Subversion Repositories Kolibri OS

Rev

Rev 4104 | Rev 4280 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2326 Serge 1
/*
2
 * Copyright © 2008 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eric Anholt 
25
 *
26
 */
27
 
3031 serge 28
#include 
29
#include 
2326 Serge 30
#include "i915_drv.h"
2351 Serge 31
#include "i915_trace.h"
2326 Serge 32
#include "intel_drv.h"
3260 Serge 33
#include 
2330 Serge 34
#include 
2326 Serge 35
//#include 
3746 Serge 36
#include 
2326 Serge 37
#include 
38
 
2344 Serge 39
extern int x86_clflush_size;
2332 Serge 40
 
3263 Serge 41
#define PROT_READ       0x1             /* page can be read */
42
#define PROT_WRITE      0x2             /* page can be written */
43
#define MAP_SHARED      0x01            /* Share changes */
44
 
2344 Serge 45
#undef mb
46
#undef rmb
47
#undef wmb
48
#define mb() asm volatile("mfence")
49
#define rmb() asm volatile ("lfence")
50
#define wmb() asm volatile ("sfence")
51
 
3266 Serge 52
struct drm_i915_gem_object *get_fb_obj();
53
 
3263 Serge 54
unsigned long vm_mmap(struct file *file, unsigned long addr,
55
         unsigned long len, unsigned long prot,
56
         unsigned long flag, unsigned long offset);
57
 
2344 Serge 58
static inline void clflush(volatile void *__p)
59
{
60
    asm volatile("clflush %0" : "+m" (*(volatile char*)__p));
61
}
62
 
2332 Serge 63
#define MAX_ERRNO       4095
64
 
65
#define IS_ERR_VALUE(x) unlikely((x) >= (unsigned long)-MAX_ERRNO)
66
 
67
 
2326 Serge 68
#define I915_EXEC_CONSTANTS_MASK        (3<<6)
69
#define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
70
#define I915_EXEC_CONSTANTS_ABSOLUTE    (1<<6)
71
#define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
72
 
2332 Serge 73
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
4104 Serge 74
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
75
						   bool force);
76
static __must_check int
77
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
78
			   struct i915_address_space *vm,
2332 Serge 79
						    unsigned alignment,
3031 serge 80
						    bool map_and_fenceable,
81
						    bool nonblocking);
2332 Serge 82
static int i915_gem_phys_pwrite(struct drm_device *dev,
83
				struct drm_i915_gem_object *obj,
84
				struct drm_i915_gem_pwrite *args,
85
				struct drm_file *file);
2326 Serge 86
 
3031 serge 87
static void i915_gem_write_fence(struct drm_device *dev, int reg,
88
				 struct drm_i915_gem_object *obj);
89
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
90
					 struct drm_i915_fence_reg *fence,
91
					 bool enable);
2332 Serge 92
 
3031 serge 93
static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
4104 Serge 94
static long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3031 serge 95
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
96
 
4104 Serge 97
static bool cpu_cache_is_coherent(struct drm_device *dev,
98
				  enum i915_cache_level level)
99
{
100
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
101
}
102
 
103
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
104
{
105
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
106
		return true;
107
 
108
	return obj->pin_display;
109
}
110
 
3031 serge 111
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
112
{
113
	if (obj->tiling_mode)
114
		i915_gem_release_mmap(obj);
115
 
116
	/* As we do not have an associated fence register, we will force
117
	 * a tiling change if we ever need to acquire one.
118
	 */
119
	obj->fence_dirty = false;
120
	obj->fence_reg = I915_FENCE_REG_NONE;
121
}
122
 
2332 Serge 123
/* some bookkeeping */
124
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
125
				  size_t size)
126
{
4104 Serge 127
	spin_lock(&dev_priv->mm.object_stat_lock);
2332 Serge 128
	dev_priv->mm.object_count++;
129
	dev_priv->mm.object_memory += size;
4104 Serge 130
	spin_unlock(&dev_priv->mm.object_stat_lock);
2332 Serge 131
}
132
 
133
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
134
				     size_t size)
135
{
4104 Serge 136
	spin_lock(&dev_priv->mm.object_stat_lock);
2332 Serge 137
	dev_priv->mm.object_count--;
138
	dev_priv->mm.object_memory -= size;
4104 Serge 139
	spin_unlock(&dev_priv->mm.object_stat_lock);
2332 Serge 140
}
141
 
142
static int
3480 Serge 143
i915_gem_wait_for_error(struct i915_gpu_error *error)
2332 Serge 144
{
145
	int ret;
146
 
3480 Serge 147
#define EXIT_COND (!i915_reset_in_progress(error))
148
	if (EXIT_COND)
2332 Serge 149
		return 0;
3255 Serge 150
#if 0
3031 serge 151
	/*
152
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
153
	 * userspace. If it takes that long something really bad is going on and
154
	 * we should simply try to bail out and fail as gracefully as possible.
155
	 */
3480 Serge 156
	ret = wait_event_interruptible_timeout(error->reset_queue,
157
					       EXIT_COND,
158
					       10*HZ);
3031 serge 159
	if (ret == 0) {
160
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
161
		return -EIO;
162
	} else if (ret < 0) {
2332 Serge 163
		return ret;
3031 serge 164
	}
2332 Serge 165
 
3255 Serge 166
#endif
3480 Serge 167
#undef EXIT_COND
3255 Serge 168
 
2332 Serge 169
	return 0;
170
}
171
 
172
int i915_mutex_lock_interruptible(struct drm_device *dev)
173
{
3480 Serge 174
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 175
	int ret;
176
 
3480 Serge 177
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
2332 Serge 178
	if (ret)
179
		return ret;
180
 
3480 Serge 181
	ret = mutex_lock_interruptible(&dev->struct_mutex);
182
	if (ret)
183
		return ret;
2332 Serge 184
 
185
	WARN_ON(i915_verify_lists(dev));
186
	return 0;
187
}
188
 
189
static inline bool
190
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
191
{
4104 Serge 192
	return i915_gem_obj_bound_any(obj) && !obj->active;
2332 Serge 193
}
194
 
195
 
196
#if 0
197
 
198
int
199
i915_gem_init_ioctl(struct drm_device *dev, void *data,
200
		    struct drm_file *file)
201
{
3480 Serge 202
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 203
	struct drm_i915_gem_init *args = data;
204
 
3031 serge 205
	if (drm_core_check_feature(dev, DRIVER_MODESET))
206
		return -ENODEV;
207
 
2332 Serge 208
	if (args->gtt_start >= args->gtt_end ||
209
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
210
		return -EINVAL;
211
 
3031 serge 212
	/* GEM with user mode setting was never supported on ilk and later. */
213
	if (INTEL_INFO(dev)->gen >= 5)
214
		return -ENODEV;
215
 
2332 Serge 216
	mutex_lock(&dev->struct_mutex);
3480 Serge 217
	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
218
				  args->gtt_end);
219
	dev_priv->gtt.mappable_end = args->gtt_end;
2332 Serge 220
	mutex_unlock(&dev->struct_mutex);
221
 
222
	return 0;
223
}
2351 Serge 224
#endif
2332 Serge 225
 
226
int
227
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
228
			    struct drm_file *file)
229
{
230
	struct drm_i915_private *dev_priv = dev->dev_private;
231
	struct drm_i915_gem_get_aperture *args = data;
232
	struct drm_i915_gem_object *obj;
233
	size_t pinned;
234
 
235
	pinned = 0;
236
	mutex_lock(&dev->struct_mutex);
4104 Serge 237
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
3031 serge 238
		if (obj->pin_count)
4104 Serge 239
			pinned += i915_gem_obj_ggtt_size(obj);
2332 Serge 240
	mutex_unlock(&dev->struct_mutex);
241
 
4104 Serge 242
	args->aper_size = dev_priv->gtt.base.total;
2342 Serge 243
	args->aper_available_size = args->aper_size - pinned;
2332 Serge 244
 
245
	return 0;
246
}
247
 
3480 Serge 248
void *i915_gem_object_alloc(struct drm_device *dev)
249
{
250
	struct drm_i915_private *dev_priv = dev->dev_private;
251
	return kmalloc(sizeof(struct drm_i915_gem_object), 0);
252
}
253
 
254
void i915_gem_object_free(struct drm_i915_gem_object *obj)
255
{
256
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
257
	kfree(obj);
258
}
259
 
3031 serge 260
static int
261
i915_gem_create(struct drm_file *file,
2332 Serge 262
		struct drm_device *dev,
263
		uint64_t size,
264
		uint32_t *handle_p)
265
{
266
	struct drm_i915_gem_object *obj;
267
	int ret;
268
	u32 handle;
269
 
270
	size = roundup(size, PAGE_SIZE);
2342 Serge 271
	if (size == 0)
272
		return -EINVAL;
2332 Serge 273
 
274
	/* Allocate the new object */
275
	obj = i915_gem_alloc_object(dev, size);
276
	if (obj == NULL)
277
		return -ENOMEM;
278
 
279
	ret = drm_gem_handle_create(file, &obj->base, &handle);
4104 Serge 280
	/* drop reference from allocate - handle holds it now */
281
	drm_gem_object_unreference_unlocked(&obj->base);
282
	if (ret)
2332 Serge 283
		return ret;
284
 
285
	*handle_p = handle;
286
	return 0;
287
}
288
 
289
int
290
i915_gem_dumb_create(struct drm_file *file,
291
		     struct drm_device *dev,
292
		     struct drm_mode_create_dumb *args)
293
{
294
	/* have to work out size/pitch and return them */
295
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
296
	args->size = args->pitch * args->height;
297
	return i915_gem_create(file, dev,
298
			       args->size, &args->handle);
299
}
300
 
2326 Serge 301
/**
2332 Serge 302
 * Creates a new mm object and returns a handle to it.
303
 */
304
int
305
i915_gem_create_ioctl(struct drm_device *dev, void *data,
306
		      struct drm_file *file)
307
{
308
	struct drm_i915_gem_create *args = data;
3031 serge 309
 
2332 Serge 310
	return i915_gem_create(file, dev,
311
			       args->size, &args->handle);
312
}
313
 
314
 
3260 Serge 315
#if 0
2332 Serge 316
 
3031 serge 317
static inline int
318
__copy_to_user_swizzled(char __user *cpu_vaddr,
319
			const char *gpu_vaddr, int gpu_offset,
2332 Serge 320
		int length)
321
{
3031 serge 322
	int ret, cpu_offset = 0;
2332 Serge 323
 
3031 serge 324
	while (length > 0) {
325
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
326
		int this_length = min(cacheline_end - gpu_offset, length);
327
		int swizzled_gpu_offset = gpu_offset ^ 64;
2332 Serge 328
 
3031 serge 329
		ret = __copy_to_user(cpu_vaddr + cpu_offset,
330
				     gpu_vaddr + swizzled_gpu_offset,
331
				     this_length);
332
		if (ret)
333
			return ret + length;
2332 Serge 334
 
3031 serge 335
		cpu_offset += this_length;
336
		gpu_offset += this_length;
337
		length -= this_length;
338
	}
339
 
340
	return 0;
2332 Serge 341
}
342
 
3031 serge 343
static inline int
344
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
345
			  const char __user *cpu_vaddr,
346
			  int length)
2332 Serge 347
{
3031 serge 348
	int ret, cpu_offset = 0;
2332 Serge 349
 
350
	while (length > 0) {
351
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
352
		int this_length = min(cacheline_end - gpu_offset, length);
353
		int swizzled_gpu_offset = gpu_offset ^ 64;
354
 
3031 serge 355
		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
2332 Serge 356
			       cpu_vaddr + cpu_offset,
357
			       this_length);
3031 serge 358
		if (ret)
359
			return ret + length;
360
 
2332 Serge 361
		cpu_offset += this_length;
362
		gpu_offset += this_length;
363
		length -= this_length;
364
	}
365
 
3031 serge 366
	return 0;
2332 Serge 367
}
368
 
3031 serge 369
/* Per-page copy function for the shmem pread fastpath.
370
 * Flushes invalid cachelines before reading the target if
371
 * needs_clflush is set. */
2332 Serge 372
static int
3031 serge 373
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
374
		 char __user *user_data,
375
		 bool page_do_bit17_swizzling, bool needs_clflush)
376
{
377
		char *vaddr;
378
		int ret;
379
 
380
	if (unlikely(page_do_bit17_swizzling))
381
		return -EINVAL;
382
 
383
		vaddr = kmap_atomic(page);
384
	if (needs_clflush)
385
		drm_clflush_virt_range(vaddr + shmem_page_offset,
386
				       page_length);
387
		ret = __copy_to_user_inatomic(user_data,
388
				      vaddr + shmem_page_offset,
389
					      page_length);
390
		kunmap_atomic(vaddr);
391
 
392
	return ret ? -EFAULT : 0;
393
}
394
 
395
static void
396
shmem_clflush_swizzled_range(char *addr, unsigned long length,
397
			     bool swizzled)
398
{
399
	if (unlikely(swizzled)) {
400
		unsigned long start = (unsigned long) addr;
401
		unsigned long end = (unsigned long) addr + length;
402
 
403
		/* For swizzling simply ensure that we always flush both
404
		 * channels. Lame, but simple and it works. Swizzled
405
		 * pwrite/pread is far from a hotpath - current userspace
406
		 * doesn't use it at all. */
407
		start = round_down(start, 128);
408
		end = round_up(end, 128);
409
 
410
		drm_clflush_virt_range((void *)start, end - start);
411
	} else {
412
		drm_clflush_virt_range(addr, length);
413
	}
414
 
415
}
416
 
417
/* Only difference to the fast-path function is that this can handle bit17
418
 * and uses non-atomic copy and kmap functions. */
419
static int
420
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
421
		 char __user *user_data,
422
		 bool page_do_bit17_swizzling, bool needs_clflush)
423
{
424
	char *vaddr;
425
	int ret;
426
 
427
	vaddr = kmap(page);
428
	if (needs_clflush)
429
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
430
					     page_length,
431
					     page_do_bit17_swizzling);
432
 
433
	if (page_do_bit17_swizzling)
434
		ret = __copy_to_user_swizzled(user_data,
435
					      vaddr, shmem_page_offset,
436
					      page_length);
437
	else
438
		ret = __copy_to_user(user_data,
439
				     vaddr + shmem_page_offset,
440
				     page_length);
441
	kunmap(page);
442
 
443
	return ret ? - EFAULT : 0;
444
}
445
 
446
static int
447
i915_gem_shmem_pread(struct drm_device *dev,
2332 Serge 448
			  struct drm_i915_gem_object *obj,
449
			  struct drm_i915_gem_pread *args,
450
			  struct drm_file *file)
451
{
3031 serge 452
	char __user *user_data;
2332 Serge 453
	ssize_t remain;
454
	loff_t offset;
3031 serge 455
	int shmem_page_offset, page_length, ret = 0;
456
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
457
	int prefaulted = 0;
458
	int needs_clflush = 0;
3746 Serge 459
	struct sg_page_iter sg_iter;
2332 Serge 460
 
3746 Serge 461
	user_data = to_user_ptr(args->data_ptr);
2332 Serge 462
	remain = args->size;
463
 
3031 serge 464
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
465
 
466
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
467
		/* If we're not in the cpu read domain, set ourself into the gtt
468
		 * read domain and manually flush cachelines (if required). This
469
		 * optimizes for the case when the gpu will dirty the data
470
		 * anyway again before the next pread happens. */
4104 Serge 471
		needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
472
		if (i915_gem_obj_bound_any(obj)) {
3031 serge 473
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
474
			if (ret)
475
				return ret;
476
		}
477
	}
478
 
479
	ret = i915_gem_object_get_pages(obj);
480
	if (ret)
481
		return ret;
482
 
483
	i915_gem_object_pin_pages(obj);
484
 
2332 Serge 485
	offset = args->offset;
486
 
3746 Serge 487
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
488
			 offset >> PAGE_SHIFT) {
489
		struct page *page = sg_page_iter_page(&sg_iter);
2332 Serge 490
 
3031 serge 491
		if (remain <= 0)
492
			break;
493
 
2332 Serge 494
		/* Operation in this page
495
		 *
3031 serge 496
		 * shmem_page_offset = offset within page in shmem file
2332 Serge 497
		 * page_length = bytes to copy for this page
498
		 */
3031 serge 499
		shmem_page_offset = offset_in_page(offset);
2332 Serge 500
		page_length = remain;
3031 serge 501
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
502
			page_length = PAGE_SIZE - shmem_page_offset;
2332 Serge 503
 
3031 serge 504
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
505
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 506
 
3031 serge 507
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
508
				       user_data, page_do_bit17_swizzling,
509
				       needs_clflush);
510
		if (ret == 0)
511
			goto next_page;
2332 Serge 512
 
3031 serge 513
		mutex_unlock(&dev->struct_mutex);
514
 
4104 Serge 515
		if (likely(!i915_prefault_disable) && !prefaulted) {
3031 serge 516
			ret = fault_in_multipages_writeable(user_data, remain);
517
			/* Userspace is tricking us, but we've already clobbered
518
			 * its pages with the prefault and promised to write the
519
			 * data up to the first fault. Hence ignore any errors
520
			 * and just continue. */
521
			(void)ret;
522
			prefaulted = 1;
523
		}
524
 
525
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
526
				       user_data, page_do_bit17_swizzling,
527
				       needs_clflush);
528
 
529
		mutex_lock(&dev->struct_mutex);
530
 
531
next_page:
2332 Serge 532
		mark_page_accessed(page);
3031 serge 533
 
2332 Serge 534
		if (ret)
3031 serge 535
			goto out;
2332 Serge 536
 
537
		remain -= page_length;
538
		user_data += page_length;
539
		offset += page_length;
540
	}
541
 
3031 serge 542
out:
543
	i915_gem_object_unpin_pages(obj);
544
 
545
	return ret;
2332 Serge 546
}
547
 
548
/**
3031 serge 549
 * Reads data from the object referenced by handle.
550
 *
551
 * On error, the contents of *data are undefined.
2332 Serge 552
 */
3031 serge 553
int
554
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
555
		     struct drm_file *file)
556
{
557
	struct drm_i915_gem_pread *args = data;
558
	struct drm_i915_gem_object *obj;
559
	int ret = 0;
560
 
561
	if (args->size == 0)
562
		return 0;
563
 
564
	if (!access_ok(VERIFY_WRITE,
3746 Serge 565
		       to_user_ptr(args->data_ptr),
3031 serge 566
		       args->size))
567
		return -EFAULT;
568
 
569
	ret = i915_mutex_lock_interruptible(dev);
570
	if (ret)
571
		return ret;
572
 
573
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
574
	if (&obj->base == NULL) {
575
		ret = -ENOENT;
576
		goto unlock;
577
	}
578
 
579
	/* Bounds check source.  */
580
	if (args->offset > obj->base.size ||
581
	    args->size > obj->base.size - args->offset) {
582
		ret = -EINVAL;
583
		goto out;
584
	}
585
 
586
	/* prime objects have no backing filp to GEM pread/pwrite
587
	 * pages from.
588
	 */
589
	if (!obj->base.filp) {
590
		ret = -EINVAL;
591
		goto out;
592
	}
593
 
594
	trace_i915_gem_object_pread(obj, args->offset, args->size);
595
 
596
	ret = i915_gem_shmem_pread(dev, obj, args, file);
597
 
598
out:
599
	drm_gem_object_unreference(&obj->base);
600
unlock:
601
	mutex_unlock(&dev->struct_mutex);
602
	return ret;
603
}
604
 
605
/* This is the fast write path which cannot handle
606
 * page faults in the source data
607
 */
608
 
609
static inline int
610
fast_user_write(struct io_mapping *mapping,
611
		loff_t page_base, int page_offset,
612
		char __user *user_data,
613
		int length)
614
{
615
	void __iomem *vaddr_atomic;
616
	void *vaddr;
617
	unsigned long unwritten;
618
 
619
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
620
	/* We can use the cpu mem copy function because this is X86. */
621
	vaddr = (void __force*)vaddr_atomic + page_offset;
622
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
623
						      user_data, length);
624
	io_mapping_unmap_atomic(vaddr_atomic);
625
	return unwritten;
626
}
3260 Serge 627
#endif
3031 serge 628
 
3260 Serge 629
#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
3031 serge 630
/**
631
 * This is the fast pwrite path, where we copy the data directly from the
632
 * user into the GTT, uncached.
633
 */
2332 Serge 634
static int
3031 serge 635
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
636
			 struct drm_i915_gem_object *obj,
637
			 struct drm_i915_gem_pwrite *args,
638
			 struct drm_file *file)
2332 Serge 639
{
3031 serge 640
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 641
	ssize_t remain;
3031 serge 642
	loff_t offset, page_base;
643
	char __user *user_data;
644
	int page_offset, page_length, ret;
3260 Serge 645
    char *vaddr;
2332 Serge 646
 
4104 Serge 647
	ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
3031 serge 648
	if (ret)
649
		goto out;
650
 
651
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
652
	if (ret)
653
		goto out_unpin;
654
 
655
	ret = i915_gem_object_put_fence(obj);
656
	if (ret)
657
		goto out_unpin;
658
 
3260 Serge 659
    vaddr = AllocKernelSpace(4096);
660
    if(vaddr == NULL)
661
    {
662
        ret = -ENOSPC;
663
        goto out_unpin;
664
    };
665
 
3031 serge 666
	user_data = (char __user *) (uintptr_t) args->data_ptr;
2332 Serge 667
	remain = args->size;
668
 
4104 Serge 669
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
2332 Serge 670
 
3031 serge 671
	while (remain > 0) {
672
		/* Operation in this page
673
		 *
674
		 * page_base = page offset within aperture
675
		 * page_offset = offset within page
676
		 * page_length = bytes to copy for this page
677
		 */
678
		page_base = offset & PAGE_MASK;
679
		page_offset = offset_in_page(offset);
680
		page_length = remain;
681
		if ((page_offset + remain) > PAGE_SIZE)
682
			page_length = PAGE_SIZE - page_offset;
2332 Serge 683
 
3260 Serge 684
        MapPage(vaddr, page_base, PG_SW|PG_NOCACHE);
3031 serge 685
 
3260 Serge 686
        memcpy(vaddr+page_offset, user_data, page_length);
687
 
3031 serge 688
		remain -= page_length;
689
		user_data += page_length;
690
		offset += page_length;
2332 Serge 691
	}
692
 
3260 Serge 693
    FreeKernelSpace(vaddr);
694
 
3031 serge 695
out_unpin:
696
	i915_gem_object_unpin(obj);
697
out:
698
	return ret;
699
}
700
 
701
/* Per-page copy function for the shmem pwrite fastpath.
702
 * Flushes invalid cachelines before writing to the target if
703
 * needs_clflush_before is set and flushes out any written cachelines after
704
 * writing if needs_clflush is set. */
705
static int
706
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
707
		  char __user *user_data,
708
		  bool page_do_bit17_swizzling,
709
		  bool needs_clflush_before,
710
		  bool needs_clflush_after)
711
{
712
	char *vaddr;
3260 Serge 713
	int ret = 0;
3031 serge 714
 
715
	if (unlikely(page_do_bit17_swizzling))
716
		return -EINVAL;
717
 
3260 Serge 718
	vaddr = (char *)MapIoMem((addr_t)page, 4096, PG_SW);
3031 serge 719
	if (needs_clflush_before)
720
		drm_clflush_virt_range(vaddr + shmem_page_offset,
721
				       page_length);
3260 Serge 722
	memcpy(vaddr + shmem_page_offset,
3031 serge 723
						user_data,
724
						page_length);
725
	if (needs_clflush_after)
726
		drm_clflush_virt_range(vaddr + shmem_page_offset,
727
				       page_length);
3260 Serge 728
	FreeKernelSpace(vaddr);
3031 serge 729
 
730
	return ret ? -EFAULT : 0;
731
}
3260 Serge 732
#if 0
3031 serge 733
 
734
/* Only difference to the fast-path function is that this can handle bit17
735
 * and uses non-atomic copy and kmap functions. */
736
static int
737
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
738
		  char __user *user_data,
739
		  bool page_do_bit17_swizzling,
740
		  bool needs_clflush_before,
741
		  bool needs_clflush_after)
742
{
743
	char *vaddr;
744
	int ret;
745
 
746
	vaddr = kmap(page);
747
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
748
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
749
					     page_length,
750
					     page_do_bit17_swizzling);
751
	if (page_do_bit17_swizzling)
752
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
753
						user_data,
754
						page_length);
755
	else
756
		ret = __copy_from_user(vaddr + shmem_page_offset,
757
				       user_data,
758
				       page_length);
759
	if (needs_clflush_after)
760
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
761
					     page_length,
762
					     page_do_bit17_swizzling);
763
	kunmap(page);
764
 
765
	return ret ? -EFAULT : 0;
766
}
3260 Serge 767
#endif
3031 serge 768
 
3260 Serge 769
 
3031 serge 770
static int
771
i915_gem_shmem_pwrite(struct drm_device *dev,
772
		      struct drm_i915_gem_object *obj,
773
		      struct drm_i915_gem_pwrite *args,
774
		      struct drm_file *file)
775
{
776
	ssize_t remain;
777
	loff_t offset;
778
	char __user *user_data;
779
	int shmem_page_offset, page_length, ret = 0;
780
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
781
	int hit_slowpath = 0;
782
	int needs_clflush_after = 0;
783
	int needs_clflush_before = 0;
3746 Serge 784
	struct sg_page_iter sg_iter;
3031 serge 785
 
3746 Serge 786
	user_data = to_user_ptr(args->data_ptr);
3031 serge 787
	remain = args->size;
788
 
789
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
790
 
791
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
792
		/* If we're not in the cpu write domain, set ourself into the gtt
793
		 * write domain and manually flush cachelines (if required). This
794
		 * optimizes for the case when the gpu will use the data
795
		 * right away and we therefore have to clflush anyway. */
4104 Serge 796
		needs_clflush_after = cpu_write_needs_clflush(obj);
797
		if (i915_gem_obj_bound_any(obj)) {
3031 serge 798
			ret = i915_gem_object_set_to_gtt_domain(obj, true);
799
			if (ret)
800
				return ret;
801
		}
802
	}
4104 Serge 803
	/* Same trick applies to invalidate partially written cachelines read
804
	 * before writing. */
805
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
806
		needs_clflush_before =
807
			!cpu_cache_is_coherent(dev, obj->cache_level);
3031 serge 808
 
809
	ret = i915_gem_object_get_pages(obj);
2332 Serge 810
	if (ret)
3031 serge 811
		return ret;
2332 Serge 812
 
3031 serge 813
	i915_gem_object_pin_pages(obj);
2332 Serge 814
 
815
	offset = args->offset;
3031 serge 816
	obj->dirty = 1;
2332 Serge 817
 
3746 Serge 818
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
819
			 offset >> PAGE_SHIFT) {
820
		struct page *page = sg_page_iter_page(&sg_iter);
3031 serge 821
		int partial_cacheline_write;
2332 Serge 822
 
3031 serge 823
		if (remain <= 0)
824
			break;
825
 
2332 Serge 826
		/* Operation in this page
827
		 *
828
		 * shmem_page_offset = offset within page in shmem file
829
		 * page_length = bytes to copy for this page
830
		 */
831
		shmem_page_offset = offset_in_page(offset);
832
 
833
		page_length = remain;
834
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
835
			page_length = PAGE_SIZE - shmem_page_offset;
836
 
3031 serge 837
		/* If we don't overwrite a cacheline completely we need to be
838
		 * careful to have up-to-date data by first clflushing. Don't
839
		 * overcomplicate things and flush the entire patch. */
840
		partial_cacheline_write = needs_clflush_before &&
841
			((shmem_page_offset | page_length)
3260 Serge 842
				& (x86_clflush_size - 1));
2332 Serge 843
 
3031 serge 844
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
845
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 846
 
3031 serge 847
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
848
					user_data, page_do_bit17_swizzling,
849
					partial_cacheline_write,
850
					needs_clflush_after);
851
		if (ret == 0)
852
			goto next_page;
853
 
854
		hit_slowpath = 1;
855
		mutex_unlock(&dev->struct_mutex);
3260 Serge 856
		dbgprintf("%s need shmem_pwrite_slow\n",__FUNCTION__);
3031 serge 857
 
3260 Serge 858
//		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
859
//					user_data, page_do_bit17_swizzling,
860
//					partial_cacheline_write,
861
//					needs_clflush_after);
862
 
3031 serge 863
		mutex_lock(&dev->struct_mutex);
864
 
865
next_page:
2332 Serge 866
 
3031 serge 867
		if (ret)
868
			goto out;
869
 
2332 Serge 870
		remain -= page_length;
3031 serge 871
		user_data += page_length;
2332 Serge 872
		offset += page_length;
873
	}
874
 
875
out:
3031 serge 876
	i915_gem_object_unpin_pages(obj);
877
 
878
	if (hit_slowpath) {
3480 Serge 879
		/*
880
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
881
		 * cachelines in-line while writing and the object moved
882
		 * out of the cpu write domain while we've dropped the lock.
883
		 */
884
		if (!needs_clflush_after &&
885
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
4104 Serge 886
			if (i915_gem_clflush_object(obj, obj->pin_display))
3243 Serge 887
			i915_gem_chipset_flush(dev);
3031 serge 888
		}
2332 Serge 889
	}
890
 
3031 serge 891
	if (needs_clflush_after)
3243 Serge 892
		i915_gem_chipset_flush(dev);
3031 serge 893
 
2332 Serge 894
	return ret;
895
}
3031 serge 896
 
897
/**
898
 * Writes data to the object referenced by handle.
899
 *
900
 * On error, the contents of the buffer that were to be modified are undefined.
901
 */
902
int
903
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
904
		      struct drm_file *file)
905
{
906
	struct drm_i915_gem_pwrite *args = data;
907
	struct drm_i915_gem_object *obj;
908
	int ret;
909
 
4104 Serge 910
	if (args->size == 0)
911
		return 0;
912
 
3480 Serge 913
     if(args->handle == -2)
914
     {
915
        printf("%s handle %d\n", __FUNCTION__, args->handle);
916
        return 0;
917
     }
918
 
3031 serge 919
	ret = i915_mutex_lock_interruptible(dev);
920
	if (ret)
921
		return ret;
922
 
923
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
924
	if (&obj->base == NULL) {
925
		ret = -ENOENT;
926
		goto unlock;
927
	}
928
 
929
	/* Bounds check destination. */
930
	if (args->offset > obj->base.size ||
931
	    args->size > obj->base.size - args->offset) {
932
		ret = -EINVAL;
933
		goto out;
934
	}
935
 
936
	/* prime objects have no backing filp to GEM pread/pwrite
937
	 * pages from.
938
	 */
939
	if (!obj->base.filp) {
940
		ret = -EINVAL;
941
		goto out;
942
	}
943
 
944
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
945
 
946
	ret = -EFAULT;
947
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
948
	 * it would end up going through the fenced access, and we'll get
949
	 * different detiling behavior between reading and writing.
950
	 * pread/pwrite currently are reading and writing from the CPU
951
	 * perspective, requiring manual detiling by the client.
952
	 */
3260 Serge 953
//   if (obj->phys_obj) {
954
//       ret = i915_gem_phys_pwrite(dev, obj, args, file);
955
//       goto out;
956
//   }
3031 serge 957
 
4104 Serge 958
	if (obj->tiling_mode == I915_TILING_NONE &&
959
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
960
	    cpu_write_needs_clflush(obj)) {
3031 serge 961
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
962
		/* Note that the gtt paths might fail with non-page-backed user
963
		 * pointers (e.g. gtt mappings when moving data between
964
		 * textures). Fallback to the shmem path in that case. */
965
	}
966
 
967
	if (ret == -EFAULT || ret == -ENOSPC)
3260 Serge 968
       ret = i915_gem_shmem_pwrite(dev, obj, args, file);
3031 serge 969
 
970
out:
971
	drm_gem_object_unreference(&obj->base);
972
unlock:
973
	mutex_unlock(&dev->struct_mutex);
974
	return ret;
975
}
976
 
977
int
3480 Serge 978
i915_gem_check_wedge(struct i915_gpu_error *error,
3031 serge 979
		     bool interruptible)
980
{
3480 Serge 981
	if (i915_reset_in_progress(error)) {
3031 serge 982
		/* Non-interruptible callers can't handle -EAGAIN, hence return
983
		 * -EIO unconditionally for these. */
984
		if (!interruptible)
985
			return -EIO;
2332 Serge 986
 
3480 Serge 987
		/* Recovery complete, but the reset failed ... */
988
		if (i915_terminally_wedged(error))
3031 serge 989
			return -EIO;
2332 Serge 990
 
3031 serge 991
		return -EAGAIN;
992
	}
2332 Serge 993
 
3031 serge 994
	return 0;
995
}
2332 Serge 996
 
3031 serge 997
/*
998
 * Compare seqno against outstanding lazy request. Emit a request if they are
999
 * equal.
1000
 */
1001
static int
1002
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1003
{
1004
	int ret;
2332 Serge 1005
 
3031 serge 1006
	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
2332 Serge 1007
 
3031 serge 1008
	ret = 0;
1009
	if (seqno == ring->outstanding_lazy_request)
4104 Serge 1010
		ret = i915_add_request(ring, NULL);
2332 Serge 1011
 
3031 serge 1012
	return ret;
1013
}
2332 Serge 1014
 
3031 serge 1015
/**
1016
 * __wait_seqno - wait until execution of seqno has finished
1017
 * @ring: the ring expected to report seqno
1018
 * @seqno: duh!
3480 Serge 1019
 * @reset_counter: reset sequence associated with the given seqno
3031 serge 1020
 * @interruptible: do an interruptible wait (normally yes)
1021
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1022
 *
3480 Serge 1023
 * Note: It is of utmost importance that the passed in seqno and reset_counter
1024
 * values have been read by the caller in an smp safe manner. Where read-side
1025
 * locks are involved, it is sufficient to read the reset_counter before
1026
 * unlocking the lock that protects the seqno. For lockless tricks, the
1027
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1028
 * inserted.
1029
 *
3031 serge 1030
 * Returns 0 if the seqno was found within the alloted time. Else returns the
1031
 * errno with remaining time filled in timeout argument.
1032
 */
1033
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
3480 Serge 1034
			unsigned reset_counter,
3031 serge 1035
			bool interruptible, struct timespec *timeout)
1036
{
1037
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1038
	struct timespec before, now, wait_time={1,0};
1039
	unsigned long timeout_jiffies;
1040
	long end;
1041
	bool wait_forever = true;
1042
	int ret;
2332 Serge 1043
 
4104 Serge 1044
	WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1045
 
3031 serge 1046
	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1047
		return 0;
2332 Serge 1048
 
3031 serge 1049
	trace_i915_gem_request_wait_begin(ring, seqno);
2332 Serge 1050
 
3031 serge 1051
	if (timeout != NULL) {
1052
		wait_time = *timeout;
1053
		wait_forever = false;
1054
	}
2332 Serge 1055
 
4104 Serge 1056
	timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
2332 Serge 1057
 
3031 serge 1058
	if (WARN_ON(!ring->irq_get(ring)))
1059
		return -ENODEV;
2332 Serge 1060
 
3031 serge 1061
    /* Record current time in case interrupted by signal, or wedged * */
1062
	getrawmonotonic(&before);
2332 Serge 1063
 
3031 serge 1064
#define EXIT_COND \
1065
	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
3480 Serge 1066
	 i915_reset_in_progress(&dev_priv->gpu_error) || \
1067
	 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3031 serge 1068
	do {
3266 Serge 1069
		if (interruptible)
1070
			end = wait_event_interruptible_timeout(ring->irq_queue,
1071
							       EXIT_COND,
1072
							       timeout_jiffies);
1073
		else
3031 serge 1074
			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1075
						 timeout_jiffies);
2332 Serge 1076
 
3480 Serge 1077
		/* We need to check whether any gpu reset happened in between
1078
		 * the caller grabbing the seqno and now ... */
1079
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1080
			end = -EAGAIN;
1081
 
1082
		/* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1083
		 * gone. */
1084
		ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
3031 serge 1085
		if (ret)
1086
			end = ret;
1087
	} while (end == 0 && wait_forever);
2332 Serge 1088
 
3031 serge 1089
	getrawmonotonic(&now);
2332 Serge 1090
 
3031 serge 1091
	ring->irq_put(ring);
1092
	trace_i915_gem_request_wait_end(ring, seqno);
1093
#undef EXIT_COND
2332 Serge 1094
 
3031 serge 1095
	if (timeout) {
4104 Serge 1096
//		struct timespec sleep_time = timespec_sub(now, before);
1097
//		*timeout = timespec_sub(*timeout, sleep_time);
3031 serge 1098
	}
2332 Serge 1099
 
3031 serge 1100
	switch (end) {
1101
	case -EIO:
1102
	case -EAGAIN: /* Wedged */
1103
	case -ERESTARTSYS: /* Signal */
1104
		return (int)end;
1105
	case 0: /* Timeout */
1106
		return -ETIME;
1107
	default: /* Completed */
1108
		WARN_ON(end < 0); /* We're not aware of other errors */
1109
		return 0;
1110
	}
1111
}
2332 Serge 1112
 
3031 serge 1113
/**
1114
 * Waits for a sequence number to be signaled, and cleans up the
1115
 * request and object lists appropriately for that event.
1116
 */
1117
int
1118
i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1119
{
1120
	struct drm_device *dev = ring->dev;
1121
	struct drm_i915_private *dev_priv = dev->dev_private;
1122
	bool interruptible = dev_priv->mm.interruptible;
1123
	int ret;
2332 Serge 1124
 
3031 serge 1125
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1126
	BUG_ON(seqno == 0);
2332 Serge 1127
 
3480 Serge 1128
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
3031 serge 1129
	if (ret)
1130
		return ret;
2332 Serge 1131
 
3031 serge 1132
	ret = i915_gem_check_olr(ring, seqno);
1133
	if (ret)
1134
		return ret;
2332 Serge 1135
 
3480 Serge 1136
	return __wait_seqno(ring, seqno,
1137
			    atomic_read(&dev_priv->gpu_error.reset_counter),
1138
			    interruptible, NULL);
3031 serge 1139
}
2332 Serge 1140
 
4104 Serge 1141
static int
1142
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1143
				     struct intel_ring_buffer *ring)
1144
{
1145
	i915_gem_retire_requests_ring(ring);
1146
 
1147
	/* Manually manage the write flush as we may have not yet
1148
	 * retired the buffer.
1149
	 *
1150
	 * Note that the last_write_seqno is always the earlier of
1151
	 * the two (read/write) seqno, so if we haved successfully waited,
1152
	 * we know we have passed the last write.
1153
	 */
1154
	obj->last_write_seqno = 0;
1155
	obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1156
 
1157
	return 0;
1158
}
1159
 
3031 serge 1160
/**
1161
 * Ensures that all rendering to the object has completed and the object is
1162
 * safe to unbind from the GTT or access from the CPU.
1163
 */
1164
static __must_check int
1165
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1166
			       bool readonly)
1167
{
1168
	struct intel_ring_buffer *ring = obj->ring;
1169
	u32 seqno;
1170
	int ret;
2332 Serge 1171
 
3031 serge 1172
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1173
	if (seqno == 0)
1174
		return 0;
2332 Serge 1175
 
3031 serge 1176
	ret = i915_wait_seqno(ring, seqno);
4104 Serge 1177
    if (ret)
1178
        return ret;
2332 Serge 1179
 
4104 Serge 1180
	return i915_gem_object_wait_rendering__tail(obj, ring);
3031 serge 1181
}
2332 Serge 1182
 
3260 Serge 1183
/* A nonblocking variant of the above wait. This is a highly dangerous routine
1184
 * as the object state may change during this call.
1185
 */
1186
static __must_check int
1187
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1188
					    bool readonly)
1189
{
1190
	struct drm_device *dev = obj->base.dev;
1191
	struct drm_i915_private *dev_priv = dev->dev_private;
1192
	struct intel_ring_buffer *ring = obj->ring;
3480 Serge 1193
	unsigned reset_counter;
3260 Serge 1194
	u32 seqno;
1195
	int ret;
2332 Serge 1196
 
3260 Serge 1197
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198
	BUG_ON(!dev_priv->mm.interruptible);
2332 Serge 1199
 
3260 Serge 1200
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201
	if (seqno == 0)
1202
		return 0;
2332 Serge 1203
 
3480 Serge 1204
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3260 Serge 1205
	if (ret)
1206
		return ret;
2332 Serge 1207
 
3260 Serge 1208
	ret = i915_gem_check_olr(ring, seqno);
1209
	if (ret)
1210
		return ret;
2332 Serge 1211
 
3480 Serge 1212
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3260 Serge 1213
	mutex_unlock(&dev->struct_mutex);
3480 Serge 1214
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3260 Serge 1215
	mutex_lock(&dev->struct_mutex);
4104 Serge 1216
	if (ret)
1217
		return ret;
2332 Serge 1218
 
4104 Serge 1219
	return i915_gem_object_wait_rendering__tail(obj, ring);
3260 Serge 1220
}
2332 Serge 1221
 
3260 Serge 1222
/**
1223
 * Called when user space prepares to use an object with the CPU, either
1224
 * through the mmap ioctl's mapping or a GTT mapping.
1225
 */
1226
int
1227
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1228
			  struct drm_file *file)
1229
{
1230
	struct drm_i915_gem_set_domain *args = data;
1231
	struct drm_i915_gem_object *obj;
1232
	uint32_t read_domains = args->read_domains;
1233
	uint32_t write_domain = args->write_domain;
1234
	int ret;
2332 Serge 1235
 
3480 Serge 1236
 
1237
     if(args->handle == -2)
1238
     {
1239
        printf("%s handle %d\n", __FUNCTION__, args->handle);
1240
        return 0;
1241
     }
1242
 
3260 Serge 1243
	/* Only handle setting domains to types used by the CPU. */
1244
	if (write_domain & I915_GEM_GPU_DOMAINS)
1245
		return -EINVAL;
2332 Serge 1246
 
3260 Serge 1247
	if (read_domains & I915_GEM_GPU_DOMAINS)
1248
		return -EINVAL;
2332 Serge 1249
 
3260 Serge 1250
	/* Having something in the write domain implies it's in the read
1251
	 * domain, and only that read domain.  Enforce that in the request.
1252
	 */
1253
	if (write_domain != 0 && read_domains != write_domain)
1254
		return -EINVAL;
2332 Serge 1255
 
3260 Serge 1256
	ret = i915_mutex_lock_interruptible(dev);
1257
	if (ret)
1258
		return ret;
2332 Serge 1259
 
3260 Serge 1260
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1261
	if (&obj->base == NULL) {
1262
		ret = -ENOENT;
1263
		goto unlock;
1264
	}
2332 Serge 1265
 
3260 Serge 1266
	/* Try to flush the object off the GPU without holding the lock.
1267
	 * We will repeat the flush holding the lock in the normal manner
1268
	 * to catch cases where we are gazumped.
1269
	 */
1270
	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1271
	if (ret)
1272
		goto unref;
2332 Serge 1273
 
3260 Serge 1274
	if (read_domains & I915_GEM_DOMAIN_GTT) {
1275
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
2332 Serge 1276
 
3260 Serge 1277
		/* Silently promote "you're not bound, there was nothing to do"
1278
		 * to success, since the client was just asking us to
1279
		 * make sure everything was done.
1280
		 */
1281
		if (ret == -EINVAL)
1282
			ret = 0;
1283
	} else {
1284
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1285
	}
2332 Serge 1286
 
3260 Serge 1287
unref:
1288
	drm_gem_object_unreference(&obj->base);
1289
unlock:
1290
	mutex_unlock(&dev->struct_mutex);
1291
	return ret;
1292
}
2332 Serge 1293
 
1294
 
1295
 
1296
 
1297
 
1298
 
3260 Serge 1299
/**
1300
 * Maps the contents of an object, returning the address it is mapped
1301
 * into.
1302
 *
1303
 * While the mapping holds a reference on the contents of the object, it doesn't
1304
 * imply a ref on the object itself.
1305
 */
1306
int
1307
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1308
		    struct drm_file *file)
1309
{
1310
	struct drm_i915_gem_mmap *args = data;
1311
	struct drm_gem_object *obj;
1312
	unsigned long addr = 0;
2332 Serge 1313
 
3480 Serge 1314
     if(args->handle == -2)
1315
     {
1316
        printf("%s handle %d\n", __FUNCTION__, args->handle);
1317
        return 0;
1318
     }
1319
 
3260 Serge 1320
	obj = drm_gem_object_lookup(dev, file, args->handle);
1321
	if (obj == NULL)
1322
		return -ENOENT;
4104 Serge 1323
 
3260 Serge 1324
	/* prime objects have no backing filp to GEM mmap
1325
	 * pages from.
1326
	 */
1327
	if (!obj->filp) {
1328
		drm_gem_object_unreference_unlocked(obj);
1329
		return -EINVAL;
1330
	}
2332 Serge 1331
 
3263 Serge 1332
    addr = vm_mmap(obj->filp, 0, args->size,
1333
              PROT_READ | PROT_WRITE, MAP_SHARED,
1334
              args->offset);
3260 Serge 1335
	drm_gem_object_unreference_unlocked(obj);
3263 Serge 1336
    if (IS_ERR((void *)addr))
1337
        return addr;
2332 Serge 1338
 
3260 Serge 1339
	args->addr_ptr = (uint64_t) addr;
2332 Serge 1340
 
3263 Serge 1341
    return 0;
3260 Serge 1342
}
2332 Serge 1343
 
1344
 
1345
 
1346
 
1347
 
1348
 
1349
 
1350
 
3031 serge 1351
 
1352
 
1353
 
1354
 
1355
 
1356
/**
1357
 * i915_gem_release_mmap - remove physical page mappings
1358
 * @obj: obj in question
1359
 *
1360
 * Preserve the reservation of the mmapping with the DRM core code, but
1361
 * relinquish ownership of the pages back to the system.
1362
 *
1363
 * It is vital that we remove the page mapping if we have mapped a tiled
1364
 * object through the GTT and then lose the fence register due to
1365
 * resource pressure. Similarly if the object has been moved out of the
1366
 * aperture, than pages mapped into userspace must be revoked. Removing the
1367
 * mapping will then trigger a page fault on the next user access, allowing
1368
 * fixup by i915_gem_fault().
1369
 */
1370
void
1371
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1372
{
1373
	if (!obj->fault_mappable)
1374
		return;
1375
 
4104 Serge 1376
//	drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
3031 serge 1377
	obj->fault_mappable = false;
1378
}
1379
 
3480 Serge 1380
uint32_t
2332 Serge 1381
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1382
{
1383
	uint32_t gtt_size;
1384
 
1385
	if (INTEL_INFO(dev)->gen >= 4 ||
1386
	    tiling_mode == I915_TILING_NONE)
1387
		return size;
1388
 
1389
	/* Previous chips need a power-of-two fence region when tiling */
1390
	if (INTEL_INFO(dev)->gen == 3)
1391
		gtt_size = 1024*1024;
1392
	else
1393
		gtt_size = 512*1024;
1394
 
1395
	while (gtt_size < size)
1396
		gtt_size <<= 1;
1397
 
1398
	return gtt_size;
1399
}
1400
 
1401
/**
1402
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1403
 * @obj: object to check
1404
 *
1405
 * Return the required GTT alignment for an object, taking into account
1406
 * potential fence register mapping.
1407
 */
3480 Serge 1408
uint32_t
1409
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1410
			   int tiling_mode, bool fenced)
2332 Serge 1411
{
1412
	/*
1413
	 * Minimum alignment is 4k (GTT page size), but might be greater
1414
	 * if a fence register is needed for the object.
1415
	 */
3480 Serge 1416
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2332 Serge 1417
	    tiling_mode == I915_TILING_NONE)
1418
		return 4096;
1419
 
1420
	/*
1421
	 * Previous chips need to be aligned to the size of the smallest
1422
	 * fence register that can contain the object.
1423
	 */
1424
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1425
}
1426
 
1427
/**
1428
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1429
 *					 unfenced object
1430
 * @dev: the device
1431
 * @size: size of the object
1432
 * @tiling_mode: tiling mode of the object
1433
 *
1434
 * Return the required GTT alignment for an object, only taking into account
1435
 * unfenced tiled surface requirements.
1436
 */
1437
uint32_t
1438
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1439
				    uint32_t size,
1440
				    int tiling_mode)
1441
{
1442
	/*
1443
	 * Minimum alignment is 4k (GTT page size) for sane hw.
1444
	 */
1445
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1446
	    tiling_mode == I915_TILING_NONE)
1447
		return 4096;
1448
 
1449
	/* Previous hardware however needs to be aligned to a power-of-two
1450
	 * tile height. The simplest method for determining this is to reuse
1451
	 * the power-of-tile object size.
1452
	 */
1453
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1454
}
1455
 
3480 Serge 1456
int
1457
i915_gem_mmap_gtt(struct drm_file *file,
1458
          struct drm_device *dev,
1459
          uint32_t handle,
1460
          uint64_t *offset)
1461
{
1462
    struct drm_i915_private *dev_priv = dev->dev_private;
1463
    struct drm_i915_gem_object *obj;
1464
    unsigned long pfn;
1465
    char *mem, *ptr;
1466
    int ret;
1467
 
1468
    ret = i915_mutex_lock_interruptible(dev);
1469
    if (ret)
1470
        return ret;
1471
 
1472
    obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1473
    if (&obj->base == NULL) {
1474
        ret = -ENOENT;
1475
        goto unlock;
1476
    }
1477
 
1478
    if (obj->base.size > dev_priv->gtt.mappable_end) {
1479
        ret = -E2BIG;
1480
        goto out;
1481
    }
1482
 
1483
    if (obj->madv != I915_MADV_WILLNEED) {
1484
        DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1485
        ret = -EINVAL;
1486
        goto out;
1487
    }
1488
    /* Now bind it into the GTT if needed */
4104 Serge 1489
    ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
3480 Serge 1490
    if (ret)
1491
        goto out;
1492
 
1493
    ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1494
    if (ret)
1495
        goto unpin;
1496
 
1497
    ret = i915_gem_object_get_fence(obj);
1498
    if (ret)
1499
        goto unpin;
1500
 
1501
    obj->fault_mappable = true;
1502
 
4104 Serge 1503
    pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
3480 Serge 1504
 
1505
    /* Finally, remap it using the new GTT offset */
1506
 
1507
    mem = UserAlloc(obj->base.size);
1508
    if(unlikely(mem == NULL))
1509
    {
1510
        ret = -ENOMEM;
1511
        goto unpin;
1512
    }
1513
 
1514
    for(ptr = mem; ptr < mem + obj->base.size; ptr+= 4096, pfn+= 4096)
1515
        MapPage(ptr, pfn, PG_SHARED|PG_UW);
1516
 
1517
unpin:
1518
    i915_gem_object_unpin(obj);
1519
 
1520
 
4104 Serge 1521
    *offset = mem;
3480 Serge 1522
 
1523
out:
1524
    drm_gem_object_unreference(&obj->base);
1525
unlock:
1526
    mutex_unlock(&dev->struct_mutex);
1527
    return ret;
1528
}
1529
 
1530
/**
1531
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1532
 * @dev: DRM device
1533
 * @data: GTT mapping ioctl data
1534
 * @file: GEM object info
1535
 *
1536
 * Simply returns the fake offset to userspace so it can mmap it.
1537
 * The mmap call will end up in drm_gem_mmap(), which will set things
1538
 * up so we can get faults in the handler above.
1539
 *
1540
 * The fault handler will take care of binding the object into the GTT
1541
 * (since it may have been evicted to make room for something), allocating
1542
 * a fence register, and mapping the appropriate aperture address into
1543
 * userspace.
1544
 */
1545
int
1546
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1547
            struct drm_file *file)
1548
{
1549
    struct drm_i915_gem_mmap_gtt *args = data;
1550
 
1551
    return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1552
}
1553
 
3031 serge 1554
/* Immediately discard the backing storage */
1555
static void
1556
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1557
{
1558
//	struct inode *inode;
2332 Serge 1559
 
3031 serge 1560
//	i915_gem_object_free_mmap_offset(obj);
2332 Serge 1561
 
3263 Serge 1562
	if (obj->base.filp == NULL)
1563
		return;
2332 Serge 1564
 
3031 serge 1565
	/* Our goal here is to return as much of the memory as
1566
	 * is possible back to the system as we are called from OOM.
1567
	 * To do this we must instruct the shmfs to drop all of its
1568
	 * backing pages, *now*.
1569
	 */
1570
//	inode = obj->base.filp->f_path.dentry->d_inode;
1571
//	shmem_truncate_range(inode, 0, (loff_t)-1);
2332 Serge 1572
 
3031 serge 1573
	obj->madv = __I915_MADV_PURGED;
1574
}
2332 Serge 1575
 
3031 serge 1576
static inline int
1577
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1578
{
1579
	return obj->madv == I915_MADV_DONTNEED;
1580
}
2332 Serge 1581
 
3031 serge 1582
static void
1583
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1584
{
3746 Serge 1585
	struct sg_page_iter sg_iter;
1586
	int ret;
2332 Serge 1587
 
3031 serge 1588
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2332 Serge 1589
 
3031 serge 1590
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1591
	if (ret) {
1592
		/* In the event of a disaster, abandon all caches and
1593
		 * hope for the best.
1594
		 */
1595
		WARN_ON(ret != -EIO);
4104 Serge 1596
		i915_gem_clflush_object(obj, true);
3031 serge 1597
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1598
	}
2332 Serge 1599
 
3031 serge 1600
	if (obj->madv == I915_MADV_DONTNEED)
1601
		obj->dirty = 0;
2332 Serge 1602
 
3746 Serge 1603
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1604
		struct page *page = sg_page_iter_page(&sg_iter);
2332 Serge 1605
 
3290 Serge 1606
        page_cache_release(page);
3243 Serge 1607
	}
1608
    //DRM_DEBUG_KMS("%s release %d pages\n", __FUNCTION__, page_count);
3290 Serge 1609
 
4104 Serge 1610
    obj->dirty = 0;
3243 Serge 1611
 
1612
	sg_free_table(obj->pages);
1613
	kfree(obj->pages);
3031 serge 1614
}
2332 Serge 1615
 
3480 Serge 1616
int
3031 serge 1617
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1618
{
1619
	const struct drm_i915_gem_object_ops *ops = obj->ops;
2332 Serge 1620
 
3243 Serge 1621
	if (obj->pages == NULL)
3031 serge 1622
		return 0;
2332 Serge 1623
 
3031 serge 1624
	if (obj->pages_pin_count)
1625
		return -EBUSY;
1626
 
4104 Serge 1627
	BUG_ON(i915_gem_obj_bound_any(obj));
1628
 
3243 Serge 1629
	/* ->put_pages might need to allocate memory for the bit17 swizzle
1630
	 * array, hence protect them from being reaped by removing them from gtt
1631
	 * lists early. */
4104 Serge 1632
	list_del(&obj->global_list);
3243 Serge 1633
 
3031 serge 1634
	ops->put_pages(obj);
3243 Serge 1635
	obj->pages = NULL;
3031 serge 1636
 
1637
	if (i915_gem_object_is_purgeable(obj))
1638
		i915_gem_object_truncate(obj);
1639
 
1640
	return 0;
1641
}
1642
 
1643
 
1644
 
1645
 
1646
 
1647
 
1648
 
1649
 
2332 Serge 1650
static int
3031 serge 1651
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2332 Serge 1652
{
3260 Serge 1653
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3243 Serge 1654
    int page_count, i;
4104 Serge 1655
    struct sg_table *st;
3243 Serge 1656
	struct scatterlist *sg;
3746 Serge 1657
	struct sg_page_iter sg_iter;
3243 Serge 1658
	struct page *page;
3746 Serge 1659
	unsigned long last_pfn = 0;	/* suppress gcc warning */
3243 Serge 1660
	gfp_t gfp;
2332 Serge 1661
 
3243 Serge 1662
	/* Assert that the object is not currently in any GPU domain. As it
1663
	 * wasn't in the GTT, there shouldn't be any way it could have been in
1664
	 * a GPU cache
2332 Serge 1665
	 */
3243 Serge 1666
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1667
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1668
 
1669
	st = kmalloc(sizeof(*st), GFP_KERNEL);
1670
	if (st == NULL)
1671
		return -ENOMEM;
1672
 
2332 Serge 1673
	page_count = obj->base.size / PAGE_SIZE;
3243 Serge 1674
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1675
		kfree(st);
3746 Serge 1676
        FAIL();
2332 Serge 1677
		return -ENOMEM;
3243 Serge 1678
	}
2332 Serge 1679
 
3243 Serge 1680
	/* Get the list of pages out of our struct file.  They'll be pinned
1681
	 * at this point until we release them.
1682
	 *
1683
	 * Fail silently without starting the shrinker
1684
	 */
3746 Serge 1685
	sg = st->sgl;
1686
	st->nents = 0;
1687
	for (i = 0; i < page_count; i++) {
4104 Serge 1688
        page = shmem_read_mapping_page_gfp(obj->base.filp, i, gfp);
3260 Serge 1689
		if (IS_ERR(page)) {
1690
            dbgprintf("%s invalid page %p\n", __FUNCTION__, page);
2332 Serge 1691
			goto err_pages;
1692
 
3260 Serge 1693
		}
3746 Serge 1694
 
1695
		if (!i || page_to_pfn(page) != last_pfn + 1) {
1696
			if (i)
1697
				sg = sg_next(sg);
1698
			st->nents++;
3243 Serge 1699
		sg_set_page(sg, page, PAGE_SIZE, 0);
3746 Serge 1700
		} else {
1701
			sg->length += PAGE_SIZE;
1702
		}
1703
		last_pfn = page_to_pfn(page);
3243 Serge 1704
	}
3031 serge 1705
 
3746 Serge 1706
		sg_mark_end(sg);
3243 Serge 1707
	obj->pages = st;
3031 serge 1708
 
2332 Serge 1709
	return 0;
1710
 
1711
err_pages:
3746 Serge 1712
	sg_mark_end(sg);
1713
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1714
		page_cache_release(sg_page_iter_page(&sg_iter));
3243 Serge 1715
	sg_free_table(st);
1716
	kfree(st);
3746 Serge 1717
    FAIL();
3243 Serge 1718
	return PTR_ERR(page);
2332 Serge 1719
}
1720
 
3031 serge 1721
/* Ensure that the associated pages are gathered from the backing storage
1722
 * and pinned into our object. i915_gem_object_get_pages() may be called
1723
 * multiple times before they are released by a single call to
1724
 * i915_gem_object_put_pages() - once the pages are no longer referenced
1725
 * either as a result of memory pressure (reaping pages under the shrinker)
1726
 * or as the object is itself released.
1727
 */
1728
int
1729
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2332 Serge 1730
{
3031 serge 1731
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1732
	const struct drm_i915_gem_object_ops *ops = obj->ops;
1733
	int ret;
2332 Serge 1734
 
3243 Serge 1735
	if (obj->pages)
3031 serge 1736
		return 0;
2332 Serge 1737
 
3031 serge 1738
	BUG_ON(obj->pages_pin_count);
2332 Serge 1739
 
3031 serge 1740
	ret = ops->get_pages(obj);
1741
	if (ret)
1742
		return ret;
2344 Serge 1743
 
4104 Serge 1744
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3243 Serge 1745
    return 0;
2332 Serge 1746
}
1747
 
1748
void
1749
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
3243 Serge 1750
			       struct intel_ring_buffer *ring)
2332 Serge 1751
{
1752
	struct drm_device *dev = obj->base.dev;
1753
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 1754
	u32 seqno = intel_ring_get_seqno(ring);
2332 Serge 1755
 
1756
	BUG_ON(ring == NULL);
4104 Serge 1757
	if (obj->ring != ring && obj->last_write_seqno) {
1758
		/* Keep the seqno relative to the current ring */
1759
		obj->last_write_seqno = seqno;
1760
	}
2332 Serge 1761
	obj->ring = ring;
1762
 
1763
	/* Add a reference if we're newly entering the active list. */
1764
	if (!obj->active) {
2344 Serge 1765
		drm_gem_object_reference(&obj->base);
2332 Serge 1766
		obj->active = 1;
1767
	}
1768
 
1769
	list_move_tail(&obj->ring_list, &ring->active_list);
1770
 
3031 serge 1771
	obj->last_read_seqno = seqno;
1772
 
2332 Serge 1773
	if (obj->fenced_gpu_access) {
3031 serge 1774
		obj->last_fenced_seqno = seqno;
1775
 
1776
		/* Bump MRU to take account of the delayed flush */
1777
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
2332 Serge 1778
		struct drm_i915_fence_reg *reg;
1779
 
1780
		reg = &dev_priv->fence_regs[obj->fence_reg];
3031 serge 1781
			list_move_tail(®->lru_list,
1782
				       &dev_priv->mm.fence_list);
1783
		}
2332 Serge 1784
	}
1785
}
1786
 
2344 Serge 1787
static void
3031 serge 1788
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2344 Serge 1789
{
4104 Serge 1790
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1791
	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1792
	struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2332 Serge 1793
 
3031 serge 1794
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2344 Serge 1795
	BUG_ON(!obj->active);
2332 Serge 1796
 
4104 Serge 1797
	list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2344 Serge 1798
 
3031 serge 1799
	list_del_init(&obj->ring_list);
2352 Serge 1800
	obj->ring = NULL;
2344 Serge 1801
 
3031 serge 1802
	obj->last_read_seqno = 0;
1803
	obj->last_write_seqno = 0;
1804
	obj->base.write_domain = 0;
1805
 
1806
	obj->last_fenced_seqno = 0;
2352 Serge 1807
	obj->fenced_gpu_access = false;
2344 Serge 1808
 
2352 Serge 1809
	obj->active = 0;
1810
	drm_gem_object_unreference(&obj->base);
1811
 
1812
	WARN_ON(i915_verify_lists(dev));
1813
}
1814
 
3243 Serge 1815
static int
3480 Serge 1816
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2344 Serge 1817
{
3243 Serge 1818
	struct drm_i915_private *dev_priv = dev->dev_private;
1819
	struct intel_ring_buffer *ring;
1820
	int ret, i, j;
2344 Serge 1821
 
3480 Serge 1822
	/* Carefully retire all requests without writing to the rings */
3243 Serge 1823
	for_each_ring(ring, dev_priv, i) {
3480 Serge 1824
		ret = intel_ring_idle(ring);
3243 Serge 1825
	if (ret)
1826
		return ret;
3480 Serge 1827
	}
1828
	i915_gem_retire_requests(dev);
3243 Serge 1829
 
3480 Serge 1830
	/* Finally reset hw state */
3243 Serge 1831
	for_each_ring(ring, dev_priv, i) {
3480 Serge 1832
		intel_ring_init_seqno(ring, seqno);
1833
 
3243 Serge 1834
		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1835
			ring->sync_seqno[j] = 0;
1836
	}
1837
 
1838
	return 0;
2344 Serge 1839
}
1840
 
3480 Serge 1841
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1842
{
1843
	struct drm_i915_private *dev_priv = dev->dev_private;
1844
	int ret;
1845
 
1846
	if (seqno == 0)
1847
		return -EINVAL;
1848
 
1849
	/* HWS page needs to be set less than what we
1850
	 * will inject to ring
1851
	 */
1852
	ret = i915_gem_init_seqno(dev, seqno - 1);
1853
	if (ret)
1854
		return ret;
1855
 
1856
	/* Carefully set the last_seqno value so that wrap
1857
	 * detection still works
1858
	 */
1859
	dev_priv->next_seqno = seqno;
1860
	dev_priv->last_seqno = seqno - 1;
1861
	if (dev_priv->last_seqno == 0)
1862
		dev_priv->last_seqno--;
1863
 
1864
	return 0;
1865
}
1866
 
3243 Serge 1867
int
1868
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2344 Serge 1869
{
3243 Serge 1870
	struct drm_i915_private *dev_priv = dev->dev_private;
2344 Serge 1871
 
3243 Serge 1872
	/* reserve 0 for non-seqno */
1873
	if (dev_priv->next_seqno == 0) {
3480 Serge 1874
		int ret = i915_gem_init_seqno(dev, 0);
3243 Serge 1875
		if (ret)
1876
			return ret;
1877
 
1878
		dev_priv->next_seqno = 1;
1879
	}
1880
 
3480 Serge 1881
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
3243 Serge 1882
	return 0;
2332 Serge 1883
}
1884
 
4104 Serge 1885
int __i915_add_request(struct intel_ring_buffer *ring,
2352 Serge 1886
		 struct drm_file *file,
4104 Serge 1887
		       struct drm_i915_gem_object *obj,
3031 serge 1888
		 u32 *out_seqno)
2352 Serge 1889
{
1890
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
3031 serge 1891
	struct drm_i915_gem_request *request;
4104 Serge 1892
	u32 request_ring_position, request_start;
2352 Serge 1893
	int was_empty;
1894
	int ret;
2332 Serge 1895
 
4104 Serge 1896
	request_start = intel_ring_get_tail(ring);
3031 serge 1897
	/*
1898
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
1899
	 * after having emitted the batchbuffer command. Hence we need to fix
1900
	 * things up similar to emitting the lazy request. The difference here
1901
	 * is that the flush _must_ happen before the next request, no matter
1902
	 * what.
1903
	 */
4104 Serge 1904
   ret = intel_ring_flush_all_caches(ring);
1905
   if (ret)
1906
       return ret;
2332 Serge 1907
 
3031 serge 1908
	request = kmalloc(sizeof(*request), GFP_KERNEL);
1909
	if (request == NULL)
1910
		return -ENOMEM;
1911
 
1912
 
1913
	/* Record the position of the start of the request so that
1914
	 * should we detect the updated seqno part-way through the
4104 Serge 1915
    * GPU processing the request, we never over-estimate the
3031 serge 1916
	 * position of the head.
1917
	 */
4104 Serge 1918
   request_ring_position = intel_ring_get_tail(ring);
3031 serge 1919
 
3243 Serge 1920
	ret = ring->add_request(ring);
3031 serge 1921
	if (ret) {
1922
		kfree(request);
4104 Serge 1923
		return ret;
3031 serge 1924
	}
2332 Serge 1925
 
3243 Serge 1926
	request->seqno = intel_ring_get_seqno(ring);
2352 Serge 1927
	request->ring = ring;
4104 Serge 1928
	request->head = request_start;
3031 serge 1929
	request->tail = request_ring_position;
4104 Serge 1930
	request->ctx = ring->last_context;
1931
	request->batch_obj = obj;
1932
 
1933
	/* Whilst this request exists, batch_obj will be on the
1934
	 * active_list, and so will hold the active reference. Only when this
1935
	 * request is retired will the the batch_obj be moved onto the
1936
	 * inactive_list and lose its active reference. Hence we do not need
1937
	 * to explicitly hold another reference here.
1938
	 */
1939
 
1940
	if (request->ctx)
1941
		i915_gem_context_reference(request->ctx);
1942
 
3031 serge 1943
    request->emitted_jiffies = GetTimerTicks();
2352 Serge 1944
	was_empty = list_empty(&ring->request_list);
1945
	list_add_tail(&request->list, &ring->request_list);
3031 serge 1946
	request->file_priv = NULL;
2332 Serge 1947
 
3263 Serge 1948
	if (file) {
1949
		struct drm_i915_file_private *file_priv = file->driver_priv;
2332 Serge 1950
 
3263 Serge 1951
		spin_lock(&file_priv->mm.lock);
1952
		request->file_priv = file_priv;
1953
		list_add_tail(&request->client_list,
1954
			      &file_priv->mm.request_list);
1955
		spin_unlock(&file_priv->mm.lock);
1956
	}
1957
 
1958
	trace_i915_gem_request_add(ring, request->seqno);
3031 serge 1959
	ring->outstanding_lazy_request = 0;
2332 Serge 1960
 
4104 Serge 1961
	if (!dev_priv->ums.mm_suspended) {
1962
//		i915_queue_hangcheck(ring->dev);
1963
 
1964
       if (was_empty) {
2360 Serge 1965
           queue_delayed_work(dev_priv->wq,
3482 Serge 1966
					   &dev_priv->mm.retire_work,
1967
					   round_jiffies_up_relative(HZ));
4104 Serge 1968
           intel_mark_busy(dev_priv->dev);
1969
       }
1970
   }
3031 serge 1971
 
1972
	if (out_seqno)
3243 Serge 1973
		*out_seqno = request->seqno;
2352 Serge 1974
	return 0;
1975
}
2332 Serge 1976
 
3263 Serge 1977
static inline void
1978
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1979
{
1980
	struct drm_i915_file_private *file_priv = request->file_priv;
2332 Serge 1981
 
3263 Serge 1982
	if (!file_priv)
1983
		return;
2332 Serge 1984
 
3263 Serge 1985
	spin_lock(&file_priv->mm.lock);
1986
	if (request->file_priv) {
1987
		list_del(&request->client_list);
1988
		request->file_priv = NULL;
1989
	}
1990
	spin_unlock(&file_priv->mm.lock);
1991
}
2332 Serge 1992
 
4104 Serge 1993
static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
1994
				    struct i915_address_space *vm)
1995
{
1996
	if (acthd >= i915_gem_obj_offset(obj, vm) &&
1997
	    acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
1998
		return true;
1999
 
2000
	return false;
2001
}
2002
 
2003
static bool i915_head_inside_request(const u32 acthd_unmasked,
2004
				     const u32 request_start,
2005
				     const u32 request_end)
2006
{
2007
	const u32 acthd = acthd_unmasked & HEAD_ADDR;
2008
 
2009
	if (request_start < request_end) {
2010
		if (acthd >= request_start && acthd < request_end)
2011
			return true;
2012
	} else if (request_start > request_end) {
2013
		if (acthd >= request_start || acthd < request_end)
2014
			return true;
2015
	}
2016
 
2017
	return false;
2018
}
2019
 
2020
static struct i915_address_space *
2021
request_to_vm(struct drm_i915_gem_request *request)
2022
{
2023
	struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2024
	struct i915_address_space *vm;
2025
 
2026
	vm = &dev_priv->gtt.base;
2027
 
2028
	return vm;
2029
}
2030
 
2031
static bool i915_request_guilty(struct drm_i915_gem_request *request,
2032
				const u32 acthd, bool *inside)
2033
{
2034
	/* There is a possibility that unmasked head address
2035
	 * pointing inside the ring, matches the batch_obj address range.
2036
	 * However this is extremely unlikely.
2037
	 */
2038
	if (request->batch_obj) {
2039
		if (i915_head_inside_object(acthd, request->batch_obj,
2040
					    request_to_vm(request))) {
2041
			*inside = true;
2042
			return true;
2043
		}
2044
	}
2045
 
2046
	if (i915_head_inside_request(acthd, request->head, request->tail)) {
2047
		*inside = false;
2048
		return true;
2049
	}
2050
 
2051
	return false;
2052
}
2053
 
2054
static void i915_set_reset_status(struct intel_ring_buffer *ring,
2055
				  struct drm_i915_gem_request *request,
2056
				  u32 acthd)
2057
{
2058
	struct i915_ctx_hang_stats *hs = NULL;
2059
	bool inside, guilty;
2060
	unsigned long offset = 0;
2061
 
2062
	/* Innocent until proven guilty */
2063
	guilty = false;
2064
 
2065
	if (request->batch_obj)
2066
		offset = i915_gem_obj_offset(request->batch_obj,
2067
					     request_to_vm(request));
2068
 
2069
	if (ring->hangcheck.action != HANGCHECK_WAIT &&
2070
	    i915_request_guilty(request, acthd, &inside)) {
2071
		DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2072
			  ring->name,
2073
			  inside ? "inside" : "flushing",
2074
			  offset,
2075
			  request->ctx ? request->ctx->id : 0,
2076
			  acthd);
2077
 
2078
		guilty = true;
2079
	}
2080
 
2081
	/* If contexts are disabled or this is the default context, use
2082
	 * file_priv->reset_state
2083
	 */
2084
	if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2085
		hs = &request->ctx->hang_stats;
2086
	else if (request->file_priv)
2087
		hs = &request->file_priv->hang_stats;
2088
 
2089
	if (hs) {
2090
		if (guilty)
2091
			hs->batch_active++;
2092
		else
2093
			hs->batch_pending++;
2094
	}
2095
}
2096
 
2097
static void i915_gem_free_request(struct drm_i915_gem_request *request)
2098
{
2099
	list_del(&request->list);
2100
	i915_gem_request_remove_from_client(request);
2101
 
2102
	if (request->ctx)
2103
		i915_gem_context_unreference(request->ctx);
2104
 
2105
	kfree(request);
2106
}
2107
 
3031 serge 2108
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2109
				      struct intel_ring_buffer *ring)
2110
{
4104 Serge 2111
	u32 completed_seqno;
2112
	u32 acthd;
2113
 
2114
	acthd = intel_ring_get_active_head(ring);
2115
	completed_seqno = ring->get_seqno(ring, false);
2116
 
3031 serge 2117
	while (!list_empty(&ring->request_list)) {
2118
		struct drm_i915_gem_request *request;
2332 Serge 2119
 
3031 serge 2120
		request = list_first_entry(&ring->request_list,
2121
					   struct drm_i915_gem_request,
2122
					   list);
2332 Serge 2123
 
4104 Serge 2124
		if (request->seqno > completed_seqno)
2125
			i915_set_reset_status(ring, request, acthd);
2126
 
2127
		i915_gem_free_request(request);
3031 serge 2128
	}
2332 Serge 2129
 
3031 serge 2130
	while (!list_empty(&ring->active_list)) {
2131
		struct drm_i915_gem_object *obj;
2332 Serge 2132
 
3031 serge 2133
		obj = list_first_entry(&ring->active_list,
2134
				       struct drm_i915_gem_object,
2135
				       ring_list);
2332 Serge 2136
 
3031 serge 2137
		i915_gem_object_move_to_inactive(obj);
2138
	}
2139
}
2332 Serge 2140
 
3746 Serge 2141
void i915_gem_restore_fences(struct drm_device *dev)
3031 serge 2142
{
2143
	struct drm_i915_private *dev_priv = dev->dev_private;
2144
	int i;
2332 Serge 2145
 
3031 serge 2146
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2147
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
4104 Serge 2148
 
2149
		/*
2150
		 * Commit delayed tiling changes if we have an object still
2151
		 * attached to the fence, otherwise just clear the fence.
2152
		 */
2153
		if (reg->obj) {
2154
			i915_gem_object_update_fence(reg->obj, reg,
2155
						     reg->obj->tiling_mode);
2156
		} else {
2157
			i915_gem_write_fence(dev, i, NULL);
2158
		}
3031 serge 2159
	}
2160
}
2360 Serge 2161
 
3031 serge 2162
void i915_gem_reset(struct drm_device *dev)
2163
{
2164
	struct drm_i915_private *dev_priv = dev->dev_private;
2165
	struct intel_ring_buffer *ring;
2166
	int i;
2360 Serge 2167
 
3031 serge 2168
	for_each_ring(ring, dev_priv, i)
2169
		i915_gem_reset_ring_lists(dev_priv, ring);
2360 Serge 2170
 
3746 Serge 2171
	i915_gem_restore_fences(dev);
3031 serge 2172
}
2360 Serge 2173
 
2352 Serge 2174
/**
2175
 * This function clears the request list as sequence numbers are passed.
2176
 */
3031 serge 2177
void
2352 Serge 2178
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2179
{
2180
	uint32_t seqno;
2332 Serge 2181
 
2352 Serge 2182
	if (list_empty(&ring->request_list))
2183
		return;
2332 Serge 2184
 
2352 Serge 2185
	WARN_ON(i915_verify_lists(ring->dev));
2332 Serge 2186
 
3031 serge 2187
	seqno = ring->get_seqno(ring, true);
2332 Serge 2188
 
2352 Serge 2189
	while (!list_empty(&ring->request_list)) {
2190
		struct drm_i915_gem_request *request;
2332 Serge 2191
 
2352 Serge 2192
		request = list_first_entry(&ring->request_list,
2193
					   struct drm_i915_gem_request,
2194
					   list);
2332 Serge 2195
 
2352 Serge 2196
		if (!i915_seqno_passed(seqno, request->seqno))
2197
			break;
2332 Serge 2198
 
2352 Serge 2199
		trace_i915_gem_request_retire(ring, request->seqno);
3031 serge 2200
		/* We know the GPU must have read the request to have
2201
		 * sent us the seqno + interrupt, so use the position
2202
		 * of tail of the request to update the last known position
2203
		 * of the GPU head.
2204
		 */
2205
		ring->last_retired_head = request->tail;
2332 Serge 2206
 
4104 Serge 2207
		i915_gem_free_request(request);
2352 Serge 2208
	}
2332 Serge 2209
 
2352 Serge 2210
	/* Move any buffers on the active list that are no longer referenced
2211
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
2212
	 */
2213
	while (!list_empty(&ring->active_list)) {
2214
		struct drm_i915_gem_object *obj;
2332 Serge 2215
 
2352 Serge 2216
		obj = list_first_entry(&ring->active_list,
2217
				      struct drm_i915_gem_object,
2218
				      ring_list);
2332 Serge 2219
 
3031 serge 2220
		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2352 Serge 2221
			break;
2332 Serge 2222
 
2352 Serge 2223
			i915_gem_object_move_to_inactive(obj);
2224
	}
2332 Serge 2225
 
2352 Serge 2226
	if (unlikely(ring->trace_irq_seqno &&
2227
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2228
		ring->irq_put(ring);
2229
		ring->trace_irq_seqno = 0;
2230
	}
2332 Serge 2231
 
2352 Serge 2232
	WARN_ON(i915_verify_lists(ring->dev));
2233
}
2332 Serge 2234
 
2352 Serge 2235
void
2236
i915_gem_retire_requests(struct drm_device *dev)
2237
{
2238
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 2239
	struct intel_ring_buffer *ring;
2352 Serge 2240
	int i;
2332 Serge 2241
 
3031 serge 2242
	for_each_ring(ring, dev_priv, i)
2243
		i915_gem_retire_requests_ring(ring);
2352 Serge 2244
}
2245
 
2360 Serge 2246
static void
2247
i915_gem_retire_work_handler(struct work_struct *work)
2248
{
2249
	drm_i915_private_t *dev_priv;
2250
	struct drm_device *dev;
3031 serge 2251
	struct intel_ring_buffer *ring;
2360 Serge 2252
	bool idle;
2253
	int i;
2352 Serge 2254
 
2360 Serge 2255
	dev_priv = container_of(work, drm_i915_private_t,
2256
				mm.retire_work.work);
2257
	dev = dev_priv->dev;
2352 Serge 2258
 
2360 Serge 2259
	/* Come back later if the device is busy... */
2260
	if (!mutex_trylock(&dev->struct_mutex)) {
3482 Serge 2261
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2262
				   round_jiffies_up_relative(HZ));
3243 Serge 2263
        return;
2360 Serge 2264
	}
2352 Serge 2265
 
2360 Serge 2266
	i915_gem_retire_requests(dev);
2352 Serge 2267
 
2360 Serge 2268
	/* Send a periodic flush down the ring so we don't hold onto GEM
2269
	 * objects indefinitely.
2270
	 */
2271
	idle = true;
3031 serge 2272
	for_each_ring(ring, dev_priv, i) {
2273
		if (ring->gpu_caches_dirty)
4104 Serge 2274
			i915_add_request(ring, NULL);
2352 Serge 2275
 
2360 Serge 2276
		idle &= list_empty(&ring->request_list);
2277
	}
2352 Serge 2278
 
4104 Serge 2279
	if (!dev_priv->ums.mm_suspended && !idle)
3482 Serge 2280
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2281
				   round_jiffies_up_relative(HZ));
3031 serge 2282
	if (idle)
2283
		intel_mark_idle(dev);
2360 Serge 2284
 
2285
	mutex_unlock(&dev->struct_mutex);
2286
}
2287
 
2344 Serge 2288
/**
3031 serge 2289
 * Ensures that an object will eventually get non-busy by flushing any required
2290
 * write domains, emitting any outstanding lazy request and retiring and
2291
 * completed requests.
2352 Serge 2292
 */
3031 serge 2293
static int
2294
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2352 Serge 2295
{
3031 serge 2296
	int ret;
2352 Serge 2297
 
3031 serge 2298
	if (obj->active) {
2299
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2300
		if (ret)
2301
			return ret;
2352 Serge 2302
 
3031 serge 2303
		i915_gem_retire_requests_ring(obj->ring);
2304
	}
2352 Serge 2305
 
3031 serge 2306
	return 0;
2307
}
2352 Serge 2308
 
3243 Serge 2309
/**
2310
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2311
 * @DRM_IOCTL_ARGS: standard ioctl arguments
2312
 *
2313
 * Returns 0 if successful, else an error is returned with the remaining time in
2314
 * the timeout parameter.
2315
 *  -ETIME: object is still busy after timeout
2316
 *  -ERESTARTSYS: signal interrupted the wait
2317
 *  -ENONENT: object doesn't exist
2318
 * Also possible, but rare:
2319
 *  -EAGAIN: GPU wedged
2320
 *  -ENOMEM: damn
2321
 *  -ENODEV: Internal IRQ fail
2322
 *  -E?: The add request failed
2323
 *
2324
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2325
 * non-zero timeout parameter the wait ioctl will wait for the given number of
2326
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2327
 * without holding struct_mutex the object may become re-busied before this
2328
 * function completes. A similar but shorter * race condition exists in the busy
2329
 * ioctl
2330
 */
4246 Serge 2331
int
2332
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2333
{
2334
	drm_i915_private_t *dev_priv = dev->dev_private;
2335
	struct drm_i915_gem_wait *args = data;
2336
	struct drm_i915_gem_object *obj;
2337
	struct intel_ring_buffer *ring = NULL;
2338
	struct timespec timeout_stack, *timeout = NULL;
2339
	unsigned reset_counter;
2340
	u32 seqno = 0;
2341
	int ret = 0;
2352 Serge 2342
 
4246 Serge 2343
	if (args->timeout_ns >= 0) {
2344
		timeout_stack = ns_to_timespec(args->timeout_ns);
2345
		timeout = &timeout_stack;
2346
	}
2352 Serge 2347
 
4246 Serge 2348
	ret = i915_mutex_lock_interruptible(dev);
2349
	if (ret)
2350
		return ret;
2352 Serge 2351
 
4246 Serge 2352
    if(args->bo_handle == -2)
2353
    {
2354
        obj = get_fb_obj();
2355
        drm_gem_object_reference(&obj->base);
2356
    }
2357
    else
2358
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2359
	if (&obj->base == NULL) {
2360
		mutex_unlock(&dev->struct_mutex);
2361
		return -ENOENT;
2362
	}
2352 Serge 2363
 
4246 Serge 2364
	/* Need to make sure the object gets inactive eventually. */
2365
	ret = i915_gem_object_flush_active(obj);
2366
	if (ret)
2367
		goto out;
2352 Serge 2368
 
4246 Serge 2369
	if (obj->active) {
2370
		seqno = obj->last_read_seqno;
2371
		ring = obj->ring;
2372
	}
2352 Serge 2373
 
4246 Serge 2374
	if (seqno == 0)
2375
		 goto out;
2352 Serge 2376
 
4246 Serge 2377
	/* Do this after OLR check to make sure we make forward progress polling
2378
	 * on this IOCTL with a 0 timeout (like busy ioctl)
2379
	 */
2380
	if (!args->timeout_ns) {
2381
		ret = -ETIME;
2382
		goto out;
2383
	}
2352 Serge 2384
 
4246 Serge 2385
	drm_gem_object_unreference(&obj->base);
2386
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2387
	mutex_unlock(&dev->struct_mutex);
2352 Serge 2388
 
4246 Serge 2389
	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2390
	if (timeout)
2391
		args->timeout_ns = timespec_to_ns(timeout);
2392
	return ret;
3243 Serge 2393
 
4246 Serge 2394
out:
2395
	drm_gem_object_unreference(&obj->base);
2396
	mutex_unlock(&dev->struct_mutex);
2397
	return ret;
2398
}
3243 Serge 2399
 
2352 Serge 2400
/**
3031 serge 2401
 * i915_gem_object_sync - sync an object to a ring.
2402
 *
2403
 * @obj: object which may be in use on another ring.
2404
 * @to: ring we wish to use the object on. May be NULL.
2405
 *
2406
 * This code is meant to abstract object synchronization with the GPU.
2407
 * Calling with NULL implies synchronizing the object with the CPU
2408
 * rather than a particular GPU ring.
2409
 *
2410
 * Returns 0 if successful, else propagates up the lower layer error.
2344 Serge 2411
 */
2412
int
3031 serge 2413
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2414
		     struct intel_ring_buffer *to)
2344 Serge 2415
{
3031 serge 2416
	struct intel_ring_buffer *from = obj->ring;
2417
	u32 seqno;
2418
	int ret, idx;
2332 Serge 2419
 
3031 serge 2420
	if (from == NULL || to == from)
2421
		return 0;
2332 Serge 2422
 
3031 serge 2423
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2424
		return i915_gem_object_wait_rendering(obj, false);
2332 Serge 2425
 
3031 serge 2426
	idx = intel_ring_sync_index(from, to);
2427
 
2428
	seqno = obj->last_read_seqno;
2429
	if (seqno <= from->sync_seqno[idx])
2430
		return 0;
2431
 
2432
	ret = i915_gem_check_olr(obj->ring, seqno);
2433
	if (ret)
2434
		return ret;
2435
 
2436
	ret = to->sync_to(to, from, seqno);
2437
	if (!ret)
3243 Serge 2438
		/* We use last_read_seqno because sync_to()
2439
		 * might have just caused seqno wrap under
2440
		 * the radar.
2441
		 */
2442
		from->sync_seqno[idx] = obj->last_read_seqno;
3031 serge 2443
 
2444
	return ret;
2344 Serge 2445
}
2332 Serge 2446
 
2344 Serge 2447
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2448
{
2449
	u32 old_write_domain, old_read_domains;
2332 Serge 2450
 
2344 Serge 2451
	/* Force a pagefault for domain tracking on next user access */
2452
//	i915_gem_release_mmap(obj);
2332 Serge 2453
 
2344 Serge 2454
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2455
		return;
2332 Serge 2456
 
3480 Serge 2457
	/* Wait for any direct GTT access to complete */
2458
	mb();
2459
 
2344 Serge 2460
	old_read_domains = obj->base.read_domains;
2461
	old_write_domain = obj->base.write_domain;
2351 Serge 2462
 
2344 Serge 2463
	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2464
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2332 Serge 2465
 
2351 Serge 2466
	trace_i915_gem_object_change_domain(obj,
2467
					    old_read_domains,
2468
					    old_write_domain);
2344 Serge 2469
}
2332 Serge 2470
 
4104 Serge 2471
int i915_vma_unbind(struct i915_vma *vma)
2344 Serge 2472
{
4104 Serge 2473
	struct drm_i915_gem_object *obj = vma->obj;
3031 serge 2474
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3480 Serge 2475
	int ret;
2332 Serge 2476
 
3263 Serge 2477
    if(obj == get_fb_obj())
2478
        return 0;
2479
 
4104 Serge 2480
	if (list_empty(&vma->vma_link))
2344 Serge 2481
		return 0;
2332 Serge 2482
 
4104 Serge 2483
	if (!drm_mm_node_allocated(&vma->node))
2484
		goto destroy;
2485
 
3031 serge 2486
	if (obj->pin_count)
2487
		return -EBUSY;
2332 Serge 2488
 
3243 Serge 2489
	BUG_ON(obj->pages == NULL);
3031 serge 2490
 
2344 Serge 2491
	ret = i915_gem_object_finish_gpu(obj);
3031 serge 2492
	if (ret)
2344 Serge 2493
		return ret;
2494
	/* Continue on if we fail due to EIO, the GPU is hung so we
2495
	 * should be safe and we need to cleanup or else we might
2496
	 * cause memory corruption through use-after-free.
2497
	 */
2332 Serge 2498
 
2344 Serge 2499
	i915_gem_object_finish_gtt(obj);
2332 Serge 2500
 
2344 Serge 2501
	/* release the fence reg _after_ flushing */
2502
	ret = i915_gem_object_put_fence(obj);
3031 serge 2503
	if (ret)
2344 Serge 2504
		return ret;
2332 Serge 2505
 
4104 Serge 2506
	trace_i915_vma_unbind(vma);
2332 Serge 2507
 
3031 serge 2508
	if (obj->has_global_gtt_mapping)
3243 Serge 2509
        i915_gem_gtt_unbind_object(obj);
3031 serge 2510
	if (obj->has_aliasing_ppgtt_mapping) {
2511
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2512
		obj->has_aliasing_ppgtt_mapping = 0;
2513
	}
2514
	i915_gem_gtt_finish_object(obj);
4104 Serge 2515
	i915_gem_object_unpin_pages(obj);
2332 Serge 2516
 
4104 Serge 2517
	list_del(&vma->mm_list);
2344 Serge 2518
	/* Avoid an unnecessary call to unbind on rebind. */
4104 Serge 2519
	if (i915_is_ggtt(vma->vm))
2344 Serge 2520
	obj->map_and_fenceable = true;
2332 Serge 2521
 
4104 Serge 2522
	drm_mm_remove_node(&vma->node);
2332 Serge 2523
 
4104 Serge 2524
destroy:
2525
	i915_gem_vma_destroy(vma);
2526
 
2527
	/* Since the unbound list is global, only move to that list if
2528
	 * no more VMAs exist.
2529
	 * NB: Until we have real VMAs there will only ever be one */
2530
	WARN_ON(!list_empty(&obj->vma_list));
2531
	if (list_empty(&obj->vma_list))
2532
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2533
 
2344 Serge 2534
	return 0;
2535
}
2332 Serge 2536
 
4104 Serge 2537
/**
2538
 * Unbinds an object from the global GTT aperture.
2539
 */
2540
int
2541
i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2542
{
2543
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2544
	struct i915_address_space *ggtt = &dev_priv->gtt.base;
2545
 
2546
	if (!i915_gem_obj_ggtt_bound(obj))
2547
		return 0;
2548
 
2549
	if (obj->pin_count)
2550
		return -EBUSY;
2551
 
2552
	BUG_ON(obj->pages == NULL);
2553
 
2554
	return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2555
}
2556
 
3031 serge 2557
int i915_gpu_idle(struct drm_device *dev)
2344 Serge 2558
{
2559
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 2560
	struct intel_ring_buffer *ring;
2344 Serge 2561
	int ret, i;
2332 Serge 2562
 
2344 Serge 2563
	/* Flush everything onto the inactive list. */
3031 serge 2564
	for_each_ring(ring, dev_priv, i) {
2565
		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2344 Serge 2566
		if (ret)
2567
			return ret;
3031 serge 2568
 
3243 Serge 2569
		ret = intel_ring_idle(ring);
3031 serge 2570
		if (ret)
2571
			return ret;
2344 Serge 2572
	}
2332 Serge 2573
 
2344 Serge 2574
	return 0;
2575
}
2332 Serge 2576
 
3480 Serge 2577
static void i965_write_fence_reg(struct drm_device *dev, int reg,
3031 serge 2578
					struct drm_i915_gem_object *obj)
2579
{
2580
	drm_i915_private_t *dev_priv = dev->dev_private;
3480 Serge 2581
	int fence_reg;
2582
	int fence_pitch_shift;
2332 Serge 2583
 
3480 Serge 2584
	if (INTEL_INFO(dev)->gen >= 6) {
2585
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2586
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2587
	} else {
2588
		fence_reg = FENCE_REG_965_0;
2589
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2590
	}
2332 Serge 2591
 
4104 Serge 2592
	fence_reg += reg * 8;
2593
 
2594
	/* To w/a incoherency with non-atomic 64-bit register updates,
2595
	 * we split the 64-bit update into two 32-bit writes. In order
2596
	 * for a partial fence not to be evaluated between writes, we
2597
	 * precede the update with write to turn off the fence register,
2598
	 * and only enable the fence as the last step.
2599
	 *
2600
	 * For extra levels of paranoia, we make sure each step lands
2601
	 * before applying the next step.
2602
	 */
2603
	I915_WRITE(fence_reg, 0);
2604
	POSTING_READ(fence_reg);
2605
 
3031 serge 2606
	if (obj) {
4104 Serge 2607
		u32 size = i915_gem_obj_ggtt_size(obj);
2608
		uint64_t val;
2332 Serge 2609
 
4104 Serge 2610
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3031 serge 2611
				 0xfffff000) << 32;
4104 Serge 2612
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3480 Serge 2613
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3031 serge 2614
		if (obj->tiling_mode == I915_TILING_Y)
2615
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2616
		val |= I965_FENCE_REG_VALID;
2332 Serge 2617
 
4104 Serge 2618
		I915_WRITE(fence_reg + 4, val >> 32);
2619
		POSTING_READ(fence_reg + 4);
2620
 
2621
		I915_WRITE(fence_reg + 0, val);
3480 Serge 2622
	POSTING_READ(fence_reg);
4104 Serge 2623
	} else {
2624
		I915_WRITE(fence_reg + 4, 0);
2625
		POSTING_READ(fence_reg + 4);
2626
	}
3031 serge 2627
}
2332 Serge 2628
 
3031 serge 2629
static void i915_write_fence_reg(struct drm_device *dev, int reg,
2630
				 struct drm_i915_gem_object *obj)
2631
{
2632
	drm_i915_private_t *dev_priv = dev->dev_private;
2633
	u32 val;
2332 Serge 2634
 
3031 serge 2635
	if (obj) {
4104 Serge 2636
		u32 size = i915_gem_obj_ggtt_size(obj);
3031 serge 2637
		int pitch_val;
2638
		int tile_width;
2332 Serge 2639
 
4104 Serge 2640
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3031 serge 2641
		     (size & -size) != size ||
4104 Serge 2642
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2643
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2644
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2332 Serge 2645
 
3031 serge 2646
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2647
			tile_width = 128;
2648
		else
2649
			tile_width = 512;
2332 Serge 2650
 
3031 serge 2651
		/* Note: pitch better be a power of two tile widths */
2652
		pitch_val = obj->stride / tile_width;
2653
		pitch_val = ffs(pitch_val) - 1;
2332 Serge 2654
 
4104 Serge 2655
		val = i915_gem_obj_ggtt_offset(obj);
3031 serge 2656
		if (obj->tiling_mode == I915_TILING_Y)
2657
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2658
		val |= I915_FENCE_SIZE_BITS(size);
2659
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2660
		val |= I830_FENCE_REG_VALID;
2661
	} else
2662
		val = 0;
2332 Serge 2663
 
3031 serge 2664
	if (reg < 8)
2665
		reg = FENCE_REG_830_0 + reg * 4;
2666
	else
2667
		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2332 Serge 2668
 
3031 serge 2669
	I915_WRITE(reg, val);
2670
	POSTING_READ(reg);
2671
}
2332 Serge 2672
 
3031 serge 2673
static void i830_write_fence_reg(struct drm_device *dev, int reg,
2674
				struct drm_i915_gem_object *obj)
2675
{
2676
	drm_i915_private_t *dev_priv = dev->dev_private;
2677
	uint32_t val;
2344 Serge 2678
 
3031 serge 2679
	if (obj) {
4104 Serge 2680
		u32 size = i915_gem_obj_ggtt_size(obj);
3031 serge 2681
		uint32_t pitch_val;
2344 Serge 2682
 
4104 Serge 2683
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3031 serge 2684
		     (size & -size) != size ||
4104 Serge 2685
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2686
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2687
		     i915_gem_obj_ggtt_offset(obj), size);
2344 Serge 2688
 
3031 serge 2689
		pitch_val = obj->stride / 128;
2690
		pitch_val = ffs(pitch_val) - 1;
2344 Serge 2691
 
4104 Serge 2692
		val = i915_gem_obj_ggtt_offset(obj);
3031 serge 2693
		if (obj->tiling_mode == I915_TILING_Y)
2694
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2695
		val |= I830_FENCE_SIZE_BITS(size);
2696
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2697
		val |= I830_FENCE_REG_VALID;
2698
	} else
2699
		val = 0;
2700
 
2701
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2702
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2703
}
2704
 
3480 Serge 2705
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2706
{
2707
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2708
}
2709
 
3031 serge 2710
static void i915_gem_write_fence(struct drm_device *dev, int reg,
2711
				 struct drm_i915_gem_object *obj)
2332 Serge 2712
{
3480 Serge 2713
	struct drm_i915_private *dev_priv = dev->dev_private;
2714
 
2715
	/* Ensure that all CPU reads are completed before installing a fence
2716
	 * and all writes before removing the fence.
2717
	 */
2718
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2719
		mb();
2720
 
4104 Serge 2721
	WARN(obj && (!obj->stride || !obj->tiling_mode),
2722
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2723
	     obj->stride, obj->tiling_mode);
2724
 
3031 serge 2725
	switch (INTEL_INFO(dev)->gen) {
2726
	case 7:
3480 Serge 2727
	case 6:
3031 serge 2728
	case 5:
2729
	case 4: i965_write_fence_reg(dev, reg, obj); break;
2730
	case 3: i915_write_fence_reg(dev, reg, obj); break;
2731
	case 2: i830_write_fence_reg(dev, reg, obj); break;
3480 Serge 2732
	default: BUG();
3031 serge 2733
	}
3480 Serge 2734
 
2735
	/* And similarly be paranoid that no direct access to this region
2736
	 * is reordered to before the fence is installed.
2737
	 */
2738
	if (i915_gem_object_needs_mb(obj))
2739
		mb();
2344 Serge 2740
}
2741
 
3031 serge 2742
static inline int fence_number(struct drm_i915_private *dev_priv,
2743
			       struct drm_i915_fence_reg *fence)
2344 Serge 2744
{
3031 serge 2745
	return fence - dev_priv->fence_regs;
2746
}
2332 Serge 2747
 
3031 serge 2748
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2749
					 struct drm_i915_fence_reg *fence,
2750
					 bool enable)
2751
{
4104 Serge 2752
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2753
	int reg = fence_number(dev_priv, fence);
2332 Serge 2754
 
4104 Serge 2755
	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3031 serge 2756
 
2757
	if (enable) {
4104 Serge 2758
		obj->fence_reg = reg;
3031 serge 2759
		fence->obj = obj;
2760
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2761
	} else {
2762
		obj->fence_reg = I915_FENCE_REG_NONE;
2763
		fence->obj = NULL;
2764
		list_del_init(&fence->lru_list);
2344 Serge 2765
	}
4104 Serge 2766
	obj->fence_dirty = false;
3031 serge 2767
}
2344 Serge 2768
 
3031 serge 2769
static int
3480 Serge 2770
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3031 serge 2771
{
2772
	if (obj->last_fenced_seqno) {
2773
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2352 Serge 2774
			if (ret)
2775
				return ret;
2344 Serge 2776
 
2777
		obj->last_fenced_seqno = 0;
2778
	}
2779
 
3031 serge 2780
	obj->fenced_gpu_access = false;
2332 Serge 2781
	return 0;
2782
}
2783
 
2784
int
2344 Serge 2785
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2332 Serge 2786
{
3031 serge 2787
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3746 Serge 2788
	struct drm_i915_fence_reg *fence;
2332 Serge 2789
	int ret;
2790
 
3480 Serge 2791
	ret = i915_gem_object_wait_fence(obj);
2332 Serge 2792
	if (ret)
2793
		return ret;
2794
 
3031 serge 2795
	if (obj->fence_reg == I915_FENCE_REG_NONE)
2796
		return 0;
2332 Serge 2797
 
3746 Serge 2798
	fence = &dev_priv->fence_regs[obj->fence_reg];
2799
 
3031 serge 2800
	i915_gem_object_fence_lost(obj);
3746 Serge 2801
	i915_gem_object_update_fence(obj, fence, false);
2344 Serge 2802
 
2332 Serge 2803
	return 0;
2804
}
2805
 
3031 serge 2806
static struct drm_i915_fence_reg *
2807
i915_find_fence_reg(struct drm_device *dev)
2808
{
2809
	struct drm_i915_private *dev_priv = dev->dev_private;
2810
	struct drm_i915_fence_reg *reg, *avail;
2811
	int i;
2332 Serge 2812
 
3031 serge 2813
	/* First try to find a free reg */
2814
	avail = NULL;
2815
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2816
		reg = &dev_priv->fence_regs[i];
2817
		if (!reg->obj)
2818
			return reg;
2332 Serge 2819
 
3031 serge 2820
		if (!reg->pin_count)
2821
			avail = reg;
2822
	}
2332 Serge 2823
 
3031 serge 2824
	if (avail == NULL)
2825
		return NULL;
2332 Serge 2826
 
3031 serge 2827
	/* None available, try to steal one or wait for a user to finish */
2828
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2829
		if (reg->pin_count)
2830
			continue;
2332 Serge 2831
 
3031 serge 2832
		return reg;
2833
	}
2332 Serge 2834
 
3031 serge 2835
	return NULL;
2836
}
2332 Serge 2837
 
3031 serge 2838
/**
2839
 * i915_gem_object_get_fence - set up fencing for an object
2840
 * @obj: object to map through a fence reg
2841
 *
2842
 * When mapping objects through the GTT, userspace wants to be able to write
2843
 * to them without having to worry about swizzling if the object is tiled.
2844
 * This function walks the fence regs looking for a free one for @obj,
2845
 * stealing one if it can't find any.
2846
 *
2847
 * It then sets up the reg based on the object's properties: address, pitch
2848
 * and tiling format.
2849
 *
2850
 * For an untiled surface, this removes any existing fence.
2851
 */
2852
int
2853
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2854
{
2855
	struct drm_device *dev = obj->base.dev;
2856
	struct drm_i915_private *dev_priv = dev->dev_private;
2857
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2858
	struct drm_i915_fence_reg *reg;
2859
	int ret;
2332 Serge 2860
 
3031 serge 2861
	/* Have we updated the tiling parameters upon the object and so
2862
	 * will need to serialise the write to the associated fence register?
2863
	 */
2864
	if (obj->fence_dirty) {
3480 Serge 2865
		ret = i915_gem_object_wait_fence(obj);
3031 serge 2866
		if (ret)
2867
			return ret;
2868
	}
2332 Serge 2869
 
3031 serge 2870
	/* Just update our place in the LRU if our fence is getting reused. */
2871
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2872
		reg = &dev_priv->fence_regs[obj->fence_reg];
2873
		if (!obj->fence_dirty) {
2874
			list_move_tail(®->lru_list,
2875
				       &dev_priv->mm.fence_list);
2876
			return 0;
2877
		}
2878
	} else if (enable) {
2879
		reg = i915_find_fence_reg(dev);
2880
		if (reg == NULL)
2881
			return -EDEADLK;
2332 Serge 2882
 
3031 serge 2883
		if (reg->obj) {
2884
			struct drm_i915_gem_object *old = reg->obj;
2332 Serge 2885
 
3480 Serge 2886
			ret = i915_gem_object_wait_fence(old);
3031 serge 2887
			if (ret)
2888
				return ret;
2332 Serge 2889
 
3031 serge 2890
			i915_gem_object_fence_lost(old);
2891
		}
2892
	} else
2893
		return 0;
2332 Serge 2894
 
3031 serge 2895
	i915_gem_object_update_fence(obj, reg, enable);
2332 Serge 2896
 
3031 serge 2897
	return 0;
2898
}
2332 Serge 2899
 
3031 serge 2900
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2901
				     struct drm_mm_node *gtt_space,
2902
				     unsigned long cache_level)
2903
{
2904
	struct drm_mm_node *other;
2332 Serge 2905
 
3031 serge 2906
	/* On non-LLC machines we have to be careful when putting differing
2907
	 * types of snoopable memory together to avoid the prefetcher
3480 Serge 2908
	 * crossing memory domains and dying.
3031 serge 2909
	 */
2910
	if (HAS_LLC(dev))
2911
		return true;
2332 Serge 2912
 
4104 Serge 2913
	if (!drm_mm_node_allocated(gtt_space))
3031 serge 2914
		return true;
2332 Serge 2915
 
3031 serge 2916
	if (list_empty(>t_space->node_list))
2917
		return true;
2332 Serge 2918
 
3031 serge 2919
	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2920
	if (other->allocated && !other->hole_follows && other->color != cache_level)
2921
		return false;
2344 Serge 2922
 
3031 serge 2923
	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2924
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2925
		return false;
2344 Serge 2926
 
3031 serge 2927
	return true;
2928
}
2344 Serge 2929
 
3031 serge 2930
static void i915_gem_verify_gtt(struct drm_device *dev)
2931
{
2932
#if WATCH_GTT
2933
	struct drm_i915_private *dev_priv = dev->dev_private;
2934
	struct drm_i915_gem_object *obj;
2935
	int err = 0;
2344 Serge 2936
 
4104 Serge 2937
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3031 serge 2938
		if (obj->gtt_space == NULL) {
2939
			printk(KERN_ERR "object found on GTT list with no space reserved\n");
2940
			err++;
2941
			continue;
2942
		}
2344 Serge 2943
 
3031 serge 2944
		if (obj->cache_level != obj->gtt_space->color) {
2945
			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
4104 Serge 2946
			       i915_gem_obj_ggtt_offset(obj),
2947
			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3031 serge 2948
			       obj->cache_level,
2949
			       obj->gtt_space->color);
2950
			err++;
2951
			continue;
2952
		}
2344 Serge 2953
 
3031 serge 2954
		if (!i915_gem_valid_gtt_space(dev,
2955
					      obj->gtt_space,
2956
					      obj->cache_level)) {
2957
			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
4104 Serge 2958
			       i915_gem_obj_ggtt_offset(obj),
2959
			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3031 serge 2960
			       obj->cache_level);
2961
			err++;
2962
			continue;
2963
		}
2964
	}
2344 Serge 2965
 
3031 serge 2966
	WARN_ON(err);
2967
#endif
2326 Serge 2968
}
2969
 
2332 Serge 2970
/**
2971
 * Finds free space in the GTT aperture and binds the object there.
2972
 */
2973
static int
4104 Serge 2974
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
2975
			   struct i915_address_space *vm,
2332 Serge 2976
			    unsigned alignment,
3031 serge 2977
			    bool map_and_fenceable,
2978
			    bool nonblocking)
2332 Serge 2979
{
2980
	struct drm_device *dev = obj->base.dev;
2981
	drm_i915_private_t *dev_priv = dev->dev_private;
2982
	u32 size, fence_size, fence_alignment, unfenced_alignment;
4104 Serge 2983
	size_t gtt_max =
2984
		map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
2985
	struct i915_vma *vma;
2332 Serge 2986
	int ret;
2326 Serge 2987
 
2332 Serge 2988
	fence_size = i915_gem_get_gtt_size(dev,
2989
					   obj->base.size,
2990
					   obj->tiling_mode);
2991
	fence_alignment = i915_gem_get_gtt_alignment(dev,
2992
						     obj->base.size,
3480 Serge 2993
						     obj->tiling_mode, true);
2332 Serge 2994
	unfenced_alignment =
3480 Serge 2995
		i915_gem_get_gtt_alignment(dev,
2332 Serge 2996
						    obj->base.size,
3480 Serge 2997
						    obj->tiling_mode, false);
2332 Serge 2998
 
2999
	if (alignment == 0)
3000
		alignment = map_and_fenceable ? fence_alignment :
3001
						unfenced_alignment;
3002
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3003
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3004
		return -EINVAL;
3005
	}
3006
 
3007
	size = map_and_fenceable ? fence_size : obj->base.size;
3008
 
3009
	/* If the object is bigger than the entire aperture, reject it early
3010
	 * before evicting everything in a vain attempt to find space.
3011
	 */
4104 Serge 3012
	if (obj->base.size > gtt_max) {
3013
		DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3014
			  obj->base.size,
3015
			  map_and_fenceable ? "mappable" : "total",
3016
			  gtt_max);
2332 Serge 3017
		return -E2BIG;
3018
	}
3019
 
3031 serge 3020
	ret = i915_gem_object_get_pages(obj);
3021
	if (ret)
3022
		return ret;
3023
 
3243 Serge 3024
	i915_gem_object_pin_pages(obj);
3025
 
4104 Serge 3026
	BUG_ON(!i915_is_ggtt(vm));
3027
 
3028
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3029
	if (IS_ERR(vma)) {
3030
		ret = PTR_ERR(vma);
3031
		goto err_unpin;
3243 Serge 3032
	}
3033
 
4104 Serge 3034
	/* For now we only ever use 1 vma per object */
3035
	WARN_ON(!list_is_singular(&obj->vma_list));
3036
 
3037
search_free:
3038
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3039
						  size, alignment,
3040
						  obj->cache_level, 0, gtt_max,
3041
						  DRM_MM_SEARCH_DEFAULT);
3243 Serge 3042
	if (ret) {
2332 Serge 3043
 
4104 Serge 3044
		goto err_free_vma;
2332 Serge 3045
	}
4104 Serge 3046
	if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3047
					      obj->cache_level))) {
3048
		ret = -EINVAL;
3049
		goto err_remove_node;
3031 serge 3050
	}
2332 Serge 3051
 
3031 serge 3052
	ret = i915_gem_gtt_prepare_object(obj);
4104 Serge 3053
	if (ret)
3054
		goto err_remove_node;
2332 Serge 3055
 
4104 Serge 3056
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3057
	list_add_tail(&vma->mm_list, &vm->inactive_list);
2332 Serge 3058
 
4104 Serge 3059
	if (i915_is_ggtt(vm)) {
3060
		bool mappable, fenceable;
2332 Serge 3061
 
4104 Serge 3062
		fenceable = (vma->node.size == fence_size &&
3063
			     (vma->node.start & (fence_alignment - 1)) == 0);
2332 Serge 3064
 
4104 Serge 3065
		mappable = (vma->node.start + obj->base.size <=
3066
			    dev_priv->gtt.mappable_end);
2332 Serge 3067
 
3068
	obj->map_and_fenceable = mappable && fenceable;
4104 Serge 3069
	}
2332 Serge 3070
 
4104 Serge 3071
	WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3072
 
3073
	trace_i915_vma_bind(vma, map_and_fenceable);
3031 serge 3074
	i915_gem_verify_gtt(dev);
2332 Serge 3075
	return 0;
4104 Serge 3076
 
3077
err_remove_node:
3078
	drm_mm_remove_node(&vma->node);
3079
err_free_vma:
3080
	i915_gem_vma_destroy(vma);
3081
err_unpin:
3082
	i915_gem_object_unpin_pages(obj);
3083
	return ret;
2332 Serge 3084
}
3085
 
4104 Serge 3086
bool
3087
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3088
			bool force)
2332 Serge 3089
{
3090
	/* If we don't have a page list set up, then we're not pinned
3091
	 * to GPU, and we can ignore the cache flush because it'll happen
3092
	 * again at bind time.
3093
	 */
3243 Serge 3094
	if (obj->pages == NULL)
4104 Serge 3095
		return false;
2332 Serge 3096
 
3480 Serge 3097
	/*
3098
	 * Stolen memory is always coherent with the GPU as it is explicitly
3099
	 * marked as wc by the system, or the system is cache-coherent.
3100
	 */
3101
	if (obj->stolen)
4104 Serge 3102
		return false;
3480 Serge 3103
 
2332 Serge 3104
	/* If the GPU is snooping the contents of the CPU cache,
3105
	 * we do not need to manually clear the CPU cache lines.  However,
3106
	 * the caches are only snooped when the render cache is
3107
	 * flushed/invalidated.  As we always have to emit invalidations
3108
	 * and flushes when moving into and out of the RENDER domain, correct
3109
	 * snooping behaviour occurs naturally as the result of our domain
3110
	 * tracking.
3111
	 */
4104 Serge 3112
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3113
		return false;
3243 Serge 3114
#if 0
2344 Serge 3115
     if(obj->mapped != NULL)
3116
     {
3117
        uint8_t *page_virtual;
3118
        unsigned int i;
2332 Serge 3119
 
2344 Serge 3120
        page_virtual = obj->mapped;
3121
        asm volatile("mfence");
3122
        for (i = 0; i < obj->base.size; i += x86_clflush_size)
3123
            clflush(page_virtual + i);
3124
        asm volatile("mfence");
3125
     }
3126
     else
3127
     {
3128
        uint8_t *page_virtual;
3129
        unsigned int i;
3130
        page_virtual = AllocKernelSpace(obj->base.size);
3131
        if(page_virtual != NULL)
3132
        {
3031 serge 3133
            dma_addr_t *src, *dst;
2344 Serge 3134
            u32 count;
3135
 
3136
#define page_tabs  0xFDC00000      /* really dirty hack */
3137
 
3031 serge 3138
            src =  obj->pages.page;
3139
            dst =  &((dma_addr_t*)page_tabs)[(u32_t)page_virtual >> 12];
2344 Serge 3140
            count = obj->base.size/4096;
3141
 
3142
            while(count--)
3143
            {
3144
                *dst++ = (0xFFFFF000 & *src++) | 0x001 ;
3145
            };
3146
 
3147
            asm volatile("mfence");
3148
            for (i = 0; i < obj->base.size; i += x86_clflush_size)
3149
                clflush(page_virtual + i);
3150
            asm volatile("mfence");
3151
            FreeKernelSpace(page_virtual);
3152
        }
3153
        else
3154
        {
3155
            asm volatile (
3156
            "mfence         \n"
3157
            "wbinvd         \n"                 /* this is really ugly  */
3158
            "mfence");
3159
        }
3160
     }
3243 Serge 3161
#endif
3162
 
4104 Serge 3163
	return true;
2332 Serge 3164
}
3165
 
2344 Serge 3166
/** Flushes the GTT write domain for the object if it's dirty. */
3167
static void
3168
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3169
{
3170
	uint32_t old_write_domain;
2332 Serge 3171
 
2344 Serge 3172
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3173
		return;
2332 Serge 3174
 
2344 Serge 3175
	/* No actual flushing is required for the GTT write domain.  Writes
3176
	 * to it immediately go to main memory as far as we know, so there's
3177
	 * no chipset flush.  It also doesn't land in render cache.
3178
	 *
3179
	 * However, we do have to enforce the order so that all writes through
3180
	 * the GTT land before any writes to the device, such as updates to
3181
	 * the GATT itself.
3182
	 */
3183
	wmb();
2332 Serge 3184
 
2344 Serge 3185
	old_write_domain = obj->base.write_domain;
3186
	obj->base.write_domain = 0;
2332 Serge 3187
 
2351 Serge 3188
	trace_i915_gem_object_change_domain(obj,
3189
					    obj->base.read_domains,
3190
					    old_write_domain);
2344 Serge 3191
}
2332 Serge 3192
 
3193
/** Flushes the CPU write domain for the object if it's dirty. */
2326 Serge 3194
static void
4104 Serge 3195
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3196
				       bool force)
2332 Serge 3197
{
3198
	uint32_t old_write_domain;
3199
 
3200
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3201
		return;
3202
 
4104 Serge 3203
	if (i915_gem_clflush_object(obj, force))
3243 Serge 3204
	i915_gem_chipset_flush(obj->base.dev);
4104 Serge 3205
 
2332 Serge 3206
	old_write_domain = obj->base.write_domain;
3207
	obj->base.write_domain = 0;
3208
 
2351 Serge 3209
	trace_i915_gem_object_change_domain(obj,
3210
					    obj->base.read_domains,
3211
					    old_write_domain);
2332 Serge 3212
}
3213
 
3214
/**
3215
 * Moves a single object to the GTT read, and possibly write domain.
3216
 *
3217
 * This function returns when the move is complete, including waiting on
3218
 * flushes to occur.
3219
 */
3220
int
3221
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3222
{
3031 serge 3223
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2332 Serge 3224
	uint32_t old_write_domain, old_read_domains;
3225
	int ret;
3226
 
3227
	/* Not valid to be called on unbound objects. */
4104 Serge 3228
	if (!i915_gem_obj_bound_any(obj))
2332 Serge 3229
		return -EINVAL;
3230
 
3231
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3232
		return 0;
3233
 
3031 serge 3234
	ret = i915_gem_object_wait_rendering(obj, !write);
2332 Serge 3235
		if (ret)
3236
			return ret;
3237
 
4104 Serge 3238
	i915_gem_object_flush_cpu_write_domain(obj, false);
2332 Serge 3239
 
3480 Serge 3240
	/* Serialise direct access to this object with the barriers for
3241
	 * coherent writes from the GPU, by effectively invalidating the
3242
	 * GTT domain upon first access.
3243
	 */
3244
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3245
		mb();
3246
 
2332 Serge 3247
	old_write_domain = obj->base.write_domain;
3248
	old_read_domains = obj->base.read_domains;
3249
 
3250
	/* It should now be out of any other write domains, and we can update
3251
	 * the domain values for our changes.
3252
	 */
3253
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3254
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3255
	if (write) {
3256
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3257
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3258
		obj->dirty = 1;
3259
	}
3260
 
2351 Serge 3261
	trace_i915_gem_object_change_domain(obj,
3262
					    old_read_domains,
3263
					    old_write_domain);
3264
 
3031 serge 3265
	/* And bump the LRU for this access */
4104 Serge 3266
	if (i915_gem_object_is_inactive(obj)) {
3267
		struct i915_vma *vma = i915_gem_obj_to_vma(obj,
3268
							   &dev_priv->gtt.base);
3269
		if (vma)
3270
			list_move_tail(&vma->mm_list,
3271
				       &dev_priv->gtt.base.inactive_list);
3031 serge 3272
 
4104 Serge 3273
	}
3274
 
2332 Serge 3275
	return 0;
3276
}
3277
 
2335 Serge 3278
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3279
				    enum i915_cache_level cache_level)
3280
{
3031 serge 3281
	struct drm_device *dev = obj->base.dev;
3282
	drm_i915_private_t *dev_priv = dev->dev_private;
4104 Serge 3283
	struct i915_vma *vma;
2335 Serge 3284
	int ret;
2332 Serge 3285
 
2335 Serge 3286
	if (obj->cache_level == cache_level)
3287
		return 0;
2332 Serge 3288
 
2335 Serge 3289
	if (obj->pin_count) {
3290
		DRM_DEBUG("can not change the cache level of pinned objects\n");
3291
		return -EBUSY;
3292
	}
2332 Serge 3293
 
4104 Serge 3294
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
3295
		if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3296
			ret = i915_vma_unbind(vma);
3031 serge 3297
		if (ret)
3298
			return ret;
4104 Serge 3299
 
3300
			break;
3301
		}
3031 serge 3302
	}
3303
 
4104 Serge 3304
	if (i915_gem_obj_bound_any(obj)) {
2335 Serge 3305
		ret = i915_gem_object_finish_gpu(obj);
3306
		if (ret)
3307
			return ret;
2332 Serge 3308
 
2335 Serge 3309
		i915_gem_object_finish_gtt(obj);
2332 Serge 3310
 
2335 Serge 3311
		/* Before SandyBridge, you could not use tiling or fence
3312
		 * registers with snooped memory, so relinquish any fences
3313
		 * currently pointing to our region in the aperture.
3314
		 */
3031 serge 3315
		if (INTEL_INFO(dev)->gen < 6) {
2335 Serge 3316
			ret = i915_gem_object_put_fence(obj);
3317
			if (ret)
3318
				return ret;
3319
		}
2332 Serge 3320
 
3031 serge 3321
		if (obj->has_global_gtt_mapping)
3322
			i915_gem_gtt_bind_object(obj, cache_level);
3323
		if (obj->has_aliasing_ppgtt_mapping)
3324
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3325
					       obj, cache_level);
2335 Serge 3326
	}
2332 Serge 3327
 
4104 Serge 3328
	list_for_each_entry(vma, &obj->vma_list, vma_link)
3329
		vma->node.color = cache_level;
3330
	obj->cache_level = cache_level;
3331
 
3332
	if (cpu_write_needs_clflush(obj)) {
2335 Serge 3333
		u32 old_read_domains, old_write_domain;
2332 Serge 3334
 
2335 Serge 3335
		/* If we're coming from LLC cached, then we haven't
3336
		 * actually been tracking whether the data is in the
3337
		 * CPU cache or not, since we only allow one bit set
3338
		 * in obj->write_domain and have been skipping the clflushes.
3339
		 * Just set it to the CPU cache for now.
3340
		 */
3341
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2332 Serge 3342
 
2335 Serge 3343
		old_read_domains = obj->base.read_domains;
3344
		old_write_domain = obj->base.write_domain;
2332 Serge 3345
 
2335 Serge 3346
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3347
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2332 Serge 3348
 
2351 Serge 3349
		trace_i915_gem_object_change_domain(obj,
3350
						    old_read_domains,
3351
						    old_write_domain);
2344 Serge 3352
    }
2332 Serge 3353
 
3031 serge 3354
	i915_gem_verify_gtt(dev);
2335 Serge 3355
	return 0;
3356
}
2332 Serge 3357
 
3260 Serge 3358
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3359
			       struct drm_file *file)
3360
{
3361
	struct drm_i915_gem_caching *args = data;
3362
	struct drm_i915_gem_object *obj;
3363
	int ret;
3364
 
3480 Serge 3365
     if(args->handle == -2)
3366
     {
3367
        printf("%s handle %d\n", __FUNCTION__, args->handle);
3368
        return 0;
3369
     }
3370
 
3260 Serge 3371
	ret = i915_mutex_lock_interruptible(dev);
3372
	if (ret)
3373
		return ret;
3374
 
3375
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3376
	if (&obj->base == NULL) {
3377
		ret = -ENOENT;
3378
		goto unlock;
3379
	}
3380
 
4104 Serge 3381
	switch (obj->cache_level) {
3382
	case I915_CACHE_LLC:
3383
	case I915_CACHE_L3_LLC:
3384
		args->caching = I915_CACHING_CACHED;
3385
		break;
3260 Serge 3386
 
4104 Serge 3387
	case I915_CACHE_WT:
3388
		args->caching = I915_CACHING_DISPLAY;
3389
		break;
3390
 
3391
	default:
3392
		args->caching = I915_CACHING_NONE;
3393
		break;
3394
	}
3395
 
3260 Serge 3396
	drm_gem_object_unreference(&obj->base);
3397
unlock:
3398
	mutex_unlock(&dev->struct_mutex);
3399
	return ret;
3400
}
3401
 
3402
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3403
			       struct drm_file *file)
3404
{
3405
	struct drm_i915_gem_caching *args = data;
3406
	struct drm_i915_gem_object *obj;
3407
	enum i915_cache_level level;
3408
	int ret;
3409
 
3480 Serge 3410
     if(args->handle == -2)
3411
     {
3412
        printf("%s handle %d\n", __FUNCTION__, args->handle);
3413
        return 0;
3414
     }
3415
 
3260 Serge 3416
	switch (args->caching) {
3417
	case I915_CACHING_NONE:
3418
		level = I915_CACHE_NONE;
3419
		break;
3420
	case I915_CACHING_CACHED:
3421
		level = I915_CACHE_LLC;
3422
		break;
4104 Serge 3423
	case I915_CACHING_DISPLAY:
3424
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3425
		break;
3260 Serge 3426
	default:
3427
		return -EINVAL;
3428
	}
3429
 
3430
	ret = i915_mutex_lock_interruptible(dev);
3431
	if (ret)
3432
		return ret;
3433
 
3434
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3435
	if (&obj->base == NULL) {
3436
		ret = -ENOENT;
3437
		goto unlock;
3438
	}
3439
 
3440
	ret = i915_gem_object_set_cache_level(obj, level);
3441
 
3442
	drm_gem_object_unreference(&obj->base);
3443
unlock:
3444
	mutex_unlock(&dev->struct_mutex);
3445
	return ret;
3446
}
3447
 
4104 Serge 3448
static bool is_pin_display(struct drm_i915_gem_object *obj)
3449
{
3450
	/* There are 3 sources that pin objects:
3451
	 *   1. The display engine (scanouts, sprites, cursors);
3452
	 *   2. Reservations for execbuffer;
3453
	 *   3. The user.
3454
	 *
3455
	 * We can ignore reservations as we hold the struct_mutex and
3456
	 * are only called outside of the reservation path.  The user
3457
	 * can only increment pin_count once, and so if after
3458
	 * subtracting the potential reference by the user, any pin_count
3459
	 * remains, it must be due to another use by the display engine.
3460
	 */
3461
	return obj->pin_count - !!obj->user_pin_count;
3462
}
3463
 
2335 Serge 3464
/*
3465
 * Prepare buffer for display plane (scanout, cursors, etc).
3466
 * Can be called from an uninterruptible phase (modesetting) and allows
3467
 * any flushes to be pipelined (for pageflips).
3468
 */
3469
int
3470
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3471
				     u32 alignment,
3472
				     struct intel_ring_buffer *pipelined)
3473
{
3474
	u32 old_read_domains, old_write_domain;
3475
	int ret;
2332 Serge 3476
 
3031 serge 3477
	if (pipelined != obj->ring) {
3478
		ret = i915_gem_object_sync(obj, pipelined);
2335 Serge 3479
	if (ret)
3480
		return ret;
3481
	}
2332 Serge 3482
 
4104 Serge 3483
	/* Mark the pin_display early so that we account for the
3484
	 * display coherency whilst setting up the cache domains.
3485
	 */
3486
	obj->pin_display = true;
3487
 
2335 Serge 3488
	/* The display engine is not coherent with the LLC cache on gen6.  As
3489
	 * a result, we make sure that the pinning that is about to occur is
3490
	 * done with uncached PTEs. This is lowest common denominator for all
3491
	 * chipsets.
3492
	 *
3493
	 * However for gen6+, we could do better by using the GFDT bit instead
3494
	 * of uncaching, which would allow us to flush all the LLC-cached data
3495
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3496
	 */
4104 Serge 3497
	ret = i915_gem_object_set_cache_level(obj,
3498
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
2360 Serge 3499
	if (ret)
4104 Serge 3500
		goto err_unpin_display;
2332 Serge 3501
 
2335 Serge 3502
	/* As the user may map the buffer once pinned in the display plane
3503
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3504
	 * always use map_and_fenceable for all scanout buffers.
3505
	 */
4104 Serge 3506
	ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
2335 Serge 3507
	if (ret)
4104 Serge 3508
		goto err_unpin_display;
2332 Serge 3509
 
4104 Serge 3510
	i915_gem_object_flush_cpu_write_domain(obj, true);
2332 Serge 3511
 
2335 Serge 3512
	old_write_domain = obj->base.write_domain;
3513
	old_read_domains = obj->base.read_domains;
2332 Serge 3514
 
2335 Serge 3515
	/* It should now be out of any other write domains, and we can update
3516
	 * the domain values for our changes.
3517
	 */
3031 serge 3518
	obj->base.write_domain = 0;
2335 Serge 3519
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2332 Serge 3520
 
2351 Serge 3521
	trace_i915_gem_object_change_domain(obj,
3522
					    old_read_domains,
3523
					    old_write_domain);
2332 Serge 3524
 
2335 Serge 3525
	return 0;
4104 Serge 3526
 
3527
err_unpin_display:
3528
	obj->pin_display = is_pin_display(obj);
3529
	return ret;
2335 Serge 3530
}
2332 Serge 3531
 
4104 Serge 3532
void
3533
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3534
{
3535
	i915_gem_object_unpin(obj);
3536
	obj->pin_display = is_pin_display(obj);
3537
}
3538
 
2344 Serge 3539
int
3540
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3541
{
3542
	int ret;
2332 Serge 3543
 
2344 Serge 3544
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3545
		return 0;
2332 Serge 3546
 
3031 serge 3547
	ret = i915_gem_object_wait_rendering(obj, false);
3243 Serge 3548
    if (ret)
3549
        return ret;
2332 Serge 3550
 
2344 Serge 3551
	/* Ensure that we invalidate the GPU's caches and TLBs. */
3552
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3031 serge 3553
	return 0;
2344 Serge 3554
}
2332 Serge 3555
 
2344 Serge 3556
/**
3557
 * Moves a single object to the CPU read, and possibly write domain.
3558
 *
3559
 * This function returns when the move is complete, including waiting on
3560
 * flushes to occur.
3561
 */
3031 serge 3562
int
2344 Serge 3563
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3564
{
3565
	uint32_t old_write_domain, old_read_domains;
3566
	int ret;
2332 Serge 3567
 
2344 Serge 3568
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3569
		return 0;
2332 Serge 3570
 
3031 serge 3571
	ret = i915_gem_object_wait_rendering(obj, !write);
2344 Serge 3572
	if (ret)
3573
		return ret;
2332 Serge 3574
 
2344 Serge 3575
	i915_gem_object_flush_gtt_write_domain(obj);
2332 Serge 3576
 
2344 Serge 3577
	old_write_domain = obj->base.write_domain;
3578
	old_read_domains = obj->base.read_domains;
2332 Serge 3579
 
2344 Serge 3580
	/* Flush the CPU cache if it's still invalid. */
3581
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4104 Serge 3582
		i915_gem_clflush_object(obj, false);
2332 Serge 3583
 
2344 Serge 3584
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3585
	}
2332 Serge 3586
 
2344 Serge 3587
	/* It should now be out of any other write domains, and we can update
3588
	 * the domain values for our changes.
3589
	 */
3590
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2332 Serge 3591
 
2344 Serge 3592
	/* If we're writing through the CPU, then the GPU read domains will
3593
	 * need to be invalidated at next use.
3594
	 */
3595
	if (write) {
3596
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3597
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3598
	}
2332 Serge 3599
 
2351 Serge 3600
	trace_i915_gem_object_change_domain(obj,
3601
					    old_read_domains,
3602
					    old_write_domain);
2332 Serge 3603
 
2344 Serge 3604
	return 0;
3605
}
2332 Serge 3606
 
3031 serge 3607
/* Throttle our rendering by waiting until the ring has completed our requests
3608
 * emitted over 20 msec ago.
2344 Serge 3609
 *
3031 serge 3610
 * Note that if we were to use the current jiffies each time around the loop,
3611
 * we wouldn't escape the function with any frames outstanding if the time to
3612
 * render a frame was over 20ms.
3613
 *
3614
 * This should get us reasonable parallelism between CPU and GPU but also
3615
 * relatively low latency when blocking on a particular request to finish.
2344 Serge 3616
 */
3031 serge 3617
static int
3618
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
2344 Serge 3619
{
3031 serge 3620
	struct drm_i915_private *dev_priv = dev->dev_private;
3621
	struct drm_i915_file_private *file_priv = file->driver_priv;
3263 Serge 3622
	unsigned long recent_enough = GetTimerTicks() - msecs_to_jiffies(20);
3031 serge 3623
	struct drm_i915_gem_request *request;
3624
	struct intel_ring_buffer *ring = NULL;
3480 Serge 3625
	unsigned reset_counter;
3031 serge 3626
	u32 seqno = 0;
3627
	int ret;
2332 Serge 3628
 
3480 Serge 3629
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3630
	if (ret)
3631
		return ret;
2332 Serge 3632
 
3480 Serge 3633
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3634
	if (ret)
3635
		return ret;
3636
 
3031 serge 3637
	spin_lock(&file_priv->mm.lock);
3638
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3639
		if (time_after_eq(request->emitted_jiffies, recent_enough))
3640
			break;
2332 Serge 3641
 
3031 serge 3642
		ring = request->ring;
3643
		seqno = request->seqno;
3644
	}
3480 Serge 3645
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3031 serge 3646
	spin_unlock(&file_priv->mm.lock);
2332 Serge 3647
 
3031 serge 3648
	if (seqno == 0)
3649
		return 0;
2332 Serge 3650
 
3480 Serge 3651
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3031 serge 3652
	if (ret == 0)
3653
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
2332 Serge 3654
 
3031 serge 3655
	return ret;
2352 Serge 3656
}
2332 Serge 3657
 
3658
int
3659
i915_gem_object_pin(struct drm_i915_gem_object *obj,
4104 Serge 3660
		    struct i915_address_space *vm,
2332 Serge 3661
		    uint32_t alignment,
3031 serge 3662
		    bool map_and_fenceable,
3663
		    bool nonblocking)
2332 Serge 3664
{
4104 Serge 3665
	struct i915_vma *vma;
2332 Serge 3666
	int ret;
3667
 
3031 serge 3668
	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3669
		return -EBUSY;
2332 Serge 3670
 
4246 Serge 3671
//    if( obj == get_fb_obj())
3672
//        return 0;
3673
 
4104 Serge 3674
	WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3675
 
3676
	vma = i915_gem_obj_to_vma(obj, vm);
3677
 
3678
	if (vma) {
3679
		if ((alignment &&
3680
		     vma->node.start & (alignment - 1)) ||
2332 Serge 3681
		    (map_and_fenceable && !obj->map_and_fenceable)) {
3682
			WARN(obj->pin_count,
3683
			     "bo is already pinned with incorrect alignment:"
4104 Serge 3684
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
2332 Serge 3685
			     " obj->map_and_fenceable=%d\n",
4104 Serge 3686
			     i915_gem_obj_offset(obj, vm), alignment,
2332 Serge 3687
			     map_and_fenceable,
3688
			     obj->map_and_fenceable);
4104 Serge 3689
			ret = i915_vma_unbind(vma);
2332 Serge 3690
			if (ret)
3691
				return ret;
3692
		}
3693
	}
3694
 
4104 Serge 3695
	if (!i915_gem_obj_bound(obj, vm)) {
3243 Serge 3696
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3697
 
4104 Serge 3698
		ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3031 serge 3699
						  map_and_fenceable,
3700
						  nonblocking);
2332 Serge 3701
		if (ret)
3702
			return ret;
3243 Serge 3703
 
3704
		if (!dev_priv->mm.aliasing_ppgtt)
3705
			i915_gem_gtt_bind_object(obj, obj->cache_level);
2332 Serge 3706
	}
3707
 
3031 serge 3708
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3709
		i915_gem_gtt_bind_object(obj, obj->cache_level);
3710
 
3711
	obj->pin_count++;
2332 Serge 3712
	obj->pin_mappable |= map_and_fenceable;
3713
 
3714
	return 0;
3715
}
3716
 
2344 Serge 3717
void
3718
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3719
{
3720
	BUG_ON(obj->pin_count == 0);
4104 Serge 3721
	BUG_ON(!i915_gem_obj_bound_any(obj));
2332 Serge 3722
 
3031 serge 3723
	if (--obj->pin_count == 0)
2344 Serge 3724
		obj->pin_mappable = false;
3725
}
2332 Serge 3726
 
3031 serge 3727
int
3728
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3729
		   struct drm_file *file)
3730
{
3731
	struct drm_i915_gem_pin *args = data;
3732
	struct drm_i915_gem_object *obj;
3733
	int ret;
2332 Serge 3734
 
3480 Serge 3735
     if(args->handle == -2)
3736
     {
3737
        printf("%s handle %d\n", __FUNCTION__, args->handle);
3738
        return 0;
3739
     }
3740
 
3031 serge 3741
	ret = i915_mutex_lock_interruptible(dev);
3742
	if (ret)
3743
		return ret;
2332 Serge 3744
 
3031 serge 3745
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3746
	if (&obj->base == NULL) {
3747
		ret = -ENOENT;
3748
		goto unlock;
3749
	}
2332 Serge 3750
 
3031 serge 3751
	if (obj->madv != I915_MADV_WILLNEED) {
3752
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3753
		ret = -EINVAL;
3754
		goto out;
3755
	}
2332 Serge 3756
 
3031 serge 3757
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3758
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3759
			  args->handle);
3760
		ret = -EINVAL;
3761
		goto out;
3762
	}
2332 Serge 3763
 
3243 Serge 3764
	if (obj->user_pin_count == 0) {
4104 Serge 3765
		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3031 serge 3766
		if (ret)
3767
			goto out;
3768
	}
2332 Serge 3769
 
3243 Serge 3770
	obj->user_pin_count++;
3771
	obj->pin_filp = file;
3772
 
4104 Serge 3773
	args->offset = i915_gem_obj_ggtt_offset(obj);
3031 serge 3774
out:
3775
	drm_gem_object_unreference(&obj->base);
3776
unlock:
3777
	mutex_unlock(&dev->struct_mutex);
3778
	return ret;
3779
}
2332 Serge 3780
 
3031 serge 3781
int
3782
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3783
		     struct drm_file *file)
3784
{
3785
	struct drm_i915_gem_pin *args = data;
3786
	struct drm_i915_gem_object *obj;
3787
	int ret;
2332 Serge 3788
 
3031 serge 3789
	ret = i915_mutex_lock_interruptible(dev);
3790
	if (ret)
3791
		return ret;
2332 Serge 3792
 
4246 Serge 3793
    if(args->handle == -2)
3794
    {
3795
        obj = get_fb_obj();
3796
        drm_gem_object_reference(&obj->base);
3797
    }
3798
    else
3031 serge 3799
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3800
	if (&obj->base == NULL) {
3801
		ret = -ENOENT;
3802
		goto unlock;
3803
	}
2332 Serge 3804
 
3031 serge 3805
	if (obj->pin_filp != file) {
3806
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3807
			  args->handle);
3808
		ret = -EINVAL;
3809
		goto out;
3810
	}
3811
	obj->user_pin_count--;
3812
	if (obj->user_pin_count == 0) {
3813
		obj->pin_filp = NULL;
3814
		i915_gem_object_unpin(obj);
3815
	}
2332 Serge 3816
 
3031 serge 3817
out:
3818
	drm_gem_object_unreference(&obj->base);
3819
unlock:
3820
	mutex_unlock(&dev->struct_mutex);
3821
	return ret;
3822
}
2332 Serge 3823
 
3031 serge 3824
int
3825
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3826
		    struct drm_file *file)
3827
{
3828
	struct drm_i915_gem_busy *args = data;
3829
	struct drm_i915_gem_object *obj;
3830
	int ret;
2332 Serge 3831
 
3031 serge 3832
	ret = i915_mutex_lock_interruptible(dev);
3833
	if (ret)
3834
		return ret;
2332 Serge 3835
 
3480 Serge 3836
    if(args->handle == -2)
3837
    {
3838
        obj = get_fb_obj();
3839
        drm_gem_object_reference(&obj->base);
3840
    }
3841
    else
4104 Serge 3842
        obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3031 serge 3843
	if (&obj->base == NULL) {
3844
		ret = -ENOENT;
3845
		goto unlock;
3846
	}
2332 Serge 3847
 
3031 serge 3848
	/* Count all active objects as busy, even if they are currently not used
3849
	 * by the gpu. Users of this interface expect objects to eventually
3850
	 * become non-busy without any further actions, therefore emit any
3851
	 * necessary flushes here.
3852
	 */
3853
	ret = i915_gem_object_flush_active(obj);
2332 Serge 3854
 
3031 serge 3855
	args->busy = obj->active;
3856
	if (obj->ring) {
3857
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3858
		args->busy |= intel_ring_flag(obj->ring) << 16;
3859
	}
2332 Serge 3860
 
3031 serge 3861
	drm_gem_object_unreference(&obj->base);
3862
unlock:
3863
	mutex_unlock(&dev->struct_mutex);
3864
	return ret;
3865
}
2332 Serge 3866
 
3031 serge 3867
int
3868
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3869
			struct drm_file *file_priv)
3870
{
3871
	return i915_gem_ring_throttle(dev, file_priv);
3872
}
2332 Serge 3873
 
3263 Serge 3874
#if 0
3875
 
3031 serge 3876
int
3877
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3878
		       struct drm_file *file_priv)
3879
{
3880
	struct drm_i915_gem_madvise *args = data;
3881
	struct drm_i915_gem_object *obj;
3882
	int ret;
2332 Serge 3883
 
3031 serge 3884
	switch (args->madv) {
3885
	case I915_MADV_DONTNEED:
3886
	case I915_MADV_WILLNEED:
3887
	    break;
3888
	default:
3889
	    return -EINVAL;
3890
	}
2332 Serge 3891
 
3031 serge 3892
	ret = i915_mutex_lock_interruptible(dev);
3893
	if (ret)
3894
		return ret;
2332 Serge 3895
 
3031 serge 3896
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3897
	if (&obj->base == NULL) {
3898
		ret = -ENOENT;
3899
		goto unlock;
3900
	}
2332 Serge 3901
 
3031 serge 3902
	if (obj->pin_count) {
3903
		ret = -EINVAL;
3904
		goto out;
3905
	}
2332 Serge 3906
 
3031 serge 3907
	if (obj->madv != __I915_MADV_PURGED)
3908
		obj->madv = args->madv;
2332 Serge 3909
 
3031 serge 3910
	/* if the object is no longer attached, discard its backing storage */
3911
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3912
		i915_gem_object_truncate(obj);
2332 Serge 3913
 
3031 serge 3914
	args->retained = obj->madv != __I915_MADV_PURGED;
2332 Serge 3915
 
3031 serge 3916
out:
3917
	drm_gem_object_unreference(&obj->base);
3918
unlock:
3919
	mutex_unlock(&dev->struct_mutex);
3920
	return ret;
3921
}
3922
#endif
2332 Serge 3923
 
3031 serge 3924
void i915_gem_object_init(struct drm_i915_gem_object *obj,
3925
			  const struct drm_i915_gem_object_ops *ops)
3926
{
4104 Serge 3927
	INIT_LIST_HEAD(&obj->global_list);
3031 serge 3928
	INIT_LIST_HEAD(&obj->ring_list);
3929
	INIT_LIST_HEAD(&obj->exec_list);
4104 Serge 3930
	INIT_LIST_HEAD(&obj->obj_exec_link);
3931
	INIT_LIST_HEAD(&obj->vma_list);
2332 Serge 3932
 
3031 serge 3933
	obj->ops = ops;
3934
 
3935
	obj->fence_reg = I915_FENCE_REG_NONE;
3936
	obj->madv = I915_MADV_WILLNEED;
3937
	/* Avoid an unnecessary call to unbind on the first bind. */
3938
	obj->map_and_fenceable = true;
3939
 
3940
	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3941
}
3942
 
3943
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3944
	.get_pages = i915_gem_object_get_pages_gtt,
3945
	.put_pages = i915_gem_object_put_pages_gtt,
3946
};
3947
 
2332 Serge 3948
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3949
						  size_t size)
3950
{
3951
	struct drm_i915_gem_object *obj;
3031 serge 3952
	struct address_space *mapping;
3480 Serge 3953
	gfp_t mask;
2340 Serge 3954
 
3746 Serge 3955
	obj = i915_gem_object_alloc(dev);
2332 Serge 3956
	if (obj == NULL)
3957
		return NULL;
3958
 
3959
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4104 Serge 3960
		i915_gem_object_free(obj);
2332 Serge 3961
		return NULL;
3962
	}
3963
 
3964
 
3031 serge 3965
	i915_gem_object_init(obj, &i915_gem_object_ops);
2332 Serge 3966
 
3967
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3968
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3969
 
3031 serge 3970
	if (HAS_LLC(dev)) {
3971
		/* On some devices, we can have the GPU use the LLC (the CPU
2332 Serge 3972
		 * cache) for about a 10% performance improvement
3973
		 * compared to uncached.  Graphics requests other than
3974
		 * display scanout are coherent with the CPU in
3975
		 * accessing this cache.  This means in this mode we
3976
		 * don't need to clflush on the CPU side, and on the
3977
		 * GPU side we only need to flush internal caches to
3978
		 * get data visible to the CPU.
3979
		 *
3980
		 * However, we maintain the display planes as UC, and so
3981
		 * need to rebind when first used as such.
3982
		 */
3983
		obj->cache_level = I915_CACHE_LLC;
3984
	} else
3985
		obj->cache_level = I915_CACHE_NONE;
3986
 
3987
	return obj;
3988
}
3989
 
2344 Serge 3990
int i915_gem_init_object(struct drm_gem_object *obj)
3991
{
3992
	BUG();
2332 Serge 3993
 
2344 Serge 3994
	return 0;
3995
}
2332 Serge 3996
 
3031 serge 3997
void i915_gem_free_object(struct drm_gem_object *gem_obj)
2344 Serge 3998
{
3031 serge 3999
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
2344 Serge 4000
	struct drm_device *dev = obj->base.dev;
4001
	drm_i915_private_t *dev_priv = dev->dev_private;
4104 Serge 4002
	struct i915_vma *vma, *next;
2332 Serge 4003
 
3031 serge 4004
	trace_i915_gem_object_destroy(obj);
4005
 
4006
 
4007
	obj->pin_count = 0;
4104 Serge 4008
	/* NB: 0 or 1 elements */
4009
	WARN_ON(!list_empty(&obj->vma_list) &&
4010
		!list_is_singular(&obj->vma_list));
4011
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4012
		int ret = i915_vma_unbind(vma);
4013
		if (WARN_ON(ret == -ERESTARTSYS)) {
3031 serge 4014
		bool was_interruptible;
4015
 
4016
		was_interruptible = dev_priv->mm.interruptible;
4017
		dev_priv->mm.interruptible = false;
4018
 
4104 Serge 4019
			WARN_ON(i915_vma_unbind(vma));
3031 serge 4020
 
4021
		dev_priv->mm.interruptible = was_interruptible;
2344 Serge 4022
	}
4104 Serge 4023
	}
2332 Serge 4024
 
4104 Serge 4025
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4026
	 * before progressing. */
4027
	if (obj->stolen)
4028
		i915_gem_object_unpin_pages(obj);
4029
 
4030
	if (WARN_ON(obj->pages_pin_count))
3031 serge 4031
	obj->pages_pin_count = 0;
4032
	i915_gem_object_put_pages(obj);
4033
//   i915_gem_object_free_mmap_offset(obj);
4104 Serge 4034
	i915_gem_object_release_stolen(obj);
2332 Serge 4035
 
3243 Serge 4036
	BUG_ON(obj->pages);
2332 Serge 4037
 
3031 serge 4038
 
3290 Serge 4039
    if(obj->base.filp != NULL)
4040
    {
3298 Serge 4041
//        printf("filp %p\n", obj->base.filp);
3290 Serge 4042
        shmem_file_delete(obj->base.filp);
4043
    }
4044
 
2344 Serge 4045
	drm_gem_object_release(&obj->base);
4046
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
2332 Serge 4047
 
2344 Serge 4048
	kfree(obj->bit_17);
4104 Serge 4049
	i915_gem_object_free(obj);
2344 Serge 4050
}
2332 Serge 4051
 
4104 Serge 4052
struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
4053
				     struct i915_address_space *vm)
4054
{
4055
	struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4056
	if (vma == NULL)
4057
		return ERR_PTR(-ENOMEM);
4058
 
4059
	INIT_LIST_HEAD(&vma->vma_link);
4060
	INIT_LIST_HEAD(&vma->mm_list);
4061
	INIT_LIST_HEAD(&vma->exec_list);
4062
	vma->vm = vm;
4063
	vma->obj = obj;
4064
 
4065
	/* Keep GGTT vmas first to make debug easier */
4066
	if (i915_is_ggtt(vm))
4067
		list_add(&vma->vma_link, &obj->vma_list);
4068
	else
4069
		list_add_tail(&vma->vma_link, &obj->vma_list);
4070
 
4071
	return vma;
4072
}
4073
 
4074
void i915_gem_vma_destroy(struct i915_vma *vma)
4075
{
4076
	WARN_ON(vma->node.allocated);
4077
	list_del(&vma->vma_link);
4078
	kfree(vma);
4079
}
4080
 
3031 serge 4081
#if 0
4082
int
4083
i915_gem_idle(struct drm_device *dev)
2344 Serge 4084
{
3031 serge 4085
	drm_i915_private_t *dev_priv = dev->dev_private;
4086
	int ret;
2332 Serge 4087
 
4104 Serge 4088
	if (dev_priv->ums.mm_suspended) {
3031 serge 4089
		mutex_unlock(&dev->struct_mutex);
4090
		return 0;
4091
	}
2332 Serge 4092
 
3031 serge 4093
	ret = i915_gpu_idle(dev);
4094
	if (ret) {
4095
		mutex_unlock(&dev->struct_mutex);
4096
		return ret;
4097
	}
4098
	i915_gem_retire_requests(dev);
4099
 
3480 Serge 4100
	/* Under UMS, be paranoid and evict. */
4101
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4102
		i915_gem_evict_everything(dev);
4103
 
4104
	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3031 serge 4105
 
4106
	i915_kernel_lost_context(dev);
4107
	i915_gem_cleanup_ringbuffer(dev);
4108
 
4109
	/* Cancel the retire work handler, which should be idle now. */
3263 Serge 4110
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3031 serge 4111
 
4112
	return 0;
2344 Serge 4113
}
3031 serge 4114
#endif
2332 Serge 4115
 
3031 serge 4116
void i915_gem_l3_remap(struct drm_device *dev)
4117
{
4118
	drm_i915_private_t *dev_priv = dev->dev_private;
4119
	u32 misccpctl;
4120
	int i;
2332 Serge 4121
 
3480 Serge 4122
	if (!HAS_L3_GPU_CACHE(dev))
3031 serge 4123
		return;
2332 Serge 4124
 
3243 Serge 4125
	if (!dev_priv->l3_parity.remap_info)
3031 serge 4126
		return;
2332 Serge 4127
 
3031 serge 4128
	misccpctl = I915_READ(GEN7_MISCCPCTL);
4129
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4130
	POSTING_READ(GEN7_MISCCPCTL);
2332 Serge 4131
 
3031 serge 4132
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4133
		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3243 Serge 4134
		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3031 serge 4135
			DRM_DEBUG("0x%x was already programmed to %x\n",
4136
				  GEN7_L3LOG_BASE + i, remap);
3243 Serge 4137
		if (remap && !dev_priv->l3_parity.remap_info[i/4])
3031 serge 4138
			DRM_DEBUG_DRIVER("Clearing remapped register\n");
3243 Serge 4139
		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3031 serge 4140
	}
2332 Serge 4141
 
3031 serge 4142
	/* Make sure all the writes land before disabling dop clock gating */
4143
	POSTING_READ(GEN7_L3LOG_BASE);
2332 Serge 4144
 
3031 serge 4145
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4146
}
2332 Serge 4147
 
3031 serge 4148
void i915_gem_init_swizzling(struct drm_device *dev)
4149
{
4150
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 4151
 
3031 serge 4152
	if (INTEL_INFO(dev)->gen < 5 ||
4153
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4154
		return;
2332 Serge 4155
 
3031 serge 4156
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4157
				 DISP_TILE_SURFACE_SWIZZLING);
2332 Serge 4158
 
3031 serge 4159
	if (IS_GEN5(dev))
4160
		return;
2344 Serge 4161
 
3031 serge 4162
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4163
	if (IS_GEN6(dev))
4164
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3480 Serge 4165
	else if (IS_GEN7(dev))
4166
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3031 serge 4167
	else
3480 Serge 4168
		BUG();
3031 serge 4169
}
4170
 
4171
static bool
4172
intel_enable_blt(struct drm_device *dev)
4173
{
4174
	if (!HAS_BLT(dev))
4175
		return false;
4176
 
4177
	/* The blitter was dysfunctional on early prototypes */
4178
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4179
		DRM_INFO("BLT not supported on this pre-production hardware;"
4180
			 " graphics performance will be degraded.\n");
4181
		return false;
4182
	}
4183
 
4184
	return true;
4185
}
4186
 
3480 Serge 4187
static int i915_gem_init_rings(struct drm_device *dev)
2332 Serge 4188
{
3480 Serge 4189
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 4190
	int ret;
2351 Serge 4191
 
2332 Serge 4192
	ret = intel_init_render_ring_buffer(dev);
4193
	if (ret)
4194
		return ret;
4195
 
4196
    if (HAS_BSD(dev)) {
4197
		ret = intel_init_bsd_ring_buffer(dev);
4198
		if (ret)
4199
			goto cleanup_render_ring;
4200
	}
4201
 
3031 serge 4202
	if (intel_enable_blt(dev)) {
2332 Serge 4203
		ret = intel_init_blt_ring_buffer(dev);
4204
		if (ret)
4205
			goto cleanup_bsd_ring;
4206
	}
4207
 
4104 Serge 4208
	if (HAS_VEBOX(dev)) {
4209
		ret = intel_init_vebox_ring_buffer(dev);
4210
		if (ret)
4211
			goto cleanup_blt_ring;
4212
	}
4213
 
4214
 
3480 Serge 4215
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4216
	if (ret)
4104 Serge 4217
		goto cleanup_vebox_ring;
2351 Serge 4218
 
2332 Serge 4219
	return 0;
4220
 
4104 Serge 4221
cleanup_vebox_ring:
4222
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
3480 Serge 4223
cleanup_blt_ring:
4224
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
2332 Serge 4225
cleanup_bsd_ring:
4226
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4227
cleanup_render_ring:
4228
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3480 Serge 4229
 
2332 Serge 4230
	return ret;
4231
}
4232
 
3480 Serge 4233
int
4234
i915_gem_init_hw(struct drm_device *dev)
3031 serge 4235
{
3480 Serge 4236
	drm_i915_private_t *dev_priv = dev->dev_private;
4237
	int ret;
3031 serge 4238
 
3480 Serge 4239
	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4240
		return -EIO;
3031 serge 4241
 
4104 Serge 4242
	if (dev_priv->ellc_size)
4243
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
3480 Serge 4244
 
3746 Serge 4245
	if (HAS_PCH_NOP(dev)) {
4246
		u32 temp = I915_READ(GEN7_MSG_CTL);
4247
		temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4248
		I915_WRITE(GEN7_MSG_CTL, temp);
4249
	}
4250
 
3480 Serge 4251
	i915_gem_l3_remap(dev);
4252
 
4253
	i915_gem_init_swizzling(dev);
4254
 
4255
	ret = i915_gem_init_rings(dev);
4256
	if (ret)
4257
		return ret;
4258
 
4259
	/*
4260
	 * XXX: There was some w/a described somewhere suggesting loading
4261
	 * contexts before PPGTT.
4262
	 */
4263
	i915_gem_context_init(dev);
3746 Serge 4264
	if (dev_priv->mm.aliasing_ppgtt) {
4265
		ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4266
		if (ret) {
4267
			i915_gem_cleanup_aliasing_ppgtt(dev);
4268
			DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4269
		}
4270
	}
3480 Serge 4271
 
4272
	return 0;
3031 serge 4273
}
4274
 
4275
int i915_gem_init(struct drm_device *dev)
4276
{
4277
	struct drm_i915_private *dev_priv = dev->dev_private;
4278
	int ret;
4279
 
4280
	mutex_lock(&dev->struct_mutex);
3746 Serge 4281
 
4282
	if (IS_VALLEYVIEW(dev)) {
4283
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4284
		I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4285
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4286
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4287
	}
4288
 
3480 Serge 4289
	i915_gem_init_global_gtt(dev);
3746 Serge 4290
 
3031 serge 4291
	ret = i915_gem_init_hw(dev);
4292
	mutex_unlock(&dev->struct_mutex);
4293
	if (ret) {
4294
		i915_gem_cleanup_aliasing_ppgtt(dev);
4295
		return ret;
4296
	}
4297
 
3746 Serge 4298
 
3031 serge 4299
    return 0;
4300
}
4301
 
2332 Serge 4302
void
4303
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4304
{
4305
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 4306
	struct intel_ring_buffer *ring;
2332 Serge 4307
	int i;
4308
 
3031 serge 4309
	for_each_ring(ring, dev_priv, i)
4310
		intel_cleanup_ring_buffer(ring);
2332 Serge 4311
}
4312
 
3031 serge 4313
#if 0
4314
 
2332 Serge 4315
int
4316
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4317
		       struct drm_file *file_priv)
4318
{
4104 Serge 4319
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4320
	int ret;
2332 Serge 4321
 
4322
	if (drm_core_check_feature(dev, DRIVER_MODESET))
4323
		return 0;
4324
 
3480 Serge 4325
	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
2332 Serge 4326
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3480 Serge 4327
		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
2332 Serge 4328
	}
4329
 
4330
	mutex_lock(&dev->struct_mutex);
4104 Serge 4331
	dev_priv->ums.mm_suspended = 0;
2332 Serge 4332
 
3031 serge 4333
	ret = i915_gem_init_hw(dev);
2332 Serge 4334
	if (ret != 0) {
4335
		mutex_unlock(&dev->struct_mutex);
4336
		return ret;
4337
	}
4338
 
4104 Serge 4339
	BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
2332 Serge 4340
	mutex_unlock(&dev->struct_mutex);
4341
 
4342
	ret = drm_irq_install(dev);
4343
	if (ret)
4344
		goto cleanup_ringbuffer;
4345
 
4346
	return 0;
4347
 
4348
cleanup_ringbuffer:
4349
	mutex_lock(&dev->struct_mutex);
4350
	i915_gem_cleanup_ringbuffer(dev);
4104 Serge 4351
	dev_priv->ums.mm_suspended = 1;
2332 Serge 4352
	mutex_unlock(&dev->struct_mutex);
4353
 
4354
	return ret;
4355
}
4356
 
4357
int
4358
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4359
		       struct drm_file *file_priv)
4360
{
4104 Serge 4361
	struct drm_i915_private *dev_priv = dev->dev_private;
4362
	int ret;
4363
 
2332 Serge 4364
	if (drm_core_check_feature(dev, DRIVER_MODESET))
4365
		return 0;
4366
 
4367
	drm_irq_uninstall(dev);
4104 Serge 4368
 
4369
	mutex_lock(&dev->struct_mutex);
4370
	ret =  i915_gem_idle(dev);
4371
 
4372
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
4373
	 * We need to replace this with a semaphore, or something.
4374
	 * And not confound ums.mm_suspended!
4375
	 */
4376
	if (ret != 0)
4377
		dev_priv->ums.mm_suspended = 1;
4378
	mutex_unlock(&dev->struct_mutex);
4379
 
4380
	return ret;
2332 Serge 4381
}
4382
 
4383
void
4384
i915_gem_lastclose(struct drm_device *dev)
4385
{
4386
	int ret;
4387
 
4388
	if (drm_core_check_feature(dev, DRIVER_MODESET))
4389
		return;
4390
 
4104 Serge 4391
	mutex_lock(&dev->struct_mutex);
2332 Serge 4392
	ret = i915_gem_idle(dev);
4393
	if (ret)
4394
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4104 Serge 4395
	mutex_unlock(&dev->struct_mutex);
2332 Serge 4396
}
4397
#endif
4398
 
4399
static void
2326 Serge 4400
init_ring_lists(struct intel_ring_buffer *ring)
4401
{
4402
    INIT_LIST_HEAD(&ring->active_list);
4403
    INIT_LIST_HEAD(&ring->request_list);
4404
}
4405
 
4104 Serge 4406
static void i915_init_vm(struct drm_i915_private *dev_priv,
4407
			 struct i915_address_space *vm)
4408
{
4409
	vm->dev = dev_priv->dev;
4410
	INIT_LIST_HEAD(&vm->active_list);
4411
	INIT_LIST_HEAD(&vm->inactive_list);
4412
	INIT_LIST_HEAD(&vm->global_link);
4413
	list_add(&vm->global_link, &dev_priv->vm_list);
4414
}
4415
 
2326 Serge 4416
void
4417
i915_gem_load(struct drm_device *dev)
4418
{
3480 Serge 4419
	drm_i915_private_t *dev_priv = dev->dev_private;
2326 Serge 4420
    int i;
4421
 
4104 Serge 4422
	INIT_LIST_HEAD(&dev_priv->vm_list);
4423
	i915_init_vm(dev_priv, &dev_priv->gtt.base);
4424
 
3031 serge 4425
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4426
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
2326 Serge 4427
    INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4428
    for (i = 0; i < I915_NUM_RINGS; i++)
4429
        init_ring_lists(&dev_priv->ring[i]);
2342 Serge 4430
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
2326 Serge 4431
        INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
2360 Serge 4432
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4433
			  i915_gem_retire_work_handler);
3480 Serge 4434
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
2326 Serge 4435
 
4436
    /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4437
    if (IS_GEN3(dev)) {
3031 serge 4438
		I915_WRITE(MI_ARB_STATE,
4439
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
2326 Serge 4440
    }
4441
 
4442
    dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4443
 
3746 Serge 4444
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4445
		dev_priv->num_fence_regs = 32;
4446
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
2326 Serge 4447
        dev_priv->num_fence_regs = 16;
4448
    else
4449
        dev_priv->num_fence_regs = 8;
4450
 
4451
    /* Initialize fence registers to zero */
3746 Serge 4452
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4453
	i915_gem_restore_fences(dev);
2326 Serge 4454
 
4455
    i915_gem_detect_bit_6_swizzle(dev);
4456
 
4457
    dev_priv->mm.interruptible = true;
4458
 
4459
}
4460
 
4104 Serge 4461
#if 0
4462
/*
4463
 * Create a physically contiguous memory object for this object
4464
 * e.g. for cursor + overlay regs
4465
 */
4466
static int i915_gem_init_phys_object(struct drm_device *dev,
4467
				     int id, int size, int align)
4468
{
4469
	drm_i915_private_t *dev_priv = dev->dev_private;
4470
	struct drm_i915_gem_phys_object *phys_obj;
4471
	int ret;
2326 Serge 4472
 
4104 Serge 4473
	if (dev_priv->mm.phys_objs[id - 1] || !size)
4474
		return 0;
4475
 
4476
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4477
	if (!phys_obj)
4478
		return -ENOMEM;
4479
 
4480
	phys_obj->id = id;
4481
 
4482
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4483
	if (!phys_obj->handle) {
4484
		ret = -ENOMEM;
4485
		goto kfree_obj;
4486
	}
4487
#ifdef CONFIG_X86
4488
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4489
#endif
4490
 
4491
	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4492
 
4493
	return 0;
4494
kfree_obj:
4495
	kfree(phys_obj);
4496
	return ret;
4497
}
4498
 
4499
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4500
{
4501
	drm_i915_private_t *dev_priv = dev->dev_private;
4502
	struct drm_i915_gem_phys_object *phys_obj;
4503
 
4504
	if (!dev_priv->mm.phys_objs[id - 1])
4505
		return;
4506
 
4507
	phys_obj = dev_priv->mm.phys_objs[id - 1];
4508
	if (phys_obj->cur_obj) {
4509
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4510
	}
4511
 
4512
#ifdef CONFIG_X86
4513
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4514
#endif
4515
	drm_pci_free(dev, phys_obj->handle);
4516
	kfree(phys_obj);
4517
	dev_priv->mm.phys_objs[id - 1] = NULL;
4518
}
4519
 
4520
void i915_gem_free_all_phys_object(struct drm_device *dev)
4521
{
4522
	int i;
4523
 
4524
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4525
		i915_gem_free_phys_object(dev, i);
4526
}
4527
 
4528
void i915_gem_detach_phys_object(struct drm_device *dev,
4529
				 struct drm_i915_gem_object *obj)
4530
{
4531
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4532
	char *vaddr;
4533
	int i;
4534
	int page_count;
4535
 
4536
	if (!obj->phys_obj)
4537
		return;
4538
	vaddr = obj->phys_obj->handle->vaddr;
4539
 
4540
	page_count = obj->base.size / PAGE_SIZE;
4541
	for (i = 0; i < page_count; i++) {
4542
		struct page *page = shmem_read_mapping_page(mapping, i);
4543
		if (!IS_ERR(page)) {
4544
			char *dst = kmap_atomic(page);
4545
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4546
			kunmap_atomic(dst);
4547
 
4548
			drm_clflush_pages(&page, 1);
4549
 
4550
			set_page_dirty(page);
4551
			mark_page_accessed(page);
4552
			page_cache_release(page);
4553
		}
4554
	}
4555
	i915_gem_chipset_flush(dev);
4556
 
4557
	obj->phys_obj->cur_obj = NULL;
4558
	obj->phys_obj = NULL;
4559
}
4560
 
4561
int
4562
i915_gem_attach_phys_object(struct drm_device *dev,
4563
			    struct drm_i915_gem_object *obj,
4564
			    int id,
4565
			    int align)
4566
{
4567
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4568
	drm_i915_private_t *dev_priv = dev->dev_private;
4569
	int ret = 0;
4570
	int page_count;
4571
	int i;
4572
 
4573
	if (id > I915_MAX_PHYS_OBJECT)
4574
		return -EINVAL;
4575
 
4576
	if (obj->phys_obj) {
4577
		if (obj->phys_obj->id == id)
4578
			return 0;
4579
		i915_gem_detach_phys_object(dev, obj);
4580
	}
4581
 
4582
	/* create a new object */
4583
	if (!dev_priv->mm.phys_objs[id - 1]) {
4584
		ret = i915_gem_init_phys_object(dev, id,
4585
						obj->base.size, align);
4586
		if (ret) {
4587
			DRM_ERROR("failed to init phys object %d size: %zu\n",
4588
				  id, obj->base.size);
4589
			return ret;
4590
		}
4591
	}
4592
 
4593
	/* bind to the object */
4594
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4595
	obj->phys_obj->cur_obj = obj;
4596
 
4597
	page_count = obj->base.size / PAGE_SIZE;
4598
 
4599
	for (i = 0; i < page_count; i++) {
4600
		struct page *page;
4601
		char *dst, *src;
4602
 
4603
		page = shmem_read_mapping_page(mapping, i);
4604
		if (IS_ERR(page))
4605
			return PTR_ERR(page);
4606
 
4607
		src = kmap_atomic(page);
4608
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4609
		memcpy(dst, src, PAGE_SIZE);
4610
		kunmap_atomic(src);
4611
 
4612
		mark_page_accessed(page);
4613
		page_cache_release(page);
4614
	}
4615
 
4616
	return 0;
4617
}
4618
 
4619
static int
4620
i915_gem_phys_pwrite(struct drm_device *dev,
4621
		     struct drm_i915_gem_object *obj,
4622
		     struct drm_i915_gem_pwrite *args,
4623
		     struct drm_file *file_priv)
4624
{
4625
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4626
	char __user *user_data = to_user_ptr(args->data_ptr);
4627
 
4628
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4629
		unsigned long unwritten;
4630
 
4631
		/* The physical object once assigned is fixed for the lifetime
4632
		 * of the obj, so we can safely drop the lock and continue
4633
		 * to access vaddr.
4634
		 */
4635
		mutex_unlock(&dev->struct_mutex);
4636
		unwritten = copy_from_user(vaddr, user_data, args->size);
4637
		mutex_lock(&dev->struct_mutex);
4638
		if (unwritten)
4639
			return -EFAULT;
4640
	}
4641
 
4642
	i915_gem_chipset_flush(dev);
4643
	return 0;
4644
}
4645
 
4646
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4647
{
4648
	struct drm_i915_file_private *file_priv = file->driver_priv;
4649
 
4650
	/* Clean up our request list when the client is going away, so that
4651
	 * later retire_requests won't dereference our soon-to-be-gone
4652
	 * file_priv.
4653
	 */
4654
	spin_lock(&file_priv->mm.lock);
4655
	while (!list_empty(&file_priv->mm.request_list)) {
4656
		struct drm_i915_gem_request *request;
4657
 
4658
		request = list_first_entry(&file_priv->mm.request_list,
4659
					   struct drm_i915_gem_request,
4660
					   client_list);
4661
		list_del(&request->client_list);
4662
		request->file_priv = NULL;
4663
	}
4664
	spin_unlock(&file_priv->mm.lock);
4665
}
4666
#endif
4667
 
4668
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4669
{
4670
	if (!mutex_is_locked(mutex))
4671
		return false;
4672
 
4673
#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4674
	return mutex->owner == task;
4675
#else
4676
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
4677
	return false;
4678
#endif
4679
}
4680
 
4681
/* All the new VM stuff */
4682
unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4683
				  struct i915_address_space *vm)
4684
{
4685
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4686
	struct i915_vma *vma;
4687
 
4688
	if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4689
		vm = &dev_priv->gtt.base;
4690
 
4691
	BUG_ON(list_empty(&o->vma_list));
4692
	list_for_each_entry(vma, &o->vma_list, vma_link) {
4693
		if (vma->vm == vm)
4694
			return vma->node.start;
4695
 
4696
	}
4697
    return 0; //-1;
4698
}
4699
 
4700
bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4701
			struct i915_address_space *vm)
4702
{
4703
	struct i915_vma *vma;
4704
 
4705
	list_for_each_entry(vma, &o->vma_list, vma_link)
4706
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4707
			return true;
4708
 
4709
	return false;
4710
}
4711
 
4712
bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4713
{
4714
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4715
	struct i915_address_space *vm;
4716
 
4717
	list_for_each_entry(vm, &dev_priv->vm_list, global_link)
4718
		if (i915_gem_obj_bound(o, vm))
4719
			return true;
4720
 
4721
	return false;
4722
}
4723
 
4724
unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4725
				struct i915_address_space *vm)
4726
{
4727
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4728
	struct i915_vma *vma;
4729
 
4730
	if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4731
		vm = &dev_priv->gtt.base;
4732
 
4733
	BUG_ON(list_empty(&o->vma_list));
4734
 
4735
	list_for_each_entry(vma, &o->vma_list, vma_link)
4736
		if (vma->vm == vm)
4737
			return vma->node.size;
4738
 
4739
	return 0;
4740
}
4741
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4742
				     struct i915_address_space *vm)
4743
{
4744
	struct i915_vma *vma;
4745
	list_for_each_entry(vma, &obj->vma_list, vma_link)
4746
		if (vma->vm == vm)
4747
			return vma;
4748
 
4749
	return NULL;
4750
}
4751
 
4752
struct i915_vma *
4753
i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4754
				  struct i915_address_space *vm)
4755
{
4756
	struct i915_vma *vma;
4757
 
4758
	vma = i915_gem_obj_to_vma(obj, vm);
4759
	if (!vma)
4760
		vma = i915_gem_vma_create(obj, vm);
4761
 
4762
	return vma;
4763
}