Subversion Repositories Kolibri OS

Rev

Rev 4392 | Rev 4560 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2326 Serge 1
/*
2
 * Copyright © 2008 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eric Anholt 
25
 *
26
 */
27
 
3031 serge 28
#include 
4280 Serge 29
#include 
3031 serge 30
#include 
2326 Serge 31
#include "i915_drv.h"
2351 Serge 32
#include "i915_trace.h"
2326 Serge 33
#include "intel_drv.h"
3260 Serge 34
#include 
2330 Serge 35
#include 
2326 Serge 36
//#include 
3746 Serge 37
#include 
2326 Serge 38
#include 
39
 
2344 Serge 40
extern int x86_clflush_size;
2332 Serge 41
 
3263 Serge 42
#define PROT_READ       0x1             /* page can be read */
43
#define PROT_WRITE      0x2             /* page can be written */
44
#define MAP_SHARED      0x01            /* Share changes */
45
 
2344 Serge 46
 
3266 Serge 47
struct drm_i915_gem_object *get_fb_obj();
48
 
3263 Serge 49
unsigned long vm_mmap(struct file *file, unsigned long addr,
50
         unsigned long len, unsigned long prot,
51
         unsigned long flag, unsigned long offset);
52
 
2344 Serge 53
static inline void clflush(volatile void *__p)
54
{
55
    asm volatile("clflush %0" : "+m" (*(volatile char*)__p));
56
}
57
 
2332 Serge 58
#define MAX_ERRNO       4095
59
 
60
#define IS_ERR_VALUE(x) unlikely((x) >= (unsigned long)-MAX_ERRNO)
61
 
62
 
2326 Serge 63
 
2332 Serge 64
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
4104 Serge 65
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
66
						   bool force);
67
static __must_check int
68
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
69
			   struct i915_address_space *vm,
2332 Serge 70
						    unsigned alignment,
3031 serge 71
						    bool map_and_fenceable,
72
						    bool nonblocking);
2332 Serge 73
static int i915_gem_phys_pwrite(struct drm_device *dev,
74
				struct drm_i915_gem_object *obj,
75
				struct drm_i915_gem_pwrite *args,
76
				struct drm_file *file);
2326 Serge 77
 
3031 serge 78
static void i915_gem_write_fence(struct drm_device *dev, int reg,
79
				 struct drm_i915_gem_object *obj);
80
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
81
					 struct drm_i915_fence_reg *fence,
82
					 bool enable);
2332 Serge 83
 
3031 serge 84
static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
4104 Serge 85
static long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3031 serge 86
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
87
 
4104 Serge 88
static bool cpu_cache_is_coherent(struct drm_device *dev,
89
				  enum i915_cache_level level)
90
{
91
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
92
}
93
 
94
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
95
{
96
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
97
		return true;
98
 
99
	return obj->pin_display;
100
}
101
 
3031 serge 102
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
103
{
104
	if (obj->tiling_mode)
105
		i915_gem_release_mmap(obj);
106
 
107
	/* As we do not have an associated fence register, we will force
108
	 * a tiling change if we ever need to acquire one.
109
	 */
110
	obj->fence_dirty = false;
111
	obj->fence_reg = I915_FENCE_REG_NONE;
112
}
113
 
2332 Serge 114
/* some bookkeeping */
115
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
116
				  size_t size)
117
{
4104 Serge 118
	spin_lock(&dev_priv->mm.object_stat_lock);
2332 Serge 119
	dev_priv->mm.object_count++;
120
	dev_priv->mm.object_memory += size;
4104 Serge 121
	spin_unlock(&dev_priv->mm.object_stat_lock);
2332 Serge 122
}
123
 
124
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
125
				     size_t size)
126
{
4104 Serge 127
	spin_lock(&dev_priv->mm.object_stat_lock);
2332 Serge 128
	dev_priv->mm.object_count--;
129
	dev_priv->mm.object_memory -= size;
4104 Serge 130
	spin_unlock(&dev_priv->mm.object_stat_lock);
2332 Serge 131
}
132
 
133
static int
3480 Serge 134
i915_gem_wait_for_error(struct i915_gpu_error *error)
2332 Serge 135
{
136
	int ret;
137
 
3480 Serge 138
#define EXIT_COND (!i915_reset_in_progress(error))
139
	if (EXIT_COND)
2332 Serge 140
		return 0;
3255 Serge 141
#if 0
3031 serge 142
	/*
143
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
144
	 * userspace. If it takes that long something really bad is going on and
145
	 * we should simply try to bail out and fail as gracefully as possible.
146
	 */
3480 Serge 147
	ret = wait_event_interruptible_timeout(error->reset_queue,
148
					       EXIT_COND,
149
					       10*HZ);
3031 serge 150
	if (ret == 0) {
151
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
152
		return -EIO;
153
	} else if (ret < 0) {
2332 Serge 154
		return ret;
3031 serge 155
	}
2332 Serge 156
 
3255 Serge 157
#endif
3480 Serge 158
#undef EXIT_COND
3255 Serge 159
 
2332 Serge 160
	return 0;
161
}
162
 
163
int i915_mutex_lock_interruptible(struct drm_device *dev)
164
{
3480 Serge 165
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 166
	int ret;
167
 
3480 Serge 168
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
2332 Serge 169
	if (ret)
170
		return ret;
171
 
3480 Serge 172
	ret = mutex_lock_interruptible(&dev->struct_mutex);
173
	if (ret)
174
		return ret;
2332 Serge 175
 
176
	WARN_ON(i915_verify_lists(dev));
177
	return 0;
178
}
179
 
180
static inline bool
181
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
182
{
4104 Serge 183
	return i915_gem_obj_bound_any(obj) && !obj->active;
2332 Serge 184
}
185
 
186
 
187
#if 0
188
 
189
int
190
i915_gem_init_ioctl(struct drm_device *dev, void *data,
191
		    struct drm_file *file)
192
{
3480 Serge 193
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 194
	struct drm_i915_gem_init *args = data;
195
 
3031 serge 196
	if (drm_core_check_feature(dev, DRIVER_MODESET))
197
		return -ENODEV;
198
 
2332 Serge 199
	if (args->gtt_start >= args->gtt_end ||
200
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
201
		return -EINVAL;
202
 
3031 serge 203
	/* GEM with user mode setting was never supported on ilk and later. */
204
	if (INTEL_INFO(dev)->gen >= 5)
205
		return -ENODEV;
206
 
2332 Serge 207
	mutex_lock(&dev->struct_mutex);
3480 Serge 208
	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
209
				  args->gtt_end);
210
	dev_priv->gtt.mappable_end = args->gtt_end;
2332 Serge 211
	mutex_unlock(&dev->struct_mutex);
212
 
213
	return 0;
214
}
2351 Serge 215
#endif
2332 Serge 216
 
217
int
218
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
219
			    struct drm_file *file)
220
{
221
	struct drm_i915_private *dev_priv = dev->dev_private;
222
	struct drm_i915_gem_get_aperture *args = data;
223
	struct drm_i915_gem_object *obj;
224
	size_t pinned;
225
 
226
	pinned = 0;
227
	mutex_lock(&dev->struct_mutex);
4104 Serge 228
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
3031 serge 229
		if (obj->pin_count)
4104 Serge 230
			pinned += i915_gem_obj_ggtt_size(obj);
2332 Serge 231
	mutex_unlock(&dev->struct_mutex);
232
 
4104 Serge 233
	args->aper_size = dev_priv->gtt.base.total;
2342 Serge 234
	args->aper_available_size = args->aper_size - pinned;
2332 Serge 235
 
236
	return 0;
237
}
238
 
3480 Serge 239
void *i915_gem_object_alloc(struct drm_device *dev)
240
{
241
	struct drm_i915_private *dev_priv = dev->dev_private;
242
	return kmalloc(sizeof(struct drm_i915_gem_object), 0);
243
}
244
 
245
void i915_gem_object_free(struct drm_i915_gem_object *obj)
246
{
247
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
248
	kfree(obj);
249
}
250
 
3031 serge 251
static int
252
i915_gem_create(struct drm_file *file,
2332 Serge 253
		struct drm_device *dev,
254
		uint64_t size,
255
		uint32_t *handle_p)
256
{
257
	struct drm_i915_gem_object *obj;
258
	int ret;
259
	u32 handle;
260
 
261
	size = roundup(size, PAGE_SIZE);
2342 Serge 262
	if (size == 0)
263
		return -EINVAL;
2332 Serge 264
 
265
	/* Allocate the new object */
266
	obj = i915_gem_alloc_object(dev, size);
267
	if (obj == NULL)
268
		return -ENOMEM;
269
 
270
	ret = drm_gem_handle_create(file, &obj->base, &handle);
4104 Serge 271
	/* drop reference from allocate - handle holds it now */
272
	drm_gem_object_unreference_unlocked(&obj->base);
273
	if (ret)
2332 Serge 274
		return ret;
275
 
276
	*handle_p = handle;
277
	return 0;
278
}
279
 
280
int
281
i915_gem_dumb_create(struct drm_file *file,
282
		     struct drm_device *dev,
283
		     struct drm_mode_create_dumb *args)
284
{
285
	/* have to work out size/pitch and return them */
286
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
287
	args->size = args->pitch * args->height;
288
	return i915_gem_create(file, dev,
289
			       args->size, &args->handle);
290
}
291
 
2326 Serge 292
/**
2332 Serge 293
 * Creates a new mm object and returns a handle to it.
294
 */
295
int
296
i915_gem_create_ioctl(struct drm_device *dev, void *data,
297
		      struct drm_file *file)
298
{
299
	struct drm_i915_gem_create *args = data;
3031 serge 300
 
2332 Serge 301
	return i915_gem_create(file, dev,
302
			       args->size, &args->handle);
303
}
304
 
305
 
3260 Serge 306
#if 0
2332 Serge 307
 
3031 serge 308
static inline int
309
__copy_to_user_swizzled(char __user *cpu_vaddr,
310
			const char *gpu_vaddr, int gpu_offset,
2332 Serge 311
		int length)
312
{
3031 serge 313
	int ret, cpu_offset = 0;
2332 Serge 314
 
3031 serge 315
	while (length > 0) {
316
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
317
		int this_length = min(cacheline_end - gpu_offset, length);
318
		int swizzled_gpu_offset = gpu_offset ^ 64;
2332 Serge 319
 
3031 serge 320
		ret = __copy_to_user(cpu_vaddr + cpu_offset,
321
				     gpu_vaddr + swizzled_gpu_offset,
322
				     this_length);
323
		if (ret)
324
			return ret + length;
2332 Serge 325
 
3031 serge 326
		cpu_offset += this_length;
327
		gpu_offset += this_length;
328
		length -= this_length;
329
	}
330
 
331
	return 0;
2332 Serge 332
}
333
 
3031 serge 334
static inline int
335
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
336
			  const char __user *cpu_vaddr,
337
			  int length)
2332 Serge 338
{
3031 serge 339
	int ret, cpu_offset = 0;
2332 Serge 340
 
341
	while (length > 0) {
342
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
343
		int this_length = min(cacheline_end - gpu_offset, length);
344
		int swizzled_gpu_offset = gpu_offset ^ 64;
345
 
3031 serge 346
		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
2332 Serge 347
			       cpu_vaddr + cpu_offset,
348
			       this_length);
3031 serge 349
		if (ret)
350
			return ret + length;
351
 
2332 Serge 352
		cpu_offset += this_length;
353
		gpu_offset += this_length;
354
		length -= this_length;
355
	}
356
 
3031 serge 357
	return 0;
2332 Serge 358
}
359
 
3031 serge 360
/* Per-page copy function for the shmem pread fastpath.
361
 * Flushes invalid cachelines before reading the target if
362
 * needs_clflush is set. */
2332 Serge 363
static int
3031 serge 364
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
365
		 char __user *user_data,
366
		 bool page_do_bit17_swizzling, bool needs_clflush)
367
{
368
		char *vaddr;
369
		int ret;
370
 
371
	if (unlikely(page_do_bit17_swizzling))
372
		return -EINVAL;
373
 
374
		vaddr = kmap_atomic(page);
375
	if (needs_clflush)
376
		drm_clflush_virt_range(vaddr + shmem_page_offset,
377
				       page_length);
378
		ret = __copy_to_user_inatomic(user_data,
379
				      vaddr + shmem_page_offset,
380
					      page_length);
381
		kunmap_atomic(vaddr);
382
 
383
	return ret ? -EFAULT : 0;
384
}
385
 
386
static void
387
shmem_clflush_swizzled_range(char *addr, unsigned long length,
388
			     bool swizzled)
389
{
390
	if (unlikely(swizzled)) {
391
		unsigned long start = (unsigned long) addr;
392
		unsigned long end = (unsigned long) addr + length;
393
 
394
		/* For swizzling simply ensure that we always flush both
395
		 * channels. Lame, but simple and it works. Swizzled
396
		 * pwrite/pread is far from a hotpath - current userspace
397
		 * doesn't use it at all. */
398
		start = round_down(start, 128);
399
		end = round_up(end, 128);
400
 
401
		drm_clflush_virt_range((void *)start, end - start);
402
	} else {
403
		drm_clflush_virt_range(addr, length);
404
	}
405
 
406
}
407
 
408
/* Only difference to the fast-path function is that this can handle bit17
409
 * and uses non-atomic copy and kmap functions. */
410
static int
411
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
412
		 char __user *user_data,
413
		 bool page_do_bit17_swizzling, bool needs_clflush)
414
{
415
	char *vaddr;
416
	int ret;
417
 
418
	vaddr = kmap(page);
419
	if (needs_clflush)
420
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
421
					     page_length,
422
					     page_do_bit17_swizzling);
423
 
424
	if (page_do_bit17_swizzling)
425
		ret = __copy_to_user_swizzled(user_data,
426
					      vaddr, shmem_page_offset,
427
					      page_length);
428
	else
429
		ret = __copy_to_user(user_data,
430
				     vaddr + shmem_page_offset,
431
				     page_length);
432
	kunmap(page);
433
 
434
	return ret ? - EFAULT : 0;
435
}
436
 
437
static int
438
i915_gem_shmem_pread(struct drm_device *dev,
2332 Serge 439
			  struct drm_i915_gem_object *obj,
440
			  struct drm_i915_gem_pread *args,
441
			  struct drm_file *file)
442
{
3031 serge 443
	char __user *user_data;
2332 Serge 444
	ssize_t remain;
445
	loff_t offset;
3031 serge 446
	int shmem_page_offset, page_length, ret = 0;
447
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
448
	int prefaulted = 0;
449
	int needs_clflush = 0;
3746 Serge 450
	struct sg_page_iter sg_iter;
2332 Serge 451
 
3746 Serge 452
	user_data = to_user_ptr(args->data_ptr);
2332 Serge 453
	remain = args->size;
454
 
3031 serge 455
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
456
 
457
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
458
		/* If we're not in the cpu read domain, set ourself into the gtt
459
		 * read domain and manually flush cachelines (if required). This
460
		 * optimizes for the case when the gpu will dirty the data
461
		 * anyway again before the next pread happens. */
4104 Serge 462
		needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
463
		if (i915_gem_obj_bound_any(obj)) {
3031 serge 464
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
465
			if (ret)
466
				return ret;
467
		}
468
	}
469
 
470
	ret = i915_gem_object_get_pages(obj);
471
	if (ret)
472
		return ret;
473
 
474
	i915_gem_object_pin_pages(obj);
475
 
2332 Serge 476
	offset = args->offset;
477
 
3746 Serge 478
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
479
			 offset >> PAGE_SHIFT) {
480
		struct page *page = sg_page_iter_page(&sg_iter);
2332 Serge 481
 
3031 serge 482
		if (remain <= 0)
483
			break;
484
 
2332 Serge 485
		/* Operation in this page
486
		 *
3031 serge 487
		 * shmem_page_offset = offset within page in shmem file
2332 Serge 488
		 * page_length = bytes to copy for this page
489
		 */
3031 serge 490
		shmem_page_offset = offset_in_page(offset);
2332 Serge 491
		page_length = remain;
3031 serge 492
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
493
			page_length = PAGE_SIZE - shmem_page_offset;
2332 Serge 494
 
3031 serge 495
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
496
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 497
 
3031 serge 498
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
499
				       user_data, page_do_bit17_swizzling,
500
				       needs_clflush);
501
		if (ret == 0)
502
			goto next_page;
2332 Serge 503
 
3031 serge 504
		mutex_unlock(&dev->struct_mutex);
505
 
4104 Serge 506
		if (likely(!i915_prefault_disable) && !prefaulted) {
3031 serge 507
			ret = fault_in_multipages_writeable(user_data, remain);
508
			/* Userspace is tricking us, but we've already clobbered
509
			 * its pages with the prefault and promised to write the
510
			 * data up to the first fault. Hence ignore any errors
511
			 * and just continue. */
512
			(void)ret;
513
			prefaulted = 1;
514
		}
515
 
516
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
517
				       user_data, page_do_bit17_swizzling,
518
				       needs_clflush);
519
 
520
		mutex_lock(&dev->struct_mutex);
521
 
522
next_page:
2332 Serge 523
		mark_page_accessed(page);
3031 serge 524
 
2332 Serge 525
		if (ret)
3031 serge 526
			goto out;
2332 Serge 527
 
528
		remain -= page_length;
529
		user_data += page_length;
530
		offset += page_length;
531
	}
532
 
3031 serge 533
out:
534
	i915_gem_object_unpin_pages(obj);
535
 
536
	return ret;
2332 Serge 537
}
538
 
539
/**
3031 serge 540
 * Reads data from the object referenced by handle.
541
 *
542
 * On error, the contents of *data are undefined.
2332 Serge 543
 */
3031 serge 544
int
545
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
546
		     struct drm_file *file)
547
{
548
	struct drm_i915_gem_pread *args = data;
549
	struct drm_i915_gem_object *obj;
550
	int ret = 0;
551
 
552
	if (args->size == 0)
553
		return 0;
554
 
555
	if (!access_ok(VERIFY_WRITE,
3746 Serge 556
		       to_user_ptr(args->data_ptr),
3031 serge 557
		       args->size))
558
		return -EFAULT;
559
 
560
	ret = i915_mutex_lock_interruptible(dev);
561
	if (ret)
562
		return ret;
563
 
564
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
565
	if (&obj->base == NULL) {
566
		ret = -ENOENT;
567
		goto unlock;
568
	}
569
 
570
	/* Bounds check source.  */
571
	if (args->offset > obj->base.size ||
572
	    args->size > obj->base.size - args->offset) {
573
		ret = -EINVAL;
574
		goto out;
575
	}
576
 
577
	/* prime objects have no backing filp to GEM pread/pwrite
578
	 * pages from.
579
	 */
580
	if (!obj->base.filp) {
581
		ret = -EINVAL;
582
		goto out;
583
	}
584
 
585
	trace_i915_gem_object_pread(obj, args->offset, args->size);
586
 
587
	ret = i915_gem_shmem_pread(dev, obj, args, file);
588
 
589
out:
590
	drm_gem_object_unreference(&obj->base);
591
unlock:
592
	mutex_unlock(&dev->struct_mutex);
593
	return ret;
594
}
595
 
596
/* This is the fast write path which cannot handle
597
 * page faults in the source data
598
 */
599
 
600
static inline int
601
fast_user_write(struct io_mapping *mapping,
602
		loff_t page_base, int page_offset,
603
		char __user *user_data,
604
		int length)
605
{
606
	void __iomem *vaddr_atomic;
607
	void *vaddr;
608
	unsigned long unwritten;
609
 
610
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
611
	/* We can use the cpu mem copy function because this is X86. */
612
	vaddr = (void __force*)vaddr_atomic + page_offset;
613
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
614
						      user_data, length);
615
	io_mapping_unmap_atomic(vaddr_atomic);
616
	return unwritten;
617
}
3260 Serge 618
#endif
3031 serge 619
 
3260 Serge 620
#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
3031 serge 621
/**
622
 * This is the fast pwrite path, where we copy the data directly from the
623
 * user into the GTT, uncached.
624
 */
2332 Serge 625
static int
3031 serge 626
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
627
			 struct drm_i915_gem_object *obj,
628
			 struct drm_i915_gem_pwrite *args,
629
			 struct drm_file *file)
2332 Serge 630
{
3031 serge 631
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 632
	ssize_t remain;
3031 serge 633
	loff_t offset, page_base;
634
	char __user *user_data;
635
	int page_offset, page_length, ret;
2332 Serge 636
 
4104 Serge 637
	ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
3031 serge 638
	if (ret)
639
		goto out;
640
 
641
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
642
	if (ret)
643
		goto out_unpin;
644
 
645
	ret = i915_gem_object_put_fence(obj);
646
	if (ret)
647
		goto out_unpin;
648
 
4539 Serge 649
	user_data = to_user_ptr(args->data_ptr);
2332 Serge 650
	remain = args->size;
651
 
4104 Serge 652
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
2332 Serge 653
 
3031 serge 654
	while (remain > 0) {
655
		/* Operation in this page
656
		 *
657
		 * page_base = page offset within aperture
658
		 * page_offset = offset within page
659
		 * page_length = bytes to copy for this page
660
		 */
661
		page_base = offset & PAGE_MASK;
662
		page_offset = offset_in_page(offset);
663
		page_length = remain;
664
		if ((page_offset + remain) > PAGE_SIZE)
665
			page_length = PAGE_SIZE - page_offset;
2332 Serge 666
 
4539 Serge 667
        MapPage(dev_priv->gtt.mappable, dev_priv->gtt.mappable_base+page_base, PG_SW);
3031 serge 668
 
4539 Serge 669
        memcpy(dev_priv->gtt.mappable+page_offset, user_data, page_length);
3260 Serge 670
 
3031 serge 671
		remain -= page_length;
672
		user_data += page_length;
673
		offset += page_length;
2332 Serge 674
	}
675
 
3031 serge 676
out_unpin:
677
	i915_gem_object_unpin(obj);
678
out:
679
	return ret;
680
}
681
 
682
/* Per-page copy function for the shmem pwrite fastpath.
683
 * Flushes invalid cachelines before writing to the target if
684
 * needs_clflush_before is set and flushes out any written cachelines after
685
 * writing if needs_clflush is set. */
686
static int
687
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
688
		  char __user *user_data,
689
		  bool page_do_bit17_swizzling,
690
		  bool needs_clflush_before,
691
		  bool needs_clflush_after)
692
{
693
	char *vaddr;
3260 Serge 694
	int ret = 0;
3031 serge 695
 
696
	if (unlikely(page_do_bit17_swizzling))
697
		return -EINVAL;
698
 
4539 Serge 699
    vaddr = (char *)MapIoMem((addr_t)page, 4096, PG_SW);
3031 serge 700
	if (needs_clflush_before)
701
		drm_clflush_virt_range(vaddr + shmem_page_offset,
702
				       page_length);
3260 Serge 703
	memcpy(vaddr + shmem_page_offset,
3031 serge 704
						user_data,
705
						page_length);
706
	if (needs_clflush_after)
707
		drm_clflush_virt_range(vaddr + shmem_page_offset,
708
				       page_length);
3260 Serge 709
	FreeKernelSpace(vaddr);
3031 serge 710
 
711
	return ret ? -EFAULT : 0;
712
}
3260 Serge 713
#if 0
3031 serge 714
 
715
/* Only difference to the fast-path function is that this can handle bit17
716
 * and uses non-atomic copy and kmap functions. */
717
static int
718
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
719
		  char __user *user_data,
720
		  bool page_do_bit17_swizzling,
721
		  bool needs_clflush_before,
722
		  bool needs_clflush_after)
723
{
724
	char *vaddr;
725
	int ret;
726
 
727
	vaddr = kmap(page);
728
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
729
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
730
					     page_length,
731
					     page_do_bit17_swizzling);
732
	if (page_do_bit17_swizzling)
733
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
734
						user_data,
735
						page_length);
736
	else
737
		ret = __copy_from_user(vaddr + shmem_page_offset,
738
				       user_data,
739
				       page_length);
740
	if (needs_clflush_after)
741
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
742
					     page_length,
743
					     page_do_bit17_swizzling);
744
	kunmap(page);
745
 
746
	return ret ? -EFAULT : 0;
747
}
3260 Serge 748
#endif
3031 serge 749
 
3260 Serge 750
 
3031 serge 751
static int
752
i915_gem_shmem_pwrite(struct drm_device *dev,
753
		      struct drm_i915_gem_object *obj,
754
		      struct drm_i915_gem_pwrite *args,
755
		      struct drm_file *file)
756
{
757
	ssize_t remain;
758
	loff_t offset;
759
	char __user *user_data;
760
	int shmem_page_offset, page_length, ret = 0;
761
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
762
	int hit_slowpath = 0;
763
	int needs_clflush_after = 0;
764
	int needs_clflush_before = 0;
3746 Serge 765
	struct sg_page_iter sg_iter;
3031 serge 766
 
3746 Serge 767
	user_data = to_user_ptr(args->data_ptr);
3031 serge 768
	remain = args->size;
769
 
770
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
771
 
772
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
773
		/* If we're not in the cpu write domain, set ourself into the gtt
774
		 * write domain and manually flush cachelines (if required). This
775
		 * optimizes for the case when the gpu will use the data
776
		 * right away and we therefore have to clflush anyway. */
4104 Serge 777
		needs_clflush_after = cpu_write_needs_clflush(obj);
778
		if (i915_gem_obj_bound_any(obj)) {
3031 serge 779
			ret = i915_gem_object_set_to_gtt_domain(obj, true);
780
			if (ret)
781
				return ret;
782
		}
783
	}
4104 Serge 784
	/* Same trick applies to invalidate partially written cachelines read
785
	 * before writing. */
786
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
787
		needs_clflush_before =
788
			!cpu_cache_is_coherent(dev, obj->cache_level);
3031 serge 789
 
790
	ret = i915_gem_object_get_pages(obj);
2332 Serge 791
	if (ret)
3031 serge 792
		return ret;
2332 Serge 793
 
3031 serge 794
	i915_gem_object_pin_pages(obj);
2332 Serge 795
 
796
	offset = args->offset;
3031 serge 797
	obj->dirty = 1;
2332 Serge 798
 
3746 Serge 799
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
800
			 offset >> PAGE_SHIFT) {
801
		struct page *page = sg_page_iter_page(&sg_iter);
3031 serge 802
		int partial_cacheline_write;
2332 Serge 803
 
3031 serge 804
		if (remain <= 0)
805
			break;
806
 
2332 Serge 807
		/* Operation in this page
808
		 *
809
		 * shmem_page_offset = offset within page in shmem file
810
		 * page_length = bytes to copy for this page
811
		 */
812
		shmem_page_offset = offset_in_page(offset);
813
 
814
		page_length = remain;
815
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
816
			page_length = PAGE_SIZE - shmem_page_offset;
817
 
3031 serge 818
		/* If we don't overwrite a cacheline completely we need to be
819
		 * careful to have up-to-date data by first clflushing. Don't
820
		 * overcomplicate things and flush the entire patch. */
821
		partial_cacheline_write = needs_clflush_before &&
822
			((shmem_page_offset | page_length)
3260 Serge 823
				& (x86_clflush_size - 1));
2332 Serge 824
 
3031 serge 825
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
826
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 827
 
3031 serge 828
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
829
					user_data, page_do_bit17_swizzling,
830
					partial_cacheline_write,
831
					needs_clflush_after);
832
		if (ret == 0)
833
			goto next_page;
834
 
835
		hit_slowpath = 1;
836
		mutex_unlock(&dev->struct_mutex);
3260 Serge 837
		dbgprintf("%s need shmem_pwrite_slow\n",__FUNCTION__);
3031 serge 838
 
3260 Serge 839
//		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
840
//					user_data, page_do_bit17_swizzling,
841
//					partial_cacheline_write,
842
//					needs_clflush_after);
843
 
3031 serge 844
		mutex_lock(&dev->struct_mutex);
845
 
846
next_page:
2332 Serge 847
 
3031 serge 848
		if (ret)
849
			goto out;
850
 
2332 Serge 851
		remain -= page_length;
3031 serge 852
		user_data += page_length;
2332 Serge 853
		offset += page_length;
854
	}
855
 
856
out:
3031 serge 857
	i915_gem_object_unpin_pages(obj);
858
 
859
	if (hit_slowpath) {
3480 Serge 860
		/*
861
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
862
		 * cachelines in-line while writing and the object moved
863
		 * out of the cpu write domain while we've dropped the lock.
864
		 */
865
		if (!needs_clflush_after &&
866
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
4104 Serge 867
			if (i915_gem_clflush_object(obj, obj->pin_display))
3243 Serge 868
			i915_gem_chipset_flush(dev);
3031 serge 869
		}
2332 Serge 870
	}
871
 
3031 serge 872
	if (needs_clflush_after)
3243 Serge 873
		i915_gem_chipset_flush(dev);
3031 serge 874
 
2332 Serge 875
	return ret;
876
}
3031 serge 877
 
878
/**
879
 * Writes data to the object referenced by handle.
880
 *
881
 * On error, the contents of the buffer that were to be modified are undefined.
882
 */
883
int
884
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
885
		      struct drm_file *file)
886
{
887
	struct drm_i915_gem_pwrite *args = data;
888
	struct drm_i915_gem_object *obj;
889
	int ret;
890
 
4104 Serge 891
	if (args->size == 0)
892
		return 0;
893
 
3480 Serge 894
 
3031 serge 895
	ret = i915_mutex_lock_interruptible(dev);
896
	if (ret)
897
		return ret;
898
 
899
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
900
	if (&obj->base == NULL) {
901
		ret = -ENOENT;
902
		goto unlock;
903
	}
904
 
905
	/* Bounds check destination. */
906
	if (args->offset > obj->base.size ||
907
	    args->size > obj->base.size - args->offset) {
908
		ret = -EINVAL;
909
		goto out;
910
	}
911
 
912
	/* prime objects have no backing filp to GEM pread/pwrite
913
	 * pages from.
914
	 */
915
	if (!obj->base.filp) {
916
		ret = -EINVAL;
917
		goto out;
918
	}
919
 
920
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
921
 
922
	ret = -EFAULT;
923
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
924
	 * it would end up going through the fenced access, and we'll get
925
	 * different detiling behavior between reading and writing.
926
	 * pread/pwrite currently are reading and writing from the CPU
927
	 * perspective, requiring manual detiling by the client.
928
	 */
3260 Serge 929
//   if (obj->phys_obj) {
930
//       ret = i915_gem_phys_pwrite(dev, obj, args, file);
931
//       goto out;
932
//   }
3031 serge 933
 
4104 Serge 934
	if (obj->tiling_mode == I915_TILING_NONE &&
935
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
936
	    cpu_write_needs_clflush(obj)) {
3031 serge 937
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
938
		/* Note that the gtt paths might fail with non-page-backed user
939
		 * pointers (e.g. gtt mappings when moving data between
940
		 * textures). Fallback to the shmem path in that case. */
941
	}
942
 
943
	if (ret == -EFAULT || ret == -ENOSPC)
3260 Serge 944
       ret = i915_gem_shmem_pwrite(dev, obj, args, file);
3031 serge 945
 
946
out:
947
	drm_gem_object_unreference(&obj->base);
948
unlock:
949
	mutex_unlock(&dev->struct_mutex);
950
	return ret;
951
}
952
 
953
int
3480 Serge 954
i915_gem_check_wedge(struct i915_gpu_error *error,
3031 serge 955
		     bool interruptible)
956
{
3480 Serge 957
	if (i915_reset_in_progress(error)) {
3031 serge 958
		/* Non-interruptible callers can't handle -EAGAIN, hence return
959
		 * -EIO unconditionally for these. */
960
		if (!interruptible)
961
			return -EIO;
2332 Serge 962
 
3480 Serge 963
		/* Recovery complete, but the reset failed ... */
964
		if (i915_terminally_wedged(error))
3031 serge 965
			return -EIO;
2332 Serge 966
 
3031 serge 967
		return -EAGAIN;
968
	}
2332 Serge 969
 
3031 serge 970
	return 0;
971
}
2332 Serge 972
 
3031 serge 973
/*
974
 * Compare seqno against outstanding lazy request. Emit a request if they are
975
 * equal.
976
 */
977
static int
978
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
979
{
980
	int ret;
2332 Serge 981
 
3031 serge 982
	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
2332 Serge 983
 
3031 serge 984
	ret = 0;
985
	if (seqno == ring->outstanding_lazy_request)
4104 Serge 986
		ret = i915_add_request(ring, NULL);
2332 Serge 987
 
3031 serge 988
	return ret;
989
}
2332 Serge 990
 
3031 serge 991
/**
992
 * __wait_seqno - wait until execution of seqno has finished
993
 * @ring: the ring expected to report seqno
994
 * @seqno: duh!
3480 Serge 995
 * @reset_counter: reset sequence associated with the given seqno
3031 serge 996
 * @interruptible: do an interruptible wait (normally yes)
997
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
998
 *
3480 Serge 999
 * Note: It is of utmost importance that the passed in seqno and reset_counter
1000
 * values have been read by the caller in an smp safe manner. Where read-side
1001
 * locks are involved, it is sufficient to read the reset_counter before
1002
 * unlocking the lock that protects the seqno. For lockless tricks, the
1003
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1004
 * inserted.
1005
 *
3031 serge 1006
 * Returns 0 if the seqno was found within the alloted time. Else returns the
1007
 * errno with remaining time filled in timeout argument.
1008
 */
1009
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
3480 Serge 1010
			unsigned reset_counter,
3031 serge 1011
			bool interruptible, struct timespec *timeout)
1012
{
1013
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1014
	struct timespec before, now, wait_time={1,0};
1015
	unsigned long timeout_jiffies;
1016
	long end;
1017
	bool wait_forever = true;
1018
	int ret;
2332 Serge 1019
 
4104 Serge 1020
	WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1021
 
3031 serge 1022
	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1023
		return 0;
2332 Serge 1024
 
3031 serge 1025
	trace_i915_gem_request_wait_begin(ring, seqno);
2332 Serge 1026
 
3031 serge 1027
	if (timeout != NULL) {
1028
		wait_time = *timeout;
1029
		wait_forever = false;
1030
	}
2332 Serge 1031
 
4104 Serge 1032
	timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
2332 Serge 1033
 
3031 serge 1034
	if (WARN_ON(!ring->irq_get(ring)))
1035
		return -ENODEV;
2332 Serge 1036
 
3031 serge 1037
    /* Record current time in case interrupted by signal, or wedged * */
1038
	getrawmonotonic(&before);
2332 Serge 1039
 
3031 serge 1040
#define EXIT_COND \
1041
	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
3480 Serge 1042
	 i915_reset_in_progress(&dev_priv->gpu_error) || \
1043
	 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3031 serge 1044
	do {
3266 Serge 1045
		if (interruptible)
1046
			end = wait_event_interruptible_timeout(ring->irq_queue,
1047
							       EXIT_COND,
1048
							       timeout_jiffies);
1049
		else
3031 serge 1050
			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1051
						 timeout_jiffies);
2332 Serge 1052
 
3480 Serge 1053
		/* We need to check whether any gpu reset happened in between
1054
		 * the caller grabbing the seqno and now ... */
1055
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1056
			end = -EAGAIN;
1057
 
1058
		/* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1059
		 * gone. */
1060
		ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
3031 serge 1061
		if (ret)
1062
			end = ret;
1063
	} while (end == 0 && wait_forever);
2332 Serge 1064
 
3031 serge 1065
	getrawmonotonic(&now);
2332 Serge 1066
 
3031 serge 1067
	ring->irq_put(ring);
1068
	trace_i915_gem_request_wait_end(ring, seqno);
1069
#undef EXIT_COND
2332 Serge 1070
 
3031 serge 1071
	if (timeout) {
4104 Serge 1072
//		struct timespec sleep_time = timespec_sub(now, before);
1073
//		*timeout = timespec_sub(*timeout, sleep_time);
3031 serge 1074
	}
2332 Serge 1075
 
3031 serge 1076
	switch (end) {
1077
	case -EIO:
1078
	case -EAGAIN: /* Wedged */
1079
	case -ERESTARTSYS: /* Signal */
1080
		return (int)end;
1081
	case 0: /* Timeout */
1082
		return -ETIME;
1083
	default: /* Completed */
1084
		WARN_ON(end < 0); /* We're not aware of other errors */
1085
		return 0;
1086
	}
1087
}
2332 Serge 1088
 
3031 serge 1089
/**
1090
 * Waits for a sequence number to be signaled, and cleans up the
1091
 * request and object lists appropriately for that event.
1092
 */
1093
int
1094
i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1095
{
1096
	struct drm_device *dev = ring->dev;
1097
	struct drm_i915_private *dev_priv = dev->dev_private;
1098
	bool interruptible = dev_priv->mm.interruptible;
1099
	int ret;
2332 Serge 1100
 
3031 serge 1101
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1102
	BUG_ON(seqno == 0);
2332 Serge 1103
 
3480 Serge 1104
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
3031 serge 1105
	if (ret)
1106
		return ret;
2332 Serge 1107
 
3031 serge 1108
	ret = i915_gem_check_olr(ring, seqno);
1109
	if (ret)
1110
		return ret;
2332 Serge 1111
 
3480 Serge 1112
	return __wait_seqno(ring, seqno,
1113
			    atomic_read(&dev_priv->gpu_error.reset_counter),
1114
			    interruptible, NULL);
3031 serge 1115
}
2332 Serge 1116
 
4104 Serge 1117
static int
1118
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1119
				     struct intel_ring_buffer *ring)
1120
{
1121
	i915_gem_retire_requests_ring(ring);
1122
 
1123
	/* Manually manage the write flush as we may have not yet
1124
	 * retired the buffer.
1125
	 *
1126
	 * Note that the last_write_seqno is always the earlier of
1127
	 * the two (read/write) seqno, so if we haved successfully waited,
1128
	 * we know we have passed the last write.
1129
	 */
1130
	obj->last_write_seqno = 0;
1131
	obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1132
 
1133
	return 0;
1134
}
1135
 
3031 serge 1136
/**
1137
 * Ensures that all rendering to the object has completed and the object is
1138
 * safe to unbind from the GTT or access from the CPU.
1139
 */
1140
static __must_check int
1141
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1142
			       bool readonly)
1143
{
1144
	struct intel_ring_buffer *ring = obj->ring;
1145
	u32 seqno;
1146
	int ret;
2332 Serge 1147
 
3031 serge 1148
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1149
	if (seqno == 0)
1150
		return 0;
2332 Serge 1151
 
3031 serge 1152
	ret = i915_wait_seqno(ring, seqno);
4104 Serge 1153
    if (ret)
1154
        return ret;
2332 Serge 1155
 
4104 Serge 1156
	return i915_gem_object_wait_rendering__tail(obj, ring);
3031 serge 1157
}
2332 Serge 1158
 
3260 Serge 1159
/* A nonblocking variant of the above wait. This is a highly dangerous routine
1160
 * as the object state may change during this call.
1161
 */
1162
static __must_check int
1163
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1164
					    bool readonly)
1165
{
1166
	struct drm_device *dev = obj->base.dev;
1167
	struct drm_i915_private *dev_priv = dev->dev_private;
1168
	struct intel_ring_buffer *ring = obj->ring;
3480 Serge 1169
	unsigned reset_counter;
3260 Serge 1170
	u32 seqno;
1171
	int ret;
2332 Serge 1172
 
3260 Serge 1173
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1174
	BUG_ON(!dev_priv->mm.interruptible);
2332 Serge 1175
 
3260 Serge 1176
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1177
	if (seqno == 0)
1178
		return 0;
2332 Serge 1179
 
3480 Serge 1180
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3260 Serge 1181
	if (ret)
1182
		return ret;
2332 Serge 1183
 
3260 Serge 1184
	ret = i915_gem_check_olr(ring, seqno);
1185
	if (ret)
1186
		return ret;
2332 Serge 1187
 
3480 Serge 1188
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3260 Serge 1189
	mutex_unlock(&dev->struct_mutex);
3480 Serge 1190
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3260 Serge 1191
	mutex_lock(&dev->struct_mutex);
4104 Serge 1192
	if (ret)
1193
		return ret;
2332 Serge 1194
 
4104 Serge 1195
	return i915_gem_object_wait_rendering__tail(obj, ring);
3260 Serge 1196
}
2332 Serge 1197
 
3260 Serge 1198
/**
1199
 * Called when user space prepares to use an object with the CPU, either
1200
 * through the mmap ioctl's mapping or a GTT mapping.
1201
 */
1202
int
1203
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1204
			  struct drm_file *file)
1205
{
1206
	struct drm_i915_gem_set_domain *args = data;
1207
	struct drm_i915_gem_object *obj;
1208
	uint32_t read_domains = args->read_domains;
1209
	uint32_t write_domain = args->write_domain;
1210
	int ret;
2332 Serge 1211
 
3260 Serge 1212
	/* Only handle setting domains to types used by the CPU. */
1213
	if (write_domain & I915_GEM_GPU_DOMAINS)
1214
		return -EINVAL;
2332 Serge 1215
 
3260 Serge 1216
	if (read_domains & I915_GEM_GPU_DOMAINS)
1217
		return -EINVAL;
2332 Serge 1218
 
3260 Serge 1219
	/* Having something in the write domain implies it's in the read
1220
	 * domain, and only that read domain.  Enforce that in the request.
1221
	 */
1222
	if (write_domain != 0 && read_domains != write_domain)
1223
		return -EINVAL;
2332 Serge 1224
 
3260 Serge 1225
	ret = i915_mutex_lock_interruptible(dev);
1226
	if (ret)
1227
		return ret;
2332 Serge 1228
 
3260 Serge 1229
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1230
	if (&obj->base == NULL) {
1231
		ret = -ENOENT;
1232
		goto unlock;
1233
	}
2332 Serge 1234
 
3260 Serge 1235
	/* Try to flush the object off the GPU without holding the lock.
1236
	 * We will repeat the flush holding the lock in the normal manner
1237
	 * to catch cases where we are gazumped.
1238
	 */
1239
	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1240
	if (ret)
1241
		goto unref;
2332 Serge 1242
 
3260 Serge 1243
	if (read_domains & I915_GEM_DOMAIN_GTT) {
1244
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
2332 Serge 1245
 
3260 Serge 1246
		/* Silently promote "you're not bound, there was nothing to do"
1247
		 * to success, since the client was just asking us to
1248
		 * make sure everything was done.
1249
		 */
1250
		if (ret == -EINVAL)
1251
			ret = 0;
1252
	} else {
1253
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1254
	}
2332 Serge 1255
 
3260 Serge 1256
unref:
1257
	drm_gem_object_unreference(&obj->base);
1258
unlock:
1259
	mutex_unlock(&dev->struct_mutex);
1260
	return ret;
1261
}
2332 Serge 1262
 
4293 Serge 1263
/**
1264
 * Called when user space has done writes to this buffer
1265
 */
1266
int
1267
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1268
			 struct drm_file *file)
1269
{
1270
	struct drm_i915_gem_sw_finish *args = data;
1271
	struct drm_i915_gem_object *obj;
1272
	int ret = 0;
2332 Serge 1273
 
4293 Serge 1274
	ret = i915_mutex_lock_interruptible(dev);
1275
	if (ret)
1276
		return ret;
2332 Serge 1277
 
4293 Serge 1278
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1279
	if (&obj->base == NULL) {
1280
		ret = -ENOENT;
1281
		goto unlock;
1282
	}
2332 Serge 1283
 
4293 Serge 1284
	/* Pinned buffers may be scanout, so flush the cache */
1285
	if (obj->pin_display)
1286
		i915_gem_object_flush_cpu_write_domain(obj, true);
2332 Serge 1287
 
4293 Serge 1288
	drm_gem_object_unreference(&obj->base);
1289
unlock:
1290
	mutex_unlock(&dev->struct_mutex);
1291
	return ret;
1292
}
1293
 
3260 Serge 1294
/**
1295
 * Maps the contents of an object, returning the address it is mapped
1296
 * into.
1297
 *
1298
 * While the mapping holds a reference on the contents of the object, it doesn't
1299
 * imply a ref on the object itself.
1300
 */
1301
int
1302
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1303
		    struct drm_file *file)
1304
{
1305
	struct drm_i915_gem_mmap *args = data;
1306
	struct drm_gem_object *obj;
4392 Serge 1307
	unsigned long addr;
2332 Serge 1308
 
3260 Serge 1309
	obj = drm_gem_object_lookup(dev, file, args->handle);
1310
	if (obj == NULL)
1311
		return -ENOENT;
4104 Serge 1312
 
3260 Serge 1313
	/* prime objects have no backing filp to GEM mmap
1314
	 * pages from.
1315
	 */
1316
	if (!obj->filp) {
1317
		drm_gem_object_unreference_unlocked(obj);
1318
		return -EINVAL;
1319
	}
2332 Serge 1320
 
3263 Serge 1321
    addr = vm_mmap(obj->filp, 0, args->size,
1322
              PROT_READ | PROT_WRITE, MAP_SHARED,
1323
              args->offset);
3260 Serge 1324
	drm_gem_object_unreference_unlocked(obj);
3263 Serge 1325
    if (IS_ERR((void *)addr))
1326
        return addr;
2332 Serge 1327
 
3260 Serge 1328
	args->addr_ptr = (uint64_t) addr;
2332 Serge 1329
 
3263 Serge 1330
    return 0;
3260 Serge 1331
}
2332 Serge 1332
 
1333
 
1334
 
1335
 
1336
 
1337
 
1338
 
1339
 
3031 serge 1340
 
1341
 
1342
 
1343
 
1344
 
1345
/**
1346
 * i915_gem_release_mmap - remove physical page mappings
1347
 * @obj: obj in question
1348
 *
1349
 * Preserve the reservation of the mmapping with the DRM core code, but
1350
 * relinquish ownership of the pages back to the system.
1351
 *
1352
 * It is vital that we remove the page mapping if we have mapped a tiled
1353
 * object through the GTT and then lose the fence register due to
1354
 * resource pressure. Similarly if the object has been moved out of the
1355
 * aperture, than pages mapped into userspace must be revoked. Removing the
1356
 * mapping will then trigger a page fault on the next user access, allowing
1357
 * fixup by i915_gem_fault().
1358
 */
1359
void
1360
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1361
{
1362
	if (!obj->fault_mappable)
1363
		return;
1364
 
4104 Serge 1365
//	drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
3031 serge 1366
	obj->fault_mappable = false;
1367
}
1368
 
3480 Serge 1369
uint32_t
2332 Serge 1370
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1371
{
1372
	uint32_t gtt_size;
1373
 
1374
	if (INTEL_INFO(dev)->gen >= 4 ||
1375
	    tiling_mode == I915_TILING_NONE)
1376
		return size;
1377
 
1378
	/* Previous chips need a power-of-two fence region when tiling */
1379
	if (INTEL_INFO(dev)->gen == 3)
1380
		gtt_size = 1024*1024;
1381
	else
1382
		gtt_size = 512*1024;
1383
 
1384
	while (gtt_size < size)
1385
		gtt_size <<= 1;
1386
 
1387
	return gtt_size;
1388
}
1389
 
1390
/**
1391
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1392
 * @obj: object to check
1393
 *
1394
 * Return the required GTT alignment for an object, taking into account
1395
 * potential fence register mapping.
1396
 */
3480 Serge 1397
uint32_t
1398
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1399
			   int tiling_mode, bool fenced)
2332 Serge 1400
{
1401
	/*
1402
	 * Minimum alignment is 4k (GTT page size), but might be greater
1403
	 * if a fence register is needed for the object.
1404
	 */
3480 Serge 1405
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2332 Serge 1406
	    tiling_mode == I915_TILING_NONE)
1407
		return 4096;
1408
 
1409
	/*
1410
	 * Previous chips need to be aligned to the size of the smallest
1411
	 * fence register that can contain the object.
1412
	 */
1413
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1414
}
1415
 
1416
 
1417
 
3480 Serge 1418
int
1419
i915_gem_mmap_gtt(struct drm_file *file,
1420
          struct drm_device *dev,
1421
          uint32_t handle,
1422
          uint64_t *offset)
1423
{
1424
    struct drm_i915_private *dev_priv = dev->dev_private;
1425
    struct drm_i915_gem_object *obj;
1426
    unsigned long pfn;
1427
    char *mem, *ptr;
1428
    int ret;
1429
 
1430
    ret = i915_mutex_lock_interruptible(dev);
1431
    if (ret)
1432
        return ret;
1433
 
1434
    obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1435
    if (&obj->base == NULL) {
1436
        ret = -ENOENT;
1437
        goto unlock;
1438
    }
1439
 
1440
    if (obj->base.size > dev_priv->gtt.mappable_end) {
1441
        ret = -E2BIG;
1442
        goto out;
1443
    }
1444
 
1445
    if (obj->madv != I915_MADV_WILLNEED) {
1446
        DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1447
        ret = -EINVAL;
1448
        goto out;
1449
    }
1450
    /* Now bind it into the GTT if needed */
4104 Serge 1451
    ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
3480 Serge 1452
    if (ret)
1453
        goto out;
1454
 
1455
    ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1456
    if (ret)
1457
        goto unpin;
1458
 
1459
    ret = i915_gem_object_get_fence(obj);
1460
    if (ret)
1461
        goto unpin;
1462
 
1463
    obj->fault_mappable = true;
1464
 
4104 Serge 1465
    pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
3480 Serge 1466
 
1467
    /* Finally, remap it using the new GTT offset */
1468
 
1469
    mem = UserAlloc(obj->base.size);
1470
    if(unlikely(mem == NULL))
1471
    {
1472
        ret = -ENOMEM;
1473
        goto unpin;
1474
    }
1475
 
1476
    for(ptr = mem; ptr < mem + obj->base.size; ptr+= 4096, pfn+= 4096)
1477
        MapPage(ptr, pfn, PG_SHARED|PG_UW);
1478
 
1479
unpin:
1480
    i915_gem_object_unpin(obj);
1481
 
1482
 
4104 Serge 1483
    *offset = mem;
3480 Serge 1484
 
1485
out:
1486
    drm_gem_object_unreference(&obj->base);
1487
unlock:
1488
    mutex_unlock(&dev->struct_mutex);
1489
    return ret;
1490
}
1491
 
1492
/**
1493
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1494
 * @dev: DRM device
1495
 * @data: GTT mapping ioctl data
1496
 * @file: GEM object info
1497
 *
1498
 * Simply returns the fake offset to userspace so it can mmap it.
1499
 * The mmap call will end up in drm_gem_mmap(), which will set things
1500
 * up so we can get faults in the handler above.
1501
 *
1502
 * The fault handler will take care of binding the object into the GTT
1503
 * (since it may have been evicted to make room for something), allocating
1504
 * a fence register, and mapping the appropriate aperture address into
1505
 * userspace.
1506
 */
1507
int
1508
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1509
            struct drm_file *file)
1510
{
1511
    struct drm_i915_gem_mmap_gtt *args = data;
1512
 
1513
    return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1514
}
1515
 
3031 serge 1516
/* Immediately discard the backing storage */
1517
static void
1518
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1519
{
1520
//	struct inode *inode;
2332 Serge 1521
 
3031 serge 1522
//	i915_gem_object_free_mmap_offset(obj);
2332 Serge 1523
 
3263 Serge 1524
	if (obj->base.filp == NULL)
1525
		return;
2332 Serge 1526
 
3031 serge 1527
	/* Our goal here is to return as much of the memory as
1528
	 * is possible back to the system as we are called from OOM.
1529
	 * To do this we must instruct the shmfs to drop all of its
1530
	 * backing pages, *now*.
1531
	 */
1532
//	inode = obj->base.filp->f_path.dentry->d_inode;
1533
//	shmem_truncate_range(inode, 0, (loff_t)-1);
2332 Serge 1534
 
3031 serge 1535
	obj->madv = __I915_MADV_PURGED;
1536
}
2332 Serge 1537
 
3031 serge 1538
static inline int
1539
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1540
{
1541
	return obj->madv == I915_MADV_DONTNEED;
1542
}
2332 Serge 1543
 
3031 serge 1544
static void
1545
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1546
{
3746 Serge 1547
	struct sg_page_iter sg_iter;
1548
	int ret;
2332 Serge 1549
 
3031 serge 1550
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2332 Serge 1551
 
3031 serge 1552
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1553
	if (ret) {
1554
		/* In the event of a disaster, abandon all caches and
1555
		 * hope for the best.
1556
		 */
1557
		WARN_ON(ret != -EIO);
4104 Serge 1558
		i915_gem_clflush_object(obj, true);
3031 serge 1559
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1560
	}
2332 Serge 1561
 
3031 serge 1562
	if (obj->madv == I915_MADV_DONTNEED)
1563
		obj->dirty = 0;
2332 Serge 1564
 
3746 Serge 1565
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1566
		struct page *page = sg_page_iter_page(&sg_iter);
2332 Serge 1567
 
3290 Serge 1568
        page_cache_release(page);
3243 Serge 1569
	}
1570
    //DRM_DEBUG_KMS("%s release %d pages\n", __FUNCTION__, page_count);
3290 Serge 1571
 
4104 Serge 1572
    obj->dirty = 0;
3243 Serge 1573
 
1574
	sg_free_table(obj->pages);
1575
	kfree(obj->pages);
3031 serge 1576
}
2332 Serge 1577
 
3480 Serge 1578
int
3031 serge 1579
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1580
{
1581
	const struct drm_i915_gem_object_ops *ops = obj->ops;
2332 Serge 1582
 
3243 Serge 1583
	if (obj->pages == NULL)
3031 serge 1584
		return 0;
2332 Serge 1585
 
3031 serge 1586
	if (obj->pages_pin_count)
1587
		return -EBUSY;
1588
 
4104 Serge 1589
	BUG_ON(i915_gem_obj_bound_any(obj));
1590
 
3243 Serge 1591
	/* ->put_pages might need to allocate memory for the bit17 swizzle
1592
	 * array, hence protect them from being reaped by removing them from gtt
1593
	 * lists early. */
4104 Serge 1594
	list_del(&obj->global_list);
3243 Serge 1595
 
3031 serge 1596
	ops->put_pages(obj);
3243 Serge 1597
	obj->pages = NULL;
3031 serge 1598
 
1599
	if (i915_gem_object_is_purgeable(obj))
1600
		i915_gem_object_truncate(obj);
1601
 
1602
	return 0;
1603
}
1604
 
1605
 
1606
 
1607
 
1608
 
1609
 
1610
 
1611
 
2332 Serge 1612
static int
3031 serge 1613
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2332 Serge 1614
{
3260 Serge 1615
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3243 Serge 1616
    int page_count, i;
4104 Serge 1617
    struct sg_table *st;
3243 Serge 1618
	struct scatterlist *sg;
3746 Serge 1619
	struct sg_page_iter sg_iter;
3243 Serge 1620
	struct page *page;
3746 Serge 1621
	unsigned long last_pfn = 0;	/* suppress gcc warning */
3243 Serge 1622
	gfp_t gfp;
2332 Serge 1623
 
3243 Serge 1624
	/* Assert that the object is not currently in any GPU domain. As it
1625
	 * wasn't in the GTT, there shouldn't be any way it could have been in
1626
	 * a GPU cache
2332 Serge 1627
	 */
3243 Serge 1628
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1629
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1630
 
1631
	st = kmalloc(sizeof(*st), GFP_KERNEL);
1632
	if (st == NULL)
1633
		return -ENOMEM;
1634
 
2332 Serge 1635
	page_count = obj->base.size / PAGE_SIZE;
3243 Serge 1636
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1637
		kfree(st);
3746 Serge 1638
        FAIL();
2332 Serge 1639
		return -ENOMEM;
3243 Serge 1640
	}
2332 Serge 1641
 
3243 Serge 1642
	/* Get the list of pages out of our struct file.  They'll be pinned
1643
	 * at this point until we release them.
1644
	 *
1645
	 * Fail silently without starting the shrinker
1646
	 */
3746 Serge 1647
	sg = st->sgl;
1648
	st->nents = 0;
1649
	for (i = 0; i < page_count; i++) {
4104 Serge 1650
        page = shmem_read_mapping_page_gfp(obj->base.filp, i, gfp);
3260 Serge 1651
		if (IS_ERR(page)) {
1652
            dbgprintf("%s invalid page %p\n", __FUNCTION__, page);
2332 Serge 1653
			goto err_pages;
1654
 
3260 Serge 1655
		}
3746 Serge 1656
 
1657
		if (!i || page_to_pfn(page) != last_pfn + 1) {
1658
			if (i)
1659
				sg = sg_next(sg);
1660
			st->nents++;
3243 Serge 1661
		sg_set_page(sg, page, PAGE_SIZE, 0);
3746 Serge 1662
		} else {
1663
			sg->length += PAGE_SIZE;
1664
		}
1665
		last_pfn = page_to_pfn(page);
3243 Serge 1666
	}
3031 serge 1667
 
3746 Serge 1668
		sg_mark_end(sg);
3243 Serge 1669
	obj->pages = st;
3031 serge 1670
 
2332 Serge 1671
	return 0;
1672
 
1673
err_pages:
3746 Serge 1674
	sg_mark_end(sg);
1675
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1676
		page_cache_release(sg_page_iter_page(&sg_iter));
3243 Serge 1677
	sg_free_table(st);
1678
	kfree(st);
3746 Serge 1679
    FAIL();
3243 Serge 1680
	return PTR_ERR(page);
2332 Serge 1681
}
1682
 
3031 serge 1683
/* Ensure that the associated pages are gathered from the backing storage
1684
 * and pinned into our object. i915_gem_object_get_pages() may be called
1685
 * multiple times before they are released by a single call to
1686
 * i915_gem_object_put_pages() - once the pages are no longer referenced
1687
 * either as a result of memory pressure (reaping pages under the shrinker)
1688
 * or as the object is itself released.
1689
 */
1690
int
1691
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2332 Serge 1692
{
3031 serge 1693
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1694
	const struct drm_i915_gem_object_ops *ops = obj->ops;
1695
	int ret;
2332 Serge 1696
 
3243 Serge 1697
	if (obj->pages)
3031 serge 1698
		return 0;
2332 Serge 1699
 
4392 Serge 1700
	if (obj->madv != I915_MADV_WILLNEED) {
1701
		DRM_ERROR("Attempting to obtain a purgeable object\n");
1702
		return -EINVAL;
1703
	}
1704
 
3031 serge 1705
	BUG_ON(obj->pages_pin_count);
2332 Serge 1706
 
3031 serge 1707
	ret = ops->get_pages(obj);
1708
	if (ret)
1709
		return ret;
2344 Serge 1710
 
4104 Serge 1711
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3243 Serge 1712
    return 0;
2332 Serge 1713
}
1714
 
1715
void
1716
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
3243 Serge 1717
			       struct intel_ring_buffer *ring)
2332 Serge 1718
{
1719
	struct drm_device *dev = obj->base.dev;
1720
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 1721
	u32 seqno = intel_ring_get_seqno(ring);
2332 Serge 1722
 
1723
	BUG_ON(ring == NULL);
4104 Serge 1724
	if (obj->ring != ring && obj->last_write_seqno) {
1725
		/* Keep the seqno relative to the current ring */
1726
		obj->last_write_seqno = seqno;
1727
	}
2332 Serge 1728
	obj->ring = ring;
1729
 
1730
	/* Add a reference if we're newly entering the active list. */
1731
	if (!obj->active) {
2344 Serge 1732
		drm_gem_object_reference(&obj->base);
2332 Serge 1733
		obj->active = 1;
1734
	}
1735
 
1736
	list_move_tail(&obj->ring_list, &ring->active_list);
1737
 
3031 serge 1738
	obj->last_read_seqno = seqno;
1739
 
2332 Serge 1740
	if (obj->fenced_gpu_access) {
3031 serge 1741
		obj->last_fenced_seqno = seqno;
1742
 
1743
		/* Bump MRU to take account of the delayed flush */
1744
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
2332 Serge 1745
		struct drm_i915_fence_reg *reg;
1746
 
1747
		reg = &dev_priv->fence_regs[obj->fence_reg];
3031 serge 1748
			list_move_tail(®->lru_list,
1749
				       &dev_priv->mm.fence_list);
1750
		}
2332 Serge 1751
	}
1752
}
1753
 
2344 Serge 1754
static void
3031 serge 1755
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2344 Serge 1756
{
4104 Serge 1757
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1758
	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1759
	struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2332 Serge 1760
 
3031 serge 1761
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2344 Serge 1762
	BUG_ON(!obj->active);
2332 Serge 1763
 
4104 Serge 1764
	list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2344 Serge 1765
 
3031 serge 1766
	list_del_init(&obj->ring_list);
2352 Serge 1767
	obj->ring = NULL;
2344 Serge 1768
 
3031 serge 1769
	obj->last_read_seqno = 0;
1770
	obj->last_write_seqno = 0;
1771
	obj->base.write_domain = 0;
1772
 
1773
	obj->last_fenced_seqno = 0;
2352 Serge 1774
	obj->fenced_gpu_access = false;
2344 Serge 1775
 
2352 Serge 1776
	obj->active = 0;
1777
	drm_gem_object_unreference(&obj->base);
1778
 
1779
	WARN_ON(i915_verify_lists(dev));
1780
}
1781
 
3243 Serge 1782
static int
3480 Serge 1783
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2344 Serge 1784
{
3243 Serge 1785
	struct drm_i915_private *dev_priv = dev->dev_private;
1786
	struct intel_ring_buffer *ring;
1787
	int ret, i, j;
2344 Serge 1788
 
3480 Serge 1789
	/* Carefully retire all requests without writing to the rings */
3243 Serge 1790
	for_each_ring(ring, dev_priv, i) {
3480 Serge 1791
		ret = intel_ring_idle(ring);
3243 Serge 1792
	if (ret)
1793
		return ret;
3480 Serge 1794
	}
1795
	i915_gem_retire_requests(dev);
3243 Serge 1796
 
3480 Serge 1797
	/* Finally reset hw state */
3243 Serge 1798
	for_each_ring(ring, dev_priv, i) {
3480 Serge 1799
		intel_ring_init_seqno(ring, seqno);
1800
 
3243 Serge 1801
		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1802
			ring->sync_seqno[j] = 0;
1803
	}
1804
 
1805
	return 0;
2344 Serge 1806
}
1807
 
3480 Serge 1808
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1809
{
1810
	struct drm_i915_private *dev_priv = dev->dev_private;
1811
	int ret;
1812
 
1813
	if (seqno == 0)
1814
		return -EINVAL;
1815
 
1816
	/* HWS page needs to be set less than what we
1817
	 * will inject to ring
1818
	 */
1819
	ret = i915_gem_init_seqno(dev, seqno - 1);
1820
	if (ret)
1821
		return ret;
1822
 
1823
	/* Carefully set the last_seqno value so that wrap
1824
	 * detection still works
1825
	 */
1826
	dev_priv->next_seqno = seqno;
1827
	dev_priv->last_seqno = seqno - 1;
1828
	if (dev_priv->last_seqno == 0)
1829
		dev_priv->last_seqno--;
1830
 
1831
	return 0;
1832
}
1833
 
3243 Serge 1834
int
1835
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2344 Serge 1836
{
3243 Serge 1837
	struct drm_i915_private *dev_priv = dev->dev_private;
2344 Serge 1838
 
3243 Serge 1839
	/* reserve 0 for non-seqno */
1840
	if (dev_priv->next_seqno == 0) {
3480 Serge 1841
		int ret = i915_gem_init_seqno(dev, 0);
3243 Serge 1842
		if (ret)
1843
			return ret;
1844
 
1845
		dev_priv->next_seqno = 1;
1846
	}
1847
 
3480 Serge 1848
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
3243 Serge 1849
	return 0;
2332 Serge 1850
}
1851
 
4104 Serge 1852
int __i915_add_request(struct intel_ring_buffer *ring,
2352 Serge 1853
		 struct drm_file *file,
4104 Serge 1854
		       struct drm_i915_gem_object *obj,
3031 serge 1855
		 u32 *out_seqno)
2352 Serge 1856
{
1857
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
3031 serge 1858
	struct drm_i915_gem_request *request;
4104 Serge 1859
	u32 request_ring_position, request_start;
2352 Serge 1860
	int was_empty;
1861
	int ret;
2332 Serge 1862
 
4104 Serge 1863
	request_start = intel_ring_get_tail(ring);
3031 serge 1864
	/*
1865
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
1866
	 * after having emitted the batchbuffer command. Hence we need to fix
1867
	 * things up similar to emitting the lazy request. The difference here
1868
	 * is that the flush _must_ happen before the next request, no matter
1869
	 * what.
1870
	 */
4104 Serge 1871
   ret = intel_ring_flush_all_caches(ring);
1872
   if (ret)
1873
       return ret;
2332 Serge 1874
 
3031 serge 1875
	request = kmalloc(sizeof(*request), GFP_KERNEL);
1876
	if (request == NULL)
1877
		return -ENOMEM;
1878
 
1879
 
1880
	/* Record the position of the start of the request so that
1881
	 * should we detect the updated seqno part-way through the
4104 Serge 1882
    * GPU processing the request, we never over-estimate the
3031 serge 1883
	 * position of the head.
1884
	 */
4104 Serge 1885
   request_ring_position = intel_ring_get_tail(ring);
3031 serge 1886
 
3243 Serge 1887
	ret = ring->add_request(ring);
3031 serge 1888
	if (ret) {
1889
		kfree(request);
4104 Serge 1890
		return ret;
3031 serge 1891
	}
2332 Serge 1892
 
3243 Serge 1893
	request->seqno = intel_ring_get_seqno(ring);
2352 Serge 1894
	request->ring = ring;
4104 Serge 1895
	request->head = request_start;
3031 serge 1896
	request->tail = request_ring_position;
4104 Serge 1897
	request->ctx = ring->last_context;
1898
	request->batch_obj = obj;
1899
 
1900
	/* Whilst this request exists, batch_obj will be on the
1901
	 * active_list, and so will hold the active reference. Only when this
1902
	 * request is retired will the the batch_obj be moved onto the
1903
	 * inactive_list and lose its active reference. Hence we do not need
1904
	 * to explicitly hold another reference here.
1905
	 */
1906
 
1907
	if (request->ctx)
1908
		i915_gem_context_reference(request->ctx);
1909
 
3031 serge 1910
    request->emitted_jiffies = GetTimerTicks();
2352 Serge 1911
	was_empty = list_empty(&ring->request_list);
1912
	list_add_tail(&request->list, &ring->request_list);
3031 serge 1913
	request->file_priv = NULL;
2332 Serge 1914
 
3263 Serge 1915
	if (file) {
1916
		struct drm_i915_file_private *file_priv = file->driver_priv;
2332 Serge 1917
 
3263 Serge 1918
		spin_lock(&file_priv->mm.lock);
1919
		request->file_priv = file_priv;
1920
		list_add_tail(&request->client_list,
1921
			      &file_priv->mm.request_list);
1922
		spin_unlock(&file_priv->mm.lock);
1923
	}
1924
 
1925
	trace_i915_gem_request_add(ring, request->seqno);
3031 serge 1926
	ring->outstanding_lazy_request = 0;
2332 Serge 1927
 
4104 Serge 1928
	if (!dev_priv->ums.mm_suspended) {
1929
//		i915_queue_hangcheck(ring->dev);
1930
 
1931
       if (was_empty) {
2360 Serge 1932
           queue_delayed_work(dev_priv->wq,
3482 Serge 1933
					   &dev_priv->mm.retire_work,
1934
					   round_jiffies_up_relative(HZ));
4104 Serge 1935
           intel_mark_busy(dev_priv->dev);
1936
       }
1937
   }
3031 serge 1938
 
1939
	if (out_seqno)
3243 Serge 1940
		*out_seqno = request->seqno;
2352 Serge 1941
	return 0;
1942
}
2332 Serge 1943
 
3263 Serge 1944
static inline void
1945
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1946
{
1947
	struct drm_i915_file_private *file_priv = request->file_priv;
2332 Serge 1948
 
3263 Serge 1949
	if (!file_priv)
1950
		return;
2332 Serge 1951
 
3263 Serge 1952
	spin_lock(&file_priv->mm.lock);
1953
	if (request->file_priv) {
1954
		list_del(&request->client_list);
1955
		request->file_priv = NULL;
1956
	}
1957
	spin_unlock(&file_priv->mm.lock);
1958
}
2332 Serge 1959
 
4104 Serge 1960
static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
1961
				    struct i915_address_space *vm)
1962
{
1963
	if (acthd >= i915_gem_obj_offset(obj, vm) &&
1964
	    acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
1965
		return true;
1966
 
1967
	return false;
1968
}
1969
 
1970
static bool i915_head_inside_request(const u32 acthd_unmasked,
1971
				     const u32 request_start,
1972
				     const u32 request_end)
1973
{
1974
	const u32 acthd = acthd_unmasked & HEAD_ADDR;
1975
 
1976
	if (request_start < request_end) {
1977
		if (acthd >= request_start && acthd < request_end)
1978
			return true;
1979
	} else if (request_start > request_end) {
1980
		if (acthd >= request_start || acthd < request_end)
1981
			return true;
1982
	}
1983
 
1984
	return false;
1985
}
1986
 
1987
static struct i915_address_space *
1988
request_to_vm(struct drm_i915_gem_request *request)
1989
{
1990
	struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
1991
	struct i915_address_space *vm;
1992
 
1993
	vm = &dev_priv->gtt.base;
1994
 
1995
	return vm;
1996
}
1997
 
1998
static bool i915_request_guilty(struct drm_i915_gem_request *request,
1999
				const u32 acthd, bool *inside)
2000
{
2001
	/* There is a possibility that unmasked head address
2002
	 * pointing inside the ring, matches the batch_obj address range.
2003
	 * However this is extremely unlikely.
2004
	 */
2005
	if (request->batch_obj) {
2006
		if (i915_head_inside_object(acthd, request->batch_obj,
2007
					    request_to_vm(request))) {
2008
			*inside = true;
2009
			return true;
2010
		}
2011
	}
2012
 
2013
	if (i915_head_inside_request(acthd, request->head, request->tail)) {
2014
		*inside = false;
2015
		return true;
2016
	}
2017
 
2018
	return false;
2019
}
2020
 
2021
static void i915_set_reset_status(struct intel_ring_buffer *ring,
2022
				  struct drm_i915_gem_request *request,
2023
				  u32 acthd)
2024
{
2025
	struct i915_ctx_hang_stats *hs = NULL;
2026
	bool inside, guilty;
2027
	unsigned long offset = 0;
2028
 
2029
	/* Innocent until proven guilty */
2030
	guilty = false;
2031
 
2032
	if (request->batch_obj)
2033
		offset = i915_gem_obj_offset(request->batch_obj,
2034
					     request_to_vm(request));
2035
 
2036
	if (ring->hangcheck.action != HANGCHECK_WAIT &&
2037
	    i915_request_guilty(request, acthd, &inside)) {
2038
		DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2039
			  ring->name,
2040
			  inside ? "inside" : "flushing",
2041
			  offset,
2042
			  request->ctx ? request->ctx->id : 0,
2043
			  acthd);
2044
 
2045
		guilty = true;
2046
	}
2047
 
2048
	/* If contexts are disabled or this is the default context, use
2049
	 * file_priv->reset_state
2050
	 */
2051
	if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2052
		hs = &request->ctx->hang_stats;
2053
	else if (request->file_priv)
2054
		hs = &request->file_priv->hang_stats;
2055
 
2056
	if (hs) {
2057
		if (guilty)
2058
			hs->batch_active++;
2059
		else
2060
			hs->batch_pending++;
2061
	}
2062
}
2063
 
2064
static void i915_gem_free_request(struct drm_i915_gem_request *request)
2065
{
2066
	list_del(&request->list);
2067
	i915_gem_request_remove_from_client(request);
2068
 
2069
	if (request->ctx)
2070
		i915_gem_context_unreference(request->ctx);
2071
 
2072
	kfree(request);
2073
}
2074
 
4539 Serge 2075
static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
3031 serge 2076
				      struct intel_ring_buffer *ring)
2077
{
4539 Serge 2078
	u32 completed_seqno = ring->get_seqno(ring, false);
2079
	u32 acthd = intel_ring_get_active_head(ring);
2080
	struct drm_i915_gem_request *request;
4104 Serge 2081
 
4539 Serge 2082
	list_for_each_entry(request, &ring->request_list, list) {
2083
		if (i915_seqno_passed(completed_seqno, request->seqno))
2084
			continue;
4104 Serge 2085
 
4539 Serge 2086
		i915_set_reset_status(ring, request, acthd);
2087
	}
2088
}
2089
 
2090
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2091
					struct intel_ring_buffer *ring)
2092
{
3031 serge 2093
	while (!list_empty(&ring->request_list)) {
2094
		struct drm_i915_gem_request *request;
2332 Serge 2095
 
3031 serge 2096
		request = list_first_entry(&ring->request_list,
2097
					   struct drm_i915_gem_request,
2098
					   list);
2332 Serge 2099
 
4104 Serge 2100
		i915_gem_free_request(request);
3031 serge 2101
	}
2332 Serge 2102
 
3031 serge 2103
	while (!list_empty(&ring->active_list)) {
2104
		struct drm_i915_gem_object *obj;
2332 Serge 2105
 
3031 serge 2106
		obj = list_first_entry(&ring->active_list,
2107
				       struct drm_i915_gem_object,
2108
				       ring_list);
2332 Serge 2109
 
3031 serge 2110
		i915_gem_object_move_to_inactive(obj);
2111
	}
2112
}
2332 Serge 2113
 
3746 Serge 2114
void i915_gem_restore_fences(struct drm_device *dev)
3031 serge 2115
{
2116
	struct drm_i915_private *dev_priv = dev->dev_private;
2117
	int i;
2332 Serge 2118
 
3031 serge 2119
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2120
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
4104 Serge 2121
 
2122
		/*
2123
		 * Commit delayed tiling changes if we have an object still
2124
		 * attached to the fence, otherwise just clear the fence.
2125
		 */
2126
		if (reg->obj) {
2127
			i915_gem_object_update_fence(reg->obj, reg,
2128
						     reg->obj->tiling_mode);
2129
		} else {
2130
			i915_gem_write_fence(dev, i, NULL);
2131
		}
3031 serge 2132
	}
2133
}
2360 Serge 2134
 
3031 serge 2135
void i915_gem_reset(struct drm_device *dev)
2136
{
2137
	struct drm_i915_private *dev_priv = dev->dev_private;
2138
	struct intel_ring_buffer *ring;
2139
	int i;
2360 Serge 2140
 
4539 Serge 2141
	/*
2142
	 * Before we free the objects from the requests, we need to inspect
2143
	 * them for finding the guilty party. As the requests only borrow
2144
	 * their reference to the objects, the inspection must be done first.
2145
	 */
3031 serge 2146
	for_each_ring(ring, dev_priv, i)
4539 Serge 2147
		i915_gem_reset_ring_status(dev_priv, ring);
2360 Serge 2148
 
4539 Serge 2149
	for_each_ring(ring, dev_priv, i)
2150
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2151
 
3746 Serge 2152
	i915_gem_restore_fences(dev);
3031 serge 2153
}
2360 Serge 2154
 
2352 Serge 2155
/**
2156
 * This function clears the request list as sequence numbers are passed.
2157
 */
3031 serge 2158
void
2352 Serge 2159
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2160
{
2161
	uint32_t seqno;
2332 Serge 2162
 
2352 Serge 2163
	if (list_empty(&ring->request_list))
2164
		return;
2332 Serge 2165
 
2352 Serge 2166
	WARN_ON(i915_verify_lists(ring->dev));
2332 Serge 2167
 
3031 serge 2168
	seqno = ring->get_seqno(ring, true);
2332 Serge 2169
 
2352 Serge 2170
	while (!list_empty(&ring->request_list)) {
2171
		struct drm_i915_gem_request *request;
2332 Serge 2172
 
2352 Serge 2173
		request = list_first_entry(&ring->request_list,
2174
					   struct drm_i915_gem_request,
2175
					   list);
2332 Serge 2176
 
2352 Serge 2177
		if (!i915_seqno_passed(seqno, request->seqno))
2178
			break;
2332 Serge 2179
 
2352 Serge 2180
		trace_i915_gem_request_retire(ring, request->seqno);
3031 serge 2181
		/* We know the GPU must have read the request to have
2182
		 * sent us the seqno + interrupt, so use the position
2183
		 * of tail of the request to update the last known position
2184
		 * of the GPU head.
2185
		 */
2186
		ring->last_retired_head = request->tail;
2332 Serge 2187
 
4104 Serge 2188
		i915_gem_free_request(request);
2352 Serge 2189
	}
2332 Serge 2190
 
2352 Serge 2191
	/* Move any buffers on the active list that are no longer referenced
2192
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
2193
	 */
2194
	while (!list_empty(&ring->active_list)) {
2195
		struct drm_i915_gem_object *obj;
2332 Serge 2196
 
2352 Serge 2197
		obj = list_first_entry(&ring->active_list,
2198
				      struct drm_i915_gem_object,
2199
				      ring_list);
2332 Serge 2200
 
3031 serge 2201
		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2352 Serge 2202
			break;
2332 Serge 2203
 
2352 Serge 2204
			i915_gem_object_move_to_inactive(obj);
2205
	}
2332 Serge 2206
 
2352 Serge 2207
	if (unlikely(ring->trace_irq_seqno &&
2208
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2209
		ring->irq_put(ring);
2210
		ring->trace_irq_seqno = 0;
2211
	}
2332 Serge 2212
 
2352 Serge 2213
	WARN_ON(i915_verify_lists(ring->dev));
2214
}
2332 Serge 2215
 
2352 Serge 2216
void
2217
i915_gem_retire_requests(struct drm_device *dev)
2218
{
2219
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 2220
	struct intel_ring_buffer *ring;
2352 Serge 2221
	int i;
2332 Serge 2222
 
3031 serge 2223
	for_each_ring(ring, dev_priv, i)
2224
		i915_gem_retire_requests_ring(ring);
2352 Serge 2225
}
2226
 
2360 Serge 2227
static void
2228
i915_gem_retire_work_handler(struct work_struct *work)
2229
{
2230
	drm_i915_private_t *dev_priv;
2231
	struct drm_device *dev;
3031 serge 2232
	struct intel_ring_buffer *ring;
2360 Serge 2233
	bool idle;
2234
	int i;
2352 Serge 2235
 
2360 Serge 2236
	dev_priv = container_of(work, drm_i915_private_t,
2237
				mm.retire_work.work);
2238
	dev = dev_priv->dev;
2352 Serge 2239
 
2360 Serge 2240
	/* Come back later if the device is busy... */
2241
	if (!mutex_trylock(&dev->struct_mutex)) {
3482 Serge 2242
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2243
				   round_jiffies_up_relative(HZ));
3243 Serge 2244
        return;
2360 Serge 2245
	}
2352 Serge 2246
 
2360 Serge 2247
	i915_gem_retire_requests(dev);
2352 Serge 2248
 
2360 Serge 2249
	/* Send a periodic flush down the ring so we don't hold onto GEM
2250
	 * objects indefinitely.
2251
	 */
2252
	idle = true;
3031 serge 2253
	for_each_ring(ring, dev_priv, i) {
2254
		if (ring->gpu_caches_dirty)
4104 Serge 2255
			i915_add_request(ring, NULL);
2352 Serge 2256
 
2360 Serge 2257
		idle &= list_empty(&ring->request_list);
2258
	}
2352 Serge 2259
 
4104 Serge 2260
	if (!dev_priv->ums.mm_suspended && !idle)
3482 Serge 2261
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2262
				   round_jiffies_up_relative(HZ));
3031 serge 2263
	if (idle)
2264
		intel_mark_idle(dev);
2360 Serge 2265
 
2266
	mutex_unlock(&dev->struct_mutex);
2267
}
2268
 
2344 Serge 2269
/**
3031 serge 2270
 * Ensures that an object will eventually get non-busy by flushing any required
2271
 * write domains, emitting any outstanding lazy request and retiring and
2272
 * completed requests.
2352 Serge 2273
 */
3031 serge 2274
static int
2275
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2352 Serge 2276
{
3031 serge 2277
	int ret;
2352 Serge 2278
 
3031 serge 2279
	if (obj->active) {
2280
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2281
		if (ret)
2282
			return ret;
2352 Serge 2283
 
3031 serge 2284
		i915_gem_retire_requests_ring(obj->ring);
2285
	}
2352 Serge 2286
 
3031 serge 2287
	return 0;
2288
}
2352 Serge 2289
 
3243 Serge 2290
/**
2291
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2292
 * @DRM_IOCTL_ARGS: standard ioctl arguments
2293
 *
2294
 * Returns 0 if successful, else an error is returned with the remaining time in
2295
 * the timeout parameter.
2296
 *  -ETIME: object is still busy after timeout
2297
 *  -ERESTARTSYS: signal interrupted the wait
2298
 *  -ENONENT: object doesn't exist
2299
 * Also possible, but rare:
2300
 *  -EAGAIN: GPU wedged
2301
 *  -ENOMEM: damn
2302
 *  -ENODEV: Internal IRQ fail
2303
 *  -E?: The add request failed
2304
 *
2305
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2306
 * non-zero timeout parameter the wait ioctl will wait for the given number of
2307
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2308
 * without holding struct_mutex the object may become re-busied before this
2309
 * function completes. A similar but shorter * race condition exists in the busy
2310
 * ioctl
2311
 */
4246 Serge 2312
int
2313
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2314
{
2315
	drm_i915_private_t *dev_priv = dev->dev_private;
2316
	struct drm_i915_gem_wait *args = data;
2317
	struct drm_i915_gem_object *obj;
2318
	struct intel_ring_buffer *ring = NULL;
2319
	struct timespec timeout_stack, *timeout = NULL;
2320
	unsigned reset_counter;
2321
	u32 seqno = 0;
2322
	int ret = 0;
2352 Serge 2323
 
4246 Serge 2324
	if (args->timeout_ns >= 0) {
2325
		timeout_stack = ns_to_timespec(args->timeout_ns);
2326
		timeout = &timeout_stack;
2327
	}
2352 Serge 2328
 
4246 Serge 2329
	ret = i915_mutex_lock_interruptible(dev);
2330
	if (ret)
2331
		return ret;
2352 Serge 2332
 
4246 Serge 2333
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2334
	if (&obj->base == NULL) {
2335
		mutex_unlock(&dev->struct_mutex);
2336
		return -ENOENT;
2337
	}
2352 Serge 2338
 
4246 Serge 2339
	/* Need to make sure the object gets inactive eventually. */
2340
	ret = i915_gem_object_flush_active(obj);
2341
	if (ret)
2342
		goto out;
2352 Serge 2343
 
4246 Serge 2344
	if (obj->active) {
2345
		seqno = obj->last_read_seqno;
2346
		ring = obj->ring;
2347
	}
2352 Serge 2348
 
4246 Serge 2349
	if (seqno == 0)
2350
		 goto out;
2352 Serge 2351
 
4246 Serge 2352
	/* Do this after OLR check to make sure we make forward progress polling
2353
	 * on this IOCTL with a 0 timeout (like busy ioctl)
2354
	 */
2355
	if (!args->timeout_ns) {
2356
		ret = -ETIME;
2357
		goto out;
2358
	}
2352 Serge 2359
 
4246 Serge 2360
	drm_gem_object_unreference(&obj->base);
2361
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2362
	mutex_unlock(&dev->struct_mutex);
2352 Serge 2363
 
4246 Serge 2364
	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2365
	if (timeout)
2366
		args->timeout_ns = timespec_to_ns(timeout);
2367
	return ret;
3243 Serge 2368
 
4246 Serge 2369
out:
2370
	drm_gem_object_unreference(&obj->base);
2371
	mutex_unlock(&dev->struct_mutex);
2372
	return ret;
2373
}
3243 Serge 2374
 
2352 Serge 2375
/**
3031 serge 2376
 * i915_gem_object_sync - sync an object to a ring.
2377
 *
2378
 * @obj: object which may be in use on another ring.
2379
 * @to: ring we wish to use the object on. May be NULL.
2380
 *
2381
 * This code is meant to abstract object synchronization with the GPU.
2382
 * Calling with NULL implies synchronizing the object with the CPU
2383
 * rather than a particular GPU ring.
2384
 *
2385
 * Returns 0 if successful, else propagates up the lower layer error.
2344 Serge 2386
 */
2387
int
3031 serge 2388
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2389
		     struct intel_ring_buffer *to)
2344 Serge 2390
{
3031 serge 2391
	struct intel_ring_buffer *from = obj->ring;
2392
	u32 seqno;
2393
	int ret, idx;
2332 Serge 2394
 
3031 serge 2395
	if (from == NULL || to == from)
2396
		return 0;
2332 Serge 2397
 
3031 serge 2398
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2399
		return i915_gem_object_wait_rendering(obj, false);
2332 Serge 2400
 
3031 serge 2401
	idx = intel_ring_sync_index(from, to);
2402
 
2403
	seqno = obj->last_read_seqno;
2404
	if (seqno <= from->sync_seqno[idx])
2405
		return 0;
2406
 
2407
	ret = i915_gem_check_olr(obj->ring, seqno);
2408
	if (ret)
2409
		return ret;
2410
 
2411
	ret = to->sync_to(to, from, seqno);
2412
	if (!ret)
3243 Serge 2413
		/* We use last_read_seqno because sync_to()
2414
		 * might have just caused seqno wrap under
2415
		 * the radar.
2416
		 */
2417
		from->sync_seqno[idx] = obj->last_read_seqno;
3031 serge 2418
 
2419
	return ret;
2344 Serge 2420
}
2332 Serge 2421
 
2344 Serge 2422
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2423
{
2424
	u32 old_write_domain, old_read_domains;
2332 Serge 2425
 
2344 Serge 2426
	/* Force a pagefault for domain tracking on next user access */
2427
//	i915_gem_release_mmap(obj);
2332 Serge 2428
 
2344 Serge 2429
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2430
		return;
2332 Serge 2431
 
3480 Serge 2432
	/* Wait for any direct GTT access to complete */
2433
	mb();
2434
 
2344 Serge 2435
	old_read_domains = obj->base.read_domains;
2436
	old_write_domain = obj->base.write_domain;
2351 Serge 2437
 
2344 Serge 2438
	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2439
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2332 Serge 2440
 
2351 Serge 2441
	trace_i915_gem_object_change_domain(obj,
2442
					    old_read_domains,
2443
					    old_write_domain);
2344 Serge 2444
}
2332 Serge 2445
 
4104 Serge 2446
int i915_vma_unbind(struct i915_vma *vma)
2344 Serge 2447
{
4104 Serge 2448
	struct drm_i915_gem_object *obj = vma->obj;
3031 serge 2449
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3480 Serge 2450
	int ret;
2332 Serge 2451
 
3263 Serge 2452
    if(obj == get_fb_obj())
2453
        return 0;
2454
 
4104 Serge 2455
	if (list_empty(&vma->vma_link))
2344 Serge 2456
		return 0;
2332 Serge 2457
 
4104 Serge 2458
	if (!drm_mm_node_allocated(&vma->node))
2459
		goto destroy;
2460
 
3031 serge 2461
	if (obj->pin_count)
2462
		return -EBUSY;
2332 Serge 2463
 
3243 Serge 2464
	BUG_ON(obj->pages == NULL);
3031 serge 2465
 
2344 Serge 2466
	ret = i915_gem_object_finish_gpu(obj);
3031 serge 2467
	if (ret)
2344 Serge 2468
		return ret;
2469
	/* Continue on if we fail due to EIO, the GPU is hung so we
2470
	 * should be safe and we need to cleanup or else we might
2471
	 * cause memory corruption through use-after-free.
2472
	 */
2332 Serge 2473
 
2344 Serge 2474
	i915_gem_object_finish_gtt(obj);
2332 Serge 2475
 
2344 Serge 2476
	/* release the fence reg _after_ flushing */
2477
	ret = i915_gem_object_put_fence(obj);
3031 serge 2478
	if (ret)
2344 Serge 2479
		return ret;
2332 Serge 2480
 
4104 Serge 2481
	trace_i915_vma_unbind(vma);
2332 Serge 2482
 
3031 serge 2483
	if (obj->has_global_gtt_mapping)
3243 Serge 2484
        i915_gem_gtt_unbind_object(obj);
3031 serge 2485
	if (obj->has_aliasing_ppgtt_mapping) {
2486
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2487
		obj->has_aliasing_ppgtt_mapping = 0;
2488
	}
2489
	i915_gem_gtt_finish_object(obj);
4104 Serge 2490
	i915_gem_object_unpin_pages(obj);
2332 Serge 2491
 
4104 Serge 2492
	list_del(&vma->mm_list);
2344 Serge 2493
	/* Avoid an unnecessary call to unbind on rebind. */
4104 Serge 2494
	if (i915_is_ggtt(vma->vm))
2344 Serge 2495
	obj->map_and_fenceable = true;
2332 Serge 2496
 
4104 Serge 2497
	drm_mm_remove_node(&vma->node);
2332 Serge 2498
 
4104 Serge 2499
destroy:
2500
	i915_gem_vma_destroy(vma);
2501
 
2502
	/* Since the unbound list is global, only move to that list if
2503
	 * no more VMAs exist.
2504
	 * NB: Until we have real VMAs there will only ever be one */
2505
	WARN_ON(!list_empty(&obj->vma_list));
2506
	if (list_empty(&obj->vma_list))
2507
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2508
 
2344 Serge 2509
	return 0;
2510
}
2332 Serge 2511
 
4104 Serge 2512
/**
2513
 * Unbinds an object from the global GTT aperture.
2514
 */
2515
int
2516
i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2517
{
2518
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2519
	struct i915_address_space *ggtt = &dev_priv->gtt.base;
2520
 
2521
	if (!i915_gem_obj_ggtt_bound(obj))
2522
		return 0;
2523
 
2524
	if (obj->pin_count)
2525
		return -EBUSY;
2526
 
2527
	BUG_ON(obj->pages == NULL);
2528
 
2529
	return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2530
}
2531
 
3031 serge 2532
int i915_gpu_idle(struct drm_device *dev)
2344 Serge 2533
{
2534
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 2535
	struct intel_ring_buffer *ring;
2344 Serge 2536
	int ret, i;
2332 Serge 2537
 
2344 Serge 2538
	/* Flush everything onto the inactive list. */
3031 serge 2539
	for_each_ring(ring, dev_priv, i) {
2540
		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2344 Serge 2541
		if (ret)
2542
			return ret;
3031 serge 2543
 
3243 Serge 2544
		ret = intel_ring_idle(ring);
3031 serge 2545
		if (ret)
2546
			return ret;
2344 Serge 2547
	}
2332 Serge 2548
 
2344 Serge 2549
	return 0;
2550
}
2332 Serge 2551
 
3480 Serge 2552
static void i965_write_fence_reg(struct drm_device *dev, int reg,
3031 serge 2553
					struct drm_i915_gem_object *obj)
2554
{
2555
	drm_i915_private_t *dev_priv = dev->dev_private;
3480 Serge 2556
	int fence_reg;
2557
	int fence_pitch_shift;
2332 Serge 2558
 
3480 Serge 2559
	if (INTEL_INFO(dev)->gen >= 6) {
2560
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2561
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2562
	} else {
2563
		fence_reg = FENCE_REG_965_0;
2564
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2565
	}
2332 Serge 2566
 
4104 Serge 2567
	fence_reg += reg * 8;
2568
 
2569
	/* To w/a incoherency with non-atomic 64-bit register updates,
2570
	 * we split the 64-bit update into two 32-bit writes. In order
2571
	 * for a partial fence not to be evaluated between writes, we
2572
	 * precede the update with write to turn off the fence register,
2573
	 * and only enable the fence as the last step.
2574
	 *
2575
	 * For extra levels of paranoia, we make sure each step lands
2576
	 * before applying the next step.
2577
	 */
2578
	I915_WRITE(fence_reg, 0);
2579
	POSTING_READ(fence_reg);
2580
 
3031 serge 2581
	if (obj) {
4104 Serge 2582
		u32 size = i915_gem_obj_ggtt_size(obj);
2583
		uint64_t val;
2332 Serge 2584
 
4104 Serge 2585
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3031 serge 2586
				 0xfffff000) << 32;
4104 Serge 2587
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3480 Serge 2588
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3031 serge 2589
		if (obj->tiling_mode == I915_TILING_Y)
2590
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2591
		val |= I965_FENCE_REG_VALID;
2332 Serge 2592
 
4104 Serge 2593
		I915_WRITE(fence_reg + 4, val >> 32);
2594
		POSTING_READ(fence_reg + 4);
2595
 
2596
		I915_WRITE(fence_reg + 0, val);
3480 Serge 2597
	POSTING_READ(fence_reg);
4104 Serge 2598
	} else {
2599
		I915_WRITE(fence_reg + 4, 0);
2600
		POSTING_READ(fence_reg + 4);
2601
	}
3031 serge 2602
}
2332 Serge 2603
 
3031 serge 2604
static void i915_write_fence_reg(struct drm_device *dev, int reg,
2605
				 struct drm_i915_gem_object *obj)
2606
{
2607
	drm_i915_private_t *dev_priv = dev->dev_private;
2608
	u32 val;
2332 Serge 2609
 
3031 serge 2610
	if (obj) {
4104 Serge 2611
		u32 size = i915_gem_obj_ggtt_size(obj);
3031 serge 2612
		int pitch_val;
2613
		int tile_width;
2332 Serge 2614
 
4104 Serge 2615
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3031 serge 2616
		     (size & -size) != size ||
4104 Serge 2617
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2618
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2619
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2332 Serge 2620
 
3031 serge 2621
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2622
			tile_width = 128;
2623
		else
2624
			tile_width = 512;
2332 Serge 2625
 
3031 serge 2626
		/* Note: pitch better be a power of two tile widths */
2627
		pitch_val = obj->stride / tile_width;
2628
		pitch_val = ffs(pitch_val) - 1;
2332 Serge 2629
 
4104 Serge 2630
		val = i915_gem_obj_ggtt_offset(obj);
3031 serge 2631
		if (obj->tiling_mode == I915_TILING_Y)
2632
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2633
		val |= I915_FENCE_SIZE_BITS(size);
2634
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2635
		val |= I830_FENCE_REG_VALID;
2636
	} else
2637
		val = 0;
2332 Serge 2638
 
3031 serge 2639
	if (reg < 8)
2640
		reg = FENCE_REG_830_0 + reg * 4;
2641
	else
2642
		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2332 Serge 2643
 
3031 serge 2644
	I915_WRITE(reg, val);
2645
	POSTING_READ(reg);
2646
}
2332 Serge 2647
 
3031 serge 2648
static void i830_write_fence_reg(struct drm_device *dev, int reg,
2649
				struct drm_i915_gem_object *obj)
2650
{
2651
	drm_i915_private_t *dev_priv = dev->dev_private;
2652
	uint32_t val;
2344 Serge 2653
 
3031 serge 2654
	if (obj) {
4104 Serge 2655
		u32 size = i915_gem_obj_ggtt_size(obj);
3031 serge 2656
		uint32_t pitch_val;
2344 Serge 2657
 
4104 Serge 2658
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3031 serge 2659
		     (size & -size) != size ||
4104 Serge 2660
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2661
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2662
		     i915_gem_obj_ggtt_offset(obj), size);
2344 Serge 2663
 
3031 serge 2664
		pitch_val = obj->stride / 128;
2665
		pitch_val = ffs(pitch_val) - 1;
2344 Serge 2666
 
4104 Serge 2667
		val = i915_gem_obj_ggtt_offset(obj);
3031 serge 2668
		if (obj->tiling_mode == I915_TILING_Y)
2669
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2670
		val |= I830_FENCE_SIZE_BITS(size);
2671
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2672
		val |= I830_FENCE_REG_VALID;
2673
	} else
2674
		val = 0;
2675
 
2676
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2677
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2678
}
2679
 
3480 Serge 2680
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2681
{
2682
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2683
}
2684
 
3031 serge 2685
static void i915_gem_write_fence(struct drm_device *dev, int reg,
2686
				 struct drm_i915_gem_object *obj)
2332 Serge 2687
{
3480 Serge 2688
	struct drm_i915_private *dev_priv = dev->dev_private;
2689
 
2690
	/* Ensure that all CPU reads are completed before installing a fence
2691
	 * and all writes before removing the fence.
2692
	 */
2693
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2694
		mb();
2695
 
4104 Serge 2696
	WARN(obj && (!obj->stride || !obj->tiling_mode),
2697
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2698
	     obj->stride, obj->tiling_mode);
2699
 
3031 serge 2700
	switch (INTEL_INFO(dev)->gen) {
2701
	case 7:
3480 Serge 2702
	case 6:
3031 serge 2703
	case 5:
2704
	case 4: i965_write_fence_reg(dev, reg, obj); break;
2705
	case 3: i915_write_fence_reg(dev, reg, obj); break;
2706
	case 2: i830_write_fence_reg(dev, reg, obj); break;
3480 Serge 2707
	default: BUG();
3031 serge 2708
	}
3480 Serge 2709
 
2710
	/* And similarly be paranoid that no direct access to this region
2711
	 * is reordered to before the fence is installed.
2712
	 */
2713
	if (i915_gem_object_needs_mb(obj))
2714
		mb();
2344 Serge 2715
}
2716
 
3031 serge 2717
static inline int fence_number(struct drm_i915_private *dev_priv,
2718
			       struct drm_i915_fence_reg *fence)
2344 Serge 2719
{
3031 serge 2720
	return fence - dev_priv->fence_regs;
2721
}
2332 Serge 2722
 
3031 serge 2723
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2724
					 struct drm_i915_fence_reg *fence,
2725
					 bool enable)
2726
{
4104 Serge 2727
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2728
	int reg = fence_number(dev_priv, fence);
2332 Serge 2729
 
4104 Serge 2730
	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3031 serge 2731
 
2732
	if (enable) {
4104 Serge 2733
		obj->fence_reg = reg;
3031 serge 2734
		fence->obj = obj;
2735
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2736
	} else {
2737
		obj->fence_reg = I915_FENCE_REG_NONE;
2738
		fence->obj = NULL;
2739
		list_del_init(&fence->lru_list);
2344 Serge 2740
	}
4104 Serge 2741
	obj->fence_dirty = false;
3031 serge 2742
}
2344 Serge 2743
 
3031 serge 2744
static int
3480 Serge 2745
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3031 serge 2746
{
2747
	if (obj->last_fenced_seqno) {
2748
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2352 Serge 2749
			if (ret)
2750
				return ret;
2344 Serge 2751
 
2752
		obj->last_fenced_seqno = 0;
2753
	}
2754
 
3031 serge 2755
	obj->fenced_gpu_access = false;
2332 Serge 2756
	return 0;
2757
}
2758
 
2759
int
2344 Serge 2760
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2332 Serge 2761
{
3031 serge 2762
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3746 Serge 2763
	struct drm_i915_fence_reg *fence;
2332 Serge 2764
	int ret;
2765
 
3480 Serge 2766
	ret = i915_gem_object_wait_fence(obj);
2332 Serge 2767
	if (ret)
2768
		return ret;
2769
 
3031 serge 2770
	if (obj->fence_reg == I915_FENCE_REG_NONE)
2771
		return 0;
2332 Serge 2772
 
3746 Serge 2773
	fence = &dev_priv->fence_regs[obj->fence_reg];
2774
 
3031 serge 2775
	i915_gem_object_fence_lost(obj);
3746 Serge 2776
	i915_gem_object_update_fence(obj, fence, false);
2344 Serge 2777
 
2332 Serge 2778
	return 0;
2779
}
2780
 
3031 serge 2781
static struct drm_i915_fence_reg *
2782
i915_find_fence_reg(struct drm_device *dev)
2783
{
2784
	struct drm_i915_private *dev_priv = dev->dev_private;
2785
	struct drm_i915_fence_reg *reg, *avail;
2786
	int i;
2332 Serge 2787
 
3031 serge 2788
	/* First try to find a free reg */
2789
	avail = NULL;
2790
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2791
		reg = &dev_priv->fence_regs[i];
2792
		if (!reg->obj)
2793
			return reg;
2332 Serge 2794
 
3031 serge 2795
		if (!reg->pin_count)
2796
			avail = reg;
2797
	}
2332 Serge 2798
 
3031 serge 2799
	if (avail == NULL)
2800
		return NULL;
2332 Serge 2801
 
3031 serge 2802
	/* None available, try to steal one or wait for a user to finish */
2803
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2804
		if (reg->pin_count)
2805
			continue;
2332 Serge 2806
 
3031 serge 2807
		return reg;
2808
	}
2332 Serge 2809
 
3031 serge 2810
	return NULL;
2811
}
2332 Serge 2812
 
3031 serge 2813
/**
2814
 * i915_gem_object_get_fence - set up fencing for an object
2815
 * @obj: object to map through a fence reg
2816
 *
2817
 * When mapping objects through the GTT, userspace wants to be able to write
2818
 * to them without having to worry about swizzling if the object is tiled.
2819
 * This function walks the fence regs looking for a free one for @obj,
2820
 * stealing one if it can't find any.
2821
 *
2822
 * It then sets up the reg based on the object's properties: address, pitch
2823
 * and tiling format.
2824
 *
2825
 * For an untiled surface, this removes any existing fence.
2826
 */
2827
int
2828
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2829
{
2830
	struct drm_device *dev = obj->base.dev;
2831
	struct drm_i915_private *dev_priv = dev->dev_private;
2832
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2833
	struct drm_i915_fence_reg *reg;
2834
	int ret;
2332 Serge 2835
 
3031 serge 2836
	/* Have we updated the tiling parameters upon the object and so
2837
	 * will need to serialise the write to the associated fence register?
2838
	 */
2839
	if (obj->fence_dirty) {
3480 Serge 2840
		ret = i915_gem_object_wait_fence(obj);
3031 serge 2841
		if (ret)
2842
			return ret;
2843
	}
2332 Serge 2844
 
3031 serge 2845
	/* Just update our place in the LRU if our fence is getting reused. */
2846
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2847
		reg = &dev_priv->fence_regs[obj->fence_reg];
2848
		if (!obj->fence_dirty) {
2849
			list_move_tail(®->lru_list,
2850
				       &dev_priv->mm.fence_list);
2851
			return 0;
2852
		}
2853
	} else if (enable) {
2854
		reg = i915_find_fence_reg(dev);
2855
		if (reg == NULL)
2856
			return -EDEADLK;
2332 Serge 2857
 
3031 serge 2858
		if (reg->obj) {
2859
			struct drm_i915_gem_object *old = reg->obj;
2332 Serge 2860
 
3480 Serge 2861
			ret = i915_gem_object_wait_fence(old);
3031 serge 2862
			if (ret)
2863
				return ret;
2332 Serge 2864
 
3031 serge 2865
			i915_gem_object_fence_lost(old);
2866
		}
2867
	} else
2868
		return 0;
2332 Serge 2869
 
3031 serge 2870
	i915_gem_object_update_fence(obj, reg, enable);
2332 Serge 2871
 
3031 serge 2872
	return 0;
2873
}
2332 Serge 2874
 
3031 serge 2875
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2876
				     struct drm_mm_node *gtt_space,
2877
				     unsigned long cache_level)
2878
{
2879
	struct drm_mm_node *other;
2332 Serge 2880
 
3031 serge 2881
	/* On non-LLC machines we have to be careful when putting differing
2882
	 * types of snoopable memory together to avoid the prefetcher
3480 Serge 2883
	 * crossing memory domains and dying.
3031 serge 2884
	 */
2885
	if (HAS_LLC(dev))
2886
		return true;
2332 Serge 2887
 
4104 Serge 2888
	if (!drm_mm_node_allocated(gtt_space))
3031 serge 2889
		return true;
2332 Serge 2890
 
3031 serge 2891
	if (list_empty(>t_space->node_list))
2892
		return true;
2332 Serge 2893
 
3031 serge 2894
	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2895
	if (other->allocated && !other->hole_follows && other->color != cache_level)
2896
		return false;
2344 Serge 2897
 
3031 serge 2898
	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2899
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2900
		return false;
2344 Serge 2901
 
3031 serge 2902
	return true;
2903
}
2344 Serge 2904
 
3031 serge 2905
static void i915_gem_verify_gtt(struct drm_device *dev)
2906
{
2907
#if WATCH_GTT
2908
	struct drm_i915_private *dev_priv = dev->dev_private;
2909
	struct drm_i915_gem_object *obj;
2910
	int err = 0;
2344 Serge 2911
 
4104 Serge 2912
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3031 serge 2913
		if (obj->gtt_space == NULL) {
2914
			printk(KERN_ERR "object found on GTT list with no space reserved\n");
2915
			err++;
2916
			continue;
2917
		}
2344 Serge 2918
 
3031 serge 2919
		if (obj->cache_level != obj->gtt_space->color) {
2920
			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
4104 Serge 2921
			       i915_gem_obj_ggtt_offset(obj),
2922
			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3031 serge 2923
			       obj->cache_level,
2924
			       obj->gtt_space->color);
2925
			err++;
2926
			continue;
2927
		}
2344 Serge 2928
 
3031 serge 2929
		if (!i915_gem_valid_gtt_space(dev,
2930
					      obj->gtt_space,
2931
					      obj->cache_level)) {
2932
			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
4104 Serge 2933
			       i915_gem_obj_ggtt_offset(obj),
2934
			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3031 serge 2935
			       obj->cache_level);
2936
			err++;
2937
			continue;
2938
		}
2939
	}
2344 Serge 2940
 
3031 serge 2941
	WARN_ON(err);
2942
#endif
2326 Serge 2943
}
2944
 
2332 Serge 2945
/**
2946
 * Finds free space in the GTT aperture and binds the object there.
2947
 */
2948
static int
4104 Serge 2949
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
2950
			   struct i915_address_space *vm,
2332 Serge 2951
			    unsigned alignment,
3031 serge 2952
			    bool map_and_fenceable,
2953
			    bool nonblocking)
2332 Serge 2954
{
2955
	struct drm_device *dev = obj->base.dev;
2956
	drm_i915_private_t *dev_priv = dev->dev_private;
2957
	u32 size, fence_size, fence_alignment, unfenced_alignment;
4104 Serge 2958
	size_t gtt_max =
2959
		map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
2960
	struct i915_vma *vma;
2332 Serge 2961
	int ret;
2326 Serge 2962
 
2332 Serge 2963
	fence_size = i915_gem_get_gtt_size(dev,
2964
					   obj->base.size,
2965
					   obj->tiling_mode);
2966
	fence_alignment = i915_gem_get_gtt_alignment(dev,
2967
						     obj->base.size,
3480 Serge 2968
						     obj->tiling_mode, true);
2332 Serge 2969
	unfenced_alignment =
3480 Serge 2970
		i915_gem_get_gtt_alignment(dev,
2332 Serge 2971
						    obj->base.size,
3480 Serge 2972
						    obj->tiling_mode, false);
2332 Serge 2973
 
2974
	if (alignment == 0)
2975
		alignment = map_and_fenceable ? fence_alignment :
2976
						unfenced_alignment;
2977
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2978
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2979
		return -EINVAL;
2980
	}
2981
 
2982
	size = map_and_fenceable ? fence_size : obj->base.size;
2983
 
2984
	/* If the object is bigger than the entire aperture, reject it early
2985
	 * before evicting everything in a vain attempt to find space.
2986
	 */
4104 Serge 2987
	if (obj->base.size > gtt_max) {
2988
		DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
2989
			  obj->base.size,
2990
			  map_and_fenceable ? "mappable" : "total",
2991
			  gtt_max);
2332 Serge 2992
		return -E2BIG;
2993
	}
2994
 
3031 serge 2995
	ret = i915_gem_object_get_pages(obj);
2996
	if (ret)
2997
		return ret;
2998
 
3243 Serge 2999
	i915_gem_object_pin_pages(obj);
3000
 
4104 Serge 3001
	BUG_ON(!i915_is_ggtt(vm));
3002
 
3003
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3004
	if (IS_ERR(vma)) {
3005
		ret = PTR_ERR(vma);
3006
		goto err_unpin;
3243 Serge 3007
	}
3008
 
4104 Serge 3009
	/* For now we only ever use 1 vma per object */
3010
	WARN_ON(!list_is_singular(&obj->vma_list));
3011
 
3012
search_free:
3013
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3014
						  size, alignment,
3015
						  obj->cache_level, 0, gtt_max,
3016
						  DRM_MM_SEARCH_DEFAULT);
3243 Serge 3017
	if (ret) {
2332 Serge 3018
 
4104 Serge 3019
		goto err_free_vma;
2332 Serge 3020
	}
4104 Serge 3021
	if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3022
					      obj->cache_level))) {
3023
		ret = -EINVAL;
3024
		goto err_remove_node;
3031 serge 3025
	}
2332 Serge 3026
 
3031 serge 3027
	ret = i915_gem_gtt_prepare_object(obj);
4104 Serge 3028
	if (ret)
3029
		goto err_remove_node;
2332 Serge 3030
 
4104 Serge 3031
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3032
	list_add_tail(&vma->mm_list, &vm->inactive_list);
2332 Serge 3033
 
4104 Serge 3034
	if (i915_is_ggtt(vm)) {
3035
		bool mappable, fenceable;
2332 Serge 3036
 
4104 Serge 3037
		fenceable = (vma->node.size == fence_size &&
3038
			     (vma->node.start & (fence_alignment - 1)) == 0);
2332 Serge 3039
 
4104 Serge 3040
		mappable = (vma->node.start + obj->base.size <=
3041
			    dev_priv->gtt.mappable_end);
2332 Serge 3042
 
3043
	obj->map_and_fenceable = mappable && fenceable;
4104 Serge 3044
	}
2332 Serge 3045
 
4104 Serge 3046
	WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3047
 
3048
	trace_i915_vma_bind(vma, map_and_fenceable);
3031 serge 3049
	i915_gem_verify_gtt(dev);
2332 Serge 3050
	return 0;
4104 Serge 3051
 
3052
err_remove_node:
3053
	drm_mm_remove_node(&vma->node);
3054
err_free_vma:
3055
	i915_gem_vma_destroy(vma);
3056
err_unpin:
3057
	i915_gem_object_unpin_pages(obj);
3058
	return ret;
2332 Serge 3059
}
3060
 
4104 Serge 3061
bool
3062
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3063
			bool force)
2332 Serge 3064
{
3065
	/* If we don't have a page list set up, then we're not pinned
3066
	 * to GPU, and we can ignore the cache flush because it'll happen
3067
	 * again at bind time.
3068
	 */
3243 Serge 3069
	if (obj->pages == NULL)
4104 Serge 3070
		return false;
2332 Serge 3071
 
3480 Serge 3072
	/*
3073
	 * Stolen memory is always coherent with the GPU as it is explicitly
3074
	 * marked as wc by the system, or the system is cache-coherent.
3075
	 */
3076
	if (obj->stolen)
4104 Serge 3077
		return false;
3480 Serge 3078
 
2332 Serge 3079
	/* If the GPU is snooping the contents of the CPU cache,
3080
	 * we do not need to manually clear the CPU cache lines.  However,
3081
	 * the caches are only snooped when the render cache is
3082
	 * flushed/invalidated.  As we always have to emit invalidations
3083
	 * and flushes when moving into and out of the RENDER domain, correct
3084
	 * snooping behaviour occurs naturally as the result of our domain
3085
	 * tracking.
3086
	 */
4104 Serge 3087
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3088
		return false;
2332 Serge 3089
 
4293 Serge 3090
	trace_i915_gem_object_clflush(obj);
3091
	drm_clflush_sg(obj->pages);
2344 Serge 3092
 
4104 Serge 3093
	return true;
2332 Serge 3094
}
3095
 
2344 Serge 3096
/** Flushes the GTT write domain for the object if it's dirty. */
3097
static void
3098
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3099
{
3100
	uint32_t old_write_domain;
2332 Serge 3101
 
2344 Serge 3102
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3103
		return;
2332 Serge 3104
 
2344 Serge 3105
	/* No actual flushing is required for the GTT write domain.  Writes
3106
	 * to it immediately go to main memory as far as we know, so there's
3107
	 * no chipset flush.  It also doesn't land in render cache.
3108
	 *
3109
	 * However, we do have to enforce the order so that all writes through
3110
	 * the GTT land before any writes to the device, such as updates to
3111
	 * the GATT itself.
3112
	 */
3113
	wmb();
2332 Serge 3114
 
2344 Serge 3115
	old_write_domain = obj->base.write_domain;
3116
	obj->base.write_domain = 0;
2332 Serge 3117
 
2351 Serge 3118
	trace_i915_gem_object_change_domain(obj,
3119
					    obj->base.read_domains,
3120
					    old_write_domain);
2344 Serge 3121
}
2332 Serge 3122
 
3123
/** Flushes the CPU write domain for the object if it's dirty. */
2326 Serge 3124
static void
4104 Serge 3125
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3126
				       bool force)
2332 Serge 3127
{
3128
	uint32_t old_write_domain;
3129
 
3130
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3131
		return;
3132
 
4104 Serge 3133
	if (i915_gem_clflush_object(obj, force))
3243 Serge 3134
	i915_gem_chipset_flush(obj->base.dev);
4104 Serge 3135
 
2332 Serge 3136
	old_write_domain = obj->base.write_domain;
3137
	obj->base.write_domain = 0;
3138
 
2351 Serge 3139
	trace_i915_gem_object_change_domain(obj,
3140
					    obj->base.read_domains,
3141
					    old_write_domain);
2332 Serge 3142
}
3143
 
3144
/**
3145
 * Moves a single object to the GTT read, and possibly write domain.
3146
 *
3147
 * This function returns when the move is complete, including waiting on
3148
 * flushes to occur.
3149
 */
3150
int
3151
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3152
{
3031 serge 3153
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2332 Serge 3154
	uint32_t old_write_domain, old_read_domains;
3155
	int ret;
3156
 
3157
	/* Not valid to be called on unbound objects. */
4104 Serge 3158
	if (!i915_gem_obj_bound_any(obj))
2332 Serge 3159
		return -EINVAL;
3160
 
3161
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3162
		return 0;
3163
 
3031 serge 3164
	ret = i915_gem_object_wait_rendering(obj, !write);
2332 Serge 3165
		if (ret)
3166
			return ret;
3167
 
4104 Serge 3168
	i915_gem_object_flush_cpu_write_domain(obj, false);
2332 Serge 3169
 
3480 Serge 3170
	/* Serialise direct access to this object with the barriers for
3171
	 * coherent writes from the GPU, by effectively invalidating the
3172
	 * GTT domain upon first access.
3173
	 */
3174
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3175
		mb();
3176
 
2332 Serge 3177
	old_write_domain = obj->base.write_domain;
3178
	old_read_domains = obj->base.read_domains;
3179
 
3180
	/* It should now be out of any other write domains, and we can update
3181
	 * the domain values for our changes.
3182
	 */
3183
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3184
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3185
	if (write) {
3186
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3187
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3188
		obj->dirty = 1;
3189
	}
3190
 
2351 Serge 3191
	trace_i915_gem_object_change_domain(obj,
3192
					    old_read_domains,
3193
					    old_write_domain);
3194
 
3031 serge 3195
	/* And bump the LRU for this access */
4104 Serge 3196
	if (i915_gem_object_is_inactive(obj)) {
3197
		struct i915_vma *vma = i915_gem_obj_to_vma(obj,
3198
							   &dev_priv->gtt.base);
3199
		if (vma)
3200
			list_move_tail(&vma->mm_list,
3201
				       &dev_priv->gtt.base.inactive_list);
3031 serge 3202
 
4104 Serge 3203
	}
3204
 
2332 Serge 3205
	return 0;
3206
}
3207
 
2335 Serge 3208
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3209
				    enum i915_cache_level cache_level)
3210
{
3031 serge 3211
	struct drm_device *dev = obj->base.dev;
3212
	drm_i915_private_t *dev_priv = dev->dev_private;
4104 Serge 3213
	struct i915_vma *vma;
2335 Serge 3214
	int ret;
2332 Serge 3215
 
2335 Serge 3216
	if (obj->cache_level == cache_level)
3217
		return 0;
2332 Serge 3218
 
2335 Serge 3219
	if (obj->pin_count) {
3220
		DRM_DEBUG("can not change the cache level of pinned objects\n");
3221
		return -EBUSY;
3222
	}
2332 Serge 3223
 
4104 Serge 3224
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
3225
		if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3226
			ret = i915_vma_unbind(vma);
3031 serge 3227
		if (ret)
3228
			return ret;
4104 Serge 3229
 
3230
			break;
3231
		}
3031 serge 3232
	}
3233
 
4104 Serge 3234
	if (i915_gem_obj_bound_any(obj)) {
2335 Serge 3235
		ret = i915_gem_object_finish_gpu(obj);
3236
		if (ret)
3237
			return ret;
2332 Serge 3238
 
2335 Serge 3239
		i915_gem_object_finish_gtt(obj);
2332 Serge 3240
 
2335 Serge 3241
		/* Before SandyBridge, you could not use tiling or fence
3242
		 * registers with snooped memory, so relinquish any fences
3243
		 * currently pointing to our region in the aperture.
3244
		 */
3031 serge 3245
		if (INTEL_INFO(dev)->gen < 6) {
2335 Serge 3246
			ret = i915_gem_object_put_fence(obj);
3247
			if (ret)
3248
				return ret;
3249
		}
2332 Serge 3250
 
3031 serge 3251
		if (obj->has_global_gtt_mapping)
3252
			i915_gem_gtt_bind_object(obj, cache_level);
3253
		if (obj->has_aliasing_ppgtt_mapping)
3254
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3255
					       obj, cache_level);
2335 Serge 3256
	}
2332 Serge 3257
 
4104 Serge 3258
	list_for_each_entry(vma, &obj->vma_list, vma_link)
3259
		vma->node.color = cache_level;
3260
	obj->cache_level = cache_level;
3261
 
3262
	if (cpu_write_needs_clflush(obj)) {
2335 Serge 3263
		u32 old_read_domains, old_write_domain;
2332 Serge 3264
 
2335 Serge 3265
		/* If we're coming from LLC cached, then we haven't
3266
		 * actually been tracking whether the data is in the
3267
		 * CPU cache or not, since we only allow one bit set
3268
		 * in obj->write_domain and have been skipping the clflushes.
3269
		 * Just set it to the CPU cache for now.
3270
		 */
3271
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2332 Serge 3272
 
2335 Serge 3273
		old_read_domains = obj->base.read_domains;
3274
		old_write_domain = obj->base.write_domain;
2332 Serge 3275
 
2335 Serge 3276
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3277
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2332 Serge 3278
 
2351 Serge 3279
		trace_i915_gem_object_change_domain(obj,
3280
						    old_read_domains,
3281
						    old_write_domain);
2344 Serge 3282
    }
2332 Serge 3283
 
3031 serge 3284
	i915_gem_verify_gtt(dev);
2335 Serge 3285
	return 0;
3286
}
2332 Serge 3287
 
3260 Serge 3288
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3289
			       struct drm_file *file)
3290
{
3291
	struct drm_i915_gem_caching *args = data;
3292
	struct drm_i915_gem_object *obj;
3293
	int ret;
3294
 
3295
	ret = i915_mutex_lock_interruptible(dev);
3296
	if (ret)
3297
		return ret;
3298
 
3299
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3300
	if (&obj->base == NULL) {
3301
		ret = -ENOENT;
3302
		goto unlock;
3303
	}
3304
 
4104 Serge 3305
	switch (obj->cache_level) {
3306
	case I915_CACHE_LLC:
3307
	case I915_CACHE_L3_LLC:
3308
		args->caching = I915_CACHING_CACHED;
3309
		break;
3260 Serge 3310
 
4104 Serge 3311
	case I915_CACHE_WT:
3312
		args->caching = I915_CACHING_DISPLAY;
3313
		break;
3314
 
3315
	default:
3316
		args->caching = I915_CACHING_NONE;
3317
		break;
3318
	}
3319
 
3260 Serge 3320
	drm_gem_object_unreference(&obj->base);
3321
unlock:
3322
	mutex_unlock(&dev->struct_mutex);
3323
	return ret;
3324
}
3325
 
3326
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3327
			       struct drm_file *file)
3328
{
3329
	struct drm_i915_gem_caching *args = data;
3330
	struct drm_i915_gem_object *obj;
3331
	enum i915_cache_level level;
3332
	int ret;
3333
 
3334
	switch (args->caching) {
3335
	case I915_CACHING_NONE:
3336
		level = I915_CACHE_NONE;
3337
		break;
3338
	case I915_CACHING_CACHED:
3339
		level = I915_CACHE_LLC;
3340
		break;
4104 Serge 3341
	case I915_CACHING_DISPLAY:
3342
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3343
		break;
3260 Serge 3344
	default:
3345
		return -EINVAL;
3346
	}
3347
 
3348
	ret = i915_mutex_lock_interruptible(dev);
3349
	if (ret)
3350
		return ret;
3351
 
3352
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3353
	if (&obj->base == NULL) {
3354
		ret = -ENOENT;
3355
		goto unlock;
3356
	}
3357
 
3358
	ret = i915_gem_object_set_cache_level(obj, level);
3359
 
3360
	drm_gem_object_unreference(&obj->base);
3361
unlock:
3362
	mutex_unlock(&dev->struct_mutex);
3363
	return ret;
3364
}
3365
 
4104 Serge 3366
static bool is_pin_display(struct drm_i915_gem_object *obj)
3367
{
3368
	/* There are 3 sources that pin objects:
3369
	 *   1. The display engine (scanouts, sprites, cursors);
3370
	 *   2. Reservations for execbuffer;
3371
	 *   3. The user.
3372
	 *
3373
	 * We can ignore reservations as we hold the struct_mutex and
3374
	 * are only called outside of the reservation path.  The user
3375
	 * can only increment pin_count once, and so if after
3376
	 * subtracting the potential reference by the user, any pin_count
3377
	 * remains, it must be due to another use by the display engine.
3378
	 */
3379
	return obj->pin_count - !!obj->user_pin_count;
3380
}
3381
 
2335 Serge 3382
/*
3383
 * Prepare buffer for display plane (scanout, cursors, etc).
3384
 * Can be called from an uninterruptible phase (modesetting) and allows
3385
 * any flushes to be pipelined (for pageflips).
3386
 */
3387
int
3388
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3389
				     u32 alignment,
3390
				     struct intel_ring_buffer *pipelined)
3391
{
3392
	u32 old_read_domains, old_write_domain;
3393
	int ret;
2332 Serge 3394
 
3031 serge 3395
	if (pipelined != obj->ring) {
3396
		ret = i915_gem_object_sync(obj, pipelined);
2335 Serge 3397
	if (ret)
3398
		return ret;
3399
	}
2332 Serge 3400
 
4104 Serge 3401
	/* Mark the pin_display early so that we account for the
3402
	 * display coherency whilst setting up the cache domains.
3403
	 */
3404
	obj->pin_display = true;
3405
 
2335 Serge 3406
	/* The display engine is not coherent with the LLC cache on gen6.  As
3407
	 * a result, we make sure that the pinning that is about to occur is
3408
	 * done with uncached PTEs. This is lowest common denominator for all
3409
	 * chipsets.
3410
	 *
3411
	 * However for gen6+, we could do better by using the GFDT bit instead
3412
	 * of uncaching, which would allow us to flush all the LLC-cached data
3413
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3414
	 */
4104 Serge 3415
	ret = i915_gem_object_set_cache_level(obj,
3416
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
2360 Serge 3417
	if (ret)
4104 Serge 3418
		goto err_unpin_display;
2332 Serge 3419
 
2335 Serge 3420
	/* As the user may map the buffer once pinned in the display plane
3421
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3422
	 * always use map_and_fenceable for all scanout buffers.
3423
	 */
4104 Serge 3424
	ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
2335 Serge 3425
	if (ret)
4104 Serge 3426
		goto err_unpin_display;
2332 Serge 3427
 
4104 Serge 3428
	i915_gem_object_flush_cpu_write_domain(obj, true);
2332 Serge 3429
 
2335 Serge 3430
	old_write_domain = obj->base.write_domain;
3431
	old_read_domains = obj->base.read_domains;
2332 Serge 3432
 
2335 Serge 3433
	/* It should now be out of any other write domains, and we can update
3434
	 * the domain values for our changes.
3435
	 */
3031 serge 3436
	obj->base.write_domain = 0;
2335 Serge 3437
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2332 Serge 3438
 
2351 Serge 3439
	trace_i915_gem_object_change_domain(obj,
3440
					    old_read_domains,
3441
					    old_write_domain);
2332 Serge 3442
 
2335 Serge 3443
	return 0;
4104 Serge 3444
 
3445
err_unpin_display:
3446
	obj->pin_display = is_pin_display(obj);
3447
	return ret;
2335 Serge 3448
}
2332 Serge 3449
 
4104 Serge 3450
void
3451
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3452
{
3453
	i915_gem_object_unpin(obj);
3454
	obj->pin_display = is_pin_display(obj);
3455
}
3456
 
2344 Serge 3457
int
3458
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3459
{
3460
	int ret;
2332 Serge 3461
 
2344 Serge 3462
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3463
		return 0;
2332 Serge 3464
 
3031 serge 3465
	ret = i915_gem_object_wait_rendering(obj, false);
3243 Serge 3466
    if (ret)
3467
        return ret;
2332 Serge 3468
 
2344 Serge 3469
	/* Ensure that we invalidate the GPU's caches and TLBs. */
3470
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3031 serge 3471
	return 0;
2344 Serge 3472
}
2332 Serge 3473
 
2344 Serge 3474
/**
3475
 * Moves a single object to the CPU read, and possibly write domain.
3476
 *
3477
 * This function returns when the move is complete, including waiting on
3478
 * flushes to occur.
3479
 */
3031 serge 3480
int
2344 Serge 3481
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3482
{
3483
	uint32_t old_write_domain, old_read_domains;
3484
	int ret;
2332 Serge 3485
 
2344 Serge 3486
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3487
		return 0;
2332 Serge 3488
 
3031 serge 3489
	ret = i915_gem_object_wait_rendering(obj, !write);
2344 Serge 3490
	if (ret)
3491
		return ret;
2332 Serge 3492
 
2344 Serge 3493
	i915_gem_object_flush_gtt_write_domain(obj);
2332 Serge 3494
 
2344 Serge 3495
	old_write_domain = obj->base.write_domain;
3496
	old_read_domains = obj->base.read_domains;
2332 Serge 3497
 
2344 Serge 3498
	/* Flush the CPU cache if it's still invalid. */
3499
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4104 Serge 3500
		i915_gem_clflush_object(obj, false);
2332 Serge 3501
 
2344 Serge 3502
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3503
	}
2332 Serge 3504
 
2344 Serge 3505
	/* It should now be out of any other write domains, and we can update
3506
	 * the domain values for our changes.
3507
	 */
3508
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2332 Serge 3509
 
2344 Serge 3510
	/* If we're writing through the CPU, then the GPU read domains will
3511
	 * need to be invalidated at next use.
3512
	 */
3513
	if (write) {
3514
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3515
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3516
	}
2332 Serge 3517
 
2351 Serge 3518
	trace_i915_gem_object_change_domain(obj,
3519
					    old_read_domains,
3520
					    old_write_domain);
2332 Serge 3521
 
2344 Serge 3522
	return 0;
3523
}
2332 Serge 3524
 
3031 serge 3525
/* Throttle our rendering by waiting until the ring has completed our requests
3526
 * emitted over 20 msec ago.
2344 Serge 3527
 *
3031 serge 3528
 * Note that if we were to use the current jiffies each time around the loop,
3529
 * we wouldn't escape the function with any frames outstanding if the time to
3530
 * render a frame was over 20ms.
3531
 *
3532
 * This should get us reasonable parallelism between CPU and GPU but also
3533
 * relatively low latency when blocking on a particular request to finish.
2344 Serge 3534
 */
3031 serge 3535
static int
3536
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
2344 Serge 3537
{
3031 serge 3538
	struct drm_i915_private *dev_priv = dev->dev_private;
3539
	struct drm_i915_file_private *file_priv = file->driver_priv;
3263 Serge 3540
	unsigned long recent_enough = GetTimerTicks() - msecs_to_jiffies(20);
3031 serge 3541
	struct drm_i915_gem_request *request;
3542
	struct intel_ring_buffer *ring = NULL;
3480 Serge 3543
	unsigned reset_counter;
3031 serge 3544
	u32 seqno = 0;
3545
	int ret;
2332 Serge 3546
 
3480 Serge 3547
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3548
	if (ret)
3549
		return ret;
2332 Serge 3550
 
3480 Serge 3551
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3552
	if (ret)
3553
		return ret;
3554
 
3031 serge 3555
	spin_lock(&file_priv->mm.lock);
3556
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3557
		if (time_after_eq(request->emitted_jiffies, recent_enough))
3558
			break;
2332 Serge 3559
 
3031 serge 3560
		ring = request->ring;
3561
		seqno = request->seqno;
3562
	}
3480 Serge 3563
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3031 serge 3564
	spin_unlock(&file_priv->mm.lock);
2332 Serge 3565
 
3031 serge 3566
	if (seqno == 0)
3567
		return 0;
2332 Serge 3568
 
3480 Serge 3569
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3031 serge 3570
	if (ret == 0)
3571
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
2332 Serge 3572
 
3031 serge 3573
	return ret;
2352 Serge 3574
}
2332 Serge 3575
 
3576
int
3577
i915_gem_object_pin(struct drm_i915_gem_object *obj,
4104 Serge 3578
		    struct i915_address_space *vm,
2332 Serge 3579
		    uint32_t alignment,
3031 serge 3580
		    bool map_and_fenceable,
3581
		    bool nonblocking)
2332 Serge 3582
{
4104 Serge 3583
	struct i915_vma *vma;
2332 Serge 3584
	int ret;
3585
 
3031 serge 3586
	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3587
		return -EBUSY;
2332 Serge 3588
 
4104 Serge 3589
	WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3590
 
3591
	vma = i915_gem_obj_to_vma(obj, vm);
3592
 
3593
	if (vma) {
3594
		if ((alignment &&
3595
		     vma->node.start & (alignment - 1)) ||
2332 Serge 3596
		    (map_and_fenceable && !obj->map_and_fenceable)) {
3597
			WARN(obj->pin_count,
3598
			     "bo is already pinned with incorrect alignment:"
4104 Serge 3599
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
2332 Serge 3600
			     " obj->map_and_fenceable=%d\n",
4104 Serge 3601
			     i915_gem_obj_offset(obj, vm), alignment,
2332 Serge 3602
			     map_and_fenceable,
3603
			     obj->map_and_fenceable);
4104 Serge 3604
			ret = i915_vma_unbind(vma);
2332 Serge 3605
			if (ret)
3606
				return ret;
3607
		}
3608
	}
3609
 
4104 Serge 3610
	if (!i915_gem_obj_bound(obj, vm)) {
3243 Serge 3611
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3612
 
4104 Serge 3613
		ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3031 serge 3614
						  map_and_fenceable,
3615
						  nonblocking);
2332 Serge 3616
		if (ret)
3617
			return ret;
3243 Serge 3618
 
3619
		if (!dev_priv->mm.aliasing_ppgtt)
3620
			i915_gem_gtt_bind_object(obj, obj->cache_level);
2332 Serge 3621
	}
3622
 
3031 serge 3623
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3624
		i915_gem_gtt_bind_object(obj, obj->cache_level);
3625
 
3626
	obj->pin_count++;
2332 Serge 3627
	obj->pin_mappable |= map_and_fenceable;
3628
 
3629
	return 0;
3630
}
3631
 
2344 Serge 3632
void
3633
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3634
{
3635
	BUG_ON(obj->pin_count == 0);
4104 Serge 3636
	BUG_ON(!i915_gem_obj_bound_any(obj));
2332 Serge 3637
 
3031 serge 3638
	if (--obj->pin_count == 0)
2344 Serge 3639
		obj->pin_mappable = false;
3640
}
2332 Serge 3641
 
3031 serge 3642
int
3643
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3644
		   struct drm_file *file)
3645
{
3646
	struct drm_i915_gem_pin *args = data;
3647
	struct drm_i915_gem_object *obj;
3648
	int ret;
2332 Serge 3649
 
3031 serge 3650
	ret = i915_mutex_lock_interruptible(dev);
3651
	if (ret)
3652
		return ret;
2332 Serge 3653
 
3031 serge 3654
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3655
	if (&obj->base == NULL) {
3656
		ret = -ENOENT;
3657
		goto unlock;
3658
	}
2332 Serge 3659
 
3031 serge 3660
	if (obj->madv != I915_MADV_WILLNEED) {
3661
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3662
		ret = -EINVAL;
3663
		goto out;
3664
	}
2332 Serge 3665
 
3031 serge 3666
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3667
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3668
			  args->handle);
3669
		ret = -EINVAL;
3670
		goto out;
3671
	}
2332 Serge 3672
 
3243 Serge 3673
	if (obj->user_pin_count == 0) {
4104 Serge 3674
		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3031 serge 3675
		if (ret)
3676
			goto out;
3677
	}
2332 Serge 3678
 
3243 Serge 3679
	obj->user_pin_count++;
3680
	obj->pin_filp = file;
3681
 
4104 Serge 3682
	args->offset = i915_gem_obj_ggtt_offset(obj);
3031 serge 3683
out:
3684
	drm_gem_object_unreference(&obj->base);
3685
unlock:
3686
	mutex_unlock(&dev->struct_mutex);
3687
	return ret;
3688
}
2332 Serge 3689
 
3031 serge 3690
int
3691
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3692
		     struct drm_file *file)
3693
{
3694
	struct drm_i915_gem_pin *args = data;
3695
	struct drm_i915_gem_object *obj;
3696
	int ret;
2332 Serge 3697
 
3031 serge 3698
	ret = i915_mutex_lock_interruptible(dev);
3699
	if (ret)
3700
		return ret;
2332 Serge 3701
 
3031 serge 3702
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3703
	if (&obj->base == NULL) {
3704
		ret = -ENOENT;
3705
		goto unlock;
3706
	}
2332 Serge 3707
 
3031 serge 3708
	if (obj->pin_filp != file) {
3709
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3710
			  args->handle);
3711
		ret = -EINVAL;
3712
		goto out;
3713
	}
3714
	obj->user_pin_count--;
3715
	if (obj->user_pin_count == 0) {
3716
		obj->pin_filp = NULL;
3717
		i915_gem_object_unpin(obj);
3718
	}
2332 Serge 3719
 
3031 serge 3720
out:
3721
	drm_gem_object_unreference(&obj->base);
3722
unlock:
3723
	mutex_unlock(&dev->struct_mutex);
3724
	return ret;
3725
}
2332 Serge 3726
 
3031 serge 3727
int
3728
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3729
		    struct drm_file *file)
3730
{
3731
	struct drm_i915_gem_busy *args = data;
3732
	struct drm_i915_gem_object *obj;
3733
	int ret;
2332 Serge 3734
 
3031 serge 3735
	ret = i915_mutex_lock_interruptible(dev);
3736
	if (ret)
3737
		return ret;
2332 Serge 3738
 
4104 Serge 3739
        obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3031 serge 3740
	if (&obj->base == NULL) {
3741
		ret = -ENOENT;
3742
		goto unlock;
3743
	}
2332 Serge 3744
 
3031 serge 3745
	/* Count all active objects as busy, even if they are currently not used
3746
	 * by the gpu. Users of this interface expect objects to eventually
3747
	 * become non-busy without any further actions, therefore emit any
3748
	 * necessary flushes here.
3749
	 */
3750
	ret = i915_gem_object_flush_active(obj);
2332 Serge 3751
 
3031 serge 3752
	args->busy = obj->active;
3753
	if (obj->ring) {
3754
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3755
		args->busy |= intel_ring_flag(obj->ring) << 16;
3756
	}
2332 Serge 3757
 
3031 serge 3758
	drm_gem_object_unreference(&obj->base);
3759
unlock:
3760
	mutex_unlock(&dev->struct_mutex);
3761
	return ret;
3762
}
2332 Serge 3763
 
3031 serge 3764
int
3765
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3766
			struct drm_file *file_priv)
3767
{
3768
	return i915_gem_ring_throttle(dev, file_priv);
3769
}
2332 Serge 3770
 
3263 Serge 3771
#if 0
3772
 
3031 serge 3773
int
3774
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3775
		       struct drm_file *file_priv)
3776
{
3777
	struct drm_i915_gem_madvise *args = data;
3778
	struct drm_i915_gem_object *obj;
3779
	int ret;
2332 Serge 3780
 
3031 serge 3781
	switch (args->madv) {
3782
	case I915_MADV_DONTNEED:
3783
	case I915_MADV_WILLNEED:
3784
	    break;
3785
	default:
3786
	    return -EINVAL;
3787
	}
2332 Serge 3788
 
3031 serge 3789
	ret = i915_mutex_lock_interruptible(dev);
3790
	if (ret)
3791
		return ret;
2332 Serge 3792
 
3031 serge 3793
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3794
	if (&obj->base == NULL) {
3795
		ret = -ENOENT;
3796
		goto unlock;
3797
	}
2332 Serge 3798
 
3031 serge 3799
	if (obj->pin_count) {
3800
		ret = -EINVAL;
3801
		goto out;
3802
	}
2332 Serge 3803
 
3031 serge 3804
	if (obj->madv != __I915_MADV_PURGED)
3805
		obj->madv = args->madv;
2332 Serge 3806
 
3031 serge 3807
	/* if the object is no longer attached, discard its backing storage */
3808
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3809
		i915_gem_object_truncate(obj);
2332 Serge 3810
 
3031 serge 3811
	args->retained = obj->madv != __I915_MADV_PURGED;
2332 Serge 3812
 
3031 serge 3813
out:
3814
	drm_gem_object_unreference(&obj->base);
3815
unlock:
3816
	mutex_unlock(&dev->struct_mutex);
3817
	return ret;
3818
}
3819
#endif
2332 Serge 3820
 
3031 serge 3821
void i915_gem_object_init(struct drm_i915_gem_object *obj,
3822
			  const struct drm_i915_gem_object_ops *ops)
3823
{
4104 Serge 3824
	INIT_LIST_HEAD(&obj->global_list);
3031 serge 3825
	INIT_LIST_HEAD(&obj->ring_list);
3826
	INIT_LIST_HEAD(&obj->exec_list);
4104 Serge 3827
	INIT_LIST_HEAD(&obj->obj_exec_link);
3828
	INIT_LIST_HEAD(&obj->vma_list);
2332 Serge 3829
 
3031 serge 3830
	obj->ops = ops;
3831
 
3832
	obj->fence_reg = I915_FENCE_REG_NONE;
3833
	obj->madv = I915_MADV_WILLNEED;
3834
	/* Avoid an unnecessary call to unbind on the first bind. */
3835
	obj->map_and_fenceable = true;
3836
 
3837
	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3838
}
3839
 
3840
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3841
	.get_pages = i915_gem_object_get_pages_gtt,
3842
	.put_pages = i915_gem_object_put_pages_gtt,
3843
};
3844
 
2332 Serge 3845
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3846
						  size_t size)
3847
{
3848
	struct drm_i915_gem_object *obj;
3031 serge 3849
	struct address_space *mapping;
3480 Serge 3850
	gfp_t mask;
2340 Serge 3851
 
3746 Serge 3852
	obj = i915_gem_object_alloc(dev);
2332 Serge 3853
	if (obj == NULL)
3854
		return NULL;
3855
 
3856
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4104 Serge 3857
		i915_gem_object_free(obj);
2332 Serge 3858
		return NULL;
3859
	}
3860
 
3861
 
3031 serge 3862
	i915_gem_object_init(obj, &i915_gem_object_ops);
2332 Serge 3863
 
3864
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3865
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3866
 
3031 serge 3867
	if (HAS_LLC(dev)) {
3868
		/* On some devices, we can have the GPU use the LLC (the CPU
2332 Serge 3869
		 * cache) for about a 10% performance improvement
3870
		 * compared to uncached.  Graphics requests other than
3871
		 * display scanout are coherent with the CPU in
3872
		 * accessing this cache.  This means in this mode we
3873
		 * don't need to clflush on the CPU side, and on the
3874
		 * GPU side we only need to flush internal caches to
3875
		 * get data visible to the CPU.
3876
		 *
3877
		 * However, we maintain the display planes as UC, and so
3878
		 * need to rebind when first used as such.
3879
		 */
3880
		obj->cache_level = I915_CACHE_LLC;
3881
	} else
3882
		obj->cache_level = I915_CACHE_NONE;
3883
 
3884
	return obj;
3885
}
3886
 
2344 Serge 3887
int i915_gem_init_object(struct drm_gem_object *obj)
3888
{
3889
	BUG();
2332 Serge 3890
 
2344 Serge 3891
	return 0;
3892
}
2332 Serge 3893
 
3031 serge 3894
void i915_gem_free_object(struct drm_gem_object *gem_obj)
2344 Serge 3895
{
3031 serge 3896
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
2344 Serge 3897
	struct drm_device *dev = obj->base.dev;
3898
	drm_i915_private_t *dev_priv = dev->dev_private;
4104 Serge 3899
	struct i915_vma *vma, *next;
2332 Serge 3900
 
3031 serge 3901
	trace_i915_gem_object_destroy(obj);
3902
 
3903
 
3904
	obj->pin_count = 0;
4104 Serge 3905
	/* NB: 0 or 1 elements */
3906
	WARN_ON(!list_empty(&obj->vma_list) &&
3907
		!list_is_singular(&obj->vma_list));
3908
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3909
		int ret = i915_vma_unbind(vma);
3910
		if (WARN_ON(ret == -ERESTARTSYS)) {
3031 serge 3911
		bool was_interruptible;
3912
 
3913
		was_interruptible = dev_priv->mm.interruptible;
3914
		dev_priv->mm.interruptible = false;
3915
 
4104 Serge 3916
			WARN_ON(i915_vma_unbind(vma));
3031 serge 3917
 
3918
		dev_priv->mm.interruptible = was_interruptible;
2344 Serge 3919
	}
4104 Serge 3920
	}
2332 Serge 3921
 
4104 Serge 3922
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3923
	 * before progressing. */
3924
	if (obj->stolen)
3925
		i915_gem_object_unpin_pages(obj);
3926
 
3927
	if (WARN_ON(obj->pages_pin_count))
3031 serge 3928
	obj->pages_pin_count = 0;
3929
	i915_gem_object_put_pages(obj);
3930
//   i915_gem_object_free_mmap_offset(obj);
4104 Serge 3931
	i915_gem_object_release_stolen(obj);
2332 Serge 3932
 
3243 Serge 3933
	BUG_ON(obj->pages);
2332 Serge 3934
 
3031 serge 3935
 
3290 Serge 3936
    if(obj->base.filp != NULL)
3937
    {
3298 Serge 3938
//        printf("filp %p\n", obj->base.filp);
3290 Serge 3939
        shmem_file_delete(obj->base.filp);
3940
    }
3941
 
2344 Serge 3942
	drm_gem_object_release(&obj->base);
3943
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
2332 Serge 3944
 
2344 Serge 3945
	kfree(obj->bit_17);
4104 Serge 3946
	i915_gem_object_free(obj);
2344 Serge 3947
}
2332 Serge 3948
 
4104 Serge 3949
struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
3950
				     struct i915_address_space *vm)
3951
{
3952
	struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
3953
	if (vma == NULL)
3954
		return ERR_PTR(-ENOMEM);
3955
 
3956
	INIT_LIST_HEAD(&vma->vma_link);
3957
	INIT_LIST_HEAD(&vma->mm_list);
3958
	INIT_LIST_HEAD(&vma->exec_list);
3959
	vma->vm = vm;
3960
	vma->obj = obj;
3961
 
3962
	/* Keep GGTT vmas first to make debug easier */
3963
	if (i915_is_ggtt(vm))
3964
		list_add(&vma->vma_link, &obj->vma_list);
3965
	else
3966
		list_add_tail(&vma->vma_link, &obj->vma_list);
3967
 
3968
	return vma;
3969
}
3970
 
3971
void i915_gem_vma_destroy(struct i915_vma *vma)
3972
{
3973
	WARN_ON(vma->node.allocated);
3974
	list_del(&vma->vma_link);
3975
	kfree(vma);
3976
}
3977
 
3031 serge 3978
#if 0
3979
int
3980
i915_gem_idle(struct drm_device *dev)
2344 Serge 3981
{
3031 serge 3982
	drm_i915_private_t *dev_priv = dev->dev_private;
3983
	int ret;
2332 Serge 3984
 
4104 Serge 3985
	if (dev_priv->ums.mm_suspended) {
3031 serge 3986
		mutex_unlock(&dev->struct_mutex);
3987
		return 0;
3988
	}
2332 Serge 3989
 
3031 serge 3990
	ret = i915_gpu_idle(dev);
3991
	if (ret) {
3992
		mutex_unlock(&dev->struct_mutex);
3993
		return ret;
3994
	}
3995
	i915_gem_retire_requests(dev);
3996
 
3480 Serge 3997
	/* Under UMS, be paranoid and evict. */
3998
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3999
		i915_gem_evict_everything(dev);
4000
 
4001
	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3031 serge 4002
 
4003
	i915_kernel_lost_context(dev);
4004
	i915_gem_cleanup_ringbuffer(dev);
4005
 
4006
	/* Cancel the retire work handler, which should be idle now. */
3263 Serge 4007
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3031 serge 4008
 
4009
	return 0;
2344 Serge 4010
}
3031 serge 4011
#endif
2332 Serge 4012
 
3031 serge 4013
void i915_gem_l3_remap(struct drm_device *dev)
4014
{
4015
	drm_i915_private_t *dev_priv = dev->dev_private;
4016
	u32 misccpctl;
4017
	int i;
2332 Serge 4018
 
3480 Serge 4019
	if (!HAS_L3_GPU_CACHE(dev))
3031 serge 4020
		return;
2332 Serge 4021
 
3243 Serge 4022
	if (!dev_priv->l3_parity.remap_info)
3031 serge 4023
		return;
2332 Serge 4024
 
3031 serge 4025
	misccpctl = I915_READ(GEN7_MISCCPCTL);
4026
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4027
	POSTING_READ(GEN7_MISCCPCTL);
2332 Serge 4028
 
3031 serge 4029
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4030
		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3243 Serge 4031
		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3031 serge 4032
			DRM_DEBUG("0x%x was already programmed to %x\n",
4033
				  GEN7_L3LOG_BASE + i, remap);
3243 Serge 4034
		if (remap && !dev_priv->l3_parity.remap_info[i/4])
3031 serge 4035
			DRM_DEBUG_DRIVER("Clearing remapped register\n");
3243 Serge 4036
		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3031 serge 4037
	}
2332 Serge 4038
 
3031 serge 4039
	/* Make sure all the writes land before disabling dop clock gating */
4040
	POSTING_READ(GEN7_L3LOG_BASE);
2332 Serge 4041
 
3031 serge 4042
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4043
}
2332 Serge 4044
 
3031 serge 4045
void i915_gem_init_swizzling(struct drm_device *dev)
4046
{
4047
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 4048
 
3031 serge 4049
	if (INTEL_INFO(dev)->gen < 5 ||
4050
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4051
		return;
2332 Serge 4052
 
3031 serge 4053
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4054
				 DISP_TILE_SURFACE_SWIZZLING);
2332 Serge 4055
 
3031 serge 4056
	if (IS_GEN5(dev))
4057
		return;
2344 Serge 4058
 
3031 serge 4059
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4060
	if (IS_GEN6(dev))
4061
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3480 Serge 4062
	else if (IS_GEN7(dev))
4063
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3031 serge 4064
	else
3480 Serge 4065
		BUG();
3031 serge 4066
}
4067
 
4068
static bool
4069
intel_enable_blt(struct drm_device *dev)
4070
{
4071
	if (!HAS_BLT(dev))
4072
		return false;
4073
 
4074
	/* The blitter was dysfunctional on early prototypes */
4075
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4076
		DRM_INFO("BLT not supported on this pre-production hardware;"
4077
			 " graphics performance will be degraded.\n");
4078
		return false;
4079
	}
4080
 
4081
	return true;
4082
}
4083
 
3480 Serge 4084
static int i915_gem_init_rings(struct drm_device *dev)
2332 Serge 4085
{
3480 Serge 4086
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 4087
	int ret;
2351 Serge 4088
 
2332 Serge 4089
	ret = intel_init_render_ring_buffer(dev);
4090
	if (ret)
4091
		return ret;
4092
 
4093
    if (HAS_BSD(dev)) {
4094
		ret = intel_init_bsd_ring_buffer(dev);
4095
		if (ret)
4096
			goto cleanup_render_ring;
4097
	}
4098
 
3031 serge 4099
	if (intel_enable_blt(dev)) {
2332 Serge 4100
		ret = intel_init_blt_ring_buffer(dev);
4101
		if (ret)
4102
			goto cleanup_bsd_ring;
4103
	}
4104
 
4104 Serge 4105
	if (HAS_VEBOX(dev)) {
4106
		ret = intel_init_vebox_ring_buffer(dev);
4107
		if (ret)
4108
			goto cleanup_blt_ring;
4109
	}
4110
 
4111
 
3480 Serge 4112
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4113
	if (ret)
4104 Serge 4114
		goto cleanup_vebox_ring;
2351 Serge 4115
 
2332 Serge 4116
	return 0;
4117
 
4104 Serge 4118
cleanup_vebox_ring:
4119
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
3480 Serge 4120
cleanup_blt_ring:
4121
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
2332 Serge 4122
cleanup_bsd_ring:
4123
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4124
cleanup_render_ring:
4125
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3480 Serge 4126
 
2332 Serge 4127
	return ret;
4128
}
4129
 
3480 Serge 4130
int
4131
i915_gem_init_hw(struct drm_device *dev)
3031 serge 4132
{
3480 Serge 4133
	drm_i915_private_t *dev_priv = dev->dev_private;
4134
	int ret;
3031 serge 4135
 
3480 Serge 4136
	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4137
		return -EIO;
3031 serge 4138
 
4104 Serge 4139
	if (dev_priv->ellc_size)
4140
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
3480 Serge 4141
 
3746 Serge 4142
	if (HAS_PCH_NOP(dev)) {
4143
		u32 temp = I915_READ(GEN7_MSG_CTL);
4144
		temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4145
		I915_WRITE(GEN7_MSG_CTL, temp);
4146
	}
4147
 
3480 Serge 4148
	i915_gem_l3_remap(dev);
4149
 
4150
	i915_gem_init_swizzling(dev);
4151
 
4152
	ret = i915_gem_init_rings(dev);
4153
	if (ret)
4154
		return ret;
4155
 
4156
	/*
4157
	 * XXX: There was some w/a described somewhere suggesting loading
4158
	 * contexts before PPGTT.
4159
	 */
4160
	i915_gem_context_init(dev);
3746 Serge 4161
	if (dev_priv->mm.aliasing_ppgtt) {
4162
		ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4163
		if (ret) {
4164
			i915_gem_cleanup_aliasing_ppgtt(dev);
4165
			DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4166
		}
4167
	}
3480 Serge 4168
 
4169
	return 0;
3031 serge 4170
}
4171
 
4172
int i915_gem_init(struct drm_device *dev)
4173
{
4174
	struct drm_i915_private *dev_priv = dev->dev_private;
4175
	int ret;
4176
 
4177
	mutex_lock(&dev->struct_mutex);
3746 Serge 4178
 
4179
	if (IS_VALLEYVIEW(dev)) {
4180
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4181
		I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4182
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4183
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4184
	}
4185
 
3480 Serge 4186
	i915_gem_init_global_gtt(dev);
3746 Serge 4187
 
3031 serge 4188
	ret = i915_gem_init_hw(dev);
4189
	mutex_unlock(&dev->struct_mutex);
4190
	if (ret) {
4191
		i915_gem_cleanup_aliasing_ppgtt(dev);
4192
		return ret;
4193
	}
4194
 
3746 Serge 4195
 
3031 serge 4196
    return 0;
4197
}
4198
 
2332 Serge 4199
void
4200
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4201
{
4202
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 4203
	struct intel_ring_buffer *ring;
2332 Serge 4204
	int i;
4205
 
3031 serge 4206
	for_each_ring(ring, dev_priv, i)
4207
		intel_cleanup_ring_buffer(ring);
2332 Serge 4208
}
4209
 
3031 serge 4210
#if 0
4211
 
2332 Serge 4212
int
4213
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4214
		       struct drm_file *file_priv)
4215
{
4104 Serge 4216
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4217
	int ret;
2332 Serge 4218
 
4219
	if (drm_core_check_feature(dev, DRIVER_MODESET))
4220
		return 0;
4221
 
3480 Serge 4222
	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
2332 Serge 4223
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3480 Serge 4224
		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
2332 Serge 4225
	}
4226
 
4227
	mutex_lock(&dev->struct_mutex);
4104 Serge 4228
	dev_priv->ums.mm_suspended = 0;
2332 Serge 4229
 
3031 serge 4230
	ret = i915_gem_init_hw(dev);
2332 Serge 4231
	if (ret != 0) {
4232
		mutex_unlock(&dev->struct_mutex);
4233
		return ret;
4234
	}
4235
 
4104 Serge 4236
	BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
2332 Serge 4237
	mutex_unlock(&dev->struct_mutex);
4238
 
4239
	ret = drm_irq_install(dev);
4240
	if (ret)
4241
		goto cleanup_ringbuffer;
4242
 
4243
	return 0;
4244
 
4245
cleanup_ringbuffer:
4246
	mutex_lock(&dev->struct_mutex);
4247
	i915_gem_cleanup_ringbuffer(dev);
4104 Serge 4248
	dev_priv->ums.mm_suspended = 1;
2332 Serge 4249
	mutex_unlock(&dev->struct_mutex);
4250
 
4251
	return ret;
4252
}
4253
 
4254
int
4255
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4256
		       struct drm_file *file_priv)
4257
{
4104 Serge 4258
	struct drm_i915_private *dev_priv = dev->dev_private;
4259
	int ret;
4260
 
2332 Serge 4261
	if (drm_core_check_feature(dev, DRIVER_MODESET))
4262
		return 0;
4263
 
4264
	drm_irq_uninstall(dev);
4104 Serge 4265
 
4266
	mutex_lock(&dev->struct_mutex);
4267
	ret =  i915_gem_idle(dev);
4268
 
4269
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
4270
	 * We need to replace this with a semaphore, or something.
4271
	 * And not confound ums.mm_suspended!
4272
	 */
4273
	if (ret != 0)
4274
		dev_priv->ums.mm_suspended = 1;
4275
	mutex_unlock(&dev->struct_mutex);
4276
 
4277
	return ret;
2332 Serge 4278
}
4279
 
4280
void
4281
i915_gem_lastclose(struct drm_device *dev)
4282
{
4283
	int ret;
4284
 
4285
	if (drm_core_check_feature(dev, DRIVER_MODESET))
4286
		return;
4287
 
4104 Serge 4288
	mutex_lock(&dev->struct_mutex);
2332 Serge 4289
	ret = i915_gem_idle(dev);
4290
	if (ret)
4291
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4104 Serge 4292
	mutex_unlock(&dev->struct_mutex);
2332 Serge 4293
}
4294
#endif
4295
 
4296
static void
2326 Serge 4297
init_ring_lists(struct intel_ring_buffer *ring)
4298
{
4299
    INIT_LIST_HEAD(&ring->active_list);
4300
    INIT_LIST_HEAD(&ring->request_list);
4301
}
4302
 
4104 Serge 4303
static void i915_init_vm(struct drm_i915_private *dev_priv,
4304
			 struct i915_address_space *vm)
4305
{
4306
	vm->dev = dev_priv->dev;
4307
	INIT_LIST_HEAD(&vm->active_list);
4308
	INIT_LIST_HEAD(&vm->inactive_list);
4309
	INIT_LIST_HEAD(&vm->global_link);
4310
	list_add(&vm->global_link, &dev_priv->vm_list);
4311
}
4312
 
2326 Serge 4313
void
4314
i915_gem_load(struct drm_device *dev)
4315
{
3480 Serge 4316
	drm_i915_private_t *dev_priv = dev->dev_private;
2326 Serge 4317
    int i;
4318
 
4104 Serge 4319
	INIT_LIST_HEAD(&dev_priv->vm_list);
4320
	i915_init_vm(dev_priv, &dev_priv->gtt.base);
4321
 
3031 serge 4322
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4323
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
2326 Serge 4324
    INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4325
    for (i = 0; i < I915_NUM_RINGS; i++)
4326
        init_ring_lists(&dev_priv->ring[i]);
2342 Serge 4327
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
2326 Serge 4328
        INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
2360 Serge 4329
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4330
			  i915_gem_retire_work_handler);
3480 Serge 4331
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
2326 Serge 4332
 
4333
    /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4334
    if (IS_GEN3(dev)) {
3031 serge 4335
		I915_WRITE(MI_ARB_STATE,
4336
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
2326 Serge 4337
    }
4338
 
4339
    dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4340
 
3746 Serge 4341
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4342
		dev_priv->num_fence_regs = 32;
4343
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
2326 Serge 4344
        dev_priv->num_fence_regs = 16;
4345
    else
4346
        dev_priv->num_fence_regs = 8;
4347
 
4348
    /* Initialize fence registers to zero */
3746 Serge 4349
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4350
	i915_gem_restore_fences(dev);
2326 Serge 4351
 
4352
    i915_gem_detect_bit_6_swizzle(dev);
4353
 
4354
    dev_priv->mm.interruptible = true;
4355
 
4356
}
4357
 
4104 Serge 4358
#if 0
4359
/*
4360
 * Create a physically contiguous memory object for this object
4361
 * e.g. for cursor + overlay regs
4362
 */
4363
static int i915_gem_init_phys_object(struct drm_device *dev,
4364
				     int id, int size, int align)
4365
{
4366
	drm_i915_private_t *dev_priv = dev->dev_private;
4367
	struct drm_i915_gem_phys_object *phys_obj;
4368
	int ret;
2326 Serge 4369
 
4104 Serge 4370
	if (dev_priv->mm.phys_objs[id - 1] || !size)
4371
		return 0;
4372
 
4373
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4374
	if (!phys_obj)
4375
		return -ENOMEM;
4376
 
4377
	phys_obj->id = id;
4378
 
4379
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4380
	if (!phys_obj->handle) {
4381
		ret = -ENOMEM;
4382
		goto kfree_obj;
4383
	}
4384
#ifdef CONFIG_X86
4385
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4386
#endif
4387
 
4388
	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4389
 
4390
	return 0;
4391
kfree_obj:
4392
	kfree(phys_obj);
4393
	return ret;
4394
}
4395
 
4396
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4397
{
4398
	drm_i915_private_t *dev_priv = dev->dev_private;
4399
	struct drm_i915_gem_phys_object *phys_obj;
4400
 
4401
	if (!dev_priv->mm.phys_objs[id - 1])
4402
		return;
4403
 
4404
	phys_obj = dev_priv->mm.phys_objs[id - 1];
4405
	if (phys_obj->cur_obj) {
4406
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4407
	}
4408
 
4409
#ifdef CONFIG_X86
4410
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4411
#endif
4412
	drm_pci_free(dev, phys_obj->handle);
4413
	kfree(phys_obj);
4414
	dev_priv->mm.phys_objs[id - 1] = NULL;
4415
}
4416
 
4417
void i915_gem_free_all_phys_object(struct drm_device *dev)
4418
{
4419
	int i;
4420
 
4421
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4422
		i915_gem_free_phys_object(dev, i);
4423
}
4424
 
4425
void i915_gem_detach_phys_object(struct drm_device *dev,
4426
				 struct drm_i915_gem_object *obj)
4427
{
4428
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4429
	char *vaddr;
4430
	int i;
4431
	int page_count;
4432
 
4433
	if (!obj->phys_obj)
4434
		return;
4435
	vaddr = obj->phys_obj->handle->vaddr;
4436
 
4437
	page_count = obj->base.size / PAGE_SIZE;
4438
	for (i = 0; i < page_count; i++) {
4439
		struct page *page = shmem_read_mapping_page(mapping, i);
4440
		if (!IS_ERR(page)) {
4441
			char *dst = kmap_atomic(page);
4442
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4443
			kunmap_atomic(dst);
4444
 
4445
			drm_clflush_pages(&page, 1);
4446
 
4447
			set_page_dirty(page);
4448
			mark_page_accessed(page);
4449
			page_cache_release(page);
4450
		}
4451
	}
4452
	i915_gem_chipset_flush(dev);
4453
 
4454
	obj->phys_obj->cur_obj = NULL;
4455
	obj->phys_obj = NULL;
4456
}
4457
 
4458
int
4459
i915_gem_attach_phys_object(struct drm_device *dev,
4460
			    struct drm_i915_gem_object *obj,
4461
			    int id,
4462
			    int align)
4463
{
4464
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4465
	drm_i915_private_t *dev_priv = dev->dev_private;
4466
	int ret = 0;
4467
	int page_count;
4468
	int i;
4469
 
4470
	if (id > I915_MAX_PHYS_OBJECT)
4471
		return -EINVAL;
4472
 
4473
	if (obj->phys_obj) {
4474
		if (obj->phys_obj->id == id)
4475
			return 0;
4476
		i915_gem_detach_phys_object(dev, obj);
4477
	}
4478
 
4479
	/* create a new object */
4480
	if (!dev_priv->mm.phys_objs[id - 1]) {
4481
		ret = i915_gem_init_phys_object(dev, id,
4482
						obj->base.size, align);
4483
		if (ret) {
4484
			DRM_ERROR("failed to init phys object %d size: %zu\n",
4485
				  id, obj->base.size);
4486
			return ret;
4487
		}
4488
	}
4489
 
4490
	/* bind to the object */
4491
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4492
	obj->phys_obj->cur_obj = obj;
4493
 
4494
	page_count = obj->base.size / PAGE_SIZE;
4495
 
4496
	for (i = 0; i < page_count; i++) {
4497
		struct page *page;
4498
		char *dst, *src;
4499
 
4500
		page = shmem_read_mapping_page(mapping, i);
4501
		if (IS_ERR(page))
4502
			return PTR_ERR(page);
4503
 
4504
		src = kmap_atomic(page);
4505
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4506
		memcpy(dst, src, PAGE_SIZE);
4507
		kunmap_atomic(src);
4508
 
4509
		mark_page_accessed(page);
4510
		page_cache_release(page);
4511
	}
4512
 
4513
	return 0;
4514
}
4515
 
4516
static int
4517
i915_gem_phys_pwrite(struct drm_device *dev,
4518
		     struct drm_i915_gem_object *obj,
4519
		     struct drm_i915_gem_pwrite *args,
4520
		     struct drm_file *file_priv)
4521
{
4522
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4523
	char __user *user_data = to_user_ptr(args->data_ptr);
4524
 
4525
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4526
		unsigned long unwritten;
4527
 
4528
		/* The physical object once assigned is fixed for the lifetime
4529
		 * of the obj, so we can safely drop the lock and continue
4530
		 * to access vaddr.
4531
		 */
4532
		mutex_unlock(&dev->struct_mutex);
4533
		unwritten = copy_from_user(vaddr, user_data, args->size);
4534
		mutex_lock(&dev->struct_mutex);
4535
		if (unwritten)
4536
			return -EFAULT;
4537
	}
4538
 
4539
	i915_gem_chipset_flush(dev);
4540
	return 0;
4541
}
4542
 
4543
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4544
{
4545
	struct drm_i915_file_private *file_priv = file->driver_priv;
4546
 
4547
	/* Clean up our request list when the client is going away, so that
4548
	 * later retire_requests won't dereference our soon-to-be-gone
4549
	 * file_priv.
4550
	 */
4551
	spin_lock(&file_priv->mm.lock);
4552
	while (!list_empty(&file_priv->mm.request_list)) {
4553
		struct drm_i915_gem_request *request;
4554
 
4555
		request = list_first_entry(&file_priv->mm.request_list,
4556
					   struct drm_i915_gem_request,
4557
					   client_list);
4558
		list_del(&request->client_list);
4559
		request->file_priv = NULL;
4560
	}
4561
	spin_unlock(&file_priv->mm.lock);
4562
}
4563
#endif
4564
 
4565
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4566
{
4567
	if (!mutex_is_locked(mutex))
4568
		return false;
4569
 
4570
#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4571
	return mutex->owner == task;
4572
#else
4573
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
4574
	return false;
4575
#endif
4576
}
4577
 
4578
/* All the new VM stuff */
4579
unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4580
				  struct i915_address_space *vm)
4581
{
4582
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4583
	struct i915_vma *vma;
4584
 
4585
	if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4586
		vm = &dev_priv->gtt.base;
4587
 
4588
	BUG_ON(list_empty(&o->vma_list));
4589
	list_for_each_entry(vma, &o->vma_list, vma_link) {
4590
		if (vma->vm == vm)
4591
			return vma->node.start;
4592
 
4593
	}
4594
    return 0; //-1;
4595
}
4596
 
4597
bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4598
			struct i915_address_space *vm)
4599
{
4600
	struct i915_vma *vma;
4601
 
4602
	list_for_each_entry(vma, &o->vma_list, vma_link)
4603
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4604
			return true;
4605
 
4606
	return false;
4607
}
4608
 
4609
bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4610
{
4611
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4612
	struct i915_address_space *vm;
4613
 
4614
	list_for_each_entry(vm, &dev_priv->vm_list, global_link)
4615
		if (i915_gem_obj_bound(o, vm))
4616
			return true;
4617
 
4618
	return false;
4619
}
4620
 
4621
unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4622
				struct i915_address_space *vm)
4623
{
4624
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4625
	struct i915_vma *vma;
4626
 
4627
	if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4628
		vm = &dev_priv->gtt.base;
4629
 
4630
	BUG_ON(list_empty(&o->vma_list));
4631
 
4632
	list_for_each_entry(vma, &o->vma_list, vma_link)
4633
		if (vma->vm == vm)
4634
			return vma->node.size;
4635
 
4636
	return 0;
4637
}
4638
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4639
				     struct i915_address_space *vm)
4640
{
4641
	struct i915_vma *vma;
4642
	list_for_each_entry(vma, &obj->vma_list, vma_link)
4643
		if (vma->vm == vm)
4644
			return vma;
4645
 
4646
	return NULL;
4647
}
4648
 
4649
struct i915_vma *
4650
i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4651
				  struct i915_address_space *vm)
4652
{
4653
	struct i915_vma *vma;
4654
 
4655
	vma = i915_gem_obj_to_vma(obj, vm);
4656
	if (!vma)
4657
		vma = i915_gem_vma_create(obj, vm);
4658
 
4659
	return vma;
4660
}