Subversion Repositories Kolibri OS

Rev

Rev 5354 | Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5060 serge 1
/*
2
 * Copyright © 2014 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Please try to maintain the following order within this file unless it makes
24
 * sense to do otherwise. From top to bottom:
25
 * 1. typedefs
26
 * 2. #defines, and macros
27
 * 3. structure definitions
28
 * 4. function prototypes
29
 *
30
 * Within each section, please try to order by generation in ascending order,
31
 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32
 */
33
 
34
#ifndef __I915_GEM_GTT_H__
35
#define __I915_GEM_GTT_H__
36
 
37
typedef uint32_t gen6_gtt_pte_t;
38
typedef uint64_t gen8_gtt_pte_t;
39
typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
40
 
41
#define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
42
 
43
#define I915_PPGTT_PT_ENTRIES		(PAGE_SIZE / sizeof(gen6_gtt_pte_t))
44
/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
45
#define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
46
#define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
47
#define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
48
#define GEN6_PTE_CACHE_LLC		(2 << 1)
49
#define GEN6_PTE_UNCACHED		(1 << 1)
50
#define GEN6_PTE_VALID			(1 << 0)
51
 
52
#define GEN6_PPGTT_PD_ENTRIES		512
53
#define GEN6_PD_SIZE			(GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE)
54
#define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
55
#define GEN6_PDE_VALID			(1 << 0)
56
 
57
#define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
58
 
59
#define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
60
#define BYT_PTE_WRITEABLE		(1 << 1)
61
 
62
/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
63
 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
64
 */
65
#define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
66
					 (((bits) & 0x8) << (11 - 3)))
67
#define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
68
#define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
69
#define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
70
#define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
71
#define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
72
#define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
73
#define HSW_PTE_UNCACHED		(0)
74
#define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
75
#define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
76
 
77
/* GEN8 legacy style address is defined as a 3 level page table:
78
 * 31:30 | 29:21 | 20:12 |  11:0
79
 * PDPE  |  PDE  |  PTE  | offset
80
 * The difference as compared to normal x86 3 level page table is the PDPEs are
81
 * programmed via register.
82
 */
83
#define GEN8_PDPE_SHIFT			30
84
#define GEN8_PDPE_MASK			0x3
85
#define GEN8_PDE_SHIFT			21
86
#define GEN8_PDE_MASK			0x1ff
87
#define GEN8_PTE_SHIFT			12
88
#define GEN8_PTE_MASK			0x1ff
89
#define GEN8_LEGACY_PDPS		4
90
#define GEN8_PTES_PER_PAGE		(PAGE_SIZE / sizeof(gen8_gtt_pte_t))
91
#define GEN8_PDES_PER_PAGE		(PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
92
 
93
#define PPAT_UNCACHED_INDEX		(_PAGE_PWT | _PAGE_PCD)
94
#define PPAT_CACHED_PDE_INDEX		0 /* WB LLC */
95
#define PPAT_CACHED_INDEX		_PAGE_PAT /* WB LLCeLLC */
96
#define PPAT_DISPLAY_ELLC_INDEX		_PAGE_PCD /* WT eLLC */
97
 
98
#define CHV_PPAT_SNOOP			(1<<6)
99
#define GEN8_PPAT_AGE(x)		(x<<4)
100
#define GEN8_PPAT_LLCeLLC		(3<<2)
101
#define GEN8_PPAT_LLCELLC		(2<<2)
102
#define GEN8_PPAT_LLC			(1<<2)
103
#define GEN8_PPAT_WB			(3<<0)
104
#define GEN8_PPAT_WT			(2<<0)
105
#define GEN8_PPAT_WC			(1<<0)
106
#define GEN8_PPAT_UC			(0<<0)
107
#define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
108
#define GEN8_PPAT(i, x)			((uint64_t) (x) << ((i) * 8))
109
 
110
enum i915_cache_level;
111
/**
112
 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
113
 * VMA's presence cannot be guaranteed before binding, or after unbinding the
114
 * object into/from the address space.
115
 *
116
 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
117
 * will always be <= an objects lifetime. So object refcounting should cover us.
118
 */
119
struct i915_vma {
120
	struct drm_mm_node node;
121
	struct drm_i915_gem_object *obj;
122
	struct i915_address_space *vm;
123
 
124
	/** This object's place on the active/inactive lists */
125
	struct list_head mm_list;
126
 
127
	struct list_head vma_link; /* Link in the object's VMA list */
128
 
129
	/** This vma's place in the batchbuffer or on the eviction list */
130
	struct list_head exec_list;
131
 
132
	/**
133
	 * Used for performing relocations during execbuffer insertion.
134
	 */
135
	struct hlist_node exec_node;
136
	unsigned long exec_handle;
137
	struct drm_i915_gem_exec_object2 *exec_entry;
138
 
139
	/**
140
	 * How many users have pinned this object in GTT space. The following
141
	 * users can each hold at most one reference: pwrite/pread, pin_ioctl
142
	 * (via user_pin_count), execbuffer (objects are not allowed multiple
143
	 * times for the same batchbuffer), and the framebuffer code. When
144
	 * switching/pageflipping, the framebuffer code has at most two buffers
145
	 * pinned per crtc.
146
	 *
147
	 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
148
	 * bits with absolutely no headroom. So use 4 bits. */
149
	unsigned int pin_count:4;
150
#define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
151
 
152
	/** Unmap an object from an address space. This usually consists of
153
	 * setting the valid PTE entries to a reserved scratch page. */
154
	void (*unbind_vma)(struct i915_vma *vma);
155
	/* Map an object into an address space with the given cache flags. */
156
#define GLOBAL_BIND (1<<0)
157
#define PTE_READ_ONLY (1<<1)
158
	void (*bind_vma)(struct i915_vma *vma,
159
			 enum i915_cache_level cache_level,
160
			 u32 flags);
161
};
162
 
163
struct i915_address_space {
164
	struct drm_mm mm;
165
	struct drm_device *dev;
166
	struct list_head global_link;
167
	unsigned long start;		/* Start offset always 0 for dri2 */
168
	size_t total;		/* size addr space maps (ex. 2GB for ggtt) */
169
 
170
	struct {
171
		dma_addr_t addr;
172
		struct page *page;
173
	} scratch;
174
 
175
	/**
176
	 * List of objects currently involved in rendering.
177
	 *
178
	 * Includes buffers having the contents of their GPU caches
179
	 * flushed, not necessarily primitives.  last_rendering_seqno
180
	 * represents when the rendering involved will be completed.
181
	 *
182
	 * A reference is held on the buffer while on this list.
183
	 */
184
	struct list_head active_list;
185
 
186
	/**
187
	 * LRU list of objects which are not in the ringbuffer and
188
	 * are ready to unbind, but are still in the GTT.
189
	 *
190
	 * last_rendering_seqno is 0 while an object is in this list.
191
	 *
192
	 * A reference is not held on the buffer while on this list,
193
	 * as merely being GTT-bound shouldn't prevent its being
194
	 * freed, and we'll pull it off the list in the free path.
195
	 */
196
	struct list_head inactive_list;
197
 
198
	/* FIXME: Need a more generic return type */
199
	gen6_gtt_pte_t (*pte_encode)(dma_addr_t addr,
200
				     enum i915_cache_level level,
201
				     bool valid, u32 flags); /* Create a valid PTE */
202
	void (*clear_range)(struct i915_address_space *vm,
203
			    uint64_t start,
204
			    uint64_t length,
205
			    bool use_scratch);
206
	void (*insert_entries)(struct i915_address_space *vm,
207
			       struct sg_table *st,
208
			       uint64_t start,
209
			       enum i915_cache_level cache_level, u32 flags);
210
	void (*cleanup)(struct i915_address_space *vm);
211
};
212
 
213
/* The Graphics Translation Table is the way in which GEN hardware translates a
214
 * Graphics Virtual Address into a Physical Address. In addition to the normal
215
 * collateral associated with any va->pa translations GEN hardware also has a
216
 * portion of the GTT which can be mapped by the CPU and remain both coherent
217
 * and correct (in cases like swizzling). That region is referred to as GMADR in
218
 * the spec.
219
 */
220
struct i915_gtt {
221
	struct i915_address_space base;
222
	size_t stolen_size;		/* Total size of stolen memory */
223
 
224
	unsigned long mappable_end;	/* End offset that we can CPU map */
225
	struct io_mapping *mappable;	/* Mapping to our CPU mappable region */
226
	phys_addr_t mappable_base;	/* PA of our GMADR */
227
 
228
	/** "Graphics Stolen Memory" holds the global PTEs */
229
	void __iomem *gsm;
230
 
231
	bool do_idle_maps;
232
 
233
	int mtrr;
234
 
235
	/* global gtt ops */
236
	int (*gtt_probe)(struct drm_device *dev, size_t *gtt_total,
237
			  size_t *stolen, phys_addr_t *mappable_base,
238
			  unsigned long *mappable_end);
239
};
240
 
241
struct i915_hw_ppgtt {
242
	struct i915_address_space base;
243
	struct kref ref;
244
	struct drm_mm_node node;
245
	unsigned num_pd_entries;
246
	unsigned num_pd_pages; /* gen8+ */
247
	union {
248
		struct page **pt_pages;
249
		struct page **gen8_pt_pages[GEN8_LEGACY_PDPS];
250
	};
251
	struct page *pd_pages;
252
	union {
253
		uint32_t pd_offset;
254
		dma_addr_t pd_dma_addr[GEN8_LEGACY_PDPS];
255
	};
256
	union {
257
		dma_addr_t *pt_dma_addr;
258
		dma_addr_t *gen8_pt_dma_addr[4];
259
	};
260
 
261
	struct intel_context *ctx;
262
 
263
	int (*enable)(struct i915_hw_ppgtt *ppgtt);
264
	int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
265
			 struct intel_engine_cs *ring,
266
			 bool synchronous);
267
//   void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
268
};
269
 
270
int i915_gem_gtt_init(struct drm_device *dev);
271
void i915_gem_init_global_gtt(struct drm_device *dev);
272
void i915_gem_setup_global_gtt(struct drm_device *dev, unsigned long start,
273
			       unsigned long mappable_end, unsigned long end);
274
 
275
bool intel_enable_ppgtt(struct drm_device *dev, bool full);
276
int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
277
 
278
void i915_check_and_clear_faults(struct drm_device *dev);
279
void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
280
void i915_gem_restore_gtt_mappings(struct drm_device *dev);
281
 
282
int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
283
void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
284
 
285
#endif