Subversion Repositories Kolibri OS

Rev

Rev 5060 | Rev 6084 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
5060 serge 1
/*
2
 * Copyright © 2014 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Please try to maintain the following order within this file unless it makes
24
 * sense to do otherwise. From top to bottom:
25
 * 1. typedefs
26
 * 2. #defines, and macros
27
 * 3. structure definitions
28
 * 4. function prototypes
29
 *
30
 * Within each section, please try to order by generation in ascending order,
31
 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32
 */
33
 
34
#ifndef __I915_GEM_GTT_H__
35
#define __I915_GEM_GTT_H__
36
 
5354 serge 37
struct drm_i915_file_private;
38
 
5060 serge 39
typedef uint32_t gen6_gtt_pte_t;
40
typedef uint64_t gen8_gtt_pte_t;
41
typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
42
 
43
#define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
44
 
45
#define I915_PPGTT_PT_ENTRIES		(PAGE_SIZE / sizeof(gen6_gtt_pte_t))
46
/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
47
#define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
48
#define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
49
#define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
50
#define GEN6_PTE_CACHE_LLC		(2 << 1)
51
#define GEN6_PTE_UNCACHED		(1 << 1)
52
#define GEN6_PTE_VALID			(1 << 0)
53
 
54
#define GEN6_PPGTT_PD_ENTRIES		512
55
#define GEN6_PD_SIZE			(GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE)
56
#define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
57
#define GEN6_PDE_VALID			(1 << 0)
58
 
59
#define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
60
 
61
#define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
62
#define BYT_PTE_WRITEABLE		(1 << 1)
63
 
64
/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
65
 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
66
 */
67
#define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
68
					 (((bits) & 0x8) << (11 - 3)))
69
#define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
70
#define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
71
#define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
72
#define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
73
#define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
74
#define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
75
#define HSW_PTE_UNCACHED		(0)
76
#define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
77
#define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
78
 
79
/* GEN8 legacy style address is defined as a 3 level page table:
80
 * 31:30 | 29:21 | 20:12 |  11:0
81
 * PDPE  |  PDE  |  PTE  | offset
82
 * The difference as compared to normal x86 3 level page table is the PDPEs are
83
 * programmed via register.
84
 */
85
#define GEN8_PDPE_SHIFT			30
86
#define GEN8_PDPE_MASK			0x3
87
#define GEN8_PDE_SHIFT			21
88
#define GEN8_PDE_MASK			0x1ff
89
#define GEN8_PTE_SHIFT			12
90
#define GEN8_PTE_MASK			0x1ff
91
#define GEN8_LEGACY_PDPS		4
92
#define GEN8_PTES_PER_PAGE		(PAGE_SIZE / sizeof(gen8_gtt_pte_t))
93
#define GEN8_PDES_PER_PAGE		(PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
94
 
95
#define PPAT_UNCACHED_INDEX		(_PAGE_PWT | _PAGE_PCD)
96
#define PPAT_CACHED_PDE_INDEX		0 /* WB LLC */
97
#define PPAT_CACHED_INDEX		_PAGE_PAT /* WB LLCeLLC */
98
#define PPAT_DISPLAY_ELLC_INDEX		_PAGE_PCD /* WT eLLC */
99
 
100
#define CHV_PPAT_SNOOP			(1<<6)
101
#define GEN8_PPAT_AGE(x)		(x<<4)
102
#define GEN8_PPAT_LLCeLLC		(3<<2)
103
#define GEN8_PPAT_LLCELLC		(2<<2)
104
#define GEN8_PPAT_LLC			(1<<2)
105
#define GEN8_PPAT_WB			(3<<0)
106
#define GEN8_PPAT_WT			(2<<0)
107
#define GEN8_PPAT_WC			(1<<0)
108
#define GEN8_PPAT_UC			(0<<0)
109
#define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
110
#define GEN8_PPAT(i, x)			((uint64_t) (x) << ((i) * 8))
111
 
112
enum i915_cache_level;
113
/**
114
 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
115
 * VMA's presence cannot be guaranteed before binding, or after unbinding the
116
 * object into/from the address space.
117
 *
118
 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
119
 * will always be <= an objects lifetime. So object refcounting should cover us.
120
 */
121
struct i915_vma {
122
	struct drm_mm_node node;
123
	struct drm_i915_gem_object *obj;
124
	struct i915_address_space *vm;
125
 
5354 serge 126
	/** Flags and address space this VMA is bound to */
127
#define GLOBAL_BIND	(1<<0)
128
#define LOCAL_BIND	(1<<1)
129
#define PTE_READ_ONLY	(1<<2)
130
	unsigned int bound : 4;
131
 
5060 serge 132
	/** This object's place on the active/inactive lists */
133
	struct list_head mm_list;
134
 
135
	struct list_head vma_link; /* Link in the object's VMA list */
136
 
137
	/** This vma's place in the batchbuffer or on the eviction list */
138
	struct list_head exec_list;
139
 
140
	/**
141
	 * Used for performing relocations during execbuffer insertion.
142
	 */
143
	struct hlist_node exec_node;
144
	unsigned long exec_handle;
145
	struct drm_i915_gem_exec_object2 *exec_entry;
146
 
147
	/**
148
	 * How many users have pinned this object in GTT space. The following
149
	 * users can each hold at most one reference: pwrite/pread, pin_ioctl
150
	 * (via user_pin_count), execbuffer (objects are not allowed multiple
151
	 * times for the same batchbuffer), and the framebuffer code. When
152
	 * switching/pageflipping, the framebuffer code has at most two buffers
153
	 * pinned per crtc.
154
	 *
155
	 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
156
	 * bits with absolutely no headroom. So use 4 bits. */
157
	unsigned int pin_count:4;
158
#define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
159
 
160
	/** Unmap an object from an address space. This usually consists of
161
	 * setting the valid PTE entries to a reserved scratch page. */
162
	void (*unbind_vma)(struct i915_vma *vma);
163
	/* Map an object into an address space with the given cache flags. */
164
	void (*bind_vma)(struct i915_vma *vma,
165
			 enum i915_cache_level cache_level,
166
			 u32 flags);
167
};
168
 
169
struct i915_address_space {
170
	struct drm_mm mm;
171
	struct drm_device *dev;
172
	struct list_head global_link;
173
	unsigned long start;		/* Start offset always 0 for dri2 */
174
	size_t total;		/* size addr space maps (ex. 2GB for ggtt) */
175
 
176
	struct {
177
		dma_addr_t addr;
178
		struct page *page;
179
	} scratch;
180
 
181
	/**
182
	 * List of objects currently involved in rendering.
183
	 *
184
	 * Includes buffers having the contents of their GPU caches
185
	 * flushed, not necessarily primitives.  last_rendering_seqno
186
	 * represents when the rendering involved will be completed.
187
	 *
188
	 * A reference is held on the buffer while on this list.
189
	 */
190
	struct list_head active_list;
191
 
192
	/**
193
	 * LRU list of objects which are not in the ringbuffer and
194
	 * are ready to unbind, but are still in the GTT.
195
	 *
196
	 * last_rendering_seqno is 0 while an object is in this list.
197
	 *
198
	 * A reference is not held on the buffer while on this list,
199
	 * as merely being GTT-bound shouldn't prevent its being
200
	 * freed, and we'll pull it off the list in the free path.
201
	 */
202
	struct list_head inactive_list;
203
 
204
	/* FIXME: Need a more generic return type */
205
	gen6_gtt_pte_t (*pte_encode)(dma_addr_t addr,
206
				     enum i915_cache_level level,
207
				     bool valid, u32 flags); /* Create a valid PTE */
208
	void (*clear_range)(struct i915_address_space *vm,
209
			    uint64_t start,
210
			    uint64_t length,
211
			    bool use_scratch);
212
	void (*insert_entries)(struct i915_address_space *vm,
213
			       struct sg_table *st,
214
			       uint64_t start,
215
			       enum i915_cache_level cache_level, u32 flags);
216
	void (*cleanup)(struct i915_address_space *vm);
217
};
218
 
219
/* The Graphics Translation Table is the way in which GEN hardware translates a
220
 * Graphics Virtual Address into a Physical Address. In addition to the normal
221
 * collateral associated with any va->pa translations GEN hardware also has a
222
 * portion of the GTT which can be mapped by the CPU and remain both coherent
223
 * and correct (in cases like swizzling). That region is referred to as GMADR in
224
 * the spec.
225
 */
226
struct i915_gtt {
227
	struct i915_address_space base;
228
	size_t stolen_size;		/* Total size of stolen memory */
229
 
230
	unsigned long mappable_end;	/* End offset that we can CPU map */
231
	struct io_mapping *mappable;	/* Mapping to our CPU mappable region */
232
	phys_addr_t mappable_base;	/* PA of our GMADR */
233
 
234
	/** "Graphics Stolen Memory" holds the global PTEs */
235
	void __iomem *gsm;
236
 
237
	bool do_idle_maps;
238
 
239
	int mtrr;
240
 
241
	/* global gtt ops */
242
	int (*gtt_probe)(struct drm_device *dev, size_t *gtt_total,
243
			  size_t *stolen, phys_addr_t *mappable_base,
244
			  unsigned long *mappable_end);
245
};
246
 
247
struct i915_hw_ppgtt {
248
	struct i915_address_space base;
249
	struct kref ref;
250
	struct drm_mm_node node;
251
	unsigned num_pd_entries;
252
	unsigned num_pd_pages; /* gen8+ */
253
	union {
254
		struct page **pt_pages;
255
		struct page **gen8_pt_pages[GEN8_LEGACY_PDPS];
256
	};
257
	struct page *pd_pages;
258
	union {
259
		uint32_t pd_offset;
260
		dma_addr_t pd_dma_addr[GEN8_LEGACY_PDPS];
261
	};
262
	union {
263
		dma_addr_t *pt_dma_addr;
264
		dma_addr_t *gen8_pt_dma_addr[4];
265
	};
266
 
5354 serge 267
	struct drm_i915_file_private *file_priv;
5060 serge 268
 
269
	int (*enable)(struct i915_hw_ppgtt *ppgtt);
270
	int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
5354 serge 271
			 struct intel_engine_cs *ring);
5060 serge 272
//   void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
273
};
274
 
275
int i915_gem_gtt_init(struct drm_device *dev);
276
void i915_gem_init_global_gtt(struct drm_device *dev);
5354 serge 277
void i915_global_gtt_cleanup(struct drm_device *dev);
5060 serge 278
 
279
 
5354 serge 280
int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
281
int i915_ppgtt_init_hw(struct drm_device *dev);
282
void i915_ppgtt_release(struct kref *kref);
283
struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
284
					struct drm_i915_file_private *fpriv);
285
static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
286
{
287
	if (ppgtt)
288
		kref_get(&ppgtt->ref);
289
}
290
static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
291
{
292
	if (ppgtt)
293
		kref_put(&ppgtt->ref, i915_ppgtt_release);
294
}
295
 
5060 serge 296
void i915_check_and_clear_faults(struct drm_device *dev);
297
void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
298
void i915_gem_restore_gtt_mappings(struct drm_device *dev);
299
 
300
int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
301
void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
302
 
303
#endif