Subversion Repositories Kolibri OS

Rev

Rev 4246 | Rev 4293 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2326 Serge 1
/*
2
 * Copyright © 2008 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eric Anholt 
25
 *
26
 */
27
 
3031 serge 28
#include 
4280 Serge 29
#include 
3031 serge 30
#include 
2326 Serge 31
#include "i915_drv.h"
2351 Serge 32
#include "i915_trace.h"
2326 Serge 33
#include "intel_drv.h"
3260 Serge 34
#include 
2330 Serge 35
#include 
2326 Serge 36
//#include 
3746 Serge 37
#include 
2326 Serge 38
#include 
39
 
2344 Serge 40
extern int x86_clflush_size;
2332 Serge 41
 
3263 Serge 42
#define PROT_READ       0x1             /* page can be read */
43
#define PROT_WRITE      0x2             /* page can be written */
44
#define MAP_SHARED      0x01            /* Share changes */
45
 
2344 Serge 46
#undef mb
47
#undef rmb
48
#undef wmb
49
#define mb() asm volatile("mfence")
50
#define rmb() asm volatile ("lfence")
51
#define wmb() asm volatile ("sfence")
52
 
3266 Serge 53
struct drm_i915_gem_object *get_fb_obj();
54
 
3263 Serge 55
unsigned long vm_mmap(struct file *file, unsigned long addr,
56
         unsigned long len, unsigned long prot,
57
         unsigned long flag, unsigned long offset);
58
 
2344 Serge 59
static inline void clflush(volatile void *__p)
60
{
61
    asm volatile("clflush %0" : "+m" (*(volatile char*)__p));
62
}
63
 
2332 Serge 64
#define MAX_ERRNO       4095
65
 
66
#define IS_ERR_VALUE(x) unlikely((x) >= (unsigned long)-MAX_ERRNO)
67
 
68
 
2326 Serge 69
#define I915_EXEC_CONSTANTS_MASK        (3<<6)
70
#define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
71
#define I915_EXEC_CONSTANTS_ABSOLUTE    (1<<6)
72
#define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
73
 
2332 Serge 74
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
4104 Serge 75
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
76
						   bool force);
77
static __must_check int
78
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
79
			   struct i915_address_space *vm,
2332 Serge 80
						    unsigned alignment,
3031 serge 81
						    bool map_and_fenceable,
82
						    bool nonblocking);
2332 Serge 83
static int i915_gem_phys_pwrite(struct drm_device *dev,
84
				struct drm_i915_gem_object *obj,
85
				struct drm_i915_gem_pwrite *args,
86
				struct drm_file *file);
2326 Serge 87
 
3031 serge 88
static void i915_gem_write_fence(struct drm_device *dev, int reg,
89
				 struct drm_i915_gem_object *obj);
90
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
91
					 struct drm_i915_fence_reg *fence,
92
					 bool enable);
2332 Serge 93
 
3031 serge 94
static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
4104 Serge 95
static long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3031 serge 96
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
97
 
4104 Serge 98
static bool cpu_cache_is_coherent(struct drm_device *dev,
99
				  enum i915_cache_level level)
100
{
101
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
102
}
103
 
104
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
105
{
106
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
107
		return true;
108
 
109
	return obj->pin_display;
110
}
111
 
3031 serge 112
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
113
{
114
	if (obj->tiling_mode)
115
		i915_gem_release_mmap(obj);
116
 
117
	/* As we do not have an associated fence register, we will force
118
	 * a tiling change if we ever need to acquire one.
119
	 */
120
	obj->fence_dirty = false;
121
	obj->fence_reg = I915_FENCE_REG_NONE;
122
}
123
 
2332 Serge 124
/* some bookkeeping */
125
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
126
				  size_t size)
127
{
4104 Serge 128
	spin_lock(&dev_priv->mm.object_stat_lock);
2332 Serge 129
	dev_priv->mm.object_count++;
130
	dev_priv->mm.object_memory += size;
4104 Serge 131
	spin_unlock(&dev_priv->mm.object_stat_lock);
2332 Serge 132
}
133
 
134
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
135
				     size_t size)
136
{
4104 Serge 137
	spin_lock(&dev_priv->mm.object_stat_lock);
2332 Serge 138
	dev_priv->mm.object_count--;
139
	dev_priv->mm.object_memory -= size;
4104 Serge 140
	spin_unlock(&dev_priv->mm.object_stat_lock);
2332 Serge 141
}
142
 
143
static int
3480 Serge 144
i915_gem_wait_for_error(struct i915_gpu_error *error)
2332 Serge 145
{
146
	int ret;
147
 
3480 Serge 148
#define EXIT_COND (!i915_reset_in_progress(error))
149
	if (EXIT_COND)
2332 Serge 150
		return 0;
3255 Serge 151
#if 0
3031 serge 152
	/*
153
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
154
	 * userspace. If it takes that long something really bad is going on and
155
	 * we should simply try to bail out and fail as gracefully as possible.
156
	 */
3480 Serge 157
	ret = wait_event_interruptible_timeout(error->reset_queue,
158
					       EXIT_COND,
159
					       10*HZ);
3031 serge 160
	if (ret == 0) {
161
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
162
		return -EIO;
163
	} else if (ret < 0) {
2332 Serge 164
		return ret;
3031 serge 165
	}
2332 Serge 166
 
3255 Serge 167
#endif
3480 Serge 168
#undef EXIT_COND
3255 Serge 169
 
2332 Serge 170
	return 0;
171
}
172
 
173
int i915_mutex_lock_interruptible(struct drm_device *dev)
174
{
3480 Serge 175
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 176
	int ret;
177
 
3480 Serge 178
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
2332 Serge 179
	if (ret)
180
		return ret;
181
 
3480 Serge 182
	ret = mutex_lock_interruptible(&dev->struct_mutex);
183
	if (ret)
184
		return ret;
2332 Serge 185
 
186
	WARN_ON(i915_verify_lists(dev));
187
	return 0;
188
}
189
 
190
static inline bool
191
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
192
{
4104 Serge 193
	return i915_gem_obj_bound_any(obj) && !obj->active;
2332 Serge 194
}
195
 
196
 
197
#if 0
198
 
199
int
200
i915_gem_init_ioctl(struct drm_device *dev, void *data,
201
		    struct drm_file *file)
202
{
3480 Serge 203
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 204
	struct drm_i915_gem_init *args = data;
205
 
3031 serge 206
	if (drm_core_check_feature(dev, DRIVER_MODESET))
207
		return -ENODEV;
208
 
2332 Serge 209
	if (args->gtt_start >= args->gtt_end ||
210
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
211
		return -EINVAL;
212
 
3031 serge 213
	/* GEM with user mode setting was never supported on ilk and later. */
214
	if (INTEL_INFO(dev)->gen >= 5)
215
		return -ENODEV;
216
 
2332 Serge 217
	mutex_lock(&dev->struct_mutex);
3480 Serge 218
	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
219
				  args->gtt_end);
220
	dev_priv->gtt.mappable_end = args->gtt_end;
2332 Serge 221
	mutex_unlock(&dev->struct_mutex);
222
 
223
	return 0;
224
}
2351 Serge 225
#endif
2332 Serge 226
 
227
int
228
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
229
			    struct drm_file *file)
230
{
231
	struct drm_i915_private *dev_priv = dev->dev_private;
232
	struct drm_i915_gem_get_aperture *args = data;
233
	struct drm_i915_gem_object *obj;
234
	size_t pinned;
235
 
236
	pinned = 0;
237
	mutex_lock(&dev->struct_mutex);
4104 Serge 238
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
3031 serge 239
		if (obj->pin_count)
4104 Serge 240
			pinned += i915_gem_obj_ggtt_size(obj);
2332 Serge 241
	mutex_unlock(&dev->struct_mutex);
242
 
4104 Serge 243
	args->aper_size = dev_priv->gtt.base.total;
2342 Serge 244
	args->aper_available_size = args->aper_size - pinned;
2332 Serge 245
 
246
	return 0;
247
}
248
 
3480 Serge 249
void *i915_gem_object_alloc(struct drm_device *dev)
250
{
251
	struct drm_i915_private *dev_priv = dev->dev_private;
252
	return kmalloc(sizeof(struct drm_i915_gem_object), 0);
253
}
254
 
255
void i915_gem_object_free(struct drm_i915_gem_object *obj)
256
{
257
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
258
	kfree(obj);
259
}
260
 
3031 serge 261
static int
262
i915_gem_create(struct drm_file *file,
2332 Serge 263
		struct drm_device *dev,
264
		uint64_t size,
265
		uint32_t *handle_p)
266
{
267
	struct drm_i915_gem_object *obj;
268
	int ret;
269
	u32 handle;
270
 
271
	size = roundup(size, PAGE_SIZE);
2342 Serge 272
	if (size == 0)
273
		return -EINVAL;
2332 Serge 274
 
275
	/* Allocate the new object */
276
	obj = i915_gem_alloc_object(dev, size);
277
	if (obj == NULL)
278
		return -ENOMEM;
279
 
280
	ret = drm_gem_handle_create(file, &obj->base, &handle);
4104 Serge 281
	/* drop reference from allocate - handle holds it now */
282
	drm_gem_object_unreference_unlocked(&obj->base);
283
	if (ret)
2332 Serge 284
		return ret;
285
 
286
	*handle_p = handle;
287
	return 0;
288
}
289
 
290
int
291
i915_gem_dumb_create(struct drm_file *file,
292
		     struct drm_device *dev,
293
		     struct drm_mode_create_dumb *args)
294
{
295
	/* have to work out size/pitch and return them */
296
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
297
	args->size = args->pitch * args->height;
298
	return i915_gem_create(file, dev,
299
			       args->size, &args->handle);
300
}
301
 
2326 Serge 302
/**
2332 Serge 303
 * Creates a new mm object and returns a handle to it.
304
 */
305
int
306
i915_gem_create_ioctl(struct drm_device *dev, void *data,
307
		      struct drm_file *file)
308
{
309
	struct drm_i915_gem_create *args = data;
3031 serge 310
 
2332 Serge 311
	return i915_gem_create(file, dev,
312
			       args->size, &args->handle);
313
}
314
 
315
 
3260 Serge 316
#if 0
2332 Serge 317
 
3031 serge 318
static inline int
319
__copy_to_user_swizzled(char __user *cpu_vaddr,
320
			const char *gpu_vaddr, int gpu_offset,
2332 Serge 321
		int length)
322
{
3031 serge 323
	int ret, cpu_offset = 0;
2332 Serge 324
 
3031 serge 325
	while (length > 0) {
326
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
327
		int this_length = min(cacheline_end - gpu_offset, length);
328
		int swizzled_gpu_offset = gpu_offset ^ 64;
2332 Serge 329
 
3031 serge 330
		ret = __copy_to_user(cpu_vaddr + cpu_offset,
331
				     gpu_vaddr + swizzled_gpu_offset,
332
				     this_length);
333
		if (ret)
334
			return ret + length;
2332 Serge 335
 
3031 serge 336
		cpu_offset += this_length;
337
		gpu_offset += this_length;
338
		length -= this_length;
339
	}
340
 
341
	return 0;
2332 Serge 342
}
343
 
3031 serge 344
static inline int
345
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
346
			  const char __user *cpu_vaddr,
347
			  int length)
2332 Serge 348
{
3031 serge 349
	int ret, cpu_offset = 0;
2332 Serge 350
 
351
	while (length > 0) {
352
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
353
		int this_length = min(cacheline_end - gpu_offset, length);
354
		int swizzled_gpu_offset = gpu_offset ^ 64;
355
 
3031 serge 356
		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
2332 Serge 357
			       cpu_vaddr + cpu_offset,
358
			       this_length);
3031 serge 359
		if (ret)
360
			return ret + length;
361
 
2332 Serge 362
		cpu_offset += this_length;
363
		gpu_offset += this_length;
364
		length -= this_length;
365
	}
366
 
3031 serge 367
	return 0;
2332 Serge 368
}
369
 
3031 serge 370
/* Per-page copy function for the shmem pread fastpath.
371
 * Flushes invalid cachelines before reading the target if
372
 * needs_clflush is set. */
2332 Serge 373
static int
3031 serge 374
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
375
		 char __user *user_data,
376
		 bool page_do_bit17_swizzling, bool needs_clflush)
377
{
378
		char *vaddr;
379
		int ret;
380
 
381
	if (unlikely(page_do_bit17_swizzling))
382
		return -EINVAL;
383
 
384
		vaddr = kmap_atomic(page);
385
	if (needs_clflush)
386
		drm_clflush_virt_range(vaddr + shmem_page_offset,
387
				       page_length);
388
		ret = __copy_to_user_inatomic(user_data,
389
				      vaddr + shmem_page_offset,
390
					      page_length);
391
		kunmap_atomic(vaddr);
392
 
393
	return ret ? -EFAULT : 0;
394
}
395
 
396
static void
397
shmem_clflush_swizzled_range(char *addr, unsigned long length,
398
			     bool swizzled)
399
{
400
	if (unlikely(swizzled)) {
401
		unsigned long start = (unsigned long) addr;
402
		unsigned long end = (unsigned long) addr + length;
403
 
404
		/* For swizzling simply ensure that we always flush both
405
		 * channels. Lame, but simple and it works. Swizzled
406
		 * pwrite/pread is far from a hotpath - current userspace
407
		 * doesn't use it at all. */
408
		start = round_down(start, 128);
409
		end = round_up(end, 128);
410
 
411
		drm_clflush_virt_range((void *)start, end - start);
412
	} else {
413
		drm_clflush_virt_range(addr, length);
414
	}
415
 
416
}
417
 
418
/* Only difference to the fast-path function is that this can handle bit17
419
 * and uses non-atomic copy and kmap functions. */
420
static int
421
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
422
		 char __user *user_data,
423
		 bool page_do_bit17_swizzling, bool needs_clflush)
424
{
425
	char *vaddr;
426
	int ret;
427
 
428
	vaddr = kmap(page);
429
	if (needs_clflush)
430
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
431
					     page_length,
432
					     page_do_bit17_swizzling);
433
 
434
	if (page_do_bit17_swizzling)
435
		ret = __copy_to_user_swizzled(user_data,
436
					      vaddr, shmem_page_offset,
437
					      page_length);
438
	else
439
		ret = __copy_to_user(user_data,
440
				     vaddr + shmem_page_offset,
441
				     page_length);
442
	kunmap(page);
443
 
444
	return ret ? - EFAULT : 0;
445
}
446
 
447
static int
448
i915_gem_shmem_pread(struct drm_device *dev,
2332 Serge 449
			  struct drm_i915_gem_object *obj,
450
			  struct drm_i915_gem_pread *args,
451
			  struct drm_file *file)
452
{
3031 serge 453
	char __user *user_data;
2332 Serge 454
	ssize_t remain;
455
	loff_t offset;
3031 serge 456
	int shmem_page_offset, page_length, ret = 0;
457
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
458
	int prefaulted = 0;
459
	int needs_clflush = 0;
3746 Serge 460
	struct sg_page_iter sg_iter;
2332 Serge 461
 
3746 Serge 462
	user_data = to_user_ptr(args->data_ptr);
2332 Serge 463
	remain = args->size;
464
 
3031 serge 465
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
466
 
467
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
468
		/* If we're not in the cpu read domain, set ourself into the gtt
469
		 * read domain and manually flush cachelines (if required). This
470
		 * optimizes for the case when the gpu will dirty the data
471
		 * anyway again before the next pread happens. */
4104 Serge 472
		needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
473
		if (i915_gem_obj_bound_any(obj)) {
3031 serge 474
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
475
			if (ret)
476
				return ret;
477
		}
478
	}
479
 
480
	ret = i915_gem_object_get_pages(obj);
481
	if (ret)
482
		return ret;
483
 
484
	i915_gem_object_pin_pages(obj);
485
 
2332 Serge 486
	offset = args->offset;
487
 
3746 Serge 488
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
489
			 offset >> PAGE_SHIFT) {
490
		struct page *page = sg_page_iter_page(&sg_iter);
2332 Serge 491
 
3031 serge 492
		if (remain <= 0)
493
			break;
494
 
2332 Serge 495
		/* Operation in this page
496
		 *
3031 serge 497
		 * shmem_page_offset = offset within page in shmem file
2332 Serge 498
		 * page_length = bytes to copy for this page
499
		 */
3031 serge 500
		shmem_page_offset = offset_in_page(offset);
2332 Serge 501
		page_length = remain;
3031 serge 502
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
503
			page_length = PAGE_SIZE - shmem_page_offset;
2332 Serge 504
 
3031 serge 505
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
506
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 507
 
3031 serge 508
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
509
				       user_data, page_do_bit17_swizzling,
510
				       needs_clflush);
511
		if (ret == 0)
512
			goto next_page;
2332 Serge 513
 
3031 serge 514
		mutex_unlock(&dev->struct_mutex);
515
 
4104 Serge 516
		if (likely(!i915_prefault_disable) && !prefaulted) {
3031 serge 517
			ret = fault_in_multipages_writeable(user_data, remain);
518
			/* Userspace is tricking us, but we've already clobbered
519
			 * its pages with the prefault and promised to write the
520
			 * data up to the first fault. Hence ignore any errors
521
			 * and just continue. */
522
			(void)ret;
523
			prefaulted = 1;
524
		}
525
 
526
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
527
				       user_data, page_do_bit17_swizzling,
528
				       needs_clflush);
529
 
530
		mutex_lock(&dev->struct_mutex);
531
 
532
next_page:
2332 Serge 533
		mark_page_accessed(page);
3031 serge 534
 
2332 Serge 535
		if (ret)
3031 serge 536
			goto out;
2332 Serge 537
 
538
		remain -= page_length;
539
		user_data += page_length;
540
		offset += page_length;
541
	}
542
 
3031 serge 543
out:
544
	i915_gem_object_unpin_pages(obj);
545
 
546
	return ret;
2332 Serge 547
}
548
 
549
/**
3031 serge 550
 * Reads data from the object referenced by handle.
551
 *
552
 * On error, the contents of *data are undefined.
2332 Serge 553
 */
3031 serge 554
int
555
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
556
		     struct drm_file *file)
557
{
558
	struct drm_i915_gem_pread *args = data;
559
	struct drm_i915_gem_object *obj;
560
	int ret = 0;
561
 
562
	if (args->size == 0)
563
		return 0;
564
 
565
	if (!access_ok(VERIFY_WRITE,
3746 Serge 566
		       to_user_ptr(args->data_ptr),
3031 serge 567
		       args->size))
568
		return -EFAULT;
569
 
570
	ret = i915_mutex_lock_interruptible(dev);
571
	if (ret)
572
		return ret;
573
 
574
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
575
	if (&obj->base == NULL) {
576
		ret = -ENOENT;
577
		goto unlock;
578
	}
579
 
580
	/* Bounds check source.  */
581
	if (args->offset > obj->base.size ||
582
	    args->size > obj->base.size - args->offset) {
583
		ret = -EINVAL;
584
		goto out;
585
	}
586
 
587
	/* prime objects have no backing filp to GEM pread/pwrite
588
	 * pages from.
589
	 */
590
	if (!obj->base.filp) {
591
		ret = -EINVAL;
592
		goto out;
593
	}
594
 
595
	trace_i915_gem_object_pread(obj, args->offset, args->size);
596
 
597
	ret = i915_gem_shmem_pread(dev, obj, args, file);
598
 
599
out:
600
	drm_gem_object_unreference(&obj->base);
601
unlock:
602
	mutex_unlock(&dev->struct_mutex);
603
	return ret;
604
}
605
 
606
/* This is the fast write path which cannot handle
607
 * page faults in the source data
608
 */
609
 
610
static inline int
611
fast_user_write(struct io_mapping *mapping,
612
		loff_t page_base, int page_offset,
613
		char __user *user_data,
614
		int length)
615
{
616
	void __iomem *vaddr_atomic;
617
	void *vaddr;
618
	unsigned long unwritten;
619
 
620
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
621
	/* We can use the cpu mem copy function because this is X86. */
622
	vaddr = (void __force*)vaddr_atomic + page_offset;
623
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
624
						      user_data, length);
625
	io_mapping_unmap_atomic(vaddr_atomic);
626
	return unwritten;
627
}
3260 Serge 628
#endif
3031 serge 629
 
3260 Serge 630
#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
3031 serge 631
/**
632
 * This is the fast pwrite path, where we copy the data directly from the
633
 * user into the GTT, uncached.
634
 */
2332 Serge 635
static int
3031 serge 636
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
637
			 struct drm_i915_gem_object *obj,
638
			 struct drm_i915_gem_pwrite *args,
639
			 struct drm_file *file)
2332 Serge 640
{
3031 serge 641
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 642
	ssize_t remain;
3031 serge 643
	loff_t offset, page_base;
644
	char __user *user_data;
645
	int page_offset, page_length, ret;
3260 Serge 646
    char *vaddr;
2332 Serge 647
 
4104 Serge 648
	ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
3031 serge 649
	if (ret)
650
		goto out;
651
 
652
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
653
	if (ret)
654
		goto out_unpin;
655
 
656
	ret = i915_gem_object_put_fence(obj);
657
	if (ret)
658
		goto out_unpin;
659
 
3260 Serge 660
    vaddr = AllocKernelSpace(4096);
661
    if(vaddr == NULL)
662
    {
663
        ret = -ENOSPC;
664
        goto out_unpin;
665
    };
666
 
3031 serge 667
	user_data = (char __user *) (uintptr_t) args->data_ptr;
2332 Serge 668
	remain = args->size;
669
 
4104 Serge 670
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
2332 Serge 671
 
3031 serge 672
	while (remain > 0) {
673
		/* Operation in this page
674
		 *
675
		 * page_base = page offset within aperture
676
		 * page_offset = offset within page
677
		 * page_length = bytes to copy for this page
678
		 */
679
		page_base = offset & PAGE_MASK;
680
		page_offset = offset_in_page(offset);
681
		page_length = remain;
682
		if ((page_offset + remain) > PAGE_SIZE)
683
			page_length = PAGE_SIZE - page_offset;
2332 Serge 684
 
3260 Serge 685
        MapPage(vaddr, page_base, PG_SW|PG_NOCACHE);
3031 serge 686
 
3260 Serge 687
        memcpy(vaddr+page_offset, user_data, page_length);
688
 
3031 serge 689
		remain -= page_length;
690
		user_data += page_length;
691
		offset += page_length;
2332 Serge 692
	}
693
 
3260 Serge 694
    FreeKernelSpace(vaddr);
695
 
3031 serge 696
out_unpin:
697
	i915_gem_object_unpin(obj);
698
out:
699
	return ret;
700
}
701
 
702
/* Per-page copy function for the shmem pwrite fastpath.
703
 * Flushes invalid cachelines before writing to the target if
704
 * needs_clflush_before is set and flushes out any written cachelines after
705
 * writing if needs_clflush is set. */
706
static int
707
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
708
		  char __user *user_data,
709
		  bool page_do_bit17_swizzling,
710
		  bool needs_clflush_before,
711
		  bool needs_clflush_after)
712
{
713
	char *vaddr;
3260 Serge 714
	int ret = 0;
3031 serge 715
 
716
	if (unlikely(page_do_bit17_swizzling))
717
		return -EINVAL;
718
 
3260 Serge 719
	vaddr = (char *)MapIoMem((addr_t)page, 4096, PG_SW);
3031 serge 720
	if (needs_clflush_before)
721
		drm_clflush_virt_range(vaddr + shmem_page_offset,
722
				       page_length);
3260 Serge 723
	memcpy(vaddr + shmem_page_offset,
3031 serge 724
						user_data,
725
						page_length);
726
	if (needs_clflush_after)
727
		drm_clflush_virt_range(vaddr + shmem_page_offset,
728
				       page_length);
3260 Serge 729
	FreeKernelSpace(vaddr);
3031 serge 730
 
731
	return ret ? -EFAULT : 0;
732
}
3260 Serge 733
#if 0
3031 serge 734
 
735
/* Only difference to the fast-path function is that this can handle bit17
736
 * and uses non-atomic copy and kmap functions. */
737
static int
738
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
739
		  char __user *user_data,
740
		  bool page_do_bit17_swizzling,
741
		  bool needs_clflush_before,
742
		  bool needs_clflush_after)
743
{
744
	char *vaddr;
745
	int ret;
746
 
747
	vaddr = kmap(page);
748
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
749
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
750
					     page_length,
751
					     page_do_bit17_swizzling);
752
	if (page_do_bit17_swizzling)
753
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
754
						user_data,
755
						page_length);
756
	else
757
		ret = __copy_from_user(vaddr + shmem_page_offset,
758
				       user_data,
759
				       page_length);
760
	if (needs_clflush_after)
761
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
762
					     page_length,
763
					     page_do_bit17_swizzling);
764
	kunmap(page);
765
 
766
	return ret ? -EFAULT : 0;
767
}
3260 Serge 768
#endif
3031 serge 769
 
3260 Serge 770
 
3031 serge 771
static int
772
i915_gem_shmem_pwrite(struct drm_device *dev,
773
		      struct drm_i915_gem_object *obj,
774
		      struct drm_i915_gem_pwrite *args,
775
		      struct drm_file *file)
776
{
777
	ssize_t remain;
778
	loff_t offset;
779
	char __user *user_data;
780
	int shmem_page_offset, page_length, ret = 0;
781
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
782
	int hit_slowpath = 0;
783
	int needs_clflush_after = 0;
784
	int needs_clflush_before = 0;
3746 Serge 785
	struct sg_page_iter sg_iter;
3031 serge 786
 
3746 Serge 787
	user_data = to_user_ptr(args->data_ptr);
3031 serge 788
	remain = args->size;
789
 
790
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
791
 
792
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
793
		/* If we're not in the cpu write domain, set ourself into the gtt
794
		 * write domain and manually flush cachelines (if required). This
795
		 * optimizes for the case when the gpu will use the data
796
		 * right away and we therefore have to clflush anyway. */
4104 Serge 797
		needs_clflush_after = cpu_write_needs_clflush(obj);
798
		if (i915_gem_obj_bound_any(obj)) {
3031 serge 799
			ret = i915_gem_object_set_to_gtt_domain(obj, true);
800
			if (ret)
801
				return ret;
802
		}
803
	}
4104 Serge 804
	/* Same trick applies to invalidate partially written cachelines read
805
	 * before writing. */
806
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
807
		needs_clflush_before =
808
			!cpu_cache_is_coherent(dev, obj->cache_level);
3031 serge 809
 
810
	ret = i915_gem_object_get_pages(obj);
2332 Serge 811
	if (ret)
3031 serge 812
		return ret;
2332 Serge 813
 
3031 serge 814
	i915_gem_object_pin_pages(obj);
2332 Serge 815
 
816
	offset = args->offset;
3031 serge 817
	obj->dirty = 1;
2332 Serge 818
 
3746 Serge 819
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
820
			 offset >> PAGE_SHIFT) {
821
		struct page *page = sg_page_iter_page(&sg_iter);
3031 serge 822
		int partial_cacheline_write;
2332 Serge 823
 
3031 serge 824
		if (remain <= 0)
825
			break;
826
 
2332 Serge 827
		/* Operation in this page
828
		 *
829
		 * shmem_page_offset = offset within page in shmem file
830
		 * page_length = bytes to copy for this page
831
		 */
832
		shmem_page_offset = offset_in_page(offset);
833
 
834
		page_length = remain;
835
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
836
			page_length = PAGE_SIZE - shmem_page_offset;
837
 
3031 serge 838
		/* If we don't overwrite a cacheline completely we need to be
839
		 * careful to have up-to-date data by first clflushing. Don't
840
		 * overcomplicate things and flush the entire patch. */
841
		partial_cacheline_write = needs_clflush_before &&
842
			((shmem_page_offset | page_length)
3260 Serge 843
				& (x86_clflush_size - 1));
2332 Serge 844
 
3031 serge 845
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
846
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 847
 
3031 serge 848
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
849
					user_data, page_do_bit17_swizzling,
850
					partial_cacheline_write,
851
					needs_clflush_after);
852
		if (ret == 0)
853
			goto next_page;
854
 
855
		hit_slowpath = 1;
856
		mutex_unlock(&dev->struct_mutex);
3260 Serge 857
		dbgprintf("%s need shmem_pwrite_slow\n",__FUNCTION__);
3031 serge 858
 
3260 Serge 859
//		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
860
//					user_data, page_do_bit17_swizzling,
861
//					partial_cacheline_write,
862
//					needs_clflush_after);
863
 
3031 serge 864
		mutex_lock(&dev->struct_mutex);
865
 
866
next_page:
2332 Serge 867
 
3031 serge 868
		if (ret)
869
			goto out;
870
 
2332 Serge 871
		remain -= page_length;
3031 serge 872
		user_data += page_length;
2332 Serge 873
		offset += page_length;
874
	}
875
 
876
out:
3031 serge 877
	i915_gem_object_unpin_pages(obj);
878
 
879
	if (hit_slowpath) {
3480 Serge 880
		/*
881
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
882
		 * cachelines in-line while writing and the object moved
883
		 * out of the cpu write domain while we've dropped the lock.
884
		 */
885
		if (!needs_clflush_after &&
886
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
4104 Serge 887
			if (i915_gem_clflush_object(obj, obj->pin_display))
3243 Serge 888
			i915_gem_chipset_flush(dev);
3031 serge 889
		}
2332 Serge 890
	}
891
 
3031 serge 892
	if (needs_clflush_after)
3243 Serge 893
		i915_gem_chipset_flush(dev);
3031 serge 894
 
2332 Serge 895
	return ret;
896
}
3031 serge 897
 
898
/**
899
 * Writes data to the object referenced by handle.
900
 *
901
 * On error, the contents of the buffer that were to be modified are undefined.
902
 */
903
int
904
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
905
		      struct drm_file *file)
906
{
907
	struct drm_i915_gem_pwrite *args = data;
908
	struct drm_i915_gem_object *obj;
909
	int ret;
910
 
4104 Serge 911
	if (args->size == 0)
912
		return 0;
913
 
3480 Serge 914
     if(args->handle == -2)
915
     {
916
        printf("%s handle %d\n", __FUNCTION__, args->handle);
917
        return 0;
918
     }
919
 
3031 serge 920
	ret = i915_mutex_lock_interruptible(dev);
921
	if (ret)
922
		return ret;
923
 
924
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
925
	if (&obj->base == NULL) {
926
		ret = -ENOENT;
927
		goto unlock;
928
	}
929
 
930
	/* Bounds check destination. */
931
	if (args->offset > obj->base.size ||
932
	    args->size > obj->base.size - args->offset) {
933
		ret = -EINVAL;
934
		goto out;
935
	}
936
 
937
	/* prime objects have no backing filp to GEM pread/pwrite
938
	 * pages from.
939
	 */
940
	if (!obj->base.filp) {
941
		ret = -EINVAL;
942
		goto out;
943
	}
944
 
945
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
946
 
947
	ret = -EFAULT;
948
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
949
	 * it would end up going through the fenced access, and we'll get
950
	 * different detiling behavior between reading and writing.
951
	 * pread/pwrite currently are reading and writing from the CPU
952
	 * perspective, requiring manual detiling by the client.
953
	 */
3260 Serge 954
//   if (obj->phys_obj) {
955
//       ret = i915_gem_phys_pwrite(dev, obj, args, file);
956
//       goto out;
957
//   }
3031 serge 958
 
4104 Serge 959
	if (obj->tiling_mode == I915_TILING_NONE &&
960
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
961
	    cpu_write_needs_clflush(obj)) {
3031 serge 962
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
963
		/* Note that the gtt paths might fail with non-page-backed user
964
		 * pointers (e.g. gtt mappings when moving data between
965
		 * textures). Fallback to the shmem path in that case. */
966
	}
967
 
968
	if (ret == -EFAULT || ret == -ENOSPC)
3260 Serge 969
       ret = i915_gem_shmem_pwrite(dev, obj, args, file);
3031 serge 970
 
971
out:
972
	drm_gem_object_unreference(&obj->base);
973
unlock:
974
	mutex_unlock(&dev->struct_mutex);
975
	return ret;
976
}
977
 
978
int
3480 Serge 979
i915_gem_check_wedge(struct i915_gpu_error *error,
3031 serge 980
		     bool interruptible)
981
{
3480 Serge 982
	if (i915_reset_in_progress(error)) {
3031 serge 983
		/* Non-interruptible callers can't handle -EAGAIN, hence return
984
		 * -EIO unconditionally for these. */
985
		if (!interruptible)
986
			return -EIO;
2332 Serge 987
 
3480 Serge 988
		/* Recovery complete, but the reset failed ... */
989
		if (i915_terminally_wedged(error))
3031 serge 990
			return -EIO;
2332 Serge 991
 
3031 serge 992
		return -EAGAIN;
993
	}
2332 Serge 994
 
3031 serge 995
	return 0;
996
}
2332 Serge 997
 
3031 serge 998
/*
999
 * Compare seqno against outstanding lazy request. Emit a request if they are
1000
 * equal.
1001
 */
1002
static int
1003
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1004
{
1005
	int ret;
2332 Serge 1006
 
3031 serge 1007
	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
2332 Serge 1008
 
3031 serge 1009
	ret = 0;
1010
	if (seqno == ring->outstanding_lazy_request)
4104 Serge 1011
		ret = i915_add_request(ring, NULL);
2332 Serge 1012
 
3031 serge 1013
	return ret;
1014
}
2332 Serge 1015
 
3031 serge 1016
/**
1017
 * __wait_seqno - wait until execution of seqno has finished
1018
 * @ring: the ring expected to report seqno
1019
 * @seqno: duh!
3480 Serge 1020
 * @reset_counter: reset sequence associated with the given seqno
3031 serge 1021
 * @interruptible: do an interruptible wait (normally yes)
1022
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1023
 *
3480 Serge 1024
 * Note: It is of utmost importance that the passed in seqno and reset_counter
1025
 * values have been read by the caller in an smp safe manner. Where read-side
1026
 * locks are involved, it is sufficient to read the reset_counter before
1027
 * unlocking the lock that protects the seqno. For lockless tricks, the
1028
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1029
 * inserted.
1030
 *
3031 serge 1031
 * Returns 0 if the seqno was found within the alloted time. Else returns the
1032
 * errno with remaining time filled in timeout argument.
1033
 */
1034
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
3480 Serge 1035
			unsigned reset_counter,
3031 serge 1036
			bool interruptible, struct timespec *timeout)
1037
{
1038
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1039
	struct timespec before, now, wait_time={1,0};
1040
	unsigned long timeout_jiffies;
1041
	long end;
1042
	bool wait_forever = true;
1043
	int ret;
2332 Serge 1044
 
4104 Serge 1045
	WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1046
 
3031 serge 1047
	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1048
		return 0;
2332 Serge 1049
 
3031 serge 1050
	trace_i915_gem_request_wait_begin(ring, seqno);
2332 Serge 1051
 
3031 serge 1052
	if (timeout != NULL) {
1053
		wait_time = *timeout;
1054
		wait_forever = false;
1055
	}
2332 Serge 1056
 
4104 Serge 1057
	timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
2332 Serge 1058
 
3031 serge 1059
	if (WARN_ON(!ring->irq_get(ring)))
1060
		return -ENODEV;
2332 Serge 1061
 
3031 serge 1062
    /* Record current time in case interrupted by signal, or wedged * */
1063
	getrawmonotonic(&before);
2332 Serge 1064
 
3031 serge 1065
#define EXIT_COND \
1066
	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
3480 Serge 1067
	 i915_reset_in_progress(&dev_priv->gpu_error) || \
1068
	 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3031 serge 1069
	do {
3266 Serge 1070
		if (interruptible)
1071
			end = wait_event_interruptible_timeout(ring->irq_queue,
1072
							       EXIT_COND,
1073
							       timeout_jiffies);
1074
		else
3031 serge 1075
			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1076
						 timeout_jiffies);
2332 Serge 1077
 
3480 Serge 1078
		/* We need to check whether any gpu reset happened in between
1079
		 * the caller grabbing the seqno and now ... */
1080
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1081
			end = -EAGAIN;
1082
 
1083
		/* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1084
		 * gone. */
1085
		ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
3031 serge 1086
		if (ret)
1087
			end = ret;
1088
	} while (end == 0 && wait_forever);
2332 Serge 1089
 
3031 serge 1090
	getrawmonotonic(&now);
2332 Serge 1091
 
3031 serge 1092
	ring->irq_put(ring);
1093
	trace_i915_gem_request_wait_end(ring, seqno);
1094
#undef EXIT_COND
2332 Serge 1095
 
3031 serge 1096
	if (timeout) {
4104 Serge 1097
//		struct timespec sleep_time = timespec_sub(now, before);
1098
//		*timeout = timespec_sub(*timeout, sleep_time);
3031 serge 1099
	}
2332 Serge 1100
 
3031 serge 1101
	switch (end) {
1102
	case -EIO:
1103
	case -EAGAIN: /* Wedged */
1104
	case -ERESTARTSYS: /* Signal */
1105
		return (int)end;
1106
	case 0: /* Timeout */
1107
		return -ETIME;
1108
	default: /* Completed */
1109
		WARN_ON(end < 0); /* We're not aware of other errors */
1110
		return 0;
1111
	}
1112
}
2332 Serge 1113
 
3031 serge 1114
/**
1115
 * Waits for a sequence number to be signaled, and cleans up the
1116
 * request and object lists appropriately for that event.
1117
 */
1118
int
1119
i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1120
{
1121
	struct drm_device *dev = ring->dev;
1122
	struct drm_i915_private *dev_priv = dev->dev_private;
1123
	bool interruptible = dev_priv->mm.interruptible;
1124
	int ret;
2332 Serge 1125
 
3031 serge 1126
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1127
	BUG_ON(seqno == 0);
2332 Serge 1128
 
3480 Serge 1129
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
3031 serge 1130
	if (ret)
1131
		return ret;
2332 Serge 1132
 
3031 serge 1133
	ret = i915_gem_check_olr(ring, seqno);
1134
	if (ret)
1135
		return ret;
2332 Serge 1136
 
3480 Serge 1137
	return __wait_seqno(ring, seqno,
1138
			    atomic_read(&dev_priv->gpu_error.reset_counter),
1139
			    interruptible, NULL);
3031 serge 1140
}
2332 Serge 1141
 
4104 Serge 1142
static int
1143
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1144
				     struct intel_ring_buffer *ring)
1145
{
1146
	i915_gem_retire_requests_ring(ring);
1147
 
1148
	/* Manually manage the write flush as we may have not yet
1149
	 * retired the buffer.
1150
	 *
1151
	 * Note that the last_write_seqno is always the earlier of
1152
	 * the two (read/write) seqno, so if we haved successfully waited,
1153
	 * we know we have passed the last write.
1154
	 */
1155
	obj->last_write_seqno = 0;
1156
	obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1157
 
1158
	return 0;
1159
}
1160
 
3031 serge 1161
/**
1162
 * Ensures that all rendering to the object has completed and the object is
1163
 * safe to unbind from the GTT or access from the CPU.
1164
 */
1165
static __must_check int
1166
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1167
			       bool readonly)
1168
{
1169
	struct intel_ring_buffer *ring = obj->ring;
1170
	u32 seqno;
1171
	int ret;
2332 Serge 1172
 
3031 serge 1173
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1174
	if (seqno == 0)
1175
		return 0;
2332 Serge 1176
 
3031 serge 1177
	ret = i915_wait_seqno(ring, seqno);
4104 Serge 1178
    if (ret)
1179
        return ret;
2332 Serge 1180
 
4104 Serge 1181
	return i915_gem_object_wait_rendering__tail(obj, ring);
3031 serge 1182
}
2332 Serge 1183
 
3260 Serge 1184
/* A nonblocking variant of the above wait. This is a highly dangerous routine
1185
 * as the object state may change during this call.
1186
 */
1187
static __must_check int
1188
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1189
					    bool readonly)
1190
{
1191
	struct drm_device *dev = obj->base.dev;
1192
	struct drm_i915_private *dev_priv = dev->dev_private;
1193
	struct intel_ring_buffer *ring = obj->ring;
3480 Serge 1194
	unsigned reset_counter;
3260 Serge 1195
	u32 seqno;
1196
	int ret;
2332 Serge 1197
 
3260 Serge 1198
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1199
	BUG_ON(!dev_priv->mm.interruptible);
2332 Serge 1200
 
3260 Serge 1201
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1202
	if (seqno == 0)
1203
		return 0;
2332 Serge 1204
 
3480 Serge 1205
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3260 Serge 1206
	if (ret)
1207
		return ret;
2332 Serge 1208
 
3260 Serge 1209
	ret = i915_gem_check_olr(ring, seqno);
1210
	if (ret)
1211
		return ret;
2332 Serge 1212
 
3480 Serge 1213
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3260 Serge 1214
	mutex_unlock(&dev->struct_mutex);
3480 Serge 1215
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3260 Serge 1216
	mutex_lock(&dev->struct_mutex);
4104 Serge 1217
	if (ret)
1218
		return ret;
2332 Serge 1219
 
4104 Serge 1220
	return i915_gem_object_wait_rendering__tail(obj, ring);
3260 Serge 1221
}
2332 Serge 1222
 
3260 Serge 1223
/**
1224
 * Called when user space prepares to use an object with the CPU, either
1225
 * through the mmap ioctl's mapping or a GTT mapping.
1226
 */
1227
int
1228
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1229
			  struct drm_file *file)
1230
{
1231
	struct drm_i915_gem_set_domain *args = data;
1232
	struct drm_i915_gem_object *obj;
1233
	uint32_t read_domains = args->read_domains;
1234
	uint32_t write_domain = args->write_domain;
1235
	int ret;
2332 Serge 1236
 
3480 Serge 1237
 
1238
     if(args->handle == -2)
1239
     {
1240
        printf("%s handle %d\n", __FUNCTION__, args->handle);
1241
        return 0;
1242
     }
1243
 
3260 Serge 1244
	/* Only handle setting domains to types used by the CPU. */
1245
	if (write_domain & I915_GEM_GPU_DOMAINS)
1246
		return -EINVAL;
2332 Serge 1247
 
3260 Serge 1248
	if (read_domains & I915_GEM_GPU_DOMAINS)
1249
		return -EINVAL;
2332 Serge 1250
 
3260 Serge 1251
	/* Having something in the write domain implies it's in the read
1252
	 * domain, and only that read domain.  Enforce that in the request.
1253
	 */
1254
	if (write_domain != 0 && read_domains != write_domain)
1255
		return -EINVAL;
2332 Serge 1256
 
3260 Serge 1257
	ret = i915_mutex_lock_interruptible(dev);
1258
	if (ret)
1259
		return ret;
2332 Serge 1260
 
3260 Serge 1261
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1262
	if (&obj->base == NULL) {
1263
		ret = -ENOENT;
1264
		goto unlock;
1265
	}
2332 Serge 1266
 
3260 Serge 1267
	/* Try to flush the object off the GPU without holding the lock.
1268
	 * We will repeat the flush holding the lock in the normal manner
1269
	 * to catch cases where we are gazumped.
1270
	 */
1271
	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1272
	if (ret)
1273
		goto unref;
2332 Serge 1274
 
3260 Serge 1275
	if (read_domains & I915_GEM_DOMAIN_GTT) {
1276
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
2332 Serge 1277
 
3260 Serge 1278
		/* Silently promote "you're not bound, there was nothing to do"
1279
		 * to success, since the client was just asking us to
1280
		 * make sure everything was done.
1281
		 */
1282
		if (ret == -EINVAL)
1283
			ret = 0;
1284
	} else {
1285
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1286
	}
2332 Serge 1287
 
3260 Serge 1288
unref:
1289
	drm_gem_object_unreference(&obj->base);
1290
unlock:
1291
	mutex_unlock(&dev->struct_mutex);
1292
	return ret;
1293
}
2332 Serge 1294
 
1295
 
1296
 
1297
 
1298
 
1299
 
3260 Serge 1300
/**
1301
 * Maps the contents of an object, returning the address it is mapped
1302
 * into.
1303
 *
1304
 * While the mapping holds a reference on the contents of the object, it doesn't
1305
 * imply a ref on the object itself.
1306
 */
1307
int
1308
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1309
		    struct drm_file *file)
1310
{
1311
	struct drm_i915_gem_mmap *args = data;
1312
	struct drm_gem_object *obj;
1313
	unsigned long addr = 0;
2332 Serge 1314
 
3480 Serge 1315
     if(args->handle == -2)
1316
     {
1317
        printf("%s handle %d\n", __FUNCTION__, args->handle);
1318
        return 0;
1319
     }
1320
 
3260 Serge 1321
	obj = drm_gem_object_lookup(dev, file, args->handle);
1322
	if (obj == NULL)
1323
		return -ENOENT;
4104 Serge 1324
 
3260 Serge 1325
	/* prime objects have no backing filp to GEM mmap
1326
	 * pages from.
1327
	 */
1328
	if (!obj->filp) {
1329
		drm_gem_object_unreference_unlocked(obj);
1330
		return -EINVAL;
1331
	}
2332 Serge 1332
 
3263 Serge 1333
    addr = vm_mmap(obj->filp, 0, args->size,
1334
              PROT_READ | PROT_WRITE, MAP_SHARED,
1335
              args->offset);
3260 Serge 1336
	drm_gem_object_unreference_unlocked(obj);
3263 Serge 1337
    if (IS_ERR((void *)addr))
1338
        return addr;
2332 Serge 1339
 
3260 Serge 1340
	args->addr_ptr = (uint64_t) addr;
2332 Serge 1341
 
3263 Serge 1342
    return 0;
3260 Serge 1343
}
2332 Serge 1344
 
1345
 
1346
 
1347
 
1348
 
1349
 
1350
 
1351
 
3031 serge 1352
 
1353
 
1354
 
1355
 
1356
 
1357
/**
1358
 * i915_gem_release_mmap - remove physical page mappings
1359
 * @obj: obj in question
1360
 *
1361
 * Preserve the reservation of the mmapping with the DRM core code, but
1362
 * relinquish ownership of the pages back to the system.
1363
 *
1364
 * It is vital that we remove the page mapping if we have mapped a tiled
1365
 * object through the GTT and then lose the fence register due to
1366
 * resource pressure. Similarly if the object has been moved out of the
1367
 * aperture, than pages mapped into userspace must be revoked. Removing the
1368
 * mapping will then trigger a page fault on the next user access, allowing
1369
 * fixup by i915_gem_fault().
1370
 */
1371
void
1372
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1373
{
1374
	if (!obj->fault_mappable)
1375
		return;
1376
 
4104 Serge 1377
//	drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
3031 serge 1378
	obj->fault_mappable = false;
1379
}
1380
 
3480 Serge 1381
uint32_t
2332 Serge 1382
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1383
{
1384
	uint32_t gtt_size;
1385
 
1386
	if (INTEL_INFO(dev)->gen >= 4 ||
1387
	    tiling_mode == I915_TILING_NONE)
1388
		return size;
1389
 
1390
	/* Previous chips need a power-of-two fence region when tiling */
1391
	if (INTEL_INFO(dev)->gen == 3)
1392
		gtt_size = 1024*1024;
1393
	else
1394
		gtt_size = 512*1024;
1395
 
1396
	while (gtt_size < size)
1397
		gtt_size <<= 1;
1398
 
1399
	return gtt_size;
1400
}
1401
 
1402
/**
1403
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1404
 * @obj: object to check
1405
 *
1406
 * Return the required GTT alignment for an object, taking into account
1407
 * potential fence register mapping.
1408
 */
3480 Serge 1409
uint32_t
1410
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1411
			   int tiling_mode, bool fenced)
2332 Serge 1412
{
1413
	/*
1414
	 * Minimum alignment is 4k (GTT page size), but might be greater
1415
	 * if a fence register is needed for the object.
1416
	 */
3480 Serge 1417
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2332 Serge 1418
	    tiling_mode == I915_TILING_NONE)
1419
		return 4096;
1420
 
1421
	/*
1422
	 * Previous chips need to be aligned to the size of the smallest
1423
	 * fence register that can contain the object.
1424
	 */
1425
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1426
}
1427
 
1428
/**
1429
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1430
 *					 unfenced object
1431
 * @dev: the device
1432
 * @size: size of the object
1433
 * @tiling_mode: tiling mode of the object
1434
 *
1435
 * Return the required GTT alignment for an object, only taking into account
1436
 * unfenced tiled surface requirements.
1437
 */
1438
uint32_t
1439
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1440
				    uint32_t size,
1441
				    int tiling_mode)
1442
{
1443
	/*
1444
	 * Minimum alignment is 4k (GTT page size) for sane hw.
1445
	 */
1446
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1447
	    tiling_mode == I915_TILING_NONE)
1448
		return 4096;
1449
 
1450
	/* Previous hardware however needs to be aligned to a power-of-two
1451
	 * tile height. The simplest method for determining this is to reuse
1452
	 * the power-of-tile object size.
1453
	 */
1454
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1455
}
1456
 
3480 Serge 1457
int
1458
i915_gem_mmap_gtt(struct drm_file *file,
1459
          struct drm_device *dev,
1460
          uint32_t handle,
1461
          uint64_t *offset)
1462
{
1463
    struct drm_i915_private *dev_priv = dev->dev_private;
1464
    struct drm_i915_gem_object *obj;
1465
    unsigned long pfn;
1466
    char *mem, *ptr;
1467
    int ret;
1468
 
1469
    ret = i915_mutex_lock_interruptible(dev);
1470
    if (ret)
1471
        return ret;
1472
 
1473
    obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1474
    if (&obj->base == NULL) {
1475
        ret = -ENOENT;
1476
        goto unlock;
1477
    }
1478
 
1479
    if (obj->base.size > dev_priv->gtt.mappable_end) {
1480
        ret = -E2BIG;
1481
        goto out;
1482
    }
1483
 
1484
    if (obj->madv != I915_MADV_WILLNEED) {
1485
        DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1486
        ret = -EINVAL;
1487
        goto out;
1488
    }
1489
    /* Now bind it into the GTT if needed */
4104 Serge 1490
    ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
3480 Serge 1491
    if (ret)
1492
        goto out;
1493
 
1494
    ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1495
    if (ret)
1496
        goto unpin;
1497
 
1498
    ret = i915_gem_object_get_fence(obj);
1499
    if (ret)
1500
        goto unpin;
1501
 
1502
    obj->fault_mappable = true;
1503
 
4104 Serge 1504
    pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
3480 Serge 1505
 
1506
    /* Finally, remap it using the new GTT offset */
1507
 
1508
    mem = UserAlloc(obj->base.size);
1509
    if(unlikely(mem == NULL))
1510
    {
1511
        ret = -ENOMEM;
1512
        goto unpin;
1513
    }
1514
 
1515
    for(ptr = mem; ptr < mem + obj->base.size; ptr+= 4096, pfn+= 4096)
1516
        MapPage(ptr, pfn, PG_SHARED|PG_UW);
1517
 
1518
unpin:
1519
    i915_gem_object_unpin(obj);
1520
 
1521
 
4104 Serge 1522
    *offset = mem;
3480 Serge 1523
 
1524
out:
1525
    drm_gem_object_unreference(&obj->base);
1526
unlock:
1527
    mutex_unlock(&dev->struct_mutex);
1528
    return ret;
1529
}
1530
 
1531
/**
1532
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1533
 * @dev: DRM device
1534
 * @data: GTT mapping ioctl data
1535
 * @file: GEM object info
1536
 *
1537
 * Simply returns the fake offset to userspace so it can mmap it.
1538
 * The mmap call will end up in drm_gem_mmap(), which will set things
1539
 * up so we can get faults in the handler above.
1540
 *
1541
 * The fault handler will take care of binding the object into the GTT
1542
 * (since it may have been evicted to make room for something), allocating
1543
 * a fence register, and mapping the appropriate aperture address into
1544
 * userspace.
1545
 */
1546
int
1547
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1548
            struct drm_file *file)
1549
{
1550
    struct drm_i915_gem_mmap_gtt *args = data;
1551
 
1552
    return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1553
}
1554
 
3031 serge 1555
/* Immediately discard the backing storage */
1556
static void
1557
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1558
{
1559
//	struct inode *inode;
2332 Serge 1560
 
3031 serge 1561
//	i915_gem_object_free_mmap_offset(obj);
2332 Serge 1562
 
3263 Serge 1563
	if (obj->base.filp == NULL)
1564
		return;
2332 Serge 1565
 
3031 serge 1566
	/* Our goal here is to return as much of the memory as
1567
	 * is possible back to the system as we are called from OOM.
1568
	 * To do this we must instruct the shmfs to drop all of its
1569
	 * backing pages, *now*.
1570
	 */
1571
//	inode = obj->base.filp->f_path.dentry->d_inode;
1572
//	shmem_truncate_range(inode, 0, (loff_t)-1);
2332 Serge 1573
 
3031 serge 1574
	obj->madv = __I915_MADV_PURGED;
1575
}
2332 Serge 1576
 
3031 serge 1577
static inline int
1578
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1579
{
1580
	return obj->madv == I915_MADV_DONTNEED;
1581
}
2332 Serge 1582
 
3031 serge 1583
static void
1584
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1585
{
3746 Serge 1586
	struct sg_page_iter sg_iter;
1587
	int ret;
2332 Serge 1588
 
3031 serge 1589
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2332 Serge 1590
 
3031 serge 1591
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1592
	if (ret) {
1593
		/* In the event of a disaster, abandon all caches and
1594
		 * hope for the best.
1595
		 */
1596
		WARN_ON(ret != -EIO);
4104 Serge 1597
		i915_gem_clflush_object(obj, true);
3031 serge 1598
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1599
	}
2332 Serge 1600
 
3031 serge 1601
	if (obj->madv == I915_MADV_DONTNEED)
1602
		obj->dirty = 0;
2332 Serge 1603
 
3746 Serge 1604
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1605
		struct page *page = sg_page_iter_page(&sg_iter);
2332 Serge 1606
 
3290 Serge 1607
        page_cache_release(page);
3243 Serge 1608
	}
1609
    //DRM_DEBUG_KMS("%s release %d pages\n", __FUNCTION__, page_count);
3290 Serge 1610
 
4104 Serge 1611
    obj->dirty = 0;
3243 Serge 1612
 
1613
	sg_free_table(obj->pages);
1614
	kfree(obj->pages);
3031 serge 1615
}
2332 Serge 1616
 
3480 Serge 1617
int
3031 serge 1618
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1619
{
1620
	const struct drm_i915_gem_object_ops *ops = obj->ops;
2332 Serge 1621
 
3243 Serge 1622
	if (obj->pages == NULL)
3031 serge 1623
		return 0;
2332 Serge 1624
 
3031 serge 1625
	if (obj->pages_pin_count)
1626
		return -EBUSY;
1627
 
4104 Serge 1628
	BUG_ON(i915_gem_obj_bound_any(obj));
1629
 
3243 Serge 1630
	/* ->put_pages might need to allocate memory for the bit17 swizzle
1631
	 * array, hence protect them from being reaped by removing them from gtt
1632
	 * lists early. */
4104 Serge 1633
	list_del(&obj->global_list);
3243 Serge 1634
 
3031 serge 1635
	ops->put_pages(obj);
3243 Serge 1636
	obj->pages = NULL;
3031 serge 1637
 
1638
	if (i915_gem_object_is_purgeable(obj))
1639
		i915_gem_object_truncate(obj);
1640
 
1641
	return 0;
1642
}
1643
 
1644
 
1645
 
1646
 
1647
 
1648
 
1649
 
1650
 
2332 Serge 1651
static int
3031 serge 1652
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2332 Serge 1653
{
3260 Serge 1654
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3243 Serge 1655
    int page_count, i;
4104 Serge 1656
    struct sg_table *st;
3243 Serge 1657
	struct scatterlist *sg;
3746 Serge 1658
	struct sg_page_iter sg_iter;
3243 Serge 1659
	struct page *page;
3746 Serge 1660
	unsigned long last_pfn = 0;	/* suppress gcc warning */
3243 Serge 1661
	gfp_t gfp;
2332 Serge 1662
 
3243 Serge 1663
	/* Assert that the object is not currently in any GPU domain. As it
1664
	 * wasn't in the GTT, there shouldn't be any way it could have been in
1665
	 * a GPU cache
2332 Serge 1666
	 */
3243 Serge 1667
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1668
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1669
 
1670
	st = kmalloc(sizeof(*st), GFP_KERNEL);
1671
	if (st == NULL)
1672
		return -ENOMEM;
1673
 
2332 Serge 1674
	page_count = obj->base.size / PAGE_SIZE;
3243 Serge 1675
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1676
		kfree(st);
3746 Serge 1677
        FAIL();
2332 Serge 1678
		return -ENOMEM;
3243 Serge 1679
	}
2332 Serge 1680
 
3243 Serge 1681
	/* Get the list of pages out of our struct file.  They'll be pinned
1682
	 * at this point until we release them.
1683
	 *
1684
	 * Fail silently without starting the shrinker
1685
	 */
3746 Serge 1686
	sg = st->sgl;
1687
	st->nents = 0;
1688
	for (i = 0; i < page_count; i++) {
4104 Serge 1689
        page = shmem_read_mapping_page_gfp(obj->base.filp, i, gfp);
3260 Serge 1690
		if (IS_ERR(page)) {
1691
            dbgprintf("%s invalid page %p\n", __FUNCTION__, page);
2332 Serge 1692
			goto err_pages;
1693
 
3260 Serge 1694
		}
3746 Serge 1695
 
1696
		if (!i || page_to_pfn(page) != last_pfn + 1) {
1697
			if (i)
1698
				sg = sg_next(sg);
1699
			st->nents++;
3243 Serge 1700
		sg_set_page(sg, page, PAGE_SIZE, 0);
3746 Serge 1701
		} else {
1702
			sg->length += PAGE_SIZE;
1703
		}
1704
		last_pfn = page_to_pfn(page);
3243 Serge 1705
	}
3031 serge 1706
 
3746 Serge 1707
		sg_mark_end(sg);
3243 Serge 1708
	obj->pages = st;
3031 serge 1709
 
2332 Serge 1710
	return 0;
1711
 
1712
err_pages:
3746 Serge 1713
	sg_mark_end(sg);
1714
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1715
		page_cache_release(sg_page_iter_page(&sg_iter));
3243 Serge 1716
	sg_free_table(st);
1717
	kfree(st);
3746 Serge 1718
    FAIL();
3243 Serge 1719
	return PTR_ERR(page);
2332 Serge 1720
}
1721
 
3031 serge 1722
/* Ensure that the associated pages are gathered from the backing storage
1723
 * and pinned into our object. i915_gem_object_get_pages() may be called
1724
 * multiple times before they are released by a single call to
1725
 * i915_gem_object_put_pages() - once the pages are no longer referenced
1726
 * either as a result of memory pressure (reaping pages under the shrinker)
1727
 * or as the object is itself released.
1728
 */
1729
int
1730
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2332 Serge 1731
{
3031 serge 1732
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1733
	const struct drm_i915_gem_object_ops *ops = obj->ops;
1734
	int ret;
2332 Serge 1735
 
3243 Serge 1736
	if (obj->pages)
3031 serge 1737
		return 0;
2332 Serge 1738
 
3031 serge 1739
	BUG_ON(obj->pages_pin_count);
2332 Serge 1740
 
3031 serge 1741
	ret = ops->get_pages(obj);
1742
	if (ret)
1743
		return ret;
2344 Serge 1744
 
4104 Serge 1745
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3243 Serge 1746
    return 0;
2332 Serge 1747
}
1748
 
1749
void
1750
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
3243 Serge 1751
			       struct intel_ring_buffer *ring)
2332 Serge 1752
{
1753
	struct drm_device *dev = obj->base.dev;
1754
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 1755
	u32 seqno = intel_ring_get_seqno(ring);
2332 Serge 1756
 
1757
	BUG_ON(ring == NULL);
4104 Serge 1758
	if (obj->ring != ring && obj->last_write_seqno) {
1759
		/* Keep the seqno relative to the current ring */
1760
		obj->last_write_seqno = seqno;
1761
	}
2332 Serge 1762
	obj->ring = ring;
1763
 
1764
	/* Add a reference if we're newly entering the active list. */
1765
	if (!obj->active) {
2344 Serge 1766
		drm_gem_object_reference(&obj->base);
2332 Serge 1767
		obj->active = 1;
1768
	}
1769
 
1770
	list_move_tail(&obj->ring_list, &ring->active_list);
1771
 
3031 serge 1772
	obj->last_read_seqno = seqno;
1773
 
2332 Serge 1774
	if (obj->fenced_gpu_access) {
3031 serge 1775
		obj->last_fenced_seqno = seqno;
1776
 
1777
		/* Bump MRU to take account of the delayed flush */
1778
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
2332 Serge 1779
		struct drm_i915_fence_reg *reg;
1780
 
1781
		reg = &dev_priv->fence_regs[obj->fence_reg];
3031 serge 1782
			list_move_tail(®->lru_list,
1783
				       &dev_priv->mm.fence_list);
1784
		}
2332 Serge 1785
	}
1786
}
1787
 
2344 Serge 1788
static void
3031 serge 1789
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2344 Serge 1790
{
4104 Serge 1791
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1792
	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1793
	struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2332 Serge 1794
 
3031 serge 1795
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2344 Serge 1796
	BUG_ON(!obj->active);
2332 Serge 1797
 
4104 Serge 1798
	list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2344 Serge 1799
 
3031 serge 1800
	list_del_init(&obj->ring_list);
2352 Serge 1801
	obj->ring = NULL;
2344 Serge 1802
 
3031 serge 1803
	obj->last_read_seqno = 0;
1804
	obj->last_write_seqno = 0;
1805
	obj->base.write_domain = 0;
1806
 
1807
	obj->last_fenced_seqno = 0;
2352 Serge 1808
	obj->fenced_gpu_access = false;
2344 Serge 1809
 
2352 Serge 1810
	obj->active = 0;
1811
	drm_gem_object_unreference(&obj->base);
1812
 
1813
	WARN_ON(i915_verify_lists(dev));
1814
}
1815
 
3243 Serge 1816
static int
3480 Serge 1817
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2344 Serge 1818
{
3243 Serge 1819
	struct drm_i915_private *dev_priv = dev->dev_private;
1820
	struct intel_ring_buffer *ring;
1821
	int ret, i, j;
2344 Serge 1822
 
3480 Serge 1823
	/* Carefully retire all requests without writing to the rings */
3243 Serge 1824
	for_each_ring(ring, dev_priv, i) {
3480 Serge 1825
		ret = intel_ring_idle(ring);
3243 Serge 1826
	if (ret)
1827
		return ret;
3480 Serge 1828
	}
1829
	i915_gem_retire_requests(dev);
3243 Serge 1830
 
3480 Serge 1831
	/* Finally reset hw state */
3243 Serge 1832
	for_each_ring(ring, dev_priv, i) {
3480 Serge 1833
		intel_ring_init_seqno(ring, seqno);
1834
 
3243 Serge 1835
		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1836
			ring->sync_seqno[j] = 0;
1837
	}
1838
 
1839
	return 0;
2344 Serge 1840
}
1841
 
3480 Serge 1842
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1843
{
1844
	struct drm_i915_private *dev_priv = dev->dev_private;
1845
	int ret;
1846
 
1847
	if (seqno == 0)
1848
		return -EINVAL;
1849
 
1850
	/* HWS page needs to be set less than what we
1851
	 * will inject to ring
1852
	 */
1853
	ret = i915_gem_init_seqno(dev, seqno - 1);
1854
	if (ret)
1855
		return ret;
1856
 
1857
	/* Carefully set the last_seqno value so that wrap
1858
	 * detection still works
1859
	 */
1860
	dev_priv->next_seqno = seqno;
1861
	dev_priv->last_seqno = seqno - 1;
1862
	if (dev_priv->last_seqno == 0)
1863
		dev_priv->last_seqno--;
1864
 
1865
	return 0;
1866
}
1867
 
3243 Serge 1868
int
1869
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2344 Serge 1870
{
3243 Serge 1871
	struct drm_i915_private *dev_priv = dev->dev_private;
2344 Serge 1872
 
3243 Serge 1873
	/* reserve 0 for non-seqno */
1874
	if (dev_priv->next_seqno == 0) {
3480 Serge 1875
		int ret = i915_gem_init_seqno(dev, 0);
3243 Serge 1876
		if (ret)
1877
			return ret;
1878
 
1879
		dev_priv->next_seqno = 1;
1880
	}
1881
 
3480 Serge 1882
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
3243 Serge 1883
	return 0;
2332 Serge 1884
}
1885
 
4104 Serge 1886
int __i915_add_request(struct intel_ring_buffer *ring,
2352 Serge 1887
		 struct drm_file *file,
4104 Serge 1888
		       struct drm_i915_gem_object *obj,
3031 serge 1889
		 u32 *out_seqno)
2352 Serge 1890
{
1891
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
3031 serge 1892
	struct drm_i915_gem_request *request;
4104 Serge 1893
	u32 request_ring_position, request_start;
2352 Serge 1894
	int was_empty;
1895
	int ret;
2332 Serge 1896
 
4104 Serge 1897
	request_start = intel_ring_get_tail(ring);
3031 serge 1898
	/*
1899
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
1900
	 * after having emitted the batchbuffer command. Hence we need to fix
1901
	 * things up similar to emitting the lazy request. The difference here
1902
	 * is that the flush _must_ happen before the next request, no matter
1903
	 * what.
1904
	 */
4104 Serge 1905
   ret = intel_ring_flush_all_caches(ring);
1906
   if (ret)
1907
       return ret;
2332 Serge 1908
 
3031 serge 1909
	request = kmalloc(sizeof(*request), GFP_KERNEL);
1910
	if (request == NULL)
1911
		return -ENOMEM;
1912
 
1913
 
1914
	/* Record the position of the start of the request so that
1915
	 * should we detect the updated seqno part-way through the
4104 Serge 1916
    * GPU processing the request, we never over-estimate the
3031 serge 1917
	 * position of the head.
1918
	 */
4104 Serge 1919
   request_ring_position = intel_ring_get_tail(ring);
3031 serge 1920
 
3243 Serge 1921
	ret = ring->add_request(ring);
3031 serge 1922
	if (ret) {
1923
		kfree(request);
4104 Serge 1924
		return ret;
3031 serge 1925
	}
2332 Serge 1926
 
3243 Serge 1927
	request->seqno = intel_ring_get_seqno(ring);
2352 Serge 1928
	request->ring = ring;
4104 Serge 1929
	request->head = request_start;
3031 serge 1930
	request->tail = request_ring_position;
4104 Serge 1931
	request->ctx = ring->last_context;
1932
	request->batch_obj = obj;
1933
 
1934
	/* Whilst this request exists, batch_obj will be on the
1935
	 * active_list, and so will hold the active reference. Only when this
1936
	 * request is retired will the the batch_obj be moved onto the
1937
	 * inactive_list and lose its active reference. Hence we do not need
1938
	 * to explicitly hold another reference here.
1939
	 */
1940
 
1941
	if (request->ctx)
1942
		i915_gem_context_reference(request->ctx);
1943
 
3031 serge 1944
    request->emitted_jiffies = GetTimerTicks();
2352 Serge 1945
	was_empty = list_empty(&ring->request_list);
1946
	list_add_tail(&request->list, &ring->request_list);
3031 serge 1947
	request->file_priv = NULL;
2332 Serge 1948
 
3263 Serge 1949
	if (file) {
1950
		struct drm_i915_file_private *file_priv = file->driver_priv;
2332 Serge 1951
 
3263 Serge 1952
		spin_lock(&file_priv->mm.lock);
1953
		request->file_priv = file_priv;
1954
		list_add_tail(&request->client_list,
1955
			      &file_priv->mm.request_list);
1956
		spin_unlock(&file_priv->mm.lock);
1957
	}
1958
 
1959
	trace_i915_gem_request_add(ring, request->seqno);
3031 serge 1960
	ring->outstanding_lazy_request = 0;
2332 Serge 1961
 
4104 Serge 1962
	if (!dev_priv->ums.mm_suspended) {
1963
//		i915_queue_hangcheck(ring->dev);
1964
 
1965
       if (was_empty) {
2360 Serge 1966
           queue_delayed_work(dev_priv->wq,
3482 Serge 1967
					   &dev_priv->mm.retire_work,
1968
					   round_jiffies_up_relative(HZ));
4104 Serge 1969
           intel_mark_busy(dev_priv->dev);
1970
       }
1971
   }
3031 serge 1972
 
1973
	if (out_seqno)
3243 Serge 1974
		*out_seqno = request->seqno;
2352 Serge 1975
	return 0;
1976
}
2332 Serge 1977
 
3263 Serge 1978
static inline void
1979
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1980
{
1981
	struct drm_i915_file_private *file_priv = request->file_priv;
2332 Serge 1982
 
3263 Serge 1983
	if (!file_priv)
1984
		return;
2332 Serge 1985
 
3263 Serge 1986
	spin_lock(&file_priv->mm.lock);
1987
	if (request->file_priv) {
1988
		list_del(&request->client_list);
1989
		request->file_priv = NULL;
1990
	}
1991
	spin_unlock(&file_priv->mm.lock);
1992
}
2332 Serge 1993
 
4104 Serge 1994
static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
1995
				    struct i915_address_space *vm)
1996
{
1997
	if (acthd >= i915_gem_obj_offset(obj, vm) &&
1998
	    acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
1999
		return true;
2000
 
2001
	return false;
2002
}
2003
 
2004
static bool i915_head_inside_request(const u32 acthd_unmasked,
2005
				     const u32 request_start,
2006
				     const u32 request_end)
2007
{
2008
	const u32 acthd = acthd_unmasked & HEAD_ADDR;
2009
 
2010
	if (request_start < request_end) {
2011
		if (acthd >= request_start && acthd < request_end)
2012
			return true;
2013
	} else if (request_start > request_end) {
2014
		if (acthd >= request_start || acthd < request_end)
2015
			return true;
2016
	}
2017
 
2018
	return false;
2019
}
2020
 
2021
static struct i915_address_space *
2022
request_to_vm(struct drm_i915_gem_request *request)
2023
{
2024
	struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2025
	struct i915_address_space *vm;
2026
 
2027
	vm = &dev_priv->gtt.base;
2028
 
2029
	return vm;
2030
}
2031
 
2032
static bool i915_request_guilty(struct drm_i915_gem_request *request,
2033
				const u32 acthd, bool *inside)
2034
{
2035
	/* There is a possibility that unmasked head address
2036
	 * pointing inside the ring, matches the batch_obj address range.
2037
	 * However this is extremely unlikely.
2038
	 */
2039
	if (request->batch_obj) {
2040
		if (i915_head_inside_object(acthd, request->batch_obj,
2041
					    request_to_vm(request))) {
2042
			*inside = true;
2043
			return true;
2044
		}
2045
	}
2046
 
2047
	if (i915_head_inside_request(acthd, request->head, request->tail)) {
2048
		*inside = false;
2049
		return true;
2050
	}
2051
 
2052
	return false;
2053
}
2054
 
2055
static void i915_set_reset_status(struct intel_ring_buffer *ring,
2056
				  struct drm_i915_gem_request *request,
2057
				  u32 acthd)
2058
{
2059
	struct i915_ctx_hang_stats *hs = NULL;
2060
	bool inside, guilty;
2061
	unsigned long offset = 0;
2062
 
2063
	/* Innocent until proven guilty */
2064
	guilty = false;
2065
 
2066
	if (request->batch_obj)
2067
		offset = i915_gem_obj_offset(request->batch_obj,
2068
					     request_to_vm(request));
2069
 
2070
	if (ring->hangcheck.action != HANGCHECK_WAIT &&
2071
	    i915_request_guilty(request, acthd, &inside)) {
2072
		DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2073
			  ring->name,
2074
			  inside ? "inside" : "flushing",
2075
			  offset,
2076
			  request->ctx ? request->ctx->id : 0,
2077
			  acthd);
2078
 
2079
		guilty = true;
2080
	}
2081
 
2082
	/* If contexts are disabled or this is the default context, use
2083
	 * file_priv->reset_state
2084
	 */
2085
	if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2086
		hs = &request->ctx->hang_stats;
2087
	else if (request->file_priv)
2088
		hs = &request->file_priv->hang_stats;
2089
 
2090
	if (hs) {
2091
		if (guilty)
2092
			hs->batch_active++;
2093
		else
2094
			hs->batch_pending++;
2095
	}
2096
}
2097
 
2098
static void i915_gem_free_request(struct drm_i915_gem_request *request)
2099
{
2100
	list_del(&request->list);
2101
	i915_gem_request_remove_from_client(request);
2102
 
2103
	if (request->ctx)
2104
		i915_gem_context_unreference(request->ctx);
2105
 
2106
	kfree(request);
2107
}
2108
 
3031 serge 2109
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2110
				      struct intel_ring_buffer *ring)
2111
{
4104 Serge 2112
	u32 completed_seqno;
2113
	u32 acthd;
2114
 
2115
	acthd = intel_ring_get_active_head(ring);
2116
	completed_seqno = ring->get_seqno(ring, false);
2117
 
3031 serge 2118
	while (!list_empty(&ring->request_list)) {
2119
		struct drm_i915_gem_request *request;
2332 Serge 2120
 
3031 serge 2121
		request = list_first_entry(&ring->request_list,
2122
					   struct drm_i915_gem_request,
2123
					   list);
2332 Serge 2124
 
4104 Serge 2125
		if (request->seqno > completed_seqno)
2126
			i915_set_reset_status(ring, request, acthd);
2127
 
2128
		i915_gem_free_request(request);
3031 serge 2129
	}
2332 Serge 2130
 
3031 serge 2131
	while (!list_empty(&ring->active_list)) {
2132
		struct drm_i915_gem_object *obj;
2332 Serge 2133
 
3031 serge 2134
		obj = list_first_entry(&ring->active_list,
2135
				       struct drm_i915_gem_object,
2136
				       ring_list);
2332 Serge 2137
 
3031 serge 2138
		i915_gem_object_move_to_inactive(obj);
2139
	}
2140
}
2332 Serge 2141
 
3746 Serge 2142
void i915_gem_restore_fences(struct drm_device *dev)
3031 serge 2143
{
2144
	struct drm_i915_private *dev_priv = dev->dev_private;
2145
	int i;
2332 Serge 2146
 
3031 serge 2147
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2148
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
4104 Serge 2149
 
2150
		/*
2151
		 * Commit delayed tiling changes if we have an object still
2152
		 * attached to the fence, otherwise just clear the fence.
2153
		 */
2154
		if (reg->obj) {
2155
			i915_gem_object_update_fence(reg->obj, reg,
2156
						     reg->obj->tiling_mode);
2157
		} else {
2158
			i915_gem_write_fence(dev, i, NULL);
2159
		}
3031 serge 2160
	}
2161
}
2360 Serge 2162
 
3031 serge 2163
void i915_gem_reset(struct drm_device *dev)
2164
{
2165
	struct drm_i915_private *dev_priv = dev->dev_private;
2166
	struct intel_ring_buffer *ring;
2167
	int i;
2360 Serge 2168
 
3031 serge 2169
	for_each_ring(ring, dev_priv, i)
2170
		i915_gem_reset_ring_lists(dev_priv, ring);
2360 Serge 2171
 
3746 Serge 2172
	i915_gem_restore_fences(dev);
3031 serge 2173
}
2360 Serge 2174
 
2352 Serge 2175
/**
2176
 * This function clears the request list as sequence numbers are passed.
2177
 */
3031 serge 2178
void
2352 Serge 2179
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2180
{
2181
	uint32_t seqno;
2332 Serge 2182
 
2352 Serge 2183
	if (list_empty(&ring->request_list))
2184
		return;
2332 Serge 2185
 
2352 Serge 2186
	WARN_ON(i915_verify_lists(ring->dev));
2332 Serge 2187
 
3031 serge 2188
	seqno = ring->get_seqno(ring, true);
2332 Serge 2189
 
2352 Serge 2190
	while (!list_empty(&ring->request_list)) {
2191
		struct drm_i915_gem_request *request;
2332 Serge 2192
 
2352 Serge 2193
		request = list_first_entry(&ring->request_list,
2194
					   struct drm_i915_gem_request,
2195
					   list);
2332 Serge 2196
 
2352 Serge 2197
		if (!i915_seqno_passed(seqno, request->seqno))
2198
			break;
2332 Serge 2199
 
2352 Serge 2200
		trace_i915_gem_request_retire(ring, request->seqno);
3031 serge 2201
		/* We know the GPU must have read the request to have
2202
		 * sent us the seqno + interrupt, so use the position
2203
		 * of tail of the request to update the last known position
2204
		 * of the GPU head.
2205
		 */
2206
		ring->last_retired_head = request->tail;
2332 Serge 2207
 
4104 Serge 2208
		i915_gem_free_request(request);
2352 Serge 2209
	}
2332 Serge 2210
 
2352 Serge 2211
	/* Move any buffers on the active list that are no longer referenced
2212
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
2213
	 */
2214
	while (!list_empty(&ring->active_list)) {
2215
		struct drm_i915_gem_object *obj;
2332 Serge 2216
 
2352 Serge 2217
		obj = list_first_entry(&ring->active_list,
2218
				      struct drm_i915_gem_object,
2219
				      ring_list);
2332 Serge 2220
 
3031 serge 2221
		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2352 Serge 2222
			break;
2332 Serge 2223
 
2352 Serge 2224
			i915_gem_object_move_to_inactive(obj);
2225
	}
2332 Serge 2226
 
2352 Serge 2227
	if (unlikely(ring->trace_irq_seqno &&
2228
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2229
		ring->irq_put(ring);
2230
		ring->trace_irq_seqno = 0;
2231
	}
2332 Serge 2232
 
2352 Serge 2233
	WARN_ON(i915_verify_lists(ring->dev));
2234
}
2332 Serge 2235
 
2352 Serge 2236
void
2237
i915_gem_retire_requests(struct drm_device *dev)
2238
{
2239
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 2240
	struct intel_ring_buffer *ring;
2352 Serge 2241
	int i;
2332 Serge 2242
 
3031 serge 2243
	for_each_ring(ring, dev_priv, i)
2244
		i915_gem_retire_requests_ring(ring);
2352 Serge 2245
}
2246
 
2360 Serge 2247
static void
2248
i915_gem_retire_work_handler(struct work_struct *work)
2249
{
2250
	drm_i915_private_t *dev_priv;
2251
	struct drm_device *dev;
3031 serge 2252
	struct intel_ring_buffer *ring;
2360 Serge 2253
	bool idle;
2254
	int i;
2352 Serge 2255
 
2360 Serge 2256
	dev_priv = container_of(work, drm_i915_private_t,
2257
				mm.retire_work.work);
2258
	dev = dev_priv->dev;
2352 Serge 2259
 
2360 Serge 2260
	/* Come back later if the device is busy... */
2261
	if (!mutex_trylock(&dev->struct_mutex)) {
3482 Serge 2262
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2263
				   round_jiffies_up_relative(HZ));
3243 Serge 2264
        return;
2360 Serge 2265
	}
2352 Serge 2266
 
2360 Serge 2267
	i915_gem_retire_requests(dev);
2352 Serge 2268
 
2360 Serge 2269
	/* Send a periodic flush down the ring so we don't hold onto GEM
2270
	 * objects indefinitely.
2271
	 */
2272
	idle = true;
3031 serge 2273
	for_each_ring(ring, dev_priv, i) {
2274
		if (ring->gpu_caches_dirty)
4104 Serge 2275
			i915_add_request(ring, NULL);
2352 Serge 2276
 
2360 Serge 2277
		idle &= list_empty(&ring->request_list);
2278
	}
2352 Serge 2279
 
4104 Serge 2280
	if (!dev_priv->ums.mm_suspended && !idle)
3482 Serge 2281
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2282
				   round_jiffies_up_relative(HZ));
3031 serge 2283
	if (idle)
2284
		intel_mark_idle(dev);
2360 Serge 2285
 
2286
	mutex_unlock(&dev->struct_mutex);
2287
}
2288
 
2344 Serge 2289
/**
3031 serge 2290
 * Ensures that an object will eventually get non-busy by flushing any required
2291
 * write domains, emitting any outstanding lazy request and retiring and
2292
 * completed requests.
2352 Serge 2293
 */
3031 serge 2294
static int
2295
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2352 Serge 2296
{
3031 serge 2297
	int ret;
2352 Serge 2298
 
3031 serge 2299
	if (obj->active) {
2300
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2301
		if (ret)
2302
			return ret;
2352 Serge 2303
 
3031 serge 2304
		i915_gem_retire_requests_ring(obj->ring);
2305
	}
2352 Serge 2306
 
3031 serge 2307
	return 0;
2308
}
2352 Serge 2309
 
3243 Serge 2310
/**
2311
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2312
 * @DRM_IOCTL_ARGS: standard ioctl arguments
2313
 *
2314
 * Returns 0 if successful, else an error is returned with the remaining time in
2315
 * the timeout parameter.
2316
 *  -ETIME: object is still busy after timeout
2317
 *  -ERESTARTSYS: signal interrupted the wait
2318
 *  -ENONENT: object doesn't exist
2319
 * Also possible, but rare:
2320
 *  -EAGAIN: GPU wedged
2321
 *  -ENOMEM: damn
2322
 *  -ENODEV: Internal IRQ fail
2323
 *  -E?: The add request failed
2324
 *
2325
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2326
 * non-zero timeout parameter the wait ioctl will wait for the given number of
2327
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2328
 * without holding struct_mutex the object may become re-busied before this
2329
 * function completes. A similar but shorter * race condition exists in the busy
2330
 * ioctl
2331
 */
4246 Serge 2332
int
2333
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2334
{
2335
	drm_i915_private_t *dev_priv = dev->dev_private;
2336
	struct drm_i915_gem_wait *args = data;
2337
	struct drm_i915_gem_object *obj;
2338
	struct intel_ring_buffer *ring = NULL;
2339
	struct timespec timeout_stack, *timeout = NULL;
2340
	unsigned reset_counter;
2341
	u32 seqno = 0;
2342
	int ret = 0;
2352 Serge 2343
 
4246 Serge 2344
	if (args->timeout_ns >= 0) {
2345
		timeout_stack = ns_to_timespec(args->timeout_ns);
2346
		timeout = &timeout_stack;
2347
	}
2352 Serge 2348
 
4246 Serge 2349
	ret = i915_mutex_lock_interruptible(dev);
2350
	if (ret)
2351
		return ret;
2352 Serge 2352
 
4246 Serge 2353
    if(args->bo_handle == -2)
2354
    {
2355
        obj = get_fb_obj();
2356
        drm_gem_object_reference(&obj->base);
2357
    }
2358
    else
2359
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2360
	if (&obj->base == NULL) {
2361
		mutex_unlock(&dev->struct_mutex);
2362
		return -ENOENT;
2363
	}
2352 Serge 2364
 
4246 Serge 2365
	/* Need to make sure the object gets inactive eventually. */
2366
	ret = i915_gem_object_flush_active(obj);
2367
	if (ret)
2368
		goto out;
2352 Serge 2369
 
4246 Serge 2370
	if (obj->active) {
2371
		seqno = obj->last_read_seqno;
2372
		ring = obj->ring;
2373
	}
2352 Serge 2374
 
4246 Serge 2375
	if (seqno == 0)
2376
		 goto out;
2352 Serge 2377
 
4246 Serge 2378
	/* Do this after OLR check to make sure we make forward progress polling
2379
	 * on this IOCTL with a 0 timeout (like busy ioctl)
2380
	 */
2381
	if (!args->timeout_ns) {
2382
		ret = -ETIME;
2383
		goto out;
2384
	}
2352 Serge 2385
 
4246 Serge 2386
	drm_gem_object_unreference(&obj->base);
2387
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2388
	mutex_unlock(&dev->struct_mutex);
2352 Serge 2389
 
4246 Serge 2390
	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2391
	if (timeout)
2392
		args->timeout_ns = timespec_to_ns(timeout);
2393
	return ret;
3243 Serge 2394
 
4246 Serge 2395
out:
2396
	drm_gem_object_unreference(&obj->base);
2397
	mutex_unlock(&dev->struct_mutex);
2398
	return ret;
2399
}
3243 Serge 2400
 
2352 Serge 2401
/**
3031 serge 2402
 * i915_gem_object_sync - sync an object to a ring.
2403
 *
2404
 * @obj: object which may be in use on another ring.
2405
 * @to: ring we wish to use the object on. May be NULL.
2406
 *
2407
 * This code is meant to abstract object synchronization with the GPU.
2408
 * Calling with NULL implies synchronizing the object with the CPU
2409
 * rather than a particular GPU ring.
2410
 *
2411
 * Returns 0 if successful, else propagates up the lower layer error.
2344 Serge 2412
 */
2413
int
3031 serge 2414
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2415
		     struct intel_ring_buffer *to)
2344 Serge 2416
{
3031 serge 2417
	struct intel_ring_buffer *from = obj->ring;
2418
	u32 seqno;
2419
	int ret, idx;
2332 Serge 2420
 
3031 serge 2421
	if (from == NULL || to == from)
2422
		return 0;
2332 Serge 2423
 
3031 serge 2424
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2425
		return i915_gem_object_wait_rendering(obj, false);
2332 Serge 2426
 
3031 serge 2427
	idx = intel_ring_sync_index(from, to);
2428
 
2429
	seqno = obj->last_read_seqno;
2430
	if (seqno <= from->sync_seqno[idx])
2431
		return 0;
2432
 
2433
	ret = i915_gem_check_olr(obj->ring, seqno);
2434
	if (ret)
2435
		return ret;
2436
 
2437
	ret = to->sync_to(to, from, seqno);
2438
	if (!ret)
3243 Serge 2439
		/* We use last_read_seqno because sync_to()
2440
		 * might have just caused seqno wrap under
2441
		 * the radar.
2442
		 */
2443
		from->sync_seqno[idx] = obj->last_read_seqno;
3031 serge 2444
 
2445
	return ret;
2344 Serge 2446
}
2332 Serge 2447
 
2344 Serge 2448
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2449
{
2450
	u32 old_write_domain, old_read_domains;
2332 Serge 2451
 
2344 Serge 2452
	/* Force a pagefault for domain tracking on next user access */
2453
//	i915_gem_release_mmap(obj);
2332 Serge 2454
 
2344 Serge 2455
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2456
		return;
2332 Serge 2457
 
3480 Serge 2458
	/* Wait for any direct GTT access to complete */
2459
	mb();
2460
 
2344 Serge 2461
	old_read_domains = obj->base.read_domains;
2462
	old_write_domain = obj->base.write_domain;
2351 Serge 2463
 
2344 Serge 2464
	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2465
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2332 Serge 2466
 
2351 Serge 2467
	trace_i915_gem_object_change_domain(obj,
2468
					    old_read_domains,
2469
					    old_write_domain);
2344 Serge 2470
}
2332 Serge 2471
 
4104 Serge 2472
int i915_vma_unbind(struct i915_vma *vma)
2344 Serge 2473
{
4104 Serge 2474
	struct drm_i915_gem_object *obj = vma->obj;
3031 serge 2475
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3480 Serge 2476
	int ret;
2332 Serge 2477
 
3263 Serge 2478
    if(obj == get_fb_obj())
2479
        return 0;
2480
 
4104 Serge 2481
	if (list_empty(&vma->vma_link))
2344 Serge 2482
		return 0;
2332 Serge 2483
 
4104 Serge 2484
	if (!drm_mm_node_allocated(&vma->node))
2485
		goto destroy;
2486
 
3031 serge 2487
	if (obj->pin_count)
2488
		return -EBUSY;
2332 Serge 2489
 
3243 Serge 2490
	BUG_ON(obj->pages == NULL);
3031 serge 2491
 
2344 Serge 2492
	ret = i915_gem_object_finish_gpu(obj);
3031 serge 2493
	if (ret)
2344 Serge 2494
		return ret;
2495
	/* Continue on if we fail due to EIO, the GPU is hung so we
2496
	 * should be safe and we need to cleanup or else we might
2497
	 * cause memory corruption through use-after-free.
2498
	 */
2332 Serge 2499
 
2344 Serge 2500
	i915_gem_object_finish_gtt(obj);
2332 Serge 2501
 
2344 Serge 2502
	/* release the fence reg _after_ flushing */
2503
	ret = i915_gem_object_put_fence(obj);
3031 serge 2504
	if (ret)
2344 Serge 2505
		return ret;
2332 Serge 2506
 
4104 Serge 2507
	trace_i915_vma_unbind(vma);
2332 Serge 2508
 
3031 serge 2509
	if (obj->has_global_gtt_mapping)
3243 Serge 2510
        i915_gem_gtt_unbind_object(obj);
3031 serge 2511
	if (obj->has_aliasing_ppgtt_mapping) {
2512
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2513
		obj->has_aliasing_ppgtt_mapping = 0;
2514
	}
2515
	i915_gem_gtt_finish_object(obj);
4104 Serge 2516
	i915_gem_object_unpin_pages(obj);
2332 Serge 2517
 
4104 Serge 2518
	list_del(&vma->mm_list);
2344 Serge 2519
	/* Avoid an unnecessary call to unbind on rebind. */
4104 Serge 2520
	if (i915_is_ggtt(vma->vm))
2344 Serge 2521
	obj->map_and_fenceable = true;
2332 Serge 2522
 
4104 Serge 2523
	drm_mm_remove_node(&vma->node);
2332 Serge 2524
 
4104 Serge 2525
destroy:
2526
	i915_gem_vma_destroy(vma);
2527
 
2528
	/* Since the unbound list is global, only move to that list if
2529
	 * no more VMAs exist.
2530
	 * NB: Until we have real VMAs there will only ever be one */
2531
	WARN_ON(!list_empty(&obj->vma_list));
2532
	if (list_empty(&obj->vma_list))
2533
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2534
 
2344 Serge 2535
	return 0;
2536
}
2332 Serge 2537
 
4104 Serge 2538
/**
2539
 * Unbinds an object from the global GTT aperture.
2540
 */
2541
int
2542
i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2543
{
2544
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2545
	struct i915_address_space *ggtt = &dev_priv->gtt.base;
2546
 
2547
	if (!i915_gem_obj_ggtt_bound(obj))
2548
		return 0;
2549
 
2550
	if (obj->pin_count)
2551
		return -EBUSY;
2552
 
2553
	BUG_ON(obj->pages == NULL);
2554
 
2555
	return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2556
}
2557
 
3031 serge 2558
int i915_gpu_idle(struct drm_device *dev)
2344 Serge 2559
{
2560
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 2561
	struct intel_ring_buffer *ring;
2344 Serge 2562
	int ret, i;
2332 Serge 2563
 
2344 Serge 2564
	/* Flush everything onto the inactive list. */
3031 serge 2565
	for_each_ring(ring, dev_priv, i) {
2566
		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2344 Serge 2567
		if (ret)
2568
			return ret;
3031 serge 2569
 
3243 Serge 2570
		ret = intel_ring_idle(ring);
3031 serge 2571
		if (ret)
2572
			return ret;
2344 Serge 2573
	}
2332 Serge 2574
 
2344 Serge 2575
	return 0;
2576
}
2332 Serge 2577
 
3480 Serge 2578
static void i965_write_fence_reg(struct drm_device *dev, int reg,
3031 serge 2579
					struct drm_i915_gem_object *obj)
2580
{
2581
	drm_i915_private_t *dev_priv = dev->dev_private;
3480 Serge 2582
	int fence_reg;
2583
	int fence_pitch_shift;
2332 Serge 2584
 
3480 Serge 2585
	if (INTEL_INFO(dev)->gen >= 6) {
2586
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2587
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2588
	} else {
2589
		fence_reg = FENCE_REG_965_0;
2590
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2591
	}
2332 Serge 2592
 
4104 Serge 2593
	fence_reg += reg * 8;
2594
 
2595
	/* To w/a incoherency with non-atomic 64-bit register updates,
2596
	 * we split the 64-bit update into two 32-bit writes. In order
2597
	 * for a partial fence not to be evaluated between writes, we
2598
	 * precede the update with write to turn off the fence register,
2599
	 * and only enable the fence as the last step.
2600
	 *
2601
	 * For extra levels of paranoia, we make sure each step lands
2602
	 * before applying the next step.
2603
	 */
2604
	I915_WRITE(fence_reg, 0);
2605
	POSTING_READ(fence_reg);
2606
 
3031 serge 2607
	if (obj) {
4104 Serge 2608
		u32 size = i915_gem_obj_ggtt_size(obj);
2609
		uint64_t val;
2332 Serge 2610
 
4104 Serge 2611
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3031 serge 2612
				 0xfffff000) << 32;
4104 Serge 2613
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3480 Serge 2614
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3031 serge 2615
		if (obj->tiling_mode == I915_TILING_Y)
2616
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2617
		val |= I965_FENCE_REG_VALID;
2332 Serge 2618
 
4104 Serge 2619
		I915_WRITE(fence_reg + 4, val >> 32);
2620
		POSTING_READ(fence_reg + 4);
2621
 
2622
		I915_WRITE(fence_reg + 0, val);
4280 Serge 2623
 
2624
        dbgprintf("%s val %x%x\n",__FUNCTION__, (int)(val >> 32), (int)val);
2625
 
3480 Serge 2626
	POSTING_READ(fence_reg);
4104 Serge 2627
	} else {
2628
		I915_WRITE(fence_reg + 4, 0);
2629
		POSTING_READ(fence_reg + 4);
2630
	}
3031 serge 2631
}
2332 Serge 2632
 
3031 serge 2633
static void i915_write_fence_reg(struct drm_device *dev, int reg,
2634
				 struct drm_i915_gem_object *obj)
2635
{
2636
	drm_i915_private_t *dev_priv = dev->dev_private;
2637
	u32 val;
2332 Serge 2638
 
3031 serge 2639
	if (obj) {
4104 Serge 2640
		u32 size = i915_gem_obj_ggtt_size(obj);
3031 serge 2641
		int pitch_val;
2642
		int tile_width;
2332 Serge 2643
 
4104 Serge 2644
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3031 serge 2645
		     (size & -size) != size ||
4104 Serge 2646
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2647
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2648
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2332 Serge 2649
 
3031 serge 2650
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2651
			tile_width = 128;
2652
		else
2653
			tile_width = 512;
2332 Serge 2654
 
3031 serge 2655
		/* Note: pitch better be a power of two tile widths */
2656
		pitch_val = obj->stride / tile_width;
2657
		pitch_val = ffs(pitch_val) - 1;
2332 Serge 2658
 
4104 Serge 2659
		val = i915_gem_obj_ggtt_offset(obj);
3031 serge 2660
		if (obj->tiling_mode == I915_TILING_Y)
2661
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2662
		val |= I915_FENCE_SIZE_BITS(size);
2663
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2664
		val |= I830_FENCE_REG_VALID;
2665
	} else
2666
		val = 0;
2332 Serge 2667
 
3031 serge 2668
	if (reg < 8)
2669
		reg = FENCE_REG_830_0 + reg * 4;
2670
	else
2671
		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2332 Serge 2672
 
3031 serge 2673
	I915_WRITE(reg, val);
2674
	POSTING_READ(reg);
2675
}
2332 Serge 2676
 
3031 serge 2677
static void i830_write_fence_reg(struct drm_device *dev, int reg,
2678
				struct drm_i915_gem_object *obj)
2679
{
2680
	drm_i915_private_t *dev_priv = dev->dev_private;
2681
	uint32_t val;
2344 Serge 2682
 
3031 serge 2683
	if (obj) {
4104 Serge 2684
		u32 size = i915_gem_obj_ggtt_size(obj);
3031 serge 2685
		uint32_t pitch_val;
2344 Serge 2686
 
4104 Serge 2687
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3031 serge 2688
		     (size & -size) != size ||
4104 Serge 2689
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2690
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2691
		     i915_gem_obj_ggtt_offset(obj), size);
2344 Serge 2692
 
3031 serge 2693
		pitch_val = obj->stride / 128;
2694
		pitch_val = ffs(pitch_val) - 1;
2344 Serge 2695
 
4104 Serge 2696
		val = i915_gem_obj_ggtt_offset(obj);
3031 serge 2697
		if (obj->tiling_mode == I915_TILING_Y)
2698
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2699
		val |= I830_FENCE_SIZE_BITS(size);
2700
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2701
		val |= I830_FENCE_REG_VALID;
2702
	} else
2703
		val = 0;
2704
 
2705
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2706
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2707
}
2708
 
3480 Serge 2709
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2710
{
2711
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2712
}
2713
 
3031 serge 2714
static void i915_gem_write_fence(struct drm_device *dev, int reg,
2715
				 struct drm_i915_gem_object *obj)
2332 Serge 2716
{
3480 Serge 2717
	struct drm_i915_private *dev_priv = dev->dev_private;
2718
 
2719
	/* Ensure that all CPU reads are completed before installing a fence
2720
	 * and all writes before removing the fence.
2721
	 */
2722
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2723
		mb();
2724
 
4104 Serge 2725
	WARN(obj && (!obj->stride || !obj->tiling_mode),
2726
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2727
	     obj->stride, obj->tiling_mode);
2728
 
3031 serge 2729
	switch (INTEL_INFO(dev)->gen) {
2730
	case 7:
3480 Serge 2731
	case 6:
3031 serge 2732
	case 5:
2733
	case 4: i965_write_fence_reg(dev, reg, obj); break;
2734
	case 3: i915_write_fence_reg(dev, reg, obj); break;
2735
	case 2: i830_write_fence_reg(dev, reg, obj); break;
3480 Serge 2736
	default: BUG();
3031 serge 2737
	}
3480 Serge 2738
 
2739
	/* And similarly be paranoid that no direct access to this region
2740
	 * is reordered to before the fence is installed.
2741
	 */
2742
	if (i915_gem_object_needs_mb(obj))
2743
		mb();
2344 Serge 2744
}
2745
 
3031 serge 2746
static inline int fence_number(struct drm_i915_private *dev_priv,
2747
			       struct drm_i915_fence_reg *fence)
2344 Serge 2748
{
3031 serge 2749
	return fence - dev_priv->fence_regs;
2750
}
2332 Serge 2751
 
3031 serge 2752
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2753
					 struct drm_i915_fence_reg *fence,
2754
					 bool enable)
2755
{
4104 Serge 2756
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2757
	int reg = fence_number(dev_priv, fence);
2332 Serge 2758
 
4104 Serge 2759
	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3031 serge 2760
 
2761
	if (enable) {
4104 Serge 2762
		obj->fence_reg = reg;
3031 serge 2763
		fence->obj = obj;
2764
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2765
	} else {
2766
		obj->fence_reg = I915_FENCE_REG_NONE;
2767
		fence->obj = NULL;
2768
		list_del_init(&fence->lru_list);
2344 Serge 2769
	}
4104 Serge 2770
	obj->fence_dirty = false;
3031 serge 2771
}
2344 Serge 2772
 
3031 serge 2773
static int
3480 Serge 2774
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3031 serge 2775
{
2776
	if (obj->last_fenced_seqno) {
2777
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2352 Serge 2778
			if (ret)
2779
				return ret;
2344 Serge 2780
 
2781
		obj->last_fenced_seqno = 0;
2782
	}
2783
 
3031 serge 2784
	obj->fenced_gpu_access = false;
2332 Serge 2785
	return 0;
2786
}
2787
 
2788
int
2344 Serge 2789
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2332 Serge 2790
{
3031 serge 2791
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3746 Serge 2792
	struct drm_i915_fence_reg *fence;
2332 Serge 2793
	int ret;
2794
 
3480 Serge 2795
	ret = i915_gem_object_wait_fence(obj);
2332 Serge 2796
	if (ret)
2797
		return ret;
2798
 
3031 serge 2799
	if (obj->fence_reg == I915_FENCE_REG_NONE)
2800
		return 0;
2332 Serge 2801
 
3746 Serge 2802
	fence = &dev_priv->fence_regs[obj->fence_reg];
2803
 
3031 serge 2804
	i915_gem_object_fence_lost(obj);
3746 Serge 2805
	i915_gem_object_update_fence(obj, fence, false);
2344 Serge 2806
 
2332 Serge 2807
	return 0;
2808
}
2809
 
3031 serge 2810
static struct drm_i915_fence_reg *
2811
i915_find_fence_reg(struct drm_device *dev)
2812
{
2813
	struct drm_i915_private *dev_priv = dev->dev_private;
2814
	struct drm_i915_fence_reg *reg, *avail;
2815
	int i;
2332 Serge 2816
 
3031 serge 2817
	/* First try to find a free reg */
2818
	avail = NULL;
2819
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2820
		reg = &dev_priv->fence_regs[i];
2821
		if (!reg->obj)
2822
			return reg;
2332 Serge 2823
 
3031 serge 2824
		if (!reg->pin_count)
2825
			avail = reg;
2826
	}
2332 Serge 2827
 
3031 serge 2828
	if (avail == NULL)
2829
		return NULL;
2332 Serge 2830
 
3031 serge 2831
	/* None available, try to steal one or wait for a user to finish */
2832
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2833
		if (reg->pin_count)
2834
			continue;
2332 Serge 2835
 
3031 serge 2836
		return reg;
2837
	}
2332 Serge 2838
 
3031 serge 2839
	return NULL;
2840
}
2332 Serge 2841
 
3031 serge 2842
/**
2843
 * i915_gem_object_get_fence - set up fencing for an object
2844
 * @obj: object to map through a fence reg
2845
 *
2846
 * When mapping objects through the GTT, userspace wants to be able to write
2847
 * to them without having to worry about swizzling if the object is tiled.
2848
 * This function walks the fence regs looking for a free one for @obj,
2849
 * stealing one if it can't find any.
2850
 *
2851
 * It then sets up the reg based on the object's properties: address, pitch
2852
 * and tiling format.
2853
 *
2854
 * For an untiled surface, this removes any existing fence.
2855
 */
2856
int
2857
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2858
{
2859
	struct drm_device *dev = obj->base.dev;
2860
	struct drm_i915_private *dev_priv = dev->dev_private;
2861
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2862
	struct drm_i915_fence_reg *reg;
2863
	int ret;
2332 Serge 2864
 
3031 serge 2865
	/* Have we updated the tiling parameters upon the object and so
2866
	 * will need to serialise the write to the associated fence register?
2867
	 */
2868
	if (obj->fence_dirty) {
3480 Serge 2869
		ret = i915_gem_object_wait_fence(obj);
3031 serge 2870
		if (ret)
2871
			return ret;
2872
	}
2332 Serge 2873
 
3031 serge 2874
	/* Just update our place in the LRU if our fence is getting reused. */
2875
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2876
		reg = &dev_priv->fence_regs[obj->fence_reg];
2877
		if (!obj->fence_dirty) {
2878
			list_move_tail(®->lru_list,
2879
				       &dev_priv->mm.fence_list);
2880
			return 0;
2881
		}
2882
	} else if (enable) {
2883
		reg = i915_find_fence_reg(dev);
2884
		if (reg == NULL)
2885
			return -EDEADLK;
2332 Serge 2886
 
3031 serge 2887
		if (reg->obj) {
2888
			struct drm_i915_gem_object *old = reg->obj;
2332 Serge 2889
 
3480 Serge 2890
			ret = i915_gem_object_wait_fence(old);
3031 serge 2891
			if (ret)
2892
				return ret;
2332 Serge 2893
 
3031 serge 2894
			i915_gem_object_fence_lost(old);
2895
		}
2896
	} else
2897
		return 0;
2332 Serge 2898
 
3031 serge 2899
	i915_gem_object_update_fence(obj, reg, enable);
2332 Serge 2900
 
3031 serge 2901
	return 0;
2902
}
2332 Serge 2903
 
3031 serge 2904
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2905
				     struct drm_mm_node *gtt_space,
2906
				     unsigned long cache_level)
2907
{
2908
	struct drm_mm_node *other;
2332 Serge 2909
 
3031 serge 2910
	/* On non-LLC machines we have to be careful when putting differing
2911
	 * types of snoopable memory together to avoid the prefetcher
3480 Serge 2912
	 * crossing memory domains and dying.
3031 serge 2913
	 */
2914
	if (HAS_LLC(dev))
2915
		return true;
2332 Serge 2916
 
4104 Serge 2917
	if (!drm_mm_node_allocated(gtt_space))
3031 serge 2918
		return true;
2332 Serge 2919
 
3031 serge 2920
	if (list_empty(>t_space->node_list))
2921
		return true;
2332 Serge 2922
 
3031 serge 2923
	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2924
	if (other->allocated && !other->hole_follows && other->color != cache_level)
2925
		return false;
2344 Serge 2926
 
3031 serge 2927
	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2928
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2929
		return false;
2344 Serge 2930
 
3031 serge 2931
	return true;
2932
}
2344 Serge 2933
 
3031 serge 2934
static void i915_gem_verify_gtt(struct drm_device *dev)
2935
{
2936
#if WATCH_GTT
2937
	struct drm_i915_private *dev_priv = dev->dev_private;
2938
	struct drm_i915_gem_object *obj;
2939
	int err = 0;
2344 Serge 2940
 
4104 Serge 2941
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3031 serge 2942
		if (obj->gtt_space == NULL) {
2943
			printk(KERN_ERR "object found on GTT list with no space reserved\n");
2944
			err++;
2945
			continue;
2946
		}
2344 Serge 2947
 
3031 serge 2948
		if (obj->cache_level != obj->gtt_space->color) {
2949
			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
4104 Serge 2950
			       i915_gem_obj_ggtt_offset(obj),
2951
			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3031 serge 2952
			       obj->cache_level,
2953
			       obj->gtt_space->color);
2954
			err++;
2955
			continue;
2956
		}
2344 Serge 2957
 
3031 serge 2958
		if (!i915_gem_valid_gtt_space(dev,
2959
					      obj->gtt_space,
2960
					      obj->cache_level)) {
2961
			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
4104 Serge 2962
			       i915_gem_obj_ggtt_offset(obj),
2963
			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3031 serge 2964
			       obj->cache_level);
2965
			err++;
2966
			continue;
2967
		}
2968
	}
2344 Serge 2969
 
3031 serge 2970
	WARN_ON(err);
2971
#endif
2326 Serge 2972
}
2973
 
2332 Serge 2974
/**
2975
 * Finds free space in the GTT aperture and binds the object there.
2976
 */
2977
static int
4104 Serge 2978
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
2979
			   struct i915_address_space *vm,
2332 Serge 2980
			    unsigned alignment,
3031 serge 2981
			    bool map_and_fenceable,
2982
			    bool nonblocking)
2332 Serge 2983
{
2984
	struct drm_device *dev = obj->base.dev;
2985
	drm_i915_private_t *dev_priv = dev->dev_private;
2986
	u32 size, fence_size, fence_alignment, unfenced_alignment;
4104 Serge 2987
	size_t gtt_max =
2988
		map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
2989
	struct i915_vma *vma;
2332 Serge 2990
	int ret;
2326 Serge 2991
 
2332 Serge 2992
	fence_size = i915_gem_get_gtt_size(dev,
2993
					   obj->base.size,
2994
					   obj->tiling_mode);
2995
	fence_alignment = i915_gem_get_gtt_alignment(dev,
2996
						     obj->base.size,
3480 Serge 2997
						     obj->tiling_mode, true);
2332 Serge 2998
	unfenced_alignment =
3480 Serge 2999
		i915_gem_get_gtt_alignment(dev,
2332 Serge 3000
						    obj->base.size,
3480 Serge 3001
						    obj->tiling_mode, false);
2332 Serge 3002
 
3003
	if (alignment == 0)
3004
		alignment = map_and_fenceable ? fence_alignment :
3005
						unfenced_alignment;
3006
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3007
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3008
		return -EINVAL;
3009
	}
3010
 
3011
	size = map_and_fenceable ? fence_size : obj->base.size;
3012
 
3013
	/* If the object is bigger than the entire aperture, reject it early
3014
	 * before evicting everything in a vain attempt to find space.
3015
	 */
4104 Serge 3016
	if (obj->base.size > gtt_max) {
3017
		DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3018
			  obj->base.size,
3019
			  map_and_fenceable ? "mappable" : "total",
3020
			  gtt_max);
2332 Serge 3021
		return -E2BIG;
3022
	}
3023
 
3031 serge 3024
	ret = i915_gem_object_get_pages(obj);
3025
	if (ret)
3026
		return ret;
3027
 
3243 Serge 3028
	i915_gem_object_pin_pages(obj);
3029
 
4104 Serge 3030
	BUG_ON(!i915_is_ggtt(vm));
3031
 
3032
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3033
	if (IS_ERR(vma)) {
3034
		ret = PTR_ERR(vma);
3035
		goto err_unpin;
3243 Serge 3036
	}
3037
 
4104 Serge 3038
	/* For now we only ever use 1 vma per object */
3039
	WARN_ON(!list_is_singular(&obj->vma_list));
3040
 
3041
search_free:
3042
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3043
						  size, alignment,
3044
						  obj->cache_level, 0, gtt_max,
3045
						  DRM_MM_SEARCH_DEFAULT);
3243 Serge 3046
	if (ret) {
2332 Serge 3047
 
4104 Serge 3048
		goto err_free_vma;
2332 Serge 3049
	}
4104 Serge 3050
	if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3051
					      obj->cache_level))) {
3052
		ret = -EINVAL;
3053
		goto err_remove_node;
3031 serge 3054
	}
2332 Serge 3055
 
3031 serge 3056
	ret = i915_gem_gtt_prepare_object(obj);
4104 Serge 3057
	if (ret)
3058
		goto err_remove_node;
2332 Serge 3059
 
4104 Serge 3060
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3061
	list_add_tail(&vma->mm_list, &vm->inactive_list);
2332 Serge 3062
 
4104 Serge 3063
	if (i915_is_ggtt(vm)) {
3064
		bool mappable, fenceable;
2332 Serge 3065
 
4104 Serge 3066
		fenceable = (vma->node.size == fence_size &&
3067
			     (vma->node.start & (fence_alignment - 1)) == 0);
2332 Serge 3068
 
4104 Serge 3069
		mappable = (vma->node.start + obj->base.size <=
3070
			    dev_priv->gtt.mappable_end);
2332 Serge 3071
 
3072
	obj->map_and_fenceable = mappable && fenceable;
4104 Serge 3073
	}
2332 Serge 3074
 
4104 Serge 3075
	WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3076
 
3077
	trace_i915_vma_bind(vma, map_and_fenceable);
3031 serge 3078
	i915_gem_verify_gtt(dev);
2332 Serge 3079
	return 0;
4104 Serge 3080
 
3081
err_remove_node:
3082
	drm_mm_remove_node(&vma->node);
3083
err_free_vma:
3084
	i915_gem_vma_destroy(vma);
3085
err_unpin:
3086
	i915_gem_object_unpin_pages(obj);
3087
	return ret;
2332 Serge 3088
}
3089
 
4104 Serge 3090
bool
3091
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3092
			bool force)
2332 Serge 3093
{
3094
	/* If we don't have a page list set up, then we're not pinned
3095
	 * to GPU, and we can ignore the cache flush because it'll happen
3096
	 * again at bind time.
3097
	 */
3243 Serge 3098
	if (obj->pages == NULL)
4104 Serge 3099
		return false;
2332 Serge 3100
 
3480 Serge 3101
	/*
3102
	 * Stolen memory is always coherent with the GPU as it is explicitly
3103
	 * marked as wc by the system, or the system is cache-coherent.
3104
	 */
3105
	if (obj->stolen)
4104 Serge 3106
		return false;
3480 Serge 3107
 
2332 Serge 3108
	/* If the GPU is snooping the contents of the CPU cache,
3109
	 * we do not need to manually clear the CPU cache lines.  However,
3110
	 * the caches are only snooped when the render cache is
3111
	 * flushed/invalidated.  As we always have to emit invalidations
3112
	 * and flushes when moving into and out of the RENDER domain, correct
3113
	 * snooping behaviour occurs naturally as the result of our domain
3114
	 * tracking.
3115
	 */
4104 Serge 3116
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3117
		return false;
3243 Serge 3118
#if 0
2344 Serge 3119
     if(obj->mapped != NULL)
3120
     {
3121
        uint8_t *page_virtual;
3122
        unsigned int i;
2332 Serge 3123
 
2344 Serge 3124
        page_virtual = obj->mapped;
3125
        asm volatile("mfence");
3126
        for (i = 0; i < obj->base.size; i += x86_clflush_size)
3127
            clflush(page_virtual + i);
3128
        asm volatile("mfence");
3129
     }
3130
     else
3131
     {
3132
        uint8_t *page_virtual;
3133
        unsigned int i;
3134
        page_virtual = AllocKernelSpace(obj->base.size);
3135
        if(page_virtual != NULL)
3136
        {
3031 serge 3137
            dma_addr_t *src, *dst;
2344 Serge 3138
            u32 count;
3139
 
3140
#define page_tabs  0xFDC00000      /* really dirty hack */
3141
 
3031 serge 3142
            src =  obj->pages.page;
3143
            dst =  &((dma_addr_t*)page_tabs)[(u32_t)page_virtual >> 12];
2344 Serge 3144
            count = obj->base.size/4096;
3145
 
3146
            while(count--)
3147
            {
3148
                *dst++ = (0xFFFFF000 & *src++) | 0x001 ;
3149
            };
3150
 
3151
            asm volatile("mfence");
3152
            for (i = 0; i < obj->base.size; i += x86_clflush_size)
3153
                clflush(page_virtual + i);
3154
            asm volatile("mfence");
3155
            FreeKernelSpace(page_virtual);
3156
        }
3157
        else
3158
        {
3159
            asm volatile (
3160
            "mfence         \n"
3161
            "wbinvd         \n"                 /* this is really ugly  */
3162
            "mfence");
3163
        }
3164
     }
3243 Serge 3165
#endif
3166
 
4104 Serge 3167
	return true;
2332 Serge 3168
}
3169
 
2344 Serge 3170
/** Flushes the GTT write domain for the object if it's dirty. */
3171
static void
3172
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3173
{
3174
	uint32_t old_write_domain;
2332 Serge 3175
 
2344 Serge 3176
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3177
		return;
2332 Serge 3178
 
2344 Serge 3179
	/* No actual flushing is required for the GTT write domain.  Writes
3180
	 * to it immediately go to main memory as far as we know, so there's
3181
	 * no chipset flush.  It also doesn't land in render cache.
3182
	 *
3183
	 * However, we do have to enforce the order so that all writes through
3184
	 * the GTT land before any writes to the device, such as updates to
3185
	 * the GATT itself.
3186
	 */
3187
	wmb();
2332 Serge 3188
 
2344 Serge 3189
	old_write_domain = obj->base.write_domain;
3190
	obj->base.write_domain = 0;
2332 Serge 3191
 
2351 Serge 3192
	trace_i915_gem_object_change_domain(obj,
3193
					    obj->base.read_domains,
3194
					    old_write_domain);
2344 Serge 3195
}
2332 Serge 3196
 
3197
/** Flushes the CPU write domain for the object if it's dirty. */
2326 Serge 3198
static void
4104 Serge 3199
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3200
				       bool force)
2332 Serge 3201
{
3202
	uint32_t old_write_domain;
3203
 
3204
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3205
		return;
3206
 
4104 Serge 3207
	if (i915_gem_clflush_object(obj, force))
3243 Serge 3208
	i915_gem_chipset_flush(obj->base.dev);
4104 Serge 3209
 
2332 Serge 3210
	old_write_domain = obj->base.write_domain;
3211
	obj->base.write_domain = 0;
3212
 
2351 Serge 3213
	trace_i915_gem_object_change_domain(obj,
3214
					    obj->base.read_domains,
3215
					    old_write_domain);
2332 Serge 3216
}
3217
 
3218
/**
3219
 * Moves a single object to the GTT read, and possibly write domain.
3220
 *
3221
 * This function returns when the move is complete, including waiting on
3222
 * flushes to occur.
3223
 */
3224
int
3225
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3226
{
3031 serge 3227
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2332 Serge 3228
	uint32_t old_write_domain, old_read_domains;
3229
	int ret;
3230
 
3231
	/* Not valid to be called on unbound objects. */
4104 Serge 3232
	if (!i915_gem_obj_bound_any(obj))
2332 Serge 3233
		return -EINVAL;
3234
 
3235
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3236
		return 0;
3237
 
3031 serge 3238
	ret = i915_gem_object_wait_rendering(obj, !write);
2332 Serge 3239
		if (ret)
3240
			return ret;
3241
 
4104 Serge 3242
	i915_gem_object_flush_cpu_write_domain(obj, false);
2332 Serge 3243
 
3480 Serge 3244
	/* Serialise direct access to this object with the barriers for
3245
	 * coherent writes from the GPU, by effectively invalidating the
3246
	 * GTT domain upon first access.
3247
	 */
3248
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3249
		mb();
3250
 
2332 Serge 3251
	old_write_domain = obj->base.write_domain;
3252
	old_read_domains = obj->base.read_domains;
3253
 
3254
	/* It should now be out of any other write domains, and we can update
3255
	 * the domain values for our changes.
3256
	 */
3257
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3258
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3259
	if (write) {
3260
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3261
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3262
		obj->dirty = 1;
3263
	}
3264
 
2351 Serge 3265
	trace_i915_gem_object_change_domain(obj,
3266
					    old_read_domains,
3267
					    old_write_domain);
3268
 
3031 serge 3269
	/* And bump the LRU for this access */
4104 Serge 3270
	if (i915_gem_object_is_inactive(obj)) {
3271
		struct i915_vma *vma = i915_gem_obj_to_vma(obj,
3272
							   &dev_priv->gtt.base);
3273
		if (vma)
3274
			list_move_tail(&vma->mm_list,
3275
				       &dev_priv->gtt.base.inactive_list);
3031 serge 3276
 
4104 Serge 3277
	}
3278
 
2332 Serge 3279
	return 0;
3280
}
3281
 
2335 Serge 3282
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3283
				    enum i915_cache_level cache_level)
3284
{
3031 serge 3285
	struct drm_device *dev = obj->base.dev;
3286
	drm_i915_private_t *dev_priv = dev->dev_private;
4104 Serge 3287
	struct i915_vma *vma;
2335 Serge 3288
	int ret;
2332 Serge 3289
 
2335 Serge 3290
	if (obj->cache_level == cache_level)
3291
		return 0;
2332 Serge 3292
 
2335 Serge 3293
	if (obj->pin_count) {
3294
		DRM_DEBUG("can not change the cache level of pinned objects\n");
3295
		return -EBUSY;
3296
	}
2332 Serge 3297
 
4104 Serge 3298
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
3299
		if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3300
			ret = i915_vma_unbind(vma);
3031 serge 3301
		if (ret)
3302
			return ret;
4104 Serge 3303
 
3304
			break;
3305
		}
3031 serge 3306
	}
3307
 
4104 Serge 3308
	if (i915_gem_obj_bound_any(obj)) {
2335 Serge 3309
		ret = i915_gem_object_finish_gpu(obj);
3310
		if (ret)
3311
			return ret;
2332 Serge 3312
 
2335 Serge 3313
		i915_gem_object_finish_gtt(obj);
2332 Serge 3314
 
2335 Serge 3315
		/* Before SandyBridge, you could not use tiling or fence
3316
		 * registers with snooped memory, so relinquish any fences
3317
		 * currently pointing to our region in the aperture.
3318
		 */
3031 serge 3319
		if (INTEL_INFO(dev)->gen < 6) {
2335 Serge 3320
			ret = i915_gem_object_put_fence(obj);
3321
			if (ret)
3322
				return ret;
3323
		}
2332 Serge 3324
 
3031 serge 3325
		if (obj->has_global_gtt_mapping)
3326
			i915_gem_gtt_bind_object(obj, cache_level);
3327
		if (obj->has_aliasing_ppgtt_mapping)
3328
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3329
					       obj, cache_level);
2335 Serge 3330
	}
2332 Serge 3331
 
4104 Serge 3332
	list_for_each_entry(vma, &obj->vma_list, vma_link)
3333
		vma->node.color = cache_level;
3334
	obj->cache_level = cache_level;
3335
 
3336
	if (cpu_write_needs_clflush(obj)) {
2335 Serge 3337
		u32 old_read_domains, old_write_domain;
2332 Serge 3338
 
2335 Serge 3339
		/* If we're coming from LLC cached, then we haven't
3340
		 * actually been tracking whether the data is in the
3341
		 * CPU cache or not, since we only allow one bit set
3342
		 * in obj->write_domain and have been skipping the clflushes.
3343
		 * Just set it to the CPU cache for now.
3344
		 */
3345
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2332 Serge 3346
 
2335 Serge 3347
		old_read_domains = obj->base.read_domains;
3348
		old_write_domain = obj->base.write_domain;
2332 Serge 3349
 
2335 Serge 3350
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3351
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2332 Serge 3352
 
2351 Serge 3353
		trace_i915_gem_object_change_domain(obj,
3354
						    old_read_domains,
3355
						    old_write_domain);
2344 Serge 3356
    }
2332 Serge 3357
 
3031 serge 3358
	i915_gem_verify_gtt(dev);
2335 Serge 3359
	return 0;
3360
}
2332 Serge 3361
 
3260 Serge 3362
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3363
			       struct drm_file *file)
3364
{
3365
	struct drm_i915_gem_caching *args = data;
3366
	struct drm_i915_gem_object *obj;
3367
	int ret;
3368
 
3480 Serge 3369
     if(args->handle == -2)
3370
     {
3371
        printf("%s handle %d\n", __FUNCTION__, args->handle);
3372
        return 0;
3373
     }
3374
 
3260 Serge 3375
	ret = i915_mutex_lock_interruptible(dev);
3376
	if (ret)
3377
		return ret;
3378
 
3379
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3380
	if (&obj->base == NULL) {
3381
		ret = -ENOENT;
3382
		goto unlock;
3383
	}
3384
 
4104 Serge 3385
	switch (obj->cache_level) {
3386
	case I915_CACHE_LLC:
3387
	case I915_CACHE_L3_LLC:
3388
		args->caching = I915_CACHING_CACHED;
3389
		break;
3260 Serge 3390
 
4104 Serge 3391
	case I915_CACHE_WT:
3392
		args->caching = I915_CACHING_DISPLAY;
3393
		break;
3394
 
3395
	default:
3396
		args->caching = I915_CACHING_NONE;
3397
		break;
3398
	}
3399
 
3260 Serge 3400
	drm_gem_object_unreference(&obj->base);
3401
unlock:
3402
	mutex_unlock(&dev->struct_mutex);
3403
	return ret;
3404
}
3405
 
3406
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3407
			       struct drm_file *file)
3408
{
3409
	struct drm_i915_gem_caching *args = data;
3410
	struct drm_i915_gem_object *obj;
3411
	enum i915_cache_level level;
3412
	int ret;
3413
 
3480 Serge 3414
     if(args->handle == -2)
3415
     {
3416
        printf("%s handle %d\n", __FUNCTION__, args->handle);
3417
        return 0;
3418
     }
3419
 
3260 Serge 3420
	switch (args->caching) {
3421
	case I915_CACHING_NONE:
3422
		level = I915_CACHE_NONE;
3423
		break;
3424
	case I915_CACHING_CACHED:
3425
		level = I915_CACHE_LLC;
3426
		break;
4104 Serge 3427
	case I915_CACHING_DISPLAY:
3428
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3429
		break;
3260 Serge 3430
	default:
3431
		return -EINVAL;
3432
	}
3433
 
3434
	ret = i915_mutex_lock_interruptible(dev);
3435
	if (ret)
3436
		return ret;
3437
 
3438
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3439
	if (&obj->base == NULL) {
3440
		ret = -ENOENT;
3441
		goto unlock;
3442
	}
3443
 
3444
	ret = i915_gem_object_set_cache_level(obj, level);
3445
 
3446
	drm_gem_object_unreference(&obj->base);
3447
unlock:
3448
	mutex_unlock(&dev->struct_mutex);
3449
	return ret;
3450
}
3451
 
4104 Serge 3452
static bool is_pin_display(struct drm_i915_gem_object *obj)
3453
{
3454
	/* There are 3 sources that pin objects:
3455
	 *   1. The display engine (scanouts, sprites, cursors);
3456
	 *   2. Reservations for execbuffer;
3457
	 *   3. The user.
3458
	 *
3459
	 * We can ignore reservations as we hold the struct_mutex and
3460
	 * are only called outside of the reservation path.  The user
3461
	 * can only increment pin_count once, and so if after
3462
	 * subtracting the potential reference by the user, any pin_count
3463
	 * remains, it must be due to another use by the display engine.
3464
	 */
3465
	return obj->pin_count - !!obj->user_pin_count;
3466
}
3467
 
2335 Serge 3468
/*
3469
 * Prepare buffer for display plane (scanout, cursors, etc).
3470
 * Can be called from an uninterruptible phase (modesetting) and allows
3471
 * any flushes to be pipelined (for pageflips).
3472
 */
3473
int
3474
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3475
				     u32 alignment,
3476
				     struct intel_ring_buffer *pipelined)
3477
{
3478
	u32 old_read_domains, old_write_domain;
3479
	int ret;
2332 Serge 3480
 
3031 serge 3481
	if (pipelined != obj->ring) {
3482
		ret = i915_gem_object_sync(obj, pipelined);
2335 Serge 3483
	if (ret)
3484
		return ret;
3485
	}
2332 Serge 3486
 
4104 Serge 3487
	/* Mark the pin_display early so that we account for the
3488
	 * display coherency whilst setting up the cache domains.
3489
	 */
3490
	obj->pin_display = true;
3491
 
2335 Serge 3492
	/* The display engine is not coherent with the LLC cache on gen6.  As
3493
	 * a result, we make sure that the pinning that is about to occur is
3494
	 * done with uncached PTEs. This is lowest common denominator for all
3495
	 * chipsets.
3496
	 *
3497
	 * However for gen6+, we could do better by using the GFDT bit instead
3498
	 * of uncaching, which would allow us to flush all the LLC-cached data
3499
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3500
	 */
4104 Serge 3501
	ret = i915_gem_object_set_cache_level(obj,
3502
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
2360 Serge 3503
	if (ret)
4104 Serge 3504
		goto err_unpin_display;
2332 Serge 3505
 
2335 Serge 3506
	/* As the user may map the buffer once pinned in the display plane
3507
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3508
	 * always use map_and_fenceable for all scanout buffers.
3509
	 */
4104 Serge 3510
	ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
2335 Serge 3511
	if (ret)
4104 Serge 3512
		goto err_unpin_display;
2332 Serge 3513
 
4104 Serge 3514
	i915_gem_object_flush_cpu_write_domain(obj, true);
2332 Serge 3515
 
2335 Serge 3516
	old_write_domain = obj->base.write_domain;
3517
	old_read_domains = obj->base.read_domains;
2332 Serge 3518
 
2335 Serge 3519
	/* It should now be out of any other write domains, and we can update
3520
	 * the domain values for our changes.
3521
	 */
3031 serge 3522
	obj->base.write_domain = 0;
2335 Serge 3523
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2332 Serge 3524
 
2351 Serge 3525
	trace_i915_gem_object_change_domain(obj,
3526
					    old_read_domains,
3527
					    old_write_domain);
2332 Serge 3528
 
2335 Serge 3529
	return 0;
4104 Serge 3530
 
3531
err_unpin_display:
3532
	obj->pin_display = is_pin_display(obj);
3533
	return ret;
2335 Serge 3534
}
2332 Serge 3535
 
4104 Serge 3536
void
3537
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3538
{
3539
	i915_gem_object_unpin(obj);
3540
	obj->pin_display = is_pin_display(obj);
3541
}
3542
 
2344 Serge 3543
int
3544
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3545
{
3546
	int ret;
2332 Serge 3547
 
2344 Serge 3548
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3549
		return 0;
2332 Serge 3550
 
3031 serge 3551
	ret = i915_gem_object_wait_rendering(obj, false);
3243 Serge 3552
    if (ret)
3553
        return ret;
2332 Serge 3554
 
2344 Serge 3555
	/* Ensure that we invalidate the GPU's caches and TLBs. */
3556
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3031 serge 3557
	return 0;
2344 Serge 3558
}
2332 Serge 3559
 
2344 Serge 3560
/**
3561
 * Moves a single object to the CPU read, and possibly write domain.
3562
 *
3563
 * This function returns when the move is complete, including waiting on
3564
 * flushes to occur.
3565
 */
3031 serge 3566
int
2344 Serge 3567
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3568
{
3569
	uint32_t old_write_domain, old_read_domains;
3570
	int ret;
2332 Serge 3571
 
2344 Serge 3572
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3573
		return 0;
2332 Serge 3574
 
3031 serge 3575
	ret = i915_gem_object_wait_rendering(obj, !write);
2344 Serge 3576
	if (ret)
3577
		return ret;
2332 Serge 3578
 
2344 Serge 3579
	i915_gem_object_flush_gtt_write_domain(obj);
2332 Serge 3580
 
2344 Serge 3581
	old_write_domain = obj->base.write_domain;
3582
	old_read_domains = obj->base.read_domains;
2332 Serge 3583
 
2344 Serge 3584
	/* Flush the CPU cache if it's still invalid. */
3585
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4104 Serge 3586
		i915_gem_clflush_object(obj, false);
2332 Serge 3587
 
2344 Serge 3588
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3589
	}
2332 Serge 3590
 
2344 Serge 3591
	/* It should now be out of any other write domains, and we can update
3592
	 * the domain values for our changes.
3593
	 */
3594
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2332 Serge 3595
 
2344 Serge 3596
	/* If we're writing through the CPU, then the GPU read domains will
3597
	 * need to be invalidated at next use.
3598
	 */
3599
	if (write) {
3600
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3601
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3602
	}
2332 Serge 3603
 
2351 Serge 3604
	trace_i915_gem_object_change_domain(obj,
3605
					    old_read_domains,
3606
					    old_write_domain);
2332 Serge 3607
 
2344 Serge 3608
	return 0;
3609
}
2332 Serge 3610
 
3031 serge 3611
/* Throttle our rendering by waiting until the ring has completed our requests
3612
 * emitted over 20 msec ago.
2344 Serge 3613
 *
3031 serge 3614
 * Note that if we were to use the current jiffies each time around the loop,
3615
 * we wouldn't escape the function with any frames outstanding if the time to
3616
 * render a frame was over 20ms.
3617
 *
3618
 * This should get us reasonable parallelism between CPU and GPU but also
3619
 * relatively low latency when blocking on a particular request to finish.
2344 Serge 3620
 */
3031 serge 3621
static int
3622
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
2344 Serge 3623
{
3031 serge 3624
	struct drm_i915_private *dev_priv = dev->dev_private;
3625
	struct drm_i915_file_private *file_priv = file->driver_priv;
3263 Serge 3626
	unsigned long recent_enough = GetTimerTicks() - msecs_to_jiffies(20);
3031 serge 3627
	struct drm_i915_gem_request *request;
3628
	struct intel_ring_buffer *ring = NULL;
3480 Serge 3629
	unsigned reset_counter;
3031 serge 3630
	u32 seqno = 0;
3631
	int ret;
2332 Serge 3632
 
3480 Serge 3633
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3634
	if (ret)
3635
		return ret;
2332 Serge 3636
 
3480 Serge 3637
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3638
	if (ret)
3639
		return ret;
3640
 
3031 serge 3641
	spin_lock(&file_priv->mm.lock);
3642
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3643
		if (time_after_eq(request->emitted_jiffies, recent_enough))
3644
			break;
2332 Serge 3645
 
3031 serge 3646
		ring = request->ring;
3647
		seqno = request->seqno;
3648
	}
3480 Serge 3649
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3031 serge 3650
	spin_unlock(&file_priv->mm.lock);
2332 Serge 3651
 
3031 serge 3652
	if (seqno == 0)
3653
		return 0;
2332 Serge 3654
 
3480 Serge 3655
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3031 serge 3656
	if (ret == 0)
3657
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
2332 Serge 3658
 
3031 serge 3659
	return ret;
2352 Serge 3660
}
2332 Serge 3661
 
3662
int
3663
i915_gem_object_pin(struct drm_i915_gem_object *obj,
4104 Serge 3664
		    struct i915_address_space *vm,
2332 Serge 3665
		    uint32_t alignment,
3031 serge 3666
		    bool map_and_fenceable,
3667
		    bool nonblocking)
2332 Serge 3668
{
4104 Serge 3669
	struct i915_vma *vma;
2332 Serge 3670
	int ret;
3671
 
3031 serge 3672
	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3673
		return -EBUSY;
2332 Serge 3674
 
4104 Serge 3675
	WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3676
 
3677
	vma = i915_gem_obj_to_vma(obj, vm);
3678
 
3679
	if (vma) {
3680
		if ((alignment &&
3681
		     vma->node.start & (alignment - 1)) ||
2332 Serge 3682
		    (map_and_fenceable && !obj->map_and_fenceable)) {
3683
			WARN(obj->pin_count,
3684
			     "bo is already pinned with incorrect alignment:"
4104 Serge 3685
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
2332 Serge 3686
			     " obj->map_and_fenceable=%d\n",
4104 Serge 3687
			     i915_gem_obj_offset(obj, vm), alignment,
2332 Serge 3688
			     map_and_fenceable,
3689
			     obj->map_and_fenceable);
4104 Serge 3690
			ret = i915_vma_unbind(vma);
2332 Serge 3691
			if (ret)
3692
				return ret;
3693
		}
3694
	}
3695
 
4104 Serge 3696
	if (!i915_gem_obj_bound(obj, vm)) {
3243 Serge 3697
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3698
 
4104 Serge 3699
		ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3031 serge 3700
						  map_and_fenceable,
3701
						  nonblocking);
2332 Serge 3702
		if (ret)
3703
			return ret;
3243 Serge 3704
 
3705
		if (!dev_priv->mm.aliasing_ppgtt)
3706
			i915_gem_gtt_bind_object(obj, obj->cache_level);
2332 Serge 3707
	}
3708
 
3031 serge 3709
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3710
		i915_gem_gtt_bind_object(obj, obj->cache_level);
3711
 
3712
	obj->pin_count++;
2332 Serge 3713
	obj->pin_mappable |= map_and_fenceable;
3714
 
3715
	return 0;
3716
}
3717
 
2344 Serge 3718
void
3719
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3720
{
3721
	BUG_ON(obj->pin_count == 0);
4104 Serge 3722
	BUG_ON(!i915_gem_obj_bound_any(obj));
2332 Serge 3723
 
3031 serge 3724
	if (--obj->pin_count == 0)
2344 Serge 3725
		obj->pin_mappable = false;
3726
}
2332 Serge 3727
 
3031 serge 3728
int
3729
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3730
		   struct drm_file *file)
3731
{
3732
	struct drm_i915_gem_pin *args = data;
3733
	struct drm_i915_gem_object *obj;
3734
	int ret;
2332 Serge 3735
 
3480 Serge 3736
     if(args->handle == -2)
3737
     {
3738
        printf("%s handle %d\n", __FUNCTION__, args->handle);
3739
        return 0;
3740
     }
3741
 
3031 serge 3742
	ret = i915_mutex_lock_interruptible(dev);
3743
	if (ret)
3744
		return ret;
2332 Serge 3745
 
3031 serge 3746
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3747
	if (&obj->base == NULL) {
3748
		ret = -ENOENT;
3749
		goto unlock;
3750
	}
2332 Serge 3751
 
3031 serge 3752
	if (obj->madv != I915_MADV_WILLNEED) {
3753
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3754
		ret = -EINVAL;
3755
		goto out;
3756
	}
2332 Serge 3757
 
3031 serge 3758
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3759
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3760
			  args->handle);
3761
		ret = -EINVAL;
3762
		goto out;
3763
	}
2332 Serge 3764
 
3243 Serge 3765
	if (obj->user_pin_count == 0) {
4104 Serge 3766
		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3031 serge 3767
		if (ret)
3768
			goto out;
3769
	}
2332 Serge 3770
 
3243 Serge 3771
	obj->user_pin_count++;
3772
	obj->pin_filp = file;
3773
 
4104 Serge 3774
	args->offset = i915_gem_obj_ggtt_offset(obj);
3031 serge 3775
out:
3776
	drm_gem_object_unreference(&obj->base);
3777
unlock:
3778
	mutex_unlock(&dev->struct_mutex);
3779
	return ret;
3780
}
2332 Serge 3781
 
3031 serge 3782
int
3783
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3784
		     struct drm_file *file)
3785
{
3786
	struct drm_i915_gem_pin *args = data;
3787
	struct drm_i915_gem_object *obj;
3788
	int ret;
2332 Serge 3789
 
3031 serge 3790
	ret = i915_mutex_lock_interruptible(dev);
3791
	if (ret)
3792
		return ret;
2332 Serge 3793
 
4246 Serge 3794
    if(args->handle == -2)
3795
    {
3796
        obj = get_fb_obj();
3797
        drm_gem_object_reference(&obj->base);
3798
    }
3799
    else
3031 serge 3800
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3801
	if (&obj->base == NULL) {
3802
		ret = -ENOENT;
3803
		goto unlock;
3804
	}
2332 Serge 3805
 
3031 serge 3806
	if (obj->pin_filp != file) {
3807
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3808
			  args->handle);
3809
		ret = -EINVAL;
3810
		goto out;
3811
	}
3812
	obj->user_pin_count--;
3813
	if (obj->user_pin_count == 0) {
3814
		obj->pin_filp = NULL;
3815
		i915_gem_object_unpin(obj);
3816
	}
2332 Serge 3817
 
3031 serge 3818
out:
3819
	drm_gem_object_unreference(&obj->base);
3820
unlock:
3821
	mutex_unlock(&dev->struct_mutex);
3822
	return ret;
3823
}
2332 Serge 3824
 
3031 serge 3825
int
3826
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3827
		    struct drm_file *file)
3828
{
3829
	struct drm_i915_gem_busy *args = data;
3830
	struct drm_i915_gem_object *obj;
3831
	int ret;
2332 Serge 3832
 
3031 serge 3833
	ret = i915_mutex_lock_interruptible(dev);
3834
	if (ret)
3835
		return ret;
2332 Serge 3836
 
3480 Serge 3837
    if(args->handle == -2)
3838
    {
3839
        obj = get_fb_obj();
3840
        drm_gem_object_reference(&obj->base);
3841
    }
3842
    else
4104 Serge 3843
        obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3031 serge 3844
	if (&obj->base == NULL) {
3845
		ret = -ENOENT;
3846
		goto unlock;
3847
	}
2332 Serge 3848
 
3031 serge 3849
	/* Count all active objects as busy, even if they are currently not used
3850
	 * by the gpu. Users of this interface expect objects to eventually
3851
	 * become non-busy without any further actions, therefore emit any
3852
	 * necessary flushes here.
3853
	 */
3854
	ret = i915_gem_object_flush_active(obj);
2332 Serge 3855
 
3031 serge 3856
	args->busy = obj->active;
3857
	if (obj->ring) {
3858
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3859
		args->busy |= intel_ring_flag(obj->ring) << 16;
3860
	}
2332 Serge 3861
 
3031 serge 3862
	drm_gem_object_unreference(&obj->base);
3863
unlock:
3864
	mutex_unlock(&dev->struct_mutex);
3865
	return ret;
3866
}
2332 Serge 3867
 
3031 serge 3868
int
3869
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3870
			struct drm_file *file_priv)
3871
{
3872
	return i915_gem_ring_throttle(dev, file_priv);
3873
}
2332 Serge 3874
 
3263 Serge 3875
#if 0
3876
 
3031 serge 3877
int
3878
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3879
		       struct drm_file *file_priv)
3880
{
3881
	struct drm_i915_gem_madvise *args = data;
3882
	struct drm_i915_gem_object *obj;
3883
	int ret;
2332 Serge 3884
 
3031 serge 3885
	switch (args->madv) {
3886
	case I915_MADV_DONTNEED:
3887
	case I915_MADV_WILLNEED:
3888
	    break;
3889
	default:
3890
	    return -EINVAL;
3891
	}
2332 Serge 3892
 
3031 serge 3893
	ret = i915_mutex_lock_interruptible(dev);
3894
	if (ret)
3895
		return ret;
2332 Serge 3896
 
3031 serge 3897
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3898
	if (&obj->base == NULL) {
3899
		ret = -ENOENT;
3900
		goto unlock;
3901
	}
2332 Serge 3902
 
3031 serge 3903
	if (obj->pin_count) {
3904
		ret = -EINVAL;
3905
		goto out;
3906
	}
2332 Serge 3907
 
3031 serge 3908
	if (obj->madv != __I915_MADV_PURGED)
3909
		obj->madv = args->madv;
2332 Serge 3910
 
3031 serge 3911
	/* if the object is no longer attached, discard its backing storage */
3912
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3913
		i915_gem_object_truncate(obj);
2332 Serge 3914
 
3031 serge 3915
	args->retained = obj->madv != __I915_MADV_PURGED;
2332 Serge 3916
 
3031 serge 3917
out:
3918
	drm_gem_object_unreference(&obj->base);
3919
unlock:
3920
	mutex_unlock(&dev->struct_mutex);
3921
	return ret;
3922
}
3923
#endif
2332 Serge 3924
 
3031 serge 3925
void i915_gem_object_init(struct drm_i915_gem_object *obj,
3926
			  const struct drm_i915_gem_object_ops *ops)
3927
{
4104 Serge 3928
	INIT_LIST_HEAD(&obj->global_list);
3031 serge 3929
	INIT_LIST_HEAD(&obj->ring_list);
3930
	INIT_LIST_HEAD(&obj->exec_list);
4104 Serge 3931
	INIT_LIST_HEAD(&obj->obj_exec_link);
3932
	INIT_LIST_HEAD(&obj->vma_list);
2332 Serge 3933
 
3031 serge 3934
	obj->ops = ops;
3935
 
3936
	obj->fence_reg = I915_FENCE_REG_NONE;
3937
	obj->madv = I915_MADV_WILLNEED;
3938
	/* Avoid an unnecessary call to unbind on the first bind. */
3939
	obj->map_and_fenceable = true;
3940
 
3941
	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3942
}
3943
 
3944
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3945
	.get_pages = i915_gem_object_get_pages_gtt,
3946
	.put_pages = i915_gem_object_put_pages_gtt,
3947
};
3948
 
2332 Serge 3949
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3950
						  size_t size)
3951
{
3952
	struct drm_i915_gem_object *obj;
3031 serge 3953
	struct address_space *mapping;
3480 Serge 3954
	gfp_t mask;
2340 Serge 3955
 
3746 Serge 3956
	obj = i915_gem_object_alloc(dev);
2332 Serge 3957
	if (obj == NULL)
3958
		return NULL;
3959
 
3960
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4104 Serge 3961
		i915_gem_object_free(obj);
2332 Serge 3962
		return NULL;
3963
	}
3964
 
3965
 
3031 serge 3966
	i915_gem_object_init(obj, &i915_gem_object_ops);
2332 Serge 3967
 
3968
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3969
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3970
 
3031 serge 3971
	if (HAS_LLC(dev)) {
3972
		/* On some devices, we can have the GPU use the LLC (the CPU
2332 Serge 3973
		 * cache) for about a 10% performance improvement
3974
		 * compared to uncached.  Graphics requests other than
3975
		 * display scanout are coherent with the CPU in
3976
		 * accessing this cache.  This means in this mode we
3977
		 * don't need to clflush on the CPU side, and on the
3978
		 * GPU side we only need to flush internal caches to
3979
		 * get data visible to the CPU.
3980
		 *
3981
		 * However, we maintain the display planes as UC, and so
3982
		 * need to rebind when first used as such.
3983
		 */
3984
		obj->cache_level = I915_CACHE_LLC;
3985
	} else
3986
		obj->cache_level = I915_CACHE_NONE;
3987
 
3988
	return obj;
3989
}
3990
 
2344 Serge 3991
int i915_gem_init_object(struct drm_gem_object *obj)
3992
{
3993
	BUG();
2332 Serge 3994
 
2344 Serge 3995
	return 0;
3996
}
2332 Serge 3997
 
3031 serge 3998
void i915_gem_free_object(struct drm_gem_object *gem_obj)
2344 Serge 3999
{
3031 serge 4000
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
2344 Serge 4001
	struct drm_device *dev = obj->base.dev;
4002
	drm_i915_private_t *dev_priv = dev->dev_private;
4104 Serge 4003
	struct i915_vma *vma, *next;
2332 Serge 4004
 
3031 serge 4005
	trace_i915_gem_object_destroy(obj);
4006
 
4007
 
4008
	obj->pin_count = 0;
4104 Serge 4009
	/* NB: 0 or 1 elements */
4010
	WARN_ON(!list_empty(&obj->vma_list) &&
4011
		!list_is_singular(&obj->vma_list));
4012
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4013
		int ret = i915_vma_unbind(vma);
4014
		if (WARN_ON(ret == -ERESTARTSYS)) {
3031 serge 4015
		bool was_interruptible;
4016
 
4017
		was_interruptible = dev_priv->mm.interruptible;
4018
		dev_priv->mm.interruptible = false;
4019
 
4104 Serge 4020
			WARN_ON(i915_vma_unbind(vma));
3031 serge 4021
 
4022
		dev_priv->mm.interruptible = was_interruptible;
2344 Serge 4023
	}
4104 Serge 4024
	}
2332 Serge 4025
 
4104 Serge 4026
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4027
	 * before progressing. */
4028
	if (obj->stolen)
4029
		i915_gem_object_unpin_pages(obj);
4030
 
4031
	if (WARN_ON(obj->pages_pin_count))
3031 serge 4032
	obj->pages_pin_count = 0;
4033
	i915_gem_object_put_pages(obj);
4034
//   i915_gem_object_free_mmap_offset(obj);
4104 Serge 4035
	i915_gem_object_release_stolen(obj);
2332 Serge 4036
 
3243 Serge 4037
	BUG_ON(obj->pages);
2332 Serge 4038
 
3031 serge 4039
 
3290 Serge 4040
    if(obj->base.filp != NULL)
4041
    {
3298 Serge 4042
//        printf("filp %p\n", obj->base.filp);
3290 Serge 4043
        shmem_file_delete(obj->base.filp);
4044
    }
4045
 
2344 Serge 4046
	drm_gem_object_release(&obj->base);
4047
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
2332 Serge 4048
 
2344 Serge 4049
	kfree(obj->bit_17);
4104 Serge 4050
	i915_gem_object_free(obj);
2344 Serge 4051
}
2332 Serge 4052
 
4104 Serge 4053
struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
4054
				     struct i915_address_space *vm)
4055
{
4056
	struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4057
	if (vma == NULL)
4058
		return ERR_PTR(-ENOMEM);
4059
 
4060
	INIT_LIST_HEAD(&vma->vma_link);
4061
	INIT_LIST_HEAD(&vma->mm_list);
4062
	INIT_LIST_HEAD(&vma->exec_list);
4063
	vma->vm = vm;
4064
	vma->obj = obj;
4065
 
4066
	/* Keep GGTT vmas first to make debug easier */
4067
	if (i915_is_ggtt(vm))
4068
		list_add(&vma->vma_link, &obj->vma_list);
4069
	else
4070
		list_add_tail(&vma->vma_link, &obj->vma_list);
4071
 
4072
	return vma;
4073
}
4074
 
4075
void i915_gem_vma_destroy(struct i915_vma *vma)
4076
{
4077
	WARN_ON(vma->node.allocated);
4078
	list_del(&vma->vma_link);
4079
	kfree(vma);
4080
}
4081
 
3031 serge 4082
#if 0
4083
int
4084
i915_gem_idle(struct drm_device *dev)
2344 Serge 4085
{
3031 serge 4086
	drm_i915_private_t *dev_priv = dev->dev_private;
4087
	int ret;
2332 Serge 4088
 
4104 Serge 4089
	if (dev_priv->ums.mm_suspended) {
3031 serge 4090
		mutex_unlock(&dev->struct_mutex);
4091
		return 0;
4092
	}
2332 Serge 4093
 
3031 serge 4094
	ret = i915_gpu_idle(dev);
4095
	if (ret) {
4096
		mutex_unlock(&dev->struct_mutex);
4097
		return ret;
4098
	}
4099
	i915_gem_retire_requests(dev);
4100
 
3480 Serge 4101
	/* Under UMS, be paranoid and evict. */
4102
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4103
		i915_gem_evict_everything(dev);
4104
 
4105
	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3031 serge 4106
 
4107
	i915_kernel_lost_context(dev);
4108
	i915_gem_cleanup_ringbuffer(dev);
4109
 
4110
	/* Cancel the retire work handler, which should be idle now. */
3263 Serge 4111
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3031 serge 4112
 
4113
	return 0;
2344 Serge 4114
}
3031 serge 4115
#endif
2332 Serge 4116
 
3031 serge 4117
void i915_gem_l3_remap(struct drm_device *dev)
4118
{
4119
	drm_i915_private_t *dev_priv = dev->dev_private;
4120
	u32 misccpctl;
4121
	int i;
2332 Serge 4122
 
3480 Serge 4123
	if (!HAS_L3_GPU_CACHE(dev))
3031 serge 4124
		return;
2332 Serge 4125
 
3243 Serge 4126
	if (!dev_priv->l3_parity.remap_info)
3031 serge 4127
		return;
2332 Serge 4128
 
3031 serge 4129
	misccpctl = I915_READ(GEN7_MISCCPCTL);
4130
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4131
	POSTING_READ(GEN7_MISCCPCTL);
2332 Serge 4132
 
3031 serge 4133
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4134
		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3243 Serge 4135
		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3031 serge 4136
			DRM_DEBUG("0x%x was already programmed to %x\n",
4137
				  GEN7_L3LOG_BASE + i, remap);
3243 Serge 4138
		if (remap && !dev_priv->l3_parity.remap_info[i/4])
3031 serge 4139
			DRM_DEBUG_DRIVER("Clearing remapped register\n");
3243 Serge 4140
		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3031 serge 4141
	}
2332 Serge 4142
 
3031 serge 4143
	/* Make sure all the writes land before disabling dop clock gating */
4144
	POSTING_READ(GEN7_L3LOG_BASE);
2332 Serge 4145
 
3031 serge 4146
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4147
}
2332 Serge 4148
 
3031 serge 4149
void i915_gem_init_swizzling(struct drm_device *dev)
4150
{
4151
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 4152
 
3031 serge 4153
	if (INTEL_INFO(dev)->gen < 5 ||
4154
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4155
		return;
2332 Serge 4156
 
3031 serge 4157
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4158
				 DISP_TILE_SURFACE_SWIZZLING);
2332 Serge 4159
 
3031 serge 4160
	if (IS_GEN5(dev))
4161
		return;
2344 Serge 4162
 
3031 serge 4163
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4164
	if (IS_GEN6(dev))
4165
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3480 Serge 4166
	else if (IS_GEN7(dev))
4167
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3031 serge 4168
	else
3480 Serge 4169
		BUG();
3031 serge 4170
}
4171
 
4172
static bool
4173
intel_enable_blt(struct drm_device *dev)
4174
{
4175
	if (!HAS_BLT(dev))
4176
		return false;
4177
 
4178
	/* The blitter was dysfunctional on early prototypes */
4179
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4180
		DRM_INFO("BLT not supported on this pre-production hardware;"
4181
			 " graphics performance will be degraded.\n");
4182
		return false;
4183
	}
4184
 
4185
	return true;
4186
}
4187
 
3480 Serge 4188
static int i915_gem_init_rings(struct drm_device *dev)
2332 Serge 4189
{
3480 Serge 4190
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 4191
	int ret;
2351 Serge 4192
 
2332 Serge 4193
	ret = intel_init_render_ring_buffer(dev);
4194
	if (ret)
4195
		return ret;
4196
 
4197
    if (HAS_BSD(dev)) {
4198
		ret = intel_init_bsd_ring_buffer(dev);
4199
		if (ret)
4200
			goto cleanup_render_ring;
4201
	}
4202
 
3031 serge 4203
	if (intel_enable_blt(dev)) {
2332 Serge 4204
		ret = intel_init_blt_ring_buffer(dev);
4205
		if (ret)
4206
			goto cleanup_bsd_ring;
4207
	}
4208
 
4104 Serge 4209
	if (HAS_VEBOX(dev)) {
4210
		ret = intel_init_vebox_ring_buffer(dev);
4211
		if (ret)
4212
			goto cleanup_blt_ring;
4213
	}
4214
 
4215
 
3480 Serge 4216
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4217
	if (ret)
4104 Serge 4218
		goto cleanup_vebox_ring;
2351 Serge 4219
 
2332 Serge 4220
	return 0;
4221
 
4104 Serge 4222
cleanup_vebox_ring:
4223
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
3480 Serge 4224
cleanup_blt_ring:
4225
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
2332 Serge 4226
cleanup_bsd_ring:
4227
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4228
cleanup_render_ring:
4229
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3480 Serge 4230
 
2332 Serge 4231
	return ret;
4232
}
4233
 
3480 Serge 4234
int
4235
i915_gem_init_hw(struct drm_device *dev)
3031 serge 4236
{
3480 Serge 4237
	drm_i915_private_t *dev_priv = dev->dev_private;
4238
	int ret;
3031 serge 4239
 
3480 Serge 4240
	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4241
		return -EIO;
3031 serge 4242
 
4104 Serge 4243
	if (dev_priv->ellc_size)
4244
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
3480 Serge 4245
 
3746 Serge 4246
	if (HAS_PCH_NOP(dev)) {
4247
		u32 temp = I915_READ(GEN7_MSG_CTL);
4248
		temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4249
		I915_WRITE(GEN7_MSG_CTL, temp);
4250
	}
4251
 
3480 Serge 4252
	i915_gem_l3_remap(dev);
4253
 
4254
	i915_gem_init_swizzling(dev);
4255
 
4256
	ret = i915_gem_init_rings(dev);
4257
	if (ret)
4258
		return ret;
4259
 
4260
	/*
4261
	 * XXX: There was some w/a described somewhere suggesting loading
4262
	 * contexts before PPGTT.
4263
	 */
4264
	i915_gem_context_init(dev);
3746 Serge 4265
	if (dev_priv->mm.aliasing_ppgtt) {
4266
		ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4267
		if (ret) {
4268
			i915_gem_cleanup_aliasing_ppgtt(dev);
4269
			DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4270
		}
4271
	}
3480 Serge 4272
 
4273
	return 0;
3031 serge 4274
}
4275
 
4276
int i915_gem_init(struct drm_device *dev)
4277
{
4278
	struct drm_i915_private *dev_priv = dev->dev_private;
4279
	int ret;
4280
 
4281
	mutex_lock(&dev->struct_mutex);
3746 Serge 4282
 
4283
	if (IS_VALLEYVIEW(dev)) {
4284
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4285
		I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4286
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4287
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4288
	}
4289
 
3480 Serge 4290
	i915_gem_init_global_gtt(dev);
3746 Serge 4291
 
3031 serge 4292
	ret = i915_gem_init_hw(dev);
4293
	mutex_unlock(&dev->struct_mutex);
4294
	if (ret) {
4295
		i915_gem_cleanup_aliasing_ppgtt(dev);
4296
		return ret;
4297
	}
4298
 
3746 Serge 4299
 
3031 serge 4300
    return 0;
4301
}
4302
 
2332 Serge 4303
void
4304
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4305
{
4306
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 4307
	struct intel_ring_buffer *ring;
2332 Serge 4308
	int i;
4309
 
3031 serge 4310
	for_each_ring(ring, dev_priv, i)
4311
		intel_cleanup_ring_buffer(ring);
2332 Serge 4312
}
4313
 
3031 serge 4314
#if 0
4315
 
2332 Serge 4316
int
4317
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4318
		       struct drm_file *file_priv)
4319
{
4104 Serge 4320
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4321
	int ret;
2332 Serge 4322
 
4323
	if (drm_core_check_feature(dev, DRIVER_MODESET))
4324
		return 0;
4325
 
3480 Serge 4326
	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
2332 Serge 4327
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3480 Serge 4328
		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
2332 Serge 4329
	}
4330
 
4331
	mutex_lock(&dev->struct_mutex);
4104 Serge 4332
	dev_priv->ums.mm_suspended = 0;
2332 Serge 4333
 
3031 serge 4334
	ret = i915_gem_init_hw(dev);
2332 Serge 4335
	if (ret != 0) {
4336
		mutex_unlock(&dev->struct_mutex);
4337
		return ret;
4338
	}
4339
 
4104 Serge 4340
	BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
2332 Serge 4341
	mutex_unlock(&dev->struct_mutex);
4342
 
4343
	ret = drm_irq_install(dev);
4344
	if (ret)
4345
		goto cleanup_ringbuffer;
4346
 
4347
	return 0;
4348
 
4349
cleanup_ringbuffer:
4350
	mutex_lock(&dev->struct_mutex);
4351
	i915_gem_cleanup_ringbuffer(dev);
4104 Serge 4352
	dev_priv->ums.mm_suspended = 1;
2332 Serge 4353
	mutex_unlock(&dev->struct_mutex);
4354
 
4355
	return ret;
4356
}
4357
 
4358
int
4359
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4360
		       struct drm_file *file_priv)
4361
{
4104 Serge 4362
	struct drm_i915_private *dev_priv = dev->dev_private;
4363
	int ret;
4364
 
2332 Serge 4365
	if (drm_core_check_feature(dev, DRIVER_MODESET))
4366
		return 0;
4367
 
4368
	drm_irq_uninstall(dev);
4104 Serge 4369
 
4370
	mutex_lock(&dev->struct_mutex);
4371
	ret =  i915_gem_idle(dev);
4372
 
4373
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
4374
	 * We need to replace this with a semaphore, or something.
4375
	 * And not confound ums.mm_suspended!
4376
	 */
4377
	if (ret != 0)
4378
		dev_priv->ums.mm_suspended = 1;
4379
	mutex_unlock(&dev->struct_mutex);
4380
 
4381
	return ret;
2332 Serge 4382
}
4383
 
4384
void
4385
i915_gem_lastclose(struct drm_device *dev)
4386
{
4387
	int ret;
4388
 
4389
	if (drm_core_check_feature(dev, DRIVER_MODESET))
4390
		return;
4391
 
4104 Serge 4392
	mutex_lock(&dev->struct_mutex);
2332 Serge 4393
	ret = i915_gem_idle(dev);
4394
	if (ret)
4395
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4104 Serge 4396
	mutex_unlock(&dev->struct_mutex);
2332 Serge 4397
}
4398
#endif
4399
 
4400
static void
2326 Serge 4401
init_ring_lists(struct intel_ring_buffer *ring)
4402
{
4403
    INIT_LIST_HEAD(&ring->active_list);
4404
    INIT_LIST_HEAD(&ring->request_list);
4405
}
4406
 
4104 Serge 4407
static void i915_init_vm(struct drm_i915_private *dev_priv,
4408
			 struct i915_address_space *vm)
4409
{
4410
	vm->dev = dev_priv->dev;
4411
	INIT_LIST_HEAD(&vm->active_list);
4412
	INIT_LIST_HEAD(&vm->inactive_list);
4413
	INIT_LIST_HEAD(&vm->global_link);
4414
	list_add(&vm->global_link, &dev_priv->vm_list);
4415
}
4416
 
2326 Serge 4417
void
4418
i915_gem_load(struct drm_device *dev)
4419
{
3480 Serge 4420
	drm_i915_private_t *dev_priv = dev->dev_private;
2326 Serge 4421
    int i;
4422
 
4104 Serge 4423
	INIT_LIST_HEAD(&dev_priv->vm_list);
4424
	i915_init_vm(dev_priv, &dev_priv->gtt.base);
4425
 
3031 serge 4426
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4427
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
2326 Serge 4428
    INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4429
    for (i = 0; i < I915_NUM_RINGS; i++)
4430
        init_ring_lists(&dev_priv->ring[i]);
2342 Serge 4431
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
2326 Serge 4432
        INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
2360 Serge 4433
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4434
			  i915_gem_retire_work_handler);
3480 Serge 4435
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
2326 Serge 4436
 
4437
    /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4438
    if (IS_GEN3(dev)) {
3031 serge 4439
		I915_WRITE(MI_ARB_STATE,
4440
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
2326 Serge 4441
    }
4442
 
4443
    dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4444
 
3746 Serge 4445
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4446
		dev_priv->num_fence_regs = 32;
4447
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
2326 Serge 4448
        dev_priv->num_fence_regs = 16;
4449
    else
4450
        dev_priv->num_fence_regs = 8;
4451
 
4452
    /* Initialize fence registers to zero */
3746 Serge 4453
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4454
	i915_gem_restore_fences(dev);
2326 Serge 4455
 
4456
    i915_gem_detect_bit_6_swizzle(dev);
4457
 
4458
    dev_priv->mm.interruptible = true;
4459
 
4460
}
4461
 
4104 Serge 4462
#if 0
4463
/*
4464
 * Create a physically contiguous memory object for this object
4465
 * e.g. for cursor + overlay regs
4466
 */
4467
static int i915_gem_init_phys_object(struct drm_device *dev,
4468
				     int id, int size, int align)
4469
{
4470
	drm_i915_private_t *dev_priv = dev->dev_private;
4471
	struct drm_i915_gem_phys_object *phys_obj;
4472
	int ret;
2326 Serge 4473
 
4104 Serge 4474
	if (dev_priv->mm.phys_objs[id - 1] || !size)
4475
		return 0;
4476
 
4477
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4478
	if (!phys_obj)
4479
		return -ENOMEM;
4480
 
4481
	phys_obj->id = id;
4482
 
4483
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4484
	if (!phys_obj->handle) {
4485
		ret = -ENOMEM;
4486
		goto kfree_obj;
4487
	}
4488
#ifdef CONFIG_X86
4489
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4490
#endif
4491
 
4492
	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4493
 
4494
	return 0;
4495
kfree_obj:
4496
	kfree(phys_obj);
4497
	return ret;
4498
}
4499
 
4500
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4501
{
4502
	drm_i915_private_t *dev_priv = dev->dev_private;
4503
	struct drm_i915_gem_phys_object *phys_obj;
4504
 
4505
	if (!dev_priv->mm.phys_objs[id - 1])
4506
		return;
4507
 
4508
	phys_obj = dev_priv->mm.phys_objs[id - 1];
4509
	if (phys_obj->cur_obj) {
4510
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4511
	}
4512
 
4513
#ifdef CONFIG_X86
4514
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4515
#endif
4516
	drm_pci_free(dev, phys_obj->handle);
4517
	kfree(phys_obj);
4518
	dev_priv->mm.phys_objs[id - 1] = NULL;
4519
}
4520
 
4521
void i915_gem_free_all_phys_object(struct drm_device *dev)
4522
{
4523
	int i;
4524
 
4525
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4526
		i915_gem_free_phys_object(dev, i);
4527
}
4528
 
4529
void i915_gem_detach_phys_object(struct drm_device *dev,
4530
				 struct drm_i915_gem_object *obj)
4531
{
4532
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4533
	char *vaddr;
4534
	int i;
4535
	int page_count;
4536
 
4537
	if (!obj->phys_obj)
4538
		return;
4539
	vaddr = obj->phys_obj->handle->vaddr;
4540
 
4541
	page_count = obj->base.size / PAGE_SIZE;
4542
	for (i = 0; i < page_count; i++) {
4543
		struct page *page = shmem_read_mapping_page(mapping, i);
4544
		if (!IS_ERR(page)) {
4545
			char *dst = kmap_atomic(page);
4546
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4547
			kunmap_atomic(dst);
4548
 
4549
			drm_clflush_pages(&page, 1);
4550
 
4551
			set_page_dirty(page);
4552
			mark_page_accessed(page);
4553
			page_cache_release(page);
4554
		}
4555
	}
4556
	i915_gem_chipset_flush(dev);
4557
 
4558
	obj->phys_obj->cur_obj = NULL;
4559
	obj->phys_obj = NULL;
4560
}
4561
 
4562
int
4563
i915_gem_attach_phys_object(struct drm_device *dev,
4564
			    struct drm_i915_gem_object *obj,
4565
			    int id,
4566
			    int align)
4567
{
4568
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4569
	drm_i915_private_t *dev_priv = dev->dev_private;
4570
	int ret = 0;
4571
	int page_count;
4572
	int i;
4573
 
4574
	if (id > I915_MAX_PHYS_OBJECT)
4575
		return -EINVAL;
4576
 
4577
	if (obj->phys_obj) {
4578
		if (obj->phys_obj->id == id)
4579
			return 0;
4580
		i915_gem_detach_phys_object(dev, obj);
4581
	}
4582
 
4583
	/* create a new object */
4584
	if (!dev_priv->mm.phys_objs[id - 1]) {
4585
		ret = i915_gem_init_phys_object(dev, id,
4586
						obj->base.size, align);
4587
		if (ret) {
4588
			DRM_ERROR("failed to init phys object %d size: %zu\n",
4589
				  id, obj->base.size);
4590
			return ret;
4591
		}
4592
	}
4593
 
4594
	/* bind to the object */
4595
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4596
	obj->phys_obj->cur_obj = obj;
4597
 
4598
	page_count = obj->base.size / PAGE_SIZE;
4599
 
4600
	for (i = 0; i < page_count; i++) {
4601
		struct page *page;
4602
		char *dst, *src;
4603
 
4604
		page = shmem_read_mapping_page(mapping, i);
4605
		if (IS_ERR(page))
4606
			return PTR_ERR(page);
4607
 
4608
		src = kmap_atomic(page);
4609
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4610
		memcpy(dst, src, PAGE_SIZE);
4611
		kunmap_atomic(src);
4612
 
4613
		mark_page_accessed(page);
4614
		page_cache_release(page);
4615
	}
4616
 
4617
	return 0;
4618
}
4619
 
4620
static int
4621
i915_gem_phys_pwrite(struct drm_device *dev,
4622
		     struct drm_i915_gem_object *obj,
4623
		     struct drm_i915_gem_pwrite *args,
4624
		     struct drm_file *file_priv)
4625
{
4626
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4627
	char __user *user_data = to_user_ptr(args->data_ptr);
4628
 
4629
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4630
		unsigned long unwritten;
4631
 
4632
		/* The physical object once assigned is fixed for the lifetime
4633
		 * of the obj, so we can safely drop the lock and continue
4634
		 * to access vaddr.
4635
		 */
4636
		mutex_unlock(&dev->struct_mutex);
4637
		unwritten = copy_from_user(vaddr, user_data, args->size);
4638
		mutex_lock(&dev->struct_mutex);
4639
		if (unwritten)
4640
			return -EFAULT;
4641
	}
4642
 
4643
	i915_gem_chipset_flush(dev);
4644
	return 0;
4645
}
4646
 
4647
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4648
{
4649
	struct drm_i915_file_private *file_priv = file->driver_priv;
4650
 
4651
	/* Clean up our request list when the client is going away, so that
4652
	 * later retire_requests won't dereference our soon-to-be-gone
4653
	 * file_priv.
4654
	 */
4655
	spin_lock(&file_priv->mm.lock);
4656
	while (!list_empty(&file_priv->mm.request_list)) {
4657
		struct drm_i915_gem_request *request;
4658
 
4659
		request = list_first_entry(&file_priv->mm.request_list,
4660
					   struct drm_i915_gem_request,
4661
					   client_list);
4662
		list_del(&request->client_list);
4663
		request->file_priv = NULL;
4664
	}
4665
	spin_unlock(&file_priv->mm.lock);
4666
}
4667
#endif
4668
 
4669
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4670
{
4671
	if (!mutex_is_locked(mutex))
4672
		return false;
4673
 
4674
#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4675
	return mutex->owner == task;
4676
#else
4677
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
4678
	return false;
4679
#endif
4680
}
4681
 
4682
/* All the new VM stuff */
4683
unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4684
				  struct i915_address_space *vm)
4685
{
4686
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4687
	struct i915_vma *vma;
4688
 
4689
	if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4690
		vm = &dev_priv->gtt.base;
4691
 
4692
	BUG_ON(list_empty(&o->vma_list));
4693
	list_for_each_entry(vma, &o->vma_list, vma_link) {
4694
		if (vma->vm == vm)
4695
			return vma->node.start;
4696
 
4697
	}
4698
    return 0; //-1;
4699
}
4700
 
4701
bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4702
			struct i915_address_space *vm)
4703
{
4704
	struct i915_vma *vma;
4705
 
4706
	list_for_each_entry(vma, &o->vma_list, vma_link)
4707
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4708
			return true;
4709
 
4710
	return false;
4711
}
4712
 
4713
bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4714
{
4715
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4716
	struct i915_address_space *vm;
4717
 
4718
	list_for_each_entry(vm, &dev_priv->vm_list, global_link)
4719
		if (i915_gem_obj_bound(o, vm))
4720
			return true;
4721
 
4722
	return false;
4723
}
4724
 
4725
unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4726
				struct i915_address_space *vm)
4727
{
4728
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4729
	struct i915_vma *vma;
4730
 
4731
	if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4732
		vm = &dev_priv->gtt.base;
4733
 
4734
	BUG_ON(list_empty(&o->vma_list));
4735
 
4736
	list_for_each_entry(vma, &o->vma_list, vma_link)
4737
		if (vma->vm == vm)
4738
			return vma->node.size;
4739
 
4740
	return 0;
4741
}
4742
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4743
				     struct i915_address_space *vm)
4744
{
4745
	struct i915_vma *vma;
4746
	list_for_each_entry(vma, &obj->vma_list, vma_link)
4747
		if (vma->vm == vm)
4748
			return vma;
4749
 
4750
	return NULL;
4751
}
4752
 
4753
struct i915_vma *
4754
i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4755
				  struct i915_address_space *vm)
4756
{
4757
	struct i915_vma *vma;
4758
 
4759
	vma = i915_gem_obj_to_vma(obj, vm);
4760
	if (!vma)
4761
		vma = i915_gem_vma_create(obj, vm);
4762
 
4763
	return vma;
4764
}