Subversion Repositories Kolibri OS

Rev

Rev 5354 | Rev 6937 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
5060 serge 1
/*
2
 * Copyright © 2014 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Please try to maintain the following order within this file unless it makes
24
 * sense to do otherwise. From top to bottom:
25
 * 1. typedefs
26
 * 2. #defines, and macros
27
 * 3. structure definitions
28
 * 4. function prototypes
29
 *
30
 * Within each section, please try to order by generation in ascending order,
31
 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32
 */
33
 
34
#ifndef __I915_GEM_GTT_H__
35
#define __I915_GEM_GTT_H__
36
 
5354 serge 37
struct drm_i915_file_private;
38
 
6084 serge 39
typedef uint32_t gen6_pte_t;
40
typedef uint64_t gen8_pte_t;
41
typedef uint64_t gen8_pde_t;
42
typedef uint64_t gen8_ppgtt_pdpe_t;
43
typedef uint64_t gen8_ppgtt_pml4e_t;
5060 serge 44
 
45
#define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
46
 
6084 serge 47
 
5060 serge 48
/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
49
#define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
50
#define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
51
#define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
52
#define GEN6_PTE_CACHE_LLC		(2 << 1)
53
#define GEN6_PTE_UNCACHED		(1 << 1)
54
#define GEN6_PTE_VALID			(1 << 0)
55
 
6084 serge 56
#define I915_PTES(pte_len)		(PAGE_SIZE / (pte_len))
57
#define I915_PTE_MASK(pte_len)		(I915_PTES(pte_len) - 1)
58
#define I915_PDES			512
59
#define I915_PDE_MASK			(I915_PDES - 1)
60
#define NUM_PTE(pde_shift)     (1 << (pde_shift - PAGE_SHIFT))
61
 
62
#define GEN6_PTES			I915_PTES(sizeof(gen6_pte_t))
63
#define GEN6_PD_SIZE		        (I915_PDES * PAGE_SIZE)
5060 serge 64
#define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
6084 serge 65
#define GEN6_PDE_SHIFT			22
5060 serge 66
#define GEN6_PDE_VALID			(1 << 0)
67
 
68
#define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
69
 
70
#define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
71
#define BYT_PTE_WRITEABLE		(1 << 1)
72
 
73
/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
74
 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
75
 */
76
#define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
77
					 (((bits) & 0x8) << (11 - 3)))
78
#define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
79
#define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
80
#define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
81
#define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
82
#define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
83
#define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
84
#define HSW_PTE_UNCACHED		(0)
85
#define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
86
#define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
87
 
88
/* GEN8 legacy style address is defined as a 3 level page table:
89
 * 31:30 | 29:21 | 20:12 |  11:0
90
 * PDPE  |  PDE  |  PTE  | offset
91
 * The difference as compared to normal x86 3 level page table is the PDPEs are
92
 * programmed via register.
6084 serge 93
 *
94
 * GEN8 48b legacy style address is defined as a 4 level page table:
95
 * 47:39 | 38:30 | 29:21 | 20:12 |  11:0
96
 * PML4E | PDPE  |  PDE  |  PTE  | offset
5060 serge 97
 */
6084 serge 98
#define GEN8_PML4ES_PER_PML4		512
99
#define GEN8_PML4E_SHIFT		39
100
#define GEN8_PML4E_MASK			(GEN8_PML4ES_PER_PML4 - 1)
5060 serge 101
#define GEN8_PDPE_SHIFT			30
6084 serge 102
/* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
103
 * tables */
104
#define GEN8_PDPE_MASK			0x1ff
5060 serge 105
#define GEN8_PDE_SHIFT			21
106
#define GEN8_PDE_MASK			0x1ff
107
#define GEN8_PTE_SHIFT			12
108
#define GEN8_PTE_MASK			0x1ff
6084 serge 109
#define GEN8_LEGACY_PDPES		4
110
#define GEN8_PTES			I915_PTES(sizeof(gen8_pte_t))
5060 serge 111
 
6084 serge 112
#define I915_PDPES_PER_PDP(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
113
				 GEN8_PML4ES_PER_PML4 : GEN8_LEGACY_PDPES)
114
 
5060 serge 115
#define PPAT_UNCACHED_INDEX		(_PAGE_PWT | _PAGE_PCD)
116
#define PPAT_CACHED_PDE_INDEX		0 /* WB LLC */
117
#define PPAT_CACHED_INDEX		_PAGE_PAT /* WB LLCeLLC */
118
#define PPAT_DISPLAY_ELLC_INDEX		_PAGE_PCD /* WT eLLC */
119
 
120
#define CHV_PPAT_SNOOP			(1<<6)
121
#define GEN8_PPAT_AGE(x)		(x<<4)
122
#define GEN8_PPAT_LLCeLLC		(3<<2)
123
#define GEN8_PPAT_LLCELLC		(2<<2)
124
#define GEN8_PPAT_LLC			(1<<2)
125
#define GEN8_PPAT_WB			(3<<0)
126
#define GEN8_PPAT_WT			(2<<0)
127
#define GEN8_PPAT_WC			(1<<0)
128
#define GEN8_PPAT_UC			(0<<0)
129
#define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
130
#define GEN8_PPAT(i, x)			((uint64_t) (x) << ((i) * 8))
131
 
6084 serge 132
enum i915_ggtt_view_type {
133
	I915_GGTT_VIEW_NORMAL = 0,
134
	I915_GGTT_VIEW_ROTATED,
135
	I915_GGTT_VIEW_PARTIAL,
136
};
137
 
138
struct intel_rotation_info {
139
	unsigned int height;
140
	unsigned int pitch;
141
	unsigned int uv_offset;
142
	uint32_t pixel_format;
143
	uint64_t fb_modifier;
144
	unsigned int width_pages, height_pages;
145
	uint64_t size;
146
	unsigned int width_pages_uv, height_pages_uv;
147
	uint64_t size_uv;
148
	unsigned int uv_start_page;
149
};
150
 
151
struct i915_ggtt_view {
152
	enum i915_ggtt_view_type type;
153
 
154
	union {
155
		struct {
156
			u64 offset;
157
			unsigned int size;
158
		} partial;
159
	} params;
160
 
161
	struct sg_table *pages;
162
 
163
	union {
164
		struct intel_rotation_info rotation_info;
165
	};
166
};
167
 
168
extern const struct i915_ggtt_view i915_ggtt_view_normal;
169
extern const struct i915_ggtt_view i915_ggtt_view_rotated;
170
 
5060 serge 171
enum i915_cache_level;
6084 serge 172
 
5060 serge 173
/**
174
 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
175
 * VMA's presence cannot be guaranteed before binding, or after unbinding the
176
 * object into/from the address space.
177
 *
178
 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
179
 * will always be <= an objects lifetime. So object refcounting should cover us.
180
 */
181
struct i915_vma {
182
	struct drm_mm_node node;
183
	struct drm_i915_gem_object *obj;
184
	struct i915_address_space *vm;
185
 
5354 serge 186
	/** Flags and address space this VMA is bound to */
187
#define GLOBAL_BIND	(1<<0)
188
#define LOCAL_BIND	(1<<1)
189
	unsigned int bound : 4;
190
 
6084 serge 191
	/**
192
	 * Support different GGTT views into the same object.
193
	 * This means there can be multiple VMA mappings per object and per VM.
194
	 * i915_ggtt_view_type is used to distinguish between those entries.
195
	 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
196
	 * assumed in GEM functions which take no ggtt view parameter.
197
	 */
198
	struct i915_ggtt_view ggtt_view;
199
 
5060 serge 200
	/** This object's place on the active/inactive lists */
201
	struct list_head mm_list;
202
 
203
	struct list_head vma_link; /* Link in the object's VMA list */
204
 
205
	/** This vma's place in the batchbuffer or on the eviction list */
206
	struct list_head exec_list;
207
 
208
	/**
209
	 * Used for performing relocations during execbuffer insertion.
210
	 */
211
	struct hlist_node exec_node;
212
	unsigned long exec_handle;
213
	struct drm_i915_gem_exec_object2 *exec_entry;
214
 
215
	/**
216
	 * How many users have pinned this object in GTT space. The following
6084 serge 217
	 * users can each hold at most one reference: pwrite/pread, execbuffer
218
	 * (objects are not allowed multiple times for the same batchbuffer),
219
	 * and the framebuffer code. When switching/pageflipping, the
220
	 * framebuffer code has at most two buffers pinned per crtc.
5060 serge 221
	 *
222
	 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
223
	 * bits with absolutely no headroom. So use 4 bits. */
224
	unsigned int pin_count:4;
225
#define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
6084 serge 226
};
5060 serge 227
 
6084 serge 228
struct i915_page_dma {
229
	struct page *page;
230
	union {
231
		dma_addr_t daddr;
232
 
233
		/* For gen6/gen7 only. This is the offset in the GGTT
234
		 * where the page directory entries for PPGTT begin
235
		 */
236
		uint32_t ggtt_offset;
237
	};
5060 serge 238
};
239
 
6084 serge 240
#define px_base(px) (&(px)->base)
241
#define px_page(px) (px_base(px)->page)
242
#define px_dma(px) (px_base(px)->daddr)
243
 
244
struct i915_page_scratch {
245
	struct i915_page_dma base;
246
};
247
 
248
struct i915_page_table {
249
	struct i915_page_dma base;
250
 
251
	unsigned long *used_ptes;
252
};
253
 
254
struct i915_page_directory {
255
	struct i915_page_dma base;
256
 
257
	unsigned long *used_pdes;
258
	struct i915_page_table *page_table[I915_PDES]; /* PDEs */
259
};
260
 
261
struct i915_page_directory_pointer {
262
	struct i915_page_dma base;
263
 
264
	unsigned long *used_pdpes;
265
	struct i915_page_directory **page_directory;
266
};
267
 
268
struct i915_pml4 {
269
	struct i915_page_dma base;
270
 
271
	DECLARE_BITMAP(used_pml4es, GEN8_PML4ES_PER_PML4);
272
	struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
273
};
274
 
5060 serge 275
struct i915_address_space {
276
	struct drm_mm mm;
277
	struct drm_device *dev;
278
	struct list_head global_link;
6084 serge 279
	u64 start;		/* Start offset always 0 for dri2 */
280
	u64 total;		/* size addr space maps (ex. 2GB for ggtt) */
5060 serge 281
 
6084 serge 282
	struct i915_page_scratch *scratch_page;
283
	struct i915_page_table *scratch_pt;
284
	struct i915_page_directory *scratch_pd;
285
	struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
5060 serge 286
 
287
	/**
288
	 * List of objects currently involved in rendering.
289
	 *
290
	 * Includes buffers having the contents of their GPU caches
6084 serge 291
	 * flushed, not necessarily primitives. last_read_req
5060 serge 292
	 * represents when the rendering involved will be completed.
293
	 *
294
	 * A reference is held on the buffer while on this list.
295
	 */
296
	struct list_head active_list;
297
 
298
	/**
299
	 * LRU list of objects which are not in the ringbuffer and
300
	 * are ready to unbind, but are still in the GTT.
301
	 *
6084 serge 302
	 * last_read_req is NULL while an object is in this list.
5060 serge 303
	 *
304
	 * A reference is not held on the buffer while on this list,
305
	 * as merely being GTT-bound shouldn't prevent its being
306
	 * freed, and we'll pull it off the list in the free path.
307
	 */
308
	struct list_head inactive_list;
309
 
310
	/* FIXME: Need a more generic return type */
6084 serge 311
	gen6_pte_t (*pte_encode)(dma_addr_t addr,
312
				 enum i915_cache_level level,
313
				 bool valid, u32 flags); /* Create a valid PTE */
314
	/* flags for pte_encode */
315
#define PTE_READ_ONLY	(1<<0)
316
	int (*allocate_va_range)(struct i915_address_space *vm,
317
				 uint64_t start,
318
				 uint64_t length);
5060 serge 319
	void (*clear_range)(struct i915_address_space *vm,
320
			    uint64_t start,
321
			    uint64_t length,
322
			    bool use_scratch);
323
	void (*insert_entries)(struct i915_address_space *vm,
324
			       struct sg_table *st,
325
			       uint64_t start,
326
			       enum i915_cache_level cache_level, u32 flags);
327
	void (*cleanup)(struct i915_address_space *vm);
6084 serge 328
	/** Unmap an object from an address space. This usually consists of
329
	 * setting the valid PTE entries to a reserved scratch page. */
330
	void (*unbind_vma)(struct i915_vma *vma);
331
	/* Map an object into an address space with the given cache flags. */
332
	int (*bind_vma)(struct i915_vma *vma,
333
			enum i915_cache_level cache_level,
334
			u32 flags);
5060 serge 335
};
336
 
337
/* The Graphics Translation Table is the way in which GEN hardware translates a
338
 * Graphics Virtual Address into a Physical Address. In addition to the normal
339
 * collateral associated with any va->pa translations GEN hardware also has a
340
 * portion of the GTT which can be mapped by the CPU and remain both coherent
341
 * and correct (in cases like swizzling). That region is referred to as GMADR in
342
 * the spec.
343
 */
344
struct i915_gtt {
345
	struct i915_address_space base;
6084 serge 346
 
5060 serge 347
	size_t stolen_size;		/* Total size of stolen memory */
6084 serge 348
	size_t stolen_usable_size;	/* Total size minus BIOS reserved */
349
	u64 mappable_end;		/* End offset that we can CPU map */
5060 serge 350
	struct io_mapping *mappable;	/* Mapping to our CPU mappable region */
351
	phys_addr_t mappable_base;	/* PA of our GMADR */
352
 
353
	/** "Graphics Stolen Memory" holds the global PTEs */
354
	void __iomem *gsm;
355
 
356
	bool do_idle_maps;
357
 
358
	int mtrr;
359
 
360
	/* global gtt ops */
6084 serge 361
	int (*gtt_probe)(struct drm_device *dev, u64 *gtt_total,
5060 serge 362
			  size_t *stolen, phys_addr_t *mappable_base,
6084 serge 363
			  u64 *mappable_end);
5060 serge 364
};
365
 
366
struct i915_hw_ppgtt {
367
	struct i915_address_space base;
368
	struct kref ref;
369
	struct drm_mm_node node;
6084 serge 370
	unsigned long pd_dirty_rings;
5060 serge 371
	union {
6084 serge 372
		struct i915_pml4 pml4;		/* GEN8+ & 48b PPGTT */
373
		struct i915_page_directory_pointer pdp;	/* GEN8+ */
374
		struct i915_page_directory pd;		/* GEN6-7 */
5060 serge 375
	};
376
 
5354 serge 377
	struct drm_i915_file_private *file_priv;
5060 serge 378
 
6084 serge 379
	gen6_pte_t __iomem *pd_addr;
380
 
5060 serge 381
	int (*enable)(struct i915_hw_ppgtt *ppgtt);
382
	int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
6084 serge 383
			 struct drm_i915_gem_request *req);
384
	void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
5060 serge 385
};
386
 
6084 serge 387
/* For each pde iterates over every pde between from start until start + length.
388
 * If start, and start+length are not perfectly divisible, the macro will round
389
 * down, and up as needed. The macro modifies pde, start, and length. Dev is
390
 * only used to differentiate shift values. Temp is temp.  On gen6/7, start = 0,
391
 * and length = 2G effectively iterates over every PDE in the system.
392
 *
393
 * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
394
 */
395
#define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
396
	for (iter = gen6_pde_index(start); \
397
	     length > 0 && iter < I915_PDES ? \
398
			(pt = (pd)->page_table[iter]), 1 : 0; \
399
	     iter++, \
400
	     temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
401
	     temp = min_t(unsigned, temp, length), \
402
	     start += temp, length -= temp)
403
 
404
#define gen6_for_all_pdes(pt, ppgtt, iter)  \
405
	for (iter = 0;		\
406
	     pt = ppgtt->pd.page_table[iter], iter < I915_PDES;	\
407
	     iter++)
408
 
409
static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
410
{
411
	const uint32_t mask = NUM_PTE(pde_shift) - 1;
412
 
413
	return (address >> PAGE_SHIFT) & mask;
414
}
415
 
416
/* Helper to counts the number of PTEs within the given length. This count
417
 * does not cross a page table boundary, so the max value would be
418
 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
419
*/
420
static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
421
				      uint32_t pde_shift)
422
{
423
	const uint64_t mask = ~((1 << pde_shift) - 1);
424
	uint64_t end;
425
 
426
	WARN_ON(length == 0);
427
	WARN_ON(offset_in_page(addr|length));
428
 
429
	end = addr + length;
430
 
431
	if ((addr & mask) != (end & mask))
432
		return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
433
 
434
	return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
435
}
436
 
437
static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
438
{
439
	return (addr >> shift) & I915_PDE_MASK;
440
}
441
 
442
static inline uint32_t gen6_pte_index(uint32_t addr)
443
{
444
	return i915_pte_index(addr, GEN6_PDE_SHIFT);
445
}
446
 
447
static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
448
{
449
	return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
450
}
451
 
452
static inline uint32_t gen6_pde_index(uint32_t addr)
453
{
454
	return i915_pde_index(addr, GEN6_PDE_SHIFT);
455
}
456
 
457
/* Equivalent to the gen6 version, For each pde iterates over every pde
458
 * between from start until start + length. On gen8+ it simply iterates
459
 * over every page directory entry in a page directory.
460
 */
461
#define gen8_for_each_pde(pt, pd, start, length, temp, iter)		\
462
	for (iter = gen8_pde_index(start); \
463
	     length > 0 && iter < I915_PDES ? \
464
			(pt = (pd)->page_table[iter]), 1 : 0; \
465
	     iter++,				\
466
	     temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT) - start,	\
467
	     temp = min(temp, length),					\
468
	     start += temp, length -= temp)
469
 
470
#define gen8_for_each_pdpe(pd, pdp, start, length, temp, iter)	\
471
	for (iter = gen8_pdpe_index(start); \
472
	     length > 0 && (iter < I915_PDPES_PER_PDP(dev)) ? \
473
			(pd = (pdp)->page_directory[iter]), 1 : 0; \
474
	     iter++,				\
475
	     temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT) - start,	\
476
	     temp = min(temp, length),					\
477
	     start += temp, length -= temp)
478
 
479
#define gen8_for_each_pml4e(pdp, pml4, start, length, temp, iter)	\
480
	for (iter = gen8_pml4e_index(start);	\
481
	     length > 0 && iter < GEN8_PML4ES_PER_PML4 ? \
482
			(pdp = (pml4)->pdps[iter]), 1 : 0; \
483
	     iter++,				\
484
	     temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT) - start,	\
485
	     temp = min(temp, length),					\
486
	     start += temp, length -= temp)
487
 
488
static inline uint32_t gen8_pte_index(uint64_t address)
489
{
490
	return i915_pte_index(address, GEN8_PDE_SHIFT);
491
}
492
 
493
static inline uint32_t gen8_pde_index(uint64_t address)
494
{
495
	return i915_pde_index(address, GEN8_PDE_SHIFT);
496
}
497
 
498
static inline uint32_t gen8_pdpe_index(uint64_t address)
499
{
500
	return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
501
}
502
 
503
static inline uint32_t gen8_pml4e_index(uint64_t address)
504
{
505
	return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
506
}
507
 
508
static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
509
{
510
	return i915_pte_count(address, length, GEN8_PDE_SHIFT);
511
}
512
 
513
static inline dma_addr_t
514
i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
515
{
516
	return test_bit(n, ppgtt->pdp.used_pdpes) ?
517
		px_dma(ppgtt->pdp.page_directory[n]) :
518
		px_dma(ppgtt->base.scratch_pd);
519
}
520
 
5060 serge 521
int i915_gem_gtt_init(struct drm_device *dev);
522
void i915_gem_init_global_gtt(struct drm_device *dev);
5354 serge 523
void i915_global_gtt_cleanup(struct drm_device *dev);
5060 serge 524
 
525
 
5354 serge 526
int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
527
int i915_ppgtt_init_hw(struct drm_device *dev);
6084 serge 528
int i915_ppgtt_init_ring(struct drm_i915_gem_request *req);
5354 serge 529
void i915_ppgtt_release(struct kref *kref);
530
struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
531
					struct drm_i915_file_private *fpriv);
532
static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
533
{
534
	if (ppgtt)
535
		kref_get(&ppgtt->ref);
536
}
537
static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
538
{
539
	if (ppgtt)
540
		kref_put(&ppgtt->ref, i915_ppgtt_release);
541
}
542
 
5060 serge 543
void i915_check_and_clear_faults(struct drm_device *dev);
544
void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
545
void i915_gem_restore_gtt_mappings(struct drm_device *dev);
546
 
547
int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
548
void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
549
 
6084 serge 550
static inline bool
551
i915_ggtt_view_equal(const struct i915_ggtt_view *a,
552
                     const struct i915_ggtt_view *b)
553
{
554
	if (WARN_ON(!a || !b))
555
		return false;
556
 
557
	if (a->type != b->type)
558
		return false;
559
	if (a->type == I915_GGTT_VIEW_PARTIAL)
560
		return !memcmp(&a->params, &b->params, sizeof(a->params));
561
	return true;
562
}
563
 
564
size_t
565
i915_ggtt_view_size(struct drm_i915_gem_object *obj,
566
		    const struct i915_ggtt_view *view);
567
 
5060 serge 568
#endif