{
5060 serge 4094
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4095
	u32 enable_mask;
4096
	u32 error_mask;
4097
 
4098
	/* Unmask the interrupts that we always want on. */
4099
	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4100
			       I915_DISPLAY_PORT_INTERRUPT |
4101
			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4102
			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4103
			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4104
			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4105
			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4106
 
4107
	enable_mask = ~dev_priv->irq_mask;
3746 Serge 4108
	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4109
			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3031 serge 4110
	enable_mask |= I915_USER_INTERRUPT;
4111
 
4112
	if (IS_G4X(dev))
4113
		enable_mask |= I915_BSD_USER_INTERRUPT;
4114
 
4104 Serge 4115
	/* Interrupt setup is already guaranteed to be single-threaded, this is
4116
	 * just to make the assert_spin_locked check happy. */
5354 serge 4117
	spin_lock_irq(&dev_priv->irq_lock);
5060 serge 4118
	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4119
	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4120
	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
5354 serge 4121
	spin_unlock_irq(&dev_priv->irq_lock);
3031 serge 4122
 
4123
	/*
4124
	 * Enable some error detection, note the instruction error mask
4125
	 * bit is reserved, so we leave it masked.
4126
	 */
4127
	if (IS_G4X(dev)) {
4128
		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4129
			       GM45_ERROR_MEM_PRIV |
4130
			       GM45_ERROR_CP_PRIV |
4131
			       I915_ERROR_MEMORY_REFRESH);
4132
	} else {
4133
		error_mask = ~(I915_ERROR_PAGE_TABLE |
4134
			       I915_ERROR_MEMORY_REFRESH);
4135
	}
4136
	I915_WRITE(EMR, error_mask);
4137
 
4138
	I915_WRITE(IMR, dev_priv->irq_mask);
4139
	I915_WRITE(IER, enable_mask);
4140
	POSTING_READ(IER);
4141
 
6084 serge 4142
	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3480 Serge 4143
	POSTING_READ(PORT_HOTPLUG_EN);
4144
 
4126 Serge 4145
	i915_enable_asle_pipestat(dev);
3480 Serge 4146
 
4147
	return 0;
4148
}
4149
 
3746 Serge 4150
static void i915_hpd_irq_setup(struct drm_device *dev)
3480 Serge 4151
{
5060 serge 4152
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 4153
	u32 hotplug_en;
4154
 
4104 Serge 4155
	assert_spin_locked(&dev_priv->irq_lock);
4156
 
3031 serge 4157
	/* Note HDMI and DP share hotplug bits */
6084 serge 4158
	/* enable bits are the same for all generations */
4159
	hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4160
	/* Programming the CRT detection parameters tends
4161
	   to generate a spurious hotplug event about three
4162
	   seconds later.  So just do it once.
4163
	*/
4164
	if (IS_G4X(dev))
4165
		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4166
	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3480 Serge 4167
 
3031 serge 4168
	/* Ignore TV since it's buggy */
6084 serge 4169
	i915_hotplug_interrupt_update_locked(dev_priv,
4170
					     HOTPLUG_INT_EN_MASK |
4171
					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4172
					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4173
					     hotplug_en);
3031 serge 4174
}
4175
 
3243 Serge 4176
static irqreturn_t i965_irq_handler(int irq, void *arg)
3031 serge 4177
{
5060 serge 4178
	struct drm_device *dev = arg;
4179
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4180
	u32 iir, new_iir;
4181
	u32 pipe_stats[I915_MAX_PIPES];
4182
	int ret = IRQ_NONE, pipe;
3746 Serge 4183
	u32 flip_mask =
4184
		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4185
		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3031 serge 4186
 
6084 serge 4187
	if (!intel_irqs_enabled(dev_priv))
4188
		return IRQ_NONE;
4189
 
3031 serge 4190
	iir = I915_READ(IIR);
4191
 
4192
	for (;;) {
5060 serge 4193
		bool irq_received = (iir & ~flip_mask) != 0;
3031 serge 4194
		bool blc_event = false;
4195
 
4196
		/* Can't rely on pipestat interrupt bit in iir as it might
4197
		 * have been cleared after the pipestat interrupt was received.
4198
		 * It doesn't set the bit in iir again, but it still produces
4199
		 * interrupts (for non-MSI).
4200
		 */
5354 serge 4201
		spin_lock(&dev_priv->irq_lock);
4126 Serge 4202
		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
5354 serge 4203
			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3031 serge 4204
 
5354 serge 4205
		for_each_pipe(dev_priv, pipe) {
3031 serge 4206
			int reg = PIPESTAT(pipe);
4207
			pipe_stats[pipe] = I915_READ(reg);
4208
 
4209
			/*
4210
			 * Clear the PIPE*STAT regs before the IIR
4211
			 */
4212
			if (pipe_stats[pipe] & 0x8000ffff) {
4213
				I915_WRITE(reg, pipe_stats[pipe]);
5060 serge 4214
				irq_received = true;
3031 serge 4215
			}
4216
		}
5354 serge 4217
		spin_unlock(&dev_priv->irq_lock);
3031 serge 4218
 
4219
		if (!irq_received)
4220
			break;
4221
 
4222
		ret = IRQ_HANDLED;
4223
 
4224
		/* Consume port.  Then clear IIR or we'll miss events */
5060 serge 4225
		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4226
			i9xx_hpd_irq_handler(dev);
3031 serge 4227
 
3746 Serge 4228
		I915_WRITE(IIR, iir & ~flip_mask);
3031 serge 4229
		new_iir = I915_READ(IIR); /* Flush posted writes */
4230
 
4231
		if (iir & I915_USER_INTERRUPT)
6084 serge 4232
			notify_ring(&dev_priv->ring[RCS]);
3031 serge 4233
		if (iir & I915_BSD_USER_INTERRUPT)
6084 serge 4234
			notify_ring(&dev_priv->ring[VCS]);
3031 serge 4235
 
5354 serge 4236
		for_each_pipe(dev_priv, pipe) {
3746 Serge 4237
			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4238
			    i915_handle_vblank(dev, pipe, pipe, iir))
4239
				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3031 serge 4240
 
4241
			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4242
				blc_event = true;
4560 Serge 4243
 
4244
			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4245
				i9xx_pipe_crc_irq_handler(dev, pipe);
5060 serge 4246
 
5354 serge 4247
			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4248
				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
3031 serge 4249
		}
4250
 
4126 Serge 4251
		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4252
			intel_opregion_asle_intr(dev);
3031 serge 4253
 
3480 Serge 4254
		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4255
			gmbus_irq_handler(dev);
4256
 
3031 serge 4257
		/* With MSI, interrupts are only generated when iir
4258
		 * transitions from zero to nonzero.  If another bit got
4259
		 * set while we were handling the existing iir bits, then
4260
		 * we would never get another interrupt.
4261
		 *
4262
		 * This is fine on non-MSI as well, as if we hit this path
4263
		 * we avoid exiting the interrupt handler only to generate
4264
		 * another one.
4265
		 *
4266
		 * Note that for MSI this could cause a stray interrupt report
4267
		 * if an interrupt landed in the time between writing IIR and
4268
		 * the posting read.  This should be rare enough to never
4269
		 * trigger the 99% of 100,000 interrupts test for disabling
4270
		 * stray interrupts.
4271
		 */
4272
		iir = new_iir;
4273
	}
4274
 
4275
	return ret;
4276
}
4277
 
4278
static void i965_irq_uninstall(struct drm_device * dev)
4279
{
5060 serge 4280
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4281
	int pipe;
4282
 
4283
	if (!dev_priv)
4284
		return;
4285
 
6084 serge 4286
	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3031 serge 4287
	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4288
 
4289
	I915_WRITE(HWSTAM, 0xffffffff);
5354 serge 4290
	for_each_pipe(dev_priv, pipe)
3031 serge 4291
		I915_WRITE(PIPESTAT(pipe), 0);
4292
	I915_WRITE(IMR, 0xffffffff);
4293
	I915_WRITE(IER, 0x0);
4294
 
5354 serge 4295
	for_each_pipe(dev_priv, pipe)
3031 serge 4296
		I915_WRITE(PIPESTAT(pipe),
4297
			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4298
	I915_WRITE(IIR, I915_READ(IIR));
4299
}
4300
 
5354 serge 4301
/**
4302
 * intel_irq_init - initializes irq support
4303
 * @dev_priv: i915 device instance
4304
 *
4305
 * This function initializes all the irq support including work items, timers
4306
 * and all the vtables. It does not setup the interrupt itself though.
4307
 */
4308
void intel_irq_init(struct drm_i915_private *dev_priv)
2351 Serge 4309
{
5354 serge 4310
	struct drm_device *dev = dev_priv->dev;
3031 serge 4311
 
6084 serge 4312
//   intel_hpd_init_work(dev_priv);
4313
 
4126 Serge 4314
	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4315
	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3480 Serge 4316
 
5060 serge 4317
	/* Let's track the enabled rps events */
5354 serge 4318
	if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4319
		/* WaGsvRC0ResidencyMethod:vlv */
6084 serge 4320
		dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
5060 serge 4321
	else
6084 serge 4322
		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
3480 Serge 4323
 
6084 serge 4324
	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4325
			  i915_hangcheck_elapsed);
4560 Serge 4326
 
5354 serge 4327
 
4328
	if (IS_GEN2(dev_priv)) {
4560 Serge 4329
		dev->max_vblank_count = 0;
4330
		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
5354 serge 4331
	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4560 Serge 4332
		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
6084 serge 4333
		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4560 Serge 4334
	} else {
6084 serge 4335
		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4336
		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4293 Serge 4337
	}
3480 Serge 4338
 
5354 serge 4339
	/*
4340
	 * Opt out of the vblank disable timer on everything except gen2.
4341
	 * Gen2 doesn't have a hardware frame counter and so depends on
4342
	 * vblank interrupts to produce sane vblank seuquence numbers.
4343
	 */
4344
	if (!IS_GEN2(dev_priv))
4345
		dev->vblank_disable_immediate = true;
4346
 
6084 serge 4347
	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4293 Serge 4348
	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3480 Serge 4349
 
5354 serge 4350
	if (IS_CHERRYVIEW(dev_priv)) {
5060 serge 4351
		dev->driver->irq_handler = cherryview_irq_handler;
4352
		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4353
		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4354
		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4355
		dev->driver->enable_vblank = valleyview_enable_vblank;
4356
		dev->driver->disable_vblank = valleyview_disable_vblank;
4357
		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
5354 serge 4358
	} else if (IS_VALLEYVIEW(dev_priv)) {
3243 Serge 4359
		dev->driver->irq_handler = valleyview_irq_handler;
4360
		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4361
		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4293 Serge 4362
		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4363
		dev->driver->enable_vblank = valleyview_enable_vblank;
4364
		dev->driver->disable_vblank = valleyview_disable_vblank;
3746 Serge 4365
		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
5354 serge 4366
	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4560 Serge 4367
		dev->driver->irq_handler = gen8_irq_handler;
5060 serge 4368
		dev->driver->irq_preinstall = gen8_irq_reset;
4560 Serge 4369
		dev->driver->irq_postinstall = gen8_irq_postinstall;
4370
		dev->driver->irq_uninstall = gen8_irq_uninstall;
4371
		dev->driver->enable_vblank = gen8_enable_vblank;
4372
		dev->driver->disable_vblank = gen8_disable_vblank;
6084 serge 4373
		if (IS_BROXTON(dev))
4374
			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4375
		else if (HAS_PCH_SPT(dev))
4376
			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4377
		else
4378
			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
2351 Serge 4379
	} else if (HAS_PCH_SPLIT(dev)) {
3243 Serge 4380
		dev->driver->irq_handler = ironlake_irq_handler;
5060 serge 4381
		dev->driver->irq_preinstall = ironlake_irq_reset;
3243 Serge 4382
		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4293 Serge 4383
		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4384
		dev->driver->enable_vblank = ironlake_enable_vblank;
4385
		dev->driver->disable_vblank = ironlake_disable_vblank;
6084 serge 4386
		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
2351 Serge 4387
	} else {
5354 serge 4388
		if (INTEL_INFO(dev_priv)->gen == 2) {
4389
		} else if (INTEL_INFO(dev_priv)->gen == 3) {
3243 Serge 4390
			dev->driver->irq_preinstall = i915_irq_preinstall;
4391
			dev->driver->irq_postinstall = i915_irq_postinstall;
4293 Serge 4392
			dev->driver->irq_uninstall = i915_irq_uninstall;
3243 Serge 4393
			dev->driver->irq_handler = i915_irq_handler;
3031 serge 4394
		} else {
3243 Serge 4395
			dev->driver->irq_preinstall = i965_irq_preinstall;
4396
			dev->driver->irq_postinstall = i965_irq_postinstall;
4293 Serge 4397
			dev->driver->irq_uninstall = i965_irq_uninstall;
3243 Serge 4398
			dev->driver->irq_handler = i965_irq_handler;
6084 serge 4399
		}
4400
		if (I915_HAS_HOTPLUG(dev_priv))
3746 Serge 4401
			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4293 Serge 4402
		dev->driver->enable_vblank = i915_enable_vblank;
4403
		dev->driver->disable_vblank = i915_disable_vblank;
2351 Serge 4404
	}
3480 Serge 4405
}
3243 Serge 4406
 
5354 serge 4407
/**
4408
 * intel_irq_install - enables the hardware interrupt
4409
 * @dev_priv: i915 device instance
4410
 *
4411
 * This function enables the hardware interrupt handling, but leaves the hotplug
4412
 * handling still disabled. It is called after intel_irq_init().
4413
 *
4414
 * In the driver load and resume code we need working interrupts in a few places
4415
 * but don't want to deal with the hassle of concurrent probe and hotplug
4416
 * workers. Hence the split into this two-stage approach.
4417
 */
4418
int intel_irq_install(struct drm_i915_private *dev_priv)
3243 Serge 4419
{
5354 serge 4420
	/*
4421
	 * We enable some interrupt sources in our postinstall hooks, so mark
4422
	 * interrupts as enabled _before_ actually enabling them to avoid
4423
	 * special cases in our ordering checks.
4424
	 */
4425
	dev_priv->pm.irqs_enabled = true;
2351 Serge 4426
 
5354 serge 4427
	return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
3243 Serge 4428
}
4429
 
5354 serge 4430
/**
4431
 * intel_irq_uninstall - finilizes all irq handling
4432
 * @dev_priv: i915 device instance
4433
 *
4434
 * This stops interrupt and hotplug handling and unregisters and frees all
4435
 * resources acquired in the init functions.
4436
 */
4437
void intel_irq_uninstall(struct drm_i915_private *dev_priv)
2351 Serge 4438
{
5354 serge 4439
//	drm_irq_uninstall(dev_priv->dev);
4440
//	intel_hpd_cancel_work(dev_priv);
4441
	dev_priv->pm.irqs_enabled = false;
4442
}
2351 Serge 4443
 
5354 serge 4444
/**
4445
 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4446
 * @dev_priv: i915 device instance
4447
 *
4448
 * This function is used to disable interrupts at runtime, both in the runtime
4449
 * pm and the system suspend/resume code.
4450
 */
4451
void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4452
{
4453
	dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4454
	dev_priv->pm.irqs_enabled = false;
4104 Serge 4455
}
2351 Serge 4456
 
5354 serge 4457
/**
4458
 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4459
 * @dev_priv: i915 device instance
4460
 *
4461
 * This function is used to enable interrupts at runtime, both in the runtime
4462
 * pm and the system suspend/resume code.
4463
 */
4464
void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4465
{
4466
	dev_priv->pm.irqs_enabled = true;
4467
	dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4468
	dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4469
}
2351 Serge 4470
 
4104 Serge 4471
irqreturn_t intel_irq_handler(struct drm_device *dev)
4472
{
2351 Serge 4473
 
4104 Serge 4474
//    printf("i915 irq\n");
4475
//    printf("device %p driver %p handler %p\n", dev, dev->driver, dev->driver->irq_handler) ;
4476
 
4477
    return dev->driver->irq_handler(0, dev);
2351 Serge 4478
}
4479