Subversion Repositories Kolibri OS

Rev

Rev 4560 | Rev 5354 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2326 Serge 1
/*
2
 * Copyright © 2008 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eric Anholt 
25
 *
26
 */
27
 
3031 serge 28
#include 
4280 Serge 29
#include 
3031 serge 30
#include 
2326 Serge 31
#include "i915_drv.h"
2351 Serge 32
#include "i915_trace.h"
2326 Serge 33
#include "intel_drv.h"
3260 Serge 34
#include 
2330 Serge 35
#include 
2326 Serge 36
//#include 
3746 Serge 37
#include 
2326 Serge 38
#include 
39
 
2344 Serge 40
extern int x86_clflush_size;
2332 Serge 41
 
3263 Serge 42
#define PROT_READ       0x1             /* page can be read */
43
#define PROT_WRITE      0x2             /* page can be written */
44
#define MAP_SHARED      0x01            /* Share changes */
45
 
2344 Serge 46
 
5060 serge 47
u64 nsecs_to_jiffies64(u64 n)
48
{
49
#if (NSEC_PER_SEC % HZ) == 0
50
        /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
51
        return div_u64(n, NSEC_PER_SEC / HZ);
52
#elif (HZ % 512) == 0
53
        /* overflow after 292 years if HZ = 1024 */
54
        return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
55
#else
56
        /*
57
         * Generic case - optimized for cases where HZ is a multiple of 3.
58
         * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
59
         */
60
        return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
61
#endif
62
}
63
 
64
unsigned long nsecs_to_jiffies(u64 n)
65
{
66
    return (unsigned long)nsecs_to_jiffies64(n);
67
}
68
 
69
 
3266 Serge 70
struct drm_i915_gem_object *get_fb_obj();
71
 
3263 Serge 72
unsigned long vm_mmap(struct file *file, unsigned long addr,
73
         unsigned long len, unsigned long prot,
74
         unsigned long flag, unsigned long offset);
75
 
2344 Serge 76
static inline void clflush(volatile void *__p)
77
{
78
    asm volatile("clflush %0" : "+m" (*(volatile char*)__p));
79
}
80
 
2332 Serge 81
#define MAX_ERRNO       4095
82
 
83
#define IS_ERR_VALUE(x) unlikely((x) >= (unsigned long)-MAX_ERRNO)
84
 
85
 
86
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
4104 Serge 87
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
88
						   bool force);
89
static __must_check int
4560 Serge 90
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
91
			       bool readonly);
5060 serge 92
static void
93
i915_gem_object_retire(struct drm_i915_gem_object *obj);
2326 Serge 94
 
3031 serge 95
static void i915_gem_write_fence(struct drm_device *dev, int reg,
96
				 struct drm_i915_gem_object *obj);
97
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
98
					 struct drm_i915_fence_reg *fence,
99
					 bool enable);
2332 Serge 100
 
4560 Serge 101
static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
102
static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3031 serge 103
 
4104 Serge 104
static bool cpu_cache_is_coherent(struct drm_device *dev,
105
				  enum i915_cache_level level)
106
{
107
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
108
}
109
 
110
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
111
{
112
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
113
		return true;
114
 
115
	return obj->pin_display;
116
}
117
 
3031 serge 118
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
119
{
120
	if (obj->tiling_mode)
121
		i915_gem_release_mmap(obj);
122
 
123
	/* As we do not have an associated fence register, we will force
124
	 * a tiling change if we ever need to acquire one.
125
	 */
126
	obj->fence_dirty = false;
127
	obj->fence_reg = I915_FENCE_REG_NONE;
128
}
129
 
2332 Serge 130
/* some bookkeeping */
131
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
132
				  size_t size)
133
{
4104 Serge 134
	spin_lock(&dev_priv->mm.object_stat_lock);
2332 Serge 135
	dev_priv->mm.object_count++;
136
	dev_priv->mm.object_memory += size;
4104 Serge 137
	spin_unlock(&dev_priv->mm.object_stat_lock);
2332 Serge 138
}
139
 
140
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
141
				     size_t size)
142
{
4104 Serge 143
	spin_lock(&dev_priv->mm.object_stat_lock);
2332 Serge 144
	dev_priv->mm.object_count--;
145
	dev_priv->mm.object_memory -= size;
4104 Serge 146
	spin_unlock(&dev_priv->mm.object_stat_lock);
2332 Serge 147
}
148
 
149
static int
3480 Serge 150
i915_gem_wait_for_error(struct i915_gpu_error *error)
2332 Serge 151
{
152
	int ret;
153
 
3480 Serge 154
#define EXIT_COND (!i915_reset_in_progress(error))
155
	if (EXIT_COND)
2332 Serge 156
		return 0;
3255 Serge 157
#if 0
3031 serge 158
	/*
159
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
160
	 * userspace. If it takes that long something really bad is going on and
161
	 * we should simply try to bail out and fail as gracefully as possible.
162
	 */
3480 Serge 163
	ret = wait_event_interruptible_timeout(error->reset_queue,
164
					       EXIT_COND,
165
					       10*HZ);
3031 serge 166
	if (ret == 0) {
167
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
168
		return -EIO;
169
	} else if (ret < 0) {
2332 Serge 170
		return ret;
3031 serge 171
	}
2332 Serge 172
 
3255 Serge 173
#endif
3480 Serge 174
#undef EXIT_COND
3255 Serge 175
 
2332 Serge 176
	return 0;
177
}
178
 
179
int i915_mutex_lock_interruptible(struct drm_device *dev)
180
{
3480 Serge 181
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 182
	int ret;
183
 
3480 Serge 184
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
2332 Serge 185
	if (ret)
186
		return ret;
187
 
3480 Serge 188
	ret = mutex_lock_interruptible(&dev->struct_mutex);
189
	if (ret)
190
		return ret;
2332 Serge 191
 
192
	WARN_ON(i915_verify_lists(dev));
193
	return 0;
194
}
195
 
196
static inline bool
197
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
198
{
4104 Serge 199
	return i915_gem_obj_bound_any(obj) && !obj->active;
2332 Serge 200
}
201
 
202
 
203
#if 0
204
 
205
int
206
i915_gem_init_ioctl(struct drm_device *dev, void *data,
207
		    struct drm_file *file)
208
{
3480 Serge 209
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 210
	struct drm_i915_gem_init *args = data;
211
 
3031 serge 212
	if (drm_core_check_feature(dev, DRIVER_MODESET))
213
		return -ENODEV;
214
 
2332 Serge 215
	if (args->gtt_start >= args->gtt_end ||
216
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
217
		return -EINVAL;
218
 
3031 serge 219
	/* GEM with user mode setting was never supported on ilk and later. */
220
	if (INTEL_INFO(dev)->gen >= 5)
221
		return -ENODEV;
222
 
2332 Serge 223
	mutex_lock(&dev->struct_mutex);
3480 Serge 224
	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
225
				  args->gtt_end);
226
	dev_priv->gtt.mappable_end = args->gtt_end;
2332 Serge 227
	mutex_unlock(&dev->struct_mutex);
228
 
229
	return 0;
230
}
2351 Serge 231
#endif
2332 Serge 232
 
233
int
234
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
235
			    struct drm_file *file)
236
{
237
	struct drm_i915_private *dev_priv = dev->dev_private;
238
	struct drm_i915_gem_get_aperture *args = data;
239
	struct drm_i915_gem_object *obj;
240
	size_t pinned;
241
 
242
	pinned = 0;
243
	mutex_lock(&dev->struct_mutex);
4104 Serge 244
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
5060 serge 245
		if (i915_gem_obj_is_pinned(obj))
4104 Serge 246
			pinned += i915_gem_obj_ggtt_size(obj);
2332 Serge 247
	mutex_unlock(&dev->struct_mutex);
248
 
4104 Serge 249
	args->aper_size = dev_priv->gtt.base.total;
2342 Serge 250
	args->aper_available_size = args->aper_size - pinned;
2332 Serge 251
 
252
	return 0;
253
}
254
 
3480 Serge 255
void *i915_gem_object_alloc(struct drm_device *dev)
256
{
257
	struct drm_i915_private *dev_priv = dev->dev_private;
258
	return kmalloc(sizeof(struct drm_i915_gem_object), 0);
259
}
260
 
261
void i915_gem_object_free(struct drm_i915_gem_object *obj)
262
{
263
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
264
	kfree(obj);
265
}
266
 
3031 serge 267
static int
268
i915_gem_create(struct drm_file *file,
2332 Serge 269
		struct drm_device *dev,
270
		uint64_t size,
271
		uint32_t *handle_p)
272
{
273
	struct drm_i915_gem_object *obj;
274
	int ret;
275
	u32 handle;
276
 
277
	size = roundup(size, PAGE_SIZE);
2342 Serge 278
	if (size == 0)
279
		return -EINVAL;
2332 Serge 280
 
281
	/* Allocate the new object */
282
	obj = i915_gem_alloc_object(dev, size);
283
	if (obj == NULL)
284
		return -ENOMEM;
285
 
286
	ret = drm_gem_handle_create(file, &obj->base, &handle);
4104 Serge 287
	/* drop reference from allocate - handle holds it now */
288
	drm_gem_object_unreference_unlocked(&obj->base);
289
	if (ret)
2332 Serge 290
		return ret;
291
 
292
	*handle_p = handle;
293
	return 0;
294
}
295
 
296
int
297
i915_gem_dumb_create(struct drm_file *file,
298
		     struct drm_device *dev,
299
		     struct drm_mode_create_dumb *args)
300
{
301
	/* have to work out size/pitch and return them */
4560 Serge 302
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
2332 Serge 303
	args->size = args->pitch * args->height;
304
	return i915_gem_create(file, dev,
305
			       args->size, &args->handle);
306
}
307
 
2326 Serge 308
/**
2332 Serge 309
 * Creates a new mm object and returns a handle to it.
310
 */
311
int
312
i915_gem_create_ioctl(struct drm_device *dev, void *data,
313
		      struct drm_file *file)
314
{
315
	struct drm_i915_gem_create *args = data;
3031 serge 316
 
2332 Serge 317
	return i915_gem_create(file, dev,
318
			       args->size, &args->handle);
319
}
320
 
321
 
3260 Serge 322
#if 0
2332 Serge 323
 
3031 serge 324
static inline int
325
__copy_to_user_swizzled(char __user *cpu_vaddr,
326
			const char *gpu_vaddr, int gpu_offset,
2332 Serge 327
		int length)
328
{
3031 serge 329
	int ret, cpu_offset = 0;
2332 Serge 330
 
3031 serge 331
	while (length > 0) {
332
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
333
		int this_length = min(cacheline_end - gpu_offset, length);
334
		int swizzled_gpu_offset = gpu_offset ^ 64;
2332 Serge 335
 
3031 serge 336
		ret = __copy_to_user(cpu_vaddr + cpu_offset,
337
				     gpu_vaddr + swizzled_gpu_offset,
338
				     this_length);
339
		if (ret)
340
			return ret + length;
2332 Serge 341
 
3031 serge 342
		cpu_offset += this_length;
343
		gpu_offset += this_length;
344
		length -= this_length;
345
	}
346
 
347
	return 0;
2332 Serge 348
}
349
 
3031 serge 350
static inline int
351
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
352
			  const char __user *cpu_vaddr,
353
			  int length)
2332 Serge 354
{
3031 serge 355
	int ret, cpu_offset = 0;
2332 Serge 356
 
357
	while (length > 0) {
358
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
359
		int this_length = min(cacheline_end - gpu_offset, length);
360
		int swizzled_gpu_offset = gpu_offset ^ 64;
361
 
3031 serge 362
		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
2332 Serge 363
			       cpu_vaddr + cpu_offset,
364
			       this_length);
3031 serge 365
		if (ret)
366
			return ret + length;
367
 
2332 Serge 368
		cpu_offset += this_length;
369
		gpu_offset += this_length;
370
		length -= this_length;
371
	}
372
 
3031 serge 373
	return 0;
2332 Serge 374
}
375
 
3031 serge 376
/* Per-page copy function for the shmem pread fastpath.
377
 * Flushes invalid cachelines before reading the target if
378
 * needs_clflush is set. */
2332 Serge 379
static int
3031 serge 380
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
381
		 char __user *user_data,
382
		 bool page_do_bit17_swizzling, bool needs_clflush)
383
{
384
		char *vaddr;
385
		int ret;
386
 
387
	if (unlikely(page_do_bit17_swizzling))
388
		return -EINVAL;
389
 
390
		vaddr = kmap_atomic(page);
391
	if (needs_clflush)
392
		drm_clflush_virt_range(vaddr + shmem_page_offset,
393
				       page_length);
394
		ret = __copy_to_user_inatomic(user_data,
395
				      vaddr + shmem_page_offset,
396
					      page_length);
397
		kunmap_atomic(vaddr);
398
 
399
	return ret ? -EFAULT : 0;
400
}
401
 
402
static void
403
shmem_clflush_swizzled_range(char *addr, unsigned long length,
404
			     bool swizzled)
405
{
406
	if (unlikely(swizzled)) {
407
		unsigned long start = (unsigned long) addr;
408
		unsigned long end = (unsigned long) addr + length;
409
 
410
		/* For swizzling simply ensure that we always flush both
411
		 * channels. Lame, but simple and it works. Swizzled
412
		 * pwrite/pread is far from a hotpath - current userspace
413
		 * doesn't use it at all. */
414
		start = round_down(start, 128);
415
		end = round_up(end, 128);
416
 
417
		drm_clflush_virt_range((void *)start, end - start);
418
	} else {
419
		drm_clflush_virt_range(addr, length);
420
	}
421
 
422
}
423
 
424
/* Only difference to the fast-path function is that this can handle bit17
425
 * and uses non-atomic copy and kmap functions. */
426
static int
427
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
428
		 char __user *user_data,
429
		 bool page_do_bit17_swizzling, bool needs_clflush)
430
{
431
	char *vaddr;
432
	int ret;
433
 
434
	vaddr = kmap(page);
435
	if (needs_clflush)
436
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
437
					     page_length,
438
					     page_do_bit17_swizzling);
439
 
440
	if (page_do_bit17_swizzling)
441
		ret = __copy_to_user_swizzled(user_data,
442
					      vaddr, shmem_page_offset,
443
					      page_length);
444
	else
445
		ret = __copy_to_user(user_data,
446
				     vaddr + shmem_page_offset,
447
				     page_length);
448
	kunmap(page);
449
 
450
	return ret ? - EFAULT : 0;
451
}
452
 
453
static int
454
i915_gem_shmem_pread(struct drm_device *dev,
2332 Serge 455
			  struct drm_i915_gem_object *obj,
456
			  struct drm_i915_gem_pread *args,
457
			  struct drm_file *file)
458
{
3031 serge 459
	char __user *user_data;
2332 Serge 460
	ssize_t remain;
461
	loff_t offset;
3031 serge 462
	int shmem_page_offset, page_length, ret = 0;
463
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
464
	int prefaulted = 0;
465
	int needs_clflush = 0;
3746 Serge 466
	struct sg_page_iter sg_iter;
2332 Serge 467
 
3746 Serge 468
	user_data = to_user_ptr(args->data_ptr);
2332 Serge 469
	remain = args->size;
470
 
3031 serge 471
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
472
 
5060 serge 473
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
3031 serge 474
	if (ret)
475
		return ret;
476
 
2332 Serge 477
	offset = args->offset;
478
 
3746 Serge 479
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
480
			 offset >> PAGE_SHIFT) {
481
		struct page *page = sg_page_iter_page(&sg_iter);
2332 Serge 482
 
3031 serge 483
		if (remain <= 0)
484
			break;
485
 
2332 Serge 486
		/* Operation in this page
487
		 *
3031 serge 488
		 * shmem_page_offset = offset within page in shmem file
2332 Serge 489
		 * page_length = bytes to copy for this page
490
		 */
3031 serge 491
		shmem_page_offset = offset_in_page(offset);
2332 Serge 492
		page_length = remain;
3031 serge 493
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
494
			page_length = PAGE_SIZE - shmem_page_offset;
2332 Serge 495
 
3031 serge 496
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
497
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 498
 
3031 serge 499
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
500
				       user_data, page_do_bit17_swizzling,
501
				       needs_clflush);
502
		if (ret == 0)
503
			goto next_page;
2332 Serge 504
 
3031 serge 505
		mutex_unlock(&dev->struct_mutex);
506
 
5060 serge 507
		if (likely(!i915.prefault_disable) && !prefaulted) {
3031 serge 508
			ret = fault_in_multipages_writeable(user_data, remain);
509
			/* Userspace is tricking us, but we've already clobbered
510
			 * its pages with the prefault and promised to write the
511
			 * data up to the first fault. Hence ignore any errors
512
			 * and just continue. */
513
			(void)ret;
514
			prefaulted = 1;
515
		}
516
 
517
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
518
				       user_data, page_do_bit17_swizzling,
519
				       needs_clflush);
520
 
521
		mutex_lock(&dev->struct_mutex);
522
 
2332 Serge 523
		if (ret)
3031 serge 524
			goto out;
2332 Serge 525
 
5060 serge 526
next_page:
2332 Serge 527
		remain -= page_length;
528
		user_data += page_length;
529
		offset += page_length;
530
	}
531
 
3031 serge 532
out:
533
	i915_gem_object_unpin_pages(obj);
534
 
535
	return ret;
2332 Serge 536
}
537
 
538
/**
3031 serge 539
 * Reads data from the object referenced by handle.
540
 *
541
 * On error, the contents of *data are undefined.
2332 Serge 542
 */
3031 serge 543
int
544
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
545
		     struct drm_file *file)
546
{
547
	struct drm_i915_gem_pread *args = data;
548
	struct drm_i915_gem_object *obj;
549
	int ret = 0;
550
 
551
	if (args->size == 0)
552
		return 0;
553
 
554
	if (!access_ok(VERIFY_WRITE,
3746 Serge 555
		       to_user_ptr(args->data_ptr),
3031 serge 556
		       args->size))
557
		return -EFAULT;
558
 
559
	ret = i915_mutex_lock_interruptible(dev);
560
	if (ret)
561
		return ret;
562
 
563
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
564
	if (&obj->base == NULL) {
565
		ret = -ENOENT;
566
		goto unlock;
567
	}
568
 
569
	/* Bounds check source.  */
570
	if (args->offset > obj->base.size ||
571
	    args->size > obj->base.size - args->offset) {
572
		ret = -EINVAL;
573
		goto out;
574
	}
575
 
576
	/* prime objects have no backing filp to GEM pread/pwrite
577
	 * pages from.
578
	 */
579
	if (!obj->base.filp) {
580
		ret = -EINVAL;
581
		goto out;
582
	}
583
 
584
	trace_i915_gem_object_pread(obj, args->offset, args->size);
585
 
586
	ret = i915_gem_shmem_pread(dev, obj, args, file);
587
 
588
out:
589
	drm_gem_object_unreference(&obj->base);
590
unlock:
591
	mutex_unlock(&dev->struct_mutex);
592
	return ret;
593
}
594
 
595
/* This is the fast write path which cannot handle
596
 * page faults in the source data
597
 */
598
 
599
static inline int
600
fast_user_write(struct io_mapping *mapping,
601
		loff_t page_base, int page_offset,
602
		char __user *user_data,
603
		int length)
604
{
605
	void __iomem *vaddr_atomic;
606
	void *vaddr;
607
	unsigned long unwritten;
608
 
609
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
610
	/* We can use the cpu mem copy function because this is X86. */
611
	vaddr = (void __force*)vaddr_atomic + page_offset;
612
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
613
						      user_data, length);
614
	io_mapping_unmap_atomic(vaddr_atomic);
615
	return unwritten;
616
}
3260 Serge 617
#endif
3031 serge 618
 
3260 Serge 619
#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
3031 serge 620
/**
621
 * This is the fast pwrite path, where we copy the data directly from the
622
 * user into the GTT, uncached.
623
 */
2332 Serge 624
static int
3031 serge 625
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
626
			 struct drm_i915_gem_object *obj,
627
			 struct drm_i915_gem_pwrite *args,
628
			 struct drm_file *file)
2332 Serge 629
{
5060 serge 630
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 631
	ssize_t remain;
3031 serge 632
	loff_t offset, page_base;
633
	char __user *user_data;
634
	int page_offset, page_length, ret;
2332 Serge 635
 
5060 serge 636
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
3031 serge 637
	if (ret)
638
		goto out;
639
 
640
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
641
	if (ret)
642
		goto out_unpin;
643
 
644
	ret = i915_gem_object_put_fence(obj);
645
	if (ret)
646
		goto out_unpin;
647
 
4539 Serge 648
	user_data = to_user_ptr(args->data_ptr);
2332 Serge 649
	remain = args->size;
650
 
4104 Serge 651
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
2332 Serge 652
 
3031 serge 653
	while (remain > 0) {
654
		/* Operation in this page
655
		 *
656
		 * page_base = page offset within aperture
657
		 * page_offset = offset within page
658
		 * page_length = bytes to copy for this page
659
		 */
660
		page_base = offset & PAGE_MASK;
661
		page_offset = offset_in_page(offset);
662
		page_length = remain;
663
		if ((page_offset + remain) > PAGE_SIZE)
664
			page_length = PAGE_SIZE - page_offset;
2332 Serge 665
 
4539 Serge 666
        MapPage(dev_priv->gtt.mappable, dev_priv->gtt.mappable_base+page_base, PG_SW);
3031 serge 667
 
5060 serge 668
        memcpy((char*)dev_priv->gtt.mappable+page_offset, user_data, page_length);
3260 Serge 669
 
3031 serge 670
		remain -= page_length;
671
		user_data += page_length;
672
		offset += page_length;
2332 Serge 673
	}
674
 
3031 serge 675
out_unpin:
5060 serge 676
	i915_gem_object_ggtt_unpin(obj);
3031 serge 677
out:
5060 serge 678
    return ret;
3031 serge 679
}
680
 
681
/* Per-page copy function for the shmem pwrite fastpath.
682
 * Flushes invalid cachelines before writing to the target if
683
 * needs_clflush_before is set and flushes out any written cachelines after
684
 * writing if needs_clflush is set. */
685
static int
686
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
687
		  char __user *user_data,
688
		  bool page_do_bit17_swizzling,
689
		  bool needs_clflush_before,
690
		  bool needs_clflush_after)
691
{
692
	char *vaddr;
3260 Serge 693
	int ret = 0;
3031 serge 694
 
695
	if (unlikely(page_do_bit17_swizzling))
696
		return -EINVAL;
697
 
4539 Serge 698
    vaddr = (char *)MapIoMem((addr_t)page, 4096, PG_SW);
3031 serge 699
	if (needs_clflush_before)
700
		drm_clflush_virt_range(vaddr + shmem_page_offset,
701
				       page_length);
3260 Serge 702
	memcpy(vaddr + shmem_page_offset,
3031 serge 703
						user_data,
704
						page_length);
705
	if (needs_clflush_after)
706
		drm_clflush_virt_range(vaddr + shmem_page_offset,
707
				       page_length);
3260 Serge 708
	FreeKernelSpace(vaddr);
3031 serge 709
 
710
	return ret ? -EFAULT : 0;
711
}
3260 Serge 712
#if 0
3031 serge 713
 
714
/* Only difference to the fast-path function is that this can handle bit17
715
 * and uses non-atomic copy and kmap functions. */
716
static int
717
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
718
		  char __user *user_data,
719
		  bool page_do_bit17_swizzling,
720
		  bool needs_clflush_before,
721
		  bool needs_clflush_after)
722
{
723
	char *vaddr;
724
	int ret;
725
 
726
	vaddr = kmap(page);
727
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
728
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
729
					     page_length,
730
					     page_do_bit17_swizzling);
731
	if (page_do_bit17_swizzling)
732
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
733
						user_data,
734
						page_length);
735
	else
736
		ret = __copy_from_user(vaddr + shmem_page_offset,
737
				       user_data,
738
				       page_length);
739
	if (needs_clflush_after)
740
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
741
					     page_length,
742
					     page_do_bit17_swizzling);
743
	kunmap(page);
744
 
745
	return ret ? -EFAULT : 0;
746
}
3260 Serge 747
#endif
3031 serge 748
 
3260 Serge 749
 
3031 serge 750
static int
751
i915_gem_shmem_pwrite(struct drm_device *dev,
752
		      struct drm_i915_gem_object *obj,
753
		      struct drm_i915_gem_pwrite *args,
754
		      struct drm_file *file)
755
{
756
	ssize_t remain;
757
	loff_t offset;
758
	char __user *user_data;
759
	int shmem_page_offset, page_length, ret = 0;
760
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
761
	int hit_slowpath = 0;
762
	int needs_clflush_after = 0;
763
	int needs_clflush_before = 0;
3746 Serge 764
	struct sg_page_iter sg_iter;
3031 serge 765
 
3746 Serge 766
	user_data = to_user_ptr(args->data_ptr);
3031 serge 767
	remain = args->size;
768
 
769
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
770
 
771
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
772
		/* If we're not in the cpu write domain, set ourself into the gtt
773
		 * write domain and manually flush cachelines (if required). This
774
		 * optimizes for the case when the gpu will use the data
775
		 * right away and we therefore have to clflush anyway. */
4104 Serge 776
		needs_clflush_after = cpu_write_needs_clflush(obj);
4560 Serge 777
		ret = i915_gem_object_wait_rendering(obj, false);
3031 serge 778
			if (ret)
779
				return ret;
5060 serge 780
 
781
		i915_gem_object_retire(obj);
3031 serge 782
		}
4104 Serge 783
	/* Same trick applies to invalidate partially written cachelines read
784
	 * before writing. */
785
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
786
		needs_clflush_before =
787
			!cpu_cache_is_coherent(dev, obj->cache_level);
3031 serge 788
 
789
	ret = i915_gem_object_get_pages(obj);
2332 Serge 790
	if (ret)
3031 serge 791
		return ret;
2332 Serge 792
 
3031 serge 793
	i915_gem_object_pin_pages(obj);
2332 Serge 794
 
795
	offset = args->offset;
3031 serge 796
	obj->dirty = 1;
2332 Serge 797
 
3746 Serge 798
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
799
			 offset >> PAGE_SHIFT) {
800
		struct page *page = sg_page_iter_page(&sg_iter);
3031 serge 801
		int partial_cacheline_write;
2332 Serge 802
 
3031 serge 803
		if (remain <= 0)
804
			break;
805
 
2332 Serge 806
		/* Operation in this page
807
		 *
808
		 * shmem_page_offset = offset within page in shmem file
809
		 * page_length = bytes to copy for this page
810
		 */
811
		shmem_page_offset = offset_in_page(offset);
812
 
813
		page_length = remain;
814
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
815
			page_length = PAGE_SIZE - shmem_page_offset;
816
 
3031 serge 817
		/* If we don't overwrite a cacheline completely we need to be
818
		 * careful to have up-to-date data by first clflushing. Don't
819
		 * overcomplicate things and flush the entire patch. */
820
		partial_cacheline_write = needs_clflush_before &&
821
			((shmem_page_offset | page_length)
3260 Serge 822
				& (x86_clflush_size - 1));
2332 Serge 823
 
3031 serge 824
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
825
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 826
 
3031 serge 827
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
828
					user_data, page_do_bit17_swizzling,
829
					partial_cacheline_write,
830
					needs_clflush_after);
831
		if (ret == 0)
832
			goto next_page;
833
 
834
		hit_slowpath = 1;
835
		mutex_unlock(&dev->struct_mutex);
3260 Serge 836
		dbgprintf("%s need shmem_pwrite_slow\n",__FUNCTION__);
3031 serge 837
 
3260 Serge 838
//		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
839
//					user_data, page_do_bit17_swizzling,
840
//					partial_cacheline_write,
841
//					needs_clflush_after);
842
 
3031 serge 843
		mutex_lock(&dev->struct_mutex);
844
 
845
next_page:
2332 Serge 846
 
3031 serge 847
		if (ret)
848
			goto out;
849
 
2332 Serge 850
		remain -= page_length;
3031 serge 851
		user_data += page_length;
2332 Serge 852
		offset += page_length;
853
	}
854
 
855
out:
3031 serge 856
	i915_gem_object_unpin_pages(obj);
857
 
858
	if (hit_slowpath) {
3480 Serge 859
		/*
860
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
861
		 * cachelines in-line while writing and the object moved
862
		 * out of the cpu write domain while we've dropped the lock.
863
		 */
864
		if (!needs_clflush_after &&
865
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
4104 Serge 866
			if (i915_gem_clflush_object(obj, obj->pin_display))
3243 Serge 867
			i915_gem_chipset_flush(dev);
3031 serge 868
		}
2332 Serge 869
	}
870
 
3031 serge 871
	if (needs_clflush_after)
3243 Serge 872
		i915_gem_chipset_flush(dev);
3031 serge 873
 
2332 Serge 874
	return ret;
875
}
3031 serge 876
 
877
/**
878
 * Writes data to the object referenced by handle.
879
 *
880
 * On error, the contents of the buffer that were to be modified are undefined.
881
 */
882
int
883
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
884
		      struct drm_file *file)
885
{
886
	struct drm_i915_gem_pwrite *args = data;
887
	struct drm_i915_gem_object *obj;
888
	int ret;
889
 
4104 Serge 890
	if (args->size == 0)
891
		return 0;
892
 
3480 Serge 893
 
3031 serge 894
	ret = i915_mutex_lock_interruptible(dev);
895
	if (ret)
896
		return ret;
897
 
898
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
899
	if (&obj->base == NULL) {
900
		ret = -ENOENT;
901
		goto unlock;
902
	}
903
 
904
	/* Bounds check destination. */
905
	if (args->offset > obj->base.size ||
906
	    args->size > obj->base.size - args->offset) {
907
		ret = -EINVAL;
908
		goto out;
909
	}
910
 
911
	/* prime objects have no backing filp to GEM pread/pwrite
912
	 * pages from.
913
	 */
914
	if (!obj->base.filp) {
915
		ret = -EINVAL;
916
		goto out;
917
	}
918
 
919
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
920
 
921
	ret = -EFAULT;
922
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
923
	 * it would end up going through the fenced access, and we'll get
924
	 * different detiling behavior between reading and writing.
925
	 * pread/pwrite currently are reading and writing from the CPU
926
	 * perspective, requiring manual detiling by the client.
927
	 */
3260 Serge 928
//   if (obj->phys_obj) {
929
//       ret = i915_gem_phys_pwrite(dev, obj, args, file);
930
//       goto out;
931
//   }
3031 serge 932
 
4104 Serge 933
	if (obj->tiling_mode == I915_TILING_NONE &&
934
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
935
	    cpu_write_needs_clflush(obj)) {
3031 serge 936
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
937
		/* Note that the gtt paths might fail with non-page-backed user
938
		 * pointers (e.g. gtt mappings when moving data between
939
		 * textures). Fallback to the shmem path in that case. */
940
	}
941
 
942
	if (ret == -EFAULT || ret == -ENOSPC)
3260 Serge 943
       ret = i915_gem_shmem_pwrite(dev, obj, args, file);
3031 serge 944
 
945
out:
946
	drm_gem_object_unreference(&obj->base);
947
unlock:
948
	mutex_unlock(&dev->struct_mutex);
949
	return ret;
950
}
951
 
952
int
3480 Serge 953
i915_gem_check_wedge(struct i915_gpu_error *error,
3031 serge 954
		     bool interruptible)
955
{
3480 Serge 956
	if (i915_reset_in_progress(error)) {
3031 serge 957
		/* Non-interruptible callers can't handle -EAGAIN, hence return
958
		 * -EIO unconditionally for these. */
959
		if (!interruptible)
960
			return -EIO;
2332 Serge 961
 
3480 Serge 962
		/* Recovery complete, but the reset failed ... */
963
		if (i915_terminally_wedged(error))
3031 serge 964
			return -EIO;
2332 Serge 965
 
3031 serge 966
		return -EAGAIN;
967
	}
2332 Serge 968
 
3031 serge 969
	return 0;
970
}
2332 Serge 971
 
3031 serge 972
/*
973
 * Compare seqno against outstanding lazy request. Emit a request if they are
974
 * equal.
975
 */
5060 serge 976
int
977
i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
3031 serge 978
{
979
	int ret;
2332 Serge 980
 
3031 serge 981
	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
2332 Serge 982
 
3031 serge 983
	ret = 0;
4560 Serge 984
	if (seqno == ring->outstanding_lazy_seqno)
4104 Serge 985
		ret = i915_add_request(ring, NULL);
2332 Serge 986
 
3031 serge 987
	return ret;
988
}
2332 Serge 989
 
4560 Serge 990
static void fake_irq(unsigned long data)
991
{
992
//	wake_up_process((struct task_struct *)data);
993
}
994
 
995
static bool missed_irq(struct drm_i915_private *dev_priv,
5060 serge 996
		       struct intel_engine_cs *ring)
4560 Serge 997
{
998
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
999
}
1000
 
1001
static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1002
{
1003
	if (file_priv == NULL)
1004
		return true;
1005
 
1006
	return !atomic_xchg(&file_priv->rps_wait_boost, true);
1007
}
1008
 
3031 serge 1009
/**
1010
 * __wait_seqno - wait until execution of seqno has finished
1011
 * @ring: the ring expected to report seqno
1012
 * @seqno: duh!
3480 Serge 1013
 * @reset_counter: reset sequence associated with the given seqno
3031 serge 1014
 * @interruptible: do an interruptible wait (normally yes)
1015
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1016
 *
3480 Serge 1017
 * Note: It is of utmost importance that the passed in seqno and reset_counter
1018
 * values have been read by the caller in an smp safe manner. Where read-side
1019
 * locks are involved, it is sufficient to read the reset_counter before
1020
 * unlocking the lock that protects the seqno. For lockless tricks, the
1021
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1022
 * inserted.
1023
 *
3031 serge 1024
 * Returns 0 if the seqno was found within the alloted time. Else returns the
1025
 * errno with remaining time filled in timeout argument.
1026
 */
5060 serge 1027
static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
3480 Serge 1028
			unsigned reset_counter,
4560 Serge 1029
			bool interruptible,
5060 serge 1030
			s64 *timeout,
4560 Serge 1031
			struct drm_i915_file_private *file_priv)
3031 serge 1032
{
5060 serge 1033
	struct drm_device *dev = ring->dev;
1034
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 1035
	const bool irq_test_in_progress =
1036
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
5060 serge 1037
	unsigned long timeout_expire;
1038
	s64 before, now;
1039
 
4560 Serge 1040
    wait_queue_t __wait;
3031 serge 1041
	int ret;
2332 Serge 1042
 
5060 serge 1043
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
4104 Serge 1044
 
3031 serge 1045
	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1046
		return 0;
2332 Serge 1047
 
5060 serge 1048
	timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
2332 Serge 1049
 
5060 serge 1050
	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
4560 Serge 1051
		gen6_rps_boost(dev_priv);
1052
		if (file_priv)
1053
			mod_delayed_work(dev_priv->wq,
1054
					 &file_priv->mm.idle_work,
1055
					 msecs_to_jiffies(100));
3031 serge 1056
	}
2332 Serge 1057
 
4560 Serge 1058
	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
3031 serge 1059
		return -ENODEV;
2332 Serge 1060
 
4560 Serge 1061
    INIT_LIST_HEAD(&__wait.task_list);
1062
    __wait.evnt = CreateEvent(NULL, MANUAL_DESTROY);
2332 Serge 1063
 
4560 Serge 1064
	/* Record current time in case interrupted by signal, or wedged */
1065
	trace_i915_gem_request_wait_begin(ring, seqno);
2332 Serge 1066
 
4560 Serge 1067
	for (;;) {
1068
        unsigned long flags;
1069
 
3480 Serge 1070
		/* We need to check whether any gpu reset happened in between
1071
		 * the caller grabbing the seqno and now ... */
4560 Serge 1072
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1073
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1074
			 * is truely gone. */
1075
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1076
			if (ret == 0)
1077
				ret = -EAGAIN;
1078
			break;
1079
		}
3480 Serge 1080
 
4560 Serge 1081
		if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1082
			ret = 0;
1083
			break;
1084
		}
2332 Serge 1085
 
5060 serge 1086
        if (timeout && time_after_eq(jiffies, timeout_expire)) {
4560 Serge 1087
			ret = -ETIME;
1088
			break;
1089
		}
2332 Serge 1090
 
4560 Serge 1091
        spin_lock_irqsave(&ring->irq_queue.lock, flags);
1092
        if (list_empty(&__wait.task_list))
1093
            __add_wait_queue(&ring->irq_queue, &__wait);
1094
        spin_unlock_irqrestore(&ring->irq_queue.lock, flags);
1095
 
1096
        WaitEventTimeout(__wait.evnt, 1);
1097
 
1098
        if (!list_empty(&__wait.task_list)) {
1099
            spin_lock_irqsave(&ring->irq_queue.lock, flags);
1100
            list_del_init(&__wait.task_list);
1101
            spin_unlock_irqrestore(&ring->irq_queue.lock, flags);
1102
        }
1103
    };
1104
    trace_i915_gem_request_wait_end(ring, seqno);
1105
 
1106
    DestroyEvent(__wait.evnt);
1107
 
1108
	if (!irq_test_in_progress)
5060 serge 1109
        ring->irq_put(ring);
2332 Serge 1110
 
5060 serge 1111
//	finish_wait(&ring->irq_queue, &wait);
4560 Serge 1112
	return ret;
3031 serge 1113
}
2332 Serge 1114
 
3031 serge 1115
/**
1116
 * Waits for a sequence number to be signaled, and cleans up the
1117
 * request and object lists appropriately for that event.
1118
 */
1119
int
5060 serge 1120
i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
3031 serge 1121
{
1122
	struct drm_device *dev = ring->dev;
1123
	struct drm_i915_private *dev_priv = dev->dev_private;
1124
	bool interruptible = dev_priv->mm.interruptible;
1125
	int ret;
2332 Serge 1126
 
3031 serge 1127
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1128
	BUG_ON(seqno == 0);
2332 Serge 1129
 
3480 Serge 1130
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
3031 serge 1131
	if (ret)
1132
		return ret;
2332 Serge 1133
 
3031 serge 1134
	ret = i915_gem_check_olr(ring, seqno);
1135
	if (ret)
1136
		return ret;
2332 Serge 1137
 
3480 Serge 1138
	return __wait_seqno(ring, seqno,
1139
			    atomic_read(&dev_priv->gpu_error.reset_counter),
4560 Serge 1140
			    interruptible, NULL, NULL);
3031 serge 1141
}
2332 Serge 1142
 
4104 Serge 1143
static int
1144
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
5060 serge 1145
				     struct intel_engine_cs *ring)
4104 Serge 1146
{
5060 serge 1147
	if (!obj->active)
1148
		return 0;
4104 Serge 1149
 
1150
	/* Manually manage the write flush as we may have not yet
1151
	 * retired the buffer.
1152
	 *
1153
	 * Note that the last_write_seqno is always the earlier of
1154
	 * the two (read/write) seqno, so if we haved successfully waited,
1155
	 * we know we have passed the last write.
1156
	 */
1157
	obj->last_write_seqno = 0;
1158
 
1159
	return 0;
1160
}
1161
 
3031 serge 1162
/**
1163
 * Ensures that all rendering to the object has completed and the object is
1164
 * safe to unbind from the GTT or access from the CPU.
1165
 */
1166
static __must_check int
1167
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1168
			       bool readonly)
1169
{
5060 serge 1170
	struct intel_engine_cs *ring = obj->ring;
3031 serge 1171
	u32 seqno;
1172
	int ret;
2332 Serge 1173
 
3031 serge 1174
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1175
	if (seqno == 0)
1176
		return 0;
2332 Serge 1177
 
3031 serge 1178
	ret = i915_wait_seqno(ring, seqno);
4104 Serge 1179
    if (ret)
1180
        return ret;
2332 Serge 1181
 
4104 Serge 1182
	return i915_gem_object_wait_rendering__tail(obj, ring);
3031 serge 1183
}
2332 Serge 1184
 
3260 Serge 1185
/* A nonblocking variant of the above wait. This is a highly dangerous routine
1186
 * as the object state may change during this call.
1187
 */
1188
static __must_check int
1189
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
5060 serge 1190
					    struct drm_i915_file_private *file_priv,
3260 Serge 1191
					    bool readonly)
1192
{
1193
	struct drm_device *dev = obj->base.dev;
1194
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 1195
	struct intel_engine_cs *ring = obj->ring;
3480 Serge 1196
	unsigned reset_counter;
3260 Serge 1197
	u32 seqno;
1198
	int ret;
2332 Serge 1199
 
3260 Serge 1200
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1201
	BUG_ON(!dev_priv->mm.interruptible);
2332 Serge 1202
 
3260 Serge 1203
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1204
	if (seqno == 0)
1205
		return 0;
2332 Serge 1206
 
3480 Serge 1207
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3260 Serge 1208
	if (ret)
1209
		return ret;
2332 Serge 1210
 
3260 Serge 1211
	ret = i915_gem_check_olr(ring, seqno);
1212
	if (ret)
1213
		return ret;
2332 Serge 1214
 
3480 Serge 1215
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3260 Serge 1216
	mutex_unlock(&dev->struct_mutex);
5060 serge 1217
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
3260 Serge 1218
	mutex_lock(&dev->struct_mutex);
4104 Serge 1219
	if (ret)
1220
		return ret;
2332 Serge 1221
 
4104 Serge 1222
	return i915_gem_object_wait_rendering__tail(obj, ring);
3260 Serge 1223
}
2332 Serge 1224
 
3260 Serge 1225
/**
1226
 * Called when user space prepares to use an object with the CPU, either
1227
 * through the mmap ioctl's mapping or a GTT mapping.
1228
 */
1229
int
1230
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1231
			  struct drm_file *file)
1232
{
1233
	struct drm_i915_gem_set_domain *args = data;
1234
	struct drm_i915_gem_object *obj;
1235
	uint32_t read_domains = args->read_domains;
1236
	uint32_t write_domain = args->write_domain;
1237
	int ret;
2332 Serge 1238
 
3260 Serge 1239
	/* Only handle setting domains to types used by the CPU. */
1240
	if (write_domain & I915_GEM_GPU_DOMAINS)
1241
		return -EINVAL;
2332 Serge 1242
 
3260 Serge 1243
	if (read_domains & I915_GEM_GPU_DOMAINS)
1244
		return -EINVAL;
2332 Serge 1245
 
3260 Serge 1246
	/* Having something in the write domain implies it's in the read
1247
	 * domain, and only that read domain.  Enforce that in the request.
1248
	 */
1249
	if (write_domain != 0 && read_domains != write_domain)
1250
		return -EINVAL;
2332 Serge 1251
 
3260 Serge 1252
	ret = i915_mutex_lock_interruptible(dev);
1253
	if (ret)
1254
		return ret;
2332 Serge 1255
 
3260 Serge 1256
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1257
	if (&obj->base == NULL) {
1258
		ret = -ENOENT;
1259
		goto unlock;
1260
	}
2332 Serge 1261
 
3260 Serge 1262
	/* Try to flush the object off the GPU without holding the lock.
1263
	 * We will repeat the flush holding the lock in the normal manner
1264
	 * to catch cases where we are gazumped.
1265
	 */
5060 serge 1266
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1267
							  file->driver_priv,
1268
							  !write_domain);
3260 Serge 1269
	if (ret)
1270
		goto unref;
2332 Serge 1271
 
3260 Serge 1272
	if (read_domains & I915_GEM_DOMAIN_GTT) {
1273
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
2332 Serge 1274
 
3260 Serge 1275
		/* Silently promote "you're not bound, there was nothing to do"
1276
		 * to success, since the client was just asking us to
1277
		 * make sure everything was done.
1278
		 */
1279
		if (ret == -EINVAL)
1280
			ret = 0;
1281
	} else {
1282
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1283
	}
2332 Serge 1284
 
3260 Serge 1285
unref:
1286
	drm_gem_object_unreference(&obj->base);
1287
unlock:
1288
	mutex_unlock(&dev->struct_mutex);
1289
	return ret;
1290
}
2332 Serge 1291
 
4293 Serge 1292
/**
1293
 * Called when user space has done writes to this buffer
1294
 */
1295
int
1296
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1297
			 struct drm_file *file)
1298
{
1299
	struct drm_i915_gem_sw_finish *args = data;
1300
	struct drm_i915_gem_object *obj;
1301
	int ret = 0;
2332 Serge 1302
 
4293 Serge 1303
	ret = i915_mutex_lock_interruptible(dev);
1304
	if (ret)
1305
		return ret;
2332 Serge 1306
 
4293 Serge 1307
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1308
	if (&obj->base == NULL) {
1309
		ret = -ENOENT;
1310
		goto unlock;
1311
	}
2332 Serge 1312
 
4293 Serge 1313
	/* Pinned buffers may be scanout, so flush the cache */
1314
	if (obj->pin_display)
1315
		i915_gem_object_flush_cpu_write_domain(obj, true);
2332 Serge 1316
 
4293 Serge 1317
	drm_gem_object_unreference(&obj->base);
1318
unlock:
1319
	mutex_unlock(&dev->struct_mutex);
1320
	return ret;
1321
}
1322
 
3260 Serge 1323
/**
1324
 * Maps the contents of an object, returning the address it is mapped
1325
 * into.
1326
 *
1327
 * While the mapping holds a reference on the contents of the object, it doesn't
1328
 * imply a ref on the object itself.
1329
 */
1330
int
1331
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1332
		    struct drm_file *file)
1333
{
1334
	struct drm_i915_gem_mmap *args = data;
1335
	struct drm_gem_object *obj;
4392 Serge 1336
	unsigned long addr;
2332 Serge 1337
 
3260 Serge 1338
	obj = drm_gem_object_lookup(dev, file, args->handle);
1339
	if (obj == NULL)
1340
		return -ENOENT;
4104 Serge 1341
 
3260 Serge 1342
	/* prime objects have no backing filp to GEM mmap
1343
	 * pages from.
1344
	 */
1345
	if (!obj->filp) {
1346
		drm_gem_object_unreference_unlocked(obj);
1347
		return -EINVAL;
1348
	}
2332 Serge 1349
 
3263 Serge 1350
    addr = vm_mmap(obj->filp, 0, args->size,
1351
              PROT_READ | PROT_WRITE, MAP_SHARED,
1352
              args->offset);
3260 Serge 1353
	drm_gem_object_unreference_unlocked(obj);
3263 Serge 1354
    if (IS_ERR((void *)addr))
1355
        return addr;
2332 Serge 1356
 
3260 Serge 1357
	args->addr_ptr = (uint64_t) addr;
2332 Serge 1358
 
3263 Serge 1359
    return 0;
3260 Serge 1360
}
2332 Serge 1361
 
1362
 
1363
 
1364
 
1365
 
1366
 
1367
 
1368
 
3031 serge 1369
 
1370
 
1371
 
1372
 
1373
 
1374
/**
1375
 * i915_gem_release_mmap - remove physical page mappings
1376
 * @obj: obj in question
1377
 *
1378
 * Preserve the reservation of the mmapping with the DRM core code, but
1379
 * relinquish ownership of the pages back to the system.
1380
 *
1381
 * It is vital that we remove the page mapping if we have mapped a tiled
1382
 * object through the GTT and then lose the fence register due to
1383
 * resource pressure. Similarly if the object has been moved out of the
1384
 * aperture, than pages mapped into userspace must be revoked. Removing the
1385
 * mapping will then trigger a page fault on the next user access, allowing
1386
 * fixup by i915_gem_fault().
1387
 */
1388
void
1389
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1390
{
1391
	if (!obj->fault_mappable)
1392
		return;
1393
 
4104 Serge 1394
//	drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
3031 serge 1395
	obj->fault_mappable = false;
1396
}
1397
 
3480 Serge 1398
uint32_t
2332 Serge 1399
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1400
{
1401
	uint32_t gtt_size;
1402
 
1403
	if (INTEL_INFO(dev)->gen >= 4 ||
1404
	    tiling_mode == I915_TILING_NONE)
1405
		return size;
1406
 
1407
	/* Previous chips need a power-of-two fence region when tiling */
1408
	if (INTEL_INFO(dev)->gen == 3)
1409
		gtt_size = 1024*1024;
1410
	else
1411
		gtt_size = 512*1024;
1412
 
1413
	while (gtt_size < size)
1414
		gtt_size <<= 1;
1415
 
1416
	return gtt_size;
1417
}
1418
 
1419
/**
1420
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1421
 * @obj: object to check
1422
 *
1423
 * Return the required GTT alignment for an object, taking into account
1424
 * potential fence register mapping.
1425
 */
3480 Serge 1426
uint32_t
1427
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1428
			   int tiling_mode, bool fenced)
2332 Serge 1429
{
1430
	/*
1431
	 * Minimum alignment is 4k (GTT page size), but might be greater
1432
	 * if a fence register is needed for the object.
1433
	 */
3480 Serge 1434
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2332 Serge 1435
	    tiling_mode == I915_TILING_NONE)
1436
		return 4096;
1437
 
1438
	/*
1439
	 * Previous chips need to be aligned to the size of the smallest
1440
	 * fence register that can contain the object.
1441
	 */
1442
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1443
}
1444
 
1445
 
1446
 
3480 Serge 1447
int
1448
i915_gem_mmap_gtt(struct drm_file *file,
1449
          struct drm_device *dev,
1450
          uint32_t handle,
1451
          uint64_t *offset)
1452
{
1453
    struct drm_i915_private *dev_priv = dev->dev_private;
1454
    struct drm_i915_gem_object *obj;
1455
    unsigned long pfn;
1456
    char *mem, *ptr;
1457
    int ret;
1458
 
1459
    ret = i915_mutex_lock_interruptible(dev);
1460
    if (ret)
1461
        return ret;
1462
 
1463
    obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1464
    if (&obj->base == NULL) {
1465
        ret = -ENOENT;
1466
        goto unlock;
1467
    }
1468
 
1469
    if (obj->base.size > dev_priv->gtt.mappable_end) {
1470
        ret = -E2BIG;
1471
        goto out;
1472
    }
1473
 
1474
    if (obj->madv != I915_MADV_WILLNEED) {
5060 serge 1475
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1476
		ret = -EFAULT;
3480 Serge 1477
        goto out;
1478
    }
1479
    /* Now bind it into the GTT if needed */
5060 serge 1480
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
3480 Serge 1481
    if (ret)
1482
        goto out;
1483
 
1484
    ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1485
    if (ret)
1486
        goto unpin;
1487
 
1488
    ret = i915_gem_object_get_fence(obj);
1489
    if (ret)
1490
        goto unpin;
1491
 
1492
    obj->fault_mappable = true;
1493
 
4104 Serge 1494
    pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
3480 Serge 1495
 
1496
    /* Finally, remap it using the new GTT offset */
1497
 
1498
    mem = UserAlloc(obj->base.size);
1499
    if(unlikely(mem == NULL))
1500
    {
1501
        ret = -ENOMEM;
1502
        goto unpin;
1503
    }
1504
 
1505
    for(ptr = mem; ptr < mem + obj->base.size; ptr+= 4096, pfn+= 4096)
1506
        MapPage(ptr, pfn, PG_SHARED|PG_UW);
1507
 
1508
unpin:
5060 serge 1509
    i915_gem_object_unpin_pages(obj);
3480 Serge 1510
 
1511
 
4104 Serge 1512
    *offset = mem;
3480 Serge 1513
 
1514
out:
1515
    drm_gem_object_unreference(&obj->base);
1516
unlock:
1517
    mutex_unlock(&dev->struct_mutex);
1518
    return ret;
1519
}
1520
 
1521
/**
1522
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1523
 * @dev: DRM device
1524
 * @data: GTT mapping ioctl data
1525
 * @file: GEM object info
1526
 *
1527
 * Simply returns the fake offset to userspace so it can mmap it.
1528
 * The mmap call will end up in drm_gem_mmap(), which will set things
1529
 * up so we can get faults in the handler above.
1530
 *
1531
 * The fault handler will take care of binding the object into the GTT
1532
 * (since it may have been evicted to make room for something), allocating
1533
 * a fence register, and mapping the appropriate aperture address into
1534
 * userspace.
1535
 */
1536
int
1537
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1538
            struct drm_file *file)
1539
{
1540
    struct drm_i915_gem_mmap_gtt *args = data;
1541
 
1542
    return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1543
}
1544
 
5060 serge 1545
static inline int
1546
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1547
{
1548
	return obj->madv == I915_MADV_DONTNEED;
1549
}
1550
 
3031 serge 1551
/* Immediately discard the backing storage */
1552
static void
1553
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1554
{
1555
//	i915_gem_object_free_mmap_offset(obj);
2332 Serge 1556
 
3263 Serge 1557
	if (obj->base.filp == NULL)
1558
		return;
2332 Serge 1559
 
3031 serge 1560
	/* Our goal here is to return as much of the memory as
1561
	 * is possible back to the system as we are called from OOM.
1562
	 * To do this we must instruct the shmfs to drop all of its
1563
	 * backing pages, *now*.
1564
	 */
5060 serge 1565
//	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
3031 serge 1566
	obj->madv = __I915_MADV_PURGED;
1567
}
2332 Serge 1568
 
5060 serge 1569
/* Try to discard unwanted pages */
1570
static void
1571
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
3031 serge 1572
{
5060 serge 1573
	struct address_space *mapping;
1574
 
1575
	switch (obj->madv) {
1576
	case I915_MADV_DONTNEED:
1577
		i915_gem_object_truncate(obj);
1578
	case __I915_MADV_PURGED:
1579
		return;
1580
	}
1581
 
1582
	if (obj->base.filp == NULL)
1583
		return;
1584
 
3031 serge 1585
}
2332 Serge 1586
 
3031 serge 1587
static void
1588
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1589
{
3746 Serge 1590
	struct sg_page_iter sg_iter;
1591
	int ret;
2332 Serge 1592
 
3031 serge 1593
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2332 Serge 1594
 
3031 serge 1595
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1596
	if (ret) {
1597
		/* In the event of a disaster, abandon all caches and
1598
		 * hope for the best.
1599
		 */
1600
		WARN_ON(ret != -EIO);
4104 Serge 1601
		i915_gem_clflush_object(obj, true);
3031 serge 1602
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1603
	}
2332 Serge 1604
 
3031 serge 1605
	if (obj->madv == I915_MADV_DONTNEED)
1606
		obj->dirty = 0;
2332 Serge 1607
 
3746 Serge 1608
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1609
		struct page *page = sg_page_iter_page(&sg_iter);
2332 Serge 1610
 
3290 Serge 1611
        page_cache_release(page);
3243 Serge 1612
	}
4104 Serge 1613
    obj->dirty = 0;
3243 Serge 1614
 
1615
	sg_free_table(obj->pages);
1616
	kfree(obj->pages);
3031 serge 1617
}
2332 Serge 1618
 
3480 Serge 1619
int
3031 serge 1620
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1621
{
1622
	const struct drm_i915_gem_object_ops *ops = obj->ops;
2332 Serge 1623
 
3243 Serge 1624
	if (obj->pages == NULL)
3031 serge 1625
		return 0;
2332 Serge 1626
 
3031 serge 1627
	if (obj->pages_pin_count)
1628
		return -EBUSY;
1629
 
4104 Serge 1630
	BUG_ON(i915_gem_obj_bound_any(obj));
1631
 
3243 Serge 1632
	/* ->put_pages might need to allocate memory for the bit17 swizzle
1633
	 * array, hence protect them from being reaped by removing them from gtt
1634
	 * lists early. */
4104 Serge 1635
	list_del(&obj->global_list);
3243 Serge 1636
 
3031 serge 1637
	ops->put_pages(obj);
3243 Serge 1638
	obj->pages = NULL;
3031 serge 1639
 
5060 serge 1640
	i915_gem_object_invalidate(obj);
3031 serge 1641
 
1642
	return 0;
1643
}
1644
 
1645
 
1646
 
1647
 
1648
 
1649
 
1650
 
1651
 
2332 Serge 1652
static int
3031 serge 1653
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2332 Serge 1654
{
3260 Serge 1655
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3243 Serge 1656
    int page_count, i;
4104 Serge 1657
    struct sg_table *st;
3243 Serge 1658
	struct scatterlist *sg;
3746 Serge 1659
	struct sg_page_iter sg_iter;
3243 Serge 1660
	struct page *page;
3746 Serge 1661
	unsigned long last_pfn = 0;	/* suppress gcc warning */
3243 Serge 1662
	gfp_t gfp;
2332 Serge 1663
 
3243 Serge 1664
	/* Assert that the object is not currently in any GPU domain. As it
1665
	 * wasn't in the GTT, there shouldn't be any way it could have been in
1666
	 * a GPU cache
2332 Serge 1667
	 */
3243 Serge 1668
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1669
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1670
 
1671
	st = kmalloc(sizeof(*st), GFP_KERNEL);
1672
	if (st == NULL)
1673
		return -ENOMEM;
1674
 
2332 Serge 1675
	page_count = obj->base.size / PAGE_SIZE;
3243 Serge 1676
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1677
		kfree(st);
3746 Serge 1678
        FAIL();
2332 Serge 1679
		return -ENOMEM;
3243 Serge 1680
	}
2332 Serge 1681
 
3243 Serge 1682
	/* Get the list of pages out of our struct file.  They'll be pinned
1683
	 * at this point until we release them.
1684
	 *
1685
	 * Fail silently without starting the shrinker
1686
	 */
3746 Serge 1687
	sg = st->sgl;
1688
	st->nents = 0;
1689
	for (i = 0; i < page_count; i++) {
4104 Serge 1690
        page = shmem_read_mapping_page_gfp(obj->base.filp, i, gfp);
3260 Serge 1691
		if (IS_ERR(page)) {
1692
            dbgprintf("%s invalid page %p\n", __FUNCTION__, page);
2332 Serge 1693
			goto err_pages;
1694
 
3260 Serge 1695
		}
3746 Serge 1696
 
1697
		if (!i || page_to_pfn(page) != last_pfn + 1) {
1698
			if (i)
1699
				sg = sg_next(sg);
1700
			st->nents++;
3243 Serge 1701
		sg_set_page(sg, page, PAGE_SIZE, 0);
3746 Serge 1702
		} else {
1703
			sg->length += PAGE_SIZE;
1704
		}
1705
		last_pfn = page_to_pfn(page);
3243 Serge 1706
	}
3031 serge 1707
 
3746 Serge 1708
		sg_mark_end(sg);
3243 Serge 1709
	obj->pages = st;
3031 serge 1710
 
2332 Serge 1711
	return 0;
1712
 
1713
err_pages:
3746 Serge 1714
	sg_mark_end(sg);
1715
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1716
		page_cache_release(sg_page_iter_page(&sg_iter));
3243 Serge 1717
	sg_free_table(st);
1718
	kfree(st);
3746 Serge 1719
    FAIL();
3243 Serge 1720
	return PTR_ERR(page);
2332 Serge 1721
}
1722
 
3031 serge 1723
/* Ensure that the associated pages are gathered from the backing storage
1724
 * and pinned into our object. i915_gem_object_get_pages() may be called
1725
 * multiple times before they are released by a single call to
1726
 * i915_gem_object_put_pages() - once the pages are no longer referenced
1727
 * either as a result of memory pressure (reaping pages under the shrinker)
1728
 * or as the object is itself released.
1729
 */
1730
int
1731
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2332 Serge 1732
{
3031 serge 1733
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1734
	const struct drm_i915_gem_object_ops *ops = obj->ops;
1735
	int ret;
2332 Serge 1736
 
3243 Serge 1737
	if (obj->pages)
3031 serge 1738
		return 0;
2332 Serge 1739
 
4392 Serge 1740
	if (obj->madv != I915_MADV_WILLNEED) {
5060 serge 1741
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
1742
		return -EFAULT;
4392 Serge 1743
	}
1744
 
3031 serge 1745
	BUG_ON(obj->pages_pin_count);
2332 Serge 1746
 
3031 serge 1747
	ret = ops->get_pages(obj);
1748
	if (ret)
1749
		return ret;
2344 Serge 1750
 
4104 Serge 1751
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3243 Serge 1752
    return 0;
2332 Serge 1753
}
1754
 
5060 serge 1755
static void
2332 Serge 1756
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
5060 serge 1757
			       struct intel_engine_cs *ring)
2332 Serge 1758
{
1759
	struct drm_device *dev = obj->base.dev;
1760
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 1761
	u32 seqno = intel_ring_get_seqno(ring);
2332 Serge 1762
 
1763
	BUG_ON(ring == NULL);
4104 Serge 1764
	if (obj->ring != ring && obj->last_write_seqno) {
1765
		/* Keep the seqno relative to the current ring */
1766
		obj->last_write_seqno = seqno;
1767
	}
2332 Serge 1768
	obj->ring = ring;
1769
 
1770
	/* Add a reference if we're newly entering the active list. */
1771
	if (!obj->active) {
2344 Serge 1772
		drm_gem_object_reference(&obj->base);
2332 Serge 1773
		obj->active = 1;
1774
	}
1775
 
1776
	list_move_tail(&obj->ring_list, &ring->active_list);
1777
 
3031 serge 1778
	obj->last_read_seqno = seqno;
1779
 
2332 Serge 1780
	if (obj->fenced_gpu_access) {
3031 serge 1781
		obj->last_fenced_seqno = seqno;
1782
 
1783
		/* Bump MRU to take account of the delayed flush */
1784
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
2332 Serge 1785
		struct drm_i915_fence_reg *reg;
1786
 
1787
		reg = &dev_priv->fence_regs[obj->fence_reg];
3031 serge 1788
			list_move_tail(®->lru_list,
1789
				       &dev_priv->mm.fence_list);
1790
		}
2332 Serge 1791
	}
1792
}
1793
 
4560 Serge 1794
void i915_vma_move_to_active(struct i915_vma *vma,
5060 serge 1795
			     struct intel_engine_cs *ring)
4560 Serge 1796
{
1797
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
1798
	return i915_gem_object_move_to_active(vma->obj, ring);
1799
}
1800
 
2344 Serge 1801
static void
3031 serge 1802
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2344 Serge 1803
{
4104 Serge 1804
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
5060 serge 1805
	struct i915_address_space *vm;
1806
	struct i915_vma *vma;
2332 Serge 1807
 
3031 serge 1808
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2344 Serge 1809
	BUG_ON(!obj->active);
2332 Serge 1810
 
5060 serge 1811
	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1812
		vma = i915_gem_obj_to_vma(obj, vm);
1813
		if (vma && !list_empty(&vma->mm_list))
1814
			list_move_tail(&vma->mm_list, &vm->inactive_list);
1815
	}
2344 Serge 1816
 
3031 serge 1817
	list_del_init(&obj->ring_list);
2352 Serge 1818
	obj->ring = NULL;
2344 Serge 1819
 
3031 serge 1820
	obj->last_read_seqno = 0;
1821
	obj->last_write_seqno = 0;
1822
	obj->base.write_domain = 0;
1823
 
1824
	obj->last_fenced_seqno = 0;
2352 Serge 1825
	obj->fenced_gpu_access = false;
2344 Serge 1826
 
2352 Serge 1827
	obj->active = 0;
1828
	drm_gem_object_unreference(&obj->base);
1829
 
1830
	WARN_ON(i915_verify_lists(dev));
1831
}
1832
 
5060 serge 1833
static void
1834
i915_gem_object_retire(struct drm_i915_gem_object *obj)
1835
{
1836
	struct intel_engine_cs *ring = obj->ring;
1837
 
1838
	if (ring == NULL)
1839
		return;
1840
 
1841
	if (i915_seqno_passed(ring->get_seqno(ring, true),
1842
			      obj->last_read_seqno))
1843
		i915_gem_object_move_to_inactive(obj);
1844
}
1845
 
3243 Serge 1846
static int
3480 Serge 1847
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2344 Serge 1848
{
3243 Serge 1849
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 1850
	struct intel_engine_cs *ring;
3243 Serge 1851
	int ret, i, j;
2344 Serge 1852
 
3480 Serge 1853
	/* Carefully retire all requests without writing to the rings */
3243 Serge 1854
	for_each_ring(ring, dev_priv, i) {
3480 Serge 1855
		ret = intel_ring_idle(ring);
3243 Serge 1856
	if (ret)
1857
		return ret;
3480 Serge 1858
	}
1859
	i915_gem_retire_requests(dev);
3243 Serge 1860
 
3480 Serge 1861
	/* Finally reset hw state */
3243 Serge 1862
	for_each_ring(ring, dev_priv, i) {
3480 Serge 1863
		intel_ring_init_seqno(ring, seqno);
1864
 
5060 serge 1865
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
1866
			ring->semaphore.sync_seqno[j] = 0;
3243 Serge 1867
	}
1868
 
1869
	return 0;
2344 Serge 1870
}
1871
 
3480 Serge 1872
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1873
{
1874
	struct drm_i915_private *dev_priv = dev->dev_private;
1875
	int ret;
1876
 
1877
	if (seqno == 0)
1878
		return -EINVAL;
1879
 
1880
	/* HWS page needs to be set less than what we
1881
	 * will inject to ring
1882
	 */
1883
	ret = i915_gem_init_seqno(dev, seqno - 1);
1884
	if (ret)
1885
		return ret;
1886
 
1887
	/* Carefully set the last_seqno value so that wrap
1888
	 * detection still works
1889
	 */
1890
	dev_priv->next_seqno = seqno;
1891
	dev_priv->last_seqno = seqno - 1;
1892
	if (dev_priv->last_seqno == 0)
1893
		dev_priv->last_seqno--;
1894
 
1895
	return 0;
1896
}
1897
 
3243 Serge 1898
int
1899
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2344 Serge 1900
{
3243 Serge 1901
	struct drm_i915_private *dev_priv = dev->dev_private;
2344 Serge 1902
 
3243 Serge 1903
	/* reserve 0 for non-seqno */
1904
	if (dev_priv->next_seqno == 0) {
3480 Serge 1905
		int ret = i915_gem_init_seqno(dev, 0);
3243 Serge 1906
		if (ret)
1907
			return ret;
1908
 
1909
		dev_priv->next_seqno = 1;
1910
	}
1911
 
3480 Serge 1912
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
3243 Serge 1913
	return 0;
2332 Serge 1914
}
1915
 
5060 serge 1916
int __i915_add_request(struct intel_engine_cs *ring,
2352 Serge 1917
		 struct drm_file *file,
4104 Serge 1918
		       struct drm_i915_gem_object *obj,
3031 serge 1919
		 u32 *out_seqno)
2352 Serge 1920
{
5060 serge 1921
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3031 serge 1922
	struct drm_i915_gem_request *request;
4104 Serge 1923
	u32 request_ring_position, request_start;
2352 Serge 1924
	int ret;
2332 Serge 1925
 
5060 serge 1926
	request_start = intel_ring_get_tail(ring->buffer);
3031 serge 1927
	/*
1928
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
1929
	 * after having emitted the batchbuffer command. Hence we need to fix
1930
	 * things up similar to emitting the lazy request. The difference here
1931
	 * is that the flush _must_ happen before the next request, no matter
1932
	 * what.
1933
	 */
4104 Serge 1934
   ret = intel_ring_flush_all_caches(ring);
1935
   if (ret)
1936
       return ret;
2332 Serge 1937
 
4560 Serge 1938
	request = ring->preallocated_lazy_request;
1939
	if (WARN_ON(request == NULL))
3031 serge 1940
		return -ENOMEM;
1941
 
1942
	/* Record the position of the start of the request so that
1943
	 * should we detect the updated seqno part-way through the
4104 Serge 1944
    * GPU processing the request, we never over-estimate the
3031 serge 1945
	 * position of the head.
1946
	 */
5060 serge 1947
	request_ring_position = intel_ring_get_tail(ring->buffer);
3031 serge 1948
 
3243 Serge 1949
	ret = ring->add_request(ring);
4560 Serge 1950
	if (ret)
4104 Serge 1951
		return ret;
2332 Serge 1952
 
3243 Serge 1953
	request->seqno = intel_ring_get_seqno(ring);
2352 Serge 1954
	request->ring = ring;
4104 Serge 1955
	request->head = request_start;
3031 serge 1956
	request->tail = request_ring_position;
4104 Serge 1957
 
1958
	/* Whilst this request exists, batch_obj will be on the
1959
	 * active_list, and so will hold the active reference. Only when this
1960
	 * request is retired will the the batch_obj be moved onto the
1961
	 * inactive_list and lose its active reference. Hence we do not need
1962
	 * to explicitly hold another reference here.
1963
	 */
4560 Serge 1964
	request->batch_obj = obj;
4104 Serge 1965
 
4560 Serge 1966
	/* Hold a reference to the current context so that we can inspect
1967
	 * it later in case a hangcheck error event fires.
1968
	 */
1969
	request->ctx = ring->last_context;
4104 Serge 1970
	if (request->ctx)
1971
		i915_gem_context_reference(request->ctx);
1972
 
5060 serge 1973
	request->emitted_jiffies = jiffies;
2352 Serge 1974
	list_add_tail(&request->list, &ring->request_list);
3031 serge 1975
	request->file_priv = NULL;
2332 Serge 1976
 
3263 Serge 1977
	if (file) {
1978
		struct drm_i915_file_private *file_priv = file->driver_priv;
2332 Serge 1979
 
3263 Serge 1980
		spin_lock(&file_priv->mm.lock);
1981
		request->file_priv = file_priv;
1982
		list_add_tail(&request->client_list,
1983
			      &file_priv->mm.request_list);
1984
		spin_unlock(&file_priv->mm.lock);
1985
	}
1986
 
1987
	trace_i915_gem_request_add(ring, request->seqno);
4560 Serge 1988
	ring->outstanding_lazy_seqno = 0;
1989
	ring->preallocated_lazy_request = NULL;
2332 Serge 1990
 
4104 Serge 1991
	if (!dev_priv->ums.mm_suspended) {
1992
//		i915_queue_hangcheck(ring->dev);
1993
 
2360 Serge 1994
           queue_delayed_work(dev_priv->wq,
3482 Serge 1995
					   &dev_priv->mm.retire_work,
1996
					   round_jiffies_up_relative(HZ));
4104 Serge 1997
           intel_mark_busy(dev_priv->dev);
1998
       }
3031 serge 1999
 
2000
	if (out_seqno)
3243 Serge 2001
		*out_seqno = request->seqno;
2352 Serge 2002
	return 0;
2003
}
2332 Serge 2004
 
3263 Serge 2005
static inline void
2006
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2007
{
2008
	struct drm_i915_file_private *file_priv = request->file_priv;
2332 Serge 2009
 
3263 Serge 2010
	if (!file_priv)
2011
		return;
2332 Serge 2012
 
3263 Serge 2013
	spin_lock(&file_priv->mm.lock);
2014
		list_del(&request->client_list);
2015
		request->file_priv = NULL;
2016
	spin_unlock(&file_priv->mm.lock);
2017
}
2332 Serge 2018
 
5060 serge 2019
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2020
				   const struct intel_context *ctx)
4104 Serge 2021
{
5060 serge 2022
	unsigned long elapsed;
4104 Serge 2023
 
5060 serge 2024
    elapsed = GetTimerTicks()/100 - ctx->hang_stats.guilty_ts;
4104 Serge 2025
 
5060 serge 2026
	if (ctx->hang_stats.banned)
2027
		return true;
4104 Serge 2028
 
5060 serge 2029
	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2030
		if (!i915_gem_context_is_default(ctx)) {
2031
			DRM_DEBUG("context hanging too fast, banning!\n");
4104 Serge 2032
			return true;
5060 serge 2033
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2034
			if (i915_stop_ring_allow_warn(dev_priv))
2035
			DRM_ERROR("gpu hanging too fast, banning!\n");
4104 Serge 2036
			return true;
2037
	}
2038
	}
2039
 
2040
	return false;
2041
}
2042
 
5060 serge 2043
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2044
				  struct intel_context *ctx,
2045
				  const bool guilty)
4560 Serge 2046
{
5060 serge 2047
	struct i915_ctx_hang_stats *hs;
4560 Serge 2048
 
5060 serge 2049
	if (WARN_ON(!ctx))
2050
		return;
4560 Serge 2051
 
5060 serge 2052
	hs = &ctx->hang_stats;
4560 Serge 2053
 
5060 serge 2054
	if (guilty) {
2055
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2056
		hs->batch_active++;
2057
        hs->guilty_ts = GetTimerTicks()/100;
2058
	} else {
2059
		hs->batch_pending++;
4104 Serge 2060
	}
2061
}
2062
 
2063
static void i915_gem_free_request(struct drm_i915_gem_request *request)
2064
{
2065
	list_del(&request->list);
2066
	i915_gem_request_remove_from_client(request);
2067
 
2068
	if (request->ctx)
2069
		i915_gem_context_unreference(request->ctx);
2070
 
2071
	kfree(request);
2072
}
2073
 
5060 serge 2074
struct drm_i915_gem_request *
2075
i915_gem_find_active_request(struct intel_engine_cs *ring)
3031 serge 2076
{
4539 Serge 2077
	struct drm_i915_gem_request *request;
5060 serge 2078
	u32 completed_seqno;
4104 Serge 2079
 
5060 serge 2080
	completed_seqno = ring->get_seqno(ring, false);
2081
 
4539 Serge 2082
	list_for_each_entry(request, &ring->request_list, list) {
2083
		if (i915_seqno_passed(completed_seqno, request->seqno))
2084
			continue;
4104 Serge 2085
 
5060 serge 2086
		return request;
4539 Serge 2087
	}
5060 serge 2088
 
2089
	return NULL;
4539 Serge 2090
}
2091
 
5060 serge 2092
static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2093
				       struct intel_engine_cs *ring)
2094
{
2095
	struct drm_i915_gem_request *request;
2096
	bool ring_hung;
2097
 
2098
	request = i915_gem_find_active_request(ring);
2099
 
2100
	if (request == NULL)
2101
		return;
2102
 
2103
	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2104
 
2105
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2106
 
2107
	list_for_each_entry_continue(request, &ring->request_list, list)
2108
		i915_set_reset_status(dev_priv, request->ctx, false);
2109
}
2110
 
4539 Serge 2111
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
5060 serge 2112
					struct intel_engine_cs *ring)
4539 Serge 2113
{
4560 Serge 2114
	while (!list_empty(&ring->active_list)) {
2115
		struct drm_i915_gem_object *obj;
2116
 
2117
		obj = list_first_entry(&ring->active_list,
2118
				       struct drm_i915_gem_object,
2119
				       ring_list);
2120
 
2121
		i915_gem_object_move_to_inactive(obj);
2122
	}
2123
 
2124
	/*
2125
	 * We must free the requests after all the corresponding objects have
2126
	 * been moved off active lists. Which is the same order as the normal
2127
	 * retire_requests function does. This is important if object hold
2128
	 * implicit references on things like e.g. ppgtt address spaces through
2129
	 * the request.
2130
	 */
3031 serge 2131
	while (!list_empty(&ring->request_list)) {
2132
		struct drm_i915_gem_request *request;
2332 Serge 2133
 
3031 serge 2134
		request = list_first_entry(&ring->request_list,
2135
					   struct drm_i915_gem_request,
2136
					   list);
2332 Serge 2137
 
4104 Serge 2138
		i915_gem_free_request(request);
3031 serge 2139
	}
5060 serge 2140
 
2141
	/* These may not have been flush before the reset, do so now */
2142
	kfree(ring->preallocated_lazy_request);
2143
	ring->preallocated_lazy_request = NULL;
2144
	ring->outstanding_lazy_seqno = 0;
3031 serge 2145
}
2332 Serge 2146
 
3746 Serge 2147
void i915_gem_restore_fences(struct drm_device *dev)
3031 serge 2148
{
2149
	struct drm_i915_private *dev_priv = dev->dev_private;
2150
	int i;
2332 Serge 2151
 
3031 serge 2152
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2153
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
4104 Serge 2154
 
2155
		/*
2156
		 * Commit delayed tiling changes if we have an object still
2157
		 * attached to the fence, otherwise just clear the fence.
2158
		 */
2159
		if (reg->obj) {
2160
			i915_gem_object_update_fence(reg->obj, reg,
2161
						     reg->obj->tiling_mode);
2162
		} else {
2163
			i915_gem_write_fence(dev, i, NULL);
2164
		}
3031 serge 2165
	}
2166
}
2360 Serge 2167
 
3031 serge 2168
void i915_gem_reset(struct drm_device *dev)
2169
{
2170
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 2171
	struct intel_engine_cs *ring;
3031 serge 2172
	int i;
2360 Serge 2173
 
4539 Serge 2174
	/*
2175
	 * Before we free the objects from the requests, we need to inspect
2176
	 * them for finding the guilty party. As the requests only borrow
2177
	 * their reference to the objects, the inspection must be done first.
2178
	 */
3031 serge 2179
	for_each_ring(ring, dev_priv, i)
4539 Serge 2180
		i915_gem_reset_ring_status(dev_priv, ring);
2360 Serge 2181
 
4539 Serge 2182
	for_each_ring(ring, dev_priv, i)
2183
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2184
 
5060 serge 2185
	i915_gem_context_reset(dev);
4560 Serge 2186
 
3746 Serge 2187
	i915_gem_restore_fences(dev);
3031 serge 2188
}
2360 Serge 2189
 
2352 Serge 2190
/**
2191
 * This function clears the request list as sequence numbers are passed.
2192
 */
3031 serge 2193
void
5060 serge 2194
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2352 Serge 2195
{
2196
	uint32_t seqno;
2332 Serge 2197
 
2352 Serge 2198
	if (list_empty(&ring->request_list))
2199
		return;
2332 Serge 2200
 
2352 Serge 2201
	WARN_ON(i915_verify_lists(ring->dev));
2332 Serge 2202
 
3031 serge 2203
	seqno = ring->get_seqno(ring, true);
2332 Serge 2204
 
5060 serge 2205
	/* Move any buffers on the active list that are no longer referenced
2206
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
2207
	 * before we free the context associated with the requests.
2208
	 */
2209
	while (!list_empty(&ring->active_list)) {
2210
		struct drm_i915_gem_object *obj;
2211
 
2212
		obj = list_first_entry(&ring->active_list,
2213
				      struct drm_i915_gem_object,
2214
				      ring_list);
2215
 
2216
		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2217
			break;
2218
 
2219
		i915_gem_object_move_to_inactive(obj);
2220
	}
2221
 
2222
 
2352 Serge 2223
	while (!list_empty(&ring->request_list)) {
2224
		struct drm_i915_gem_request *request;
2332 Serge 2225
 
2352 Serge 2226
		request = list_first_entry(&ring->request_list,
2227
					   struct drm_i915_gem_request,
2228
					   list);
2332 Serge 2229
 
2352 Serge 2230
		if (!i915_seqno_passed(seqno, request->seqno))
2231
			break;
2332 Serge 2232
 
2352 Serge 2233
		trace_i915_gem_request_retire(ring, request->seqno);
3031 serge 2234
		/* We know the GPU must have read the request to have
2235
		 * sent us the seqno + interrupt, so use the position
2236
		 * of tail of the request to update the last known position
2237
		 * of the GPU head.
2238
		 */
5060 serge 2239
		ring->buffer->last_retired_head = request->tail;
2332 Serge 2240
 
4104 Serge 2241
		i915_gem_free_request(request);
2352 Serge 2242
	}
2332 Serge 2243
 
2352 Serge 2244
	if (unlikely(ring->trace_irq_seqno &&
2245
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2246
		ring->irq_put(ring);
2247
		ring->trace_irq_seqno = 0;
2248
	}
2332 Serge 2249
 
2352 Serge 2250
	WARN_ON(i915_verify_lists(ring->dev));
2251
}
2332 Serge 2252
 
4560 Serge 2253
bool
2352 Serge 2254
i915_gem_retire_requests(struct drm_device *dev)
2255
{
5060 serge 2256
	struct drm_i915_private *dev_priv = dev->dev_private;
2257
	struct intel_engine_cs *ring;
4560 Serge 2258
	bool idle = true;
2352 Serge 2259
	int i;
2332 Serge 2260
 
4560 Serge 2261
	for_each_ring(ring, dev_priv, i) {
3031 serge 2262
		i915_gem_retire_requests_ring(ring);
4560 Serge 2263
		idle &= list_empty(&ring->request_list);
2264
	}
2265
 
2266
	if (idle)
2267
		mod_delayed_work(dev_priv->wq,
2268
				   &dev_priv->mm.idle_work,
2269
				   msecs_to_jiffies(100));
2270
 
2271
	return idle;
2352 Serge 2272
}
2273
 
2360 Serge 2274
static void
2275
i915_gem_retire_work_handler(struct work_struct *work)
2276
{
4560 Serge 2277
	struct drm_i915_private *dev_priv =
2278
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
2279
	struct drm_device *dev = dev_priv->dev;
2360 Serge 2280
	bool idle;
2352 Serge 2281
 
2360 Serge 2282
	/* Come back later if the device is busy... */
4560 Serge 2283
	idle = false;
2284
	if (mutex_trylock(&dev->struct_mutex)) {
2285
		idle = i915_gem_retire_requests(dev);
2286
		mutex_unlock(&dev->struct_mutex);
2287
	}
2288
	if (!idle)
3482 Serge 2289
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2290
				   round_jiffies_up_relative(HZ));
4560 Serge 2291
}
2352 Serge 2292
 
4560 Serge 2293
static void
2294
i915_gem_idle_work_handler(struct work_struct *work)
2295
{
2296
	struct drm_i915_private *dev_priv =
2297
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2352 Serge 2298
 
4560 Serge 2299
	intel_mark_idle(dev_priv->dev);
2360 Serge 2300
}
2301
 
2344 Serge 2302
/**
3031 serge 2303
 * Ensures that an object will eventually get non-busy by flushing any required
2304
 * write domains, emitting any outstanding lazy request and retiring and
2305
 * completed requests.
2352 Serge 2306
 */
3031 serge 2307
static int
2308
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2352 Serge 2309
{
3031 serge 2310
	int ret;
2352 Serge 2311
 
3031 serge 2312
	if (obj->active) {
2313
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2314
		if (ret)
2315
			return ret;
2352 Serge 2316
 
3031 serge 2317
		i915_gem_retire_requests_ring(obj->ring);
2318
	}
2352 Serge 2319
 
3031 serge 2320
	return 0;
2321
}
2352 Serge 2322
 
3243 Serge 2323
/**
2324
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2325
 * @DRM_IOCTL_ARGS: standard ioctl arguments
2326
 *
2327
 * Returns 0 if successful, else an error is returned with the remaining time in
2328
 * the timeout parameter.
2329
 *  -ETIME: object is still busy after timeout
2330
 *  -ERESTARTSYS: signal interrupted the wait
2331
 *  -ENONENT: object doesn't exist
2332
 * Also possible, but rare:
2333
 *  -EAGAIN: GPU wedged
2334
 *  -ENOMEM: damn
2335
 *  -ENODEV: Internal IRQ fail
2336
 *  -E?: The add request failed
2337
 *
2338
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2339
 * non-zero timeout parameter the wait ioctl will wait for the given number of
2340
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2341
 * without holding struct_mutex the object may become re-busied before this
2342
 * function completes. A similar but shorter * race condition exists in the busy
2343
 * ioctl
2344
 */
4246 Serge 2345
int
2346
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2347
{
5060 serge 2348
	struct drm_i915_private *dev_priv = dev->dev_private;
4246 Serge 2349
	struct drm_i915_gem_wait *args = data;
2350
	struct drm_i915_gem_object *obj;
5060 serge 2351
	struct intel_engine_cs *ring = NULL;
4246 Serge 2352
	unsigned reset_counter;
2353
	u32 seqno = 0;
2354
	int ret = 0;
2352 Serge 2355
 
4246 Serge 2356
	ret = i915_mutex_lock_interruptible(dev);
2357
	if (ret)
2358
		return ret;
2352 Serge 2359
 
4246 Serge 2360
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2361
	if (&obj->base == NULL) {
2362
		mutex_unlock(&dev->struct_mutex);
2363
		return -ENOENT;
2364
	}
2352 Serge 2365
 
4246 Serge 2366
	/* Need to make sure the object gets inactive eventually. */
2367
	ret = i915_gem_object_flush_active(obj);
2368
	if (ret)
2369
		goto out;
2352 Serge 2370
 
4246 Serge 2371
	if (obj->active) {
2372
		seqno = obj->last_read_seqno;
2373
		ring = obj->ring;
2374
	}
2352 Serge 2375
 
4246 Serge 2376
	if (seqno == 0)
2377
		 goto out;
2352 Serge 2378
 
4246 Serge 2379
	/* Do this after OLR check to make sure we make forward progress polling
5060 serge 2380
	 * on this IOCTL with a timeout <=0 (like busy ioctl)
4246 Serge 2381
	 */
5060 serge 2382
	if (args->timeout_ns <= 0) {
4246 Serge 2383
		ret = -ETIME;
2384
		goto out;
2385
	}
2352 Serge 2386
 
4246 Serge 2387
	drm_gem_object_unreference(&obj->base);
2388
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2389
	mutex_unlock(&dev->struct_mutex);
2352 Serge 2390
 
5060 serge 2391
	return __wait_seqno(ring, seqno, reset_counter, true, &args->timeout_ns,
2392
			    file->driver_priv);
3243 Serge 2393
 
4246 Serge 2394
out:
2395
	drm_gem_object_unreference(&obj->base);
2396
	mutex_unlock(&dev->struct_mutex);
2397
	return ret;
2398
}
3243 Serge 2399
 
2352 Serge 2400
/**
3031 serge 2401
 * i915_gem_object_sync - sync an object to a ring.
2402
 *
2403
 * @obj: object which may be in use on another ring.
2404
 * @to: ring we wish to use the object on. May be NULL.
2405
 *
2406
 * This code is meant to abstract object synchronization with the GPU.
2407
 * Calling with NULL implies synchronizing the object with the CPU
2408
 * rather than a particular GPU ring.
2409
 *
2410
 * Returns 0 if successful, else propagates up the lower layer error.
2344 Serge 2411
 */
2412
int
3031 serge 2413
i915_gem_object_sync(struct drm_i915_gem_object *obj,
5060 serge 2414
		     struct intel_engine_cs *to)
2344 Serge 2415
{
5060 serge 2416
	struct intel_engine_cs *from = obj->ring;
3031 serge 2417
	u32 seqno;
2418
	int ret, idx;
2332 Serge 2419
 
3031 serge 2420
	if (from == NULL || to == from)
2421
		return 0;
2332 Serge 2422
 
3031 serge 2423
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2424
		return i915_gem_object_wait_rendering(obj, false);
2332 Serge 2425
 
3031 serge 2426
	idx = intel_ring_sync_index(from, to);
2427
 
2428
	seqno = obj->last_read_seqno;
5060 serge 2429
	/* Optimization: Avoid semaphore sync when we are sure we already
2430
	 * waited for an object with higher seqno */
2431
	if (seqno <= from->semaphore.sync_seqno[idx])
3031 serge 2432
		return 0;
2433
 
2434
	ret = i915_gem_check_olr(obj->ring, seqno);
2435
	if (ret)
2436
		return ret;
2437
 
4560 Serge 2438
	trace_i915_gem_ring_sync_to(from, to, seqno);
5060 serge 2439
	ret = to->semaphore.sync_to(to, from, seqno);
3031 serge 2440
	if (!ret)
3243 Serge 2441
		/* We use last_read_seqno because sync_to()
2442
		 * might have just caused seqno wrap under
2443
		 * the radar.
2444
		 */
5060 serge 2445
		from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
3031 serge 2446
 
2447
	return ret;
2344 Serge 2448
}
2332 Serge 2449
 
2344 Serge 2450
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2451
{
2452
	u32 old_write_domain, old_read_domains;
2332 Serge 2453
 
2344 Serge 2454
	/* Force a pagefault for domain tracking on next user access */
2455
//	i915_gem_release_mmap(obj);
2332 Serge 2456
 
2344 Serge 2457
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2458
		return;
2332 Serge 2459
 
3480 Serge 2460
	/* Wait for any direct GTT access to complete */
2461
	mb();
2462
 
2344 Serge 2463
	old_read_domains = obj->base.read_domains;
2464
	old_write_domain = obj->base.write_domain;
2351 Serge 2465
 
2344 Serge 2466
	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2467
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2332 Serge 2468
 
2351 Serge 2469
	trace_i915_gem_object_change_domain(obj,
2470
					    old_read_domains,
2471
					    old_write_domain);
2344 Serge 2472
}
2332 Serge 2473
 
4104 Serge 2474
int i915_vma_unbind(struct i915_vma *vma)
2344 Serge 2475
{
4104 Serge 2476
	struct drm_i915_gem_object *obj = vma->obj;
5060 serge 2477
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3480 Serge 2478
	int ret;
2332 Serge 2479
 
3263 Serge 2480
    if(obj == get_fb_obj())
2481
        return 0;
2482
 
4104 Serge 2483
	if (list_empty(&vma->vma_link))
2344 Serge 2484
		return 0;
2332 Serge 2485
 
4560 Serge 2486
	if (!drm_mm_node_allocated(&vma->node)) {
2487
		i915_gem_vma_destroy(vma);
2488
		return 0;
2489
	}
2490
 
5060 serge 2491
	if (vma->pin_count)
3031 serge 2492
		return -EBUSY;
2332 Serge 2493
 
3243 Serge 2494
	BUG_ON(obj->pages == NULL);
3031 serge 2495
 
2344 Serge 2496
	ret = i915_gem_object_finish_gpu(obj);
3031 serge 2497
	if (ret)
2344 Serge 2498
		return ret;
2499
	/* Continue on if we fail due to EIO, the GPU is hung so we
2500
	 * should be safe and we need to cleanup or else we might
2501
	 * cause memory corruption through use-after-free.
2502
	 */
2332 Serge 2503
 
5060 serge 2504
	if (i915_is_ggtt(vma->vm)) {
2344 Serge 2505
	i915_gem_object_finish_gtt(obj);
2332 Serge 2506
 
2344 Serge 2507
	/* release the fence reg _after_ flushing */
2508
	ret = i915_gem_object_put_fence(obj);
3031 serge 2509
	if (ret)
2344 Serge 2510
		return ret;
5060 serge 2511
	}
2332 Serge 2512
 
4104 Serge 2513
	trace_i915_vma_unbind(vma);
2332 Serge 2514
 
5060 serge 2515
	vma->unbind_vma(vma);
2332 Serge 2516
 
5060 serge 2517
	list_del_init(&vma->mm_list);
2344 Serge 2518
	/* Avoid an unnecessary call to unbind on rebind. */
4104 Serge 2519
	if (i915_is_ggtt(vma->vm))
2344 Serge 2520
	obj->map_and_fenceable = true;
2332 Serge 2521
 
4104 Serge 2522
	drm_mm_remove_node(&vma->node);
2523
	i915_gem_vma_destroy(vma);
2524
 
2525
	/* Since the unbound list is global, only move to that list if
4560 Serge 2526
	 * no more VMAs exist. */
5060 serge 2527
	if (list_empty(&obj->vma_list)) {
2528
		i915_gem_gtt_finish_object(obj);
4104 Serge 2529
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
5060 serge 2530
	}
4104 Serge 2531
 
4560 Serge 2532
	/* And finally now the object is completely decoupled from this vma,
2533
	 * we can drop its hold on the backing storage and allow it to be
2534
	 * reaped by the shrinker.
2535
	 */
2536
	i915_gem_object_unpin_pages(obj);
2537
 
2344 Serge 2538
	return 0;
2539
}
2332 Serge 2540
 
3031 serge 2541
int i915_gpu_idle(struct drm_device *dev)
2344 Serge 2542
{
5060 serge 2543
	struct drm_i915_private *dev_priv = dev->dev_private;
2544
	struct intel_engine_cs *ring;
2344 Serge 2545
	int ret, i;
2332 Serge 2546
 
2344 Serge 2547
	/* Flush everything onto the inactive list. */
3031 serge 2548
	for_each_ring(ring, dev_priv, i) {
5060 serge 2549
		ret = i915_switch_context(ring, ring->default_context);
2344 Serge 2550
		if (ret)
2551
			return ret;
3031 serge 2552
 
3243 Serge 2553
		ret = intel_ring_idle(ring);
3031 serge 2554
		if (ret)
2555
			return ret;
2344 Serge 2556
	}
2332 Serge 2557
 
2344 Serge 2558
	return 0;
2559
}
2332 Serge 2560
 
3480 Serge 2561
static void i965_write_fence_reg(struct drm_device *dev, int reg,
3031 serge 2562
					struct drm_i915_gem_object *obj)
2563
{
5060 serge 2564
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 2565
	int fence_reg;
2566
	int fence_pitch_shift;
2332 Serge 2567
 
3480 Serge 2568
	if (INTEL_INFO(dev)->gen >= 6) {
2569
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2570
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2571
	} else {
2572
		fence_reg = FENCE_REG_965_0;
2573
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2574
	}
2332 Serge 2575
 
4104 Serge 2576
	fence_reg += reg * 8;
2577
 
2578
	/* To w/a incoherency with non-atomic 64-bit register updates,
2579
	 * we split the 64-bit update into two 32-bit writes. In order
2580
	 * for a partial fence not to be evaluated between writes, we
2581
	 * precede the update with write to turn off the fence register,
2582
	 * and only enable the fence as the last step.
2583
	 *
2584
	 * For extra levels of paranoia, we make sure each step lands
2585
	 * before applying the next step.
2586
	 */
2587
	I915_WRITE(fence_reg, 0);
2588
	POSTING_READ(fence_reg);
2589
 
3031 serge 2590
	if (obj) {
4104 Serge 2591
		u32 size = i915_gem_obj_ggtt_size(obj);
2592
		uint64_t val;
2332 Serge 2593
 
4104 Serge 2594
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3031 serge 2595
				 0xfffff000) << 32;
4104 Serge 2596
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3480 Serge 2597
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3031 serge 2598
		if (obj->tiling_mode == I915_TILING_Y)
2599
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2600
		val |= I965_FENCE_REG_VALID;
2332 Serge 2601
 
4104 Serge 2602
		I915_WRITE(fence_reg + 4, val >> 32);
2603
		POSTING_READ(fence_reg + 4);
2604
 
2605
		I915_WRITE(fence_reg + 0, val);
5060 serge 2606
		POSTING_READ(fence_reg);
4104 Serge 2607
	} else {
2608
		I915_WRITE(fence_reg + 4, 0);
2609
		POSTING_READ(fence_reg + 4);
2610
	}
3031 serge 2611
}
2332 Serge 2612
 
3031 serge 2613
static void i915_write_fence_reg(struct drm_device *dev, int reg,
2614
				 struct drm_i915_gem_object *obj)
2615
{
5060 serge 2616
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2617
	u32 val;
2332 Serge 2618
 
3031 serge 2619
	if (obj) {
4104 Serge 2620
		u32 size = i915_gem_obj_ggtt_size(obj);
3031 serge 2621
		int pitch_val;
2622
		int tile_width;
2332 Serge 2623
 
4104 Serge 2624
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3031 serge 2625
		     (size & -size) != size ||
4104 Serge 2626
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2627
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2628
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2332 Serge 2629
 
3031 serge 2630
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2631
			tile_width = 128;
2632
		else
2633
			tile_width = 512;
2332 Serge 2634
 
3031 serge 2635
		/* Note: pitch better be a power of two tile widths */
2636
		pitch_val = obj->stride / tile_width;
2637
		pitch_val = ffs(pitch_val) - 1;
2332 Serge 2638
 
4104 Serge 2639
		val = i915_gem_obj_ggtt_offset(obj);
3031 serge 2640
		if (obj->tiling_mode == I915_TILING_Y)
2641
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2642
		val |= I915_FENCE_SIZE_BITS(size);
2643
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2644
		val |= I830_FENCE_REG_VALID;
2645
	} else
2646
		val = 0;
2332 Serge 2647
 
3031 serge 2648
	if (reg < 8)
2649
		reg = FENCE_REG_830_0 + reg * 4;
2650
	else
2651
		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2332 Serge 2652
 
3031 serge 2653
	I915_WRITE(reg, val);
2654
	POSTING_READ(reg);
2655
}
2332 Serge 2656
 
3031 serge 2657
static void i830_write_fence_reg(struct drm_device *dev, int reg,
2658
				struct drm_i915_gem_object *obj)
2659
{
5060 serge 2660
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2661
	uint32_t val;
2344 Serge 2662
 
3031 serge 2663
	if (obj) {
4104 Serge 2664
		u32 size = i915_gem_obj_ggtt_size(obj);
3031 serge 2665
		uint32_t pitch_val;
2344 Serge 2666
 
4104 Serge 2667
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3031 serge 2668
		     (size & -size) != size ||
4104 Serge 2669
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2670
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2671
		     i915_gem_obj_ggtt_offset(obj), size);
2344 Serge 2672
 
3031 serge 2673
		pitch_val = obj->stride / 128;
2674
		pitch_val = ffs(pitch_val) - 1;
2344 Serge 2675
 
4104 Serge 2676
		val = i915_gem_obj_ggtt_offset(obj);
3031 serge 2677
		if (obj->tiling_mode == I915_TILING_Y)
2678
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2679
		val |= I830_FENCE_SIZE_BITS(size);
2680
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2681
		val |= I830_FENCE_REG_VALID;
2682
	} else
2683
		val = 0;
2684
 
2685
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2686
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2687
}
2688
 
3480 Serge 2689
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2690
{
2691
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2692
}
2693
 
3031 serge 2694
static void i915_gem_write_fence(struct drm_device *dev, int reg,
2695
				 struct drm_i915_gem_object *obj)
2332 Serge 2696
{
3480 Serge 2697
	struct drm_i915_private *dev_priv = dev->dev_private;
2698
 
2699
	/* Ensure that all CPU reads are completed before installing a fence
2700
	 * and all writes before removing the fence.
2701
	 */
2702
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2703
		mb();
2704
 
4104 Serge 2705
	WARN(obj && (!obj->stride || !obj->tiling_mode),
2706
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2707
	     obj->stride, obj->tiling_mode);
2708
 
3031 serge 2709
	switch (INTEL_INFO(dev)->gen) {
4560 Serge 2710
	case 8:
3031 serge 2711
	case 7:
3480 Serge 2712
	case 6:
3031 serge 2713
	case 5:
2714
	case 4: i965_write_fence_reg(dev, reg, obj); break;
2715
	case 3: i915_write_fence_reg(dev, reg, obj); break;
2716
	case 2: i830_write_fence_reg(dev, reg, obj); break;
3480 Serge 2717
	default: BUG();
3031 serge 2718
	}
3480 Serge 2719
 
2720
	/* And similarly be paranoid that no direct access to this region
2721
	 * is reordered to before the fence is installed.
2722
	 */
2723
	if (i915_gem_object_needs_mb(obj))
2724
		mb();
2344 Serge 2725
}
2726
 
3031 serge 2727
static inline int fence_number(struct drm_i915_private *dev_priv,
2728
			       struct drm_i915_fence_reg *fence)
2344 Serge 2729
{
3031 serge 2730
	return fence - dev_priv->fence_regs;
2731
}
2332 Serge 2732
 
3031 serge 2733
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2734
					 struct drm_i915_fence_reg *fence,
2735
					 bool enable)
2736
{
4104 Serge 2737
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2738
	int reg = fence_number(dev_priv, fence);
2332 Serge 2739
 
4104 Serge 2740
	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3031 serge 2741
 
2742
	if (enable) {
4104 Serge 2743
		obj->fence_reg = reg;
3031 serge 2744
		fence->obj = obj;
2745
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2746
	} else {
2747
		obj->fence_reg = I915_FENCE_REG_NONE;
2748
		fence->obj = NULL;
2749
		list_del_init(&fence->lru_list);
2344 Serge 2750
	}
4104 Serge 2751
	obj->fence_dirty = false;
3031 serge 2752
}
2344 Serge 2753
 
3031 serge 2754
static int
3480 Serge 2755
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3031 serge 2756
{
2757
	if (obj->last_fenced_seqno) {
2758
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2352 Serge 2759
			if (ret)
2760
				return ret;
2344 Serge 2761
 
2762
		obj->last_fenced_seqno = 0;
2763
	}
2764
 
3031 serge 2765
	obj->fenced_gpu_access = false;
2332 Serge 2766
	return 0;
2767
}
2768
 
2769
int
2344 Serge 2770
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2332 Serge 2771
{
3031 serge 2772
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3746 Serge 2773
	struct drm_i915_fence_reg *fence;
2332 Serge 2774
	int ret;
2775
 
3480 Serge 2776
	ret = i915_gem_object_wait_fence(obj);
5060 serge 2777
    if (ret)
2778
       return ret;
2332 Serge 2779
 
3031 serge 2780
	if (obj->fence_reg == I915_FENCE_REG_NONE)
2781
		return 0;
2332 Serge 2782
 
3746 Serge 2783
	fence = &dev_priv->fence_regs[obj->fence_reg];
2784
 
5060 serge 2785
	if (WARN_ON(fence->pin_count))
2786
		return -EBUSY;
2787
 
3031 serge 2788
	i915_gem_object_fence_lost(obj);
3746 Serge 2789
	i915_gem_object_update_fence(obj, fence, false);
2344 Serge 2790
 
2332 Serge 2791
	return 0;
2792
}
2793
 
3031 serge 2794
static struct drm_i915_fence_reg *
2795
i915_find_fence_reg(struct drm_device *dev)
2796
{
2797
	struct drm_i915_private *dev_priv = dev->dev_private;
2798
	struct drm_i915_fence_reg *reg, *avail;
2799
	int i;
2332 Serge 2800
 
3031 serge 2801
	/* First try to find a free reg */
2802
	avail = NULL;
2803
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2804
		reg = &dev_priv->fence_regs[i];
2805
		if (!reg->obj)
2806
			return reg;
2332 Serge 2807
 
3031 serge 2808
		if (!reg->pin_count)
2809
			avail = reg;
2810
	}
2332 Serge 2811
 
3031 serge 2812
	if (avail == NULL)
4560 Serge 2813
		goto deadlock;
2332 Serge 2814
 
3031 serge 2815
	/* None available, try to steal one or wait for a user to finish */
2816
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2817
		if (reg->pin_count)
2818
			continue;
2332 Serge 2819
 
3031 serge 2820
		return reg;
2821
	}
2332 Serge 2822
 
4560 Serge 2823
deadlock:
2824
	/* Wait for completion of pending flips which consume fences */
2825
//   if (intel_has_pending_fb_unpin(dev))
2826
//       return ERR_PTR(-EAGAIN);
2827
 
2828
	return ERR_PTR(-EDEADLK);
3031 serge 2829
}
2332 Serge 2830
 
3031 serge 2831
/**
2832
 * i915_gem_object_get_fence - set up fencing for an object
2833
 * @obj: object to map through a fence reg
2834
 *
2835
 * When mapping objects through the GTT, userspace wants to be able to write
2836
 * to them without having to worry about swizzling if the object is tiled.
2837
 * This function walks the fence regs looking for a free one for @obj,
2838
 * stealing one if it can't find any.
2839
 *
2840
 * It then sets up the reg based on the object's properties: address, pitch
2841
 * and tiling format.
2842
 *
2843
 * For an untiled surface, this removes any existing fence.
2844
 */
2845
int
2846
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2847
{
2848
	struct drm_device *dev = obj->base.dev;
2849
	struct drm_i915_private *dev_priv = dev->dev_private;
2850
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2851
	struct drm_i915_fence_reg *reg;
2852
	int ret;
2332 Serge 2853
 
3031 serge 2854
	/* Have we updated the tiling parameters upon the object and so
2855
	 * will need to serialise the write to the associated fence register?
2856
	 */
2857
	if (obj->fence_dirty) {
3480 Serge 2858
		ret = i915_gem_object_wait_fence(obj);
3031 serge 2859
		if (ret)
2860
			return ret;
2861
	}
2332 Serge 2862
 
3031 serge 2863
	/* Just update our place in the LRU if our fence is getting reused. */
2864
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2865
		reg = &dev_priv->fence_regs[obj->fence_reg];
2866
		if (!obj->fence_dirty) {
2867
			list_move_tail(®->lru_list,
2868
				       &dev_priv->mm.fence_list);
2869
			return 0;
2870
		}
2871
	} else if (enable) {
2872
		reg = i915_find_fence_reg(dev);
4560 Serge 2873
		if (IS_ERR(reg))
2874
			return PTR_ERR(reg);
2332 Serge 2875
 
3031 serge 2876
		if (reg->obj) {
2877
			struct drm_i915_gem_object *old = reg->obj;
2332 Serge 2878
 
3480 Serge 2879
			ret = i915_gem_object_wait_fence(old);
3031 serge 2880
			if (ret)
2881
				return ret;
2332 Serge 2882
 
3031 serge 2883
			i915_gem_object_fence_lost(old);
2884
		}
2885
	} else
2886
		return 0;
2332 Serge 2887
 
3031 serge 2888
	i915_gem_object_update_fence(obj, reg, enable);
2332 Serge 2889
 
3031 serge 2890
	return 0;
2891
}
2332 Serge 2892
 
3031 serge 2893
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2894
				     struct drm_mm_node *gtt_space,
2895
				     unsigned long cache_level)
2896
{
2897
	struct drm_mm_node *other;
2332 Serge 2898
 
3031 serge 2899
	/* On non-LLC machines we have to be careful when putting differing
2900
	 * types of snoopable memory together to avoid the prefetcher
3480 Serge 2901
	 * crossing memory domains and dying.
3031 serge 2902
	 */
2903
	if (HAS_LLC(dev))
2904
		return true;
2332 Serge 2905
 
4104 Serge 2906
	if (!drm_mm_node_allocated(gtt_space))
3031 serge 2907
		return true;
2332 Serge 2908
 
3031 serge 2909
	if (list_empty(>t_space->node_list))
2910
		return true;
2332 Serge 2911
 
3031 serge 2912
	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2913
	if (other->allocated && !other->hole_follows && other->color != cache_level)
2914
		return false;
2344 Serge 2915
 
3031 serge 2916
	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2917
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2918
		return false;
2344 Serge 2919
 
3031 serge 2920
	return true;
2921
}
2344 Serge 2922
 
3031 serge 2923
static void i915_gem_verify_gtt(struct drm_device *dev)
2924
{
2925
#if WATCH_GTT
2926
	struct drm_i915_private *dev_priv = dev->dev_private;
2927
	struct drm_i915_gem_object *obj;
2928
	int err = 0;
2344 Serge 2929
 
4104 Serge 2930
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3031 serge 2931
		if (obj->gtt_space == NULL) {
2932
			printk(KERN_ERR "object found on GTT list with no space reserved\n");
2933
			err++;
2934
			continue;
2935
		}
2344 Serge 2936
 
3031 serge 2937
		if (obj->cache_level != obj->gtt_space->color) {
2938
			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
4104 Serge 2939
			       i915_gem_obj_ggtt_offset(obj),
2940
			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3031 serge 2941
			       obj->cache_level,
2942
			       obj->gtt_space->color);
2943
			err++;
2944
			continue;
2945
		}
2344 Serge 2946
 
3031 serge 2947
		if (!i915_gem_valid_gtt_space(dev,
2948
					      obj->gtt_space,
2949
					      obj->cache_level)) {
2950
			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
4104 Serge 2951
			       i915_gem_obj_ggtt_offset(obj),
2952
			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3031 serge 2953
			       obj->cache_level);
2954
			err++;
2955
			continue;
2956
		}
2957
	}
2344 Serge 2958
 
3031 serge 2959
	WARN_ON(err);
2960
#endif
2326 Serge 2961
}
2962
 
2332 Serge 2963
/**
2964
 * Finds free space in the GTT aperture and binds the object there.
2965
 */
5060 serge 2966
static struct i915_vma *
4104 Serge 2967
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
2968
			   struct i915_address_space *vm,
2332 Serge 2969
			    unsigned alignment,
5060 serge 2970
			   uint64_t flags)
2332 Serge 2971
{
2972
	struct drm_device *dev = obj->base.dev;
5060 serge 2973
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 2974
	u32 size, fence_size, fence_alignment, unfenced_alignment;
5060 serge 2975
	unsigned long start =
2976
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
2977
	unsigned long end =
2978
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
4104 Serge 2979
	struct i915_vma *vma;
2332 Serge 2980
	int ret;
2326 Serge 2981
 
2332 Serge 2982
	fence_size = i915_gem_get_gtt_size(dev,
2983
					   obj->base.size,
2984
					   obj->tiling_mode);
2985
	fence_alignment = i915_gem_get_gtt_alignment(dev,
2986
						     obj->base.size,
3480 Serge 2987
						     obj->tiling_mode, true);
2332 Serge 2988
	unfenced_alignment =
3480 Serge 2989
		i915_gem_get_gtt_alignment(dev,
2332 Serge 2990
						    obj->base.size,
3480 Serge 2991
						    obj->tiling_mode, false);
2332 Serge 2992
 
2993
	if (alignment == 0)
5060 serge 2994
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
2332 Serge 2995
						unfenced_alignment;
5060 serge 2996
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
2997
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
2998
		return ERR_PTR(-EINVAL);
2332 Serge 2999
	}
3000
 
5060 serge 3001
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
2332 Serge 3002
 
3003
	/* If the object is bigger than the entire aperture, reject it early
3004
	 * before evicting everything in a vain attempt to find space.
3005
	 */
5060 serge 3006
	if (obj->base.size > end) {
3007
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
4104 Serge 3008
			  obj->base.size,
5060 serge 3009
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3010
			  end);
3011
		return ERR_PTR(-E2BIG);
2332 Serge 3012
	}
3013
 
3031 serge 3014
	ret = i915_gem_object_get_pages(obj);
3015
	if (ret)
5060 serge 3016
		return ERR_PTR(ret);
3031 serge 3017
 
3243 Serge 3018
	i915_gem_object_pin_pages(obj);
3019
 
4104 Serge 3020
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
5060 serge 3021
	if (IS_ERR(vma))
4104 Serge 3022
		goto err_unpin;
3243 Serge 3023
 
4104 Serge 3024
search_free:
3025
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3026
						  size, alignment,
5060 serge 3027
						  obj->cache_level,
3028
						  start, end,
3029
						  DRM_MM_SEARCH_DEFAULT,
3030
						  DRM_MM_CREATE_DEFAULT);
3243 Serge 3031
	if (ret) {
2332 Serge 3032
 
4104 Serge 3033
		goto err_free_vma;
2332 Serge 3034
	}
4104 Serge 3035
	if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3036
					      obj->cache_level))) {
3037
		ret = -EINVAL;
3038
		goto err_remove_node;
3031 serge 3039
	}
2332 Serge 3040
 
3031 serge 3041
	ret = i915_gem_gtt_prepare_object(obj);
4104 Serge 3042
	if (ret)
3043
		goto err_remove_node;
2332 Serge 3044
 
4104 Serge 3045
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3046
	list_add_tail(&vma->mm_list, &vm->inactive_list);
2332 Serge 3047
 
4104 Serge 3048
	if (i915_is_ggtt(vm)) {
3049
		bool mappable, fenceable;
2332 Serge 3050
 
4104 Serge 3051
		fenceable = (vma->node.size == fence_size &&
3052
			     (vma->node.start & (fence_alignment - 1)) == 0);
2332 Serge 3053
 
4104 Serge 3054
		mappable = (vma->node.start + obj->base.size <=
3055
			    dev_priv->gtt.mappable_end);
2332 Serge 3056
 
3057
	obj->map_and_fenceable = mappable && fenceable;
4104 Serge 3058
	}
2332 Serge 3059
 
5060 serge 3060
	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4104 Serge 3061
 
5060 serge 3062
	trace_i915_vma_bind(vma, flags);
3063
	vma->bind_vma(vma, obj->cache_level,
3064
		      flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3065
 
3031 serge 3066
	i915_gem_verify_gtt(dev);
5060 serge 3067
	return vma;
4104 Serge 3068
 
3069
err_remove_node:
3070
	drm_mm_remove_node(&vma->node);
3071
err_free_vma:
3072
	i915_gem_vma_destroy(vma);
5060 serge 3073
	vma = ERR_PTR(ret);
4104 Serge 3074
err_unpin:
3075
	i915_gem_object_unpin_pages(obj);
5060 serge 3076
	return vma;
2332 Serge 3077
}
3078
 
4104 Serge 3079
bool
3080
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3081
			bool force)
2332 Serge 3082
{
3083
	/* If we don't have a page list set up, then we're not pinned
3084
	 * to GPU, and we can ignore the cache flush because it'll happen
3085
	 * again at bind time.
3086
	 */
3243 Serge 3087
	if (obj->pages == NULL)
4104 Serge 3088
		return false;
2332 Serge 3089
 
3480 Serge 3090
	/*
3091
	 * Stolen memory is always coherent with the GPU as it is explicitly
3092
	 * marked as wc by the system, or the system is cache-coherent.
3093
	 */
3094
	if (obj->stolen)
4104 Serge 3095
		return false;
3480 Serge 3096
 
2332 Serge 3097
	/* If the GPU is snooping the contents of the CPU cache,
3098
	 * we do not need to manually clear the CPU cache lines.  However,
3099
	 * the caches are only snooped when the render cache is
3100
	 * flushed/invalidated.  As we always have to emit invalidations
3101
	 * and flushes when moving into and out of the RENDER domain, correct
3102
	 * snooping behaviour occurs naturally as the result of our domain
3103
	 * tracking.
3104
	 */
4104 Serge 3105
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3106
		return false;
2332 Serge 3107
 
4293 Serge 3108
	trace_i915_gem_object_clflush(obj);
3109
	drm_clflush_sg(obj->pages);
2344 Serge 3110
 
4104 Serge 3111
	return true;
2332 Serge 3112
}
3113
 
2344 Serge 3114
/** Flushes the GTT write domain for the object if it's dirty. */
3115
static void
3116
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3117
{
3118
	uint32_t old_write_domain;
2332 Serge 3119
 
2344 Serge 3120
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3121
		return;
2332 Serge 3122
 
2344 Serge 3123
	/* No actual flushing is required for the GTT write domain.  Writes
3124
	 * to it immediately go to main memory as far as we know, so there's
3125
	 * no chipset flush.  It also doesn't land in render cache.
3126
	 *
3127
	 * However, we do have to enforce the order so that all writes through
3128
	 * the GTT land before any writes to the device, such as updates to
3129
	 * the GATT itself.
3130
	 */
3131
	wmb();
2332 Serge 3132
 
2344 Serge 3133
	old_write_domain = obj->base.write_domain;
3134
	obj->base.write_domain = 0;
2332 Serge 3135
 
2351 Serge 3136
	trace_i915_gem_object_change_domain(obj,
3137
					    obj->base.read_domains,
3138
					    old_write_domain);
2344 Serge 3139
}
2332 Serge 3140
 
3141
/** Flushes the CPU write domain for the object if it's dirty. */
2326 Serge 3142
static void
4104 Serge 3143
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3144
				       bool force)
2332 Serge 3145
{
3146
	uint32_t old_write_domain;
3147
 
3148
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3149
		return;
3150
 
4104 Serge 3151
	if (i915_gem_clflush_object(obj, force))
3243 Serge 3152
	i915_gem_chipset_flush(obj->base.dev);
4104 Serge 3153
 
2332 Serge 3154
	old_write_domain = obj->base.write_domain;
3155
	obj->base.write_domain = 0;
3156
 
2351 Serge 3157
	trace_i915_gem_object_change_domain(obj,
3158
					    obj->base.read_domains,
3159
					    old_write_domain);
2332 Serge 3160
}
3161
 
3162
/**
3163
 * Moves a single object to the GTT read, and possibly write domain.
3164
 *
3165
 * This function returns when the move is complete, including waiting on
3166
 * flushes to occur.
3167
 */
3168
int
3169
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3170
{
5060 serge 3171
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2332 Serge 3172
	uint32_t old_write_domain, old_read_domains;
3173
	int ret;
3174
 
3175
	/* Not valid to be called on unbound objects. */
4104 Serge 3176
	if (!i915_gem_obj_bound_any(obj))
2332 Serge 3177
		return -EINVAL;
3178
 
3179
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3180
		return 0;
3181
 
3031 serge 3182
	ret = i915_gem_object_wait_rendering(obj, !write);
2332 Serge 3183
		if (ret)
3184
			return ret;
3185
 
5060 serge 3186
	i915_gem_object_retire(obj);
4104 Serge 3187
	i915_gem_object_flush_cpu_write_domain(obj, false);
2332 Serge 3188
 
3480 Serge 3189
	/* Serialise direct access to this object with the barriers for
3190
	 * coherent writes from the GPU, by effectively invalidating the
3191
	 * GTT domain upon first access.
3192
	 */
3193
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3194
		mb();
3195
 
2332 Serge 3196
	old_write_domain = obj->base.write_domain;
3197
	old_read_domains = obj->base.read_domains;
3198
 
3199
	/* It should now be out of any other write domains, and we can update
3200
	 * the domain values for our changes.
3201
	 */
3202
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3203
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3204
	if (write) {
3205
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3206
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3207
		obj->dirty = 1;
3208
	}
3209
 
2351 Serge 3210
	trace_i915_gem_object_change_domain(obj,
3211
					    old_read_domains,
3212
					    old_write_domain);
3213
 
3031 serge 3214
	/* And bump the LRU for this access */
4104 Serge 3215
	if (i915_gem_object_is_inactive(obj)) {
4560 Serge 3216
		struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4104 Serge 3217
		if (vma)
3218
			list_move_tail(&vma->mm_list,
3219
				       &dev_priv->gtt.base.inactive_list);
3031 serge 3220
 
4104 Serge 3221
	}
3222
 
2332 Serge 3223
	return 0;
3224
}
3225
 
2335 Serge 3226
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3227
				    enum i915_cache_level cache_level)
3228
{
3031 serge 3229
	struct drm_device *dev = obj->base.dev;
5060 serge 3230
	struct i915_vma *vma, *next;
2335 Serge 3231
	int ret;
2332 Serge 3232
 
2335 Serge 3233
	if (obj->cache_level == cache_level)
3234
		return 0;
2332 Serge 3235
 
5060 serge 3236
	if (i915_gem_obj_is_pinned(obj)) {
2335 Serge 3237
		DRM_DEBUG("can not change the cache level of pinned objects\n");
3238
		return -EBUSY;
3239
	}
2332 Serge 3240
 
5060 serge 3241
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4104 Serge 3242
		if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3243
			ret = i915_vma_unbind(vma);
3031 serge 3244
		if (ret)
3245
			return ret;
4104 Serge 3246
		}
3031 serge 3247
	}
3248
 
4104 Serge 3249
	if (i915_gem_obj_bound_any(obj)) {
2335 Serge 3250
		ret = i915_gem_object_finish_gpu(obj);
3251
		if (ret)
3252
			return ret;
2332 Serge 3253
 
2335 Serge 3254
		i915_gem_object_finish_gtt(obj);
2332 Serge 3255
 
2335 Serge 3256
		/* Before SandyBridge, you could not use tiling or fence
3257
		 * registers with snooped memory, so relinquish any fences
3258
		 * currently pointing to our region in the aperture.
3259
		 */
3031 serge 3260
		if (INTEL_INFO(dev)->gen < 6) {
2335 Serge 3261
			ret = i915_gem_object_put_fence(obj);
3262
			if (ret)
3263
				return ret;
5060 serge 3264
            }
2332 Serge 3265
 
5060 serge 3266
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3267
			if (drm_mm_node_allocated(&vma->node))
3268
				vma->bind_vma(vma, cache_level,
3269
					      obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
2335 Serge 3270
	}
2332 Serge 3271
 
4104 Serge 3272
	list_for_each_entry(vma, &obj->vma_list, vma_link)
3273
		vma->node.color = cache_level;
3274
	obj->cache_level = cache_level;
3275
 
3276
	if (cpu_write_needs_clflush(obj)) {
2335 Serge 3277
		u32 old_read_domains, old_write_domain;
2332 Serge 3278
 
2335 Serge 3279
		/* If we're coming from LLC cached, then we haven't
3280
		 * actually been tracking whether the data is in the
3281
		 * CPU cache or not, since we only allow one bit set
3282
		 * in obj->write_domain and have been skipping the clflushes.
3283
		 * Just set it to the CPU cache for now.
3284
		 */
5060 serge 3285
		i915_gem_object_retire(obj);
2335 Serge 3286
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2332 Serge 3287
 
2335 Serge 3288
		old_read_domains = obj->base.read_domains;
3289
		old_write_domain = obj->base.write_domain;
2332 Serge 3290
 
2335 Serge 3291
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3292
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2332 Serge 3293
 
2351 Serge 3294
		trace_i915_gem_object_change_domain(obj,
3295
						    old_read_domains,
3296
						    old_write_domain);
2344 Serge 3297
    }
2332 Serge 3298
 
3031 serge 3299
	i915_gem_verify_gtt(dev);
2335 Serge 3300
	return 0;
3301
}
2332 Serge 3302
 
3260 Serge 3303
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3304
			       struct drm_file *file)
3305
{
3306
	struct drm_i915_gem_caching *args = data;
3307
	struct drm_i915_gem_object *obj;
3308
	int ret;
3309
 
3310
	ret = i915_mutex_lock_interruptible(dev);
3311
	if (ret)
3312
		return ret;
3313
 
3314
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3315
	if (&obj->base == NULL) {
3316
		ret = -ENOENT;
3317
		goto unlock;
3318
	}
3319
 
4104 Serge 3320
	switch (obj->cache_level) {
3321
	case I915_CACHE_LLC:
3322
	case I915_CACHE_L3_LLC:
3323
		args->caching = I915_CACHING_CACHED;
3324
		break;
3260 Serge 3325
 
4104 Serge 3326
	case I915_CACHE_WT:
3327
		args->caching = I915_CACHING_DISPLAY;
3328
		break;
3329
 
3330
	default:
3331
		args->caching = I915_CACHING_NONE;
3332
		break;
3333
	}
3334
 
3260 Serge 3335
	drm_gem_object_unreference(&obj->base);
3336
unlock:
3337
	mutex_unlock(&dev->struct_mutex);
3338
	return ret;
3339
}
3340
 
3341
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3342
			       struct drm_file *file)
3343
{
3344
	struct drm_i915_gem_caching *args = data;
3345
	struct drm_i915_gem_object *obj;
3346
	enum i915_cache_level level;
3347
	int ret;
3348
 
3349
	switch (args->caching) {
3350
	case I915_CACHING_NONE:
3351
		level = I915_CACHE_NONE;
3352
		break;
3353
	case I915_CACHING_CACHED:
3354
		level = I915_CACHE_LLC;
3355
		break;
4104 Serge 3356
	case I915_CACHING_DISPLAY:
3357
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3358
		break;
3260 Serge 3359
	default:
3360
		return -EINVAL;
3361
	}
3362
 
3363
	ret = i915_mutex_lock_interruptible(dev);
3364
	if (ret)
3365
		return ret;
3366
 
3367
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3368
	if (&obj->base == NULL) {
3369
		ret = -ENOENT;
3370
		goto unlock;
3371
	}
3372
 
3373
	ret = i915_gem_object_set_cache_level(obj, level);
3374
 
3375
	drm_gem_object_unreference(&obj->base);
3376
unlock:
3377
	mutex_unlock(&dev->struct_mutex);
3378
	return ret;
3379
}
3380
 
4104 Serge 3381
static bool is_pin_display(struct drm_i915_gem_object *obj)
3382
{
5060 serge 3383
	struct i915_vma *vma;
3384
 
3385
	if (list_empty(&obj->vma_list))
3386
		return false;
3387
 
3388
	vma = i915_gem_obj_to_ggtt(obj);
3389
	if (!vma)
3390
		return false;
3391
 
4104 Serge 3392
	/* There are 3 sources that pin objects:
3393
	 *   1. The display engine (scanouts, sprites, cursors);
3394
	 *   2. Reservations for execbuffer;
3395
	 *   3. The user.
3396
	 *
3397
	 * We can ignore reservations as we hold the struct_mutex and
3398
	 * are only called outside of the reservation path.  The user
3399
	 * can only increment pin_count once, and so if after
3400
	 * subtracting the potential reference by the user, any pin_count
3401
	 * remains, it must be due to another use by the display engine.
3402
	 */
5060 serge 3403
	return vma->pin_count - !!obj->user_pin_count;
4104 Serge 3404
}
3405
 
2335 Serge 3406
/*
3407
 * Prepare buffer for display plane (scanout, cursors, etc).
3408
 * Can be called from an uninterruptible phase (modesetting) and allows
3409
 * any flushes to be pipelined (for pageflips).
3410
 */
3411
int
3412
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3413
				     u32 alignment,
5060 serge 3414
				     struct intel_engine_cs *pipelined)
2335 Serge 3415
{
3416
	u32 old_read_domains, old_write_domain;
5060 serge 3417
	bool was_pin_display;
2335 Serge 3418
	int ret;
2332 Serge 3419
 
3031 serge 3420
	if (pipelined != obj->ring) {
3421
		ret = i915_gem_object_sync(obj, pipelined);
2335 Serge 3422
	if (ret)
3423
		return ret;
3424
	}
2332 Serge 3425
 
4104 Serge 3426
	/* Mark the pin_display early so that we account for the
3427
	 * display coherency whilst setting up the cache domains.
3428
	 */
5060 serge 3429
	was_pin_display = obj->pin_display;
4104 Serge 3430
	obj->pin_display = true;
3431
 
2335 Serge 3432
	/* The display engine is not coherent with the LLC cache on gen6.  As
3433
	 * a result, we make sure that the pinning that is about to occur is
3434
	 * done with uncached PTEs. This is lowest common denominator for all
3435
	 * chipsets.
3436
	 *
3437
	 * However for gen6+, we could do better by using the GFDT bit instead
3438
	 * of uncaching, which would allow us to flush all the LLC-cached data
3439
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3440
	 */
4104 Serge 3441
	ret = i915_gem_object_set_cache_level(obj,
3442
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
2360 Serge 3443
	if (ret)
4104 Serge 3444
		goto err_unpin_display;
2332 Serge 3445
 
2335 Serge 3446
	/* As the user may map the buffer once pinned in the display plane
3447
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3448
	 * always use map_and_fenceable for all scanout buffers.
3449
	 */
5060 serge 3450
	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2335 Serge 3451
	if (ret)
4104 Serge 3452
		goto err_unpin_display;
2332 Serge 3453
 
4104 Serge 3454
	i915_gem_object_flush_cpu_write_domain(obj, true);
2332 Serge 3455
 
2335 Serge 3456
	old_write_domain = obj->base.write_domain;
3457
	old_read_domains = obj->base.read_domains;
2332 Serge 3458
 
2335 Serge 3459
	/* It should now be out of any other write domains, and we can update
3460
	 * the domain values for our changes.
3461
	 */
3031 serge 3462
	obj->base.write_domain = 0;
2335 Serge 3463
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2332 Serge 3464
 
2351 Serge 3465
	trace_i915_gem_object_change_domain(obj,
3466
					    old_read_domains,
3467
					    old_write_domain);
2332 Serge 3468
 
2335 Serge 3469
	return 0;
4104 Serge 3470
 
3471
err_unpin_display:
5060 serge 3472
	WARN_ON(was_pin_display != is_pin_display(obj));
3473
	obj->pin_display = was_pin_display;
4104 Serge 3474
	return ret;
2335 Serge 3475
}
2332 Serge 3476
 
4104 Serge 3477
void
3478
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3479
{
5060 serge 3480
	i915_gem_object_ggtt_unpin(obj);
4104 Serge 3481
	obj->pin_display = is_pin_display(obj);
3482
}
3483
 
2344 Serge 3484
int
3485
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3486
{
3487
	int ret;
2332 Serge 3488
 
2344 Serge 3489
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3490
		return 0;
2332 Serge 3491
 
3031 serge 3492
	ret = i915_gem_object_wait_rendering(obj, false);
3243 Serge 3493
    if (ret)
3494
        return ret;
2332 Serge 3495
 
2344 Serge 3496
	/* Ensure that we invalidate the GPU's caches and TLBs. */
3497
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3031 serge 3498
	return 0;
2344 Serge 3499
}
2332 Serge 3500
 
2344 Serge 3501
/**
3502
 * Moves a single object to the CPU read, and possibly write domain.
3503
 *
3504
 * This function returns when the move is complete, including waiting on
3505
 * flushes to occur.
3506
 */
3031 serge 3507
int
2344 Serge 3508
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3509
{
3510
	uint32_t old_write_domain, old_read_domains;
3511
	int ret;
2332 Serge 3512
 
2344 Serge 3513
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3514
		return 0;
2332 Serge 3515
 
3031 serge 3516
	ret = i915_gem_object_wait_rendering(obj, !write);
2344 Serge 3517
	if (ret)
3518
		return ret;
2332 Serge 3519
 
5060 serge 3520
	i915_gem_object_retire(obj);
2344 Serge 3521
	i915_gem_object_flush_gtt_write_domain(obj);
2332 Serge 3522
 
2344 Serge 3523
	old_write_domain = obj->base.write_domain;
3524
	old_read_domains = obj->base.read_domains;
2332 Serge 3525
 
2344 Serge 3526
	/* Flush the CPU cache if it's still invalid. */
3527
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4104 Serge 3528
		i915_gem_clflush_object(obj, false);
2332 Serge 3529
 
2344 Serge 3530
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3531
	}
2332 Serge 3532
 
2344 Serge 3533
	/* It should now be out of any other write domains, and we can update
3534
	 * the domain values for our changes.
3535
	 */
3536
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2332 Serge 3537
 
2344 Serge 3538
	/* If we're writing through the CPU, then the GPU read domains will
3539
	 * need to be invalidated at next use.
3540
	 */
3541
	if (write) {
3542
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3543
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3544
	}
2332 Serge 3545
 
2351 Serge 3546
	trace_i915_gem_object_change_domain(obj,
3547
					    old_read_domains,
3548
					    old_write_domain);
2332 Serge 3549
 
2344 Serge 3550
	return 0;
3551
}
2332 Serge 3552
 
3031 serge 3553
/* Throttle our rendering by waiting until the ring has completed our requests
3554
 * emitted over 20 msec ago.
2344 Serge 3555
 *
3031 serge 3556
 * Note that if we were to use the current jiffies each time around the loop,
3557
 * we wouldn't escape the function with any frames outstanding if the time to
3558
 * render a frame was over 20ms.
3559
 *
3560
 * This should get us reasonable parallelism between CPU and GPU but also
3561
 * relatively low latency when blocking on a particular request to finish.
2344 Serge 3562
 */
3031 serge 3563
static int
3564
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
2344 Serge 3565
{
3031 serge 3566
	struct drm_i915_private *dev_priv = dev->dev_private;
3567
	struct drm_i915_file_private *file_priv = file->driver_priv;
5060 serge 3568
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3031 serge 3569
	struct drm_i915_gem_request *request;
5060 serge 3570
	struct intel_engine_cs *ring = NULL;
3480 Serge 3571
	unsigned reset_counter;
3031 serge 3572
	u32 seqno = 0;
3573
	int ret;
2332 Serge 3574
 
3480 Serge 3575
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3576
	if (ret)
3577
		return ret;
2332 Serge 3578
 
3480 Serge 3579
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3580
	if (ret)
3581
		return ret;
3582
 
3031 serge 3583
	spin_lock(&file_priv->mm.lock);
3584
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3585
		if (time_after_eq(request->emitted_jiffies, recent_enough))
3586
			break;
2332 Serge 3587
 
3031 serge 3588
		ring = request->ring;
3589
		seqno = request->seqno;
3590
	}
3480 Serge 3591
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3031 serge 3592
	spin_unlock(&file_priv->mm.lock);
2332 Serge 3593
 
3031 serge 3594
	if (seqno == 0)
3595
		return 0;
2332 Serge 3596
 
4560 Serge 3597
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3031 serge 3598
	if (ret == 0)
3599
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
2332 Serge 3600
 
3031 serge 3601
	return ret;
2352 Serge 3602
}
2332 Serge 3603
 
5060 serge 3604
static bool
3605
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
3606
{
3607
	struct drm_i915_gem_object *obj = vma->obj;
3608
 
3609
	if (alignment &&
3610
	    vma->node.start & (alignment - 1))
3611
		return true;
3612
 
3613
	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
3614
		return true;
3615
 
3616
	if (flags & PIN_OFFSET_BIAS &&
3617
	    vma->node.start < (flags & PIN_OFFSET_MASK))
3618
		return true;
3619
 
3620
	return false;
3621
}
3622
 
2332 Serge 3623
int
3624
i915_gem_object_pin(struct drm_i915_gem_object *obj,
4104 Serge 3625
		    struct i915_address_space *vm,
2332 Serge 3626
		    uint32_t alignment,
5060 serge 3627
		    uint64_t flags)
2332 Serge 3628
{
5060 serge 3629
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4104 Serge 3630
	struct i915_vma *vma;
2332 Serge 3631
	int ret;
3632
 
5060 serge 3633
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
3634
		return -ENODEV;
2332 Serge 3635
 
5060 serge 3636
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3637
		return -EINVAL;
4104 Serge 3638
 
3639
	vma = i915_gem_obj_to_vma(obj, vm);
5060 serge 3640
	if (vma) {
3641
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3642
			return -EBUSY;
4104 Serge 3643
 
5060 serge 3644
		if (i915_vma_misplaced(vma, alignment, flags)) {
3645
			WARN(vma->pin_count,
2332 Serge 3646
			     "bo is already pinned with incorrect alignment:"
4104 Serge 3647
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
2332 Serge 3648
			     " obj->map_and_fenceable=%d\n",
4104 Serge 3649
			     i915_gem_obj_offset(obj, vm), alignment,
5060 serge 3650
			     !!(flags & PIN_MAPPABLE),
2332 Serge 3651
			     obj->map_and_fenceable);
4104 Serge 3652
			ret = i915_vma_unbind(vma);
2332 Serge 3653
			if (ret)
3654
				return ret;
5060 serge 3655
 
3656
			vma = NULL;
2332 Serge 3657
		}
3658
	}
3659
 
5060 serge 3660
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3661
		vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
3662
		if (IS_ERR(vma))
3663
			return PTR_ERR(vma);
2332 Serge 3664
	}
3665
 
5060 serge 3666
	if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
3667
		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
3031 serge 3668
 
5060 serge 3669
	vma->pin_count++;
3670
	if (flags & PIN_MAPPABLE)
3671
		obj->pin_mappable |= true;
2332 Serge 3672
 
3673
	return 0;
3674
}
3675
 
2344 Serge 3676
void
5060 serge 3677
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
2344 Serge 3678
{
5060 serge 3679
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
2332 Serge 3680
 
5060 serge 3681
	BUG_ON(!vma);
3682
	BUG_ON(vma->pin_count == 0);
3683
	BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3684
 
3685
	if (--vma->pin_count == 0)
2344 Serge 3686
		obj->pin_mappable = false;
3687
}
2332 Serge 3688
 
5060 serge 3689
bool
3690
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
3691
{
3692
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
3693
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3694
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
3695
 
3696
		WARN_ON(!ggtt_vma ||
3697
			dev_priv->fence_regs[obj->fence_reg].pin_count >
3698
			ggtt_vma->pin_count);
3699
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
3700
		return true;
3701
	} else
3702
		return false;
3703
}
3704
 
3705
void
3706
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
3707
{
3708
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
3709
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3710
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
3711
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
3712
	}
3713
}
3714
 
3031 serge 3715
int
3716
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3717
		   struct drm_file *file)
3718
{
3719
	struct drm_i915_gem_pin *args = data;
3720
	struct drm_i915_gem_object *obj;
3721
	int ret;
2332 Serge 3722
 
5060 serge 3723
	if (INTEL_INFO(dev)->gen >= 6)
3724
		return -ENODEV;
3725
 
3031 serge 3726
	ret = i915_mutex_lock_interruptible(dev);
3727
	if (ret)
3728
		return ret;
2332 Serge 3729
 
3031 serge 3730
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3731
	if (&obj->base == NULL) {
3732
		ret = -ENOENT;
3733
		goto unlock;
3734
	}
2332 Serge 3735
 
3031 serge 3736
	if (obj->madv != I915_MADV_WILLNEED) {
5060 serge 3737
		DRM_DEBUG("Attempting to pin a purgeable buffer\n");
3738
		ret = -EFAULT;
3031 serge 3739
		goto out;
3740
	}
2332 Serge 3741
 
3031 serge 3742
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
5060 serge 3743
		DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
3031 serge 3744
			  args->handle);
3745
		ret = -EINVAL;
3746
		goto out;
3747
	}
2332 Serge 3748
 
4560 Serge 3749
	if (obj->user_pin_count == ULONG_MAX) {
3750
		ret = -EBUSY;
3751
		goto out;
3752
	}
3753
 
3243 Serge 3754
	if (obj->user_pin_count == 0) {
5060 serge 3755
		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
3031 serge 3756
		if (ret)
3757
			goto out;
3758
	}
2332 Serge 3759
 
3243 Serge 3760
	obj->user_pin_count++;
3761
	obj->pin_filp = file;
3762
 
4104 Serge 3763
	args->offset = i915_gem_obj_ggtt_offset(obj);
3031 serge 3764
out:
3765
	drm_gem_object_unreference(&obj->base);
3766
unlock:
3767
	mutex_unlock(&dev->struct_mutex);
3768
	return ret;
3769
}
2332 Serge 3770
 
3031 serge 3771
int
3772
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3773
		     struct drm_file *file)
3774
{
3775
	struct drm_i915_gem_pin *args = data;
3776
	struct drm_i915_gem_object *obj;
3777
	int ret;
2332 Serge 3778
 
3031 serge 3779
	ret = i915_mutex_lock_interruptible(dev);
3780
	if (ret)
3781
		return ret;
2332 Serge 3782
 
3031 serge 3783
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3784
	if (&obj->base == NULL) {
3785
		ret = -ENOENT;
3786
		goto unlock;
3787
	}
2332 Serge 3788
 
3031 serge 3789
	if (obj->pin_filp != file) {
5060 serge 3790
		DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3031 serge 3791
			  args->handle);
3792
		ret = -EINVAL;
3793
		goto out;
3794
	}
3795
	obj->user_pin_count--;
3796
	if (obj->user_pin_count == 0) {
3797
		obj->pin_filp = NULL;
5060 serge 3798
		i915_gem_object_ggtt_unpin(obj);
3031 serge 3799
	}
2332 Serge 3800
 
3031 serge 3801
out:
3802
	drm_gem_object_unreference(&obj->base);
3803
unlock:
3804
	mutex_unlock(&dev->struct_mutex);
3805
	return ret;
3806
}
2332 Serge 3807
 
3031 serge 3808
int
3809
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3810
		    struct drm_file *file)
3811
{
3812
	struct drm_i915_gem_busy *args = data;
3813
	struct drm_i915_gem_object *obj;
3814
	int ret;
2332 Serge 3815
 
3031 serge 3816
	ret = i915_mutex_lock_interruptible(dev);
3817
	if (ret)
3818
		return ret;
2332 Serge 3819
 
5060 serge 3820
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3031 serge 3821
	if (&obj->base == NULL) {
3822
		ret = -ENOENT;
3823
		goto unlock;
3824
	}
2332 Serge 3825
 
3031 serge 3826
	/* Count all active objects as busy, even if they are currently not used
3827
	 * by the gpu. Users of this interface expect objects to eventually
3828
	 * become non-busy without any further actions, therefore emit any
3829
	 * necessary flushes here.
3830
	 */
3831
	ret = i915_gem_object_flush_active(obj);
2332 Serge 3832
 
3031 serge 3833
	args->busy = obj->active;
3834
	if (obj->ring) {
3835
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3836
		args->busy |= intel_ring_flag(obj->ring) << 16;
3837
	}
2332 Serge 3838
 
3031 serge 3839
	drm_gem_object_unreference(&obj->base);
3840
unlock:
3841
	mutex_unlock(&dev->struct_mutex);
3842
	return ret;
3843
}
2332 Serge 3844
 
3031 serge 3845
int
3846
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3847
			struct drm_file *file_priv)
3848
{
3849
	return i915_gem_ring_throttle(dev, file_priv);
3850
}
2332 Serge 3851
 
3263 Serge 3852
#if 0
3853
 
3031 serge 3854
int
3855
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3856
		       struct drm_file *file_priv)
3857
{
3858
	struct drm_i915_gem_madvise *args = data;
3859
	struct drm_i915_gem_object *obj;
3860
	int ret;
2332 Serge 3861
 
3031 serge 3862
	switch (args->madv) {
3863
	case I915_MADV_DONTNEED:
3864
	case I915_MADV_WILLNEED:
3865
	    break;
3866
	default:
3867
	    return -EINVAL;
3868
	}
2332 Serge 3869
 
3031 serge 3870
	ret = i915_mutex_lock_interruptible(dev);
3871
	if (ret)
3872
		return ret;
2332 Serge 3873
 
3031 serge 3874
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3875
	if (&obj->base == NULL) {
3876
		ret = -ENOENT;
3877
		goto unlock;
3878
	}
2332 Serge 3879
 
5060 serge 3880
	if (i915_gem_obj_is_pinned(obj)) {
3031 serge 3881
		ret = -EINVAL;
3882
		goto out;
3883
	}
2332 Serge 3884
 
3031 serge 3885
	if (obj->madv != __I915_MADV_PURGED)
3886
		obj->madv = args->madv;
2332 Serge 3887
 
3031 serge 3888
	/* if the object is no longer attached, discard its backing storage */
3889
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3890
		i915_gem_object_truncate(obj);
2332 Serge 3891
 
3031 serge 3892
	args->retained = obj->madv != __I915_MADV_PURGED;
2332 Serge 3893
 
3031 serge 3894
out:
3895
	drm_gem_object_unreference(&obj->base);
3896
unlock:
3897
	mutex_unlock(&dev->struct_mutex);
3898
	return ret;
3899
}
3900
#endif
2332 Serge 3901
 
3031 serge 3902
void i915_gem_object_init(struct drm_i915_gem_object *obj,
3903
			  const struct drm_i915_gem_object_ops *ops)
3904
{
4104 Serge 3905
	INIT_LIST_HEAD(&obj->global_list);
3031 serge 3906
	INIT_LIST_HEAD(&obj->ring_list);
4104 Serge 3907
	INIT_LIST_HEAD(&obj->obj_exec_link);
3908
	INIT_LIST_HEAD(&obj->vma_list);
2332 Serge 3909
 
3031 serge 3910
	obj->ops = ops;
3911
 
3912
	obj->fence_reg = I915_FENCE_REG_NONE;
3913
	obj->madv = I915_MADV_WILLNEED;
3914
	/* Avoid an unnecessary call to unbind on the first bind. */
3915
	obj->map_and_fenceable = true;
3916
 
3917
	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3918
}
3919
 
3920
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3921
	.get_pages = i915_gem_object_get_pages_gtt,
3922
	.put_pages = i915_gem_object_put_pages_gtt,
3923
};
3924
 
2332 Serge 3925
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3926
						  size_t size)
3927
{
3928
	struct drm_i915_gem_object *obj;
3031 serge 3929
	struct address_space *mapping;
3480 Serge 3930
	gfp_t mask;
2340 Serge 3931
 
3746 Serge 3932
	obj = i915_gem_object_alloc(dev);
2332 Serge 3933
	if (obj == NULL)
3934
		return NULL;
3935
 
3936
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4104 Serge 3937
		i915_gem_object_free(obj);
2332 Serge 3938
		return NULL;
3939
	}
3940
 
3941
 
3031 serge 3942
	i915_gem_object_init(obj, &i915_gem_object_ops);
2332 Serge 3943
 
3944
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3945
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3946
 
3031 serge 3947
	if (HAS_LLC(dev)) {
3948
		/* On some devices, we can have the GPU use the LLC (the CPU
2332 Serge 3949
		 * cache) for about a 10% performance improvement
3950
		 * compared to uncached.  Graphics requests other than
3951
		 * display scanout are coherent with the CPU in
3952
		 * accessing this cache.  This means in this mode we
3953
		 * don't need to clflush on the CPU side, and on the
3954
		 * GPU side we only need to flush internal caches to
3955
		 * get data visible to the CPU.
3956
		 *
3957
		 * However, we maintain the display planes as UC, and so
3958
		 * need to rebind when first used as such.
3959
		 */
3960
		obj->cache_level = I915_CACHE_LLC;
3961
	} else
3962
		obj->cache_level = I915_CACHE_NONE;
3963
 
4560 Serge 3964
	trace_i915_gem_object_create(obj);
3965
 
2332 Serge 3966
	return obj;
3967
}
3968
 
3031 serge 3969
void i915_gem_free_object(struct drm_gem_object *gem_obj)
2344 Serge 3970
{
3031 serge 3971
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
2344 Serge 3972
	struct drm_device *dev = obj->base.dev;
5060 serge 3973
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 3974
	struct i915_vma *vma, *next;
2332 Serge 3975
 
4560 Serge 3976
	intel_runtime_pm_get(dev_priv);
3977
 
3031 serge 3978
	trace_i915_gem_object_destroy(obj);
3979
 
5060 serge 3980
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3981
		int ret;
3031 serge 3982
 
5060 serge 3983
		vma->pin_count = 0;
3984
		ret = i915_vma_unbind(vma);
4104 Serge 3985
		if (WARN_ON(ret == -ERESTARTSYS)) {
3031 serge 3986
		bool was_interruptible;
3987
 
3988
		was_interruptible = dev_priv->mm.interruptible;
3989
		dev_priv->mm.interruptible = false;
3990
 
4104 Serge 3991
			WARN_ON(i915_vma_unbind(vma));
3031 serge 3992
 
3993
		dev_priv->mm.interruptible = was_interruptible;
2344 Serge 3994
	}
4104 Serge 3995
	}
2332 Serge 3996
 
4104 Serge 3997
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3998
	 * before progressing. */
3999
	if (obj->stolen)
4000
		i915_gem_object_unpin_pages(obj);
4001
 
5060 serge 4002
	WARN_ON(obj->frontbuffer_bits);
4003
 
4104 Serge 4004
	if (WARN_ON(obj->pages_pin_count))
3031 serge 4005
	obj->pages_pin_count = 0;
4006
	i915_gem_object_put_pages(obj);
4007
//   i915_gem_object_free_mmap_offset(obj);
2332 Serge 4008
 
3243 Serge 4009
	BUG_ON(obj->pages);
2332 Serge 4010
 
3031 serge 4011
 
3290 Serge 4012
    if(obj->base.filp != NULL)
4013
    {
3298 Serge 4014
//        printf("filp %p\n", obj->base.filp);
3290 Serge 4015
        shmem_file_delete(obj->base.filp);
4016
    }
4017
 
2344 Serge 4018
	drm_gem_object_release(&obj->base);
4019
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
2332 Serge 4020
 
2344 Serge 4021
	kfree(obj->bit_17);
4104 Serge 4022
	i915_gem_object_free(obj);
4560 Serge 4023
 
4024
	intel_runtime_pm_put(dev_priv);
2344 Serge 4025
}
2332 Serge 4026
 
4560 Serge 4027
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4104 Serge 4028
				     struct i915_address_space *vm)
4029
{
4560 Serge 4030
	struct i915_vma *vma;
4031
	list_for_each_entry(vma, &obj->vma_list, vma_link)
4032
		if (vma->vm == vm)
4033
			return vma;
4034
 
4035
	return NULL;
4036
}
4037
 
4104 Serge 4038
void i915_gem_vma_destroy(struct i915_vma *vma)
4039
{
4040
	WARN_ON(vma->node.allocated);
4560 Serge 4041
 
4042
	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4043
	if (!list_empty(&vma->exec_list))
4044
		return;
4045
 
4104 Serge 4046
	list_del(&vma->vma_link);
4560 Serge 4047
 
4104 Serge 4048
	kfree(vma);
4049
}
4050
 
3031 serge 4051
#if 0
4052
int
4560 Serge 4053
i915_gem_suspend(struct drm_device *dev)
2344 Serge 4054
{
5060 serge 4055
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 4056
	int ret = 0;
2332 Serge 4057
 
4560 Serge 4058
	mutex_lock(&dev->struct_mutex);
4059
	if (dev_priv->ums.mm_suspended)
4060
		goto err;
2332 Serge 4061
 
3031 serge 4062
	ret = i915_gpu_idle(dev);
4560 Serge 4063
	if (ret)
4064
		goto err;
4065
 
3031 serge 4066
	i915_gem_retire_requests(dev);
4067
 
3480 Serge 4068
	/* Under UMS, be paranoid and evict. */
4069
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4070
		i915_gem_evict_everything(dev);
4071
 
3031 serge 4072
	i915_kernel_lost_context(dev);
5060 serge 4073
	i915_gem_stop_ringbuffers(dev);
3031 serge 4074
 
4560 Serge 4075
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
4076
	 * We need to replace this with a semaphore, or something.
4077
	 * And not confound ums.mm_suspended!
4078
	 */
4079
	dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4080
							     DRIVER_MODESET);
4081
	mutex_unlock(&dev->struct_mutex);
4082
 
4083
	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3263 Serge 4084
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
5060 serge 4085
	flush_delayed_work(&dev_priv->mm.idle_work);
3031 serge 4086
 
4087
	return 0;
4560 Serge 4088
 
4089
err:
4090
	mutex_unlock(&dev->struct_mutex);
4091
	return ret;
2344 Serge 4092
}
3031 serge 4093
#endif
2332 Serge 4094
 
5060 serge 4095
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
3031 serge 4096
{
4560 Serge 4097
	struct drm_device *dev = ring->dev;
5060 serge 4098
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 4099
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4100
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4101
	int i, ret;
2332 Serge 4102
 
4560 Serge 4103
	if (!HAS_L3_DPF(dev) || !remap_info)
4104
		return 0;
2332 Serge 4105
 
4560 Serge 4106
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4107
	if (ret)
4108
		return ret;
2332 Serge 4109
 
4560 Serge 4110
	/*
4111
	 * Note: We do not worry about the concurrent register cacheline hang
4112
	 * here because no other code should access these registers other than
4113
	 * at initialization time.
4114
	 */
3031 serge 4115
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4560 Serge 4116
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4117
		intel_ring_emit(ring, reg_base + i);
4118
		intel_ring_emit(ring, remap_info[i/4]);
3031 serge 4119
	}
2332 Serge 4120
 
4560 Serge 4121
	intel_ring_advance(ring);
2332 Serge 4122
 
4560 Serge 4123
	return ret;
3031 serge 4124
}
2332 Serge 4125
 
3031 serge 4126
void i915_gem_init_swizzling(struct drm_device *dev)
4127
{
5060 serge 4128
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 4129
 
3031 serge 4130
	if (INTEL_INFO(dev)->gen < 5 ||
4131
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4132
		return;
2332 Serge 4133
 
3031 serge 4134
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4135
				 DISP_TILE_SURFACE_SWIZZLING);
2332 Serge 4136
 
3031 serge 4137
	if (IS_GEN5(dev))
4138
		return;
2344 Serge 4139
 
3031 serge 4140
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4141
	if (IS_GEN6(dev))
4142
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3480 Serge 4143
	else if (IS_GEN7(dev))
4144
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4560 Serge 4145
	else if (IS_GEN8(dev))
4146
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
3031 serge 4147
	else
3480 Serge 4148
		BUG();
3031 serge 4149
}
4150
 
4151
static bool
4152
intel_enable_blt(struct drm_device *dev)
4153
{
4154
	if (!HAS_BLT(dev))
4155
		return false;
4156
 
4157
	/* The blitter was dysfunctional on early prototypes */
4158
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4159
		DRM_INFO("BLT not supported on this pre-production hardware;"
4160
			 " graphics performance will be degraded.\n");
4161
		return false;
4162
	}
4163
 
4164
	return true;
4165
}
4166
 
3480 Serge 4167
static int i915_gem_init_rings(struct drm_device *dev)
2332 Serge 4168
{
3480 Serge 4169
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 4170
	int ret;
2351 Serge 4171
 
2332 Serge 4172
	ret = intel_init_render_ring_buffer(dev);
4173
	if (ret)
4174
		return ret;
4175
 
4176
    if (HAS_BSD(dev)) {
4177
		ret = intel_init_bsd_ring_buffer(dev);
4178
		if (ret)
4179
			goto cleanup_render_ring;
4180
	}
4181
 
3031 serge 4182
	if (intel_enable_blt(dev)) {
2332 Serge 4183
		ret = intel_init_blt_ring_buffer(dev);
4184
		if (ret)
4185
			goto cleanup_bsd_ring;
4186
	}
4187
 
4104 Serge 4188
	if (HAS_VEBOX(dev)) {
4189
		ret = intel_init_vebox_ring_buffer(dev);
4190
		if (ret)
4191
			goto cleanup_blt_ring;
4192
	}
4193
 
5060 serge 4194
	if (HAS_BSD2(dev)) {
4195
		ret = intel_init_bsd2_ring_buffer(dev);
4196
		if (ret)
4197
			goto cleanup_vebox_ring;
4198
	}
4104 Serge 4199
 
3480 Serge 4200
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4201
	if (ret)
5060 serge 4202
		goto cleanup_bsd2_ring;
2351 Serge 4203
 
2332 Serge 4204
	return 0;
4205
 
5060 serge 4206
cleanup_bsd2_ring:
4207
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4104 Serge 4208
cleanup_vebox_ring:
4209
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
3480 Serge 4210
cleanup_blt_ring:
4211
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
2332 Serge 4212
cleanup_bsd_ring:
4213
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4214
cleanup_render_ring:
4215
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3480 Serge 4216
 
2332 Serge 4217
	return ret;
4218
}
4219
 
3480 Serge 4220
int
4221
i915_gem_init_hw(struct drm_device *dev)
3031 serge 4222
{
5060 serge 4223
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 4224
	int ret, i;
3031 serge 4225
 
3480 Serge 4226
	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4227
		return -EIO;
3031 serge 4228
 
4104 Serge 4229
	if (dev_priv->ellc_size)
4230
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
3480 Serge 4231
 
4560 Serge 4232
	if (IS_HASWELL(dev))
4233
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4234
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4235
 
3746 Serge 4236
	if (HAS_PCH_NOP(dev)) {
5060 serge 4237
		if (IS_IVYBRIDGE(dev)) {
3746 Serge 4238
		u32 temp = I915_READ(GEN7_MSG_CTL);
4239
		temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4240
		I915_WRITE(GEN7_MSG_CTL, temp);
5060 serge 4241
		} else if (INTEL_INFO(dev)->gen >= 7) {
4242
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4243
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4244
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4245
		}
3746 Serge 4246
	}
4247
 
3480 Serge 4248
	i915_gem_init_swizzling(dev);
4249
 
4250
	ret = i915_gem_init_rings(dev);
4251
	if (ret)
4252
		return ret;
4253
 
4560 Serge 4254
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
4255
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4256
 
3480 Serge 4257
	/*
5060 serge 4258
	 * XXX: Contexts should only be initialized once. Doing a switch to the
4259
	 * default context switch however is something we'd like to do after
4260
	 * reset or thaw (the latter may not actually be necessary for HW, but
4261
	 * goes with our code better). Context switching requires rings (for
4262
	 * the do_switch), but before enabling PPGTT. So don't move this.
3480 Serge 4263
	 */
5060 serge 4264
	ret = i915_gem_context_enable(dev_priv);
4265
	if (ret && ret != -EIO) {
4266
		DRM_ERROR("Context enable failed %d\n", ret);
4560 Serge 4267
		i915_gem_cleanup_ringbuffer(dev);
4268
	}
4269
 
5060 serge 4270
	return ret;
3031 serge 4271
}
4272
 
4273
int i915_gem_init(struct drm_device *dev)
4274
{
4275
	struct drm_i915_private *dev_priv = dev->dev_private;
4276
	int ret;
4277
 
4278
	mutex_lock(&dev->struct_mutex);
3746 Serge 4279
 
4280
	if (IS_VALLEYVIEW(dev)) {
4281
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
5060 serge 4282
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4283
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4284
			      VLV_GTLC_ALLOWWAKEACK), 10))
3746 Serge 4285
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4286
	}
4287
 
5060 serge 4288
    i915_gem_init_global_gtt(dev);
3746 Serge 4289
 
5060 serge 4290
	ret = i915_gem_context_init(dev);
3031 serge 4291
	if (ret) {
5060 serge 4292
		mutex_unlock(&dev->struct_mutex);
3031 serge 4293
		return ret;
4294
	}
4295
 
5060 serge 4296
	ret = i915_gem_init_hw(dev);
4297
	if (ret == -EIO) {
4298
		/* Allow ring initialisation to fail by marking the GPU as
4299
		 * wedged. But we only want to do this where the GPU is angry,
4300
		 * for all other failure, such as an allocation failure, bail.
4301
		 */
4302
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4303
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4304
		ret = 0;
4305
	}
4306
	mutex_unlock(&dev->struct_mutex);
3746 Serge 4307
 
5060 serge 4308
		return ret;
3031 serge 4309
}
4310
 
2332 Serge 4311
void
4312
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4313
{
5060 serge 4314
	struct drm_i915_private *dev_priv = dev->dev_private;
4315
	struct intel_engine_cs *ring;
2332 Serge 4316
	int i;
4317
 
3031 serge 4318
	for_each_ring(ring, dev_priv, i)
4319
		intel_cleanup_ring_buffer(ring);
2332 Serge 4320
}
4321
 
3031 serge 4322
#if 0
4323
 
2332 Serge 4324
int
4325
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4326
		       struct drm_file *file_priv)
4327
{
4104 Serge 4328
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4329
	int ret;
2332 Serge 4330
 
4331
	if (drm_core_check_feature(dev, DRIVER_MODESET))
4332
		return 0;
4333
 
3480 Serge 4334
	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
2332 Serge 4335
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3480 Serge 4336
		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
2332 Serge 4337
	}
4338
 
4339
	mutex_lock(&dev->struct_mutex);
4104 Serge 4340
	dev_priv->ums.mm_suspended = 0;
2332 Serge 4341
 
3031 serge 4342
	ret = i915_gem_init_hw(dev);
2332 Serge 4343
	if (ret != 0) {
4344
		mutex_unlock(&dev->struct_mutex);
4345
		return ret;
4346
	}
4347
 
4104 Serge 4348
	BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
2332 Serge 4349
 
5060 serge 4350
	ret = drm_irq_install(dev, dev->pdev->irq);
2332 Serge 4351
	if (ret)
4352
		goto cleanup_ringbuffer;
5060 serge 4353
	mutex_unlock(&dev->struct_mutex);
2332 Serge 4354
 
4355
	return 0;
4356
 
4357
cleanup_ringbuffer:
4358
	i915_gem_cleanup_ringbuffer(dev);
4104 Serge 4359
	dev_priv->ums.mm_suspended = 1;
2332 Serge 4360
	mutex_unlock(&dev->struct_mutex);
4361
 
4362
	return ret;
4363
}
4364
 
4365
int
4366
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4367
		       struct drm_file *file_priv)
4368
{
4369
	if (drm_core_check_feature(dev, DRIVER_MODESET))
4370
		return 0;
4371
 
5060 serge 4372
	mutex_lock(&dev->struct_mutex);
2332 Serge 4373
	drm_irq_uninstall(dev);
5060 serge 4374
	mutex_unlock(&dev->struct_mutex);
4104 Serge 4375
 
4560 Serge 4376
	return i915_gem_suspend(dev);
2332 Serge 4377
}
4378
 
4379
void
4380
i915_gem_lastclose(struct drm_device *dev)
4381
{
4382
	int ret;
4383
 
4384
	if (drm_core_check_feature(dev, DRIVER_MODESET))
4385
		return;
4386
 
4560 Serge 4387
	ret = i915_gem_suspend(dev);
2332 Serge 4388
	if (ret)
4389
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4390
}
4391
#endif
4392
 
4393
static void
5060 serge 4394
init_ring_lists(struct intel_engine_cs *ring)
2326 Serge 4395
{
4396
    INIT_LIST_HEAD(&ring->active_list);
4397
    INIT_LIST_HEAD(&ring->request_list);
4398
}
4399
 
5060 serge 4400
void i915_init_vm(struct drm_i915_private *dev_priv,
4104 Serge 4401
			 struct i915_address_space *vm)
4402
{
5060 serge 4403
	if (!i915_is_ggtt(vm))
4404
		drm_mm_init(&vm->mm, vm->start, vm->total);
4104 Serge 4405
	vm->dev = dev_priv->dev;
4406
	INIT_LIST_HEAD(&vm->active_list);
4407
	INIT_LIST_HEAD(&vm->inactive_list);
4408
	INIT_LIST_HEAD(&vm->global_link);
5060 serge 4409
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
4104 Serge 4410
}
4411
 
2326 Serge 4412
void
4413
i915_gem_load(struct drm_device *dev)
4414
{
5060 serge 4415
	struct drm_i915_private *dev_priv = dev->dev_private;
2326 Serge 4416
    int i;
4417
 
4104 Serge 4418
	INIT_LIST_HEAD(&dev_priv->vm_list);
4419
	i915_init_vm(dev_priv, &dev_priv->gtt.base);
4420
 
4560 Serge 4421
	INIT_LIST_HEAD(&dev_priv->context_list);
3031 serge 4422
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4423
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
2326 Serge 4424
    INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4425
    for (i = 0; i < I915_NUM_RINGS; i++)
4426
        init_ring_lists(&dev_priv->ring[i]);
2342 Serge 4427
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
2326 Serge 4428
        INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
2360 Serge 4429
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4430
			  i915_gem_retire_work_handler);
4560 Serge 4431
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4432
			  i915_gem_idle_work_handler);
3480 Serge 4433
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
2326 Serge 4434
 
4435
    /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4436
    if (IS_GEN3(dev)) {
3031 serge 4437
		I915_WRITE(MI_ARB_STATE,
4438
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
2326 Serge 4439
    }
4440
 
4441
    dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4442
 
3746 Serge 4443
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4444
		dev_priv->num_fence_regs = 32;
4445
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
2326 Serge 4446
        dev_priv->num_fence_regs = 16;
4447
    else
4448
        dev_priv->num_fence_regs = 8;
4449
 
4450
    /* Initialize fence registers to zero */
3746 Serge 4451
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4452
	i915_gem_restore_fences(dev);
2326 Serge 4453
 
4454
    i915_gem_detect_bit_6_swizzle(dev);
4455
 
4456
    dev_priv->mm.interruptible = true;
4457
 
5060 serge 4458
	mutex_init(&dev_priv->fb_tracking.lock);
2326 Serge 4459
}
4460
 
5060 serge 4461
int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4104 Serge 4462
{
5060 serge 4463
	struct drm_i915_file_private *file_priv;
4104 Serge 4464
	int ret;
2326 Serge 4465
 
5060 serge 4466
	DRM_DEBUG_DRIVER("\n");
4104 Serge 4467
 
5060 serge 4468
	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4469
	if (!file_priv)
4104 Serge 4470
		return -ENOMEM;
4471
 
5060 serge 4472
	file->driver_priv = file_priv;
4473
	file_priv->dev_priv = dev->dev_private;
4474
	file_priv->file = file;
4104 Serge 4475
 
5060 serge 4476
	spin_lock_init(&file_priv->mm.lock);
4477
	INIT_LIST_HEAD(&file_priv->mm.request_list);
4478
//	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4479
//			  i915_gem_file_idle_work_handler);
4104 Serge 4480
 
5060 serge 4481
	ret = i915_gem_context_open(dev, file);
4482
	if (ret)
4483
		kfree(file_priv);
4104 Serge 4484
 
4485
	return ret;
4486
}
4487
 
5060 serge 4488
void i915_gem_track_fb(struct drm_i915_gem_object *old,
4489
		       struct drm_i915_gem_object *new,
4490
		       unsigned frontbuffer_bits)
4104 Serge 4491
{
5060 serge 4492
	if (old) {
4493
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
4494
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
4495
		old->frontbuffer_bits &= ~frontbuffer_bits;
4104 Serge 4496
	}
4497
 
5060 serge 4498
	if (new) {
4499
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
4500
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
4501
		new->frontbuffer_bits |= frontbuffer_bits;
4104 Serge 4502
	}
4503
}
4504
 
4505
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4506
{
4507
	if (!mutex_is_locked(mutex))
4508
		return false;
4509
 
4510
#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4511
	return mutex->owner == task;
4512
#else
4513
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
4514
	return false;
4515
#endif
4516
}
4517
 
4518
/* All the new VM stuff */
4519
unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4520
				  struct i915_address_space *vm)
4521
{
4522
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4523
	struct i915_vma *vma;
4524
 
5060 serge 4525
	if (!dev_priv->mm.aliasing_ppgtt ||
4526
	    vm == &dev_priv->mm.aliasing_ppgtt->base)
4104 Serge 4527
		vm = &dev_priv->gtt.base;
4528
 
4529
	list_for_each_entry(vma, &o->vma_list, vma_link) {
4530
		if (vma->vm == vm)
4531
			return vma->node.start;
4532
 
4533
	}
5060 serge 4534
	WARN(1, "%s vma for this object not found.\n",
4535
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
4536
	return -1;
4104 Serge 4537
}
4538
 
4539
bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4540
			struct i915_address_space *vm)
4541
{
4542
	struct i915_vma *vma;
4543
 
4544
	list_for_each_entry(vma, &o->vma_list, vma_link)
4545
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4546
			return true;
4547
 
4548
	return false;
4549
}
4550
 
4551
bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4552
{
4560 Serge 4553
	struct i915_vma *vma;
4104 Serge 4554
 
4560 Serge 4555
	list_for_each_entry(vma, &o->vma_list, vma_link)
4556
		if (drm_mm_node_allocated(&vma->node))
4104 Serge 4557
			return true;
4558
 
4559
	return false;
4560
}
4561
 
4562
unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4563
				struct i915_address_space *vm)
4564
{
4565
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4566
	struct i915_vma *vma;
4567
 
5060 serge 4568
	if (!dev_priv->mm.aliasing_ppgtt ||
4569
	    vm == &dev_priv->mm.aliasing_ppgtt->base)
4104 Serge 4570
		vm = &dev_priv->gtt.base;
4571
 
4572
	BUG_ON(list_empty(&o->vma_list));
4573
 
4574
	list_for_each_entry(vma, &o->vma_list, vma_link)
4575
		if (vma->vm == vm)
4576
			return vma->node.size;
4577
 
4578
	return 0;
4579
}
4560 Serge 4580
 
4581
 
5060 serge 4582
 
4560 Serge 4583
struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
4104 Serge 4584
{
4585
	struct i915_vma *vma;
4586
 
5060 serge 4587
	/* This WARN has probably outlived its usefulness (callers already
4588
	 * WARN if they don't find the GGTT vma they expect). When removing,
4589
	 * remember to remove the pre-check in is_pin_display() as well */
4560 Serge 4590
	if (WARN_ON(list_empty(&obj->vma_list)))
5060 serge 4591
		return NULL;
4104 Serge 4592
 
4560 Serge 4593
	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5060 serge 4594
	if (vma->vm != obj_to_ggtt(obj))
4560 Serge 4595
		return NULL;
4104 Serge 4596
 
4597
	return vma;
4598
}